Calculating energy levels of isomerizing tetraatomic molecules:
I. The rovibrational bound states of AroHF
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A general, 6-dimensional computational method for the accurate calculation of rotationally
and vibrationally excited states of tetra-atomic molecules is developed. The resulting program
is particularly appropriate for molecules executing wide-amplitude motions and isomerizations.
An application to the AroHF Van der Waals trimer is presented in which the HF intramolecular
stretching coordinate is separated out adiabatically and is not treated explicitly. Vibrational
term values up to about 100 cm™! with absolute convergence to better than 0.1 cm™' are
reported. These calculations employ more extensive vibrational basis sets and hence consider a
much higher density of states than hitherto. States that sample Ar—Ar-HF linear configurations
and approach Ar—HF—Ar linear configurations are characterized for the first time. Results for
total angular momentum J = 0 and 1 provide the first accurate calculations of rotational
constants for this system. The rotational constants for the HF bending states of AroHF in the
ground and first vibrationally excited states of the HF monomer are in good agreement with

experiment, confirming the accuracy of the potential used in this work.

I. INTRODUCTION

Recent interest in understanding wide-amplitude
(‘loppy’) molecular motions has been stimulated by the
drive to develop theories of intermolecular forces, iso-
merization and coherent control of chemical reactions.
Methods for calculating the rotation-vibration energy
levels and wavefunctions of floppy systems have advanced
greatly in the last decade but remain technically demand-
ing and computationally expensive even for molecules
and complexes as small as tetraatomics.!™

The accurate calculation of the (ro-)vibrational bound
states of the AroHF Van der Waals complex is particu-
larly challenging. As well as possessing 5 floppy (inter-
molecular) vibrational modes, two linear structures (Ar-
Ar-HF and Ar-HF-Ar) are accessible at modest levels of
excitation. Both of these local minima lie about 75 cm ™!
above the T-shaped global minimum structure. Success-
ful solution of this bound-state problem is vital to maxi-
mize the understanding of the spectroscopy of this impor-
tant prototype system for the development of the theory
of non-additive (3-body) intermolecular forces.®16

The AroHF complex is ideally suited for the inves-
tigation of non-additive forces in systems involving a
molecular constituent. The Ar, and ArHF pair poten-
tials are very accurately known, having been determined
by accurate fitting to experimental data by Aziz'” and
Hutson'® respectively. Moreover there is a high-quality
experimental data set available that is sensitive to the
3-body part of the intermolecular potential. The ex-
perimental data include microwave,'® mid-infrared?-13-20

and near-infrared!® spectroscopic observations. Investi-
gations of the non-additive forces in the AroHF complex
using ab inito electronic structure calculations have in-
cluded the applications of supermolecular Mgller-Plesset
perturbation theory by Szczeéniak, Chatasinski and co-
workers!®!! and symmetry-adapted perturbation theory
by Moszynski and co-workers.'®

Hutson and co-workers®!214.21-23 hayve developed and
tested a model of the non-additive forces in AroHX
(where X = halogen) including dispersion, induction,
exchange overlap and exchange multipole interactions.
Ernesti and Hutson!? found that their ‘total-1’ model
(referred to hereafter as the EH potential) reproduced
well the vibrational band origins and frequency shifts
for AroHF, Ary,DF, ArpyHCI and Ar,DCI in the H/DX
v = 0 and 1 states. The model has also been extended
to Ar,HF clusters®* and shown to reproduce the ob-
served vibrational shifts for n = 3 and 4. However
Ernesti and Hutson’s bound-state calculations for ArosHF
were restricted to total angular momentum J = 0. The
rotational constants were computed as expectation val-
ues based on pure vibrational wavefunctions and hence
did not include Coriolis terms which are very large in
some cases. Thus detailed comparisons of the predictions
based on Ernesti and Hutson’s non-additive potentials
with observed rotational constants have not been pos-
sible hitherto. One important objective of the present
work is to address this issue by computing rotationally
excited (J > 0) bound states of the AroHF complex.

Ernesti and Hutson’s bound-state variational calcula-
tions employed diatom-diatom (Jacobi) coordinates and



a near-exact kinetic energy operator to describe the in-
ternal motion of the AroHX complexes. The complete
5D intermolecular potential was averaged over the vi-
brational motion of HX in the adiabatically decoupled
vibrational state vgr. The basis set was carefully opti-
mized to converge well the ground Van der Waals states
and the fundamental HX bending excitations (for each
vur). However the basis set was restricted to configura-
tions associated with the T-shaped (global) minimum.

