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Simple borates serve as effective promoters for amide bond

formation with a variety of carboxylic acids and amines. With

trimethyl or tris(2,2,2-trifluoroethyl) borate, amides are obtained

in good to excellent yield and high purity after a simple work-up10

procedure. Tris(2,2,2-trifluoroethyl) borate can also be used for

the straightforward conversion of primary amides to secondary

amides via transamidation.

The amide linkage1 is prevalent in nature2 and is extensively15

used in synthetic chemistry.3 A vast number of approaches for

amide bond formation exist,3–7 many of which are problematic

with regard to cost and atom-efficiency,8 as well as

recyclability and functional group tolerance.9 Recently, boric

acid and arylboronic acids were shown to be able to mediate20

direct amide coupling of carboxylic acids and amines.10

Although they can be used in catalytic amounts (1–20 mol%),

effective removal of water is essential, either by heating under

azeotropic reflux in high-boiling point solvents (e.g., PhMe,

xylene),10b-f or by conducting the reaction at lower25

temperatures (rt–50 °C), in the presence of molecular sieves.

However, high dilution conditions and prolonged reaction

times (24-48 h) are necessary in this latter case.10g The use of

stoichiometric boron reagents for amidation has also been

reported (e.g. BF3·OEt2,
11a catecholborane,11b BH3·NMe3

12a
30

and BH3·THF12b), but such reagents require strictly anhydrous

reaction conditions and, in some cases, an excess of either the

carboxylic acid or amine in order to obtain a good

conversion.12 Herein, we demonstrate the application of

simple borate esters to direct carboxamidation under35

convenient reaction conditions. Additionally, we show that

tris(2,2,2,-trifluoroethyl) borate can be used to activate amides

towards transamidation.13 These reactions show good

functional group tolerance and do not require anhydrous

reaction conditions.40

Scheme 1 Borate-mediated direct amidation

During the course of our work on the development of new45

boron reagents for organic synthesis,14 we examined a range

of compounds as mediators for amidation reactions, and

observed that B(OMe)3
15 can act as an effective reagent for

direct carboxamidation. Activation of the carboxylic acid

presumably occurs via in situ generation of a three or four-50

coordinate boron species (Scheme 1).10h Through subsequent

reaction optimization under microwave conditions (Table 1),

we identified the best solvent: acetonitrile (entries 2–8); as

well as the most effective reagent: tris(2,2,2-trifluoroethyl)

borate (entry 15). The background conversion to amide in the55

absence of any reagent was very low (entry 1).10a The reaction

was much more effective in polar aprotic solvents (entries 5,

6, 8) than when conducted neat (entry 7),15 even though a

smaller quantity of reagent was employed. The presence of

ROH compounds, including the by-products of the reaction60

(water, MeOH, etc), significantly reduces the conversion

(entries 9–11), presumably via inhibition of the reagent.

Table 1 Optimization of Borate-Promoted Direct Carboxamidation under
Microwave Conditionsa

65

Entry Reagent Solvent Conversion (%)b

1 none MeCN 2
2 B(OMe)3 MeOH 0
3 B(OMe)3 MTBE 4
4 B(OMe)3 PhMe 12
5 B(OMe)3 THF 20
6 B(OMe)3 DMSO 27
7 B(OMe)3 B(OMe)3

c 30
8 B(OMe)3 MeCN 35 (35)g

9 B(OMe)3 MeCN 6d

10 B(OMe)3 MeCN 14e

11 B(OMe)3 MeCN 19f

12 B(OiPr)3 MeCN 9
13 B(OSiMe3)3 MeCN 9
14 Si(OMe)4 MeCN 22
15 B(OCH2CF3)3 MeCN 63 (63)g

aReaction conditions: acid (1 equiv), amine (1 equiv), reagent (1 equiv),
solvent (0.5 M), MW (150 W), 100 °C, 10 min. bDetermined by crude 1H
NMR (DMSO-d6).

c18 equiv B(OMe)3.
dwith MeOH (1 equiv). ewith70

B(OH)3 (1 equiv). fwith H2O (1 equiv). gIsolated yields in parenthases.

