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Preface

This booklet was produced in connection with a workshop on ”High Accuracy
Potentials for Quantum Dynamics” held at University College London from 315t
March to 2°¢ April 2003. The workshop was sponsored by the

UK Collaborative Computation Project 1 (CCP1) on the electronic structure of
molecules,

UK Collaborative Computation Project 6 (CCP6) on Molecular Quantum
Dynamics,

ChemReact high performance computing consortium.

The workshop was timely since the growth in computer power and concurrent
development of new methods and algorithms has meant that the dream
of calculating ab initio chemically accurate and spectroscopically accurate
potential energy surfaces for chemically significant systems is rapidly becoming
a reality.

The objective of the workshop was to bring together leading specialists
working on high accuracy potential energy surfaces to share ideas and expertise
on how best to construct such surfaces for a range of systems. Each invited
speaker was asked to provide a brief article which reviews their work in the
field of high accuracy potentials. This booklet should thus provide a good
starting point for anyone wishing to learn more about the topic. The booklet
undoubtedly conveys the breadth of topic discussed at the workshop, what it
probably does not convey is the lively discussions which characterised not only
the formal sessions but also breaks between them.

Jonathan Tennyson
London
May 2003
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Ground-State Potential Energy Surfaces at the Focal Point

Attila G. Csészar

Department of Theoretical Chemistry, Edtvés University, H-1518 Budapest
112, P. O. Box 32, Hungary

I. INTRODUCTION

Much of contemporary experimental physical chemistry, through spectro-
scopic, scattering, and kinetic studies, is directed toward the elucidation
of salient features of potential energy surfaces (PES). Similarly, much of
computational quantum chemistry is aimed at understanding given portions
or the whole of potential energy surfaces of molecular species or reactive
(scattering) systems. Therefore, it is somewhat strange to note that PESs
exist only within the so-called Born-Oppenheimer (BO) separation of electronic
and nuclear motion [1]. Adiabatic corrections to the BO-PES relax this strict
separation, defining an adiabatic (mass-dependent) PES.

In the present report we are concerned neither with the case where several
electronic states are to be described equally well (e.g., for processes driven
by curve crossings) nor with the evaluation of coupling matrix elements,
such as those arising from nonadiabatic BO interactions and detailed spin-
orbit couplings. Here we are focusing on well-separated ground-state PESs.
Nevertheless, there are still a number of challenges facing quantum chemists
interested in computing such surfaces, including [2]: (a) use of wave functions
of single- vs multireference (MR) character; (b) use of wave functions obtained
from truncated configuration interaction (CI), coupled cluster (CC), or many-
body perturbation theory (MBPT); (c) use of variational vs non-variational
wave functions; (d) use of size-extensive vs non-size-extensive techniques; (e)
instabilities in the (reference) wave functions; (f) basis set incompleteness error
(BSIE); (g) basis set superposition error (BSSE); and (h) determination of small
energy terms, usually referred to as correction terms.

Within the BO-PES approach, for the computation of well-separated ground
electronic states one needs to consider three choices: that of the Hamiltonian,
of the one-, and of the n-particle spaces [3].



Several model chemistries have been devised along these lines for refining
ab initio energetic predictions. One of the earliest systematic efforts is the
Gaussian-n series developed by Pople and co-workers, including G1 [4, 5], G2
[6], G3 [7, 8], and a wide number of variants, a very recent one being G3-RAD
[9]. The target accuracy of these procedures is +4 kJ mol~! but their usual
accuracy is less (sometimes considerably less).

A similar approach in common use today is the CBS-n (CBS-4, CBS-q, CBS-
Q and variants) scheme of Petersson et al. [10-12]. CBS-Q and G2 show
roughly equivalent performance [11]. Certain newer models [12] include (size-
consistent) empirical correction factors for the various residual theoretical errors.
The parameterized configuration interaction (PCI-X) method of Siegbahn et al.
[13, 14] also performs similarly to the Gaussian-n schemes.

An excellent black-box model chemistry is the W1/W2 method of Martin [15].
W1 and W2 follow similar protocols, but only W2 has no empirical parameters.
W2 is capable of achieving chemical accuracy in the energetics.

All of the methods discussed but W2 are in some manner empirical.
Nevertheless, numerous advances have been made which allow computation of
highly accurate results without empirical parameterization. These methods rely
on an understanding of the dual asymptotic behavior of the electron correlation
energy. The BSIE was originally characterized by Schwartz [16] and Carroll et
al. [17] and was investigated subsequently by others [1, 18-21]. Approaches to
the full-CI asymptote have also been investigated [23].

II. THE FOCAL-POINT APPROACH

The focal point approach [1, 24, 25], utilized heavily in this work, can be
summarized as follows (note that AE is a relative energy of two points, whereas
d denotes an incremental change in AE with respect to the previous level of
theory):

(1) Extrapolate the SCF energy to the complete basis set (CBS) limit
according to the three-parameter form [18] Escr = Ep + ae™X | where X
is the cardinal number of the correlation-consistent (cc) basis sets developed by
Dunning [26]. AES is computed using these extrapolated values.

(2) Extrapolate the MP2 correlation energy to the CBS limit according to the
two-parameter form Enpa(X) — Escr(X) = €xgps + bX —3. The extrapolated
MP2 correlation energy, exip,, is added to ES2p. The increment to the relative
energy is computed as 6(MP2%°) = AERS, — AESp.

(3) Assume that basis set effects for correlation energy increments are additive
and that the increments converge rapidly as X increases in the (aug-)cc-pVXZ
series. The additivity principle is advantageous because valence-only coupled-



cluster calculations employing the X = 5 basis set are prohibitive for but simple
systems.

(4) Obtain an estimate of higher-order correlation (HOC) effects, either
through the additivity principle or through the multiplicative scaled higher-
order correlation (SHOC) approach [23], suitable for PES studies [27].

(5) Compute the effect of core correlation, A(CV), using a size-extensive
technique. Traditional basis sets, including (aug-)cc-pVXZ, are not designed
to describe core-core and core-valence correlation, thus specially designed basis
sets must be used. A popular choice is the (aug-)cc-pCVXZ series [28]. If these
basis sets do not exist, customised bases can be created following well established
procedures [29]. The core correlation shift is computed as AEgcgp(r)(all
electron) — AEgcsp(r) (frozen core).

(6) Compute the relativistic effect, A(Rel), usually through a scalar ap-
proximation to the relativistic Breit Hamiltonian, involving the one-electron
Darwin and mass-velocity operators [3, 30-32] and the spin-orbit splitting, when
applicable. The basis set utilized for these calculations should include core (high-
exponent) Gaussian functions [3].

(7) Compute the zero-point energy contribution(s), A(ZPE), if necessary,
at an appropriate level. While getting the harmonic contribution to ZPEs is
difficult (though somewhat less difficult than getting accurate geometries), the
anharmonic corrections to ZPE are reproduced accurately, with an error (usually
much less) than 0.1 kJ mol~!, even at low levels of theory. This favorable state
of affairs can be rationalized by relatively simple arguments [33, 34].

(8) Combine all of the energy terms to give the extrapolated focal point (fp)
approximation (AEg,) to the exact answer:

AEg =
AE g + 6(MP2%) + 6(SD) + 6(T) + 6(HOC) + A(ZPE) + A(CV) + A(Rel).

III. THERMOCHEMICAL APPLICATIONS

In a certain sense the least demanding use of the focal-point scheme is
for thermochemical applications, i.e. for the determination of (temperature-
dependent) enthalpies of formation, entropies, and heat capacities. This is due
to the fact that the average experimental precision for, for example, enthalpies of
formation, A¢H /208> is only about 2-4 kJ mol~!, often times substantially less.
A surprising and highly educational example about inaccuracies in experimental
enthalpies of formation has been provided by Ruscic and co-workers [35, 36] for
the OH radical, whereby, after careful reevaluation of the relevant experiments,
the widely accepted experimental A¢Hg/kJ mol=! of +39.12 + 0.21 had to

be lowered to +36.94 £ 0.33. The revised value has been fully supported by



high-level ab initio electronic structure computations.

We have recently completed computational investigations of ArHg /208 of CH
[37], SH [38], and CHs [39]. All these studies prove that if one can account for
HOC effects, an accuracy of about 0.5 — 0.7 kJ mol~!, better than calibration
accuracy of 1 kJ mol™!, can be achieved even for radicals (better for closed-
shell systems). Note, at the same time, that the usually highly successful
CCSD(T) theory, almost all the time giving extremely similar results to CCSDT,
is not capable of providing this accuracy; for example, for C, CN, and N» the
estimated CBS HOC corrections [23] to the atomization energy are 5.8, 9.6,
and 6.3 kJ mol~!, respectively. This anticipates particular difficulties when the
dissociation region of PESs is approached.

IV. THE METHYL INTERNAL ROTATION PROBLEM

During internal rotation a group of atoms, called the top, rotates with respect
to another group, called the frame, within the molecule.

A particular internal rotation problem, that of the torsion of the methyl group
in ethane, has fascinated chemists from the late 1920s [40, 41]. Therefore, it is
somewhat surprising that there have remained inconsistencies in the theory of
this simple molecular motion.

In particular, using symmetry analysis we have shown [42, 43] that barriers
of infinite (or very large) height prevent certain rearrangements of the atoms
in a molecule from occuring and therefore the complete nuclear permutation
inversion (CNPI) group of the molecule should be reduced accordingly. These
large barriers constrain torsional dynamics and influence how the torsional
coordinates transform under the molecular symmetry (MS) group. This in turn
determines the coordinate applicable for internal rotation, in the present case
for the methyl problem.

Individual torsional coordinates, often emplyed in theoretical investigations of
the methyl internal rotation problem, are unable to satisfy the above-mentioned
symmetry requirements and thus should not be employed to describe this large-
amplitude motion. Only a properly symmetrized internal rotation coordinate
should be employed. If this coordinate is employed the minimum-energy
torsional path exhibits the proper symmetry. In particular, all methyl torsions
must show a 27 /3 periodicity, irrespective of the actual geometric (point-group)
symmetry of the frame and of the top.

If the focal-point approach is employed to obtain a one-dimensional effective
torsional potential for the acetaldehyde molecule, CH3CHO, not only the
experimental torsional curve (V3, Vg, and V) is reproduced excellently but also
the available torsional transitions are within 1 cm™"! of experiment [43].



Computation of the proper torsional potential and subsequent analysis
suggests that the conformers of the amino acid a-alanine can be distinguished
based on their far-i.r. spectra [44].

V. FIRST-PRINCIPLES ROVIBRATIONAL SPECTROSCOPY

Computation of rovibrational spectra of molecules up to their dissociation
limit(s) from PESs has been of central importance in physical chemistry. While
first-principles computation of a PES correct up to dissociation still presents
considerable difficulties, computation of semiglobal PESs able to reproduce
all observed vibrational band origins (VBO) and rotational excitations with
spectroscopic accuracy, i.e. within 1 cm™!, is within reach.

For example, for water we have constructed [45] a mass-dependent, adiabatic
PES which reproduces all available rovibrational levels, almost 18.000, with
a mean accuracy/maximum deviation of [1.2/6.5, 0.6/1.4, 0.7/2.3, 0.7/3.0,
0.5/1.2] cm ™! for [H2¢0, H5'70, Hy'80, D210, HD O], respectively.

To achieve this accuracy for water, a 10-electrons and 3-nuclei benchmark
system, it was necessary not only to approach the CBS FCI nonrelativistic limit
through extrapolated MRCI calculations using basis sets up to aug-cc-pV6Z
but also to treat relativistic effects beyond the usual scalar terms (in fact, we
included not only corrections due to the Breit interaction but also to quantum
electrodynamics (the one-electron Lamb shift), albeit through a simple scaling
scheme [46]), and include adiabatic as well as nonadiabatic corrections. It will
be extremely demanding to go beyond the precision achieved; nevertheless FCI
computations resulting in a better HOC correction as well as use of a more dense
grid, increased from the present 346 points to somewhere near 1000, should
further reduce the discrepancies between theory and experiment.

The resulting compound surface gives the equilibrium structure of H2'60 as
ro(OH) = 0.95785 A and a.(HOH) = 104.501°, with an uncertainty of about
5 units in the final digit. This accuracy is better than that of any previous
attempt to determine the equilibrium structure of water.

VI. SUMMARY

Advances in computer technology coupled with methodological developments
allow us to approach all relevant limits of computational quantum chemistry.
A particularly effective way of doing this is provided by the focal-point
approach (Section II). When it is applied to PESs, at the present technical
limits spectroscopic accuracy can be achieved for polyatomic and polyelectronic



molecules, such as water (Section V). The method can be used equally well
for less demanding problems, namely the computation of accurate enthalpies of
formation (Section IIT) and internal rotation potentials (Section IV).
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The Explicitly Correlated Coupled-Cluster Models
CC2-R12 and CCSD(R12)

Wim Klopper

Chair of Theoretical Chemistry, Institute of Physical Chemistry, University of
Karlsruhe (TH), D-76128 Karlsruhe, Germany

I. INTRODUCTION

Explicitly correlated coupled-cluster models such as the CCSD-R12 and
CCSD(T)-R12 models are well suited to compute highly accurate electronic
energies, enthalpies of formation, and potential energy hypersurfaces of small
molecules (with up to 6 atoms) in the gas phase [1]. Such coupled-cluster
calculations are, however, computationally demanding. Recently, we have
started to develop explicitly correlated coupled-cluster models for much larger
molecules (with up to 50 atoms), and for that purpose, we are currently exploring
simplified (i.e., computationally less demanding than CCSD-R12) explicitly
correlated coupled-cluster models. Below, we present two such simplified
models: CC2-R12 and CCSD(R12).

II. THE CLOSED-SHELL CCSD-R12 MODEL

In the closed-shell CCSD model [2], the many-electron coupled-cluster

wavefunction |CC) is obtained by operating with the exponential exp(S) onto
the restricted Hartree-Fock reference determinant [HF),

|CC) = exp(S)|HF). (1)

In the standard CCSD model, r;;-dependent terms are not involved and the
cluster operator S contains the usual single (71) and double (%) excitations. In
the CCSD-R12 method, however, less common double excitations (denoted T5/)
are added, which introduce the interelectronic coordinates r;; = |r; — r;| into
the many-electron wavefunction. Hence, in the CCSD-R12 case,

S =Ty +Ty+Ty. (2)



The notation T is chosen to emphasize that this operator contains a particular
form of double excitations, denoted R12 double excitations. Indeed, it consists of
an infinite number of double excitations into the complementary orbital subspace
{¥a}, that is, into all of those orbitals that are orthogonal to the finite basis of
atomic orbitals (AQOs), in which the calculation is performed,

T = thlEm-; T, = %ZtijbEaiEbj 3)
ai abij

Ty = 5 ) cirawsiBaiBs;, @
aBijkl

where E,; is a singlet excitation operator and
Takgt = (Pa(1)@s(2)|rizlee(1)ei(2)) - (5)

In other words, the T operator generates all of the double excitations that
otherwise would be missing in the calculation in the truncated, finite basis set.
The orbital indices p, q,r,... denote orbitals of the finite basis and the indices
a, 3,7, . denote orbitals of the complementary basis. The finite basis and the
complementary basis form together the complete basis {p,}, and the orbitals
p,q,T, ... can be either occupied (4,7, k,...) or empty (a,b,c,...),

{es} = {eptU{va} = {pi} U{va} U{pa}- (6)

The similarity-transformed CCSD-R12 amplitude equations differ from their
standard CCSD counterparts not only by the operator 75 in the singles
and doubles amplitude equations, but also by one additional equation, which
represents the projection against the R12 doubles space,

] = D rwars (7 - ™)
ap
This projection is best carried out employing a biorthogonal basis [3],
(| = 52 1+5(5 1 (] = HFIBpE. (®)
Hence, the CCSD-R12 energy and amplitude equations are given by
E = (HF|°[HF), ()
0 = (ulH[HF), (10)
where = {1, p2, pr2 } and
HS = exp(—S)H exp(S). (11)



By assuming canonical Hartree-Fock orbitals and by partitioning the Hamilto-
nian into the many-electron Fock operator f, the fluctuation potential ® and
the nuclear repulsion term hy,c, we obtain

H = f+®+hue; HY = f5+ &5+ hyye, (12)
and
fS = Z E i bt T + [f: T2’] +f§ &% = exp(—g)éexp(g), (13)
m=1,2

where 7, are excitation operators, ¢, the corresponding amplitudes, and ¢,
differences between occupied and virtual orbital energies,

€y =€ai = €a —Ei; Eps =Eqibj = €a—Ei+Eh—Ej- (14)

The CCSD-R12 energy and the similarity-transformed coupled-cluster equations
may now be written as

E = Fo+ (HF|®5|HF) + hnye (15)

Euty, = —(u|®5HF), (16)

Eustys = —{| ®SHF), (17)
(pe|[f, T2 ][HF) = — (o |®5|HF), (18)

where Fj is the sum of the Hartree—Fock orbital energies. In this manner, the
coupled-cluster CCSD-R12 equtions are written in a convenient form that is well
suited to derive the simpler models CC2-R12 and CCSD(R12), as we shall see
in the following.

III. THE CLOSED-SHELL CC2-R12 MODEL

Egs. (15)—(18) define the CCSD-R12 model. As in the standard CC2
model [4], we now restrict the similarity transformation of the fluctuation
potential in Eqgs. (17) and (18) to single excitations only. Thus, in the CCSD-
R12 equations, we replace the S-transformed fluctuation potential &5 with the
T1-transformed fluctuation potential

& = exp(—T1)d exp(T) . (19)

We then obtain the following equations for the CC2-R12 model:
Emtps = _<N1|<i)S|HF) ) (20)
Suntis = — (12| $|HF), (21)

(o [F, T JJHF) = —(uor|S[HF) (22)
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Eaq. (22) is closely related to the R12 doubles amplitude equation of the MP2-
R12 model [5], which reads

{p|[f, Ty ]|HF) = —(ux||HF). (23)

The only difference between Egs. (22) and (23) is that in the MP2-R12 equation
Eq. (23), the fluctuation potential is not Tl-transformed. In the CC2-R12
equation Eq. (22), on the other hand, it is. Evaluation of the corresponding
term yields [5]

(i |OIHE) = 3 rpats (| O HE) = > rhassois; = Vil - (24)
af aB

The difference between the integral V};} in CC2-R12 theory and its counterpart
V. in MP2-R12 theory [5] is that the coefficients of the molecular orbitals (MOs)
¢; and ¢; are not taken from the usual MO coefficient matrix C, but instead
from the matrix [2]

Y = Cy" = C(1+¢y). (25)

Furthermore, in comparison with the standard CC2 model, we note that in the
CC2-R12 model, the term

(][®, T | [HF) (26)

occurs in the singles amplitude equation Eq. (20). Or course, this term also
occurs in CCSD-R12 theory. It can be computed as

7

where the index a refers to a T1-transformed virtual orbital. Its MO coefficients
are taken from the matrix [2]

- . ; ki
[, T ][HF) = Y (2eff" — ') (V1);,, - @7
klm

X = Cx!' = c1-tf). (28)

The integrals (V’f)l;lm are defined as

(VT):lm = Zgaamﬁrakﬁl . (29)
afB
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IV. THE CLOSED-SHELL CCSD(R12) MODEL

Motivated by the formulation of the CC2-R12 model, we proceed by proposing
the following CCSD(R12) equations:

Eultul = _<N1|§S|HF>5 (30)
Eustus = —(p2|®5|HF), (31)
(u |[f, T2 ][HF) = —(ux|® + [&, To]|HF). (32)

Egs. (30) and (31) are the usual CCSD-R12 equations while Eq. (32) is a new R12
doubles equation in the spirit of the CC2-R12 model. This CCSD(R12) model
may be viewed as a CCSD model that includes first-order R12 corrections. Note
that in Eq. (32), we have used that

(o |[[®, T), TH][HF) = 0. (33)

Thus, in the CCSD(R12) model, the right-hand side of the R12 doubles
amphtude equation Eq. (32) is obtained by transforming the fluctuation
potential d with T1 and Tg, but not with T2: The essential new terms are

(57 1@, T ) > (V') (34)

Zrkaw (7 |[®, T)|HF ) Zt”V . (35)

Il

Il

V. SUMMARY

We have presented the two explicitly correlated coupled-cluster models CC2-
R12 and CCSD(R12), whose r;;-dependent terms are computationally only little
more involved than in the MP2-R12 model. Integrals of the type Vk’lj are among
those that occur in MP2-R12 theory. The new integrals for the models CC2-
R12 and CCSD(R12) are V,/, V3™ and V;3b. They are the same as in MP2-R12
theory, but with different, partly T1-transformed, indices.

12
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I. INTRODUCTION

In the ab initio calculation of potential energy surfaces (PESs), whether for
spectroscopy or quantum dynamics, there are several sources of error which can
greatly influence the accuracy of the resulting surface and hence the accuracy
of any quantum mechanical observables calculated using this surface. The work
in our group over the last several years has involved the systematic removal of
one of the largest sources of error, namely the truncation of the 1-particle basis
set used to describe the molecular orbitals. The foundation for this work was
provided in the mid to late 1980’s with the work of Ahlrichs and co-workers[1]
and Almlof and Taylor.[2] Of particular importance for the present work was the
subsequent introduction of the correlation consistent (cc) family of basis sets by
Dunning.[3] These latter sets were constructed such that both the Hartree-Fock
and correlation energy converged systematically towards their respected basis
set limits as successively larger members of the family were used. In particular,
the regular convergence trends observed with these basis sets allows an accurate
extrapolation to the complete basis set (CBS) limit. After this extrapolation,
the remaining error in the calculation can then be attributed to the error
intrinsic to the chosen electronic structure method, e.g., MP2, CCSD(T),
MRCI, etc. This greatly facilitates the further improvement in the accuracy of
the calculated results by systematically including other, more minor, corrections
in an additive manner, e.g., effects due to core-valence correlation and relativity.

