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Abstract

In this paper I develop a new approach for identi�cation and estimation of the parameters

of an oligopoly model, without relying on a potentially unveri�able equilibrium assumption.

Rather, I consider inference on model parameters when the researcher does not know precisely

what decision rule �rms use, but is willing to consider a set of possibilities. In contrast to

traditional approaches in the literature, the proposed methodology allows �rm behavior to

vary �exibly across observations, in a manner consistent with many Nash Equilibria. I derive

identi�cation results for both homogeneous product and di¤erentiated product markets. Due to

the �exibility a¤orded to �rm behavior, the parameters of �rms�marginal cost functions may

only be set identi�ed rather than point identi�ed. The restrictions of the model are, however,

still informative. I �nd that the size of the identi�ed set for marginal cost parameters depends

on the elasticity of market demand, the set of decision rules considered, and the functional

form assumptions imposed. I formulate how to compute consistent set estimates for marginal

cost parameters and demonstrate the proposed methodology with price and quantity data on

the Joint Executive Committee, a 19th century railway cartel. To perform statistical inference

I implement the methodology of Rosen (2005) to construct asymptotically valid con�dence

regions for the partially identi�ed marginal cost parameters. The application illustrates how
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the precision of estimated marginal costs depends on the elasticity of market demand as well as

the extent to which �rm behavior is allowed to vary.

1 Introduction

Structural models of oligopoly markets consist of three components: (i) consumers�demand, (ii)

�rms�cost or production functions, and (iii) an equilibrium assumption. Reliable data on marginal

costs are often not available, so marginal costs must be inferred from data on prices and quantities.

When combined with estimates for demand parameters, either estimated in a �rst stage or jointly

with the imposed equilibrium conditions, the equilibrium assumption serves to pin down price-cost

margins that can be used to back out marginal costs. Since Rosse (1970) this has been standard

practice in empirical work in industrial organization. It is well recognized, however, that the

implied marginal costs, and in turn the parameters of �rms�marginal cost functions, may then be

quite sensitive to the researcher�s choice of an equilibrium assumption.

In this paper, I relax the equilibrium assumption, recognizing that it may not be known to

the researcher which equilibrium �rms play, or even if they play equilibrium at all. In lieu of an

equilibrium assumption, I impose weak restrictions on �rms�decision rules that are consistent with

many standard equilibrium assumptions, and I examine the implications of these restrictions for

identi�cation and estimation of model parameters. This methodology allows empirical researchers

to proceed with estimation when they are uncertain of the precise mechanism by which �rms make

their price or quantity decisions, but are willing to impose a more conservative restriction on their

behavior. In particular, I investigate the consequence of imposing restrictions directly on �rms�

price-cost margins that are consistent with many of the equilibrium assumptions that have been

used in the literature, and many sophisticated models of �rm behavior.

Even if the researcher is willing to maintain that the �rms play an equilibrium, there may be

many di¤erent plausible equilibria to choose from. In fact, when there is dynamic interaction

among �rms over time, microeconomic theory reveals that a multiplicity of equilibria is the norm

rather than the exception.1 Rather than assume that observations correspond to a narrow subset

of these equilibria in order to achieve point identi�cation, the methodology of this paper allows the

researcher to instead base inference on a set of feasible market outcomes consistent with a large

class of Nash equilibria. The proposed methodology is �exible so that the exact set of equilibria or

decision rules considered can be adapted to those thought most salient for the market of interest.

Estimation of structural parameters is then based on the assumption that observed �rm behavior

belongs to this set, rather than a possibly unveri�able equilibrium selection assumption. The set of

feasible �rm decision rules considered can be thought of as implicitly mapping a set of equilibrium

selection rules to implied values for model parameters.

1See, for example, the discussion in chapter 12, pp. 404-405 of Mas-Colell, Whinston, and Green (1995).
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The cost of the �exibility a¤orded to �rm behavior is that the model is generally incomplete. As

a result, parameters of �rms�marginal cost functions are, except in special cases, only set identi�ed

rather than point identi�ed. Even though the marginal cost parameters are not point identi�ed,

the data will still be informative when the assumptions of the model are imposed. Exactly how

informative depends on the stringency of the imposed behavioral assumptions, functional form

assumptions, and in particular on the elasticity of market demand. This is borne out in the

identi�cation results of section 4, and illustrated in the empirical application of section 7, which

uses a well-known dataset that includes prices and shipment quantities for a late 19th century

railway cartel, the Joint Executive Committee.

Despite a possible lack of point identi�cation for marginal cost parameters, this approach has

many advantages. First, it tells the researcher what can be inferred from relatively weak restrictions

on �rm behavior. A clear bene�t of this approach is that it allows the researcher to determine

the extent to which a more restrictive model achieves identi�cation through its assumptions on

equilibrium behavior. This then enables the empirical researcher to determine how robust their

estimates are to various equilibrium assumptions. In some cases, it may not be clear how �rms

set prices or quantities, and di¤erent researchers may disagree as to how �rms make their strategic

decisions or which equilibrium they play. By imposing conservative assumptions on �rm behavior

that embed di¤erent decision rules, researchers who disagree on the precise mechanism by which

price cost margins are actually determined can deduce to what extent their disagreement may e¤ect

implied parameter values.

The paper proceeds as follows. In the remainder of the introduction, I discuss the related

literature. In section 2, I develop the homogeneous products version of the model and place it in

context relative to previous models in the literature. In particular, I formalize the assumptions

imposed on �rms�decision rules that replace the standard equilibrium assumptions. Section 3

extends the model to a di¤erentiated products market. In section 4, I derive identi�cation results

for both homogeneous product markets and di¤erentiated product markets. In each case, under

standard instrumental variable assumptions, the parameters of the demand side of the market

are point identi�ed, while cost parameters are set-identi�ed. The identi�cation results in either

case show that the size of the identi�ed set for cost parameters depends on the market demand

elasticity(ies). Section 5 discusses estimation. Section 6 provides a simple example of how the

methodology could be applied to a homogeneous product market with a linear inverse demand and

linear marginal cost speci�cation. Section 7 presents an application to data on prices and quantities

shipped by the Joint Executive Committee, a railway cartel, and details the new estimation method

employed. The application illustrates how the size of the identi�ed set for marginal cost parameters,

and therefore the precision of inference that can be drawn, depends on the assumptions brought

to bear as well as the elasticity of market demand. Section 8 concludes and discusses avenues for

future research.
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1.1 Related Literature

Recent results concerning identi�cation of model parameters in this setting build on the recent

econometrics literature on partial identi�cation, covered in depth by Manski (2003). Of the papers

cited there, the identi�cation results of this paper are most closely related to Manski and Tamer

(2002). However, while Manski and Tamer (2002) focus on single equation estimation when an

outcome variable or regressor is interval measured and all regressors are exogenous, the econometric

model of this paper is composed of simultaneous equations with cross-equation restrictions and

endogenous regressors, which is concisely represented by a set of conditional moment inequalities.

This requires some new techniques for estimation and statistical inference. Some possibilities

include the inferential approaches of Andrews, Berry, and Jia (2004), Chernozhukov, Hong, and

Tamer (2004), Shaikh (2005), Beresteanu and Molinari (2006), Pakes, Porter, Ho, and Ishii (2006),

and Rosen (2005). For the empirical example of this paper, I employ the estimator of Rosen

(2005), which is generally applicable for models based on a �nite number of moment inequalities.

The estimator takes the form of a minimum chi-square statistic, which has appeared previously in

the statistics literature on multivariate one-sided hypothesis tests.

Research on incomplete econometric models in empirical industrial organization, particularly

when the model admits multiple equilibria, is also a recent and rapidly expanding literature. Exam-

ples that deal with multiple equilibria in models of entry and exit include Andrews, Berry, and Jia

(2004), Tamer (2003), and Ciliberto and Tamer (2004). In the context of an English auction, Haile

and Tamer (2003) use an incomplete model that nests many possible equilibria to estimate bounds

on the distribution of bidders�valuations. Additional research that seeks to estimate model para-

meters in the presence of multiple equilibria includes Borzekowski and Cohen (2005) and Sweeting

(2005). To my knowledge, in the oligopoly setting I consider, estimation strategies based on only

incomplete knowledge of �rms�pricing and or quantity decisions have not been considered.2

Further discussion of related research in the empirical study of oligopoly models is deferred to

the next section, where the model is formally introduced and placed in further context.

2 A Model For Homogeneous Product Markets

The setting I consider in this section is one in which a researcher observes product price and �rms�

quantities produced, as well as demand and cost covariates in a homogeneous product market for

a large number T periods. In each period of observation, t = 1; :::; T , the market is assumed to

be comprised of the same n �rms.3 The econometrician has observations of market price pt and

2There is also a growing literature on estimation of dynamic models of oligopoly. To this point, however, this
research abstracts away from dynamic pricing and/or quantity decisions (for example through tacit collusion), while
instead allowing for dynamics in other decision variables, such as investment or entry/exit decisions. Examples from
the literature include Bajari, Benkard, and Levin (forthcoming), and Pakes, Ostrovsky, and Berry (2005).

3This assumption can be relaxed, but allows for clearer exposition.

4



quantities qt = (q1t; :::; qnt). Let xt, wt be (vector-valued) perfectly observed demand and cost

covariates, respectively, at time t. These may in general include market speci�c components and

may include some common components across �rms as well.

Demand in each market is assumed to be determined by the parametric inverse demand function

pt = P (Qt; xt; �) + ut, (2.1)

Where ut is a mean zero demand shifter such that E [utjwt; xt] = 0, Qt is aggregate time t output, �
are parameters to be estimated, and P (�; x; �) is downward sloping for all x. Each �rm i = 1; :::; n

in period t has marginal costs

mcit = mc (qit; wt; �i) + �it, (2.2)

where �it is an additive mean zero cost-shifter such that E [�itjwt; xt] = 0, and qit is the �rm�s period
t quantity produced. �i are the parameters of �rm i�s marginal cost function to be estimated,

and wt are covariates for observation t. � �
�
�01; :::; �

0
n

�0 is used to denote the composite vector of
all the �rms�marginal cost parameters. This does not exclude the possibility that there are some

common parameters for �rms�marginal cost functions, i.e. that for i 6= j, �i and �j share some

common components.