Continuing advances in computing power and re-
cent important developments in methodology for deal-
ing with floppy systems make it now feasible to compute
bound-state energies and wavefunctions of tetraatomic
molecules which probe multiple minima and include ro-
tational excitation. However as far as we are aware there
has been only one reported study of variational calcu-
lations on a rotationally excited system with as many
as 5 floppy vibrational modes.?? Most recently Lee and
McCoy” have computed variationally the 25 lowest vibra-
tional (J = 0) states of the Ne2SH and Ne;OH (A?XT)
complexes. These authors characterized T-shaped and
linear “isomers” with geometries analogous to those ex-
pected to be accessible in AroHF.

In the light of these developments it is timely to extend
the theoretical study of the AroHF complex to include
characterization of vibrational states associated with the
linear isomers. To date no spectroscopic observations of
such states have been made (nor indeed of any of the
“framework modes” associated with heavy-atom vibra-
tions about the T-shaped configuration). Nevertheless
there are excited states with these characteristics that lie
close in energy to the states that have been observed, and
perturbations due to them could well be important.

The structure of the remainder of this paper is as fol-
lows. Section II describes the theoretical methods that
we have developed and implemented to calculate the
bound states of floppy tetraatomic systems. Section IIT
outlines the results for the pure vibrational (J = 0) states
of AroHF. This includes discussion of the global picture
of vibrational states involving all three local minima.
The detailed investigation of the rotationally excited HF
bending vibrational states of AroHF and the implications
for the EH potential are discussed in Section IV. Section
V concludes the paper.

II. COMPUTATIONAL METHOD

Coordinates based on orthogonal vectors have become
a very popular choice in dealing with wide-amplitude mo-
tions in polyatomic systems. The generalized approach
used in this work was suggested by Chapuisat and ITung!
and developed further in Refs. 26 and 27. Recently
Mladenovi¢ gave a very concise account of the approach
together with a detailed description of applications to
some molecules.’ Fundamentally we build on the results
of Ref. 5, although computationally our method is some-
what different.
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One of the most attractive features of generalized or-
thogonal coordinates is the simplicity of the kinetic en-
ergy operator,
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where u, are reduced masses, g, are the lengths of inter-
nal vectors q, and T, is the angular kinetic operator
givenin Eq. (37) of Ref. 5. Perhaps even more important
is the invariance of Eq. (1) under various choices of or-
thogonal vectors. Several useful choices such as Radau,
Jacobi, diatom-diatom and orthogonal satellite vectors
are considered in Refs. 3 and 5. Once the scheme is cho-
sen, the body-fixed axis system is usually defined so that
the z-axis goes along one of the vectors, for example qs,
and the zz plane is defined by q3 and q;.

The disadvantage of Eq. (1) is that potentially it has
two types of singularities, both of which are connected
with Tang. One singularity corresponds to the angle be-
tween g3 and q; being zero or 7 (so that the molecu-
lar plane is not defined). This can be cured by using a
non-direct product angular basis?® - for a recent general
discussion see for example Ref. 29. Another singular-
ity arises when ¢s is equal to zero (so that the z-axis is
not defined). Unfortunately, depending on the choice of
coordinates, one or both of these singularities is physi-
cally accessible for many floppy 4-atom molecules. To
deal with the latter type of singularity we have employed
spherical oscillator functions.3°

Our treatment of the angular problem is essentially
close to that of Mladenovi¢,> who gave the matrix ele-
ments of Tyng in a parity-adapted angular basis. Unfor-
tunately, the equations for the matrix elements in Ref. 5
contain two typographical errors. In addition, we have
found it more convenient to work with slightly different
phase factors for the angular basis. We therefore present
the matrix elements below. Our primitive angular basis
functions are

|6 K k j 1, Jp) = N P51 [k 7 K, M)+

(_1)J+p+K+k)/;7Nk'|J’ _K, M):I (2)

where £ is an auxiliary number taking the values —1 and
+1, J and K are the usual rotational quantum num-
bers associated with the total angular momentum and
its projection on the body-fixed z-axis, j and [ are an-
gular momenta associated with rotation of q; and qs re-
spectively, k is the projection of [ onto qz, p is the total
parity, Nk is a normalization factor, ij are associated
Legendre functions of the angle between qs and qy, Yj’c
are spherical harmonics of the body-fixed angles defin-
ing the direction of q2 and |J, K, M) are symmetric top
eigenfunctions. When x = 1 our angular basis functions
are the same as in Ref. 5, but they differ by a factor
(=1)7+P+K when k = —1.
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It is useful to introduce radial functions
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J and p are strictly conserved and are therefore omitted
in the formula below.
The matrix elements diagonal in K are given by:

bij(j+1)+b2l(l+1)+

by [J(J +1) —2(K* +k* — kKk)], (6)
bs sign(k — £K)v/1 + 0k00k0C_ i OOk k1 +

b sign(k’ — ”K)mcjfk—nl(cljk‘skﬁkfh (7)
—b3 C;  Cry» (8)

