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Processor Core Model for Quantum Computing
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We describe an architecture based on a processing ‘‘core,’’ where multiple qubits interact perpetually,
and a separate ‘‘store,’’ where qubits exist in isolation. Computation consists of single qubit operations,
swaps between the store and the core, and free evolution of the core. This enables computation using
physical systems where the entangling interactions are ‘‘always on.’’ Alternatively, for switchable
systems, our model constitutes a prescription for optimizing many-qubit gates. We discuss implementa-
tions of the quantum Fourier transform, Hamiltonian simulation, and quantum error correction.
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FIG. 1 (color online). Architecture of the processor-core
model. The core is an engineered spin-1=2 chain with always-
on interactions. The storage bank consists of isolated sites where
qubits can be swapped to and from the corresponding sites in the
processing core. Controlled multitarget gates are constructed by
the free evolution of the spin chain.
Typically, schemes for solid state quantum computing
involve an array of qubits with some form of direct physi-
cal interaction coupling nearby elements [1–4]. In order to
implement a specific algorithm, the major potential prob-
lem is that these schemes require the experimentalist to
dynamically control the magnitude of each qubit-qubit
interaction—effectively, to be able to switch it ‘‘on’’ and
‘‘off’’ precisely. A common idea for achieving this is to
somehow dynamically manipulate the wave function over-
lap between a pair of neighboring qubits, while other
nearby qubits are decoupled. This appears feasible but
highly challenging. Moreover, even if a switching mecha-
nism can be implemented, frequent switching is likely to
increase the rate of decoherence. A deeper objection is
that, by having the majority of a system’s interactions off at
a given moment, we are failing to maximally exploit its
computational potential.

Recently, ideas have emerged [5,6] for computation in
systems where the interaction remains always on.
However, these proposals find ways to effectively pacify
an interaction, and, therefore, one can make the same
objection that they are not exploiting the full entangling
power of the device. One class of system that does make
full use of a set of permanent interactions is the mirror-
inversion chain [7–12]. A chain of spins, with suitably
engineered coupling strengths, has the property that a qubit
placed on one end will later manifest at the other—even
though at intervening times it is distributed over the chain.
When more than one qubit is placed on the chain, each will
manifest at the complementary site—but typically the
qubits will have aquired an entangling phase. It has been
observed [10] that this phase could, in principle, be em-
ployed to create certain classes of entangled state, graph
states, which are the resource for one-way computation.

In this Letter, we demonstrate the potential of such
engineered spin chains to directly implement arbitrary
controlled multiqubit gates. The chain then acts as the
computation core of our computer (see Fig. 1)—we need
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only supplement its free evolution with swap operations
and single qubit manipulations. Note that this model is
profoundly distinct from schemes involving a single qubit
bus, e.g., the original ion trap schemes, since there the
common mode represents only one qubit of information.
We show that a controlled multiqubit gate can be con-
structed with exactly four free evolutions of the spin chain,
independent of the number of spins involved. The control-
ling qubit can be any member of the spin chain, and the
conditional unitary operations applied to the target qubits
can be of any type. Such a gate can significantly reduce the
number of elementary operations for quantum algorithms
involving many nonlocal two-qubit operations.

We start with a finite chain ofN spin- 1
2 particles confined

within local potentials and interaction with their nearest
neighbors. The Hamiltonian considered is
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where the coupling constants f!j; �jg are real and, in
general, distinct. We will adopt the convention that j0ji
(j1ji) refers to be the spin-down state j#i (j"i) at the site j.
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This XY Hamiltonian is actually a very generic one de-
scribing the hopping process and can be manifested in
many physical scenarios such as quantum dots coupled
with cavity QED [2], nuclear spins coupled by a 2D
electron gas [3], optical lattices [10], and Josephson junc-
tions [4].

Next, we require that the core possess the so-called
‘‘mirror symmetry’’ [8]: !j � !N�j and �j � � �j, where
�j � N � j� 1 denotes the mirror-conjugate site of j. Let
jsi � js1s2; . . . ; sNi, sj � f0; 1g, be a particular spin con-
figuration. Mirror inversion is said to occur when the state
jsi is driven by the evolution operator U��� � e�iH�, for
some fixed time period �, to the inverted state j�si �
jsN; . . . ; s2s1i (up to a phase factor). Note that the term
mirror inversion refers to the inversion of classical states
jsi in which all the sites have definite spin values. For a
quantum state, being a superposition of the basis states in
general, some internal phases will be acquired. However, it
is exactly these entangling phases which we will exploit for
gate construction.