A large number of extrapolation formulas have been proposed and used in
the literature with the cc basis sets. In the very first studies of this type,[4,5]
a simple exponential function was used, i.e., E(n) = Ecps + Ae ", where n
was associated with the cardinal number of the cc-pVnZ correlation consistent
basis sets (n=2, 3, 4, etc. for DZ, TZ, QZ, etc.). This was followed by the use
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of the so-called "mixed” formula.[6] E(n) = Ecps + Ae~(m=1) 4 Be—(n—1)°
While both of these forms are only phenomenological in origin, the latter
function in particular has been shown in numerous benchmark studies to lead
to accurate CBS limits, particularly when basis sets of only double- through
quadruple-zeta are used (c.f., Refs. [5,7-9]). In general, the simple exponential,
while yielding accurate HF limits,[10] often strongly underestimates the basis
set limit of the correlation energy, but can, in certain cases, yield good CBS
relative energies. A second class of extrapolation formulas has its origin in
the asymptotic basis set convergence characteristics of electron correlation
in the He atom, which leads to extrapolations in [ 7', where [, is the
maximum angular momentum present in the basis set (c.f., Ref. [11] and
references therein). Recent work[10,12] has shown that extrapolations based
on E(n) = Ecps + an 2 can yield accurate estimates of the CBS limit for
molecules when used in conjunction with large cc basis sets (n < 4).

One research area that has seen widespread use of basis set extrapolations
with highly correlated methods is the prediction of thermochemistry of small
and medium-sized molecules. In these cases the truncation of the basis set can
represent one of the largest sources of error and its removal via extrapolation
leads in many cases to bond, atomization, and reaction enthalpies to within
”chemical accuracy” (< 1 kcal/mol) without the use of empirical parameters
(after the inclusion of additional corrections due to zero-point vibrations, core-
valence correlation, and relativistic effects).[13] A much less investigated area
involves the use of explicit basis set extrapolations for full potential energy
surfaces. A PES obtained from basis set extrapolations in conjunction with
a highly correlated electronic structure method has the promise of delivering
more accurate anharmonic vibrational frequencies, structures, and asymptotic
energetics, as well as the full range of possible dynamical quantities, e.g., cross-
sections, product state distributions, branching ratios, etc. It is also possible
that by removing the possibly large errors due to basis set truncation, additional
corrections to the surface, be they ab initio or empirical in nature, will be much
more reliable. Our research group has now been involved in a number of PES
studies where explicit basis set extrapolations have been used.[14-22] These
can be grouped into the general categories of (i) global surfaces for chemical
reactions, (ii) near-equilibrium surfaces for spectroscopy, and (iii) PESs for
weakly-bound clusters.
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II. GLOBAL SURFACES FOR CHEMICAL REACTIONS

The first use of explicit basis set extrapolations for large-scale potential energy

surfaces was for the ground state of the HOCI molecule and its unimolecular
dissociation to OH + Cl using large multireference configuration interaction
wavefunctions.[14] Basis sets ranging in size from aug-cc-pVDZ to aug-cc-pVQZ
were accurately extrapolated to the basis set limit at each point on the surface
with the ”mixed” CBS formula. In particular, basis set extrapolation improved
the asymptotic energetics by more than 1 kcal/mol and only slight adjustments
to this purely ab initio potential was required (using coordinate scaling[23])
to accurately predict the wavenumbers of all the vibrational bound states of
HOCI.[24] This CBS limit surface was later extended to encompass the entire
O('D)+HCI reactive surface,[15,16] and was also followed by an analogous study
of the O(* D)+ HBr system.[17]
The H+H, reaction represents a rather unique example in this area since a series
of large basis sets can be used with wavefunctions of near Full CI (FCI) quality.
Extrapolation to the basis set limit should then yield a potential energy surface
that very closely approximates the exact Born-Oppenheimer surface. This has
recently been carried out[19] using large multireference CI wavefunctions of near
FCI quality (within a few pFEp) and sequences of correlation consistent basis
sets for over 4000 configurations on the PES. In this work a novel basis set
extrapolation technique was used, [25] whereby first a many-body decomposition
was carried out on the total energy of each configuration and then the resulting
3-body energy was accurately extrapolated to the CBS limit by assuming it
converged at the same rate as the sum of the 2-body terms (the basis set limit
of which is very accurately known):

3—bod 3—bod 2—bod 2—bod
(B ™ - B ) (Eops™ — B )

3—bod 3—bod 7
ElRoW = B77% 4 A
! (Effb"dy — Ef-bedy)

CBS

(1)

where E"~%°% denotes the sum of all the n-body energies, i and j denote
the two basis sets used, and we require ¢ > j. The estimated CBS limit for
the total energy is then obtained by summing the extrapolated three-body term
with the accurately known 1- and 2-body energies. Using this technique with a
detailed series of convergence tests for the Hs barrier height with basis sets as
large as 7Z resulted in an estimate of 9.603 kcal/mol with a precision of about
0.003 kcal/mol.[25] This extremely accurate result could be obtained with basis
sets no larger than aug-cc-pVQZ. After obtaining the CBS limits at each Hjz
configuration in this manner, an analytical PES was constructed by fitting to
a robust new analytical form, which yielded a mean unsigned fitting error of
just 0.0023 kcal/mol. The remaining errors from fitting, correlation treatment,
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and basis set incompleteness for the new CBS-limit surface were lower by over
an order of magnitude compared to any prior analytic surface, and were all
significantly smaller than expected non-Born-Oppenheimer effects. This surface
has now been used in accurate quantum dynamics calculations for both D+Hs
and H+D».[26] After the inclusion of diagonal Born-Oppenheimer corrections,
the calculated theoretical rate constants now agree perfectly with experiment,
within experimental error, over a very large temperature range (167 — 2112 K).

III. NEAR-EQUILIBRIUM SURFACES FOR SPECTROSCOPY

Next to thermochemistry, equilibrium spectroscopic constants (re, we, etc.)
of small molecules is another area that has produced several studies involving
explicit basis set extrapolations.[14,15,17,18,27-31] In most cases these involve
the direct extrapolation of the properties of interest as a function of basis set.
It is generally recognized, however, that the convergence with respect to basis
set of properties like an equilibrium bond length or particularly a vibrational
frequency is not as regular as the total energy itself. Hence, the most reliable
method to obtain CBS limit spectroscopic constants is to extrapolate the
energies at each point used to sample a near-equilibrium potential energy
surface or analogously extrapolate the energies that are used in numerical finite
difference formulas for we, ae, etc. Since our group is particularly interested
in anharmonic vibrational frequencies, we have exclusively utilized the former
technique. Table 1 contains some results obtained for the HOCI molecule at
the MRCI+Q level of theory.[14] A total of 41 points were calculated about
the experimental minimum geometry for three basis sets, which were also
extrapolated to the CBS limit using the mixed formula. In each case these
energies were then accurately fit to polynomials in internal displacement
coordinates. The vibrational band origins were calculated using the usual
2"d_order perturbation theory expressions.

One should note the smooth progression of the calculated spectroscopic
constants towards their limiting CBS values. At the CBS limit, MRCI+Q
slightly underestimates r.(OH), which leads to an overestimation of v; by
about 16 cm™!'. We have also undertaken similar near-equilibrium studies of
HOBr,[17] HBBr® (x=0,+1,—1),[18] and all of the related diatomic species.
Recently work has been completed on highly accurate surfaces for the Na,O
and K20 molecules,[20] which included the extrapolation of CCSD(T) all-
electrons correlated calculations with new cc-pwCVnZ basis sets. The predicted
spectroscopic constants arising from this latter work have expected uncertainties
of less than 5 cm ™~ in the final vibrational frequencies and about 0.002 A in the

17



TABLE I: MRCI+Q spectroscopic constants calculated for HOCI as a function of basis
set compared to experiment

Basis set 7¢(OH) R.(ClO) 6.(HOCl) 1 Vs V3
(L) (L) (deg) em™ ecm™! ecm™!
AVDZ 0.973 1.735 102.2 3551 1223 675
AVTZ 0.966 1.704 102.4 3608 1231 710
AVQZ 0.964 1.696 102.7 3620 1242 719
CBS 0.962 1.692 102.8 3626 1248 725
Expt. 0.964  1.689 103.0 3610 1239 724

equilibrium bond lengths. Lastly, it should be noted that for very accurate work
the choice of extrapolation formula can result in CBS limit geometries that
easily differ by 0.001 — 0.003 A. Typical results[20] are shown below in Table
2 for the NayO molecule where all-electrons correlated CCSD(T) calculations
were carried out with cc-pwCVnZ basis sets on Na and aug-cc-pwCVnZ sets
on O. The CBS limits were obtained by pointwise extrapolation of 5 collinear
points distributed about the equilibrium geometry.

TABLE II: Dependence on extrapolation method for the energetics and equilibrium
structure of XIE;'

Basis set E.(En) Y De(kcal/mol) 7. (A)
DZ -399.057204 106.17 1.9982
TZ -399.479668 112.26 1.9883
QZ -399.560697 115.32 1.9825
57 -399.591538 116.15 1.9814
CBS(TQ,l %) -399.619844 117.56 1.9782
CBS(Q5,72%) -399.623896 117.03 1.9802
COBS(DTQ,mixed) -399.600815 117.18 1.9788
OBS(TQ5,mixed) -399.609498 116.64 1.9807

Taking either the CBS(Q5,/ %) or CBS(DTQ, mixed) results as the best
estimates for the actual CBS limit, one can see that the [~2 extrapolation
with the smaller basis sets, CBS(TQ,/=3), certainly overshoots the atomization
energy and perhaps the equilibrium bond length. On the other hand, the
CBS(TQ5, mixed) extrapolation yields CBS limits that are too conservative,
particularly for 3 D., compared to the explicitly calculated 5Z results.
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IV. SURFACES FOR WEAKLY-BOUND CLUSTERS

For the calculation of weakly-bound van der Waals species, large 1-particle
basis sets are a necessary requirement to minimize basis set superposition
errors (BSSE) and to accurately describe important dispersion interactions.
Basis set extrapolations have been effectively used in previous studies of the
binding energies of species such as rare gas dimers,[28,32] Ar-Hy, and Ar-
HCL.[33] To determine if explicit basis set extrapolations could lead to accurate
sur faces for weakly-bound systems, calculations were undertaken on the He-
CO system, which has an equilibrium binding energy of less than 25 cm™?!.
Four 3-dimensional surfaces were obtained at the CCSD(T) level of theory
and ranged in quality from the doubly-augmented double zeta basis set to the
extrapolated CBS limit. For each surface, over 1000 counterpoise-corrected
interaction energies were accurately interpolated using a reproducing kernel
Hilbert space (RKHS) approach.[34] After extrapolation to the CBS limit
using the mixed formula, the residual errors inherent to the CCSD(T) method
were approximately corrected by CCSDT calculations, which led to a ”CBS-
corr” surface. The five surfaces have well depths ranging from —14.83 cm™!
[CCSD(T)/d-aug-cc-pVDZ] to —22.34 cm ! [CCSD(T)/CBS-corr] (the CCSDT
corrections lower the well depth by just 0.32 cm~!). For each of these surfaces
the infrared spectrum up to dissociation has been accurately calculated. Table
3 shows the root-mean-square (RMS) errors with respect to experiment for all
of the possible IR transitions (42 transitions between 28 bound ro-vibrational
levels). It should be noted that several of these are very near the dissociation
limit and hence provide a sensitive test of both the anisotropy and depth of the
potential.

TABLE III: Errors in calculated infrared transitions for the “He-CO complex as a
function of the CCSD(T) potential energy surface used (i.e., as a function of basis
set). The values in parentheses are the total number of bound vibrational states
present for that surface.

DAVDZ DAVTZ DAVQZ CBS CBS-corr
(14)  (22)  (28) (28) (28)
RMS error 0.15 0.17 0.09 0.04 0.03
Max. error (.34 0.44 0.22 0.09 0.04

As can be observed in Table 3, even the d-aug-cc-pVTZ (DAVTZ) basis
set does not result in a well depth that is sufficiently deep to bind all of
the experimentally observed ro-vibrational levels. At the extrapolated CBS
limit, the resulting RMS and maximum errors are very similar to those
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obtained from the best previously reported surface, which was calculated using
symmetry-adapted perturbation theory (SAPT).[35] Due to the systematics
of the present work, however, the residual errors can clearly be attributed to
inaccuracies correlation method, CCSD(T). After accounting for this in an
approximate manner by scaling the CCSD(T) correlation energies based on a
few benchmark CCSDT calculations, the resulting CBS-corr PES yields RMS

and maximum errors that are nearly identical, only 0.03-0.04 cm™1.
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I. INTRODUCTION

It is a tacit assumption of most quantum chemical investigations that
relativistic and quantum electrodynamic effects are of little importance to
molecular electronic structure determinations, particularly if only light elements
are involved. Recent calculations have revealed, however, that the effects of
special relativity play a significant role, along with the coupling of nuclear and
electronic motion and core-valence correlation, in constructing accurate poten-
tial energy hypersurfaces to model the ro-vibrational spectrum of water. These
investigations have evaluated the geometrical dependence of relativistic effects at
both the Breit-Pauli [1] and Dirac-Hartree-Fock [2] levels of approximation, and
have been extended to include leading-order quantum electrodynamical effects
such as the Breit interaction [3] and estimates of the Lamb shift [4].

Of course the incidence of relativistic effects on electronic structures is most
pronounced when heavy elements are involved. There are significant shifts in
equilibrium geometries and spectroscopic constants caused by the interplay
of several competing effects. The relativistic mass-velocity effect is mainly
responsible for the radial contraction of s- and p-orbitals in heavy elements and
a decrease in atomic radii, compared with non-relativistic estimates. Spin-orbit
splitting of p-shells into p;/» and ps/» levels becomes increasingly important in
heavy elements. The enhanced screening of the nuclear charge and the intrinsic
centrifugal barrier results in a radial expansion of most d- and all f-orbitals.
Many of these effects conspire to be a maximum for the coinage metals, and
especially for gold, whose yellow colour in the metallic form and enhanced
electron affinity in, for example CsAu, are often cited as dramatic manifestations
of relativistic effects [5].
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In atomic and molecular physics, the enhancement of relativistic, quantum
electrodynamic and electroweak effects by strong Coulomb fields is exploited
in ab initio investigations of fundamental processes. Recent experimental
investigations into expected vibrational energy differences in the enantiomers
of CHFCIBr [6] has led to theoretical activity in mapping the potential energy
hypersurfaces in substituted methanes using relativistic quantum chemical
methods, in concert with more conventional methods for modelling many-body
effects [7]. Ab initio relativistic quantum chemistry has also been employed in
studies of effects beyond the Standard Model of the electroweak interaction,
supporting interferometry studies involving the heavy diatomic systems TIF 1%
[8] and YbF 2% [9)].

II. METHODS TO CALCULATE RELATIVISTIC EFFECTS

A. Breit-Pauli equation

An authoritative source for the derivation of these operators by Pauli
reduction of the Breit equation is the classic book by Bethe and Salpeter
[10]. The operators may be divided into scalar spin-independent terms
(H°=Schrodinger operator; HMY =mass-velocity; HP=Darwin; H?C=orbit-
orbit) and spin-dependent interactions (HS©=spin-orbit; H%°?=Spin-other-
Orbit and H5%=spin-spin (which can be further divided into Fermi contact
and dipole-dipole operators)).

Methods based on the Breit-Pauli scheme contain the spin-independent
Schrédinger equation as the zero-order approximation, together with some
(hopefully) “small” corrections. The scheme is supported in several standard
quantum chemistry packages, can use existing correlated quantum chemistry
methods with first-order perturbation theory for the relativistic effects, and
yields satisfactory results for light elements. Against this must be weighed the
need to include higher-order relativistic corrections for moderate and high values
of Z, and the difficulties encountered because of the singular nature Breit-Pauli
operators when used in higher-orders of perturbation theory.

B. Other two-component methods

The disadvantages inherent in the Breit-Pauli approach or the Foldy-
Wouthuysen transformation [11] in its unmodified form may be avoided (and
some of the advantages retained) by employing different partitionings of the
pseudo-relativistic operators. The general strategy of these approaches is to
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retain a wavefunction of non-relativistic form (using antisymmetric products
of spin-orbitals) and to transfer all relativistic effects into a series of effective
operators. Excluding methods based on relativistic pseudopotentials, the most
significant and widely-employed methods in this category are (i) the “regular”
approximations [12] (ii) the “direct perturbation theory” approach of Rutkowski
[13] and Kutzelnigg [14] (iii) schemes devised by Hess and collaborators based on
the Douglas-Kroll transformation [15] and (iv) a family of schemes formulated
by Dyall [16] that include these approaches as limiting cases, designed around
changes of metric or selective exclusion of effects.

The computational complexity of these approaches grows rapidly. A par-
ticular difficulty is that one must also transform electromagnetic interaction
operators, leading to formidable difficulties introduced by condensing the four-
component space of each electron onto a two-component space (change of
picture) in evaluating molecular properties.

C. Dirac-Coulomb-Breit Hamiltonian

The direct use of relativistic quantum mechanics requires the use of a more
complicated wavefunction constructed from antisymmetric products of spinors.
Against this one may balance the use of simpler interactions, and greatly
simplified treatment of electric and magnetic properties within QED. The Dirac-
Coulomb-Breit hamiltonian, first introduced by Swirles [17] and subsequently
used in second-quantized form, is

Hpep = Y hi+ Y gij
i

i)j

hi = coipi + Bic” + D Vik
K

_ .1 (ai'aj (ai'l‘z’j)(aj'l’ij)>
9ij = —+t35 + 3
Tij 2 Tij rz’j

where h; is the one-electron Dirac operator, and g;; is the low-frequency form
of the Coulomb-gauge two-body operator (instantaneous Coulomb + Breit
interaction). V;k is the electron-nucleus interaction, including finite nuclear
size

The 4 x 4 Dirac matrices « and 8 are derived from the Pauli spin matrices,
and are used here in their standard form as defined in [10]. They are related to
the Dirac y-matrices through the relations a = vo7, 8 = o, and Y° = I. The
chirality matrix that appears later in the parity-violating interaction is denoted

V5-
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1.  Relativistic wavefunctions, properties, and matric elements

The relativistic wavefunctions are spinors, and the principal computational
object is the charge-current four-vector, j* = (cp,j). These are defined by

;i (r)
2 L
w = | 0 | = VZSE:; ] C ) = ) U 0) 9 ) U1 )]
i (r)
0i(r) = ewzr (r)yi(r) Spinor charge density:
ji(r) = —ecy! (r)auh;(r) Spinor current density:
i(r) = Tahi(r) Degenerate Kramers’ pairs:

where 7T is the time-reversal operator, and (1;];) = 0.
Using the generalized four-vector densities, j;; = (ceij,jij), where g;;(r) =

zpj (r)y;(r) and ji(r) = —cng (r)op(r), the two-body interaction matrix
elements are

(iﬂiwﬁl) // Qij(rl)igkl(rﬂdrldrz
Bl = 5 [[ (Rinkints), Go@)ne) i) g g,

3
712

Note that in this form, the effective operators involved in calculations are no
more complicated than 1/r15 and z12y12/75,.

III. RELATIVISTIC QUANTUM CHEMISTRY: BERTHA

The description here is specific to BERTHA [18]. The program DIRAC [19]
employs a scalar Gaussian basis set and performs quaternion transformation on
a set of matrix representations to obtain the required structures.

A. Conventional integral-direct implementation

Basis sets to expand %! and 7 must satisfy the one-to-one mapping
MI[S, u;r] < o-pM[L, pu;r] (strict kinetic balance). We choose the G-spinor
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set

l +1
le ,',.A A €Xp (_AT?AH)XH;umu (1914”,(1014”)

M[L, p;]

M8 i) = NG (s 6+ 1) = 20,53, ) 7, exp (<Ar,)
A#
X—kp,my (1914” ) QOA;L)

wi{ky, my, Ay, Ay}, and Kk, = {€,,5,4,a,}. The 2-component spin-angular
functions x4x,m (9, ) are eigenfunctions of j2, j., and the Lippman-Johnson
operator, K = —(1+2s .+ £). Determination of the basis spinors from mean-field
equations is achieved by solution of a generalized matrix eigenvalue equation.

FC =ESC

Dirac-Hartree-Fock (DHF), Dirac-Hartree-Fock-Breit (DHFB) and Dirac-Kohn-
Sham (DKS) equations [20], are solved using conventional Gaussian-based
quantum-chemical methods and basis set parameters selected according to usual
criteria [21].

All electronic structure integrals may be reduced to just two types of
fundamental quantity:

MYT, pxlooM[T,vsx] = > Eq 29" H(p, P;ijk)

ijk
MT, p;xlo, M[T,v;r] = ZE;[Z;,”’“H (p, P;ijk)
ijk

where T =LorT =S,T #T, 00 = I, 0, (q=x,y,z) are Pauli spin matrices, and
the sum over {i,7,k} is finite. We refer to this as the relativistic McMurchie-
Davidson algorithm [18]. The quantities ECTQTN 7k are the expansion coefficients
of the auxiliary Hermite Gaussian functions, H(p,P;i,j,k). The relativistic
spinor structure is absorbed in the basis set, and the required Coulomb and
Breit spatial integrals are evaluated analytically [23].

