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We propose a scheme of optical pumping by which a system of atoms coupled to harmonic oscillators is

driven to an entangled steady state through the atomic spontaneous emission. It is shown that the optical

pumping can be tailored so that the many-body atomic state asymptotically reaches an arbitrary stabilizer

state regardless of the initial state. The proposed scheme can be suited to various physical systems.

In particular, the ion-trap realization is well within current technology.
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Generating entanglement is one of the landmarks of
modern physics, which has provoked a huge body of
work. Entanglement—quantum correlation—is distin-
guished from the classical counterpart by its coherent
nature [1]. While the correlation itself can be naturally
built up by letting multiple bodies mutually interact, the
difficulty usually arises in retaining the coherence, since
opening an interaction channel inevitably brings in adver-
sarial environmental effects as well. Consequently, both
the theoretical and experimental efforts have been devoted
mostly to finding a way to isolate the system, whereby
the problem reduces to identifying proper time points at
which the unitary dynamics gives a useful form of entan-
glement [2]. This requires preparation of definite initial
states and precise control of the system parameters and
timing. In addition, the entanglement generation can be
aided by measurements [3].

A conceptually different approach is to tailor an open
quantum system in such a way that its irreversible dynam-
ics drives the system into a steady state that is entangled
[4–9]. This approach has apparent advantages over those
relying on the unitary evolutions. First, the generated en-
tangled state is robust against decoherence because the
intrinsic decoherence channel of the system itself is ex-
ploited as a resource. Second, the steady state is deter-
mined by the relationship (e.g., ratio) between different
parameters, not by their exact values or temporal profiles,
and moreover is independent of the initial state. This
largely alleviates the otherwise necessary manipulation
and control mentioned above and also provides extra
robustness against fluctuations of the parameters (e.g., of
laser fields). In some sense, such a possibility is recogniz-
able from the fact that the environmental effects in ordi-
nary quantum optical systems are well accounted for in
terms of the zero-temperature bath [10]. This means that
such an environment always plays the role of an entropy
sink that renders the system perfectly coherent. For single
atoms, optical pumping—more specifically, coherent
population trapping—indeed uses this environmental de-
cay, i.e., the spontaneous emission, to prepare an arbitrary

pure superposition of two ground states [11]. Generalizing
this idea to multiple atoms, however, seems daunting
and somewhat counterintuitive at first sight because the
spontaneous emission occurs independently in each atom,
destroying both the correlation and coherence between
the atoms.
In this Letter, we show that the concept of optical

pumping can indeed be applied to the cases of many atoms
when they are coupled to discrete quantum systems,
exemplified here by harmonic oscillators. To be specific,
we show that as far as the geometry permits, an arbitrary
stabilizer state (a broad class of many-body entangled
states) of the atoms can be generated as a steady state
through the atomic spontaneous emission. This contrasts
with all previous works, mostly with two atoms, which
have rather been case studies simply revealing that com-
petition between a continuous driving and the environmen-
tal decay can lead to a particular entangled (but far from
maximally entangled) steady state [4,5] or have shown
that atoms driven by entangled fields can have a steady-
state entanglement [6,7]. Our systematic study, on the other
hand, suggests a clear-cut mechanism to generate a broad
class of entangled states with a high fidelity using classical
pumping fields. Recent studies offer formalisms for engi-
neering system-environment couplings to obtain a desired
many-body entanglement as a steady state [8,9]. However,
as the resulting Lindblad operators are multipartite ones,
which require the interaction between the system and the
bath to be effectively many body, the formalism does not
necessarily make its physical realization apparent, except
for some special instances leading to only a restricted set of
entangled states [8] or those aided in large part by unitary
manipulations [12]. Our scheme, on the other hand, deals
with realistic physical models: we show that our idea is
directly applicable to ion-trap systems and also to many
other systems by allowing only single-atom unitary trans-
formations in addition. Thanks to these exclusive features,
our scheme would find straightforward applications,
e.g., in establishing a robust entanglement channel be-
tween computational nodes or continuously stabilizing an
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entangled state generated by a different means. As high-
lighted in recent literature, our scheme would also have
implications in the context of quantum many-body simu-
lation and quantum computation [8,9,12,13].