It is shown [11] that the sufficient and necessary condi-
tion for mirror inversion in mirror symmetrical chains is
determined by the eigenvalue spectrum of HS (@ � 1), the
single excitation subspace of H,

e�iEk� � ��1�ke�i�N ; (2)

where Ek, k � 0; 1; 2; . . . ; N � 1, is the (k� 1)th eigen-
value ofHS and�N is some global phase independent of k.
Because of the mirror symmetry, the coupling constants
f!j; �jg can be determined by the eigenvalue spectrum. It
is, therefore, an inverse eigenvalue problem [13]. Recently,
many spectra [7,8,12] satisfying the condition in Eq. (2)
have been proposed. However, to keep our model general,
we will continue our discussion without reference to any
specific type of spectrum.

To construct multiqubit gates, we need to know the
matrix elements of the evolution operator U��� in the jsi
basis. Let U � U���. By mapping our picture of localized
spins to that of spinless fermions [8,11], one can show that

U jsi � e�ni�N ��1��n�m�=2j �si; (3)

where n is the number of spin-up states in jsi, and m �
0 �1� if n is even (odd). The factor ��1��n�m�=2 could be
understood intuitively as follows: If n is even (i.e., m � 0),
then the operation of mirror inversion (reordering the state)
is equivalent to swapping n=2 pairs of fermions and, simi-
larly, for odd n, except the factor should be the same as that
of n� 1 fermions. The phase factor e�ni�N is a conse-
quence of Eq. (2). In fact, the phase�N can be set to zero if
an appropriate spectrum ofHS is chosen. In this case, it has
been demonstrated [10] that the operator U��� alone can
generate a fully connected graph state. However, in con-
structing multiqubit gates, spurious correlations among
qubits in the graph state have to be eliminated. This can
be achieved with the help of an ancilla qubit within the
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storage array, initialized to be j0ia. Let Sx represent the
swap operation between the spin at the site �x (complement
of x) and the ancilla. We apply Sx to the state in Eq. (3) and
allow the engineered chain to evolve once more, i.e.,
applying Zx � USxU [14] to the initial state j0ia � jsi.
Then from (3) the final state is

e��2n�sx�i�N ��1�sx�n�1�jsxia � js1s2 . . . 0x . . . sNi; (4)

which is the same for both odd and even n. Here we have
only assumed a swap operation performed between the site
�x and the ancilla. Therefore, the qubit staying at the ancilla
spin cannot be transferred back to the spin chain at this
stage. However, as we shall see [cf. Eq. (7)], a more general
multiqubit gate can be constructed based on Zx and all of
the qubits can reside in their original locations at the end of
the operation.

The next step is to interpret the result (4) in terms of the
quantum circuit model. The phase factor e��2n�sx�i�N can
be regarded as a result of N local phase gates Rj��2�N�,
where Rj�’� � j0jih0jj � e

i’j1jih1jj, acting on all qubits,
and one extra phase gate Rj��N�, acting on the spin at site
x alone. On the other hand, the factor ��1�sx�n�1� can be
considered as due to the application of controlled-�z to all
qubits, except the spin at site x which is encoded with the
controlling qubit. Suppose we now apply local operations
to get rid of all the controlled phase gates Rj (or simply
choose an eigenvalue spectrum such that �N � 0); effec-
tively, we have constructed a controlled multitarget gate,
which requires two free evolutions of the engineered
Hamiltonian for any N. Note that, for this multiqubit gate
generated by Zx, the �z gate has to be applied to all qubits,
controlled by a single qubit at site �x. However, the �z gate
can be converted into controlled-Vj [15], where

V j �
sin�j ei’j cos�j

e�i’j cos�j � sin�j

 !
; (5)

through local operations Aj provided that the relations
Aj�zA

y
j � Vj and AjA

y
j � Ij, where Ij is the identity

operator, are satisfied. Operationally, we denote the con-
struction of this controlled multitarget gate by Vx �
AZxAy, where A �

QN
j�1 Aj (and similarly for Ay). An

immediate application of this gate is that, if we initialize
the controlling qubit to be j0i � j1i and the rest
j000; . . . ; 0i, it can efficiently generate a cat state
j000; . . . ; 0i � j111; . . . ; 1i, which is interesting for various
applications including single qubit measurement and en-
coding error correcting codes, such as the Shor’s code.

