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Abstract  

Comparisons of the incidence of blood stream infection (BSI) between neonatal 

intensive care units (NICUs) can promote sharing of potentially better practices for 

infection control. Comparisons should take into account differences in babies’ 

vulnerability and the invasive procedures which can introduce infection. I carried out a 

systematic review of methods reported in the literature, or used by regional monitoring 

systems, for comparing the incidence of BSI among NICUs. I found substantial 

variation, especially in the risk factors used to adjust incidence estimates. 

 

The use of routinely recorded administrative data would minimize and accelerate staff 

workload for BSI monitoring. I investigated which risk factors recorded in routine data 

should be adjusted for when comparing BSI incidence between NICUs. I linked 

microbiology laboratory records with administrative records collected over four years 

for three London NICUs. I analysed rates of BSI using various methods, including 

Poisson regression and logistic regression assuming a matched case control design. 

With both approaches, National Health Service level of care was the strongest predictor 

for BSI incidence. Using Poisson regression models, the rate ratio for BSI, adjusted for 

birth weight, inborn/outborn status and postnatal age, was 3.15 (95% confidence 

interval (CI) 2.01, 4.94) for intensive care and 6.58 (95% CI 4.18, 10.36) for high 

dependency care, relative to special care. The case control study gave slightly larger 

estimates of effect than the Poisson regression models. Total parenteral nutrition was 

significantly associated with BSI incidence but explained less of the variance among 

babies than level of care.  
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Using the results from the risk adjustment model, I demonstrated how routine data can 

be integrated into a method for prospective, risk adjusted monitoring. This method 

involved standardised infection ratios and a sequential probability ratio test. The method 

can evaluate changes in BSI rates over time and between NICUs. It could also be used 

to quantify improvements following infection control interventions. 
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1. Introduction and systematic literature review 

 

1.1 Summary 

Comparisons of the incidence of blood stream infection (BSI) between neonatal 

intensive care units (NICUs) can reveal important differences, which may be due to 

variation in infection control practices. Investigation of these differences can highlight 

NICUs with effective infection control, whose practices can be shared with other units. 

To examine variation in practice, infection incidence must be risk adjusted to control for 

differences between units in the vulnerability of babies and the intensity of invasive 

procedures which can introduce infection.  

 

I reviewed methods for risk adjusting comparisons of BSI incidence between NICUs, 

both in the published literature and in reports published by regional and national NICU 

infection monitoring systems. PubMed and Embase were searched for studies reporting 

risk adjusted BSI incidence in more than one NICU. An internet search found NICU 

infection monitoring systems in Western industrialised countries.  

 

In the ten studies that met the inclusion criteria, risk adjustment reduced but did not 

eliminate variation in BSI incidence between NICUs. In both the studies and the 

regional monitoring systems, adjustment for baby susceptibility generally involved 

stratification by factors measured at birth. Adjustment for length of stay and invasive 

procedures involved reporting incidence by days with a device, such as central venous 

catheter days.  

 15



 

Current methods for monitoring NICU infection lack consistency. Adjustment for 

factors measured at birth fails to capture changes in susceptibility throughout the NICU 

stay and adjustment for device days does not adequately reflect risk to babies without a 

device. There is a requirement for methods which adjust for variation in risk for all 

babies throughout their NICU stay.  

 

1.2 The rise of neonatal intensive care units 

NICUs were developed in the 1950s and 1960s, and are hospital units specialising in the 

care of premature or acutely ill newborn babies. They provide acute intensive and high 

dependency care, including cardiovascular and respiratory support. They also provide 

less intensive ‘special care’, including monitoring and support for feeding and 

temperature maintainance, for babies not sufficiently mature or well enough to be cared 

for by their mothers on postnatal wards. NICUs are run and staffed by neonatologists 

and neonatal nurses. Common conditions cared for in the NICU include: prematurity, 

extreme low birth weight, major birth defects, perinatal asphyxia, jaundice, blood 

stream infection and respiratory distress syndrome. In England, about 10% of all births 

are admitted to NICUs.1 

 

In developed countries, NICUs have greatly increased the survival of extremely 

premature and very low birth weight babies. In the 1950s, most babies of less than 30 

weeks gestation or less than 1400g birth weight died, whereas in the UK today 96% of 

these babies survive.  The limit of viability has decreased to 22/23 weeks and 500g birth 

weight.  The Extremely Preterm Infants in Sweden Study (EXPRESS) was a 

2

3
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prospective observational study covering Sweden’s entire population, carried out during 

2004-2007. 1011 babies were born before 27 weeks of gestational age, and 707 of these 

were liveborn. Of the liveborn babies, 497 (70%) survived to one year of age (95% 

confidence interval (CI) 67%-73%).4 However, babies who survive at the limit of 

viability often have severe developmental difficulties.5-7 

 

Several differences between NICUs and other intensive care environments are relevant 

for this project. In contrast to adult and paediatric intensive care, babies are rarely 

admitted to the NICU from the community, coming instead from labour wards in the 

NICU’s neonatal network. Babies in NICUs can suffer from infections acquired from 

their mothers during delivery as well as infections from the NICU environment. These 

factors result in different colonising organisms and incidences of infection between 

NICUs and other intensive care units. Maternally transmitted infections will be 

discussed in more detail in Chapter 5. In addition, duration of stay in intensive care 

differs between adults, children and babies. In a prospective cohort study including 

2060 adults admitted to 22 intensive care units in Austria in 2006/2007, the median 

length of stay was four days.8 The UK Paediatric Intensive Care Audit Network 

(PICANet) estimated that in the south west of England in 2007/2008, children admitted 

to district general hospital intensive care units had a median length of stay of 13 hours 

and children admitted to paediatric high dependency units had a median length of stay 

of one day.9 In contrast, babies spend longer periods in the NICU: the median length of 

stay was between 7 and 13 days for the two NICUs described in this project (discussed 

in Chapter 3). This means that babies can be exposed for long periods to invasive 

procedures which may introduce infection.  