B. Mean-field equations based on electromagnetic energy density

The action-at-a-distance formulation that we always use is not well-suited
to a relativistic Hamiltonian formulation because the interactions are always
retarded.

“The use of the Hamiltonian forces one to chose the field viewpoint rather
than the interaction viewpoint”, R. P. Feynman, Phys. Rev, 76, 769 (1949)
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The interaction energy of two point charges, U, from the field and interaction
viewpoints is

UZGO/El'EQ dr:ﬂ
471'607'12

The generalization of this to Coulomb energy of interacting distributions is
readily shown to be [22]

(ij]kl) = % / Eij(r) - Bu(r)dr, where Ey(r) = —VVi(r),

0= [[ e

leading to a new set of mean-field equations defined by
1
5P

hyy = (M 2m
(u |ca--p+,6c2| 1/) Dirac

2 I/) Schrédinger

1
Fuuzhw/‘}'ﬂ/{(E +EN ;u/ ZEpa' au}

where E, = ) Eq,.

It is understood that the Schrédinger basis functions are spin-orbitals, the
Dirac functions are two-spinors. The operator o+p couples unlike (large-
and small) components (odd operator), while 8 couples like components
(even operator). The fields are evaluated using a combination of “exact”
(McMurchie-Davidson) methods and multipole expansions. The integral is
over field coordinates (not particle coordinates), and is performed using cellular
quadrature methods adapted from DFT. The algorithm proves to be very well-
suited for parallel execution, and eliminates most of the cost associated with the
evaluation of two-electron integrals involving small-component basis functions.

The results are in complete agreement with those obtained in the interaction
representation. This general approach may be extended to include the full
relativistic transverse electron-electron interaction, terms that generate the
frequency-dependent Breit interaction energy.
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IV. PARITY VIOLATION IN CHIRAL SYSTEMS

The electroweak interaction introduces very small electronic energy differences
between enantiometers:

Gr .
H = —F= i ri),
PV 2\/§i’ZnQW,n’Yz Qn( z)

where Gr = 2.22255 x 107 * a.u. is the Fermi coupling constant, Qw,, =
— Ny, +Z,(1—4sin® 8y ) is the electroweak charge, N,, is the number of neutrons,
Z, is the number of protons, Oy is the Weinberg mixing angle, sin® fy = 0.2319,
on(r;) is the nuclear charge density, v} is the pseudoscalar chirality operator for
electron ¢, and the summation is over the electrons, ¢, and nuclei, n.

The electroweak parity violating energy, Elgv is calculated as

GF G.,n
Efy = (Y8ur |Hpv |¥8ar) = BN > Qwa Mgy,
n

where,

MG =W 2 on(r:) ),

2

and the superscript G denotes dependence on nuclear geometry.

Attempts to detect the effects of Hpy in CHFCIBr involve interferometry
experiments [6] The R- and S-forms of a chiral molecule have slightly different vi-
brational frequencies. Given pure samples of the R- and S-systems, electroweak
differences in a single vibrational mode may be investigated. The system is
modelled by mapping the potential energy surface using relativistic quantum
chemistry, expanding the mode-dependence as

OES, 1 0’Ef,
PV| o 4= 1;V

9Qr |g, 2 0Q?

The leading-order (harmonic) correction that causes an “in-principle” observable

perturbation to the vibrational energy of mode |n,) due to H, is (for mode Q.
and effective reduced mass u,)

Qf.{.
Go

G . G
Epy ~ EPV|GO +

O’EE,
Q7
The conclusions based on these calculations [7] are that the parity-violating

effects in CHFCIBr are currently unobservable for the C-F stretching frequency,
which is the target transition in the experiments.

h
Ro 2w '

H o
hVPV,r -
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The more interesting outcome of the investigation is that one might be able to
observe these effects in the C-Br stretching modes of chiral bromoiodomethanes,
where they split the vibrational stretching modes by approximately 50Hz; this is
now a detectable energy difference in interferometry experiments. Very recently
parity violating electronic energies have been obtained for chiral molecules
containing Bi, Re and Ir [24].

V. CALCULATION OF THE LAMB-SHIFT

Lamb-shift consists in leading order of two pieces, vacuum polarization
(Uehling potential), and the electron self-energy, which requires some method of
mass renormalization. Vacuum polarization energy is the renormalized sum of
Coulomb integrals over vacuum states, and may be incorporated exactly within
a short-range local modification of the Coulomb potential (Uehling potential).

We have devised relativistic methods for evaluating the renormalized self-
energy, but these would be very demanding for molecular calculations [25].
Bethe’s renormalized non-relativistic calculation for the low-energy (k{kmaz)
part of the self-energy is (in a.u.) [10]

Eg /km” dkz (En - Ea)<¢a|V|¢n)<¢n|V|¢a)
0 n

'
a{ —

3¢ E, - E,+ck
2 a E, — E;, + cknaz
- 3?; Z<¢a|v|¢n)<¢n|v|¢a) In |En _Ea|

n

This is matched to the Feynman-Schwinger relativistic formulae for (k{(knaz),
E,), the dependence on kpq; is eliminated. The non-relativistic Lamb-shift can
be estimated by rescaling the one-body Darwin operator, (Zm/2c*)(dr), or by
fitting to the relativistic hydrogenic calculations of Mohr [4].

Here, we suggest a possible (and computationally feasible) refinement, based
on our earlier investigations [26]:

Step 1: Calculate the modified k-dependent logarithmic sum-rule

En — Ea + Ckma:c
SV Gl ¥l P e

;o 2 «
" 327

for selected, finite values of k4, ~ ¢ using a large Gaussian basis set.
Step 2: Match this numerically to the analytic value of E! ) (including vacuum

polarization)

, T o mc 3 5 1
—ray W24+ 22|
2 SCQW[nAmm PR 5][< )]
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The modified Darwin correction is then used only in the high-energy region.
Low-energy interactions are handled explicitly, and require only that k... ~
100. Perform matching using In 2k, — 5/6 = In Apin, noting carefully the
comments in [27].
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When one thinks of the breakdown of the Born-Oppenheimer approximation
(BOA), the picture of catastrophic failure in the vicinity of nearly degenerate
potential energy curves probably comes to mind. For the ground electronic
states of the ordinary molecules we consider in the present work, Hy, Hy,
H,0, and CO, there are no electronic states nearly degenerate with the ground
state in the vicinity of the potential minimum, thus text book arguments would
indicate that the BOA would be exceedingly accurate. Now all approximations
eventually break down, thus the pertinent question is whether or not corrections
to the BOA are required in practical calculations. In this work we show that at
the 1 cm™! level, these corrections are important even for ordinary molecules.

We consider three levels of refinement:

0: The Born-Oppenheimer approximation [1] - set the nuclear masses to
oo when solving the electronic Schrodinger equation (SE) to obtain
the electronic wavefunctions and eigenvalues, then reset the nuclear
masses and solve the nuclear SE with the nuclei moving on the potential
energy surface (PES) which is the geometry dependence of the electronic
eigenvalue.

1: The adiabatic or Born-Huang approximation [2] - follow the same
procedure as above, except the PES is the expectation value of the full
Hamiltation operator computed using the Born-Oppenheimer electronic
wavefunction.

2: Full electron-nuclear coupling. Compared to the BOA, the Born-Huang
approximation (BHA) differs by the addition of a nuclear mass dependent
term to the PES, the Born-Oppenheimer diagonal correction (BODC),
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but the solution of the nuclear SE is exactly the same. In contrast,
the accurate introduction of full electron-nuclear coupling is much
more difficult, and has been done only for the one electron molecule
Hj .[3] Fortunately, since the BOA is quite accurate, the problem of
electron-nuclear coupling can be treated reliably with perturbation
theory. The work of Bunker and Moss[4] (BM) shows formally how this
can be done, and in their theory the first order correction to the BOA is
the BODC, while a second order correction is required to mix in other
electronic wavefucntions. The non-adiabatic, or second order correction
is more complicated than the BODC in that additional derivative terms
are introduced into the nuclear SE. Nonetheless, the solution of the
nuclear SE including the second order correction is not significately more
expensive than when making the BOA.

In spite of the formal development, it is surprising that more than 20 years
elapsed before the BM formalism was implemented in an ab initio calculation.[5]
In that work we compared the results of the BM method to accurate calculations
for HY [3] and HD*.[6] The agreement was very good: the root-mean-square
(rms) difference between our calculations of ro-vibrational energy levels and the
accurate results was only 0.0006 cm-1 for Hf . This meant we computed the
non-adiabatic correction to an accuracy of about 1 part in 103. For HD™, the
agreement was similar except near the dissociation limit where some interesting
non-adiabatic effects took place, leading to the breakdown of the perturbation
expansion. Nonetheless , this work paved the way for the reliable prediction of
non-adiabatic effects for systems with more than one electron.

When applying the BM formalism, one has two choices to make, firstly how
accurately to represent the ground electronic state, and secondly, how to
represent the excited electronic states. For the Hf molecule, there is only one
electron, thus one can relatively easily achieve high accuracy for the ground
electronic state. For excited electronic states, the situation is more complex,
because continuum electronic states contribute. Our strategy for Hi was to
expand the ground electronic state wavefunction in terms of nuclear centered
gaussian basis functions, then compute the excited electronic states as higher
eigenvalues of the electronic Hamiltonian in that basis. We tested that this
procedure converged with respect to using larger basis sets, and the results
indicated that the continuum states are adequately represented.[5] We next
turned to the Hy molecule.[7] As with the H molecule, very accurate BOA
PES and BODC are available, and Wolniewicz [8] has computed non-adiabatic
corrections using an alternate perturbation theory. However that theory is not
easily extended to more complicated molecules, in contrast to the BM formalism.
We first computed the BODC using the self consistent field method (SCF), the
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simplest ab initio wavefunction, and found that it was not even in qualitative
agreement with accurate results. Using the two orbital complete active space
SCF which gives proper dissociation to generate the ground state electronic
wavefunction, and then using this wavefunction to compute the BODC gave
much improved results, however the agreement with accurate results was still not
quantitative. To obtain quantitative results for the BODC it is necessary to use
accurate electronic wavefunctions. In our accurate work, we compute the BODC
from internally contracted multi-reference configuration interaction (icMRCI)
wavefunctions obtained from a modified version of MOLPRO 2000.1.[9)].

For the second order correction for Hy, we also started with the simplest ab
initio treatment, namely we used an SCF wavefunction for the ground electronic
state, and for excited states, we only considered single excitations out of the SCF
wavefunction. We call this the SCF/CIS method. However, in contrast to the
case with the BODC, we found that the SCF/CIS method gave quite reasonable
results for vibrational levels all the way up to the dissociation limit. For low
lying vibrational levels, scaling the non-adiabatic correction function obtained
from the SCF/CIS method by 1.1 gave results of great accuracy. This factor of
1.1 is very similar to the amount the electronic contribution to the rotational g
factor is underestimated, thus our model for the non-adiabatic corrections is to
compute the non-adiabatic correction functions by the SCF/CIS method, then
scale them by the factor required to bring the computed rotational g factor into
agreement with the experimental value.

We now turn to Hy0.[10] Here we are primarily interested in the question
of accurately predicting vibrational frequencies for isotopically substituted
water. This provides a very stringent test, for the BODC brings explicit mass
dependence to the PES and the non-adiabatic correction brings additional mass
dependence to the derivative operators in the nuclear SE. In these calculations,
we re-optimized our PES for the principle isotopomer of water now including the
non-adiabatic correction. This PES is called Vyemp, as compared to Vemp,[11]
which was our original refined PES. We then carried out calculations for HDO,
HTO, D,0, and T>0 using V.pmp + our accurate BODC, not including non-
adiabatic effects, Vpemp + our accurate BODC including non-adiabatic effects,
and V,mp + our empirical mass dependence, [11] which was optimized to
simultaneously fit experimental data for HDO and D;0O. We find that both the
BODC and non-adiabatic corrections are significant at the 1 cm~! level, and
when both are included, they give results of equal accuracy as the empirical mass
dependent PES for fundamental vibrations. However this ab initio correction
should be much more accurate than the empirical one for higher overtones.
We finally consider the CO molecule, or rather the isoelectronic sequence CO,
Ns, and NO*. Here we are interested in making very accurate ab initio
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predictions of vibrational energy levels. We write our PES as
V = Vg M4 AVEes L AVOY 4 AV (1)

where AV,SPEE is the result of either a CCSD(T) calculation, an icMRCI
calculation, an icMRCI+Q calculation, or an ACPF calculation using the
cc-pVTZ basis,[12] and the remaining terms are corrections.
The term AV B2 is computed as the difference between CCSD(T) computed
using an infinite basis and CCSD(T) computed using the cc-pVTZ basis. The
infinite basis results are obtained by decomposing the energy into the SCF
energy, the singlet pair contribution to the CCSD energy, the triplet pair
contribution to the CCSD energy, and the (T) energy, and extrapolating the
results of cc-pVXZ basis sets with extrapolation coefficients determined from
comparisons to accurate calculations.[13, 14]
The next term, AVEV accounts for the error incurred by not correlating the core
electrons. This is determined as the difference between a CCSD(T) calculation
correlating all electrons and a CCSD(T) calculation correlating only the valence
electrons. The calculations are carried out using the cc-pCVXZ basis sets,
[15] and the results are extrapolated to the basis set limit with extrapolation
coefficients determined from comparisons to accurate calculations.[13, 14]

The final term, AV%e includes corrections due to the finite speed of
light. This includes scalar relativity computed as the difference between a
CCSD(T) calculation using the Douglas-Kroll-Hess method [16, 17] using the
appropriately re-contracted cc-pVTZ basis and the non-relativistic CCSD(T)
calculation using the cc-pVTZ basis. Also included is the Lamb shift[18]
computed at the icMRCI level using the cc-pVTZ basis.

To this PES we add the accurate BODC and solve the nuclear SE including
non-adiabatic effects.

Our results indicate that the icMRCI+(Q method is the most reliable for
treating electron correlation, as this method gives the best systematic agreement
with experimental values for the isoelectronic sequence CO, Ny, and NO™. The
errors are all much less than 1 cm—1 , and both the BODC and non-adiabatic
corrections are significant, with the non-adiabatic correction being much larger.
This is contrary to ones expectations based on text book arguments that the
accuracy of the BOA is primarily dependent on the ratio of the nuclear to
electron mass. One clearly sees from the structure of the correction functions in
the BM formalism that that is only one factor. Another is the relative density
of electronic states. Due to the complex electronic structure arising from the
triple bound in these molecules, the density of electronic states is very high and
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hence the non-adiabatic correction is significant.
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The potential energy functions and the spin-orbit couplings for all states
of ozone correlating with the lowest O(°P) + O2(X®%;) asymptote have
been calculated in the asymptotic region employing correlated electronic
wavefunctions and valence coordinates [1]. For linear ozone, the *Y states
(s = 1,3, and 5) lie above the corresponding °II states (Figure 1).
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FIG. 1: One-dimensional potential cuts for linear ozone relative to the supramolecule
energy of the TI state at R; = 10 ao (R2 = 2.288 ao), MRCI + Davidson correction.

For bent geometries the II states split into Renner-Teller components with
A" and A" symmetry, respectively. While the 3II and 'II states lead to bent-
bent Renner-Teller pairs, the °II state gives rise to a linear/linear pair of states.
The different IT spin multiplets cross for valence angles around 160° and the 1A’
component becomes the lowest one (Figure 2).

For intermediate O — Q2 distances the preferential path for the formation
of singlet ozone in its open structure goes through bond angles between 110°
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FIG. 2: Angular dependence of the nine lowest potential energy surfaces of ozone
(R1 = 5.2 ag, R2 = 2.288 ao) obtained from full valence CASSCF calculations.
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FIG. 3: Percentage of the S = S, = 0 spin components of the eigenfunctions after
diagonalization of the spin-orbit matrix for the 27 spin states correlating with the
lowest dissociation asymptote as a function of the valence angle for the ‘A’ and 'A”
components of the 'II state (R; = 4.9 ap and Ry = 2.288 ao)

to 130° where the potentials of the singlet and triplet Renner-Teller pairs
are minimal. The matrix elements of the spin-orbit operator have also been
calculated. They are dominated by the atomic 3P contributions and their
dependence on the mutual orientation of the Oz molecule and the O atom is
small. In the regions where the states correlating to the linear 1:3:°II cross, i.e.
for valence angles between 150° and 180°, and close to 90° the mixing among
the singlet, triplet, and quintet states is strong and the electron spin quantum
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FIG. 4: One-dimensional potential cuts for linear OOH and OHO relative to the
equilibrium energy of the X?A” state for Roxw = 1.835 a9, MRCI + Davidson
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FIG. 5: Percentage of the S, = 0.5 and 1.5 of the II states spin components of the
eigenfunctions of the spin-orbit matrix as a function of the OO distance in the OHO
structure, with Rog = 1.835 ao, CASSCF.

number is no longer a good quantum number(Figure 3).

The potential energy functions and the spin-orbit couplings for all states
correlating with the lowest asymptotes of the O(*P) + OH(X?TI) = 02(X*%;)
+ H(2S) reaction have been calculated in the asymptotic regions employing
similar approach as for ozone. The starting point of our study was the
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FIG. 6: 18 CASSCF adiabatic potential energy surfaces obtained from the
diagonalisation of the spin-orbit matrix for the 36 spin states correlating with the
lowest dissociation asymptote OH + O as a function of the OO distance, with Rog =
1835 agp.

treatment of all states resulting from the O(3P) + OH(X2II) asymptote (s =
2,4; 3+ 3= ¢T1,¥ A) for any orientation of the atom and diatom. In the most
recent works only the lowest energy path for the formation of OOH has been
reported [2,3].

The bent X2A” and A?A’ states of OOH can correlate at linearity with the
doublets of ¥t, ¥~, II and A symmetry. In contrast to the bond formation
regions, the A2A’ and X2 A” states for near equilibrium OH and OO distances
correlate at linearity with a 2II state. The corresponding MRCI barrier to
linearity has been calculated to lie only about 2800 cm ! below the O + OH
asymptote calculated at 23400 cm~!. In Figure 4 (left) the potential energy
surfaces for collinear approach O...OH are shown. For long OO distances the
lowest state is 4% ~. Both Renner-Teller bent/bent components of the 2A state
cross around Rppo = 4.2 a¢g and an apex angle of 140° this quartet state,
and for Roo between 3.2 and 3.3 ay the 2A state components cross the 2II
state leading to the two lowest bent electronic states of OOH. For the other
collinear orientation OH...O the lowest states are 2*II, which are energetically
well separated from the remaining 6 electronic states (Figure 4, right). In the
region of the linear dipole-quadrupole minima the quartet and doublet II states
lie very close in energy and cross between Rpo = 5.5 and 5.8 ay. Figure 5 shows
that in the van der Waals minima the mixing of the spin states renders the
assignment with the electron spin quantum numbers impossible. In the Figure
6 the CASSCF adiabatic potential energy surfaces for the collinear OH...O
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FIG. 7: One-dimensional potential cuts for linear OOH relative to the equilibrium
energy of the X2A” state for Roo = 2.283 ao, MRCI + Davidson correction.

approach for 18 (each of the 36 states is doubly degenerate, some of the states
lie very close together and are not distinguishable in the drawing) spin-orbit
coupled states are displayed.

Previously, this long range part of the surfaces has been studied by employing
the dipole-quadrupole potential expansion[4], i.e. the region of the van der Waals
minima could not be treated. The present results show that six states of (2*II)
possesses a dipole-qudrupole OH..O van der Waals minimum, the second group
of states has repulsive potentials. The 2*II states form linear/linear Renner-
Teller pairs.

For the collinear approach O,...H (Figure 7) the lowest state is X~ which
crosses the 2II for Rog of about 2.4 ag. The same electronic states treated for
the other asymptote now correlate with other electronic states of the oxygen
molecule. The dissociation energy for the lowest O, + H asymptote has been
calculated to be 18800 cm™!. The 2II for the orientation OOH is a bent/bent,
for the OHO orientation a linear/linear Renner-Teller case. The ?A state for
OOH forms a linear/bent and OHO bent/bent pairs.

As shown in this brief note vibronic and complicated angular momenta coupling
effects are of crucial importance for the dynamics of the O2 + O, O + OH and
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0> + H atmospheric reactions.
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Two Exothermic Reactions in the “Lithium Chemistry”
Network: LiH+H — Li+ H, and LiH"+H — LiT+H,. A
Comparison of Computed Potential Energy Surfaces.
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The two typical alkali-hydrogen processes given by

LiIH(X'SH)+H(S) — Li(39)+Hy(X'xT) (1)
LiHN(X25H)4+H(ES) — Lit(18)+Hy(X1ET) 2)

are important reactions for the modeling of the lithium chemistry in the
primordial Universe[l], but only recently high quality ab-initio calculations
of the full 3D interaction potential have been produced. The two Potential
Energy Surfaces (PES’s) for the reactions are very similar and show highly
exothermic profiles. The main difference is that while in 1 the LiH molecule
is strongly bound, in 2 the LiH" moiety has a much smaller binding energy.
Furthermore, the ionic interaction extends over a larger region of coordinate
space in comparison to its neutral counterpart. A simple pictorial view of
the topological properties of the two types of reactive interactions could be
obtained by looking at the two collinear cuts of the surfaces reported in fig.1
where the two PES’s are plotted in 3D for two different orientational views
and where the energy of Li+ H + H break-up pieces has been chosen to be
the zero of the energy scales (coordinates in A and energies in eV). The upper
ionic surface originates from our analytical fitting of the data computed in Refs.
[2, 3], while the lower neutral one comes from the fitting of the CI calculations
reported by Ref. [4]. The analytical fitting for the ionic system uses Aguado-
Paniagua (AG) type functions to fit the 3-body contribution to the ab-initio
energy computed in 11,341 different geometries. Since the charge is mainly
localized on the Li atom, the 3-body interaction was calculated by subtracting
the energies of two isolated LiH' and that of Hy. Since the AG functions die
exponentially at long range while in a ionic system the main contribution to

43



T
N
\

IR
N

RN
w“
N

!

