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In making a design proposal, the designer is implicitly assuming some view of fu-

ture events to which the design corresponds, yet the scenarios to which designers 

often respond are often too complex and difficult to define, so prediction is out of 

the question. Complex systems that appear unstable at one level of detail are often 

predictable at a higher order, and it is this that makes design possible. In the state 

space of the system in question, some regions will be stable basins of attraction in 

which design moves can be made with confidence, while others will be unsuitable. 

Suggestions are made for the use of simulation—in particular that it is less useful 

as a tool for scenario prediction as for mapping out this state space to search for 

such stable regions. 

1.0 Introduction 

Design problems, if they can be called problems at all, are complex. They 

are what Rittel and Webber [1] describe as “wicked problems”, in that they 

naturally resist any kind of clear definition. Disciplines such as architec-

ture and planning are described as dealing almost exclusively with situa-

tions in which the brief is relatively ill-defined relative to the real range of 

problem considerations, the perception of the problem itself may change 

radically as design progresses, and the solution is typically arrived at by a 

unique process that cannot be predicted in advance. 

Even where the situation can be clearly specified, complexity exists of a 

more formal nature. Jacobs [2] introduced the problem of urban planning 

with specific reference to complexity theory, quoting Weaver‟s [3] de-

scription of „disorganised‟ versus „organised‟ complexity. Both involve a 

large number of parts or variables, but whereas those in the first do not af-

fect one another and so the system may be treated statistically, those in the 

second are interconnected in such a way that their structure resists a statis-



2  S. Hanna 

tical description. The behaviour of molecules in a gas is an example of the 

first; biological systems, cities and other targets of design are examples of 

the second. 

Such systems are notoriously sensitive to initial conditions, and any in-

accuracy in modelling them can accumulate to make exact prediction of 

their behaviour impossible. Where the system‟s possible future trajectories 

diverge in this way, it is called chaotic. The weather is perhaps the para-

digmatic example. If the variables that diverge in this way are relevant to 

the goals of the designer—that is, if the success of the proposal rests on the 

prediction of the system being even approximately accurate—then design 

becomes impossible. 

Thankfully, many complex systems exhibit stability, sometimes in par-

ticular regions of their state space, and sometimes at a higher level of ab-

straction. In agent based models of economic behaviour, the individual 

agents‟ matter very little, but the structure of their interactions constrains 

the behaviour of the entire system [4]. In Arthur‟s [5] models of bounded 

rationality, behaviour of a single agent will be entirely unpredictable at any 

given moment, while the behaviour of the group as a whole will in the long 

term converge to fluctuate around a stable, predictable outcome. At this 

higher level, and because of the system‟s structure, certain measures that 

describe the behaviour of the system are invariant with respect to changes 

in any of the individuals. This is highly relevant to design because design-

ers typically do not need to work toward the precise behaviour of an indi-

vidual at a precise moment in time, but for a varied group and over a rela-

tively long period. Recalling the example of urban planning makes this 

obvious. 

This position paper proposes that all design is aimed at stable regions 

within a system‟s state space. These basins of attraction, in which the per-

formance of the system is invariant to small changes in conditions or a 

failure in collecting precise data for the model, are in fact the only possible 

areas in which design is possible at all.  

2.0 Higher level invariants in complex domains 

Several design related examples will serve to illustrate the higher level in-

variants that may be useful in each domain. 

The prediction of air flow using computational fluid dynamics can 

achieve a high degree of accuracy, and thus result in a believable picture of 

the effects of wind on a new tall building in an urban context. However, 

because the system is chaotic at this level there are at least two difficulties 
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in compiling the necessary data for true prediction. First, no matter how 

precisely the new and existing buildings can be specified, it is certain that 

the state of surrounding buildings will change in future, and possibly af-

fecting the air flow drastically enough to make analyses of the current en-

vironment obsolete. Second, even in the relatively stable state of an un-

changed urban environment, most phenomena to be simulated are 

continuous and can take on any of an infinite range of real values. In such 

cases, the probability of simulating the exact values for wind speed, direc-

tion or other factors approaches zero (Figure 1). This can often pass with-

out causing problems, but if conditions lie within an instability regime, in 

which a minor change in the wind causes big differences in performance, 

then the simulation becomes useless.   