 

1.3 Hospital-acquired infections in NICU 

Between 6% and 22% of babies who spend at least 48 hours in an NICU acquire a 

hospital-acquired infection (HAI).10,11 HAIs are rather loosely defined as infections 

occurring in hospital or shortly after discharge, with no evidence that the infection was 

present or incubating at the time of admission.12 In the United States (US), a national 

point prevalence survey carried out for one day in 1999 included 827 babies from 29 

NICUs. HAI prevalence, defined according to United States Centers for Disease Control 

and Prevention (CDC) criteria,13 was estimated at 11.4% of NICU inpatients. Blood 

stream infection (BSI) was the most common HAI, accounting for 53% of infections. 

This was followed by respiratory infections (13%), urinary tract infections (9%) and 

other infections (25%).14 This PhD project focused on BSI, as it forms the majority of 

the most serious NICU-acquired infections. 
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Case definitions for blood stream infection 

The US CDC established criteria to define hospital-acquired BSI in 1988 (updated in 

2008), these criteria are summarised in the box below: 

 
US Centers for Disease Control and Prevention (CDC) criteria to define hospital-acquired 
blood stream infection (abbreviated)12,13 
 
Laboratory-confirmed BSI 
 
At least one of the following criteria must be met: 
 
1. Patient of any age has a recognised pathogen cultured from one or more blood cultures.  
 
2. Patient of any age has at least one of the following signs or symptoms: fever (>38°C), chills, 
hypotension 
and 
a common skin contaminant is cultured from two or more blood cultures drawn on separate 
occasions.  
 
3. Patient ≤1 year of age has at least one of the following signs or symptoms: fever (>38°C 
rectal), hypothermia (<37°C rectal), apnea, bradycardia 
and 
a common skin contaminant is cultured from two or more blood cultures drawn on separate 
occasions. 
 
For 1, 2 and 3 signs and symptoms and positive laboratory results must not be related to an 
infection at another site. 
 
Common skin contaminants are listed as: diphtheroids (Corynebacterium), Bacillus (not B 
anthracis), Propionibacterium, coagulase-negative staphylococci (including S epidermidis), 
viridans group streptococci, Aerococcus, Micrococcus. 
 
Clinical sepsis 
 
Clinical sepsis may be used to report primary BSI in neonates and infants. 
 
The following criterion must be met: 
 
1. Patient ≤1 year of age has at least one of the following signs or symptoms with no other 
recognised cause: fever (>38°C rectal), hypothermia (<37°C rectal), apnea, bradycardia 
and 
blood culture not done or no organisms detected in blood 
and 
no apparent infection at another site 
and 
physician institutes treatment for sepsis 
 
For both laboratory-confirmed BSI and clinical sepsis, there must be no evidence that the 
infection was present or incubating at the time of admission to hospital. Infections in babies that 
result from passage through the birth canal are considered HAIs. 
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A systematic literature review of multicentre monitoring for BSI incidence in NICUs 

showed that about half of the studies reviewed based their case definitions for BSI on 

CDC criteria (five out of ten published studies and three out of seven regional 

monitoring systems). These criteria were not considered appropriate in every study. In 

particular, authors of the NEO-KISS infection monitoring system in Germany had 

reservations about classifying maternally-transmitted infections acquired from the birth 

canal as HAI. They instituted several modifications to the CDC case definition, the 

main one stipulating that only BSI occurring after 48 hours of life should be considered 

hospital-acquired.15  

 

The main obstacle to the use of CDC criteria in research and infection monitoring is 

their complexity. They include clinical observations of signs of infection to help 

differentiate between clinically-relevant BSI and subclinical infection or contaminated 

blood cultures. However such clinical data are not routinely recorded and therefore 

require skilled data collection, which may not be possible. The systematic review 

showed that some studies relied to a greater degree on blood culture results,16-18 which 

can be obtained from routine hospital laboratory data. The systematic review is 

described in Sections 1.5 to 1.8. The case definition used in this PhD project relied 

solely on blood culture results, it is described in Chapter 3, Section 3.3.2 and discussed 

in Chapter 5, Section 5.5. A method for differentiating between maternally-transmitted 

and hospital-acquired BSI is described in Chapter 5. Section 5.3.2. 
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Organisms giving rise to blood stream infection 

The organisms most commonly contributing to NICU-acquired infection are Coagulase-

negative staphylococci (CONS). In a surveillance study, Gaynes et al. (1996) evaluated 

13,179 HAIs conforming to CDC case definitions, including 3833 BSIs, reported by 99 

US NICUs from 1986 to 1994. CONS were implicated in 36% of all HAI and in 51% of 

BSI.19 Commensal organisms such as CONS, which in healthy individuals can colonise 

the skin and gastrointestinal tract without giving rise to infection, were recognised as 

important pathogens 30 years ago, and have increasingly been implicated in NICU-

acquired infection over the last 20 years. This is probably due to increased survival of 

very premature babies, who are vulnerable to otherwise harmless bacteria due to their 

immune immaturity and increased requirement for invasive procedures which can 

introduce infection.20 Other organisms giving rise to BSI in NICUs include 

Staphylococcus aureus, Group B streptococci, Enterococci, Candida species and 

Escherichia Coli. The frequent and widespread use of antibiotics in NICUs, hospitals 

and the community has led to the emergence of antibiotic-resistant organisms such as 