To this point, the imposed assumptions are standard in the empirical IO literature. Empirical

models of oligopoly markets always include a speci�cation of market supply and demand. What

ties the two together is the speci�cation of an equilibrium assumption. Given the parametric spec-

i�cation above, di¤erent equilibrium �rm strategies are generally derived from conditions for pro�t

maximization. However, these pro�t maximizing conditions are sensitive to the particular game

�rms are assumed to play, the information structure, and the type of equilibrium assumed. For

example, perfectly competitive, Cournot, and Stackelberg equilibria all lead to di¤erent conditions

for pro�t maximization, and thus di¤erent structural equations from which to derive parameter

estimates. Imposing one of these equilibria then yields a pro�t maximizing condition of the form

pt = mcit � �itQt
@Pt (Qt; xt; �)

@Q
, (2.3)

for each �rm. It is important to note that this equation is a tautology, as it is completely un-

restrictive without specifying restrictions for �it; given values for pt; mcit, and a non-zero value

for Qt
@Pt(Qt;xt;�)

@Q , there will always exist some �it that makes this equation true.4 However, this

condition gives a concise way of embedding di¤erent static equilibrium assumptions, as di¤erent

equilibria correspond to di¤erent values of �it, and thus di¤erent values for �rms�markups. For ex-

ample, Bertrand, Cournot, and monopoly equilibrium pricing correspond to the restrictions �it = 0,

�it = sit, and �it = 1, respectively, where sit � qit
Qt
, �rm i�s period t market share. Many empirical

4The only case where it may not seem possible to satisfy equation (2.3) is when @Pt(Qt;xt;�)
@Q

= 0. In that case,
however, �rms are necessarily price-takers so that price equals marginal cost, and any value of �it will su¢ ce.
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applications also use a market level version of condition (2.3) such as

pt = mct � �tQt
@Pt (Qt; xt; �)

@Q
, (2.4)

where mct =
nX
i=1

sit � mcit and �t =
nX
i=1

sit�it. This market-level version of (2.3) is derived by

summing over i, and weighting each equation by sit, and it also embeds Bertrand, Cournot, and

monopoly pricing as special cases.

Estimation strategies that invoke an equilibrium assumption have identifying power through

the restrictions imposed on �it. One restriction in the empirical literature is to specify a particular

static equilibrium for all observations, e.g. marginal cost pricing where �it = 0 for all i; t. Another

is to consider a �nite number of static equilibria, e.g. competitive, Cournot, and joint pro�t-

maximization, and then select the one that best �ts the data through a formal testing procedure,

e.g. Bresnahan (1987) and Gasmi, La¤ont, and Vuong (1992). Yet another equilibrium restriction

is the so-called conduct parameter method (CPM), which imposes constancy of �it or �t across

time, but treats it as a parameter to be estimated. This approach is more general than the �rst

two, because although �it is assumed constant, it�s value is not �xed a priori or limited to only a

small number of possibilities. The next section discusses the limitations of imposing constancy of

�it (or �t) in order to motivate the approach developed in this paper. Section 2.2 then describes

how one can replace the standard type of equilibrium assumptions with a more general restriction

that allows �it, and thus �rms�markups, to vary �exibly across time.

2.1 Motivation and Discussion of Restrictions on �it

The conduct parameter method embeds many di¤erent static equilibria by combining (2.3), or

the market-level analog (2.4), with the restriction that �it (or �t, respectively) is constant across

periods. Under the assumption that �it = �i for all t, it follows that under particular functional

form assumptions and su¢ cient exclusion restrictions �i is identi�ed.5 In this case, the conduct

parameter �i can then be consistently estimated jointly with the parameters of �rm i�s marginal

cost function. Bresnahan (1989) gives a thorough discussion of this approach and surveys its use in

applied work. Variations of the CPM used in empirical research include Iwata (1974), Rubinovitz

(1993), Graddy (1995), Genesove and Mullin (1998), and Wolfram (1999), to name a few.

Solving for �it,(2.3) can be rewritten

�it = (mcit � pt) �
�
Qt
@Pt (Qt; xt; �)

@Q

��1
, (2.5)

5Bresnahan (1982) and Lau (1982) derive necessary and su¢ cient conditions for identi�cation of a market level
conduct parameter.
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or equivalently,

�it =
(mcit � pt)

pt
� �t

= Lit � �t,

where �t =
pt
Qt
� @Q(pt;xt;�)@p , the elasticity of aggregate demand, and Lit is the Lerner index, which

is �rm i�s price-cost margin normalized by price. Generally speaking, there is no reason for this

elasticity-adjusted markup to be constant across periods, unless the �rms are playing precisely the

same static equilibrium every period. Furthermore, because �it is a function of marginal cost,

price, and the elasticity of demand, it is potentially correlated with any demand or cost shifters;

an advantage of the incomplete model of this paper is that it is robust to this possibility.

While the CPM was in part intended to allow for the possibility of tacit collusion, Corts (1999)

demonstrates that it may yield inconsistent parameter estimates when �rms play a tacitly collusive

dynamic equilibrium. If �rms are actually playing a repeated game in which they maintain tacitly

collusive behavior by playing a more favorable SPNE than repeated static Nash Equilibrium, the

estimated conduct parameter may be an altogether uninformative measure of �rm cooperation.

The underlying issue is precisely that across periods the conduct parameter �it need not remain

constant, and is in fact correlated with covariates. In Corts�framework, the �uctuations in �rm

conduct are due to �uctuations in market conditions, i.e. changes in demand or cost covariates

that alter the highest incentive compatible pro�t levels. Other explanations for �uctuations in the

conduct parameter, such as equilibrium selection from a set of possible SPNE, or the existence

of a competitive fringe, e.g. Salvo (2005), could be posited as well. Through simulation of a

duopoly market for a homogeneous product in a repeated Cournot game, Corts demonstrates that

the estimated conduct parameter need not be consistent for even the average level of �rm conduct,

and may in fact be altogether misleading, failing to detect collusive behavior when the average level

of �rm conduct is actually close to the highest level achievable. This in turn leads to inconsistent

estimates of �rms�marginal cost parameters. Because the CPM in this case concludes that �rms

are behaving more competitively than they in fact are, on average, �rm margins are underestimated,

and marginal costs are overestimated.6

Corts�critique has particular bite because the CPM itself will not reveal whether �rms�conduct

is indeed constant across periods, unless additional a priori assumptions regarding �rms�behavior

are brought to bear. Corts (1999) veri�es formally that the CPM is not well-suited for markets in

which �rm behavior changes signi�cantly and often over time. Indeed, in the context of the theories

of tacit collusion put forth by Green and Porter (1984), Abreu, Pearce, and Stachetti (1986), and

Rotemberg and Saloner (1986), Bresnahan (1989, 1024) writes:

6There are cases where Corts�critique does not apply. For example, if it is known that �rms price at marginal
cost with positive probability, and such periods can be identi�ed, then marginal costs can be inferred from those
periods. This can in turn be used to infer markups in other periods as well.
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These various theories have in common the idea that in an imperfectly informed

world, �successfully�collusive industries will have periods of cartel pricing and periods

of competition. In general, they imply models with �it not necessarily equal to �i� .

These theories di¤er somewhat in the expected time-series behavior of these two regimes,

as the exact equations determining passage from one regime to the other vary between

theories....It is easy to imagine other theories of success or failure in tacit collusion which

predict di¤erent patterns; taking all of these theories at once would lead to even more

complex potential time series behavior for �.

In this paper I address this issue by putting a bound directly on �rms�markups that is com-

patible with many equilibrium assumptions that have been previously employed. This results

in an incomplete model that is su¢ ciently rich to express a wide-ranging class of possibilities for

time-varying levels of �rm collusion. To perform estimation and inference I exploit and build on

�ndings from the recent literature on identi�cation and estimation in partially identi�ed models.

Unlike the conduct parameter method, I do not restrict �it to be constant over time. My goal

is not estimation of any sort of conduct parameter, but rather estimation of �rms�marginal cost

functions. Of course, if marginal costs could be estimated with enough precision, then quite a bit

could be inferred concerning �rm behavior as well.

In place of an equilibrium assumption, I instead put restrictions directly on �rms�price-cost

margins. Exactly which restrictions are reasonable will be di¤erent for di¤erent markets, and the

empirical researcher must, as always, take care to choose assumptions that are appropriate. As a

baseline, I start by positing that �rms make their strategic decisions so that their price-cost margins

are positive, but no greater than what could be obtained by a monopolist. While this assumption is

consistent with many types of equilibria, even this rather conservative restriction may be violated

in some markets. Cases where this assumption would not apply are markets where �rms may

sometimes price below marginal cost, such as those with predatory pricing or learning by doing,

or cases where some �rms can garner price-cost margins greater than the monopoly margin. The

methodology here can, however, be modi�ed in order to embed those sets of price-cost margins

thought most salient for the market being studied. For this paper, the restriction of �rms�margins

to be between those of perfect competition and monopoly levels will be the most lenient considered.

Restrictions that are not nested by this one are left to future research.

2.2 Restrictions on Firms�Markups

Under the assumption that �rms have perfect information (i.e. they observe �it and ut), mar-

ginal cost pricing for �rm i is given by pt = mcit, while monopoly pricing yields pt = mcit �
Qt

@P
@Q (Qt; xt; �) for each active �rm in period t. Thus, restricting price-cost margins to lie between
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these two extremes yields

8t = 1; :::; T; i = 1; :::; n

0 � pt �mcit � �Qt
@P

@Q
(Qt; xt; �) .

This restriction imposes upper and lower bounds on �rms�marginal costs in each period of ob-

servation, in contrast with conventional equilibrium assumptions that pin down marginal costs to

a singleton. This weaker restriction on �rms�marginal costs is the reason why marginal cost

parameters may only be set identi�ed, rather than point identi�ed.

More generally, I consider restrictions of the form

8t = 1; :::; T; i = 1; :::; n (A**)

��0itQt
@P

@Q
(Qt; xt; �) � pt �mcit � ��1itQt

@P

@Q
(Qt; xt; �) ,

where �0it and �
1
it, either perfectly observed or imposed a priori by the researcher, serve as known

lower and upper bounds, respectively, on �rm i�s elasticity-adjusted Lerner index, or equivalently,

on �rm i�s markup as measured as a portion of the monopoly markup. The perfectly competitive

and monopoly bounds are given by �0it = 0, and �1it = 1 for all i; t. Another case would occur if

�rms were known to be quantity setters, and assumed never to have margins any lower than that

achieved by Cournot equilibrium. Then �0it = sit for all i; t, where sit is �rm i�s market share.

An equivalent formulation is that

8t = 1; :::; T; i = 1; :::; n;9�it 2
�
�0it; �

1
it

�
such that

pt = mcit � �itQt
@P

@Q
(Qt; xt; �) ,

where �it captures the value of the true price-cost margin relative to the would-be monopoly margin.