FIG. 1: Two different orientation views for the LiH + H and LiHT+H reactions

the long range 3-body potential comes from electrostatic interactions (charge-
polarizability and quadrupole-charge in this case), a non-linear optimization
procedure was employed to determine a switching function which smoothly
joined the long range analytic expression (a simple multipolar expansion) to
the AG functions.

Although the two potential energy surfaces turn out to be very similar, one
expects the dynamical behavior of the initial LiH/ LiHT partner to be extremely
different, at least for what we know from the studies performed so far: classical
trajectories and quantum wavepacket dynamics, the latter only for collinear
geometries. As it was suggested before, most of the differences in the two PES
shapes occur in the entrance channel that appears as a flat energy region in the
case of the ionic surface. It is the difference between the two entrance channels
that affects the dynamical behavior of the two systems, as we shall show more
in detail below. The minimum energy paths for different approaching angles
(defined by the small inset at the top of the left panel in the figure) are reported
in fig. 2. For each of the two panels the reference level of the potentials has
been taken at the bottom of the outgoing valley of the products. Reaction

44



I, .
LiH+H - Li+H, LiH +H- LI +H,

w

N

Energy (eV)
Energy (eV)

m 0
2
-H

|
2 0 : R B B
R(Li-H)-R(H-H) (A) R(Li-H)-R(H-H) (&)

FIG. 2: Minimum energy paths for different approaching angles

2 shows a higher exothermicity (4.5 eV) as it is to be expected for an ionic
reaction. Moreover it seems not hindered by any activation barrier even when
the approaching angle moves away from the collinear shape. On the other
hand the neutral reaction paths show the appearance of an activation barrier
of ~ 11kcal - mol™* for § = 90. Another marked difference between the two
surfaces is the presence, for the neutral system, of a significant well in the
outgoing product channel that is clearly visible at all angles, with the exclusion
of & = 0. The smaller well that can also be seen in the Hs channel of the
ionic reaction, as mentioned above, is due there to the electrostatic interaction
between the quadrupole of Hy and the Lit charge.

A first attempt at modeling the reactive dynamics of 1 has been carried out
some time ago by Clarke et al. [5] using a collinear Spin Coupled Valence
Bond (VB) calculation. The VB surface in the collinear arrangement is very
similar to the newest one of Ref. [4] although the more recent results show no
barrier unless the angle is larger than 75 degrees. Classical and time dependent
quantum wavepacket dynamics has been explored for collinear geometries and
the relevant results can be summarized as follows: the two sets of results,
classical and quantum, are in good agreement in the energy range considered.
For all the initial vibrational states the probability increases sharply at the
low energy, reaching its maximum around 0.2 eV. With a further increase in
the collision energy the reaction probability shows a slow monotonic increase
which remains smaller for higher v states. Below 0.1 eV both calculations show
oscillations probably due to resonances. An additional important feature is

45



that the vibrational energy content of the initial LiH has a very small effect
on the reaction probabilities. After the above study, there have been a series
of additional computations for the potential energy surface of the LiH, neutral
system[4, 6, 7]. Ref. [6], although mainly focused on the reaction that begins
with and excited Li atom Li(2p)+H, — LiH + H, is the only one that reports
the behavior of the first and second electronic excited states. It is interesting to
note that the asymptote Li(2p) + H, is always energetically open with respect
to the LiH + H entrance channel. The two reactions that form Li(2s) and
Li(2p) are exothermic of about 2.04 eV and 0.2 eV respectively. Very recently,
the high quality CI calculation of Ref. [4] were used by the same authors to
perform a series of quasi-classical reactive calculations and the total reactive
rate constant turned out to be of the order of 2 — 6 x 1071% cm3s™! and its
dependency on temperature was reasonably well represented by the functional
form k(T) = 8.4 x 107137 exp(—0.0004T).

The LiHJ system has been studied by us in some detail in a series of recent
papers [2, 8-11]. In its electronic ground state it is known to form a weak
complex between Hy and the Li™ ion in Cs, symmetry[12] whose binding energy
should be of the order of 20 — 25 KJmol™" with respect to Li* + H,. Here
we are interested in the ground state electronic potential that connects the
LiH* 4+ H asymptote with the minimum corresponding to the stable [Lit — Hy]
complex. Since the energy difference between the asymptotic system containing
the weakly bound molecule LiH' and the triatomic dissociation threshold is
small, the break-up process of LiH* due to collision with H is important also
at low temperature. We intentionally do not mention the triplet manifold
of the LiHT(*T+) + H(®S) complex, because we expect that the spin-orbit
coupling that triggers the triplet-singlet inter-system crossing is quite small
for such light atoms. The ground-state surface represents the interaction
potential relevant for the study of the adiabatic processes: LIHT+H — LiT+H,
and LiH"+H — Lit+H + H; where the latter has been considered because
of the very low binding energy of the LiH' molecule (0.11 eV). A collinear
study of the dynamics taking place on this surface has been carried out [10]
using the two collinear approaches Li — H — H and H — Li — H and the time
dependent formulation of quantum dynamics. For a wavepacket prepared in the
ground vibrational state the non-reactive outcome (unreacted LiH*) is dominant
although an increase in energy tends to also increase the amount of dissociation
products. The most striking result of the calculations is given by the almost
complete absence of reaction even when the energy is just above the threshold
(0.1-0.5 €V). The highest reaction probabilities are observed for the n = 2 initial
vibrational level, but they still do not exceed 20% of the total and decrease
rapidly with increasing total energy.
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The comparative analysis of accurately computed potential energy surfaces
and the corresponding effort in generating an analytical fitting of the raw ab-
initio points described above, indicate that we are now in a position to produce
reliable computational estimates of the two processes involved in the network
of reactions relevant to the modeling of the “Lithium chemistry”. This paradig
system involves networks of light atoms, strong quantum effects and is also of
relevance for the studies of the early universe chemistry[1]. Moreover Li (as other
alkali metals) is among those employed in atomic Bose-Einstein condensation
studies as a possible candidate for the achievement of ultra-cold molecules via
photo-association experiments[13]. LiH molecules are also highly polar and thus
may be taken up as likely candidates for Stark deceleration experiments[13].
Beams of ultra cold molecules might be used to explore the chemistry in the ultra
cold temperature range where quantum effects become dominant and where
both theoretical and experimental interest has certainly been mounting in recent
years[14, 15].
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I. INTRODUCTION

The combination of the recent development of methods for accurate calcula-
tion of energy levels from potential energy surfaces and experimental advances
in techniques have made very high quality potential energy surfaces available
that are firmly based on experimental data. A selection of these is shown in
table 1.

TABLE I: Selected Determinations of Potential Energy Surfaces

Levels Average Highest Lowest w Data Ref.

fitted Error/cm™! Level cm™'  Source®
H-O 105 0.1 25000 1595 FT [1]
N.O 71 0.52 15000 596 FT, IC 2]
H»S 73 0.03 14300 1183 FT, IC [3]
CO2 65 0.099 9627 667 FT [4]
SO, 125 2.9 6886 518 DF, SEP (5]
O3 60 0.025 5783 701 FT [6]
C,H, 287° 1.2 10000 612  FT,DR [7]

“Key to Data Source: FT = Fourier Trunsform infrared; IC= Intracavity
Absorption; DF = Dispersed Fluorescence; SEP = Stimulated Emission
Pumping; DR: Double Resonance.

Using an Effective Hamiltonian.

C2oHs is the only tetra-atomic molecule and is the only one on the list for which
an effective rather than an exact Hamiltonian was used, illustrating the demands
of the calculations involved. H5O is also unusual in that extensive coverage has
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been achieved entirely though absorption spectroscopy; this required the use
of very hot sources (including flames and the sun) and is only practical for a
hydride with large rotational and vibrational spacings. For any other molecule
a flexible and selective method of populating high vibrational states is required,
typically based on one or more of the many forms of laser spectroscopy. In
this respect the SO is a particularly nice example as dispersed fluorescence
and stimulated emission pumping measurements via the state have yielded
information on levels up to 21600 cm ™! in the ground state, far above the range
of data fitted. This paper concentrates on Cz which has several interesting
features, is experimentally tractable and has a similar mismatch between the
data available and the theoretical modelling.

II. THE A'Il, - X'X} TRANSITION IN Cs

The spectroscopy of the Cs radical has a remarkably long history, dating
back to 1881 when the ultraviolet emission was first seen by Huggins [8] in
the spectra of comets. The same complex spectrum has subsequently been
observed in many places; Cs is a relatively stable radical and the spectrum
shows strongly in almost any low temperature carbon rich radical source. It
was first observed in the laboratory by Herzberg [9] in a discharge in methane,
though the carrier of the spectrum was not identified until 1951 by Douglas
[10]. The first detailed analysis of the spectrum was by Gausset et al [11] in
1965 who identified the transition as A'II, — X 'SF. They explained some
of the reasons for the complexity of the spectrum: the ground state bending
frequency is only 63 cm™! and the excited state shows a strong Renner-Teller
splitting. The Renner-Teller parameter, €, was estimated at 0.537 giving a 350
cm ! splitting of the bending levels, comparable to the bending frequency of
307 cm~!. The system thus became of considerable theoretical interest as a
prototype for Renner-Teller interactions. Despite all the interest in the system,
the basic analysis was only completed in 1995 by Izuha and Yamanouchi [12]
when the asymmetric stretch, vz, in the excited state was determined. This
mode was found to be very anharmonic implying a double minimum in the
asymmetric stretching co-ordinate.

The interest in the molecule has meant that a great wealth of experimental
data is available. For the ground state dispersed fluorescence (at 10 cm™!
resolution) and stimulated emission pumping studies [13] (0.08 cm ™" resolution)
have covered levels with up to 17000 cm ™! of vibrational energy with v; < 8,
ve < 37 and vz < 4. Accurate theoretical modelling has not yet made full use
of this data; high level ab initio calculations [14] of 108 points on the ground
state surface were able to reproduce levels below 3000 cm™! to better than 15
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cm~!. A partial fit to the surface was also performed by Spirko et al [15] using
the MORBID method, giving a similar quality of fit as the ab initio work.

The excited state has a similar wealth of data available; coverage has been
extended from Ty + 1100 cm ™" in the original work [11] to [16] T + 2500 cm ™!
and then [17] Ty + 5400 cm™! in addition to the asymmetric stretch work [18].
As for the ground state, accurate theoretical has been somewhat limited; the
most detailed work was by Jungen and Merer [19] who modelled the Renner-
Teller interaction allowing for wide amplitude bending motion, but not coupling
to the other modes.

Given this background, it seems that the time is ripe for extending the accurate
theoretical modelling in both the ground and excited state, and using this as a
lever to extend the range of assigned transitions in the ultraviolet spectrum.

III. EXPERIMENTAL AND RESULTS

Cs radicals are generated in a molecular beam using an electric discharge
mounted within the molecular beam source [20]. The normal gas mixture used
is 1% CoH; in atmospheric pressure argon, though most organic compounds give
strong Cj signals. Typical rotational temperatures are 10-20 K, with vibrational
temperatures rather higher. Laser induced fluorescence spectra are taken using
a Nd:YAG pumped pulsed dye laser with a resolution of 0.15 cm™! and with
a higher resolution (0.01 cm~!) laser system developed in our laboratory [21].
The latter system uses a tuneable diode laser to seed an optical parametric
oscillator (OPQO) pumped by an injection seeded 355 nm Nd:YAG laser. The
OPO consists of two S-Barium Borate crystals in a ring cavity locked to the
seeding wavelength. Both the signal and idler outputs are narrow bandwidth,
within a factor of two of the Fourier transform limit of the 10 ns pump pulse.
By using frequency doubling and/or mixing with harmonics of the pumping
Nd:YAG laser the coverage of the system is extended to include most of the
visible and ultraviolet. A strong dense spectrum was found throughout the
24000 - 30000 cm~! region. A typical spectrum is shown in figure 1.

Individual bands were fitted to the standard expression for rotational energy
levels:

Eyor =Ty + BIJ(J+1) — (1 + A)?] £ %qJ(J +1) (1)

where the A or [ doubling parameter g gives the difference between the effective
rotational constants for e or f parity levels. The fits were in general good though,
as has been observed by previous workers, several bands showed localised
perturbations with typically just one or two rotational lines out of position.
These probably reflect localised interactions with the ground state or lower lying
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FIG. 1: Laser Induced Fluorescence spectrum of part of the AT, — X 'S} Transition
in Cs.

triplet states. Good agreement was found in general with previous work, and
more than 50 new bands have been observed.

IV. CALCULATIONS

To assign the new bands, and to refine the potential energy surface for both
states exact calculations of the vibronic levels are being undertaken. A grid
based method using Jacobi co-ordinates is used; for the basic method see [22] and
references therein. To take account of the two surfaces in the excited state the
angular kinetic energy operator must be modified to allow for both vibrational
and electronic angular momentum:

R 1 1 . 1 sy s an s oa s
Trop = —+——172 (J2—J2—'2—J'_— _') 2
ot (2,uR2 + 2MBCT2) I+ S c=i—Jyi-—J-gt) (2

as the projections and of the total and diatomic fragment angular momentum
now differ by L,; see for example ref [23]. For our basis functions we use
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electronic wavefunctions that are eigenfunctions of the electronic L, operator:
L,JA ==+1) = £1|A = £1) 3)

With this formulation the average of the two potentials gives diagonal matrix
elements, and the difference between the two potentials mixes the two states.
The potential surfaces are expressed in a simple power series in symmetrised
valence co-ordinates [14]:

1 1
S1 = §(AT1 + Ary); Se = ;S5 = 5(A7’1 — Ar) (4)
v=%" (c,-jk + sc;jk) Sind gk (5)

where v is the bond angle and s is 1 for the upper surface and 0 for the lower
surface.

Calculations are performed on a Beowulf cluster of Intel Pentium dual CPU
systems with either fast (Myrinet) or slow (100 Mbps ethernet) interconnection.
The grid based method allows each row of the Hamiltonian matrix to be
calculated independently and thus easily split over computational nodes. The
matrix is diagonalised using the ScaLAPACK library [24]; perhaps surprisingly
(as this involves a significant amount of communication) this gives good results
even when using slow interconnects. To fit to experimental data, a standard
non-linear least squares fit method was used, with numerical calculation of the
derivatives of the energies with respect to the parameters.

V. RESULTS

Preliminary fits to both the ground and excited state potentials have been
undertaken. Using the ab initio surface of Mladenovic et al [14] as a starting
point a fit to 80 ground state J = 0 and J = 1 (- parity) levels below 7500 cm ™!
yielded an average error of 5 cm~! when floating 18 parameters. The excited
state surface was fitted using only quadratic and quartic terms in the potential
and was able to fit 54 levels for J = 1 (both parities) below Ty + 2500 cm™! to
10 cm~! using only 8 parameters. These fits were to vibrational origins only;
for future fits as well as extending the range of the fit we plan to include the
rotational constants and [ doubling parameters as these are also available from
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our calculations.
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I. INTRODUCTION

The representation of molecular potential energy surfaces has long been a
major stumbling block in both reactive and non-reactive dynamics (Refs. [1-
4], and references therein). The least unbiased starting point is to presume
that the electronic Schrédinger equation is solved at sufficiently many nuclear
configurations to characterize the relevant electronic manifold. This is a
formidable undertaking since ab initio energies are calculated by pointwise
solution of the electronic Schrodinger equation while the dynamics requires a
quick and efficient method to evaluate the potential energy surface(s) for any
geometry of the nuclei. In favorable cases, the ab initio calculations (often after
inclusion of some semiempirical correction [5-7]) can reach sufficient accuracy
for direct use in the solution of the nuclear equations of motion. Unfortunately,
direct dynamics approaches or hybrid schemes utilizing direct dynamics/local
interpolation methods get unaffordable if the computational effort per point is
far too demanding to calculate more than a thousand points or so.

In this report, we focus on global forms that may be useful both for
spectroscopic and reaction dynamics studies. Since vibrational-rotational
spectra and kinetics data cannot generally be inverted to yield the adiabatic
potential energy surface(s), the only practical way available to obtain them with
the required accuracy is via a comparison of the calculated and experimental
results, and minimization of the difference between the two. For spectroscopic
purposes, one usually resorts to some effective Taylor-series expansion whose
coeflicients are optimized via a least-squares fitting procedure. However, such
expansions miss important topological features due to conical intersections,
and even fail to describe the dissociation channels in an acceptable way. We
suggest here a dual approach [4] to this problem. In its most complete
though computationally expensive format, a global form is adopted and accurate
vibrational-rotational data is included in the calibration procedure. The
approach involves an iterative process with the parameters being determined
from a multiproperty fit to ab initio data, vibrational-rotational levels, and
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eventually other information. An ab initio based potential usually offers an
excellent starting point for the fitting procedure [8]. The alternative approach
consists of merging a spectroscopically determined Taylor-series expansion with
a global form via an energy-switching [9, 10] (ES) scheme. Both strategies are
illustrated below.

II. GLOBAL VERSUS LOCAL METHODS

In the global methods, the potential energy surface is determined at each point
by all the data that are used as input for the calibration procedure. They include
various sub-categories depending on whether they employ functional forms
obtained from: (i) quantum chemistry such as those based on semiempirical
valence-bond type theories [11, 12] and many-body expansion type develop-
ments [2-4]; (ii) other motivations such as standard cubic-spline [13] methods,
Morse-spline [14] and rotated Morse-spline [15] interpolation methods, reproduc-
ing kernel Hilbert space [16] interpolation methods, distributed approximating
functionals [17], and hybrid methods combining spline fits with simple empirical
functions [18]; (iii) merging functions that are reliable for different energy
regimes by using the ES [9, 10] approach. In the local methods, the potential
energy surface at each point depends only on the ab initio data for geometries
close to that point. They include Shepard interpolation methods [19, 20], moving
least-squares methods [21], and interpolation on the fly [21] using force field data
obtained when doing direct dynamics [22]. We focus here on recent applications
of the double many-body expansion [2, 4] (DMBE) and ES [9, 10] methods.

III. CASE STUDIES

A. Single-sheeted DMBE forms: ground-state SO

The vibrational quantum numbers were assigned automatically and calculated

by using [23]
1 (nlAQ2)
"= g (<0|AQ%|0> 1) M

where AQ? = Q?—(Q;)?, and ; is the i-th normal mode eigenvector at the
equilibrium geometry. Counterchecks were done by using the Dunham expansion

3 3
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and occasionally through eye-inspection of sample wave function plots. Except
for a few levels above the 150 working ones (up to 7500 cm™!), no assignment
problems occurred. For a few higher levels, incorrect assignments happened
although the problems could be overcome through the following procedure.
First, the first 150 levels were assigned to a Dunham expansion. This was
then used to check and/or reassign the higher levels: if the difference between
the calculated and Dunham energies were less than a threshold of 20cm™!
or quantum numbers differed at most by one unity (with the energy criterion
satisfied), the quantum numbers in the Dunham expansion were accepted and
the level considered as assigned. Otherwise, the Dunham expansion was refitted
up to the last assigned level, and the procedure repeated. The quality of the
final assignment was checked by recalculating the Dunham expansion.

Starting with a DMBE form [24] (I) calibrated from extensive CASPT2
energies suitably corrected by scaling the dynamical correlation, the above
procedure has been used to fit the vibrational levels up to 6886 cm™' above
the SO minimum; see Ref. [8] for details on the DMBE-II surface. Thermal
rate coefficients for the reaction S+ O; — SO + O and its reverse calculated by
running trajectories [25] on the DMBE-II surface show a satisfactory agreement
with experiment. This may not be surprising due to the large scatter of the
experimental data, and neglect of crossings with upper electronic states.

B. Multi-sheeted forms
1. HF: a direct fit to accurate ab initio data

A global DMBE potential energy surface has been reported [26] for the lowest
adiabatic sheet of triplet Hf which shows a conical intersection with the upper
adiabatic sheet along geometries with D3, symmetry. Only ab initio energies
of cc — pV5Z quality have been used for the calibration procedure. Using
a distributed n—body polynomial approach [27] and an integrity basis that
includes the Jahn-Teller coordinate [28], all points could be represented with
a root mean square deviation of 3.46 cm™! in the energy region below the
H} (X?%]) + H(2S) dissociation threshold and with less than 15 cm™ up to
the three-particle breakup energy. The energy levels of the vibronic states have
been calculated together with the splitting between the A’ and E' components
and proposed assignments. Although the vibrational spectroscopic quantum
numbers are only approximate [26], the smallness of the splitting between
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corresponding A’ and E' states indicates that they remain good quantum
numbers even above the potential barriers. Some of the assignments made by
Sanz et al. [29] have been corrected. A comparison with the splittings calculated
from their data show a nearly exact agreement with ours for the lower vibronic
states, and a good agreement for the higher ones. Such splittings may provide
a key feature to identifying the unassigned transitions that have been observed
in hydrogen plasmas [29]. In turn, the highly excited vibronic states can play a
crucial role in probing the longe range regions of the potential energy surface.