The controlled operations Vj are not yet completely
general: For example, the phase gate Rj�’� and the identity
operator Ij are excluded. We can construct a more general
controlled multitarget gate, which applies arbitrary unitary
operations Wj on the qubits. To proceed, consider applying
U to the state js1s2; . . . ; 0x; . . . ; sNi, which is assumed to
contain n spin-up states. The phase factors generated are
1-2
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exactly the same as that in Eq. (3). Now we can apply USx
to the resulting state; Sx returns jsxia from the ancilla to the
core. The final state is e��2n�sx�i�N ��1�sxnjsi, which can
also be considered as an controlled multitarget gate analo-
gous to the one generated by Zxjsi. For simplicity, we again
assume �N � 0. To construct a more general unitary ma-
trix

W j �
ei��j��j��j� cos	j �ei��j��j��j� sin	j
ei��j��j��j� sin	j ei��j��j��j� cos	j

 !
; (6)

including the identity operator, one can always choose a set
of local operations Aj, Bj, and Cj such that the relations
AjBjCj � Ij and ei�jAjZBjZCj �Wj [15] are satisfied.
Then, the controlled-Wj gate Wx, with the controlling qubit
at site x, can be constructed by the following sequence of
operations: Wx � AZxBZxC, where A, B, and C are the
tensor products of local operators Aj, Bj, and Cj, respec-
tively. Equivalently,

W x � j0xih0xj � I� j1xih1xj �
Y
j�x

Wj: (7)

The circuit diagram for an example W1 is shown in Fig. 2.
For any N, the cost of generating Wx includes four free
evolutions of the engineered chain, two swap operations
with the same ancilla and local operations.

We now describe some example applications of this
model. For comparison, we also consider a fully switched
system, having a Hamiltonian similar to (1) but with !j

dynamically switched so as to couple only pairs of qubits
simultaneously, although it may do so in parallel—i.e.,
!i!i�1 � 0 at all times. A real fully switched system
could, presumably, activate several adjacent interactions:
Our results here can be seen as a prescription for doing
precisely that. The primary gain in efficiency will, of
course, be a reduction in the number of switching
events—but, remarkably, there can also be an absolute
speedup by a fixed factor, as we presently discuss.

One of the immediate applications of the controlled
multitarget gate Wx is the operation of quantum Fourier
transform (QFT), which is a key ingredient in many quan-
FIG. 2. The circuit diagram of a controlled multitarget gate
W1 � AZ1BZ1C constructed by the free evolution of an engi-
neered spin chain core. The parts inside the dashed boxes are Z1,
which involves two free evolutions of the spin chain and one
ancilla in the store.

22050
tum algorithms such as the Shor’s algorithm. In the above
notations, the standard QFT circuit can be constructed by
applying the multiqubit gates and the Hadamard gates
alternatively,

QFT � HNWN�1HN�1 � � �W2H2W 1H1; (8)

where Wj � Rj�
=2j�x� for j > x and Wj � Ij otherwise.
Here each joint operation Wj costs exactly four free evo-
lutions, including two swaps. The QFT circuit depth is,
therefore, O�N�. For the switched model, the circuit depth
is also O�N�, but the absolute number of switching events
is O�N2�.

The second application is the simulation of the evolution
of an ‘‘artificial’’ Hamiltonian HA formally representing a
joint interaction between r spin-1=2 particles,

HA � �z1 � �
z
2 � �

z
3 � � � � �

z
r; (9)

which is locally equivalent to the class of the Hamiltonian
of the form�w1

1 ��
w2
2 ��

w3
3 �����

wr
r , where�

wj
j ��

x
j ,�

y
j ,

or �zj. Although it is unlikely to find a group of spin-1=2

particles interacting naturally under the Hamiltonian HA,
some higher dimensional systems can be mapped by these
two-level systems. Moreover, the form of HA can be con-
sidered as a basic building block for simulating more
complex Hamiltonians through the short-time approxima-
tion: ei�A�B��t � eiA�teiB�t �O��t2�.