As this notation suggests, the price-cost margin bounds can be explicitly derived from the conduct

parameter paradigm. However, this approach is inherently di¤erent from the CPM because the

period t conduct parameter is allowed to take any value between �0it and �
1
it, and no restrictions

are placed on the evolution of that parameter over time. There is no �structural�parameter �it
to be estimated. Rather, �it simply o¤ers one way to parameterize the distance of price from

marginal cost, on the scale of �Qt @P@Q (Qt; xt; �). For any �rm and period, the set of �it allowed

imposes restrictions on �rm markups, and the speci�c values of �it o¤er a parameterization of the

unobserved level of �rm i�s period t markup.

With suitable choice of �0it and �
1
it the restriction (A**) can easily be made less restrictive

than many standard equilibrium assumptions. Such restrictions are, however, not automatically

satis�ed. In particular, for a given period of observation t, �Qt @P@Q (Qt; xt; �) does not measure the

9



monopoly markup of the industry, but rather the implied markup if observation t were in fact one

in which monopoly power was exercised. For example, if the �rms were in fact playing a Cournot

equilibrium in period t, then the value of �Qt @P@Q (Qt; xt; �) would not be the same as if Qt were
instead at the monopoly level. It is worth stressing that both of these restrictions, and particularly

the former, are less stringent than those typically imposed by researchers to infer markups, either

through the conduct parameter method or by imposing a static Nash Equilibrium. Nonetheless,

care must be taken by the researcher to impose reasonable restrictions on �rms� decision rules

on a case-by-case basis. For now, I consider the implications of imposing bounds on each �rms�

elasticity-adjusted markups, but appropriate bounds must be carefully chosen to suit the application

at hand.

2.3 Implications From Cross Section and Time Series Data

In this subsection I brie�y discuss the di¤erences between the cases of cross section and time series

data. First, consider the case of cross section data, where t is instead an index for each distinct

market at a �xed point in time. If the markets are truly distinct in the sense that there is no

cross-market ownership, then the equilibrium behavior that dictates the outcomes in each market

can be treated as independent, conditional on market covariates. That is, it may be reasonable

to invoke an assumption such as P f�itjw; xg = P f�i� jw; xg for all t 6= � . If, instead, some of the

same �rms are active in di¤erent markets, such an assumption may not be plausible. However, it

may in this case be reasonable to impose a restriction on �rm conduct when the same �rms appear

in di¤erent markets, e.g. �it = �i� for all markets t; � with the same set of �rms present.

This is di¤erent from the case of time-series data in a single market. In this case, reasonable

patterns of �rm behavior across time can be considered. The folk theorem dictates that repeated

interactions among �rms results in a wealth of SPNE. However, if the researcher is able to cred-

ibly impose restrictions on the time-varying behavior of �rms, such as those considered by Green

and Porter (1984)7 or Rotemberg and Saloner (1986), then these restrictions could potentially be

imposed for greater identifying power.

The key point is that the time series and cross section data have very di¤erent implications

for plausible restrictions on �rm behavior. When the researcher has panel data, both types of

assumptions on �rm behavior could potentially be imposed, with those of the �rst type being

applied across markets at each point in time, and the latter being applied in each market (or for

each set of �rms in a single market) across time. For now I simply restrict attention to �rm

behavior resulting in a wide range of static outcomes.

7The Green and Porter framework is one in which �rms have incomplete information with respect to demand,
while I focus attention on situations in which �rms have perfect information. The current methodology could, at
least in theory and with some care, also be extended to situations where �rms have incomplete information as well.

10



3 A Model for Di¤erentiated Product Markets

Now I turn to the more complex case of di¤erentiated product markets. For this case, I assume

throughout that each �rm�s marginal costs are constant with respect to quantity, but may di¤er

with period t covariates. As a starting point, I consider the di¤erentiated product oligopoly

framework of Nevo (1998) with the added simpli�cation that each �rm in the market produces one

and only one di¤erentiated product. There are J di¤erentiated products in the industry, and thus

J �rms, and the demand for each product at a given point in time in a single market is

Qjt = Qj (pt; xt; �) + ujt, (3.1)

where pt = (p1t; :::; pjt) is the price vector of di¤erentiated products, xt are covariates, � are

parameters to be estimated, and ujt is a demand shifter for product j that is observed by the �rms

prior to making their decisions, but is not observed by the econometrician. The notation Q (p; x; �)

denotes the vector-valued function (Q1 (pt; xt; �) ; :::; QJ (pt; xt; �))
0. The variable pro�t (i.e. not

counting �xed costs) of �rm j in period t is thus

�jt = (pjt �mcjt) �Qjt, (3.2)

where mcjt = mc
�
wt; �j

�
+ �jt is a function of the exogenous cost shifters wt, the parameters �j ,

and the cost shifter �jt. Like ujt, each �jt is assumed to be observed by the �rms prior to making

their decisions, but unobserved by the econometrician. A Bertrand-Nash equilibrium in prices is

then characterized by the equations

Qjt +Djjt (pjt �mcjt) = 0, (3.3)

for all j 2 f1; :::; Jg, where w; x; �; �j have been suppressed for convenience, and where Dkjt �
@Qk(pt;xt;�)

@pj
, the time t cross-price elasticity of product k with respect to pj .8 This set of equations

derived from the assumption of Bertrand-Nash equilibrium can then be used to solve for each

product�s markup. If, however, the �rms are not playing a Bertrand-Nash equilibrium every period,

estimated markups and marginal cost parameters based on these equations will be inconsistent.

There are many reasons for departure from Bertrand-Nash equilibrium, including the possibility of

other static equilibria (e.g. Cournot), collusion on the part of some or all of the �rms, and market

dynamics.

Another way of performing inference on model parameters is the so-called menu approach. The

idea is to consider a �nite number of possibilities for equilibrium behavior and corresponding �rst

order conditions. Which condition is appropriate in a given setting can be tested, as done by

8Dkjt is not a function of t, but may vary with pt and xt.
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Gasmi, La¤ont, and Vuong (1992), for example, or can be chosen according to the researcher�s

judgement. Nevo (1998) summarizes this approach by writing (3.3) in vector notation

Qt � 
 (pt�mct) = 0,

where 
 is the identity matrix, and Qt, pt, mct denote the vector of all �rms�period t quantities

produced, prices, and marginal costs. The menu approach entertains the possibility that subsets

of �rms in the industry collude. If a subset of �rms in the industry are colluding, the system

of equations is modi�ed by setting 
ij = 1 as well for any combination of �rms i and j that

collude. The conduct parameter approach instead allows each 
ij , i 6= j, to take any value on

[0; 1], but maintains the restriction that the 
ij are constant across observations. Given this

restriction, the researcher could, in principle, hope to estimate the matrix of conduct parameters


. Nevo (1998) makes the point that even in this case, it will often be extremely di¢ cult to have

enough instrumental variables to identify these parameters. Even if we did have enough exclusion

restrictions to identify the conduct parameters, the argument of Corts (1999) still applies. Both

the menu approach and the conduct parameter method have the inherent shortcoming that 
ij
is �xed across periods of observation; as in the homogeneous products case, this is exactly the

restriction I relax, and I thus add the subscript t to 
ij to re�ect this.

Equation by equation, we have 8j 2 f1; :::; Jg, 8t,

Qjt + (pjt �mcjt)Djjt +
X
k 6=j


jkt (pkt �mckt)Dkjt = 0.

for some set of values of 
ijt, where again Dkjt � @Qk(pt;xt;�)
@pj

. As in the case of homogeneous

products, the requirements for identi�cation of Q (pt; xt; �) are exactly the same as they are under

the assumption of Bertrand-Nash equilibrium. Estimation of the demand-side parameters is well-

studied9, so I will again assume that these are observed. Isolating mcjt in the above equation, it

follows that for all products j = 1; :::; J ,

mcjtDjjt = pjtDjjt +Qjt +
X
k 6=j


jkt (pkt �mckt)Dkjt. (3.4)

In place of assuming a particular value for each 
jkt, I only restrict them to lie in the intervalh

0jkt;


1
jkt

i
, encapsulating a range of possible �rm decision rules. A natural special case is that

where
h

0jkt;


1
jkt

i
= [0; 1] for all j; k; t combinations, encapsulating a set of decision rules ranging

from Bertrand-Nash Equilibrium to jointly collusive behavior. Assuming that pkt �mckt � 0 for
9See Nevo (2000) for references.
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all observations,10 Dkjt � 0 for j 6= k and Djjt � 0, it follows that for all products j = 1; :::; J ,

mcjtDjjt � pjtDjjt +Qjt +
X
k 6=j


1jkt (pkt �mckt)Dkjt, (3.5)

mcjtDjjt � pjtDjjt +Qjt +
X
k 6=j


0jkt (pkt �mckt)Dkjt. (3.6)

In a perfect information game in which all marginal cost and demand errors are perfectly observed,

it simply follows that these inequalities must hold over all observations. Since demand can be

identi�ed under the standard assumptions, consistent estimates for demand parameters can be

obtained in a �rst stage regression. For ease of notation I impose throughout the remainder of

the discussion of the di¤erentiated products case that
h

0jkt;


1
jkt

i
= [0; 1] for all j; k; t, although

working with (3.5) and (3.6) for other sets of
n

0jkt;


1
jkt

o
follows the same logical steps.

Thus, in a perfect information setup only marginal costs are unobserved to the econometrician.

In order to compare the implications of these restrictions to models that impose equilibrium behav-

ior that pins down marginal costs, it is useful to rewrite the above inequalities isolating marginal

costs:

mcjt � pjt +D�1jjt

24Qjt +X
k 6=j

(pkt �mckt)Dkjt

35 , (3.7)

mcjt � pjt +D�1jjtQjt, (3.8)

for all j = 1; :::; J . This system of inequalities essentially says that the period t vector of �rms�

marginal costs mct = (mc1t; :::;mcJt)
0 is known to belong to a subset of RJ . Because of the exis-

tence of cross-price elasticities in a di¤erentiated product market, there are a plethora of restrictions

across the bounds on each �rm�s marginal costs. That is, in contrast to the homogeneous product

case, the bounds for each �rm�s marginal costs include all of the other �rms�marginal costs. If

marginal costs are equal across all �rms, so that mct is a scalar, then this complication no longer

exists. Formal identi�cation results are provided in section 4.2.