where Cli = /Il +1) — k(k £ 1). The quantity sign(I) takes the value —1 if I < 0 and +1 if I > 0. Inspection
shows that these matrix elements do not depend on the parity quantum number p. This allows the eigenvectors for
the K > 0 diagonal blocks to be re-used in the construction of the matrix elements for the off-diagonal blocks (see

below).
The matrix elements off-diagonal in K are given by:
(5, K' = K — 1, j, 1| Tang|i, K, ki, 5, 1) = —rbsCr [le,:ign(“)ékr,k,n +sign(k — £K)
VIH Skt Cr o] ()
(5, K = K+ 1K Tang s, K b 1) = —kbyCfye [CTE™ )840 s + sign(k — kK
I+ 0000 G5 0w ] (10)
(K’I = 17K = 17k7j7l|Tang|h: = _17K = 07k7j7l> = _b3C:}:OCka(_1)J+pﬂ (11)
(k' =1,K =1,k+1,5,l|Tangls = =1, K = 0,k,j,1) = —bs\/1+4 6roC Cl(=1)777, (12)
(' =1L,K' =K+ 1K =1,j,l|Tangle = =1, K,k = 0,5,1) = —b3/1 4 6xoCJ Cfly- (13)

If K = k = 0and J+pis even then the last two equations
are the same and need be used only once.

The program suite3! developed to perform the present
study is capable of full 6D ro-vibrational calculations
and has no limitation on the choice of orthogonal vec-
tors. After some consideration, we decided to use diatom-
diatom vectors for the application to AroHF. Ernesti and
Hutson’s ‘total-1’ Ar,HF potential'* was constructed us-
ing these coordinates. The potential was explicitly con-
structed so that HF vibrations are adiabatically sepa-
rated and therefore each vyp state is treated separately.
This effectively corresponds to averaging of g2 = rur (to
reproduce correctly the HF rotational constant for each
vgr) in Eq. (1) and reducing the number of degrees of
freedom by one. The present diatom-diatom coordinates
are almost identical to the ones used in Ref. 14 if one
takes the Ar—Ar distance p = ¢; and the distance be-

tween the centers of mass of the two diatoms R = g3; see
the diagram in Fig. 1. The only essential difference is in
the axes embedding. The vector qs defines the direction
of the z-axis and together with q; defines the xz-plane.
0, is the angle between the two vectors. The orientation
of vector qz is given by two angles f; and ¢; the angle
between qs and qs is 6; and ¢ rotates qo around q3. The
angular momentum of Ars is denoted jar, = j and that
of HF is denoted jgr = [ here, while k is the projection
of jur onto R. Note, however, that in most of the earlier
literature it was jur that was denoted by j.'?'4 Note
also that 8; and 6, here correspond to # — xy and 7 — 6
respectively in Ref. 2 but xy and 7 —6 respectively in Ref.
12.

A major advantage of Eq. (1) is that it helps sepa-
rate radial and angular coordinates because no mixed
derivative angular-radial operators are present. Thus if



FIG. 1: Coordinate system used for AroHF

the radial motion is treated in the discrete variable rep-
resentation (DVR)32:33 the whole problem can be effec-
tively constructed from a set of angular sub-problems.
Furthermore the use of the DVR approximation for the
potential energy requires only the angular integrals to
be computed explicitly. Two possible radial basis func-
tions have been considered in the present work: Morse
oscillator-like functions and spherical oscillator functions.
Morse oscillator-like functions are defined as?*

B2 Ny exp(—y/2)y /2L (y) (14)

where y = aexp-B(r — 1), @ = 4D./8, f =
we(p/2D)'?, L (y) is a Laguerre polynomial, x is the
reduced mass associated with radial distance r and N,,,
is a normalization factor. The set {r., w., D, } are treated
as parameters to be optimized, although they can be as-
sociated with the equilibrium distance, fundamental fre-
quency and dissociation energy. In the case where the
distance r can be zero, spherical oscillator functions®°
are a better choice,

V2BY4 Ny 4172 exp(—y/2)y D202 (y) - (15)

where y = 8r?, f = (pw.)"/? and {n, w,} are treated as
parameters.