Methicillin-resistant S. aureus, and vancomycin-resistant enterococci. Although the vast 

majority of organisms giving rise to NICU-acquired BSI are susceptible to antibiotics, 

sporadic outbreaks of resistant BSI have occurred.21-23 

 

Mechanisms of blood stream infection 

Newborn babies are particularly vulnerable to infection compared with older age 

groups. Figure 1.1 shows that in relation to other hospital departments, NICUs have a 

higher rate of BSI.24 A newborn’s immune system is functionally inferior to that of an 

older child or an adult, and is more naïve to antigens. For example, a baby’s IgG levels 
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reach about 60% of adult levels by one year of age.25 Because much of the maternal IgG 

is transferred to the fetus during the last trimester of pregnancy, premature babies have 

even lower levels of serum IgG than their term counterparts.26 Colonisation with 

‘normal’ flora in the first few days of life can deter colonisation with pathogenic 

organisms and in the NICU, this process can be disrupted by antimicrobial agents.27 

Premature babies also have immature skin and mucous membrane barriers, particularly 

in the gut, and insufficiently acidic gastrointestinal tracts, which can admit pathogens or 

commensals. Invasive procedures used in the NICU can provide portals for the entry of 

organisms, either at their insertion sites, or internally by causing physical trauma. 

Invasive procedures can provide an environment for colonisation, for example at the 

catheter hub, and intravenous infusions can become contaminated. In particular, 

intralipids infused as part of parenteral nutrition provide a favourable medium for 

organismal growth. Other issues specific to parenteral nutrition include its direct effects 

on both the immune system, perhaps through inhibition of interleukin-2,28 and on the 

development of natural gastrointestinal defences. 

 

Risk factors for blood stream infection 

Throughout this thesis, I divide risk factors for BSI into those reflecting susceptibility to 

BSI at birth, and those reflecting susceptibility during the NICU stay, i.e. invasive 

procedure-related factors. In the paragraph above I described how the mechanisms for 

BSI involve multiple intrinsic factors and extrinsic exposures associated with the 

complexity of intensive care. Many of these risk factors act at the molecular or bacterial 

level, and most are not investigated or recorded on a routine basis. Population-based 

studies have tended to use markers for susceptibility to infection which are routinely 
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recorded, examples include gestational age and the use of invasive procedures, for 

example central venous catheters (CVCs) and parenteral nutrition. The results of these 

studies are summarised in the following three paragraphs.  

 

Risk factors reflecting susceptibility to infection at birth 

As shown in several studies, babies with low gestational ages and/or very low birth 

weights are at increased risk for BSI. In a prospective cohort study, Beck-Sague et al. 

(1994) evaluated 376 babies in 3 US NICUs from 1989 to 1991. The proportions of 

babies developing BSI according to CDC criteria were: 31 of 110 (28%) babies with a 

birth weight below 1500g, and 11 of 266 (4%) babies with a birth weight above 1500g 

(risk ratio 6.8, p<0.01, no CI available, adjusted for other factors related to babies’ 

susceptibility to infection, such as admission diagnosis).29 In another prospective cohort 

study, the National Institute of Child Health and Human Development Neonatal 

Research Network (2002) reported on babies of very low birth weight (below 1500g), 

admitted to 15 US NICUs between 1998 and 2000. BSI was defined as one or more 

positive blood cultures obtained after 72 hours of life, which were treated with 

antibiotics. Cultures positive for organisms generally considered to be contaminants 

were only included if they were found to indicate infection on clinical review. Of 6215 

babies, 1313 (21%) experienced BSI, and the incidence of infection was inversely 

related to birth weight and gestational age. Forty three percent of babies with birth 

weights between 401 and 750g experienced infection, in contrast to 7% of babies with 

birth weights between 1251 and 1500g. Similarly, 46% of babies born before 25 weeks 

of gestation experienced BSI, which decreased to 2% for babies born after 32 weeks of 
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gestation (p<0.001 in unadjusted logistic regression models for BSI incidence, fitted 

with birth weight or gestational age as a covariate. Risk ratios and CIs not available).30  

 

Many studies have shown associations between maternal risk factors and maternally-

transmitted BSI occurring in the first few days of life.31 The National Institute of Child 

Health and Human Development Neonatal Research Network carried out one of the 

largest of these studies, in which babies with very low birth weights (below 1500g), 

admitted to 12 US NICUs between 1991 and 1993, were enrolled in a prospective 

cohort. BSI was defined as one or more positive blood cultures obtained before 72 hours 

of life, accompanied by clinical signs of infection. Cultures positive for known 

contaminants were only included if they indicated infection on clinical review. Of 7861 

babies, 147 (1.9%) experienced early-onset BSI, of which 45 (31%) experienced 

infection with Group B streptococcus. The time from rupture of membranes (rupture of 

the amniotic sac) to birth was a strong risk factor for BSI, because this interval reflects 

the potential exposure of the foetus to pathogenic organisms. If rupture of membranes 

occurred more than 24 hours before birth, the risk of BSI was more than four times 

greater than if this interval was less than 6 hours (p<0.01 adjusted for gestational age at 

birth. CI not available). Babies born by vaginal delivery can be exposed to potentially 

pathogenic organisms in the birth canal. Babies born by caesarean delivery were less 

likely to experience BSI than babies born by vaginal delivery (odds ratio 0.69, 95% CI 

0.49, 0.96, p<0.05 adjusted for gestational age at birth).32 This thesis concentrates on 

hospital-acquired BSI, by excluding probable maternally-transmitted BSI occurring 

during the first 48 hours of life. The threshold used to differentiate maternally-
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transmitted BSI from hospital-acquired BSI is described in more detail in Chapter 5, 

Section 5.3.2. 