A brief study indicated that thermal conditions were more

effective than microwave heating, so we then compared the

reactivity of B(OMe)3 and B(OCH2CF3)3 with a range of75

acids/amines in acetonitrile at 80 ºC. The reactions were

conducted in the absence of any additional dehydrating agents

or water removal apparatus (Table 2), and good to excellent

conversions were obtained in all cases. Although thermally

promoted carboxamidation was observed,10a it remained at80

background levels. In the case of unreactive systems such as

pivalic and benzoic acids, yields improved significantly on

raising the temperature to 100 ºC (entries 5 and 6).
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Table 2 Borate-promoted direct amide formations

Entry Product
Isolated yield (%)

B(OCH2CF3)3
a B(OMe)3

a Thermalb

1 91 (74)c 92 (66)c 18

2 70 73 <1

3 70 51 7

4 76 44 5

5 14 (50)d 2 0

6 27 (71)d 12 <1

7 92 45 9

8 82 51 6

9 66 66 6

10 61 36 3

11 70 quant 9

12 71 17 8

13 95 11 6

14 72 4 0

15e 94 60 5

16 81f 49g 7

aReaction conditions: acid (1 equiv), amine (1 equiv), borate (2 equiv),
0.5 M MeCN, 80 ºC, 15 h. bReaction conditions: acid (1 equiv), amine
(1 equiv), 0.5 M MeCN, 80 ºC, 15 h. c1 equiv of borate used. dCarried
out at 100 ºC in a carousel tube. eFrom amine-HCl salt, with iPr2NEt (15

equiv). f88% ee. g>99% ee.16

The amides were obtained in high purity after a simple

aqueous work-up, and B(OCH2CF3)3 proved to be the optimal

reagent in nearly all cases. Both α- and β-substituted acids, as 

well as α-substituted amines, gave higher yields with this 10

more electron-deficient reagent (entries 3–5, 8, 15-16).

B(OCH2CF3)3 was particularly effective for unsaturated

carboxylic acids (entries 12–14), and the acylation of an

aniline could also be successfully achieved (entry 14).17

However, it should be noted that B(OMe)3 was effective for15

the formation of several amides (e.g. entries 1–2, 11),

providing an extremely economical method for accessing

these systems. In contrast to other boron reagents and

catalysts, anhydrous reaction conditions (dry solvents, inert

atmosphere) are not required. The use of acetonitrile as20

solvent is also practically useful as it enables polar substrates

to be coupled effectively (entries 7, 11, 15-16). Notably,

highly polar amines such as ethanolamine (entry 7) and

tryptamine (entry 11) can be acylated without protection. An

amine salt could be used directly in the coupling reactions in25

the presence of Hünig’s base (entry 15), and a Boc-protected

amino acid was coupled with only low levels of racemisation

(entry 16). The acid-labile Boc group is not cleaved under the

reaction conditions, despite the presence of the Lewis acidic

boron reagent. A range of other functional groups including30

alkenes, cyclopropanes, indoles, hydroxyl groups and esters

were also well tolerated (entries 7, 9–11, 15).

Table 3 Tris(2,2,2-trifluoroethyl) borate-promoted
transamidation.35

R1 NH2

O

+
R1 N

H

O

R2

1 M MeCN 100 C,
15 h, carousel tube

H2N
R2

1 equiv 1 equiv

2 equiv
B(OCH2CF3)3

Entry Product Isolated yield (%)

1 73

2 63

3 82

4 62

Given the fact that these borate ester reagents had proved

highly effective for the activation of carboxylic acids, we40

were keen to expore their potential for activating other related

systems. Although esters did not undergo amidation (Table 2,

entry 15),7 B(OCH2CF3)3 was observed to activate primary

amides (Table 3). This boron-mediated transamidation

reaction gave good yields of secondary amides, and shows45
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very good functional group tolerance (entries 3–4). Although

a number of different procedures for transamidation have been

reported,13 there are few methods available for the

transamidation of primary amides without a separate pre-

activation step.13e-13f In contrast to these other reports, this5

method is experimentally simple,13f and requires only

equimolar quantities of amine/amide.13e No transamidation

was observed in the absence of B(OCH2CF3)3, or in the

presence of B(OMe)3.

In summary, we have demonstrated that simple borates are10

practical reagents for direct amide bond formation under both

thermal and microwave conditions. Unlike many other

coupling methods, this approach exhibits good functional

group tolerance and purification is extremely straightforward.

Tris(2,2,2-trifluoroethyl) borate was also shown to activate15

amides toward transamidation, providing a convenient and

practical method for the direct conversion of primary amides

to secondary amides. Further work on the development and

application of other boron-centered reagents is ongoing and

will be reported in due course.20
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