 

 

Fig 1. A single simulation gives precise values for wind velocity, but some re-

gions can be particularly sensitive to initial conditions. Image: Next Limit Tech-

nologies. 

Such models are not used in the hope of predicting the particular level 

of air pressure at any given point however, but can be useful to show the 

areas in which turbulence may occur over the long run, or to estimate the 

entire range of pressures than can occur when the simulation is run over 

time. Often, the range of pressures in a certain region may be invariant at 

this lower level of resolution. In current practice, due to the expense in 

computation and time taken to perform such simulations, the designer of-

ten makes a series of best guesses, and then plans for multiple scenarios. 

With faster models the opportunity arises in which the state space of the 

system may be sampled and mapped out more methodically with respect to 
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design options, to reveal those in which outcomes are less sensitive to cha-

otic fluctuations, and therefore more robust design proposals.   

For many complex problems, such as with many kinds of human behav-

iour, there is insufficient knowledge on how to even model the system. 

Space Syntax methods of analysis [6, 7] have proven reliable in doing so. 

Part of the reason is the acknowledgement that the prediction is ultimately 

founded on the cumulative results of a vast number of people—in the 

simulation of visual agents [8], a single agent moving through a building 

will trace a path that appears unlike that of a normal person, however the 

total effect of a large number of agents in a virtual model will correlate 

highly with the movement of real people in the actual space. In this case 

behaviour is given by the invariant of the space itself, and interaction can 

be reduced to the biologically realistic 170° cone of vision, common to 

most people. 

Analysis is possible because the agent behaviour is determined, in the 

long term only, by the spatial configuration, and can thus be predicted as 

the convergent steady state purely by analysis of the topology of the space 

given as a graph. Again, it is a higher level stability that is relevant. It is 

important to note that the model is in no way deterministic with respect to 

the behaviour of any individual agent (or real person), but only at the level 

of the group. As with Arthur‟s [5] models, any differences between people 

in terms of their personalities or goals effectively cancel one another out—

they are variables that do not matter in terms of the model.  

In both instances, the obvious description of the system consists of ap-

parently unpredictable variables such as the air pressure at points over a 

field, or the location and direction of a walking agent. At another level, 

these can be recast, for example, as standard deviations of pressure in sta-

ble zones, or the density of pedestrian traffic over time. These variables 

may be invariant, more stable, and directly dependent on controllable de-

sign parameters such as building geometry and spatial configuration.    

3.0 The use of simulation in design 

The above examples illustrate several of the ways in which models can be 

both accurate and inaccurate at different levels of detail, and thus the fact 

that simulation can be useful only for prediction in certain cases. In terms 

of methodology, this has two important implications: 

1. When attempting any kind of simulation of modelling, the purpose is 

not to attempt to predict the course of future events by refining the ac-
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curacy of data, but to find invariants, often at a higher level, that prom-

ise stability. 

2. One is thus looking for convergence in the model, but given the ill-

defined nature of design problems, it cannot be presupposed where this 

will arise. It becomes an essential task is to find an appropriate recast-

ing of the relevant variables in order to achieve this. 

With respect to the second, Weaver‟s [3] distinction between disorganised 

and organised complexity is relevant because the statistical approach used 

to deal with the former also operates by assuming an invariant and allow-

ing lower level variables to cancel one another out—the particular veloci-

ties of particles in a gas, for example. The principal feature of the organ-

ised system however, is that its structure plays an important role. The two 

cases above used the physics of fluid dynamics and the biologically deter-

mined visual system to provide this structure, but in many design situa-

tions this is not known in advance. In many cases this structure can be 

found in real world data itself, as has been done by machine learning algo-

rithms with structural performance [9] and urban morphology [10]. In 

other cases designers rely on intuition or existing typology to do the same. 

Jacobs [2] warns against the statistical approach to such complex systems 

because it often leads to drastically inappropriate proposals. What is sug-

gested here is that the problem with the statistical approach is that it simply 

assumes the structure of the system and relevant variables in advance. 

With organised complex systems this must be carefully investigated to find 

those levels and regions in which prediction might be possible. It is the 

task of the designer to do this. 
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