The size of the primitive basis is necessarily very big. If
we had a pure DVR basis, we could use methods which do
not require explicit storage of the Hamiltonian matrix for
finding eigenvectors. Unfortunately the non-direct prod-
uct part of our basis cannot be transformed effectively
to a DVR and so integration of the angular potential
function must be performed. Recently Lee and McCoy”
had a similar problem. They decided to use the implicit
sequential diagonalization and truncation approach.?® In
the present work we use more traditional explicit sequen-
tial diagonalization and truncation (see for example Ref.
33). The computation is performed in several steps. First
the angular kinetic energy operator is separated into sub-
blocks diagonal in K, T;flg, and sub-blocks off-diagonal
in K with AK = +1, Tszl’gvK . The angular problem as-
sociated with T;flg + V is solved separately for every K
sub-block for all radial grid point pairs (R, p). Here V' is
the full (5D) potential with fixed R and p. Only eigen-
functions below a certain energy cutoff, Ec(lll)t are selected
for later use. Then the kinetic energy operator in the ra-
dial coordinate p is included and the respective matrices
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are constructed in the angular plus p basis and solved
for eigenvectors for every R point. Again only the low-

est states, this time below Eéi)t, are selected. Then the

kinetic energy operator in R is included and the full 5D
vibrational matrix is computed. During this step only

the eigenvalues below Ec(i)t are found. For K = 0 this
gives the desired final vibrational levels. For K > 0 it
gives K-optimized eigenvectors for further use in the final
ro-vibrational step. As outlined above, the contracted
eigenvectors for p = 0 and p = 1 are identical for the
K > 0 diagonal sub-blocks. Hence the contracted eigen-
vectors for p = 0 can be used for both p =0 and p =1
in the final step. In this final step, AK = +1 sub-blocks
are included and ro-vibrational levels are computed.

Depending on the size of the angular basis, the compu-
tation of the three-dimensional angular integrals of the
potential function may be the most time-consuming part
of the calculation. Therefore it is important to make it
as efficient as possible. To facilitate this in the present
case we have tried expanding the potential in the J =0,
totally symmetric angular functions defined by Eq. (2)
at every radial pair and computing the angular integrals
analytically. This allowed re-using the expansion for all
symmetries. We found that this strategy is useful when
particularly accurate integrals are desired. However for
AroHF the best ratio of performance to accuracy was
found with direct integration of the potential function
using Gaussian quadrature on the minimal number of
quadrature points. This was achieved after implement-
ing an algorithm which takes into account the symmetry
properties of the product of two primitive basis func-
tions. The summation is performed only over half of the
quadrature points but it uses the symmetric part of the
potential if the product is symmetric and the asymmetric
part if the product is asymmetric. In choosing the num-
ber of quadrature points, we used the minimum number
of points required to maintain the orthogonality of the
basis functions. These numbers are jpg* + 1, £™** + 1
and jio*+1. Normally one would use 2jip*+1, 2k™**+1
and 2j'% 4+ 1 points respectively. So the approximately
twofold saving for every angular coordinate gave an al-
most eightfold overall saving. This trick has been used
previously in expanding a function in a series of spherical
harmonics.3® Furthermore, there is an additional twofold
saving for ¢. Although ¢ is defined from zero to 2w, be-
cause of the inversion symmetry its effective range is from
zero to m only.

To make further improvements one can compute only
once the integrals between different k for all #; and 6- grid
points and then re-use them in computing 2D integrals.”
In addition to space-fixed inversion, which separates the
states of even and odd parity, the permutation of two Ar
atoms is also feasible.!? This symmetry separates blocks
with even and odd ja,, and therefore has a straightfor-
ward effect on the whole matrix.

Ar,—HF can be considered as a relatively weakly bound
trimer in which the HF exhibits hindered rotation. The
equilibrium configuration is a near-isosceles triangle (R =



AI“QHF

29A, p=37 A), but two linear configurations are also
accessible: Ar—Ar—HF and Ar—HF-Ar. For vgp = 0 they
are located at 77 cm™! (R = 5.3 A, p = 3.7 A) and 74
em™! (R =0.03 A, p = 6.8 A) respectively above the ab-
solute minimum. To accommodate these configurations
we used 42 Morse oscillator-like basis functions defined
by Eq. (14) {r. =5.2 A, w, = 10 cm™!, D, = 500 cm—'}
in p, sampling the range from 2 to 8 A, and 48 spheri-
cal oscillator functions defined by Eq. (15) {n = 0 or
1, we = 10 cm™ !, D, = 500 cm '} in R, sampling the
range from 0 to 6 A. The parameters were chosen so
that the Gaussian grid covers all configurations of inter-
est and the eigenvalues of the respective one-dimensional
problems (with all other coordinates fixed to their equi-
librium values) are reasonably well converged.