 

Procedure-related risk factors reflecting susceptibility to infection during the NICU 

stay 

Studies have shown associations between the use of invasive procedures and BSI.33 The 

three invasive procedures most often associated with BSI are the use of parenteral 

nutrition, central venous catheters and assisted ventilation, as described by the following 

three prospective cohort studies. Holmes et al. (2007) evaluated 1367 babies admitted to 

one UK NICU between 2001 and 2003. BSI was defined as a positive blood culture, 

with the additional requirement of clinical symptoms if the culture revealed more than 

one organism or a skin contaminant. The rate of BSI was higher in the three days 

following treatment with parenteral nutrition (22.65 per 1000 baby days), than on other 

days (1.37 per 1000 baby days). The rate ratio was 14.2 (95% CI 8.8-22.9).34 In another 

study, the Canadian Neonatal Network evaluated 19,507 babies admitted to 17 

Canadian NICUs in 1996/1997. BSI was defined as one or more positive single 

organism blood cultures in babies with clinical suspicion of infection. The rate of BSI 

was higher on days treated with a CVC (7.2 to 13.1 per 1000 CVC days, depending on 

the type of CVC used) than on days not treated with a CVC (2.9 per 1000 noncatheter 

days). The rate ratio was 2.0 (95% CI 1.7, 2.5) to 3.5 (95% CI 3.0, 4.0).35 In a subset of 

16,497 babies from the Canadian Neonatal Network study, assisted ventilation was 

estimated to increase the odds of BSI 1.5 times (95% CI 1.1-2.0) in babies with birth 

weight below 1500g, and 2.9 times (95% CI 1.9-4.6) in babies with birth weight above 
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1500g (crude odds not available).36 Risk ratio estimates for all three invasive procedures 

were adjusted for other factors related to babies’ susceptibility to infection. 

 

Outcomes of infection 

Babies with BSI are at increased risk for neurodevelopmental impairment. The National 

Institute of Child Health and Human Development Neonatal Research Network (2004) 

carried out a prospective cohort study, which followed up 6093 babies in US NICUs, 

with birth weights between 401 and 1000g. Infection was defined as a positive culture 

from blood or cerebrospinal fluid, with antibiotic therapy for five or more days. 

Cultures positive for organisms generally considered to be contaminants were excluded. 

Of surviving babies at 18 to 22 months of corrected gestational age, those who 

experienced infection were significantly more likely to have cerebral palsy, impaired 

head growth, vision impairment and low scores on the mental and psychomotor 

development indices of the Bayley Scales of Infant Development II, than those who 

were not infected.37  

 

Proposed mechanisms for neurodevelopmental impairment involve multiple, interacting 

prenatal, perinatal and postnatal insults, including intrauterine infections such as 

chorioamnionitis, hypoxic ischaemic events such as birth asphyxia, and postnatal 

infections such as BSI and meningitis. Periventricular leukomalacia, or lesions in white 

matter surrounding the cerebral ventricles, is the brain injury most commonly associated 

with both infection and adverse outcomes such as spastic diplegia, impaired vision, 

squints, sensorineural hearing loss and developmental delay.38,39 In a retrospective case 

control study, Graham et al. (2004) evaluated all babies born at 23 to 34 weeks’ 
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gestation, at a tertiary university hospital between 1994 and 2001. 150 babies with white 

matter lesions, diagnosed within the first six weeks of life, were matched for gestational 

age with controls without brain injury. The unadjusted odds of developing white matter 

injury was twice as high in babies with a positive blood culture, than in babies without a 

positive blood culture (43 cases had a positive blood culture versus 28 controls, 95% CI 

1.04, 4.00).40 One explanation for the association between infection and white matter 

lesions is that infection and inflammation may result in vascular compromise and 

cytotoxic injury to white matter. A possible mechanism suggests that the presence of 

pro-inflammatory cytokines inhibits proliferation of neuronal precursor cells, activates 

astrogliosis and stimulates oligodendrocyte death.38  

 

BSI is associated with an increased risk of mortality, which varies depending on the 

infecting organism. In a prospective cohort study, Orsi et al. (2008) evaluated 575 

babies admitted to an Italian NICU between 2003 and 2006. Thirty-five babies died 

(6.1%), and two of these deaths were attributable to HAI (attributable mortality 5.7% of 

35), which was defined according to CDC criteria. Babies infected with BSI were 

almost four times more likely to die than babies not infected with BSI (risk ratio 3.89, 

95% CI 1.76, 8.63), although this relationship was not adjusted for other factors related 

to babies’ vulnerability.41 The risk of death associated with BSI varies according to the 

infecting organism. In a prospective cohort study, Isaacs et al. (2003) evaluated 

admissions to 18 NICUs in Australia and New Zealand, between 1991 and 2000. BSI 

was defined as a positive blood culture accompanied by clinical symptoms. Of 1249 

babies infected with CONS, between 4 and 24 (0.3% and 1.6%) were judged to have 
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died because of their infection. In contrast, 289 babies developed Staphylococcus 

aureus infection, of whom 38 (13.1%) died.42  

 

Babies with BSI also tend to spend longer in hospital and have increased treatment 

costs. In a retrospective cohort study, the Vermont Oxford Network (2004) evaluated 