4 Identi�cation

4.1 Homogeneous Product Industries

Let qt � (q1t; :::; qnt)0 and �t � (�1t; :::; �nt)0 denote the vector of period t �rm quantities produced

and marginal cost errors. Throughout, I use (q; p; x; w; u; �) to denote a representative realization

of (qt; pt; xt; wt; ut; �t). Let the observations f(ut; �t) : t = 1; :::; Tg be a random sample distributed
10 I am assuming here that all pairs of di¤erentiated products are gross substitutes. This formulation excludes the

case where two of the products are complements.
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P such that E [u; �jx;w] = 0. (x;w) are assumed to have bounded support, and (q; p) are assumed
to have nonnegative, bounded support. I assume throughout that �rms observe (u; �) prior to

making their decisions. Firms�decision rules and market demand jointly determine the realization

of (q; p) as a function of (x;w; u; �). For clarity I use X;W to explicitly denote X;W as random

variables and x;w to denote representative realizations. Thus, E [mc (qi;W; �i) jX;W ] is a random
variable, while E [mc (qi; w; �i) jx;w] is the particular value of E [mc (qi;W; �i) jX;W ] for X = x

and W = w. Formally, these assumptions are summarized below. B denotes the parameter space

within which � is assumed to belong, and B� is used to denote the identi�ed set for �. That is,

B� is the subset of marginal cost parameters that are logically consistent with the restrictions of

the model.

Assumption: (A1) Each component of (q; p) has nonnegative, bounded support. (X;W ) have
bounded support X ,W, respectively.

Assumption: (A2) E [u; �jX;W ] = 0.
Both of these assumptions are standard. A further assumption is

Assumption: (A3) The inverse demand function P (�; �; �) and thus its derivative @P (�;�;�)
@Q are

identi�ed.

Assumption (A3) is motivated by the observation that the parameters of the inverse demand

equation are identi�ed under the same exclusion restrictions as in traditional, point identi�ed mod-

els. In the inverse demand equation (2.1) Qt is endogenous, since the �rms observe ut before

making their decisions. As in standard models, endogeneity can be handled with appropriate in-

struments for Qt, for which the cost covariates wt are immediate candidates. Because identi�cation

of the parameters of a single equation using instrumental variables is well studied and not the focus

here, I assume that the researcher does indeed have enough exclusion restrictions to identify and

estimate inverse demand independently of the marginal cost function. In the linear example of

section 6, and the empirical application of section 7, this condition is easily seen to be met, so that

the parameters of the demand equation are identi�ed.11 Thus, for the purpose of identi�cation, I

restrict attention to the case where the parameters of the demand function are identi�ed and can be

consistently estimated, perhaps, for example, by a ��rst-step�regression. Thus for the remainder

of this section I treat the inverse demand function and hence its derivative with respect to Q as

observed.

I also assume throughout that the inverse demand function is continuously di¤erentiable and

downward sloping.

Assumption: (A4) P (�; x; �) is continuously di¤erentiable in Q and @P (�;x;�)
@Q < 0 for all x 2 X .

As a preliminary step for identi�cation the following proposition derives a bound for expected

11 If P (Qt; xt; �) is linear in Qt, then all that is required is that for some component of wt, w1t, cov (Qt; w1t) 6= 0
and E [utw1t] = 0. The �rst condition is satis�ed because �rms take the demand unobservable into account when
choosing their strategy, while the second will be satis�ed by assumption; indeed I invoke the stronger assumption
E [utjwt] = 0.
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marginal costs conditional on exogenous covariates under (A**) and (A1)-(A4).

Proposition 1 Let (A1)-(A4) and (A**) hold. Then 8 (x;w) 2 (X ;W), for each i = 1; :::; n;

mci (x;w) � E [mc (qi; w; �i) jx;w] � mci (x;w) , (4.1)

where

mci (x;w) � E [ptjx;w] + E
�
�1itQ

@P

@Q
jx;w

�
;

mci (x;w) � E [ptjx;w] + E
�
�0itQ

@P

@Q
jx;w

�
.

Proof.All proofs are included in the Appendix.
When instead a particular equilibrium is imposed, then a moment equation is obtained from

each �rm�s �rst order condition, which can then be used to estimate the parameters of their marginal

costs. Now however, due to the incomplete knowledge of �rms�decision rules, a set of possible

moment equations must be considered, as mc (qi; w; �i) is only known to lie between mci (x;w)

and mci (x;w). The previous proposition shows that the conditional expectation of (A**) with

respect to the distribution of (u; �1; :::; �N ) bounds the value of �rms�marginal costs conditional on

exogenous covariates.

Condition (4.1) is a system of conditional moment inequalities, for each �rm i, that are im-

plied by the restrictions on �rms�decision rules. This system may in general have cross-inequality

restrictions, complicating the analysis, much like simultaneity in a system of equations. In the

special case where �rms share no common cost parameters, this complication is not present. Fur-

thermore, the presence of the endogenous variables q is a complication in this model just like it is

in traditional, point identi�ed models. In particular, the endogeneity of q means that marginal

costs may vary with the demand covariates x indirectly through q.

While � will in general not be point identi�ed, the above inequalities do place meaningful

restrictions on expected marginal costs conditional on covariates, and thus on �. Exactly what

can be learned as a consequence of the bounds given by Proposition 1 will depend on the particular

functional form assumptions imposed, and what quantities are identi�ed by the sampling process.

For example, if one is only interested in bounds for E [mc (qi; w; �i) jx;w] for each combination of
(x;w), then identi�cation of the conditional expectation functions mci (x;w) and mci (x;w) will

su¢ ce. If instead the goal is inference on the marginal cost parameters �, then more will be

required if mc (qi; w; �i) depends on qi. The extent to which (4.1) has identifying power for �

depends on which components of the inequality are identi�ed by the sampling process. Thus, to

further characterize the implications of (A**) for the identi�ed set for �, I restrict mc (qi; w; �i) to

fall in the class of parametric forms of assumption (A5).
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Assumption: (A5: additive separability) mc (qi; w; �i) = f (w; �i) + g (qi; �i).
This assumption embeds a number of functional forms from the literature. In particular,

constant marginal costs and linear marginal costs are included. When assumption (A5) is violated,

Proposition 1 still restricts the feasible values for �, and these could be examined on a case-by-case

basis. When (A5) holds, the following additional high-level assumption, along with condition (4.1),

can be used to obtain the identi�ed set for � of Proposition 2.

Assumption: (A6: identi�cation of conditional expectations) For all (x;w) 2 (X ;W), i =
1; :::; n, mci (x;w) ; mci (x;w), and E [g (qi; �i) jx;w] are identi�ed.

Exactly which conditions guarantee that assumption (A6) holds depend on the functional form

of both the inverse demand and marginal cost function. If, for example, inverse demand and

marginal costs are linear, then identi�cation of the conditional means E [ptjx;w], E
�
�0itQjx;w

�
,

E
�
�1itQjx;w

�
and E [qitjx;w] will su¢ ce. Given su¢ cient regularity conditions, each of these

conditional expectations can then be consistently estimated.

Proposition 2 proceeds to characterize the identi�ed set for �, the composite vector of all �rms�

marginal cost parameters �i, under these additional assumptions.

Proposition 2 Assume that (A**) and (A1)-(A6) hold. Then the identi�ed set for � is

B� = \i=1;:::;n

(
� 2 B : mci (X;W ) � f (W;�i) + E [g (qi; �i) jX;W ] � mci (X;W )

with probability 1

)
. (4.2)

Corollary 1 Assume that (A**) and (A1)-(A6) hold. For any ~x contained in the support of X,

de�ne Q (~x) �
n
Q : @P@Q (Q; ~x; �) = 0

o
, the set of values of Q such that @P

@Q (Q; ~x) = 0. Then

E [mc (qi;W; �i) jW = w] is identi�ed if Pr fQ 2 Q (~x) j~x;wg = 1. Furthermore, if there is a value
of the demand covarites x� such that @P@Q (Q; x

�) = 0 for any Q, then E [mc (qi;W; �i) jW = w] is

identi�ed for all w such that (x�; w) lies on the support of X;W .

Proposition 2 characterizes the identi�ed set for the marginal cost parameters, and forms the

basis of the estimation strategy developed in section 5. The �rst corollary veri�es that �rms�

expected marginal costs conditional on covariates w are point-identi�ed if, conditional on w, there is

probability one of a realization of demand covariates ~x such that demand is in�nitely elastic. While

it may not in general be reasonable to expect demand to be in�nitely elastic for any hypothesized

value of demand covariates, this corollary is still worth mention for two reasons. First, if demand

is indeed in�nitely elastic conditional on some set of observables, then �rms must be price-takers,

and marginal costs can be recovered since it must be that price equals marginal cost. Thus, this

presents one case in which we would expect the researcher to be able to identify mean marginal

costs, and indeed this methodology satis�es that criteria. Second, identi�cation need not be viewed

as an �all-or-nothing�proposition. The corollary presents the limiting case of the observation that
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the more elastic the aggregate demand function, the smaller will be the identi�ed set for marginal

costs and, in turn, the identi�ed set for marginal cost parameters B�.

In particular, this characterization of the identi�cation region reveals that the size of the identi-

�ed set is sensitive to the distribution of Q@P
@Q (Q; x; �) = p ��

�1, where � is the elasticity of quantity

demanded with respect to price. This result is rather intuitive: if demand is highly elastic, then

there is less potential for price manipulation on the part of the �rms, since small changes in price

have a large e¤ect on quantity demanded. If, on the other hand, demand is inelastic, then there is

more potential for collusive �rms to pro�t, as consumers will not modify their purchasing behavior

as much in the face of higher prices. Furthermore, as the polar case of Corollary 1 also illustrates,

a relatively small identi�cation region does not require the elasticity to be uniformly high. Rather,

if the elasticity is su¢ ciently high on average over a broad enough range of covariate values, a small

identi�cation region may be obtained.

A second corollary shows that if marginal costs are linear, then B� is convex. Knowledge that

the identi�ed set is convex may also be useful to ease the computational burden of estimating B�.

Corollary 2 If for all i, mc (qi; w; �i) = �iq � qi+w0�iw where �i =
�
�iq; �

0
iw

�0, then B� is convex.
4.2 Di¤erentiated Product Industries

In this section I derive formal identi�cation results for marginal cost parameters for the case of dif-

ferentiated products. The starting point for characterizing the identi�ed set is equation (3.4). The

environment and the notation follow that of section 3 as closely as possible. Let �t � (�1t; :::; �nt)0

and ut = (u1t; :::; uJt)
0. Using notation similar to that of the homogeneous products framework,

I use (q;p; w; x;u; �) to denote representative observations of (qt;pt; wt; xt; ut; �t). Formally, the

sampling process consists of a random sample of draws of (x;w;u; �) from population (
;�;P).
The measure P induces a conditional probability measure over (u; �) for each possible realization
of (x;w) such that the conditional expectation of (u; �) given (x;w) is zero. Firms�decision rules

and market demand determine the realization of (q;p) as a function of (x;w;u; �). As before, I

use X;W to explicitly denote the covariates as random variables and x;w to denote representative

realizations. B denotes the parameter space within which � is assumed to belong, and B� is used

to denote the identi�ed set for �.