Consider an engineered core of N � 1 spins, with �N �
0, initialized as j0si � j0s1s2; . . . ; sNi. The quantum cir-
cuit for simulating the evolution operator UA��t� �
e�iHA�t for (9) can be constructed by the following se-
quence of operations [15]:

UA��t� � H0W0H0T0��t�H0W0H0; (10)

where T0��t� � exp��i�z0�t� and Wj � �zj (or Wj � Ij,
if the qubit at site j is not involved). The basic idea of this
construction is to store the parity (i.e., m � f0; 1g) of the
sites j � 1; 2; 3; . . . ; N to site 0. The phase generated by the
local operation T0, depending on the parity, is exactly the
one required for HA. From (7), it is apparent that the series
of nonlocal operations W0 can be achieved by four free
evolutions of the engineered chain of N 	 r spins. This
scheme offers the flexibility of generating interactions
involving a various number of spins using the same spin
chain. The costs of generating each type of interaction are
fixed (eight free evolutions). Alternatively, if one just needs
to generate interactions with a fixed number of qubits, i.e.,
r � N, the cost can be reduced to two free evolutions and
no ancilla is needed. The sequence of operations in this
case is

UA��t� � H0UH�0T�0��t�H�0UH0: (11)

The crucial observation for obtaining (11) is that
H�0UH0j0si � ��1��n�m�=2j �smi. Thus, the desired phase
can be obtained by applying the local operator T�0 at site �0.
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The processor-core model will also be advantageous in
running quantum algorithms in a fault tolerant fashion with
concatenated code words. For example, in the Steane code,
six gates of the class Wx are required for error syndrome
measurement (Fig. 10.16 in Ref. [15]). In our approach,
each level of concatenation just multiplies the number of
targets in each Zx by 7 [16] but does not increase the
number of applications of such gates. However, the number
of elementary switching operations required by a fully
switched system to realize Wx increases sevenfold with
each level of concatenation.

The discussions above highlight potential gains in terms
of simplicity: the circuit depth or total number of switching
operations. It is also interesting to ask: Can the total time
be reduced by applying the processor-core model? We can
quickly conclude that any speedup must be bounded, since
the fundamental operation U [Eq. (3)] can be simulated on
a fully switched array in time O�N� [17], while U also
takes time O�N� to evolve on our processor core (given a
fixed maximum interaction strength). Interestingly, there
can be speedups within by bounded factors. To make a
definite statement, we specialize to a core with a linear
spectrum, i.e., �k � Ek � Ek�1, being constant (e.g.,
[7,8,12] ) since this is the time-optimal choice for a given
spectral range [18]. Let us compare the time required for a
simple state transfer, i.e., j100 . . . 0i ! j0 . . . 001i. Given
that the maximum interaction strength !max ’ N=4 (see
Ref. [7]) scales as N, then the evolution time of the
processor core is simply 
 for all N. On the fully switched
system, the time required for each swap is
=2!j; thus, the
total time required is T�N� �

PN�1
j�1 �
=2!j�. (For the fully

switched system, each state transfer must be completed
before the next is initiated.) One can easily show that
T�N� 	 �N � 1�
=2!max ’ 2
�N � 1�=N. Thus, this
always-on processing core can be superior by a factor of
2 for large N.

Finally, we remark that the periods of the free processor-
core evolution can be relatively robust versus timing er-
rors �! �� �t in subsequent swaps to the store. Consider
the most general initial state j � i �

P
j�jj �sji, whereP

jj�jj
2 � 1. If the evolution time is taken perfectly, we

expect the final state to be j i �
P
j�je

i�j jsji, where �j

represents the overall phase in Eq. (3) for the spin configu-
ration jsji. If not, we have h jU����t�j � i�

P
j;k�



j�k�

ei��k��j�hsjjU��t�jski�1� iA�t�B�t2�O��t3�. Here
both A and B are real. The error � � 1� jh jU���
�t�j � ij2 is, therefore, just second order in �t.

In conclusion, we have demonstrated how to construct
controlled multitarget gates through the natural evolution
of a processor core where interactions are always on. This
model allows computation with physical systems where
the entangling interactions are not switchable. Alterna-
tively, in switchable systems, our protocol can play an
important role in simplifying multiqubit operations. We
demonstrated this by showing that the fully switched model
22050
is fundamentally more complex for certain important algo-
rithmic tasks. For various operations spanning many qu-
bits, including long range state transfer, the temporal
requirement for the processor-core model is less than or
equal to that of the fully switched model. Therefore, in
terms of the reduction of dynamical control, many schemes
presently described in terms of two-qubit gates can be
enhanced by incorporating the processor-core concept.

M. H. Y. acknowledges the support of the Croucher
Foundation and the QIPIRC. S. C. B. is supported by the
Royal Society.

Note added in proof.—Recently, two interesting papers
have emerged that offer new ways to perform mirror
inversion, thus potentially further broadening the range
of systems that can implement the techniques we introduce
here [19,20].
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