There is no problem in treating the Ar—Ar—HF lin-
ear configuration in our approach since we use a coupled
angular basis. However the Ar—-HF—-Ar configuration re-
quires special attention. The problem of the 1/R? sin-
gularity is well known in triatomic systems such as H;
and Arg (if treated using Jacobi coordinates for exam-
ple): the DVR quadrature approximation breaks down
for this term in the kinetic energy operator.?” The reader
is referred to an excellent paper®® which explicitly consid-
ered the problem of singularities and implications made
by the choice of direct or non-direct product bases. The
conclusion of Ref. 38 is that strictly speaking one needs a
non-direct product angular-radial basis to account fully
for the 1/ R? singularity. However frequently a simpler di-
rect product approximation works well.?":39 This simpler
approach involves the use of basis functions with nonzero
probability density at R = 0 if it is allowed by symme-
try and basis functions with zero probability density at
R = 0 otherwise. If sampling R = 0 is important, it will
manifest itself in different energy levels computed using
the two types of basis functions.

The spherical oscillator functions (15) have nonzero
probability density at R = 0 if n = 0 and zero if n > 0.
In fact the Gaussian quadrature points in R never take
exactly zero values, but sample the area near it. There-
fore we may use n = 0 functions if the symmetry al-
lows non-zero probability density at R = 0 and n = 1
functions otherwise. In our implementation, there is also
an option to compute 1/R? (required in Thy,) either in
the DVR approximation or analytically.3” The term 1/p?,
also present in Thyg, is always treated in the DVR approx-
imation, because the potential does not allow geometries
around p = 0 to be sampled.

Our calculations showed that changing 1 from 0 to
1 has almost no effect for levels up to 100 cm~! above
the zero-point energy (ZPE). However using n = 0 and
computing 1/R? analytically made the overall conver-
gence of levels much slower and the computation more
demanding. This is because of the spectral range of
the 1/R? term:*¥% as R comes close to zero, 1/R?
has not only large diagonal matrix elements but also
large off-diagonal elements as well. Consequently our
diagonalization-truncation strategy becomes less effec-

tive: we have to increase the energy cutoff. However
increasing it brings in many more states because the den-
sity of states is very high at large R. Therefore in the
present work we decided to limit attention to vibrational
states below 100 cm~!. All the calculations presented
here use n = 0 and treat 1/ R? in the DVR approximation.
All the J = 0 eigenvalues calculated using this approach
agreed within our level of convergence (0.1 cm™!) with
results using 7 = 1 and treating 1/R? analytically. How-
ever some states above 100 cm ™! begin to sample R = 0
(see below) and we plan to treat them more accurately
in a future work.

Dissociation along p (giving Ar + Ar + HF) requires
about 100 cm™! more energy than dissociation along R
(giving Arp + HF). It therefore seems logical to treat p
first in our diagonalization truncation scheme. To ensure

that proper p functions are obtained, we choose Ec(lll)t to

be above the dissociation energy in p by 10 to 50 cm~!.

The second energy cutoff, Eéil, was chosen to be above
the second dissociation energy (along R) by 60 to 100
cm~!. To construct the angular basis we used Thm =52,
Ja® = 5 and k™ = 4. This resulted in about 500
angular basis functions per symmetry block for K = 0
and up to about 900 for K = 1. Typically a full J =
0 calculation took several hours on a single 667 MHz
XP/1000 Alpha processor and J = 1 took from 10 hours
to two days depending on the size of the basis (up to

10000 contracted functions in the final diagonalisation).

III. VIBRATIONAL STATES OF Ar HF

Solving the angular problem for all radial configura-
tions results in sets of angular eigenstates (adiabats).
The energy of the lowest angular state computed for a ra-
dial pair (p,R) characterizes the accessibility of the radial
configuration concerned. It is instructive to consider the
effective 2D potential surface formed by the lowest adia-
bat. Fig. 2 shows an example for vgp = 1, A; symmetry.
The two linear configurations are readily recognizable at
approximately 100 cm~! above the equilibrium and are
seen as local minima. However the Ar—Ar-HF configu-
ration is more easily accessible than Ar—HF—-Ar because
the barrier to it is lower. The density of angular states is
very high at the Ar—Ar-HF configuration and in fact is
even higher than at the T-shaped configuration because
the angular anisotropy is lower.

The J = 0 levels computed for vgr = 0 and 1 are pre-
sented in Table I. We estimate that they are converged
to better than 0.1 cm~!. We investigated increasing the
radial and angular primitive bases by about 20%, but it
turned out that the most crucial step to improve con-
vergence was to increase the energy cutoffs. Because we
were constrained by memory limitations, the computa-
tion was necessarily a compromise between truncation
energies and the size of the primitive basis. Fortunately
DVR makes it easy to skip points with unphysically high
potential energies. Thus actually many points, such as
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FIG. 2: Effective radial potential energy, constructed using
the angular zero-point energy at each radial configuration for
var= 1. The contour energies are given in cm™ L.

very short-range p points, were omitted (before the an-
gular diagonalisation at that point).