Assumption: (B1) Each component of (q;p) has nonnegative, bounded support. (X;W )

have bounded support X �W, respectively.
Assumption: (B2) E [u; �jX;W ] = 0.
As in the case of homogeneous products, I assume that the dimension of w, the variables

excluded from the demand speci�cation, are su¢ cient to identify the parameters of the demand

speci�cation, �. The requirements for identi�cation of � are no di¤erent that those of models

where �rms are assumed to play a particular equilibrium.
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Assumption: (B3) � is identi�ed.
Replacing mcjt with mc

�
wt; �j

�
+ �jt for each j and taking conditional expectations of the

inequalities (3.5) and (3.6), it follows that the true parameter � must satisfy the restrictions

E [pj jx;w] + E
h
D�1jj Qj (p) jx;w

i
� mcj

�
w; �j

�
(4.3)

� E [pj jx;w] + E
h
D�1jj Qj (p) jx;w

i
+ E

24D�1jj X
k 6=j

Dkj (pk �mck (w; �k)� �k) jx;w

35 ,
for each product j. However, the quantity E

h
D�1jj Dkj�kjx;w

i
is not identi�ed without adding

more structure, since the marginal cost shifters �k are not observed by the econometrician. In

particular, if the demand derivatives Dkj depend on the price of goods aside from good j, then

we might expect that Dkj and �k are correlated, even after conditioning on x and w, since �k is
correlated with pk. Thus, I impose the restriction that the demand function for each product j is

linear in prices, which implies that the cross-price derivatives Dkj are constant.
Assumption: (B4) Qj (p; x; �) = �pj � p + h (�xj ; x), where �pj = (Dj1; :::;DjJ)0, and �xj are

those components of � through which �rm j�s marginal cost function depends on covariates x.

Assumption: (B5) E [pjx;w] is identi�ed on X �W.
Under these additional assumptions, proposition 3 gives the identi�ed set for the marginal cost

parameters �.

Proposition 3 Let Dkj > 0 for all k 6= j, and Djj < 0. Assume that (B1)-(B5) hold, and that

inequalities (3.7) and (3.8) both hold. Then the identi�ed set for the demand parameters � is

B� = \Jj=1

8>>>>>>><>>>>>>>:

� 2 B : E [pj jX;W ] +D�1jj �pjE [(p) jX;W ] +h (�xj ; X) � mcj
�
W;�j

�
�0BB@

E [pj jX;W ] +D�1jj �pjE [pjX;W ] +h (�xj ; X)

+D�1jj E

24X
k 6=j

Dkj (pk �mck (w; �k)� �k) jX;W

35
1CCA

with probability 1

9>>>>>>>=>>>>>>>;
.

Corollary 3 If mcj (w; �) = wj � �j for all j 2 J , where wj ; �j are subvectors of w and �, respec-
tively, then B� is convex.

As was the case for homogeneous good industries, the identi�cation result given by proposi-

tion 3 can be used as the basis to estimate B� as outlined in the following section. However,

doing so appears to be generally rather di¢ cult computationally. In comparison with the homoge-

neous products model, there are many more terms in the inequalities that de�ne the identi�ed set.

Furthermore, the bounds on each �rms�marginal cost functions are functions of the other �rms�
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(set-identi�ed) marginal costs. The corollary provides su¢ cient conditions for the identi�ed set to

be convex, which as in the homogeneous product case may be useful for estimation.

5 Estimation

The approach I take here in either homogeneous product or di¤erentiated product industries is

to estimate the model in two steps. The idea is to �rst estimate the parameters of the demand

speci�cation, and then use these ��rst-step�estimates to estimate the identi�ed set for the marginal

cost parameters. To perform the second stage, I formulate a population level objective function

that attains its minimum only on those values of the cost parameters that belong to the identi�ed

set. Estimation then proceeds by computing the set of approximate minimizers of the sample

analog of this objective function.

For estimation of the model one can use a standard GMM procedure as a �rst step to estimate

demand parameters, and a modi�ed minimum distance (MMD) estimator as de�ned by Manski

and Tamer (2002) to estimate the identi�ed set B�. MMD estimation is a straightforward method

for constructing a sample analog of the identi�ed set. First, the researcher de�nes a population

objective function of model parameters Q that is minimized only on the identi�ed set. This is

achieved by constructing a nonnegative valued function that takes the value zero if and only if

� 2 B�. By construction, an equivalent formulation for the identi�ed set for the parameters � is

B� = argmin
b2B

Q (b) .

Estimation of B� then proceeds by constructing a sample analog for the objective function, Q̂T
such that Q̂T converges uniformly almost surely to Q over the parameter space B. Then one

computes the set of approximate minimizers of Q̂T ,

B̂� =

�
� 2 B : Q̂T (�) � min

b2B
QT (b) + �T

�
,

where �T # 0 at an appropriate rate as T !1. Under su¢ cient regularity conditions, B̂� converges
to B� in the Hausdor¤ metric as T !1. The need for the sequence of �T is the same as that of
Manski and Tamer (2002). That is, in order to guarantee that B̂� contains the boundary of B�

asymptotically as T ! 1, the inequalities that de�ne the identi�ed set must be relaxed slightly.
The consistency proofs of their paper are generally applicable for MMD estimation based on any

nonnegative objective function that is only equal to zero on the identi�ed set, and for which there

is a uniformly consistent estimator. Under su¢ cient regularity conditions, B̂� is consistent for B�

in the Hausdor¤ metric, as long as �T converges to zero no faster than Q̂ converges to Q.

While Manski and Tamer (2002) showed that MMD estimators for set identi�ed parameters are
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generally consistent, they did not devise a method for statistical inference for MMD estimators.

Indeed, constructing con�dence regions for partially identi�ed parameters is a �eld of current

research. To perform inference for the empirical example of section 7, I use the modi�ed minimum

distance estimator developed in Rosen (2005), which is applicable in models that can be written as

a �nite number of conditional moment inequalities. The MMD objective function of that paper

has the advantage that the asymptotic distribution of T � Q̂T (�) is chi-bar-square. As described

in that paper, this result can then be used to construct asymptotically valid con�dence sets for the

parameter �, even if it is only partially identi�ed.

While the model used for the application of section 7 can be written as a �nite set of moment

inequalities, the general methodology of this paper can result in models that do not �t within that

framework. In this case, one would need to use a di¤erent inferential approach to construct con�-

dence sets for �. Other recent papers that devise a way to perform inference in partially identi�ed

models and could potentially be applied include Andrews, Berry, and Jia (2004), Chernozhukov,

Hong, and Tamer (2004), Shaikh (2005), Beresteanu and Molinari (2006), and Pakes, Porter, Ho,

and Ishii (2006).

The inferential approach I employ from Rosen (2005) uses the set of moment inequalities implied

by the model as a basis for estimation, and I brie�y outline that approach here. Because the

covariates in the application have discrete support, the identi�ed set for � implied by proposition

2 can be written as a �nite set of moment inequalities of the form

E [m (q; p; x; w; �; �)] = E

2664
m1 (q; p; x; w; �; �)

...

mK (q; p; x; w; �; �)

3775 �
0BB@
0
...

0

1CCA , (5.1)

where the inequality applies to each element of the moment vector E [m (q; p; x; w; �; �)]. � is

consistently estimated in a �rst stage by GMM, using the observed cost shifter w as an instrumental

variable for market price. The modi�ed minimum distance objective function I use then takes the

form

Q (�; �) = min
t�0

(E [m (q; p; x; w; �; �)]� t)V �1�;� (E [m (q; p; x; w; �; �)]� t) ,

where V is the variance matrix of the vector m (q; p; x; w; �; �). Notice that, as a function of �,

evaluated at the true value of �, Q (�; �) = 0 if and only if (5.1) is satis�ed, so that Q (�; �) is

indeed a modi�ed minimum distance objective function. To estimate the identi�ed set for �, I use

the sample objective function

Q̂T (�) = min
t�0

�
Ên [m (q; p; x; w; �̂; �)]� t

�
V̂ �1�

�
Ên [m (q; p; x; w; �̂; �)]� t

�
,

where Ên denotes the sample mean and V̂� is the sample variance of m (q; p; x; w; �̂; �), corrected

20



by means of the delta method to account for the fact that �̂ is separately estimated. Under mild

regularity conditions, if � 2 B�, violations of Q̂T (�) = 0 are attributable to no more than sampling
variation. To build con�dence sets for �, I then make use of the asymptotic distribution of statistics

of the form TQ̂T (�) as derived in Rosen (2005).

6 A Simple Example: A Linear Model with Instruments

In order to illustrate the proposed methodology before proceeding to the empirical example of

section 7, in this section I consider a simple linear model. The model has both demand and supply

shifters that serve as instruments. The market is for a homogeneous good with single period inverse

demand function

pt = a0 + a1xt + a2Qt + ut. (6.1)

Further suppose that two �rms compete for consumers in each period of observation, and that each

has constant marginal costs given by the following functional form

mci (qit;wt) = c0i + c1iwt + �it. (6.2)

As before, t indexes the observation, while i = 1; 2 indexes the �rms. ut is an unobserved period

t demand shifter, while �1t; �2t are unobserved marginal cost shifters. �1t; �2t and ut are assumed

to be iid mean zero, independent of each other, and uncorrelated with all of the regressors, so that

E [�1t; �2t; utjxt; wt] = 0. These additive demand and marginal cost shifters (ut; �it) are perfectly

observed by each �rm i, but unobserved by the econometrician. The variables pt; q1t; q2t; wt; xt are

all observed by the �rms and by the econometrician.

Firms play a repeated quantity-setting game in a market characterized by these linear inverse

demand and linear marginal cost functions. Following the behavioral assumptions considered in

section 2, they are assumed to play strategies in each period that satisfy the inequalities (A**). In

this model, the conditional expectations of these inequalities are

�a2E
�
�0itQtjxt; wt

�
� a0 + a1xt + a2Qt � c0i � c1iwt � �a2E

�
�1itQtjxt; wt

�
, (6.3)

for all i; t pairs. The structural parameters to be estimated in this model are a0; a1; a2; c01; c02; c11
and c12. In this case, wt is correlated with Qt through the �rms� supply relation, but is not

correlated with the demand errors by assumption. Thus, wt can be used as an instrument for

quantity supplied in estimation of the linear demand equation, and the demand parameters are

identi�ed and can be consistently estimated. An instrument for quantity demanded, xt is also

available in this model, but the traditional IV techniques are not applicable for estimation of the

supply-side parameters c0 and c1, which are not point identi�ed.
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The conditional moment inequalities implied by the model are given by

E fpt � (a0 + a1xt + a2Qt) jxt; wtg = 0,

E
�
a0 + a1xt + a2Qt � c01 � c11wt + �01ta2Qtjxt; wt

	
� 0,

E
�
a0 + a1xt + a2Qt � c02 � c12wt + �02ta2Qtjxt; wt

	
� 0,

E
�
a0 + a1xt + a2Qt � c01 � c11wt + �11ta2Qtjxt; wt

	
� 0,

E
�
a0 + a1xt + a2Qt � c02 � c12wt + �12ta2Qtjxt; wt

	
� 0.