2809 babies surviving to discharge from 17 US NICUs in 1998/1999. BSI was defined 

as a positive blood culture, with the additional requirement of clinical symptoms and 

antibiotic treatment if the culture revealed a commensal. BSI significantly increased 

lengths of stay by 4 to 7 days in babies of birth weight 401 to 1500g, and increased 

treatment costs by 15% to 21%, or by $6276 to $12,480, in babies of birth weight 751 to 

1500g.43 

 

Organisational measures to reduce infections in NICUs 

Various intervention studies have shown that infection control practices implemented at 

the unit level have reduced the incidence of BSI in NICUs. Maas et al. (1998) evaluated 

the effect of a CVC care programme including aseptic techniques, such as the use of 

gloves and gowns when changing infusion sets, implemented in a Belgian NICU in 

1989. BSI was defined according to modified CDC criteria. In the four year follow-up 

period, the proportion of babies acquiring BSI while treated with a CVC fell from 11/26 

(42%) to 18/156 (12%) (adjusted risk ratio in the period before versus after the 

intervention, 2.96 95% CI 1.13, 7.79).44 Pessoa-Silva et al. (2007) evaluated the effect 

of a hand hygiene promotion programme, including education on hand washing 

techniques, implemented in a Swiss NICU in 2001. HAI was defined according to CDC 

criteria. In the 27 month follow-up period, the rate of HAI in babies with birth weight 
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below 1500g fell from 15.5 to 8.8 per 1000 baby days (adjusted odds ratio 0.40 95% CI 

0.19-0.85).45 Isolation of babies known to be infected is recommended for serious, 

easily transmissible or hard to treat infections such as Methicillin-resistant S. aureus.46 

Changes to NICU environments and staffing can also affect BSI. The UK Neonatal 

Staffing Study Group (2005) evaluated 13,334 babies admitted to 54 UK NICUs in 

1998/1999. 402 babies (2.97%) acquired BSIs, defined by a positive blood culture. The 

adjusted odds of BSI increased by 1.13 (95% CI 1.07, 1.20) for each additional special 

care cot per hand washbasin, and decreased by 0.53 (95% CI 0.35, 0.79) in units with an 

NICU infection control nurse compared with units without.16 

 

1.4 Surveillance of blood stream infection in NICU 

Surveillance can be defined as ‘a comprehensive method of measuring outcomes and 

related processes of care, analysing the data, and providing information to members of 

the health care team to assist in improving those outcomes’.47  

 

Surveillance of BSI in NICU could be used to: 

 Assess the burden of infection 

 Monitor changes in infection incidence over time and to trigger alarms if 

incidence increases significantly 

 Encourage sharing of improved infection control practices between NICUs 

 Monitor the outcome of interventions to improve infection control 

 

An example of how surveillance can be used to assess the burden of BSI and to monitor 

changes over time is provided by the neonatal Krankenhaus Infektions Surveillance 
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System (NEO-KISS). NEO-KISS monitors babies with birth weights below 1500g 

cared for in German NICUs, and BSI is defined according to modified CDC criteria. 

Between 2000 and 2005, 24 NICUs each participated in the system for a period of three 

years, and submitted data for a total of 3856 babies. The overall burden of BSI was 8.3 

per 1000 baby-days in the first year of participation, which for most units decreased 

over the study period to give a mean of 6.4 per 1000 baby-days (adjusted odds ratio 

0.73, 95% CI 0.60, 0.89).48 The programme includes biannual feedback to NICUs, 

including comparisons between hospitals and within hospitals over time. The authors 

inferred that taking part in surveillance may motivate NICU staff to reduce the risk of 

BSI. Further evidence for a positive effect of surveillance is provided by a systematic 

review of over 100 randomised controlled trials showing that audit and feedback alone 

produce small to moderate improvements in clinical practice.49,50 

 

When comparative monitoring has been used to trigger sharing of improved practices 

between units, substantial reductions in infection incidence appear to have been 

achieved. Six NICUs in the Vermont Oxford Network, and 52 NICUs in the Hospital 

Corporation of America collaborated in separate but similar projects, both involving the 

sharing of infection control practices, between NICUs with consistently low rates of 

BSI and those with higher rates. Practices shared between units included protocols to 

reduce the contamination of invasive procedures, and to improve the accuracy of BSI 

diagnosis, for example by recommending a minimum blood sample of 1ml. The 

Vermont Oxford Network analysed CONS BSI only, the case definition was a blood 

culture testing positive for this organism, which was accompanied by clinical symptoms 

and treated with antibiotics. For babies of birth weight below 1500g, the mean 
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proportion infected across the participating NICUs decreased from 24.6% to 16.4%, 

from 1997 to 2000 (crude risk ratio 0.67, 95% CI 0.51, 0.87).51,52 Across the Hospital 

Corporation of America network, the total incidence of all BSI, defined by positive 

blood culture, fell from 3.8 to 2.9 per 1000 baby-days, from 1997 to 1999. The average 

hospital cost per baby reduced from $60,826 to $48,916 (risk ratios and 95% CIs for 

decreases not available).53 Neither study could definitively link the observed decreases 

in BSI with their initiatives, or with specific practice changes. It is also unclear to what 

extent decreases in BSI were due to infection control practices, or reductions in false 

positive blood cultures due to improved sampling for BSI. However, the Vermont 

Oxford Network demonstrated that the decrease in BSI was consistent in all but one 

NICU, and that practice changes were widely adopted, suggesting that the collaboration 

succeeded in improving practice. 