Apart from the ground vibrational state of the com-
plex, so far only HF hindered rotor (or bending) states
have been observed experimentally, with vgr = 1'% and
vuar = 3.1° This is because it is the HF rotational motion
that carries the oscillator strength for the transitions.
Because of the high density of states, it was important
to distinguish the HF bending states from the framework
modes. This was achieved in two ways. First we com-
puted the relative vibrational line strengths of the tran-
sitions from the ground state vgr = 0 to all computed
states

RL= 3} (ilualf)* (16)

a=x,yY,z

where ¢ and f denote the initial and final states. Here
we have used the approximate dipole moment function
given in Ref. 2,

p = pmr /4m/3 YY, (17)
1
fe = pmr \/4r/3 (Y71 —Yf)ﬁ, (18)

ny = pme V/AT/3 (Y Yf)\%. (19)
2

It is important to note the selection rules governing the
dipole transitions. The operator u, transforms as the A;
representation of the group Cay, so that the only allowed
transitions from the ground state are those to states of
the same, i.e. Ay, symmetry. Since u, is of By symmetry,
it allows only transitions to By states. Similarly p,, allows
transitions to By states only. Only relative line strength
calculations are presented below, so we take pugr = 1.
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In cases where an unambiguous assignment does not
emerge from the line strengths, we analysed the prob-
ability density of the computed eigenfunctions. A very
useful quantity proved to be the two-dimensional proba-
bility density as a function of p and R (integrated over
the remaining degrees of freedom). Some examples for
states of A; and By symmetry are given in Figs. 3 and 4.
The pure HF bending states have no excitation in radial
coordinates and are therefore localized around the ab-
solute minimum in the potential - see for example state
10 in Fig. 3. This should be contrasted with states 9
and 11. States 3 and 4 of B2 symmetry have similar ap-
pearance and strong intensity for both vgr = 0 and 1.
In this case the final assignment of the in-plane II bend
(for vyr = 1) has been made based on the rotational
constants (see below).

The present calculations show two strongly interact-
ing By symmetry vibrational states with nearly equal
vibrational line strength at about 60 cm~! for Ar,HF
in the vgr = 1 manifold. These states are separated
by only 1 ecm~!. Only one band has been identified
experimentally.!> However, the observed band is highly
perturbed and only 60% of the resolved lines have been
assigned.'® Some of the unassigned lines might well be at-
tributable to our second predicted vibrational state (at
61.1 cm~!). Before drawing a firm conclusion on this
point, however the approximations associated with our
line strength calculations need further investigation. The
major approximation is associated with truncation of the
basis set: improvements in the basis set may change the
relative energies of the two interacting vibrational states
and thus change the mixing between them. With a very
much smaller basis set, Ernesti and Hutson predicted
only one strong vibrational transition to a By state in the
region around 60 cm~!.1%!* The present calculations are
definitely more accurate than those of Refs. 12 and 14,
but may not be fully converged. In addition, we have so
far computed only vibrational rather than ro-vibrational
line strengths, and the latter would be very interesting
because they would permit detailed comparison with the
experimental data.

The present J = 0 calculations agree very well with
earlier calculations.'®!* The HF bending states are usu-
ally within 0.1 to 0.2 cm ™! of the previous results. Com-
parison of our Table I with Fig. 5 of Ref. 12 immedi-
ately demonstrates that many states associated with the
framework modes are lower in energy in the present work
and the density of states quickly reaches one per cm™!.
This is because the work of EH'?'* was primarily inter-
ested in HF bending states and therefore did not use a
large enough radial basis set to permit Ar-Ar-HF linear
geometries.

In the present work we clearly see that some states
probe the Ar—Ar-HF configuration, for example state 16
in Fig. 3. This state appears to be well localised in the
linear isomeric structure. In fact, due to permutation
symmetry there is an equivalent state of By symmetry
(state 10 in Fig. 4) at about the same energy. States
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A1 sym, state #9, E= 78.4 cm-1

plAngstrom

A1 sym, state #10, E=79.5 cm-1 A1 sym, state #11, E= 81.7 cm-1

A1 sym, state #15, E= 90.3 cm-1

plAngstrom

A1 sym, state #16, E= 91.2 cm-1 A1 sym, state #20, E= 95.5 cm-1

R/Angstrom

R/Angstrom

R/Angstrom

FIG. 3: Probability densities of selected vibrational states for AroHF var = 1, A; symmetry calculated using the EH ‘total-1’

potential.**

localised in a linear isomeric structure have also been
reported in the Ars system.?’