The �rst restriction implies that

a0 + a1E fxtg = E fptg � a2E fQtg ,

a0E fxtg+ a1E
�
x2t
	
= E fptxtg � a2E fQtxtg ,

a0E fwtg+ a1E fxtwtg = E fptwtg � a2E fQtwtg ,

from which it is clear that the demand parameters are identi�ed, barring linear dependence of these

three equations. Furthermore, a0; a1; and a2 can be estimated consistently by their sample analogs.

To use the full identifying power of the restrictions imposed, I apply Proposition 2 to characterize

the identi�cation region. To characterize su¢ cient conditions for identi�cation of �, let

M =

0B@ 1 E (x) E fQg
E (x) E

�
x2
�

E fQxg
E fwg E fxwg E fQwg

1CA .
The conditions that M is non-singular and that E

��
1 + �1t

�
QjX;W

�
and E

��
1 + �0t

�
QjX;W

�
are

identi�ed yield the following result.12

Corollary 4 (to Proposition 2) In the linear duopoly model of this section, assume that E
��
1 + �1t

�
QjX;W

�
and E

��
1 + �0t

�
QjX;W

�
, are identi�ed, and that M has full rank. Then � is identi�ed and the

identi�ed set for � = (c01; c11; c02; c12) is

B� =

8><>:
� 2 B : a0 + a1xt + a2E

��
1 + �11t

�
QtjX;W

�
� c01 + c11W � a0 + a1xt + a2E

��
1 + �01t

�
QtjX;W

�
and a0 + a1xt + a2E

��
1 + �12t

�
QtjX;W

�
� c02 + c12W � a0 + a1xt + a2E

��
1 + �02t

�
QtjX;W

�
with probability 1

9>=>; .
12Su¢ cient conditions for identi�cation of the condtional expectations E

��
1 + �1t

�
QtjX;W

�
and

E
��
1 + �0t

�
QtjX;W

�
are straightforward. Suppose, for example, that the bounds on �it, �0t and �

1
t are con-

stant across t. Then all that is required is identi�cation of E [QtjX;W ]. If Qt = � (xt; wt) + �t, for some
continuous but unknown function �, where �t are iid and independent of xt and wt. The conditional mean functions
E
��
1 + �1t

�
QtjX;W

�
and E

��
1 + �0t

�
QtjX;W

�
could then be consistently estimated by kernel estimation, for

example.
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7 Application to the Joint Executive Committee

In this section I demonstrate the methodology with an application to data on the Joint Executive

Committee, a late 19th century railway cartel.

7.1 Background and Data

Formed on April 18, 1879, the Joint Executive Committee (henceforth JEC) was a cartel that

sought to sustain cooperation among rail carriers over the so called trunk-line territory between

the Atlantic seaboard and midwest commercial centers.13 Both eastbound and westbound tra¢ c

was monitored and regulated by the cartel, each under di¤erent organizations within the JEC.

Because the JEC predated the formation of the Interstate Commerce Commission (1887) and the

passage of the Sherman Act (1890), the operation of the cartel was publicly acknowledged, and

detailed accounts of its operation are well-documented by, for example, MacAvoy (1965) and Ulen

(1979).

The dataset is a time series of weekly observations from the beginning of 1880 through the 16th

week of 1886. For each week, tons of grain, �our, and provisions shipped on each of 8 di¤erent rail

lines from Chicago to the east coast is recorded. These rail lines were owned by the 5 di¤erent

�rms that participated in the cartel for at least some subset of the years considered here. These

weekly quantities as well as percentage allotments and cartel prices for each of the goods shipped

were recorded by the JEC itself in order to assist in the task of maintaining collusion. Table 1

provides a description of the variables employed from this dataset, and Table 2 provides various

summary statistics.

Also available is an indicator Lt that equals 1 if the Great Lakes were open to navigation in

week t, and equals zero otherwise. Shipment via lake was the main competitor for rail shipments

during this period, so Lt was an important determinant of demand for rail shipments. As noted

by Porter (1983) and Lee and Porter (1984), one would ideally have data on prices charged for lake

shipments, but this data is not available to me. It is, however, known that the JEC at no point in

time managed to explicitly include the lake shippers in their collusive endeavors.14.

There has been a good deal of prior research on the JEC that has employed the dataset used

here. This includes Porter (1983), Lee and Porter (1984), Cosslett and Lee (1985), Porter (1985),

Berry and Briggs (1988), Hajivassiliou (1989), and Ellison (1994). These studies focus primarily on

examining explicit models of collusion, and the extent to which the observed data can be explained

by particular theoretical models. Their focus is not on the estimation of �rms�marginal costs per

se, and in these studies marginal costs are not estimated. In fact, in this line of research �rms�

13Ulen (1979)
14Ulen (1979, p. 229) notes that the cartel did once discuss the idea of colluding with lake shippers in September

1886, but that this idea was never pursued. One potential reason for this, however, is that some of the lake steamers
were owned by some of the same companies as the railroads.
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Table 1: List of Variables
p price of shipping grain in dollars per 100 lbs.��

Q total quantity of grain shipped, in tons.��

qi quantity of grain shipped by �rm i, in tons.
Ai market share allotment for �rm i as dictated by the JEC.
L 1 if Great Lakes were open for shipping, 0 otherwise.��

S1 seasonal dummy; 1 if observation is from Q2, 0 otherwise.
S2 seasonal dummy; 1 if observation is from Q3, 0 otherwise.
S3 seasonal dummy; 1 if observation is from Q4, 0 otherwise.
DM1 1 from week 28 in 1880 to week 10 in 1883, 0 otherwise;

re�ecting entry by the Grand Trunk Railway.��

DM2 1 from week 11 in 1883 to week 25 in 1883, 0 otherwise;
re�ecting an addition to the New York Central.��

DM3 1 from week 26 in 1883 to week 11 in 1886, 0 otherwise;
re�ecting entry by the Chicago and Atlantic.��

DM4 1 from week 12 in 1886 to week 16 in 1886, 0 otherwise;
re�ecting departure of the Chicago and Atlantic from the JEC.��

* The Sample is from week 1 in 1880 to week 16 in 1886.
** Source: Porter (1983), Table 1.

equilibrium conditions have been aggregated in such a way so that marginal cost parameters may

not be identi�ed by the model used, unless further assumptions are imposed. Here, rather than

posit a particular theory of collusive behavior, I entertain a wide range of possibilities, and my

focus is primarily on the estimation of marginal cost parameters. Of course, in a model that yields

precise inference of marginal cost parameters, much could potentially be said about the magnitude

of �rms�markups and the extent to which they compete or collude.

7.2 Demand Speci�cation and Estimation

I take the functional form of Porter (1983) for the market demand equation as a starting point,

but relax the assumption of normal errors. Instead, I assume that the demand unobservable has

zero expectation conditional on L and the season dummies S = (S1; S2; S3)
0. Market demand in

period t is assumed to have the log-linear form

lnQt = �0 + �1 ln pt + �2Lt +
5P
j=3

�jSj�2;t + ut. (D1)

The functional form di¤ers from that of Porter (1983) only in that I employ three rather than twelve

seasonal dummies, dividing the calendar into quarters rather than four week periods. This structure

is imposed to make the large sample approximations for the supply side of the market reasonable

with the available data. Each Lake, Season combination implies two moment inequalities for each
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Table 2: Summary Statistics

Variables Mean Median
Standard
Deviation

Minimum Maximum

p .2465 .25 .06653 .125 .40
Q 25384 23101 11632 4810 76407
L .6189 1 .4864 0 1
q1 13111 12722 6303 2403 35973
q2 5846 4961 3413 1291 24258
q3 2201 1716 1611 189 11277
q�4 3098 2690 2053 0 9592
q�5 3197 2810 2204 0 13732

* Firm 4 was active from week 28 through the end of the sample.
** Firm 5 was active from week 182 through week 323.
The mean, median, and standard deviation for �rms 4 and 5 are
reported conditional on that �rm being active.

�rm; dividing the year into thirteen seasons rather than four results in some Lake, Season pairs

with too few observations to expect reliable inference.

Furthermore, I allow ut to be governed by an AR(1) process, as in Ellison (1994) and Cosslett

and Lee (1985), who found signi�cant serial correlation in the demand errors. That is, I impose

that

ut = � � ut�1 + �t, (7.1)

where �t is iid and � is estimated as a parameter of the model. I maintain the assumption that ut,

and thus ut�1 and �t are uncorrelated with both Lt and all the season dummies, and I use a two step

e¢ cient GMM procedure to estimate the parameters of the demand equation and the autoregressive

parameter separately from the marginal cost parameters. The variables DM1; DM2; DM3; DM4

and the allotments of four of the �rms are used as instruments for ln pt; that is, I make use of the

moment equation E [ujDMj ; Ak] = 0 for j = 1; :::; 4 and k = 1; :::; 4.15.

I also consider the speci�cation

lnQt = �0 + �1 ln pt + �2Lt +
5P
j=3

�jSj�2;t + �6Lt ln pt + ut, (D2)

along with the AR(1) process for the error term of (7.1). This allows for the elasticity of market

demand to vary with whether or not the Great Lakes were open for shipment. Again the parameters

are estimated by an e¢ cient GMM procedure, and �rm allotments interacted with L are used as

additional instruments. The estimation results of both speci�cations are reported in Table 3.

The estimates from the more �exible demand speci�cation suggest that demand was in fact

15Only the allotments of the �rst four �rms are used because the sum of all �rms�allotments is 1 by de�nition.
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Table 3: Demand Estimates

Speci�cation 1:
No interaction

Speci�cation 2:
Lt; ln pt interaction

�0 (const) 8.9655��� 9.6226���

(0:1671) (0:1317)

�1 (ln pt) -0.9143��� -0.4157��

(0:2449) (0:1848)

�2 (Lake dummy) -0.4374��� -2.1148���

(0:1232) (0:0879)

�3 (Q2 dummy) 0.1229� 0.1510��

(0:0738) (0:0605)

�4 (Q3 dummy) -0.1278� -0.0906
(0:074) (0:0569)

�5 (Q4 dummy) 0.076 0.0723
(0:0732) (0:0553)

�6 (Lt � ln pt) � � -1.1315���

� � (0:1306)

� 0.6225��� 0.2188���

(0:0033) (0:0114)
��� denotes signi�cance at the 0.01 level.
�� denotes signi�cance at the 0.05 level.
� denotes signi�cance at the 0.10 level.
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considerably more elastic when the lakes were open for navigation. This �nding seems reasonable;

when the lakes were open, the railway prices for grain shipping may have been, at least to some

extent, constrained by the prices of lake shippers, making quantity more sensitive to price changes

in those periods. A further di¤erence between the two sets of demand estimates is the estimated

autoregressive parameter �. The estimate is roughly 3 times as high when demand elasticity is

assumed constant across all periods, although it is very highly statistically signi�cant under both

speci�cations. The autoregressive parameter has no bearing on marginal cost estimates, however.