2. NO2(%A’): a challenging triatomic system

Modelling the NO, electronic manifold with 2A’ symmetry provides a
remarkable challenge. We focus here on a multi-sheeted DMBE form for
NO2(2A") that has recently [10] been calibrated to reproduce its known
topological features. Starting with a multi-sheeted [2, 4, 30] DMBE form,
near spectroscopic accuracy has been achieved for the X 24; (12A4’') adiabatic
sheet in the vicinity of the spectroscopically characterized minimum by using
a multiple-ES scheme. It shows a high-energy ridge for Cs, insertion of N(*S)
into O2(X ®%;) in agreement with accurate CASPT?2 calculations that were
carried out for such geometries. However, it smooths out for geometries with C
symmetry yielding a barrier height for the N + O, reaction of 0.30eV at a bent
N—-0O-0 structure, in good agreement with previous ab initio calculations and
the recommended data. Another salient feature of the novel 8 x 8 DMBE/ES
potential energy surface is a shallow minimum on the A2B, adiabatic sheet
that is separated from the X 2 A; absolute minimum by a conical intersection.
Such a feature is accurately predicted by the ab initio calculations [10] and well
mimicked by the DMBE/ES potential energy surface. Based on the ES results,
a tentative assessment of the accuracy of spectroscopically determined effective
single-valued forms is also done. In turn, preliminary trajectory results for the
N(%S5) + O3 reaction have shown excellent agreement with available thermal rate
coefficient data once accounting to the contribution [31] from the lowest quartet
state surface.
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I. INTRODUCTION

In the more familiar case of two interacting closed-shell molecules the inter-
molecular potential obtained by solving the first step of the Born-Oppenheimer
(BO) or adiabatic approximation is a scalar function. That is, it is invariant
under rotations of the whole system, as well as under space-inversion. When
the anisotropy of the potential is expressed by expansion in a basis of angular
functions—a generalization of the well known Legendre expansion for atom-
diatom complexes—also these functions should be invariant under overall
rotations [1]. For open-shell systems the situation is more complicated. The
electronic states of open-shell atoms and molecules are often degenerate, and
for a given electronic state of the interacting species there exist multiple
adiabatic intermolecular potential surfaces that are asymptotically degenerate.
Nonadiabatic coupling between the electronic states involved becomes important
and for specific geometries of the complex one finds phenomena that resemble
Renner-Teller and Jahn-Teller coupling. In dynamical calculations it is useful to
define a “generalized BO model” which includes the nonadiabatic coupling, but
only between the set of electronic states that are asymptotically degenerate.
This model works well when the energy separation between the electronic
states included in the model and all other states is large with respect to the
intermolecular interactions that split the model states.

Formulas for atom-diatom potentials when either the atom or the diatom is
an open-shell system have been presented by Alexander [2, 3] and by Dubernet
and Hutson [4-6]. The same formulas, and their extension to more complex
systems, can be obtained in a very general way [7, 8] by defining an effective
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potential energy operator

N
V=Y ") Vi il (1)

i i=1

acting on the space spanned by all N dimer states |¢) that asymptotically cor-
relate with the degenerate states of the interacting open-shell species and using
merely the property that this operator is invariant under rotations, inversion,
and Hermitian conjugation. We assume that |i) correlates with monomer states
that are independent of the intermolecular coordinates. Therefore, the states
i) may be called diabatic states and the elements Vi ; of the matrix V48P are
diabatic interaction potentials. The adiabatic potentials are formally given by
diagonalization of this matrix

V'ladiab 0 . 0
adiab
Vadiab — 0 sz — vadiabU, (2)
(.] 0 . V]%(-iiab

but the potentials that are actually provided by electronic structure calculations
are the adiabatic ones and the reverse transformation is required to obtain the
diabatic potentials Vs ;. Also the appropriate transformation matrix U must
be extracted from electronic structure calculations, see Sec. II.

Take, for example, an open-shell atom with electronic angular momentum
A interacting with a closed-shell diatom. A set of asymptotically degenerate
diabatic dimer states |\, pu) with g = —AX,..., X correlate with atomic states
labeled by the same quantum numbers and the diabatic potentials are

VH'aH(Ra r, 0) = <)‘7 IJI| ‘7 |)‘7 N) = Z ,Ulu o (R7 T) Cl,u—u' (05 0)7 (3)
l

where 6 is the angle between the diatom axis r and the vector R from the
atom to the center of mass of the diatom. It was shown in Ref. [8] that it
follows from rotational invariance of ¥ that only spherical harmonics Ci,m(0,0)
with m = p — p' occur in the expansion of the diabatic potential Vs ,. These
functions Cj ., (6,0) are equal to associated Legendre functions P, ,,,(#), apart
from a normalization factor. Furthermore, it follows from inversion invariance,
7 Vit =V, and from Hermiticity, V1 = V, that the expansion coefficients obey
the relations

o7 H (R, ) = o (R, ) (4)
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and
of (R, 1) = (<D T (R, ). (5)

When these formulas are used in the analytic fits of ab initio calculated potential
surfaces (see below) it is very helpful that for large R the expansion coefficients
can be expressed in closed form. For the open-shell atom - diatom system chosen
here as an example, we find in first order that [§]

, Q+2a+0: . 1 I U+l
S22 — _ w
v R = ;[ (20)210)! 1) p—pp—p 0

-1
A A Al A ’ Ui
x (_N, H,_M><O 0 0) ¢ QR ()

in terms of the atomic and molecular multipole moments Q(()ll) = (\, 0 @(()l,) [A, 0)
and Q(()l)(r). The quantities in large round brackets are 3-j symbols. For the
atom in a P level, such as the halogens F, Cl, and Br in their ground 2P state, the
only nonvanishing multipole moment is the quadrupole Q(()2) and the summation
in Eq. (6) is restricted to I' = 2.

II. AB INITIO CALCULATIONS; METHOD FOR CATIONIC
COMPLEXES

For quite a few weakly interacting open-shell species the intermolecular
potential surfaces were recently obtained from ab initio calculations. The most
accurate results are nowadays computed with the RCCSD(T) method, a spin-
restricted coupled cluster method including single, double, and non-iterative
triple excitations. By definition, electronic structure computations with clamped
nuclei produce adiabatic potentials. The nonadiabatic coupling matrix elements
contain derivatives of the electronic wavefunctions with respect to the nuclear
coordinates. The RCCSD(T) method does not explicitly provide wavefunctions
and, in order to compute the nonadiabatic coupling, one uses MRCI (multi-
reference configuration interaction) methods, for example, with orbitals from
preliminary RHF (restricted Hartree-Fock) or CASSCF (complete interacting
space self-consistent field) calculations.

In dynamical calculations and also for the analytic representation of inter-
molecular potential surfaces it is convenient to define a set of diabatic states
and use diabatic potentials, instead of using the adiabatic ones and considering
explicitly the nonadiabatic coupling. The nonadiabatic coupling originates
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from the nuclear kinetic operator acting on the electronic wavefunctions. The
transformation U to diabatic potentials Vjs ; removes this kinetic coupling, but
the price one pays is that the matrix V4P is nondiagonal. The adiabatic
states are automatically adapted to the point group symmetry of the complex
and the transformation from adiabatic to diabatic states is facilitated when the
latter are symmetry adapted also. In the case of a closed-shell atom interacting
with an open-shell II state diatom one finds, for example, that taking the sum
and difference of the two diabatic states that correlate with the II4; states
of the diatom produces states adapted to reflection in the plane through the
nuclei. One of those is symmetric, A’, the other is antisymmetric, A”. Also the
two adiabatic potential surfaces resulting from ab initio calculations correspond
to A" and A" symmetry, and the diabatic potentials are simply the sum and
difference of the adiabatic potentials. In general, there are multiple states of
the same symmetry that mix and the matrix U that transforms the adiabatic
states to the diabatic ones must be determined numerically from the properties
of the computed adiabatic wavefunctions. For some examples, we refer to recent
work of Alexander [9] on Ar-NO(?II) and of Klos et al. on He-NO(?II) [10],
X(2P)-H,, with X = F, Cl, Br [8, 11-13], CI(2P)-HCI [14, 15], C1(2P)-CH,
[16], as well as on OH(?IT)-HCI [17].
For cationic open-shell complexes we developed a special method [18]. The
interaction energy of a cationic complex A-B¥ is computed as
E+

int

= E&t + Aint; (7)

0
where Ej

A-B and

= E9p — EY — EY% is the interaction energy of the neutral complex

Aijnt = IPyp — IPg. (8)

The geometry dependent ionization potential IP4p of the complex A-B and
the ionization potential IPp of molecule B are calculated by the outer valence
Green’s function (OVGF) method [19]. This method is very attractive and
efficient since:

1. The calculation of an accurate interaction potential for a neutral closed-
shell complex is considerably easier than for a cationic open-shell complex.
Neutral interaction potentials are already available for many systems.

2. The calculation of ionization energies by the OVGF method is imple-
mented in the GAUSSIAN program package [20] and converges much faster
with the basis size than the calculation of the interaction energy of the
ionic complex by the RCCSD(T) method.
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3. The simultaneous computation of the multiple asymptotically degenerate
potential surfaces that one finds in many open-shell complexes is relatively
easy because the computation of multiple ionization energies of a closed-
shell molecule by the OVGF method is quite simple.

These advantages make the method applicable to obtain full potential energy
surfaces for larger systems.

We tested this method by computing the intermolecular potential of the
complexes Rg-CO1(2%), with Rg = He, Ne, Ar, and the two asymptotically
degenerate potentials for the ground state of the He-HF* (2II) complex, which
are actually degenerate in all linear geometries. Results from Eq. (7) were
compared with the results of a direct calculation of the interaction energy in
the ionic complex. All interaction energies were obtained from supermolecule
calculations with the CCSD(T) and RCCSD(T) methods for the neutral and
ionic complexes, respectively, and all quantities (including A;,¢) were corrected
for the basis set superposition error [21] by the Boys-Bernardi counterpoise
procedure [22]. In these tests we found one problem, however. The major
contribution to the geometry dependent ionization energy difference Ajng
originates from induction effects which are determined by the polarizability
of the neutral molecule A and the charge and multipole moments of the
molecular ion BT. Although the OVGF method includes the effects of electron
correlation to a certain extent it was designed for regular molecules, not for
weakly interacting complexes. Apparently, the amount of electron correlation
in OVGF is not sufficient to provide an induction energy corresponding to fully
correlated polarizabilities and multipole moments of the interacting species.
An analysis of this defect showed that it is, in particular, the long range
behavior of Aj, that is deficient. This can be easily remedied by a simple
correction procedure: subtract the deficient long range induction contributions
from the cationic interaction potentials and replace them with the corresponding
terms computed from accurate correlated monomer multipole moments and
polarizabilities. After this rescaling the interaction potentials of Rg—CO*(?X)
and He-HF*(2I) from Eq. (7) agree with supermolecule RCCSD(T) results
within a few percent for all intermolecular separations [18].

An application of this procedure that is presently pursued is the study of the
lowest five electronic states of the Ar-benzene™ complex [23]. The lowest two
potential surfaces are degenerate when Ar is on the sixfold symmetry axis of
the C¢H{ cation and correlate with the twofold degenerate ground Ej, state of
this cation (Dgj, symmetry). The three higher ones correlate with the E,, and
A,, excited states. Direct RCCSD(T) calculations of the interaction potentials
for all these states would not have been practically possible. All of these states
of CgHy display interesting Jahn-Teller and pseudo Jahn-Teller effects [24-28].
Additional nonadiabatic effects originating from the intermolecular interaction
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might be expected in the rovibronic states of the Ar—benzene™ complex [28-30].

III. APPLICATIONS

Applications of these interaction potentials in our group are the calculation
of bound levels, elastic and inelastic scattering and photodissociation cross
sections, and spectra of several open-shell complexes. The X(2P)-H, complex,
with X = F, Cl, Br, the CI(2P)-HCI complex, the He-HF* (2II) complex, and
the Ar-benzenet complex were already mentioned. In addition, we studied the
Rg-NO(II) complex with Rg = He, Xe, and the He-CO(®II) complex. The
X(2P)-H, and Cl(2P)-HCI complexes are entrance and exit channel complexes
in chemical reactions. The He-HF™* (2II) complex is important for the study
of Renner-Teller coupling [31]. The He-CO(II) complex is of interest because
CO(®M) is a long-lived metastable species which is a candidate for being cooled
to ultralow temperatures by electrostatic deceleration [32]. The complex with He
can be formed by singlet-triplet excitation of ground state He-CO, but is found
to dissociate rapidly by spin-orbit predissociation [7, 33]. The same mechanism
is responsible for spin-orbit inelastic collisions that will play a role in evaporative
cooling of CO(®*II) by He.
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I. INTRODUCTION

Intermolecular interaction potentials (or force fields) are used in a vast area
of modern science. In the simplest cases, i.e., for interactions between atoms
and small linear molecules, the potentials are now usually computed ab initio
or fitted to spectroscopic data. These potentials can be accurate to within a
few percent. For larger molecules, whose condensed phase is often investigated
by molecular dynamics or Monte Carlo simulations, only empirical interaction
potentials—fitted within such simulations to reproduce a subset of experimental
data—are used. Such potentials can be qualitatively incorrect in various
regions of coordinate space despite reproducing experimental observations in
the simulations [1, 2]. For most biomolecular simulations even more crude
potentials are used, assembled as a sum of standarized atom-atom interactions,
disregarding actual molecular environment. Clearly, if ab initio potentials for
such systems were available, these would put this field on a much more certain
footing.

Unfortunately, ab initio calculations of intermolecular potentials for larger
monomers encounter several steep difficulties as the sizes of the monomers
increase above two atoms:

(a) Even a single-point calculation becomes very time-consuming. Reliable
intermolecular interaction energies require inclusion of electron correlation
effects at least at the level of the second-order many-body perturbation
theory (MBPT2), but preferably at the coupled-cluster singles and doubles
plus noniterative triples level [CCSD(T)]. The former method scales as
the fifth and the latter method as the seventh power of system size.
Furthermore, such potentials require about triple-zeta quality basis sets
with diffuse and bond functions [3] in order for basis set truncation
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errors to be of comparable size to theory level truncation errors. As a
consequence, even for triatomic monomers a single-point calculation takes
on the order of one hour on modern processors.

(b) The number of grid points that need to be computed for a potential is
large even if monomers are assumed rigid. In this case the pair potentials
are at most six-dimensional. It was found that to determine the water
dimer potential with accuracy of about 5% one needs to compute about
two thousand grid points [4]. With accuracy goals relaxed, the number of
points can be somewhat reduced, but at least several hundred points will
be needed. For example, the interaction potential for the largest system
computed to date, the dimethylnitramine dimer [5] containing 24 atoms,
required above four hundred grid points.

(c) If the rigidity restriction is removed, the dimer potential for a system
containing N atoms becomes 3N — 6 dimensional. Since the number
of grid points needed to determine a potential grows exponentially
with the number of degrees of freedom, the 3N — 6 dimensionality
makes calculations of such potentials impossible at present, except
for diatomic monomers or atom-triatom interactions. @ Whereas the
rigid-monomer approximation appears to work reasonably well, flexible-
monomer potentials are needed for high-accuracy work on clusters and to
investigate observables depending explicitly on intramonomer coordinates
such as bond lengths in solid phase or infrared spectra of condensed phase
and molecular clusters.

(d) Pair potentials are insufficient for most systems and nonadditive effects
have to be taken into account, i.e., the total potential has to be build
as a sum of many-body potentials. Even if the inclusion of three-body
nonadditive effects appears to be sufficient [2], the three-body potential is
12-dimensional already for rigid monomers.

As the power of computers increases, larger and larger systems will be accessible.
However, it is clear that with brute force approaches the size of the systems
that can be handled will increase extremely slowly. Fortunately, some recently
developed methods for computations of intermolecular potentials bring hopes
for a faster progress.

After a potential is computed on a grid of points, an analytic function has
to be fitted to these points in order to be used in various types of simulations.
Many forms of such functions have been proposed in literature and we are far
from a consensus which of them is most effective.
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II. THEORY OF INTERMOLECULAR INTERACTIONS

The conceptual framework for describing the phenomenon of intermolecular
forces is provided by symmetry-adapted perturbation theory (SAPT) [6-8]. In
two-body SAPT one uses the following partitioning of the total Hamiltonian:
H=Hps+Hg+V =F+V + W, where Hx is the exact Hamiltonian for
monomer X, X = A or B, V is the intermolecular interaction operator collecting
all Coulomb repulsion and attraction terms between all particles of monomer
A and those of monomer B, FF = F4 + Fg is the sum of the Fock operators
for monomers A and B, and W = W4 + Wg is the intramonomer correlation
operator with Wx = Hx — Fx. The interaction energy can then be represented
as a double-perturbation series

Eine = i i EM) (1)

n=1 j=0

with the consecutive superscripts referring to the operators V and W,
respectively. Fach SAPT correction is naturally separated into several com-
ponents, related to the physical picture of intermolecular interactions, such
as the electrostatic, induction, dispersion, and exchange energies. For three-
body interactions, the overall form of the expansion is the same, however,
the operator V' now contains interaction between each pair of monomers and
W =Ws+Wp+W¢o [9, 10].

III. COMPUTATIONAL METHODS

The SAPT approach outlined above provides not only the conceptual
framework for describing intermolecular interactions, but it has been developed
into a robust computational tool [11]. It can be used at various levels of theory,
starting from terms appearing in the Hartree-Fock (HF) interaction energy.
At the highest currently available level, the most time-consuming quantity
to compute is the triple excitations contribution contained in the dispersion
Ec(ﬁfg For a dimer consisting of identical molecules, the
computational cost of this quantity scales roughly as n3n? where n, and n, are,
respectively, the numbers of occupied and virtual orbitals in a monomer [12].
This overall seventh power scaling is the same as in many-body perturbation
theory at the fourth-order level (MBPT4) or in the CCSD(T) method, however,
the calculation of triples contribution in SAPT is faster due to summation

ranges extending only over orbitals of monomers rather than over orbitals of the

energy correction
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dimer. The dispersion energy can also be computed with selected intramonomer
correlation effects summed up to infinity, see Refs. [13-15].

Whereas the use of the SAPT approach to calculate interaction potentials
offers the advantage of a physical insight into the computed quantity, any
electronic structure method that is size-consistent, i.e., dissociates to the sum
of energies of monomers, can be used for this purpose. As mentioned in the
Introduction, intermolecular interaction potentials require taking into account
electron correlation effects, at least at the MBPT2 level. If the accuracy goal
is to reproduce the potential to within a few percent, higher-order methods
such as MBPT4 or the coupled cluster approaches [16] have to be used. The
computer resources required by such methods make applications to monomers
with more than a few atoms not practical at the present time even if monomers
are assumed rigid.

Density functional theory (DFT) is much less time consuming and would
allow treatment of much larger systems. Unfortunately, this method fails
when used in the supermolecular approach to compute interaction potentials
for systems where dispersion is a significant component. Thus, DFT is not
appropriate for studies of intermolecular interactions except for the cases of
strongly, electrostatically bound systems. Numerous papers have been devoted
to this problem and the reader is sent to Ref. [17] for a review and a quantitative
analysis.

Williams and Chabalowski [18] have proposed a perturbational approach
where the interaction energies are obtained using only the lowest-order, compu-
tationally least demanding SAPT expressions, but replacing the HF orbitals
and orbital energies by the Kohn-Sham (KS) counterparts. This approach
will be referred to as SAPT(KS). For medium-size monomers, SAPT(KS) is
about three orders of magnitude faster than the regular SAPT with high-order
treatment of electron correlation. However, the accuracy of the SAPT(KS)
predictions was found to be disappointing [18] even for the electrostatic energy
which is potentially exact in this approach. In a recent paper, Misquitta and
the present author have demonstrated [19] that some deficiencies of SAPT(KS)
stem from an incorrect asymptotic behavior of exchange-correlation potentials
(see also Ref. [20]). Upon applying an asymptotic correction in monomer
DFT calculations, the SAPT(KS) approach was not only able to accurately
recover the electrostatic energy, but also the first-order exchange and second-
order induction and exchange-induction energies. For example, for He, the
sum of these corrections has been recovered with errors of 2-5% (relative to the
nearly exact values from Ref. [21]) for a range of functionals. Dispersion was
reproduced less accurately, with errors of 5-17% for the same functionals. For
other systems, the deviations of SAPT(KS) dispersion energies from benchmark
results are still larger (12-16% for neon, 19-22% for water, and 33-37% for carbon
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dioxide dimers [22]), too large to enable computations of quantitatively correct
interaction potentials.

Very recently Misquitta et al. [23] proposed a new method for computing
the dispersion energy that utilizes frequency-dependent density susceptibilities
(FDDS’s) predicted by time-dependent DFT in an expression which is a
generalization of the asymptotic Casimir-Polder formula (see also Ref. [24]).
This generalization was derived by Dmitriev and Peinel [25] and by McWeeny
[26] and applied with coupled Hartree-Fock (CHF) FDDS’s (polarization
propagators) by Jaszunski and McWeeny [27] and by Knowles and Meath [28].
The CHF and DFT FDDS’s are closely related to the frequency-dependent
polarizabilities and can be directly computed using the methodologies developed
for the latter case [29, 30]. Similarly as for the dispersionless part of the
interaction energy, application of an asymptotic correction is critical. It was
found [23] that the correction of the Fermi-Amaldi form applied as prescribed
by Tozer and Handy [31] is the most robust. The method recovers the dispersion
energies of He, Ne, and H»O dimers to within 3% or better. Since the
computational effort of the new algorithm scales approximately as the third
power of system size, the method is much more efficient than standard wave-
function methods capable of predicting the dispersion energy at a similarly high
level of accuracy.