At yet higher energy, some states begin to sample the
Ar-HF-Ar configuration. In this respect it is interesting
to compare the radial distribution density for state 20 in
Fig. 3 with the wavefunctions of the “horseshoe” states
computed for H;r by Tennyson and co-workers*»*? and
for Arz by Wright and Hutson.?® Here the HF molecule
moves between the two Ar atoms as they move apart to
make way for it.

As an illustration of the complexity of some of the
states arising in this floppy system, state 15 in Fig. 3
shows an irregular nodal structure and samples a very
wide range of radial configurations.

IV. ROTATIONALLY EXCITED HF BENDING
STATES

The agreement between the vibrational energies com-
puted in this work and those obtained by EH for HF
bending states demonstrates that at least some HF bend-
ing states are weakly coupled to the framework modes.
This encouraged us to try to calculate rotational con-
stants from J = 1 calculations, despite the lack of ab-
solute convergence in the energies. It seemed reasonable
to suppose that if vibrational states are weakly coupled
and relatively isolated then rotational spacings might be
much better converged than absolute energies.

The rotational excitation from J = 0 to 1 splits every
vibrational level into three ro-vibrational levels, which
have symmetries supplementing the representation of the
vibrational state in the full Cy, group. For example, if
the vibrational state is A; then its J = 1 states will be
A,, B; and Bs. Since there is actually just one J = 0
state of B; symmetry below 100 cm !, and no states of
A, symmetry, it was easy to match the ro-vibrational
states with the corresponding pure vibrational states. If
centrifugal distortion is neglected, the three J = 1 states
have energies A + B, B + C and A + C' above the cor-
responding J = 0 states. This allows the direct com-
putation of the rotational constants A, B and C from
the ro-vibrational levels. The results are summarized in
Table II.

Previous estimates of rotational constants in AroHF
have been obtained through calculations of expectation
values involving pure vibrational wavefunctions.'*!* This
neglects Coriolis effects. When the EH calculations and
experiment agree, indicating that the Coriolis effects are
small or unimportant, the present results are hardly any
better than EH. However when there is a big discrep-
ancy between EH and experiment, the present calcula-
tions show much better agreement. In particular, the
two largest discrepancies in the earlier work, for the A
rotational constants of the in-plane and out-of-plane II
bends, are dramatically reduced in the present work.

We have performed limited variations of the energy
cutoffs and the basis set (while also investigating con-
vergence of our vibrational results) and conclude that
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B2 sym, state #3, E= 61.1 cm-1

pIAngstrom

B2 sym, state #4, E= 62.2 cm-1 B2 sym, state #10, E= 90.7 cm-1

R/Angstrom

R/Angstrom

R/Angstrom

FIG. 4: Probability densities of selected vibrational states for AroHF vgr = 1, B2 symmetry calculated using the EH ‘total-1’

potential.**

the computed rotational constants should be accurate to
better than 30 MHz.

HF bending states have also been observed in the near-
infrared spectra of AroHF in the vgrp = 3 state by Klem-
perer and co-authors.!®> We have extended our calcula-
tions to model these states. However, for these states
the potential energy surface is less accurate and the com-
parison between theory and experiment is not such a
direct test of the computational method. The differ-
ent issues raised by the rather higher excitation in the
HF intramolecular mode will be discussed in a separate
paper.*3

V. CONCLUSION

The vibrational spectrum of the AroHF Van der Waals
trimer has been investigated up to about 100 cm ™! above
the zero point energy for vgp = 0 and 1. The reported
energy levels are converged to an absolute energy of bet-
ter than 0.1 cm~—!. The present method treats fully the
Van der Waals stretches and therefore gives a density
of states much higher than tackled previously for this
system. This makes yet better convergence somewhat
difficult to achieve. However we are able to estimate ro-
tational constants of the HF bending vibrational states
from J = 1 levels, because the relative positions of rota-
tional levels converge considerably faster than the abso-
lute energies. This is demonstrated by good agreement
between the calculated and experimental rotational con-
stants. The potential of Ernesti and Hutson is successful
in reproducing accurately rotational as well as vibrational
spectroscopic data.

It is not yet clear how successful our simple strategy
is in dealing with states that sample geometries around
R = 0. It seems likely that states similar to the horse-
shoe states in H; and Ars do exist in Aro,HF. Indications
of them can be seen in the excited states of Fig. 3. Cal-
culations on states that probe linear geometries are in-
teresting because they might facilitate the observation of
such states, and this would allow further improvement of

our understanding of non-additive intermolecular forces.
We plan to investigate this further in future work.