I proceed to estimate marginal costs under each of the demand speci�cations, separately for

each of the three �rms that are active over the entire dataset. It is important to note that given

these functional form speci�cations, the conduct parameter method, which assumes �it = �i for

each �rm i and all t, identi�es none of the �i nor the marginal cost parameters, even when marginal

costs are assumed constant. Due to the lack of marginal cost shifters, marginal costs cannot be

separately identi�ed from �i. The methodology of this paper is, however, still applicable.

7.3 Marginal Cost Speci�cation and Estimation

I consider two di¤erent speci�cations for �rms�marginal cost functions, the �rst being constant

marginal costs, and the second being linear marginal costs. There are no observed marginal cost

shifters aside from quantity, which is endogenous. The speci�cation is

mc (qit) = c0i + �it, (7.2)

when marginal costs are assumed constant, and

mc (qit) = c0i + c1iqit + �it, (7.3)

when marginal costs are assumed to be linear. �it is an unobserved marginal cost shifter such

that E [�itjL; S] = 0. The composite vector of �rms�marginal cost parameters to be estimated is

� = (c01; c02; c03)
0 when marginal costs are given by (7.2) and � = (c01; c11; c02; c12; c03; c13) when

marginal costs are given by (7.3). The units of the variables are such that mc (qit) is measured in

dollars per 100 pounds of grain. It is assumed throughout that all components of � are nonnegative.

I assume that in each period, �rms�strategies are such that market outcomes satisfy the re-

striction (A**),

��0itQt
dP (Qt; Lt; St)

dQ
� pt �mcit � ��1itQt

dP (Qt; Lt; St)

dQ
, (7.4)

for all active �rms i at time t, and I consider the identifying power of two di¤erent sequences of

values for �0it and �
1
it,
�
�0it; �

1
it

�
= (0; 1) and

�
�0it; �

1
it

�
= (0; sit). Given the demand speci�cation, it
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is convenient to rewrite this restriction as�
1 +

�1it
�t

�
� pt � mcit �

�
1 +

�0it
�t

�
� pt, (7.5)

where �t is the elasticity of aggregate demand in period t: Under (D1), �t is given by

�t = �1,

while under (D2),

�t = �1 + �6Lt.

Looking at the estimated values of the demand equation, the estimated elasticity under the �rst

speci�cation is constant at �̂1 = �0:9143, while under the second speci�cation, the demand elastic-
ity is �0:4157 when the Great Lakes are closed and �1:5472 when the Great Lakes are open. From
(7.5), and more generally from Proposition 1, it is clear that the bounds on mcit, are smaller when

demand is more elastic. Thus, the di¤erence in demand elasticities under the two speci�cations

should be expected to have an e¤ect on marginal cost parameter estimates. However, the direction

of this di¤erence is not clear a priori, since demand is more elastic under (D1) when the Lakes

are closed than under (D2), but demand is more elastic under (D2) than (D1) when the Lakes are

open. The e¤ect of the di¤erent estimates for demand elasticity is re�ected in the estimates of the

marginal cost parameters in the remainder of this section.

In this model, Proposition 2 implies that the identi�ed set for the marginal cost parameters �

is given by those value for � that satisfy

E
��
1 +

�1i
�

�
� pjL; S

�
� E fmc (�i) jL; Sg � E

��
1 +

�0i
�

�
� pjL; S

�
. (7.6)

Because the Great Lakes were always open in Q3, and always closed in Q1, there are six Lake,

Season combinations observed in the sample. As a result, (7.6) yields twelve moment inequalities

for each �rm, two for each Lake, Season combination. The set of parameter values that comprise

the identi�ed set, B� are those values of � such that each �rm�s marginal cost parameters satisfy

each of these twelve moment inequalities. In the case of constant marginal costs, with speci�cation

(7.2), these moment inequalities are

E
��
1 +

�1i
�

�
� pjL; S

�
� c0i � E

��
1 +

�0i
�

�
� pjL; S

�
,

while for speci�cation (7.3) they are

E
��
1 +

�1i
�

�
� pjL; S

�
� c0i + c1i � E fqijL; Sg � E

��
1 +

�0i
�

�
� pjL; S

�
.
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7.3.1 Marginal Cost Estimates Given Demand Speci�cation 1

First, I estimate the identi�ed set for marginal cost parameters when demand is assumed to be given

by (D1)16. Table 4 shows the estimated bounds on marginal costs for �rms 1-3 when marginal costs

are assumed constant. Under the assumption that �it 2 [0; 1] for all t, the bounds on marginal
costs for each �rm are identical, ranging from marginal costs of 0 to 22c/. In this case, there is

no �rm speci�c component to (7.5), as neither marginal costs nor the bounds on marginal costs

implied from the demand estimates depend on �rms�quantities produced. When, however, it is

instead assumed that �it 2 [0; sit], where sit is �rm i�s period t market share, the restriction (7.5)

does have di¤erent implications for each of the �rms, and the estimated bounds are substantially

smaller. Furthermore, the restriction that �it 2 [0; sit] embeds perfect competition and Cournot
Equilibrium as polar cases. Under this restriction, the marginal costs of �rm 2 have a very narrow

estimated identi�cation region, falling between 21:8c/ and 22c/, with a 95% con�dence interval of

[20:6c/; 23:1c/]. Turning to �rm 3, the estimated identi�ed set for c03 is empty, as is the associated

95% con�dence interval. For �rm 3, the data are found to be inconsistent with all of the restrictions

of the model, at the 95% level. The value of c03 closest to satisfying the imposed restrictions is

22:4c/.

Now I turn to estimation of marginal cost parameters under the linear speci�cation (7.3). The

estimated identi�ed set for the marginal cost parameters (c0i; c1i), are depicted graphically for each

�rm i in �gures 1� 3. The �gures illustrate very clearly the identifying power of the assumption
�it 2 [0; sit] relative to �it 2 [0; 1], as the estimated identi�ed sets are much smaller under the former
assumption for each of the �rms. Comparing the estimates across each of the three �rms, judging

by the shape of the identi�ed set, it seems that �rm 1�s marginal costs are potentially the least

sensitive to quantity, while �rm 3�s are potentially the most sensitive. This re�ects the variation

in each �rms�quantity produced relative to the bounds on marginal costs implied by (7.5). Under

the restriction that �it 2 [0; sit], the estimated identi�ed set for �rm 2�s marginal cost parameters

is very informative, with the slope of �rm 2�s marginal cost function estimated to be no greater

than approximately 0.000007.17 Interestingly, in the case of �rm 3, the speci�cation of constant

marginal costs was rejected at the 95% level, but when marginal costs are allowed to be linear in

quantity, the model is no longer rejected at the 95% level, although no value of the marginal cost

parameters yields a value of 0 for the sample objective function. The parameter values that yielded

the smallest value were (c03; c13) =
�
0:178; 2:8� 10�5

�
.

16The reported estimates for the identi�ed set are those values of the marginal cost parameter(s) � such that
Q̂T (�) � 0:0001. This cuto¤ was chosen to match the degree of computation error allowed by Matlab�s minimization
algorithm.
17The slope parameter c1i measures the e¤ect of increasing quantity by one ton on �rm i�s marginal costs measured

in dollars per 100 pounds shipped. Because quantities shipped were as high as tens of thousands of tons for each
�rm, values of c1i on the order of 10�5 are economically signi�cant. For example, a value of c12 of 0.000007 would
contribute about 4c/ to marginal costs at �rm 2�s mean quantity of 5846 tons.
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Table 4: Estimated bounds and con�dence intervals for �rms�marginal costs under the assumption
that marginal costs are constant, for the constant elasticity demand speci�cation (D1). The units
of the estimated bounds are dollars per 100 pounds of grain shipped.

[mc, mc] 75% CI 95% CI

Firm 1: �it 2 [0; 1] [0; 0:220] [0; 0:226] [0; 0:231]

�it 2 [0; sit] [0:118; 0:220] [0:111; 0:226] [0:106; 0:231]

Firm 2: �it 2 [0; 1] [0; 0:220] [0; 0:226] [0; 0:231]

�it 2 [0; sit] [0:218; 0:220] [0:211; 0:226] [0:205; 0:231]

Firm 3: �it 2 [0; 1] [0; 0:220] [0; 0:226] [0; 0:231]

�it 2 [0; sit] ; (0:224)� ; ;

� denotes the unique value at which the sample objective function is minimized.

7.3.2 Marginal Cost Estimates Given Demand Speci�cation 2

Now I consider the implications of using the estimates from demand speci�cation 2 to estimate the

identi�ed set for marginal cost parameters. Again, I begin by considering the constant marginal

costs speci�cation, and these results are reported in table 5. In contrast to the estimates under

(D1), the presence of the interaction term in the demand speci�cation leads to rejection of marginal

costs being 0 for each of the three �rms. This conclusion is driven by the periods in which the

lakes were open, as the demand elasticity was su¢ ciently high in those periods to indicate that,

were the �rms actually engaging in perfectly collusive behavior, their implied marginal costs would

still be well above zero. Furthermore, the change in demand elasticities has no e¤ect on the upper

bounds of the estimated marginal costs. This is because the upper bound on marginal costs is

derived from setting �it at its lower bound for each observation. This lower bound is 0 for both

cases considered, which cancels the e¤ect of the demand elasticity. If the lower bound on �it were

non-zero, the di¤erent elasticity would have had an e¤ect on the upper bound on marginal costs.

For the case where �it 2 [0; sit], using the estimated demand elasticities from (D2) does change

the implied lower bound on marginal costs, but the direction of the e¤ect, relative to the estimates

under (D1), is not uniform across �rms. For �rm 1, the estimated lower bound changes from 11:8c/

to 16:6c/, while for �rm 2 the lower bound decreases from 21:8c/ to 19:6c/. For �rm 3, there is still
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Table 5: Estimated bounds and con�dence intervals for �rms�marginal costs under the assumption
that marginal costs are constant, for demand speci�cation (D2), where elasticity is allowed to
depend on whether or not the Great Lakes are open for shipment.