The development of Refs. [19, 20, 23, 24] paves the road for theoretical
predictions of accurate intermolecular potentials for much larger systems than
it has been possible so far. One can soon expect to see routine calculations of
interactions potentials for rigid monomers with a few dozens atoms. This will
open exciting opportunities to investigate molecules of biological interest.

IV. DIMENSIONALITY PROBLEM

Whereas with the DFT-based SAPT method one should be able to compute
rigid-monomer potentials for molecules much larger than presently possible, even
this very fast method will not be sufficient to evercome the very steep scaling
of difficulty with system size in the case of flexible monomers. With k points
per dimension, calculation of a flexible-monomer potential energy surface for a
dimer would require k36 grid points. The difficulty can be illustrated by the
example of the water dimer potential, whose dimensionality increases from 6D
to 12D if the monomers are allowed to flex. Thus, to generate a flexible potential
comparable in accuracy to the existing rigid-water SAPT-5s potential [4] (fitted
to 2510 ab initio points, i.e., k equal to about 4) would require the calculation
of over 16 million points. Even if a single-point calculation were to take only
about one minute, the whole potential would take dozens of CPU years.
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Most of the published flexible-monomer potentials were obtained from rigid-
monomer potentials by using the “atom-following” approach. If a rigid-monomer
potential is in the form of a site-site fit, changes of internal geometry of
a monomer naturally modify the interaction energy. However, it has been
shown [32] that the atom-following approach performs poorly and in fact
may predict changes opposite to actual ones. Murdachaew et al. [32, 33]
have recently developed a new method of extrapolating the rigid-monomer
potentials to flexible-monomer potentials based on limiting the expensive ab
initio calculations to individual monomers only. Such calculations result in only
k3NA—6 4 [3NB—6 scaling, where Nx is the number of atoms in monomer X.
Thus, for the water dimer only 128 points are needed in this step. The flexible-
monomer properties computed in this step—such as electron densities and van
der Waals asymptotic coefficients—are used together with the rigid-monomer
potential and density overlap integrals to predict the values of the flexible-
monomer potential. The density overlap integrals have to be computed for
all k3N —6 grid points, however, a single calculation of this type takes very little
of CPU time compared to any ab initio calculation of the interaction energy,
even at the HF level. The method has been first tested on the simple example
of Ar-HF [33] showing that, in contrast to the atom-following approach, it does
recover a major fraction of the nonrigidity effect for deformations corresponding
to the ground and lowest excited vibrational states of monomers. Only for very
small intermonomer separation the predictions of the method were not accurate
enough. In this region the interaction energy is small in magnitude compared
to the magnitudes of its individual components. This leads to fairly large errors
in the interaction energy computed as the sum of the components, despite of
the fact that the relative errors of individual components remain small. At this
point the only solution to this problem is to compute a number of ab initio
points in this region. The method has recently been applied to the water dimer
[34]. The root means square error of the flexible-monomer potential computed
in this way is several times smaller than the error of the potential obtained from
the atom-following approach.

V. MANY-BODY POTENTIALS

The interaction energy of N monomers can be expressed as a sum of terms
involving interactions of 2, 3, ... monomers

Eint :Eint[QyN]+Eint[3;N] +---+Eint[N7N]7 (2)
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where K-body contributions to the N-mer energy, Ein[K, N], can be written
as the following sums

Bu[2, N1 =) Em(Qi, Q;)[2,2], (3)
ij
Eint[37N] = Z Eint(Qian7Qk)[373]7 (4)
i(j(k

etc., where Q; = (R;,w;,&;) stands for the set of all coordinates needed to
specify the spatial position R;, orientation w;, and the internal geometry &;
of the ith monomer. The two-body or pairwise-additive interaction energies
Eint[2,2] are just the regular dimer interaction energies. Their sum, Ein[2, N],
is the (pairwise) additive component of the interaction energy of an N-mer. The
higher-body terms, i.e., the nonadditive contributions to the N-mer interaction
energy, are defined recursively. For example, the three-body contribution
to a trimer interaction energy, FEint[3,3], is the difference between the total
interaction energy of a given trimer and the sum of all pair energies.

Three-body SAPT [9, 10, 35, 36] allows direct calculations of the Ein[3, N]
component. Applications of this method to a number of systems allowed to
shed light on the importance of this component of the N-body interaction
potential. For rare gas trimers the nonadditive contribution is dominated by
the first-order exchange and third-order dispersion energies, although for Arg
the exchange-dispersion contribution is quite large. This contribution is critical
for predicting the correct crystal structure of argon [37]. For Ar,—HF all these
components are still important but a very significant role is played also by
the induction and exchange-induction nonadditive contributions. The situation
changes completely in the water trimer. The dispersion contributions are
dwarfed by the very significant induction effects. Even the third-order induction
nonadditivity is very important here. The first-order exchange nonadditivity is
important for all systems.

The overall importance of three-body effects varies from almost negligible for
helium [35] to major for water [1, 2]. For equilibrium structures, the ratio of
the three-body component to the sum of two-body interactions changes from
0.4% for Hes to 16% for the water trimer. The nonadditive contribution can be
of either sign at the equilibrium and frequently changes the sign as the trimer
geometry is changed. When the three-body SAPT potential for water developed
in Ref. [1] was applied to simulations of liquid water, it contributed 14.5% to
the internal energy of water at ambient conditions [2], a similar contribution as
for the equilibrium water trimer. In some cases, however, the three-body effects
can be amplified, like in the case of solid argon [37], or may cancel to a large
extent, as for acetonitril [38].
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One might expect that for clusters larger than trimers and for condensed
phase, four- and higher-body interactions may become important. However, this
does not appear to be the case. When the four- and higher-body effects were
approximated by a polarization model, these contributed 1.4% to the internal
energy of liquid water [2]. Calculations on small clusters also indicate that these
contributions should be fairly small. Ab initio calculations of Refs. [39, 40] have
found that the 4-body contribution to interaction energies varied between —1.2%
and 2.3% for tetramers and between 1.2% and 3.6% for pentamers. The 5-body
contribution to the interaction energy of pentamers was completely negligible as
it ranged between —0.11% and 0.25%. These percentage contributions are likely
to be even smaller if basis sets of sizes larger than double-zeta are used since
small basis sets underestimate pair contributions while giving more saturated
values of nonadditive terms [1].

VI. FITS OF POTENTIALS

Once the interaction energies are computed on a set of grid points, for most
consecutive applications these energies have to be fitted by an analytic potential.
Three-body potentials are a largely unexplored territory [2, 41]. Therefore, the
discussion here will be limited to pair potentials of rigid monomers. The fits are
usually performed by the standard least-squares method. For a large number
of grid points and a large number of nonlinear parameters this procedure is far
from trivial.

There are several possible forms of the fitting functions. These forms can be
divided into two major categories, the center of mass (COM) and site-site fits.
The COM fits are expressed in terms of the distance R between the COM’s of
monomers and a set of Euler angles determining the mutual orientation of the
two monomers. Usually this function is written as a sum of products of angular
functions and radial functions [8]. The angular functions are built from Wigner
functions and form a complete set in the space spanned by the Euler angles.
The radial functions typically contain an exponential factor possibly multiplied
by a polynomial in R plus a sum of 1/R terms, usually multiplied by a damping
function restricting their divergence at small R. An example of such a fit for the
case of the water dimer can be found in Ref. [42]. The advantage of this fitting
form is its elegant mathematical structure, close relation to the formalism used
in the theory of molecular scattering, and a direct connection with the van der
Waals constants [43]. The major disadvantage of COM fits compared to site-site
fits is their larger complexity at the same level of fit accuracy. For example, the
COM fit for the water dimer from Ref. [42] is 1400 times more time consuming
to compute than the site-site fit from Ref. [4]. For larger monomers one may
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expect the convergence of the COM expansion to get gradually worse, for the
same reasons for which COM asymptotic expansions quickly diverge [8] in such
cases.

The simplest site-site expansion builds the interaction potential from functions
depending only on distances r,;, between the pairs of sites from different
monomers. The sites are usually put on all atoms and in addition a number
of off-atomic sites may be introduced. The total potential can be built as a sum
of site-site functions or may include also the products of these functions or some
functions depending on more than one site-site coordinate. More complicated
site-site potentials are anisotropic, i.e., depend not only r,;’s but also on the
mutual orientation of the monomers. The latter form is firmly based in the
so-called distributed multipole expansion [8].

For small molecules, the sum of isotropic site-site terms with sites limited
to atoms is known to result in poor quality fits, no matter how flexible the
individual site-site functions are. There is no real evidence that the performance
of this type fits gets better for larger molecules, although such functional forms
are used almost exclusively in simulations for biomolecules. If a few off-atomic
sites are added, such a fitting form can provide very high accuracy, as shown for
example in Ref. [4] where five off-atomic sites were used for the water monomer
(three symmetry-distinct off-atomic sites). It should perhaps be mentioned that
the values of the individual site-site functions in such fits are often far from
the physical range of interaction energies and the total potential results from
significant cancellations between the individual site-site functions. This becomes
an issue for applications in path integral Monte Carlo simulations which apply
propagation to individual isotropic site-site functions. Potentials with a more
balanced set of site-site functions can be obtained using least-squares fitting
with constraints [44].

Not much is known about the importance of inclusion, in addition to the sum
of isotropic site-site functions, of the product terms. Fits containing a large
number of product terms have recently been used by Koch et al. [45], but the
role of the products terms has not been analyzed. Presumably if enough off-
atomic sites are included, the product terms are not needed, as evidenced by
the high accuracy of the water dimer fit from Ref. [4].

The individual site-site functions can be assumed in various forms. The clas-
sical Lennard-Jones 12-6 form is still sometimes used, although an exponential
plus a sum of (possibly damped) powers of 1/r4; is now a more common choice.
The exponential term may be multiplied by a polynomial of 74, as in Ref. [4].

The anisotropic site-site potentials have the significant advantage that if sites
are limited to atoms, their asymptotics can be obtained directly from distributed
multipoles and polarizabilities [8, 46]. One may expect that the individual
atom-atom contributions will be physically interpretable and perhaps allow for

74



some transferability between different systems. Such fits are somewhat more
complicated than the fits with isotropic sites only, but if the angular components
are restricted to low-order terms, the computational cost may be reasonable.
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I. INTRODUCTION

The singles and doubles coupled-cluster method that includes a perturbational
correction for connected triple excitations, CCSD(T), has been used extensively
in recent years to compute accurate potential energy surfaces (PESs) for use in
dynamics calculations, especially determination of vibrational or rovibrational
energy levels (for example, see Refs. 1-4, and references therein). However,
CCSD(T) calculations become prohibitively expensive, especially when consid-
ering the number of points needed for a potential energy surface, once the one-
particle basis set approaches 250 to 300 basis functions. For calculations of this
size or larger, researchers have generally performed a few calculations that are
then used to modify or improve a PES computed with a smaller one-particle
basis set.

The reason that large basis set CCSD(T) calculations become prohibitively
expensive is largely due to the amount of data manipulation and/or I/O that
must be done. For accurate CCSD(T) calculations, large one-particle basis sets
are used, beginning with at the very least a basis similar in quality to Dunning’s
cc-pVTZ basis. In this case, the number of (vv|vv) integrals will far exceed
the number of all other types of integrals, were v refers to a virtual molecular
orbital in the reference function. In addition, the number of (ov|vv) molecular
orbital integrals will far exceed the remaining types, specifically (ov|ov), (oo|vv),
(oo|ov), and (oo|oo), where o refers to an occupied molecular orbital in the
reference function.

It is possible to use integral direct coupled-cluster methods to avoid the I/0,
but this does not reduce the amount of data manipulation, and significantly

7



increases the CPU time of a CCSD calculation due to recomputation of the
atomic orbital integrals during each iteration of the coupled-cluster procedure
(for example, see Ref. [4]). In addition, the (T) perturbative correction is
not as amenable to integral direct techniques. We point out that reduction of
the amount of data to be used is important, not just to make single processor
calculations run more efficiently, but even more so that distributed memory
parallel coupled-cluster calculations will run efficiently.

In 1994, Rendell and Lee [5] proposed a method in which the (vv|vv) and (ov|vv)
classes of integrals would be approximated by use of a resolution of the identity
(RI) in the form of the ”V” approximation defined by Vahtras et al. [6]

(abled) = 3 (abjm)(mlcd) (1)
(ialed) = (ialm)(mled) (2)

Equations (1) and (2) assume that the two-center V matrix has been included
according to the form given in Ref. 5. The interested reader is referred
to Ref. 5 for complete details. In 1994, the performance of computers was
somewhat different to that of today, and thus Rendell and Lee proposed using
this approximation to eliminate storage and I/O bottlenecks. However, disc
storage has become inexpensive, such that it is usually not a bottleneck in
CCSD(T) calculations today, although I/O remains a bottleneck, especially
for PCs. Currently, high performance computing is almost entirely defined as
distributed memory parallel computing, and in spite of considerable effort (see
Ref. 7 and references therein), CCSD(T) codes do not generally scale well in a
distributed memory parallel environment.

It is our contention that the method proposed by Rendell and Lee holds the most
promise in allowing large, accurate CCSD(T) calculations to be run efficiently in
both single processor and distributed memory parallel environments. Incorpo-
ration of Equations (1) and (2) into the coupled-cluster procedure significantly
reduces the amount of data that must be either read from disc (i.e., I/O) or
distributed through message passing in a parallel environment. Hence the use
of approximate (vv|vv) and (ov|vv) integrals not only benefits serial CCSD(T)
calculations, but it makes development of a distributed memory parallel code
simpler due to the significant reduction in data. We point out that use of
approximate integrals for the (vv|vv) and (ov|vv) classes of integrals may be
performed in conjunction with local correlation CCSD(T) techniques, thereby
reducing the amount of data manipulation necessary in those calculations as
well, although for purposes of determining a PES for dynamics calculations,
the local correlation technique must be sufficiently reliable and not lead to a
"bumpy” surface. The one remaining question is to what extent the use of
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approximate (vv|vv) and (ov|vv) integrals affects the accuracy of a CCSD(T)
PES. Below we discuss a benchmark study on the fundamental vibrational
frequencies of cyclopropenylidene.

II. RESULTS AND DISCUSSION

We have studied the fundamental vibrational frequencies of cyclopropenyli-

dene previously [8]. In Ref. 8, we used the CCSD(T) method in conjunction
with the cc-pVTZ one-particle basis set to compute a quartic force field for
cyclopropenylidene. Second-order rovibrational perturbation theory was then
used to compute fundamental vibrational frequencies and other spectroscopic
constants. In the present study we have computed a CCSD(T)/cc-pVTZ
quartic force field using approximate (vv|vv) and (ov|vv) integrals as outlined
above. We will also present results for geometry optimizations and harmonic
frequencies determined with the cc-pVQZ basis set and for basis sets that allow
for correlation of the carbon 1s core electrons. For all of the calculations
involving approximate integrals, the RI basis was taken simply as the full atomic
orbital basis.
The errors in the CCSD(T) calculations when using approximate (vv|vv) and
(ov|vv) integrals are small and become smaller as the basis set is improved. For
the cc-pVTZ basis set, the average absolute error in the C-C and C-H bond
distances is only 0.00025 A while for the cc-pVQZ basis set the average absolute
error reduces to only 0.00003 A. The average absolute error for the two unique
bond angles in cyclopropenylidene is also very small: 0.009 degrees for the cc-
pVTZ basis set and 0.0015 degrees for the cc-pVQZ basis set. For the harmonic
frequencies the average absolute errors are also acceptably small: 0.76 cm ! for
the cc-pVTZ basis set and 0.20 cm—!. For the cc-pVTZ fundamental frequencies,
the average absolute error is 1.66 cm ™!, which is somewhat larger than that
for the harmonic frequencies, but still acceptably small. Further investigations
of the effect of the use of approximate (vv|vv) and (ov|vv) integrals on the
anharmonic corrections and other spectroscopic constants will be discussed. The
reduction in data is significant for these calculations. For the cc-pVTZ basis set
(Cy symmetry calculation), the (vv|vv) integrals use 0.523 Gb of disc space,
while the (ov|vv) integrals use 0.069 Gb. The next largest class of integrals
use only 0.019 Gb. In contrast, the (vv|m) integrals would use only 0.005 Gb
of file space. For larger basis sets, the savings are even more significant, while
the error becomes even smaller! For example, the (vv|vv), (ov|ov), and (vv|m)
integrals use 8.053 Gb, 0.523 Gb, and 0.039 Gb, respectively, for a C; symmetry
calculation with the cc-pVQZ basis set. The core-correlation basis set is even
larger, and results for this basis set will also be presented and discussed.
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III. CONCLUDING REMARKS

The use of approximate (vv|vv) and (ov|vv) integrals in CCSD(T) calculations
leads to a significant reduction in data that must be either read from disk or
stored in memory and accessed through message passing in a distributed memory
parallel implementation. Through our benchmark study on the anharmonicities
and spectroscopic constants of cyclopropenylidene, we show that approximating
these integrals leads to very small errors relative to the exact integral CCSD(T)
results. In fact, the error is significantly less than the residual one-particle
basis set error. Based on these results, it is our assertion that the use of
approximate (vv|vv) and (ov|vv) integrals is cost-effective when evaluating an
accurate CCSD(T) PES for use in dynamics calculations, especially when using a
one-particle basis set of at least cc-pV'TZ quality, and the effectiveness increases
with larger one-particle basis sets. An analysis of timings will be presented in
order to demonstrate this assertion. We will discuss strategies for when this
approach should be used. We will also discuss our efforts for development of a
production level code for approximate integral CCSD(T) calculations.
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I. INTRODUCTION

Quantum chemistry is now capable of calculating numerous molecular prop-
erties to high accuracy. Comparing these calculations with experimental
measurements requires more than performing a single calculation at a particular
nuclear geometry, however. In the real world the nuclei are moving, giving rise to
various nuclear-motion contributions to properties. Perhaps the most obvious is
vibrational averaging — the property of interest must be averaged over a given
vibrational state or states (most commonly the zero-point level). For some
properties there may be a contribution purely from the nuclear motion, such
as the dipole moment in HD, or the so-called “pure vibrational” contributions
to electric and magnetic properties. In addition, rotational motion may play a
role, for example via centrifugal distortion. In this paper we will look at different
methods for accounting for vibrational contributions to properties in the Dalton
quantum chemistry program [1].

Dalton is a freely available program for calculating molecular properties at
the SCF, DFT, MP2, MCSCF and CC levels. There is a particular emphasis
on electric (static and frequency-dependent) and magnetic properties, response
methods, and potential energy surfaces. Rather than include a laundry list
here we refer the interested reader to the Dalton website [2] for full details on
the capabilities of the program, and how to obtain a copy. In what follows
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we will concentrate exclusively on the treatment of nuclear motion. We first
discuss manual and automatic methods for generating a property surface (the
variation of a given property with geometry), and then methods for carrying
out vibrational averaging of properties very efficiently. Finally, we will briefly
mention pure vibrational contributions to electric and magnetic properties.

II. PROPERTY SURFACES BY HAND

The most obvious way to calculate the geometry dependence of a property is
simply to run the program multiple times at a range of geometries, computing
the property on a grid. This is an obvious, if somewhat ad hoc, tactic,
used with all programs for more than forty years, and we mention it here
only for completeness and to remind the reader of its weaknesses. Namely,
a large number of calculations must be performed, even if we are interested
only in low-lying vibrational levels, unless the molecule is very small (say, four
atoms or fewer). Further, the resulting points must be fitted to some sort of
multidimensional surface, itself often a time-consuming step, especially when
large variations in geometry are considered.

III. PROPERTY SURFACES AUTOMATICALLY

Often, a more elegant approach is to write the property dependence on
geometry as a Taylor expansion around a minimum in the energy. This is
particularly useful where over the region of interest the property can be well
approximated by rather low-order derivatives like fourth or fifth. We then
face the perennial dilemma of quantum chemistry: do we implement analytical
formulas for the various derivatives, or compute them by finite differences? And
if the latter, do we compute higher derivatives as finite differences of energies,
or as finite differences of lower derivatives? The analytical approach is always
to be preferred on the grounds of efficiency and precision, so the answers to
these questions are determined primarily by the effort required to program the
analytical derivatives. Dalton can calculate analytical nuclear-motion gradients
for almost all methods and nuclear-motion Hessians for many, although not for
CC methods (ACES II offers that capability [3]). Dalton does, however, offer
analytical derivatives with respect to other perturbations, such as electric and
magnetic fields (external and internal) through fourth order.

Finite difference estimates have been programmed automatically [4], using a
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general recursive finite difference formula

an —-n n1 N2 T,
=90 z bkl ko T bk:m (1)

de'dxl? . ..dzor
1 2 m1X=Xo k1,k2,...km

P (29 + k16,35 + k26, - -+ , 22, + ki)

for the property P and displacements d, where the summation ranges are
—[(ni+1)/2] <k < [(n +1)/2]. The factors b} are given by

. . . 1 . .
n=2% __ .21, n=2i+1 __ 2% 2%
by " =ay; by D) (a3)_2 — G3jy2) 5 (2)
where the auxiliary coefficients a} are given by

ag=1; af =al ' —al7, (3)
noting that a? = 0 for i)n. Eq. 1 allows us to compute any derivative desired
of a given property. The property may itself be an energy derivative, so for
example in principle we could calculate an eighth derivative of the energy by
numerically calculating the fourth derivative with respect to nuclear motion of
an analytically computed second hyperpolarizability.