Stabilizer states represent a large set of entangled states
including error-correcting codes and graph states [14,15].
Let us employ the following convention. Consider an
N-qubit system with a 2N-dimensional Hilbert space H
and M stabilizers S� � �N

j¼1u�j with 1 � � � M, where

u�j 2 f�X
j ; �

Y
j ; �

Z
j ; Ijg is one of the Pauli operators or the

identity operator acting on the jth qubit. As ½S�;S�� ¼ 0

for every pair and ðS�Þ2 ¼ �N
j¼1Ij, the Hilbert space can

be divided into 2M subspaces, each with dimension 2N�M,
according to the eigenvalues of the stabilizers: H ¼
�s1;...;sM¼�1 H ðs1; . . . ; sMÞ, where S�j�i ¼ s�j�i for

j�i 2 H ðs1; . . . ; sMÞ. Our aim is to pump all the popula-
tion into the subspaceH ðþ1;þ1; . . . ;þ1Þ. IfM ¼ N, the
dimension of this Hilbert space is 1; i.e., it represents a
single pure state, but we can also consider more general
cases where M<N, in which case the steady state is a
certain mixed state in an encoded subspace rather than a
pure state.

The stabilizer states that can be prepared in our scheme
depend on the geometry of the arrangement of harmonic
oscillators and atoms. For simplicity, let us consider a case
where one harmonic oscillator is coupled to the atoms.
Generalizing this setting to other cases with more har-
monic oscillators is straightforward. The underlying idea
is to have the atoms collectively coupled to harmonic
oscillators, thereby splitting the otherwise degenerate en-
ergy levels in the excited manifold of the system according
to, in our case, the parity. We then resolve the energy
splittings so as to optically pump the population with a
particular parity into the disjoint subspace. As will become
apparent, such an optical pumping is suitable for the
generation of stabilizer states.

We use three-level atoms with two ground levels jLi and
jRi and an excited level jEi, as shown in Fig. 1. The two
atomic transitions jLi $ jEi and jRi $ jEi are coupled,

respectively, to orthogonal polarizations of light. Let us
denote by a (ay) the annihilation (creation) operator for the
harmonic oscillator. We assume that the harmonic oscilla-
tor interacts with the atom in such a way that they exchange
energy, which can be described in the interaction picture
by the following Hamiltonian:

Hah ¼
XN

j¼1

aðgLj jEijhLj þ gRj jEijhRjÞ þ H:c:; (1)

where the subscript j represents the jth atom. The coupling
rates gLj and gRj are assumed to be independently adjust-

able. On top of this coupling, we also apply classical
pumping fields with Rabi frequencies !L

j and !R
j and

detunings �L and �R, respectively, as in Fig. 1. For conve-
nience, let us call the former an L field and the latter an
R field. This driving can be described in the interaction
picture by the following Hamiltonian:

Hp ¼ XN

j¼1

!L
j e

i�LtjEijhLj þ!R
j e

i�RtjEijhRj þ H:c: (2)

Once the atom is excited, spontaneous emission to jLi and
jRi takes place with rates �L and �R, respectively, which
can be described by the following master equation:

d

dt
� ¼ i½�;Hah þHp� þ

XN

j¼1

X

x¼L;R

Lx
jð�Þ; (3)

where � is the density matrix of the system and Lx
jð�Þ ¼

�xðjxijhEj�jEijhxj � 1
2 jEijhEj�� 1

2�jEijhEjÞ.
To begin with, suppose only two atoms are coupled to

the harmonic oscillator and only the transition jRi $ jEi
is coupled, i.e., gL1 ¼ gL2 ¼ 0 and gR1 ¼ gR2 ¼ g. We can
denote the state by j�; ni, where j�i denotes the atomic
state and jni the n th excited state of the harmonic oscil-
lator. Note that the coupling between the atom and the
harmonic oscillator does not change the number of total
excitations nt � ayaþP

jjEijhEj, i.e., ½Hah; nt� ¼ 0.

Putting the pumping fields and the spontaneous emission
aside, the Hilbert space is thus divided into mutually
decoupled subspaces according to nt. Furthermore, due
to the coupling, the degeneracy in each excited manifold
is lifted. In the manifold of nt ¼ 1, transitions jLR; 1i $
jLE; 0i and jRL; 1i $ jEL; 0i occur with coupling rate g,
whereas transition jRR; 1i $ 1ffiffi

2
p ðjER; 0i þ jRE; 0iÞ occurs

with coupling rate
ffiffiffi
2

p
g as the atoms collectively interact

with the harmonic oscillator. Consequently, as shown in
Fig. 2(a), the excited manifold shows energy splittings,
whose amounts are determined by the number of atoms
in states jRi and jEi. Formally, one can define ns ¼P

jjRijhRj þ jEijhEj and then the energy splitting is given

by � ffiffiffiffiffi
ns

p
g (except for uncoupled states).