 

A weakness of the Vermont Oxford Network and Hospital Corporation of America 

studies described above, is that some of the initial variation in BSI incidence observed 

between NICUs may have been attributable to factors other than quality of care, such as 

case mix, babies’ length of stay and the invasive procedures carried out, all of which 

can influence hospital-acquired infection.54 A robust multicentre monitoring system 

must adjust for these factors, in order to take into account variation in case mix. Any 

residual variation may be explained, at least in part, by factors amenable to change, such 

as hygiene practices. Developing a method for risk adjusting comparisons of BSI 

incidence between NICUs is a major challenge for infection monitoring, and is the 

focus of this thesis. 
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1.5 Aims of the systematic review 

I performed a systematic review to determine: 

 Methods used for risk adjustment in studies that compared infection incidence 

between NICUs 

 How much infection incidence varied before and after risk adjustment 

 The extent to which these approaches for risk adjustment are being used by 

regional surveillance systems for NICU-acquired infection around the world 

 

I discuss different approaches for risk adjustment and suggest ways to improve 

robustness of comparisons. 

 

1.6 Methods of the systematic review 

 

1.6.1 Systematic review of studies reporting risk adjustment 

Studies were included if they reported any measure of the frequency of BSI at more 

than one NICU and comparative results that were risk adjusted. I accepted any approach 

for risk adjustment, including stratification for risk factors, for example reporting 

infections as rates per catheter days, as well as the inclusion of risk factors in a 

statistical risk adjustment model. I accepted any definition for hospital-acquired BSI, 

but excluded studies concentrating on maternally-transmitted BSI in the first few days 

of life.  
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I combined three sets of search synonyms relating to NICU, BSI, and monitoring or risk 

adjustment to search PubMed and Embase databases (with Embase thesaurus mapping) 

in any language until October 2009. All titles and abstracts for potentially eligible 

articles were reviewed. Studies meeting the inclusion criteria were reviewed by myself 

and my primary supervisor. I also searched reference lists and ‘related articles’ of all 

included studies (using PubMed). Abstracts from relevant conferences were reviewed 

from January 2005 to October 2009. The Appendix to Chapter 1 contains details of the 

search strategies. 

 

1.6.2 Review of regional monitoring systems 

As both infections and organisational structures vary greatly among NICUs in 

developing countries, I included only monitoring systems from Europe, North America 

and Australasia to ensure generalisability. The search was performed in Google in 2007 

and updated in October 2009, using short phrases and the region of interest, this is 

described in the Appendix to Chapter 1. 

 

1.7 Results  

 

1.7.1 Systematic review of studies reporting risk adjustment 

 

Case definition  

Ten studies met the inclusion criteria (Figure 1.2).16,18,30,35,36,55-59 Case definitions for 

BSI varied in complexity from a first positive blood culture,16,18 to hospital-acquired 

BSI defined by US CDC criteria.13,56-59 Two studies excluded BSI acquired before 
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NICU admission as they were restricted to blood cultures taken at least 48 hours after 

admission.36,55 CDC criteria state that ‘there must be no evidence that the infection was 

present or incubating at the time of hospital admission’, but give no time threshold.13 

All but two studies57,59 distinguished hospital-acquired from maternally-transmitted 

BSI, using thresholds ranging from 48 to 72 hours after birth.  

 

Risk adjustment 

The third column of Table 1.1 shows that most studies took into account the duration of 

exposure, by reporting incidence per baby days of stay or per CVC days,35,57-59 

sometimes with Cox proportional hazards regression models or Kaplan-Meier analyses 

of time to infection.55,56 Four studies did not take into account length of stay, reporting 

the proportion of babies experiencing one or more BSI.16,18,30,36 Only three studies took 

recurrent infections into account, by reporting rates of BSI per baby or catheter 

days.35,57,59 

 

The fourth to the sixth columns of Table 1.1 summarise adjustment for potential risk 

factors. Adjustment for factors reflecting susceptibility at birth was performed by 

stratifying BSI incidence by birth weight,19,36,59 or by including factors in a risk 

adjustment model.16,18,30,36,55,56,58 Adjustment for procedure-related factors was 

performed by reporting BSI per days with a CVC.35,57,59 Other studies included invasive 

procedures in a risk adjustment model: some factors were included as binary variables 

(eg. CVC: yes/no),56,58 some as durations censored at the onset of BSI or removal of the 

CVC or ventilator,56,58 and others as daily variables which were updated continuously 

during a baby’s stay.55 Adjustment for organisational factors was performed by 
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including factors such as the provision of infection control nurses in a risk adjustment 

model.16,18  

 

Two studies addressed the possibility that differences in blood sampling frequency 

between hospitals could influence comparisons, as the more samples taken the greater 

the risk of detecting asymptomatic BSI or a contaminated sample. The UK Neonatal 

Staffing Study Group (2005) found no association between the ratio of positive to all 

blood cultures and the incidence of BSI or any of their risk adjustment variables. Brodie 

et al. (2000) measured a two-fold variation in the frequency of blood sampling among 

NICUs, but reported that differences in BSI incidence between NICUs remained 

significant when results for the commonest contaminant, CONS, were removed from 

the analysis.  