In practice, of course, there are numerical issues to contend with in the use
of Eq. 1. One would like to keep the displacements § as small as possible
to minimize the error from contamination of the finite difference estimates by
higher derivative contributions. On the other hand, the smaller the §, the more
precision is needed in the calculation to ensure meaningful results. A simple
analysis [4] leads to an estimate for the optimum displacement for calculating
the nth-order derivative as

1
€\ n+2
=) @
where the property P is determined to within an accuracy € and « is an order-
of-magnitude estimate of the (n + 2)th derivative of P.

For higher derivatives or many nuclei, the finite-difference approach still
requires many calculations and it is therefore desirable to use additional means to
reduce this number. Accordingly, Dalton uses the full symmetry of the molecule
(including groups with higher-order axes, although currently cubic groups are
not accommodated) to determine which derivatives are symmetry-independent
and non-zero [4]. Only these are computed, after which the nonzero symmetry-
dependent derivatives are generated from the appropriate formulas. The actual
property calculations within Dalton use at most Dsp and its subgroups. Where
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there are different possible choices of independent and dependent derivatives,
Dalton automatically chooses as the independent values those that will retain the
highest symmetry after the nuclei are displaced, leading to the fastest property
calculations.

Once all the desired derivatives are computed, the Taylor expansion can
be used to calculate the vibrational averages of the property, spectroscopic
constants, etc. In addition to harmonic frequencies, Dalton can calculate vibra-
tionally averaged geometries [4] and vibrationally averaged spin—spin coupling
constants [5] using second-order perturbation theory to treat vibrational motion.
Another possibility is to use the derivatives as input into a suitable vibrational
wave function program. We have made much use of the program SPECTRO [6],
which also employs second-order perturbation theory to treat vibrations. Once
again, for many atoms in the molecule this can require considerable work. For
vibrationally averaged molecular properties, at least over low-lying vibrational
levels, another approach based on a slightly different Taylor expansion can be
used.

IV. PROPERTY SURFACES EXPANDED AROUND AN EFFECTIVE
GEOMETRY

As we noted in the previous section, the usual Taylor expansion of a property
is performed around a minimum in the potential energy surface, at which the
nuclear-motion gradient is of course zero. If the property of interest is expanded
around the same point, a perturbation-theoretic analysis can be used to derive
approximate formulas for the corrections to the property for, e.g., zero-point
motion [7]. A knowledge of at least the cubic terms in the potential, as well as
the second derivative of the property with respect to nuclear displacements, is
required. We can recast the calculation of vibrational corrections to properties
in the following way.

Instead of expanding the potential and the property surface around a
minimum (the equilibrium geometry, designated r., and characterized by
E](l) = 0, where E](-l) is an element of the nuclear-motion gradient vector),
we expand around a new point reg by minimizing not the electronic energy E
but £+ % >, wi: the sum of the electronic energy and the zero-point vibrational
energy [8]. It is straightforward to show that at rex we have

W, 1B
Ej +4; Wi =0 ©)

which is a relationship between the nuclear-motion gradient and the third
derivatives [9]. This can in fact be used to develop a method for a single-step
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calculation of reg, starting from r., since some simple manipulations give

(3)
1 E; jii
Teff,j =Tej — 13 Z —w: : (6)
i

where the third derivatives are evaluated at r..

What are the advantages of this reformulation? First, the reg geometry
is easily shown to be the geometry averaged over the zero-point vibrational
level [9]: this is often denoted rg, although strictly speaking an experimental rq
geometry would be derived from the zero-point-averaged rotational constant By,
which is not quite the same thing. Second, in the perturbation-theoretic
expressions for the vibrationally averaged property, the contribution from the
leading term in the anharmonicity of the potential vanishes. We can expect
much better convergence of the perturbation series under these circumstances.
This modified expansion point was originally suggested for use in, e.g., hydrogen-
bonded complexes, where the intermolecular potential is very anharmonic, and it
performs very well there. In the calculation of vibrationally averaged properties,
its use means that we require only the property evaluated at the new expansion
point, and the diagonal second derivatives of that property with respect to
normal coordinates, evaluated again at reg [10].

The calculation of the expansion point 7e¢ and vibrationally averaged
properties is completely automated in Dalton [10]. The user first calculates the
r. geometry at the desired level of computation. Dalton then determines the
Teff geometry, a step which requires evaluation of the Hessian and 2(3N —6) + 1
gradient evaluations for an N-atom molecule. Finally, at the r.g geometry the
second derivatives of the property are calculated and used in the perturbation-
theoretic expressions for the vibrationally averaged properties. This requires
an additional Hessian evaluation and 2(3N — 6) + 1 property evaluations.
The program uses normal coordinates — since the expansion point is not
the minimum of the potential a projection operator is applied to eliminate
translational and rotational motion from the Hessian. We note also that
Eckart axes are used to ensure that property tensors behave continuously as
the geometry changes from 7, to res-

We may note finally here that for some properties it may be possible to
construct empirical rules for the effects of vibration. For example, for proton
NMR shieldings (chemical shifts) it has been possible to devise a table of additive
functional-group contributions which when added to chemical shifts calculated
at 7. provide a rather accurate estimate of the effects of zero-point vibration [11].
Unfortunately it is not always possible to do this: we were unable to estimate
useful functional-group vibrational corrections for 13C or 7O chemical shifts,
for instance. Other applications of this approach are described in a forthcoming
review [12].
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V. PURE VIBRATIONAL CONTRIBUTION TO PROPERTIES

In addition to the vibrational contributions to properties obtained by
averaging over zero-point motion, there is another possible contribution from
vibration (see, e.g., Ref. [13]). We denote vibronic states of the system by |Kk),
where K labels electronic states and k vibrational levels within those states, and
as a simple illustration, we consider the ground state and a static second-order
property given by

(00|01 | K k){Kk|O»|00)
Poo = Z o i ) (M)
Kk#£00 Kk — =0
where @) and O, are appropriate operators (dipole operators for P the
polarizability, for example).

We can distinguish two cases of interest here: K = 0 (in which case k # 0), and
K # 0. The former involves contributions from the excited vibrational levels of
the ground electronic state to the property of interest. It is this contribution that
constitutes the “pure vibrational” contribution to P: it can be seen to involve
vibrational transition moments over the operators &) and €,. Conversely,
terms in Eq. 7 in which K # 0 but & = 0 comprise the zero-point averaged
property value discussed in the previous section. Obviously there may also be
contributions from terms in which both K # 0 and k # 0, but this is beyond
the scope of our analysis here.

Eq. 7 is, as noted, a simplified example for illustration. In practice we
may be interested in higher-order properties, such as hyperpolarizabilities, and
frequency-dependent as well as static values. General expressions for pure
vibrational frequency-dependent higher polarizabilities were given by Bishop
and Kirtman [13], and similar formulas for the hypermagnetizability (a fourth-
order property involving two electric and two magnetic perturbations) were given
by Ruud et al [14]. These formulas involve products of frequency-dependent
property derivatives, which are computed in Dalton using analytical linear,
quadratic and cubic response functions. An auxiliary program is used to
calculate the necessary property derivatives and to combine them, giving the
pure vibrational contributions.

VI. CONCLUSIONS

We have reviewed here, rather superficially, various approaches available
within the Dalton quantum chemistry program for calculating the contributions
molecular vibrations make to molecular properties. In the space available it is
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impossible to discuss numerical results, for which the reader is referred to the
original literature. We emphasize here, however, that if the goal is to perform
accurate calculations that can be compared with experiment, the treatment of
vibrational effects is indispensable.

Acknowledgments

Part of this work was performed when some of the authors were at the
University of California, San Diego, where the work was supported by the
National Science Foundation through Grant No. CHE-9700627 and Cooperative
Agreement No. DACI-9619020, and by a grant of computer time from the San
Diego Supercomputer Center. The work was also supported by the Wolfson
Foundation through the Royal Society.

[1] T. Helgaker, H. J. A. Jensen, P. Jgrgensen, J. Olsen, K. Ruud, H. Agren,

A. A. Aver, K. L. Bak, V. Bakken, O. Christiansen, S. Coriani, P. Dahle,

E. K. Dalskov, T. Enevoldsen, B. Fernandez, C. Hittig, K. Hald, A. Halkier,

H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch,

K. V. Mikkelsen, P. Norman, M. J. Packer, T. B. Pedersen, T. A. Ruden,

A. Sanchez, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sylvester-Hvid,

P. R. Taylor and O. Vahtras, Dalton, an ab initio electronic structure program,

Release 1.2.

[2] http://www.kjemi.uio.no/software/dalton/dalton.html.

[3] J. F. Stanton and J. Gauss, Int. Rev. Phys. Chem. 19, 61 (2000).

[4] T. A. Ruden, P. R. Taylor, and T. Helgaker, J. Chem. Phys. (submitted for
publication).

[6] T. A. Ruden, O. B. Lutnas, T. Helgaker and K. Ruud, J. Chem. Phys. (in press).

[6] sPECTRO v7.0 (1999), written by J.F. Gaw, A. Willets, W.H. Green, and
N.C. Handy.

[7] C. W. Kern and R. L. Matcha, J. Chem. Phys. 49, 2081 (1968).

[8] P.-O. Astrand, G. Karlstrom, A. Engdahl, and B. Nelander, J. Chem. Phys. 102,

3534 (1995).

P.-O. Astrand, K. Ruud, and P. R. Taylor, J. Chem. Phys. 112, 2655 (2000).

uud, P.-O. Astrand, and P. R. Taylor, J. Chem. Phys. 112, 2668 (2000).

=

K
K. Ruud, P.-O. Astrand, and P. R. Taylor, J. Am. Chem. Soc. 123, 4826 (2001).
K. Ruud, P.-O. Astrand, and P. R. Taylor, J. Comp Meth. Sci. Eng. (in press).
D. M. Bishop and B. Kirtman, J. Chem. Phys 95, 2646 (1991).

K. Ruud, D. Jonsson, and P. R. Taylor, Phys. Chem. Chem. Phys. 2, 2161 (2000).

87



A. Miani, J. Tennyson and T. van Mourik (eds.)
High Accuracy Potentials for Quantum Dynamics
© 2003, CCP1/CCP6/ChemReact, London

Subwavenumber Accuracy for the Ab Initio
Rotation-Vibration Transitions of Water.

Oleg Polyansky

Department of Physics and Astronomy, University College London,
Gower Street, WC1E 6BT, London, UK

In this paper I would like to present the results of extensive efforts of a big
group of researchers [1] to increase the accuracy of ab initio calculations of water
monomer molecular spectrum. Why anyone would bother to do that? There
are many reasons. The description of motivation falls naturally into two parts
— first — the reason for the precise ab initio calculations of any molecule — and
second - the particular interest in water.

The development of high resolution molecular spectroscopy started with
the microwave spectra of small molecules - like ammonia. The experimental
observations of the molecular lines were very accurate - with kHz accuracy
and were limited in the spectral region. Moreover they were limited to
the mostly ground vibrational state of molecules, as the room temperature
Boltzmann factor allowed only strong lines in the ground state to be observed.
The vibrational spectra of molecules were observed with much less accurate
experimental tools. Thus the theory of calculation of high resolution molecular
spectra was concentrated in the very accurate knowledge of the energy levels
in the isolated vibrational state (primarily ground state). Very accurate
phenomenological theory of effective Hamiltonians was developed based on the
perturbation theory.

The experimental developments in the last two decades have required a drastic
change of viewpoint. The observation of infrared and optical spectra started to
catch up with the microwave in its sophistication and accuracy mostly due to the
developments of the lasers. The sensitivity of the spectrometers went up and up
so that the line density became higher and higher. Warming the cell produced
spectra at hundreds and even thousands of degrees. Spectra with a density of
lines up to 50 per wavenumber began to appear. The culmination of this process
was the observation of the predissociation spectrum of Hf by Carrington and
coworkers [2] which resulted in the line density of 300 per wavenumber. This
process changed the accent of theory. Reproduction to experimental accuracy
of a few kHz lines belonging to low lying vibrational states became a secondary
issue. The major problem gradually changed to the task of calculating the
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lines with infrared accuracy (about 1072 of cm™!) but for all the vibrational-
rotational states up to dissociation.

Fortunately lasers as a tool of experimentalists appeared about the same
time as computers, the tool for theoreticians began to develop explosively.
The key technique for calculations of vibration-rotation energy levels for
triatomic molecules was the numerical computer simulation of spectra based
on variational calculations. The exact kinetic energy operator in internal
coordinates developed by Sutcliffe and the numerical technique developed
by Tennyson and Sutcliffe [3] allows us to switch from phenomenological
perturbation calculations of the rotational levels in the low lying vibrational
states to the calculation of all the rotation-vibration levels up to dissociation.
This technique gives us the opportunity to calculate these energy levels to infinite
accuracy, provided the Born-Oppenheimer approximation holds and we find the
way to calculate infinitely accurate potential energe surfaces (PES).

This is a critical point. Comparison of the accuracy of calculations of energy
levels using two PES - one obtained by pure fitting of the PES to experimental
energy levels (PJT) [4] and the other - using a very accurate ab initio PES as a
starting point for the subsequent fit to the experimental levels due to Partridge
and Schwenke (PS) [5] shows, that the improvment is of about one order of
magnitude. This extremely important fact alone necessitates the development
of methods for very accurate ab initio potential calculations. Apart from the
necessity of using ab initio PES as a starting point for better fitted surfaces,
with the final goal of obtaining experimental accuracy for the fitted energy
levels, there are other reasons for the accurate ab initio calculations of PES.
Among them are problems with the extrapolation using fitted surfaces. It is
well known, that whereas the optimisation of parameters gives excellent results
for the interpolation - the extrapolation of the energy levels beyound the scope
of energies used in the fit is often problematic. This problem is even more severe
for the important problem of the calculation of intensities - fitted dipole moment
surfaces turn out to be much less reliable, then the ab initio ones.

The conclusion is that accurate ab initio surfaces are indispensible for accurate
variational calculations of rotation-vibration energy levels of molecules in highly
excited states. The use of such calculated energy levels in spectral analysis
of molecular spectra would result in better understanding of experimentally
observed molecular spectra. Let me give you few examples.

1. Already mentioned Carrington’s Hf spectrum which has defied interpre-
tation for 20 years since its first observation [2]

2. The sunspot spectrum [6], only a portion of which - up to 15 % of the lines
- we managed to assign.

3. Difference bands spectra of water [7] which we assigned only due to
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accurate variational calculations of water PES [4].

4. The weak lines of the infrared and optical spectrum of water up to
ultraviolet spectral region. Analysis of these lines is necessary for the
accurate modelling of water in the Earth’s atmosphere.

5. High temperature water spectra in the laboratory and in the atmosphere
of cool stars.

As most examples of spectra given in the previous paragraph belong to water,
it is appropriate to say a few words on the second part of the motivation for
this work. The reason we concentrated on the water molecule is twofold. The
importance of water for the atmospheric absorption, astrophysics and flame
analysis resulted in very extensive experimental observations of the spectra of
this molecule. Hence thousands of energy levels of different water isotopomers
up to very highly excited vibrational and rotational quantum numbers are known
experimentally, which allows us to make the comparison of our calculations on
water energy levels with this extensive set of experimental data. Almost 18
000 levels were used to calcualte the standard deviation of our calculations. In
turn it allows us to produce reliable predictions for the levels not yet observed
experimentally and waiting their assignment and understanding.

As the question of motivation of our developments is covered by the above
paragraphs let us consider the details of our most recent calculations.

The best previous water potential has been published in 1997 by Partridge
and Schwenke [5]. For that calculation the MOLPRO program was used [8] at
the multireference configuration interaction (MRCI) level. A basis set with the
partially augmented 5z level was used. A core-valence correction to this surface
was also calculated. Already in that paper [5] it was clear, that the futher
increase of the basis set to 6z level would give quite significant contribution to at
least angular dependence of the ab initio energies. In [5] a table was presented
where the deviation of 6z basis set calculations from partially augmented 5z
was up to 60 cm™! from equilibrium at about 104° to linear - 180° positions.
This deviation might contribute up to a few tens of cm™' to the bending
vibrational levels. Our calculations of the relativistic correction in [9] gave
a significant improvement in the stretching energy levels in comparison with
PS, but worsened bending levels by up to 20 em~!. It became clear, that
a further increase of the basis set up to 6z or even higher was necessary in
order to obtain better agreement with experiment. Our phenomenological one-
dimensional correction to the barrier to linearity to PS potential [10], which
modelled a possible effect of a 6z basis set calculation, proved that at least
few times better standard deviation was achievable, provided we could use 6z
basis set for our calculations. These calculations proved to be computationally
very demanding, but doable with the modern computer power. 64 processors
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TABLE I: Predicted vibrational band origins (VBOs) for various theoretical models [1].
Results are presented as differences from the observed values in cm™!. The standard
deviation, o, is for all experimentally known VBOs.

state obs [19] 52  6Z CBS CBS+CV +rel +qed +BODC
(010) 1594.74 —2.99 —2.29 —0.32 0.48 —0.81 —0.75 —0.32
(020) 3151.63 —4.22 —2.38 —0.78 116 —1.57 —1.44  —0.56
(030) 4666.78 —6.30 —3.24 —1.52 2.05 —2.37 —2.16 —0.78
(040) 6134.01 —9.81 —5.563 —2.74 3.20 -3.30 —-3.00 —1.06
(050) 7542.43 —14.70 —9.18 —4.71 4.82 —4.45 —4.02 —1.41
(101) 7249.81 12.51 10.76 9.32 —-5.35 1.70 143 0.60
(201) 10613.35 18.72 16.46 13.97 —7.47 298 257 1.23
(301) 13830.93 25.72 22.81 18.74 1.95 4.59 4.06 2.05
(401) 16898.84 32.56 28.92 23.06 —10.17 6.11 5.49 2.74
(501) 19781.10 40.72 35.96 28.68 —10.72 9.04 8.28 4.65
(601) 22529.44 51.14 43.41 34.17 —11.88 11.69 10.81 5.94
(701) 25120.27 63.29 51.75 38.66 —13.13 13.70 12.75 6.46

all o 22.84 19.74 16.56 7.85 4.23 3.83 1.90
5Z=aug-cc-pV5Z MRCI; 6Z=aug-cc-pV6Z MRCI; CBS=MRCI extrapo-
lated to the complete basis set limit; CBS+CV=CBS + core correlation
relation; rel=CBS+CV with relativistic effects; QED=rel with one ele-
ctron Lamb shift; BODC=QED with Born-Oppenheimer Diag. Correc.

calculation on the 512 processor Origin3000 at Manchester University computer
center turned out to be necessary to calculate one point at the MRCI level with
a 6z basis set. Up to three hours per point was the computer time requirement.
We calculated about 400 points in order to produce ab initio PES valid up to
30000 cm~!. Modelling of the behaviour of infinite basis set by the complete
basis set extrapolation [7] of the set of quadruple-zeta, 5z and 6z basis set proved
to be also important to improve further the overall accuracy of the final results
(see below). However, just brute force increase in the basis set is limited (a 7z
basis set is hardly doable at present at the MRCI level) and does not completely

solve the accuracy problem when the goal is to obtain better then 1 cm™! results.

A matter of immense importance for that purpose is the effects of the
breakdown of Born-Oppenheimer approximation. In [11] several years ago
we showed, using phenomenologically constructed surfaces, that the problem
of deuterium isotopomers of Hj could be solved using the adiabatic mass
dependent correction to the Born-Oppenheimer surface. High quality ab initio
surfaces accurate to 1 cm~! [9] were obtained for Hi already 10 years ago, since
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TABLE II: Standard deviation (o) with which our final (CBS+CV+rel+QED+BODC)
potential reproduces the vibrational-rotation term values. [7]

Isotopomer ¢  Jmax N(levels) Maximum Deviation

cm™! obs—calc J
H,!%0 1.17 20 9426 6.5 7
H,!"0 0.56 12 1083 1.4 12
H,20 0.65 12 2460 2.3 6
D,!%0 0.71 12 2807 3.0 7
HD!*0 0.47 12 2019 —1.2 11
All 0.95 20 17795

it helps to have only 2 electrons. The spectroscopically determined PES using ab
initio methods [9] as a starting point gave an excellent wtandard deviation of 0.01
cm L. It was a shock for us at the time, when this very same surface gave only
a 2 ecm™! accuracy for HyDt and DoH™ isotopomers. Adiabatic effects proved
to be the reason [11]. We used a primitive, SCF level of theory to calculate
the adiabatic surface for H and it showed some significant contribution to the
rotation-vibration energy levels. We decided to model the nonadiabatic effects
using the mass manipulation following diatomic results. That proved to be
very successful for Hf [12]. We achieved 0.03 cm™! overall accuracy for all
isotopomers using the ab initio potential of Kutzellnigg et al. [13]. The first ab
initio adiabatic surface of water was published by Zobov et al. [14] using an SCF
level calculation. More accurate up to date calculations of both adiabatic and
nonadiabatic effects were provided by Schwenke [15, 16] and they are included
in our final PES [1]. One more correction to the nonrelativistic BO PES is
worth mentioning. I am talking about the quantum electrodinamic correction
[17] which contributes up to 1 cm™' to the rotation-vibration energy levels
calculation. Our overall accuracy is so high, that the inclusion of this exotic
correction results in the significant lowering of the overall standard deviation.
Our final results are presented in the Tables 1 and 2. Table 1 illustrates the
change in accuracy of water energy levels calculations. From this table one
can see the contribution of different factors to the improved accuracy. These
factors are - increase of the basis set, extrapolation to the basis set limit and
inclusion of various corrections. Our final results are presented in Table 2. Table
2 illustrates that on average for all major isotopomers and most of the known
experimentally values of the rotational quantum numbers of J, our accuracy is
better then 1 cm~! .