We resolve these energy splittings by adjusting the
detunings to achieve selective pumping of the population.

FIG. 1. Involved atomic levels and transitions. gL;R denotes the
coupling rate between the atom and the harmonic oscillator,!L;R

the Rabi frequency of the pumping field, �L;R the detuning, and
�L;R the spontaneous emission rate.
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As we aim to generate an entangled state in the ground-
state manifold (i.e., nt ¼ 0) and the spontaneous emission
always projects the population to the lower manifold, we
need to consider only the two lowest manifolds of nt ¼ 0
and nt ¼ 1. Figure 2(b) depicts the pumping process from
the subspace with �Z

1�
Z
2 ¼ �1 to that with �Z

1�
Z
2 ¼ þ1.

Here, the Pauli operators are defined over the ground levels
of the atoms, e.g., �Z

j ¼ jLijhLj � jRijhRj. Note that the L
and R fields couple the two manifolds in different ways.
While the L field induces transition in such a way that
when the state is excited ns is increased by one, the R field
preserves ns. The spontaneous emission, on the other hand,
only decreases nt by one while either decreasing ns by one
or preserving ns [see Fig. 2(b)]. The overall effect of the
pumping is thus that the L field increases ns by one while
the R field decreases ns by one. Thanks to the energy
splittings, one can apply these optical pumpings selectively
to the population with a particular ns: in order to pump the
population with ns to the subspace with ns þ 1 (ns � 1),
we apply an L field (R field) to every atom with detuning
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns þ 1
p

g (� ffiffiffiffiffi
ns

p
g).

It is easily seen that the above pumping process
drives a two-qubit system into the subspace with S� ¼
�Z

1�
Z
2 ¼ þ1. Generalizing this idea to the case of an

arbitrary S� is straightforward. Suppose first that we

need to pump the population with �Z
1�

Z
2 � � ��Z

N ¼ �1 to

the subspace with �Z
1�

Z
2 � � ��Z

N ¼ þ1. We achieve this by
pumping every population with an odd ns, i.e., that with an
odd ðN þ �Z

1 þ � � � þ �Z
NÞ=2, to the subspace with ns � 1.

For this, we apply to every atom L fields with detuningsffiffiffi
2

p
g,

ffiffiffi
4

p
g,

ffiffiffi
6

p
g, and so forth. In the same fashion, we apply

to every atom R fields with detunings �g, � ffiffiffi
3

p
g, � ffiffiffi

5
p

g,
and so forth. Here, we exploit red (blue) detunings for
L fields (R fields), but this is not mandatory. For a general
S�, we can achieve the same kind of optical pumping

by rotating the basis of the operation for each jth atom
according to u�j. If u�j ¼ Ij, we turn off all the couplings

and pumping fields for the jth atom so that the atom is
excluded from the pumping process. Otherwise, we adjust
the coupling rates so that gLj ¼ ��

jg and gRj ¼ ��
jg, where

�jjLij þ �jjRij is theþ1 eigenstate of u�j, and instead of

an R field with Rabi frequency !R
j , we apply an L field

with ��
j!

R
j and an R field with ��

j!
R
j [16]. Likewise,

instead of an L field with Rabi frequency !L
j , we apply

an L field with �j!
L
j and an R field with ��j!

L
j .

A general stabilizer state is now generated by perform-
ing the optical pumping processes for all S�’s one by one

as described above. An important question here is how the
performance, namely, the characteristic time for the system
to reach the steady state, scales as the number of atoms
increases. Unfortunately, it turns out that the time increases
exponentially with the number of stabilizers M. In order
to see this, it is convenient to think of the pumping
process as a random walk (or hopping) among the
2M subspaces H ðs1; . . . ; sMÞ. For example, suppose a

linear cluster state j�Ni ¼ 2�N=2 �N�1
j¼1 ðjLijhLj þ jRij 	

hRj�Z
jþ1Þ �N

k¼1 ðjLik þ jRikÞ of four atoms (N ¼ 4), stabi-

lized by S1 ¼ �X
1�

Z
2 I3I4, S2 ¼ �Z

1�
X
2�

Z
3 I4, S3 ¼

I1�
Z
2�

X
3�

Z
4 , and S4 ¼ I1I2�

Z
3�

X
4 , and consider the pump-

ing step for S1. The original aim of this step is to pump the
population in H ð�1; s2; s3; s4Þ to H ðþ1; s2; s3; s4Þ.
However, as it destroys the coherence of atom 1 and
atom 2, the values of S2 and S3, which contain a Pauli
operator on atom 1 or atom 2, are also affected.
Consequently, the pumping for S1 in fact occurs from
H ð�1; s2; s3; s4Þ to one of H ðþ1;�1;�1; s4Þ randomly.
The performance is then assessed by estimating the aver-
age number of steps to reach the subspaceH ðþ1; . . . ;þ1Þ
by such a random walk, along with the actual pumping
time for each step. The latter increases as the number of
Pauli operators in S�, which we denote by k�, increases