 

Five studies reported a reduction in the variation between NICUs after risk adjustment 

(third column of Table 1.2). All ten studies showed residual variation in BSI incidence 

between NICUs after risk adjustment. Perlman et al. (2007) also showed variation 

between two NICUs in the adjusted incidence of BSI with gram-positive organisms. In 

contrast, two subgroup analyses by Perlman et al. (2007) showed no significant 

variation in the adjusted incidence of BSI in babies who had at least one CVC placed 

during their NICU stay or in BSI occurring in the presence of a CVC (fourth column of 

Table 1.2).  
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1.7.2 Review of regional monitoring systems  

 

Case definition 

Table 1.3 summarises risk adjustment methods used by the seven regional monitoring 

systems included in the review.17,60-65 Case definitions varied in complexity from a 

positive bacterial culture (excluding cultures for CONS)17 to CDC case definitions,63,64 

while NEO-KISS modified the CDC case definition for use in neonates.15 Four systems 

excluded BSI acquired before NICU admission by including only diagnostic blood 

cultures taken at least 48 hours after admission,60,62 or rejecting infections with evidence 

that they were acquired elsewhere.63,64 Two systems differentiated between maternally-

transmitted and hospital-acquired BSI, using thresholds of 4860 or 7265 hours after birth. 

 

Risk adjustment 

Five systems provided some adjustment for duration of exposure, by reporting 

incidence by catheter days,60,61,63 or by catheter days and baby days of stay.62,64 (third 

column of Table 1.3) 

 

The UK-based NeonIN was the only system not using any method of risk-adjustment. 

As the remaining six systems were based on the original US CDC surveillance system, 

they were remarkably similar. Adjustment for factors reflecting susceptibility at birth 

was performed by stratification into birth weight groups. Adjustment for procedure-

related factors was performed by reporting incidence by catheter days. NEO-CAT 

incorporated several factors in a multivariable risk adjustment model (fourth column of 

Table 1.3). 
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While most systems did not directly adjust for differences in blood sampling frequency 

between NICUs, their case definitions attempted to control for differences in blood 

sample contamination by, for example, requiring that a positive blood culture be 

associated with clinical symptoms or a CVC.61 The Vermont Oxford Network went 

further in proposing practices to standardise sampling techniques between participating 

NICUs, for example by recommending a minimum blood sample of 1ml.51 

 

Most case definitions combined clinical evidence of infection with blood culture results 

and consequently required active reporting by clinicians. I found no evidence that any 

system exclusively used electronic hospital administrative data.  

 

1.8 Discussion  

Overall, risk adjustment attenuated but did not remove differences in infection incidence 

between NICUs. Residual variation could indicate differences in data quality, 

inadequate adjustment for case mix or procedure-related factors, or true differences in 

incidence. For example, Perlman et al. (2007) showed a significant difference between 

NICUs in overall BSI incidence adjusted for CVC use, but not for the subset of CVC-

related BSI. This suggests that CVC use and study site were linked, and that probably 

the overall analysis was inadequately adjusted for CVC use. The UK Neonatal Staffing 

Study Group suggested that residual variation resulted from differences in quality of 

care. Measures of risk adjusted BSI showed statistically significant associations with 

NICU organisational factors, such as the provision of neonatal consultants and infection 

control nurses, and the availability of hand washbasins. Differences in quality of care 
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may have contributed to the localised outbreak of Staphylococcus epidermidis, which 

Perlman et al. (2007) suggested gave rise to the varying Gram-positive BSI incidences 

between NICUs. There is a consensus that risk adjustment is necessary, feasible and 

effective, but there is no agreement regarding the best method for carrying it out. 

 

This review highlights the need for more consistent outcome measures and risk 

adjustment methods. A Europe-wide survey of hospital infection control physicians 

revealed that their strongest consensus research priority is standardisation of 

surveillance systems for international comparison of hospital-acquired infection 

incidence.66 Consistency in the denominator used is the minimum requirement. Most 

studies and regional monitoring systems reported incidence by baby days or catheter 

days, controlling for variations between NICUs in duration of exposure to infections. 

Incidence rates also capture recurrent infections within the same baby, which is not 

possible if reporting consists of proportions of babies experiencing one or more BSI.  

   

Meaningful comparisons also require consistency in the risk factors adjusted for, and in 

how these are measured and analysed. Most studies and regional monitoring systems 

adjusted for factors measured at birth, such as birth weight, however this does not adjust 

for changes in a baby’s susceptibility throughout his or her NICU stay. Days with a 

CVC can provide such a continuous measure, but they exclude the 80% of NICU babies 

not treated with a CVC,35 who may have widely differing risks of infection. The 

Canadian Neonatal Network Study (2002) (Table 1.1) suggested that only about 40% of 

BSI are CVC-related.35 Holmes et al. questioned the use of CVC days for risk 

adjustment, as their multivariable analysis found parenteral nutrition to be a stronger 
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predictor of BSI than CVC use alone.34 However again, parenteral nutrition is used to 

treat a minority, 24%, of babies in the NICU.67 Continuous composite risk adjustment 

variables may be preferable, capturing multiple risk factors and all babies throughout 

their NICU stay. An example is days of stay at each level of care, which in some 

countries is updated daily and allocated to all babies according to clinical status. Levels 

of care used in the UK National Health Service (NHS) are described in the box below 

and in the Appendix to Chapter 3. The following chapters will examine level of care, as 

well as specific invasive procedures, as risk adjustment factors for comparisons of BSI 

between NICUs. 

 

 
British Association of Perinatal Medicine, Categories of Neonatal Care 
(abbreviated)68 
 
Intensive care 
For babies: receiving any respiratory support via a tracheal tube, less than 29 weeks 
gestational age and less than 48 hours old, requiring complex clinical procedures or 
major surgery. 
Recommended nurse to baby ratio 1:1. 
 