In conclusion I would like to mention that we also performed spectroscopic fitting
of the PES using a starting point different from that of PS, though as yet not our
present final surface [18]. We used PS’s ab initio surface augmented with our
relativistic and quantum electrodinamic corrections together with Schwenke’s
adiabatic correction. As the complete basis set extrapolated 6z basis surface
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was unavailable to us at the time, we use our phenomenological one-dimensional
correction to the barrier to linearity instead [10] . We produced the fitted surface
which gives the standard deviation of 0.1 cm~! for the rovibrational data up
to 25 000 cm~!. We hope, that our final goal in the water project - to achieve
experimental accuracy of about 0.01 cm~! for all known experimental energy
levels of water and its isotopomers - will be feasible with the present ab initio
PES as a starting point.
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I. ANALYTICAL ENERGY GRADIENTS FOR MRPT2

The theory for computing analytical energy gradients for second-order multi-
reference perturbation theory (MRPT2) with arbitrary MCSCF reference func-
tions has been derived and implemented[1]. In our method the configurations
with two electrons in the external orbital space are internally contracted. This
ansatz strongly reduces the length of the configuration expansion as compared
to uncontracted wavefunctions, but avoids bottlenecks occurring when fully
contracted first-order wavefunctions are used. The theory is based on Hylleraas
functional for the second order energy and a Lagrange functional to account
for the stationary conditions which determine the reference wavefunction.
The method has been implemented into the MOLPRO ab initio program[2],
using the gradient integral package ALASKA of Lindh[3]. The MCSCF Z-
vector equations are solved using the available routines from our second-order
MCSCF program[4, 5]. Conventional and integral-direct options are available.
The back transformation of the effective second-order density matrix into the
Atomi Orbital (AO) basis is the same as that used for MP2 gradients. This
transformation is always direct, i.e. the transformed density elements are
immediately contracted with the AO integral derivatives and not stored.

II. APPLICATION TO PYRROLE

As an example the new method has been applied to geometry optimizations for
selected states of Pyrrole. This molecule has served in the past as a benchmark
system for computing electronic excitation energies, and therefore comparison is
possible with many previous calculations. In particular, extensive CASSCF and
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CASPT?2 calculations have been performed by Serrano-Andrés et al.[6]. More
recently, coupled cluster methods (CCSD, CC2, CC3) have been applied by
Christiansen et al.[7] to compute excitation energies. In the latter work, also
the equilibrium structures of some states have been determined. For a review
of other previous calculations and experimental work see Refs. 6, 7.

As examples for valence excited states we have chosen the A7, 1A] and
1B, states. On the other hand, as typical Rydberg states we choose the 1! B;
(laz — 3py), 2! B; (2b; — 3s), 114, (las — 3s), and 2! 4, (laz — 3p,) states.
According to the findings of Christiansen et al.[7] the structures were confined
to be planar in the current calculations. We note, however, that preliminary
calculations in Cs-symmetry indicate that the excited-states have non-planar
equilibrium structures. The full optimization of the equilibrium structures as
well as of the vibrational frequencies is currently in progress.

The basis set used for all calculations (unless otherwise noted) was derived
from the aug-cc-pVTZ basis[10]. It was found that the d-functions on the
hydrogen atoms have a negligible effect on the excitation energies, and therefore
these were omitted in the geometry optimizations. It has also been tested that
additional diffuse functions are not needed for the states under consideration.
The resulting basis set comprised 295 contracted GTOs.

In Table I the structures and excitation energies of the valence excited states of
Pyrrole are compared. The vertical excitation energies T), are in good agreement
with the results of Serrano-Andrés et al.[6], but significantly lower than the CC3
results of Christiansen et al.[7]. The adiabatic excitation energies T, are lower
than the T, values by 0.36 eV for the ! 4; states and even by 0.48 eV for the
1B, state. These significant relaxation effects are due to changes of the bonding
character caused by the excitations. In case of the 'A; states, the strongest
effect is seen for the C;-Cy bond, which is elongated by about 0.08 A. This
is due to the excitation from the las orbital, which is bonding for C;-Cs and
anti-bonding for C2-C3. A similar elongation of this bond is found for the !B,
state, but in this case this is accompanied by a significant shortening of the
C2-C3 bond. This is due to the fact that the dominant excitation is from the
anti-bonding las, orbital into the bonding 9a; orbital.

Serrano-Andrés et al.[6] have concluded that their excitation energies are in
close agreement with the experimental data. The most intense band in the
spectrum starts at 7 eV and extends well beyond 8 eV. These bands have been
assigned to the 'A* valence state. The first maximum is at about 7.25 eV
and the strongest peak at 7.54 eV[9]. The latter value agrees well with the
computed vertical excitation energy. The significant bond elongations in this
state indicate that the zero-point correction will be negative and probably quite
larger. We estimate the zero-point correction to be -0.1 eV or even more. This
means that the CASPT2 would predict the 0-0 transition at about 7.1 eV, just
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TABLE I: Comparison of optimized structures and excitation energies for the valence
states of Pyrrole®

114, TA7 LAT 'B,
N-C; 1.368  1.389  1.380 1.409
C1-C2 1.375 1455  1.460 1.457
C2-Cs 1419 1462  1.452 1.361
N-H; 1.000  1.000  1.007 0.999
Ci-H, 1072 1070  1.071 1.074
C»-Hs 1.073 1071  1.072 1.072
H;-N-C; 125.1 1237  123.0 126.4
N-C;-H, 1212 1219  121.3 121.3
Ci1-Co-Hz 1257 1261 1253 123.8
T, (V) 5.62 7.18 5.66
T, (eV) 5.98 7.54 6.14
CASPT2[6] 5.92 7.46 6.00
CC3[7] 6.37 8.07 6.63

a) Basis cc-pVTZ without d-functions on hydrogens.
Bond lengths in A, angles in deg, C, symmetry was
enforced. Level shift 0.3 h.

States 1'A; — 3' A1, ' B> averaged in CASSCF

in the region where the band starts. Similar conclusions apply to the 2! B,
valence state, which has been assigned to the band system starting at 5.6 eV,
with a maximum at 5.98 eV. The vacuum UV spectrum shows a 0-0 transition at
5.864 eV and another one at 5.818 eV[10]. The previous CASPT?2 calculations
predicted a vertical excitation energy of 6.0 eV, in good agreement with the
band maximum. However, if geometry relaxation and zero-point corrections are
added, the CASPT2 0-0 energy will likely be lower than the onset of the band.
From these results it seems very likely that the CASPT2 method quite strongly
underestimates the valence excitation energies. The apparently good agreement
of previous CASPT2 calculations with experimental data is probably due to
an error compensation effect. The results for the Rydberg states are presented
in Table II. It is found that in this case the results of the CASPT2 and CC3
calculations are in close agreement. Inspection of the state-averaged CASSCF
wavefunctions shows that in !B; symmetry there is significant mixing of the
2b; — 3s and las — 3p, states.
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TABLE II: Comparison of optimized structures and excitation energies
(in eV) for selected Rydberg states of pyrrole®

114, 1'B; 2'B; 114, 2' 4,
(2b1 — 3s, 1laz — 3py) laz =+ 3s  la2 — 3p.

N-C; 1.370 1.365 1.362 1.343 1.357
C:-Cy 1.377 1.369 1.393 1.433 1.426
C2-Cs 1.421 1.498 1.436 1.369 1.370
N-H: 1.002 1.054 1.035 1.054 1.017
Ci-H, 1.074 1.075 1.076 1.078 1.077
C»y-Hs 1.075 1.076 1.075 1.076 1.073
H:-N-C, 125.0 123.6 124.3 125.3 125.5
N-C;-H, 121.1 120.5 121.1 120.6 121.8
C1-C2-Hj 125.7 127.3 125.1 125.0 124.7
Te 5.83 5.94 4.98 5.85
Ty 5.92 6.00 5.22 6.01
T, CASPT2[6] 5.85 5.97 5.08 5.83
T, CC3[7] 5.85 6.00 5.10 5.86
Too (best estimates)[7] 5.84 5.97 4.83 5.75

a) Basis aug-cc-pV'TZ without d-functions on hydrogens
Bond lengths in A, angles in deg, C3, symmetry was enforced.
Level shift 0.2 h, analytical gradients for the shifted energy.
Only 7-electrons active, orbitals 10a1,11a1, 1b1 — 3b1, 7b2, las, 2a2 active
11A;,1'By,2' B, 11 Ay, 21 A, states averaged.

We find that at the ground-state structure the las — 3p, state is the lowest (as
found in previous work), but at the optimized 1! B; structure the wavefunction
is dominated by the 2b; — 3s excitation. At the optimized 2'B; structure,
both excitations have about the same weight. This indicates that there is an
avoided crossing of the two states near the geometry of the 2! B; state. The
strong mixing makes it very difficult to predict the structure of the two lowest
!B, states reliably. A multi-state CASPT2 treatment would be necessary to
account for the mixing of the states more accurately.
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I. INTRODUCTION

First-principles computations of the spectroscopy and dynamics of small
molecular systems can now be carried out with extraordinary accuracy. For
example, recent computations on the vibration-rotation spectrum of water
contain a standard deviation of less than 1 cm™! on a set of more than 17,000
empirical energy levels. [1] The contributions to the remaining error in such
calculations can be classified under the following headings: (a) solution of the
nuclear motion problem, e.g. restriction to a finite basis of vibrational functions;
(b) incomplete inclusion of beyond-Born-Oppenheimer effects; (c) incomplete
inclusion of relativistic effects; (d) the use of an approximate electronic structure
ansatz instead of full configuration interaction (the “N-electron” error); (e)
incompleteness of the basis set in which orbitals are represented (“l-electron”
error). In very small systems using the best available methodology, the
contribution of each of these sources of error is similar, and the challenge in
attaining even greater accuracy is therefore considerable. In larger molecules,
where the realistic error target is inevitably larger, the emphasis on these
five sources of error is different. For systems reasonably well described by
Hartree-Fock theory, standard methodology for the N-electron problem based
on coupled-cluster theory is very successful, and with appropriate exploitation
of spatial locality can be applied to molecules with hundreds of atoms. [2-
4] Although in such calculations the computational resource requirements can
be made to scale roughly linear with system size, their dependence on the
level of treatment of the 1-electron error is very strong. The computational
effort for nearly all correlated wavefunction methods inevitably scales as the
fourth power of the size of orbital basis set, with no possibility of help from
localization; indeed, large basis sets that include diffuse orbitals actually impair
the exploitation of locality. Given that convergence of errors with orbital

99



basis size is slow, these considerations show that small improvements in overall
accuracy demand very large increases in computational resource, rendering a
practical barrier to further improvements in accuracy.

Most electronic structure computations that represent electron correlation
effects with a wavefunction have as their physical basis a configuration interac-
tion expansion of two-electron wavefunctions represented as linear combinations
of products of orbitals. The advantages and defects of this approach are well
known: computational simplicity arises from the orthogonality of the orbitals;
however such wavefunctions are not well adapted to the true, cusped shape of
the wavefunction near the coalescence point. As a result of this, convergence
of the energy and other properties to the basis-set limit is slow. Using the
correlation-consistent basis sets developed by Dunning and co-workers[5], it is
found empirically[6] that to a reasonable approximation, the correlation energy
follows the asymptotic relationship

Eg‘ol‘l‘ = E((:)(c))l'l' + Ax73 (1)
where z is the integer 2,3,4,5,... that characterizes the bases cc-pVDZ, cc-
pVTZ, cc-pVQZ, cc-pVSHZ,. ... Unfortunately, this convergence pattern means
that accurate correlation energies are difficult to attain; however, the asymptotic
relationship can successfully be used as an extrapolation formula for ES,,. based
on two successive members of the EZ = sequence[6].

An alternative to orbital-product methods is the adoption of wavefunctions
that contain explicit reference to the interelectronic coordinate ri5. The R12
methods[7, 8] offers a practical approximation to Hylleraas-type wavefunctions
in the many electron case, and has been very successful in delivering very
accurate results. However, because of the complication of implementing the
R12 approach for each desired N-electron method, it remains desirable to seek
improvements in the orbital-basis approach.

A systematic sequence of basis sets (e.g., cc-pVaZ, ¢ = 2,3,...) that is
capable of converging to completeness can be considered to define a sequence of
model hamiltonians, written in second-quantized formulation as

n® n®
H* = hpplg— 5D (pglrs)p'risq, (2)
rq pqrs

for which we solve Schrédinger’s equation in principle exactly to get E*. It is
of interest to investigate the the corresponding extrapolated hamiltonians

T
H:xtrap = z Cy HY (3)
Y
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where Oy are fixed parameters chosen from, for example, the asymptotic
relationship (1). We might then be able to get an approximation to the basis-set
limit of the wavefunction as well as the energy. It might also be possible to find
a modified hamiltonian that is not dependent on the existence and regularity of
any sequence, thereby eliminating any ad-hoc dependence on £~ convergence.

II. SCALING THE FLUCTUATION POTENTIAL

An interesting approach to effective elimination of basis-set errors is the Scaled
External Correlation approach[9], in which correlation energies are adjusted
according to a prescription designed to deliver exact results for certain known
quantities such as individual bond energies. Such a philosophy can be applied
to generate an effective hamiltonian operator. Consider a system described
qualitatively correctly by the Hartree-Fock method. We can adopt the usual
Rayleigh-Schrédinger partitioning of the hamiltonian

H(z)=H® 4+ zH® 4+ (1 - 2)EW (4)

where the zero-order hamiltonian H(® is the Mgller-Plesset choice of the Fock
operator. H(1) is the true hamiltonian, and the additive term (1 — z)E() is
introduced merely so that the Hartree-Fock wavefunction always has the energy
E©) + EM for any value of z. The normal development of Mgller-Plesset theory
is a series expansion in powers of z to give a series for the value of the correlation
energy at z = 1. In this context, in the first instance for molecules consisting of
only a single chemical element, we choose a value of z different from unity such
that a particular known quantity is reproduced exactly. This quantity would
typically be the basis limit of the atomic correlation energy using the chosen
N-electron methodology, but other choices, such as homonuclear diatomic bond
energies, are also possible. Perturbation theory arguments show that the energy
E(z) is expected to decrease monotonically with 2, and so the optimum 2z will
be a single-valued function of the error in the calibration quantity, an important
consideration for defining a unique model. z will also be greater than unity,
reflecting the fact that the ansatz increases the strength of the fluctuation
potential in order to compensate for deficiencies in the wavefunction arising
from insufficient flexibility in the basis set.

As an example, we consider the interatomic Nes potential. We use the
aug-cc-pVzZ orbital basis set sequence[10], the CCSD(T) energy function,
and choose the scaling factor z such that a best estimate of the valence
CCSD(T) atomic correlation energy is reproduced. Table I shows that the
performance of the method, in terms of the computed binding energy at a fixed
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TABLE I: Orbital basis set convergence of the dissociation energy of Nes
® Beorr(Ne) b 2° D, ? (raw) D, (2 %)° D, (scaled)
0.212945 1.2236  0.000004 0.000072

T
2

3 0.279375 1.0723  0.000072 0.000099  0.000103
4 0.303704 1.0296 0.000102 0.000124  0.000117
5
6

0.313051 1.0145 0.000116 0.000132  0.000124
0.316974 1.0083 0.000121 0.000130  0.000126
oo 0.322362

¢Cardinal index x in aug-cc-pVzZ orbital basis set sequence
*Valence CCSD(T) correlation energy of atom

¢Scale factor to deliver Ecorr(Ne) = 0.322362

¢E(R = 00) — E(R = 5.8a0) using valence CCSD(T) ansatz.
“Extrapolation through (1) using x and  — 1 raw energies

internuclear separation, is comparable to that obtained with the conventional
273 extrapolation of the energy.

Figure 1 shows a part of a potential energy curve for Fs using both the regular
cc-pVTZ hamiltonian and that obtained by scaling through (4). The CCSD(T)
ansatz with only valence electrons correlated has been used. It is seen that the
effect of scaling is disastrous; the potential energy curve is strongly repulsive near
to the equilibrium bond length, and at around 1.72 A there is an unphysical dip
in the curve. This feature is related to the convergence properties of the Mgller-
Plesset perturbation series; either increasing z or the bond length introduces
divergencies because of the presence of intruder states. Thus the formulation as
presented above is probably applicable in cases only where Mgller-Plesset theory
is convergent. Elsewhere it will be necessary to develop a formulation based, for
example, on a multiconfigurational reference state.

III. EFFECTIVE KINETIC ENERGY OPERATORS

An alternative to the construction of parameterized effective operators is to
seek approaches that work from first-principles understanding of the defects of
finite-basis approaches. We start by considering for the ground-state helium
atom a sequence of orbital basis sets that are radially complete, but contain
angular functions only up to a certain angular momentum L. Instead of
constructing two-electron wavefunctions using the variational principle, we
imagine that we have knowledge of the exact wavefunction Wey,cr, and from
it we project into the finite basis:
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FIG. 1: Valence CCSD(T) potential energy curve for F» with scaled hamiltonian. Solid
line: cc-pVTZ basis; dashed line: scaled hamiltonian.

L
p\I;exact = Z |lama la _m)<lama la _m| lI;exact (5)
l

Instead of following the conventional approach of analyzing the truncated
wavefunction P‘Ilexact,A we cast all the basis dependence into an effective
hamiltonian operator PHP. This model hamiltonian contains a projected non-
local interelectronic potential Prl_QlP, which can be visualized through its action
on the exact wavefunction, prﬁlplllexact /P\Ilexact, shown in figure 2 for the
example of L = 4. The smoothing by the projection of the r;,' singularity
provides a rationale for understanding why in the finite-basis wavefunction the
Coulomb hole is underestimated. However, it is also important to consider the
kinetic energy, and indeed it is the consideration of the kinetic rather than
potential energy that appears important when considering the local energy,
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FIG. 2: Effective local potential Pri,! PWeyact/PWexact with L = 4

defined as
ﬁ v ﬁ P lI’exau:t
v P lI;exa»ct

_ TPVt | i) £ V(). (6)

Except in the case of the complete basis, where the local kinetic energy has
an exact —rf21 behaviour, Ejocq is positive and singular at r;3 — 0. In detail,
the potential energy is singular, but the corresponding negative singularity in
the kinetic energy is suppressed by P for any finite basis, and the integrated
kinetic energy is overestimated. Figure 3 shows this effect of the projection
on the local kinetic energy. Note that this analysis applies to the special case
of ¥ = PWeyact; in a real finite-basis calculation, variational procedures will
subsequently adjust the wavefunction to the wrong shape, in the end reducing
the kinetic energy in accordance with the virial theorem, but the argument we
follow is a more natural one when looking for causes and remedies of errors.

In contrast, if it were possible to perform the projection after the hamiltonian,

pﬁq’exact pT\I’exaCt

Boxact = — = +rt V(7)) + V(%) (7)
e PlIIexact P\I’exact 2
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FIG. 3: Projected local kinetic energy for helium as a function of 712 with both
electrons constrained to be a distance lao from the nucleus. Solid line: L = 2; dashed:
L = 4; dotted: L = 6; dot-dash: L = 8.

the singularities would cancel, and FEjycy would be constant. Of course, such a
formulation offers no practical route forward, since for any real problem Weyact
is unknown. However, we seek to use the relationship between (6) and (7) to
quantify and remedy the basis incompleteness error.

In order to develop a general theory, it is necessary to avoid using quantities
such as L or anything else that relies on a central potential or a particular kind
of basis set. The projector P, however, does readily translate to the general
molecular case, and can be used as an indicator basis incompleteness. For 2-
electron systems,

P =" |pg)S, Syt (rs ®)
pqrs

where Sp, = (p|g), and more generally an equivalent second-quantized formula-
tion can be adopted.
We seek to address the kinetic energy deficiency by changing the 2-electron
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operator in the second quantized hamiltonian, adding

A1
M= 3 Z MpqrsD'risq 9)
pqrs
such that
P(T + M)P® = PT® (10)

for some 2-electron trial functions ®. The modified operator would then be
applied to many-electron systems. The potential advantage of this approach is
that it completely avoids any discussion of representing the shape of the Coulomb
hole in the many-electron case, where explicitly correlated wavefunctions
implicate the calculation of many-electron integrals. In contrast, here we retain
a two-electron hamiltonian operator that works only on a tensor-product space,
and therefore will require at most two-electron integration.

A suitable choice of trial functions might be (14 3r12)1¢ (1)t (2) for all ¢y, ¥y
in the orbital basis. We define the following two-electron operators.

T=-1vi-1v2 (11)

G =r3} (12)

R =T12 (13)

Q =r,T (14)

U=r5 (71— ) (Vi—Va) (15)

V=[RT=2G+TU (16)

We then get

P(T+M)PQ+LR)P=PT(1+1R)P (17)

2PMP + PMPRP = PQP — PVP — PTPRP (18)

which is a linear system for M driven by TR — TPR, which vanishes in the
complete basis limit. In explicit matrix element form the linear equations may
be written as

(pg|(T + M)P(L+ §R)\rs) = (pg|T(1 + JR)|rs) (19)

and their solution requires the computation of the two-electron integrals over
the basis of the operators R, Q, V. This ansatz, or others that might be based
on it, offers a simple route to establishing an effective hamiltonian operator
that can be used with existing second-quantized codes, but which addresses
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the kinetic energy defect associated with the finite orbital-product space. The
effort required is the calculation of additional two electron integrals, and the
solution of linear equations (the effort for the latter can probably be reduced by
exploiting locality). Future work will evaluate the effectiveness of the method.
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