The calculations reported here are not very demand-
ing in terms of modern computer power and the re-
sults are very encouraging. Applications to many
floppy tetraatomic systems are envisaged including other
RgoHX clusters. Moreover the extension of our method
and program suite to systems of two rare gas atoms and
a rigid triatomic molecule such as COs or OCS is not
only straightforward but feasible.
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TABLE I: Vibrational energy levels for AroHF (vgp = 0 and 1) calculated using the EH ‘total-1’ potential.'* All energies are
. . 1
given in cm™ .

var= 0 var= 1
Energy RLx10? Energy RLx10?

ZPE —-277.3 —291.9

Ay

1 0.0 465.56 0.0 488.27
2 25.1 0.04 25.5 0.00
3 39.8 0.20 41.2 0.01
4 46.8 0.01 47.6 0.00
5 56.1 0.03 58.0 0.02
6 62.1 0.02 63.6 0.00
7 66.0 0.05 67.6 0.00
8 70.8 0.26 73.5 0.01
9 1.7 73.64 a 78.4 0.04
10 76.7 0.00 79.5 48.90 a
11 78.4 0.78 81.7 9.51
12 81.1 0.01 83.5 0.02
13 83.7 0.09 86.7 0.16
14 85.8 0.02 88.7 0.20
15 86.7 0.02 90.3 0.03
16 87.8 0.00 91.2 0.10
17 88.8 0.11 92.7 0.30
18 90.3 2.16 93.8 3.18
19 91.3 0.03 95.3 0.00
20 92.8 0.00 95.5 0.00
B.

1 29.7 7.40 30.5 8.90
2 54.4 0.33 55.7 0.97
3 59.3 123.32 b 61.1 123.14
4 60.3 104.46 c 62.2 106.73 ¢
5 74.2 0.74 77.1 0.73
6 76.7 0.01 78.2 0.06
7 82.3 1.31 84.1 1.92
8 82.8 0.01 86.2 0.06
9 85.6 0.07 88.1 0.19
10 86.5 0.04 90.7 0.04
11 87.7 0.04 91.9 0.03
12 89.9 0.01 94.0 0.00
13 92.5 0.01 96.4 0.02
B

1 81.6 167.01 d 87.7 171.99 d
Ay

1 107.5 114.3

ZPE - zero point energy; RL - relative line strength (in units of u%{F); a - ¥ bend; b - state strongly mixed with in-plane II
bend; ¢ - in-plane IT bend (strongly mixed with framework mode); d - out-of-plane IT bend.



AI“QHF

TABLE II: Observed and calculated vibrational energies (cm™') and rotational constants (MHz) for the Van der Waals ground

states and HF bending states of AroHF.

@ _ experimental values taken from Ref. 13; °® - Ref. 14; © - this work; ¢ - state strongly mixed with in-plane II bend; © -

Exp® EH® Exp — EH

TW¢ Exp — TW

var = 0, ground state
A 3576.5  3593.7 —-17.2
B 1739.2 1740.0 —0.8
C 1160.9  1160.5 0.4

vuar = 0, ¥ bend
71.8

3553.7

1743.4

1156.4

QW

var =0, d

QWX

var = 0, in-plane IT bend®
60.1
3642.3
1718.2
1154.8

QW

var = 0, out-of-plane II bend
81.5
3539.1
1737.1
1152.3

QWX

var = 1, ground state

A 3578.3 3593.6 -15.3
B 1742.7 1743.2 —-0.5
C 1162.9 1162.2 0.7
vur = 1, ¥ bend
v
A
B
C
var = 1, d
v
A
B
C
var = 1, in-plane IT bend®
v 62.4 62.0 0.4
A 3380.8 3662.9 —281.1
B 1733.4 1715.2 18.2
C 1120.5 1155.8 -35.3
var = 1, out-of-plane IT bend
v 88.6 87.6 1.0
A 3702.2 3541.4 160.8
B 1754.4 1737.2 17.2
C 1154.4 1152.8 1.6

(A state no. 1)

3578.1 —1.6
1740.1 —-1.0
1165.9 —4.9

(A state no. 9)
1.7

3437.5

1745.2

1180.4

(B2 state no. 3)
59.3

3450.0

1734.5

1137.4

(B2 state no. 4)
60.3

3365.3

1740.0

1126.2

(B1 state no. 1)
81.6

3655.4

1738.8

1172.2

(A1 state no. 1)

3576.9 14

1745.5 —-2.8

1166.8 —-3.9

(A state no. 10)
79.5

3396.9

1747.7

1170.9

(B state no. 3)
61.1

3452.1

1736.5

1135.4

(B state no. 4)
62.2 0.2

3375.7 5.1

1743.2 —-9.8

1125.7 —5.2

(B1 state no. 1)
87.7 0.9

3678.8 23.4

1774.9 —20.5

1171.8 —17.4

strongly mixed with framework mode.
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