[mc, mc] 75% CI 95% CI

Firm 1: �it 2 [0; 1] [0:086; 0:220] [0:081; 0:226] [0:078; 0:231]

�it 2 [0; sit] [0:166; 0:220] [0:161; 0:226] [0:155; 0:231]

Firm 2: �it 2 [0; 1] [0:086; 0:220] [0:081; 0:226] [0:078; 0:231]

�it 2 [0; sit] [0:196; 0:220] [0:190; 0:226] [0:186; 0:231]

Firm 3: �it 2 [0; 1] [0:086; 0:220] [0:081; 0:226] [0:078; 0:231]

�it 2 [0; sit] ; (0:223)� [0:221; 0:226] [0:216; 0:231]

� denotes the unique value at which the sample objective function is minimized.

no value of c01 that satis�es all of the restrictions of the model, but now that the interaction term

has been included in the demand speci�cation, constant marginal costs are no longer rejected at

reasonable levels.

Turning now to the set estimates for the parameters of the linear marginal cost speci�cation, we

immediately see from �gures 4-6 that zero marginal costs are rejected for each of the three �rms,

as the origin is always excluded. Again, there is a large di¤erence between the estimated identi�ed

sets for the two restrictions on �rms�markups. Interestingly, the shapes of implied identi�ed sets

do not change by much.

As was the case when demand speci�cation D1 was imposed, there exist no parameter values

for �rm 3�s marginal cost function at which the sample objective function takes the value zero

under the assumption that 0 � �3t � sit. However, the speci�cation is not rejected at the 95%

level, and in contrast to the results of section 7.3.1, constant marginal costs cannot be rejected.

The parameter values that minimize the sample objective function for �rm 3 in this case are

(c03; c13) =
�
0:199; 1:3� 10�5

�
.
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8 Conclusion

This paper provides a methodology for estimating �rms�marginal cost functions under relatively

lax restrictions on �rm behavior in an oligopoly setting. The empirical literature has long recog-

nized that empirical results may be sensitive to the particular equilibrium assumptions imposed.

To the extent that it is unclear how �rms actually make their strategic decisions in any given mar-

ket, imposing assumptions on �rm behavior may be problematic, and could lead to inconsistent

parameter estimates. The methodology of this paper allows the empirical researcher to relax po-

tentially unveri�able assumptions on �rm behavior, and determine what conclusions can be drawn

even if the remaining assumptions are insu¢ cient for point identi�cation. If more restrictions can

be credibly imposed regarding �rm behavior across observations, then this framework provides a

starting point for evaluating the impact of those additional restrictions.
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Appendix A: Proofs

8.1 Proposition 1

Proof. By (A**), 9�it 2
�
�0it; �

1
it

�
such that pt �mcit + �itQt @P@Q (Qt; xt; �) = 0, or equivalently,

mc (qit; w; �i) = P (Qt; xt; �) + �itQt
@P

@Q
(Qt; xt; �) + ut � �it.

Taking expectations over (qt; pt; �it; ut; �t) conditional on (x;w) implies

E [mc (qi;W; �i) jx;w] = E [ptjx;w] + E
�
�itQt

@P

@Q
(Qt; xt; �) jx;w

�
.

Because �it 2
�
�0it; �

1
it

�
and Qt @P@Q � 0, it follows that

E
�
�1itQt

@P

@Q
(Qt; xt; �) jx;w

�
� E

�
�itQt

@P

@Q
(Qt; xt; �) jx;w

�
� E

�
�0itQt

@P

@Q
(Qt; xt; �) jx;w

�
,

and therefore

mci (x;w) � E [mc (qi; w; �i) jx;w] � mci (x;w) .
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8.2 Proposition 2

Proof. From Proposition 1,

mci (x;w) � E [mc (qi; w; �i) jx;w] � mci (x;w)

for all (x;w) 2 (X ;W), for each i = 1; :::; N . Under the additive separability assumption A5, this
becomes

mci (x;w) � f (w; �i) + E [g (qi; �i) jX;W ] � mci (x;w) .

for all (x;w) 2 (X ;W), for each i = 1; :::; N . The identi�cation region for � is then given by the

set of values of � consistent with this statement with probability 1:

8.2.1 Corollary 1

Proof. This is a direct implication of Proposition 2 as @P@Q (Q; x; �) = 0 implies that mci (x;w) =
mci (x;w) = E [ptjx;w], so that E [mc (qi; w; �i) jx;w] = E [ptjx;w] for any (x;w) pair such that
@P
@Q (Q; x; �) = 0 with probability 1 conditional on (x;w).

8.2.2 Corollary 2

Proof. Let �0; �00 2 B� and de�ne �
 = 
�0 + (1� 
)�00 for some 
 2 [0; 1]. Fix i. For any

� 2 B� it follows that

mci (x;w) � �iqE [qijx;w] + w0�iw � mci (x;w)

so that


 �mci (x;w) � 
 � �0iqE [qijx;w] + w0
�

 � �0iw

�
� 
 �mci (x;w)

and

(1� 
) �mci (x;w) � (1� 
) � �00iqE [qijx;w] + w0
�
(1� 
) � �00iw

�
� (1� 
) �mci (x;w)

hold. Combining these two inequalities yields

mci (x;w) � �iqE [qijx;w] + w0�iw � mci (x;w) .

This shows that the set

f�i : mci (x;w) � f (w; �i) + E [g (qi; �i) jx;w] � mci (x;w)g
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is convex. Since B� is an intersection of sets of this form over the support of (x;w) and across i,

B� is convex.

8.3 Proposition 3

Proof. The result follows directly from taking expectations of the inequalities (3.5) and (3.6)

conditional on covariates (x;w) as in (4.3) and imposing Qj (p; x; �) = �pj � p+ h (�xj ; x). Doing
so gives

E [pj jx;w] +D�1jj �pj � E [(p) jx;w] +h (�xj ; x) � mcj
�
w; �j

�
� E [pj jx;w] +D�1jj �pj � E [pjx;w] +h (�xj ; x) +D

�1
jj � E

24X
k 6=j

Dkj (pk �mck (w; �k)) jx;w

35 .
The set B� is exactly the set of � that satisfy all of these inequalities for all J di¤erentiated products

over the support of X;W with probability 1. Any value of � that satis�es both (3.5) and (3.6)

belongs to this set by construction.

8.3.1 Corollary 3

Proof. Let �0; �00 2 B� and �
 = 
�0 + (1� 
)�00 for some 
 2 [0; 1]. Then under the restriction
that mcj (w; �) = wj � �j , it follows that w.p. 1 (X;W ),

E [pj jX;W ] +D�1jj �pj � E [(p) jX;W ] +h (�xj ; X) �Wj � �0j �

E [pj jX;W ] +D�1jj �pj � E [pjX;W ] +h (�xj ; X) +D
�1
jj � E

24X
k 6=j

Dkj
�
pk �Wk � �0k

�
jX;W

35
and

E [pj jX;W ] +D�1jj �pj � E [(p) jX;W ] +h (�xj ; X) �Wj � �00j �

E [pj jX;W ] +D�1jj �pj � E [pjX;W ] +h (�xj ; X) +D
�1
jj � E

24X
k 6=j

Dkj
�
pk �Wk � �00k

�
jX;W

35 .
Multiplying the �rst inequality by 
 the second by (1� 
) and summing them yields

E [pj jX;W ] +D�1jj �pj � E [(p) jX;W ] +h (�xj ; X) �Wj � �
 �

E [pj jX;W ] +D�1jj �pj � E [pjX;W ] +h (�xj ; X) +D
�1
jj � E

24X
k 6=j

Dkj
�
pk �Wk � �


�
jX;W

35 ,
so that �
 2 B�.
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Appendix B: Figures
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Figure 1: The estimated identi�ed set and 95% con�dence set for the marginal cost parameters of
�rm 1, using demand speci�cation (D1). The estimated identi�ed set is shown in light blue, and
additional parameter values that belong to the 95% con�dence region are shown in dark blue. (a)
depicts the identi�ed set under the restriction that 0 � �1t � 1, and (b) the identi�ed set under
the restriction that 0 � �1t � s1t.
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Figure 2: The estimated identi�ed set and 95% con�dence set for the marginal cost parameters of
�rm 2, using demand speci�cation (D1). The estimated identi�ed set is shown in light blue, and
additional parameter values that belong to the 95% con�dence region are shown in dark blue. (a)
depicts the identi�ed set under the restriction that 0 � �2t � 1, and (b) the identi�ed set under
the restriction that 0 � �2t � s2t.
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Figure 3: The estimated identi�ed set and 95% con�dence set for the marginal cost parameters of
�rm 3, using demand speci�cation (D1). The estimated identi�ed set is shown in light blue, and
additional parameter values that belong to the 95% con�dence region are shown in dark blue. (a)
depicts the identi�ed set under the restriction that 0 � �3t � 1, and (b) the identi�ed set under
the restriction that 0 � �3t � s3t. For case (b), there is no parameter value at which the sample

objective function is zero, but the 95% con�dence set is non-empty. The point at which the sample
objective function is minimized is

�
0:178; 2:8� 10�5

�
, shown in yellow.
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Figure 4: The estimated identi�ed set and 95% con�dence set for the marginal cost parameters of
�rm 1, using demand speci�cation (D2). The estimated identi�ed set is shown in light blue, and
additional parameter values that belong to the 95% con�dence region are shown in dark blue. (a)
depicts the identi�ed set under the restriction that 0 � �1t � 1, and (b) the identi�ed set under
the restriction that 0 � �1t � s1t.
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Figure 5: The estimated identi�ed set and 95% con�dence set for the marginal cost parameters of
�rm 2, using demand speci�cation (D2). The estimated identi�ed set is shown in light blue, and
additional parameter values that belong to the 95% con�dence region are shown in dark blue. (a)
depicts the identi�ed set under the restriction that 0 � �2t � 1, and (b) the identi�ed set under
the restriction that 0 � �2t � s2t.
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Figure 6: The estimated identi�ed set and 95% con�dence set for the marginal cost parameters of
�rm 3, using demand speci�cation (D2). The estimated identi�ed set is shown in light blue, and
additional parameter values that belong to the 95% con�dence region are shown in dark blue. (a)
depicts the identi�ed set under the restriction that 0 � �3t � 1, and (b) the identi�ed set under
the restriction that 0 � �3t � s3t. For case (b), there is no parameter value at which the sample

objective function is zero, but the 95% con�dence set is non-empty. The point at which the sample
objective function is minimized is

�
0:199; 1:3� 10�5

�
, shown in yellow.
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