because the energy gap to resolve gð ffiffiffiffiffiffi
k�

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� � 1

p Þ de-
creases. This scales only polynomially and can be bounded
as long as k� is finite for all S�, which is usually the case.

However, the former, the number of steps to reach the
steady state, increases exponentially as & Mð2lmÞM, where
each pumping step affects at most lm other stabilizers.
Our scheme is thus more relevant for a moderate number
of atoms.
Figure 3 shows the results of our simulation for the

generation of linear cluster states, which is done by nu-
merically integrating the master equation (3). As the pump-
ing exploits the energy splitting, both the pumping field

(a)

(b)

FIG. 2. (a) Energy splitting in the manifold of one excitation
for two atoms (normalization is ignored). (b) Optical pumping
from the odd-parity subspace to the even-parity subspace.
Straight arrows represent classical pumping fields and wiggly
arrows spontaneous emissions. !r=

ffiffiffi
2

p
and !l=2 are the corre-

sponding effective Rabi frequencies.
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and the spontaneous emission should be weak enough
compared to the energy gap so that the energy splittings
can be resolved. For this, we choose the parameters as

� ¼ 	gð ffiffiffiffiffiffi
k�

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� � 1

p Þ, �L ¼ �R ¼ �=2, and !L ¼
!R ¼ �=

ffiffiffiffiffiffi
k�

p
, where 	 
 1 is a small constant, and each

round of the pumping for one stabilizer is performed
for a period of time 
=�. Our particular choice of the
parameters is, however, not mandatory as the pumping is
by nature insensitive to the exact values of the parameters.
Taking a fully mixed state of atoms along with the ground
state of the harmonic oscillator as an initial state, Fig. 3
shows the time evolution of the fidelity of the state to the
desired linear cluster state. The weaker the pumping field
and the spontaneous emission are (smaller 	), the higher is
the final fidelity, but the longer it takes to reach the steady
state. One could vary the parameters in time to optimize
the performance, e.g., by taking larger 	 during the initial
transient period and taking smaller 	 afterward to obtain a
higher fidelity.

It is evident that the present scheme is well suited to the
existing ion-trap systems used for quantum information
processing [17,18]. For example, Caþ ions can be used,
where the two hyperfine levels of S1=2 represent jLi and
jRi, respectively, and one of D5=2 represents jEi [19]. The
coupling between each ion and the center of mass mode

of the ions gL;Rj can be controlled individually by focused

beams. As D5=2 is metastable, the spontaneous emission

rate �L;R can be controlled by adjusting pumping fields
via P3=2 (and repumping fields via P1=2 to make the tran-

sition closed). As the typical coupling rate is g * 100 kHz,
the system reaches the steady state in a few hundred
milliseconds for a small number of atoms, as can be
inferred from Fig. 3. One can also incorporate sympathetic
cooling into the pumping sequence to overcome motional
heating [20].

The present scheme with slight modifications can be
applied to many other physical systems. First, we can
consider a case where only one of the two atomic transi-
tions is persistently coupled, i.e., gL ¼ 0 and gR � 0.
This enables the optical pumping for stabilizer �j�

Z
j . For

different stabilizers, one performs single-qubit rotations

to the atoms corresponding to �X;Y
j before and after each

pumping and detune the transition by an ac Stark shift for
those corresponding to Ij. It is easily seen that this modi-

fied scheme is well suited to systems of atoms sitting in a
common cavity mode. Another modification can be made
by noting that the harmonic oscillator can in fact be re-
placed by a two-level atom, where the interaction between
atoms is the spin-exchange interaction. Along with single-
qubit manipulations as described above, which are rela-
tively easy to do, our scheme can thus be applied to various
Heisenberg spin systems realized with atoms, where it is
understood that auxiliary levels are needed to represent
another ground level jLi and to realize spontaneous emis-
sions effectively if required [21,22].
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