High dependency care 
For babies: receiving parenteral nutrition, requiring care of an intra-arterial catheter, 
with apneoa requiring stimulation. 
Recommended nurse to baby ratio 1:2 
 
Special care 
For babies: requiring continuous monitoring of respiration or heart rate, receiving 
phototherapy, recovering from more specialist care. 
Recommended nurse to baby ratio 1:4 

 

The only regional monitoring system which did not perform risk adjustment was 

NeonIN, which aimed to provide simple, rapid determination of the patterns of 

organisms in NICUs, with data entry by busy clinicians. NeonIN highlights dual 

requirements for NICU monitoring: rapid data collection and feedback and more time-
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consuming comparisons of risk adjusted rates. Both approaches are useful; the former 

can alert clinicians to sudden changes, the latter is essential for quality of care 

benchmarking. For both approaches, the use of routine electronic clinical records would 

accelerate data collection and minimise staff workload, but must be balanced against the 

use of case definitions that include clinical observations, which can require skilled data 

collection and stand-alone data systems. 

 

This systematic literature review was published in the ‘Journal of Hospital Infection’ 

(included in the Publications Appendix).69 The paper does not include the study by 

Perlman et al. (2007), which appeared on PubMed after its acceptance for publication. 

  

Key conclusions of Chapter 1 

Findings 

 Risk adjustment is widely recognised as necessary for meaningful 

comparisons of BSI incidence between NICUs, however there is a lack of 

consistency in the methods used. 

 Most regional monitoring systems agreed that adjustment for duration of 

exposure and susceptibility at birth is a minimum requirement. 

Conclusions 

 Further research should investigate the possibility of adjustment for 

continuous, composite measures of risk from invasive procedures. 

 The use of routine electronic data would accelerate data collection and 

minimise staff workload. 
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Figure 1.1 Number of hospital-acquired BSIs per 1000 patient-days, by 

specialty, in the UK 1997-2002 

 

Nosocomial Infection National Surveillance Service (2002) ‘Surveillance of Hospital-Acquired 

Bacteraemia in English Hospitals 1997-2002’ Public Health Laboratory Service, London, UK. 

Permission to reproduce this graph was confirmed by the Health Protection Agency in January 

2011. 
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Figure 1.2 Flow diagram of the process and results of the systematic 

literature review 

 

 

 

 

 

 

 

 

 

 

 

 

 

4193 rejected after 
scanning titles and 

abstracts 

79 rejected after full 
text review 

10 studies included 
0 from conference 

proceedings 

10 studies 

0 from bibliographies 0 from PubMed 
‘related articles’ 

searches 

6021 studies found 
PubMed: 2373 
Embase: 3648 

Total (minus overlap): 4282 

89 full papers reviewed 
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Table 1.1 Studies comparing risk adjusted BSI incidence between NICUsa 
 

 Outcome measures adjusted for: 
Authors and setting 
(study period) 

Population Outcome measure Birth susceptibility 
factors 

Procedure-related 
factors 

Organisational factors 

Brodie et al, 200055 
6 US NICUs 
(1994-1996,1996-1997) 
 

1354 babies  
with birth weight <1500g 

Time to first BSI after 
admission 
 

Birth weight, SGA Duration of  
Broviac catheter 
parenteral nutrition  

(Daily variables) 
 

No 

1) 19,507 babies35 
 

1) Incidence per CVC days 
 

1) Gestational age, 
outborn status, SNAP-II 
 

1) Duration of CVC  
(by CVC type) 
 

1) No 
 

The Canadian Neonatal     
Network, 2002, 2005 
17 Canadian NICUs 
(1996-1997) 
 

2) 16,497 babies36 
 

2) Proportion of babies 
with ≥1 BSI 
 

2) Birth weight, gestational 
age, outborn status, 
SNAP-II 
 

2) No 
 

2) No 
 

1) Time to first BSI after 
admission 
 
 

1) 3-10 day model: birth 
weight, sex, apgar score, 
respiratory distress 
syndrome, patent ductus 
arteriosus, intraventricular 
haemorrhage 
 

1) 3-10 days:  
       CVC  
       ventilation 
(yes/no variables) 
 
 

1) No 
 
 
 

Carrieri et al, 200356 

21 Italian NICUs 
(1996-1997) 

2160 babies  
with birth weight  
≤1750g 
 

Babies with 15 defined 
‘minor’ conditions excluded 

2) Time to first BSI after 
admission 

2) 10-35 day model: birth 
weight, maximum base 
excess, NEC 

2) 10-35 days:  
Duration of  

CVC 
ventilation 

(censored at onset of BSI) 
 

2) No 

Gaynes et al, 199157 
35 US NICUs 
(1986-1990) 
 

24,480 babies 
 

Incidence per CVC days 
 

Birth weight Duration of CVC No 

The National Institute of 
Child Health and Human 
Development Neonatal 
Research Network 

(NICHD), 200230 
15 US NICUs 

6215 babies 
with birth weight  
401-1500g 

Proportion of babies ≥1 
BSI  
 
 

Birth weight, gestational 
age, sex, ethnicity  

No No 
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(1998–2000) 
  

1) Number of first 
BSI/baby-days before first 
BSI 

1) Birth weight 1) CVC  
Surgery 
Ventilation 
NC-CPAP 
(yes/no variables) 
 

1) No 

2) Among babies treated 
with a CVC at any point:  
 

Number of first BSI/baby-
days before first BSI 
 

2) Birth weight 2) CVC  
Surgery 
Ventilation 
NC-CPAP 
(yes/no variables) 

2) No 

3) Ratio of CVC-related 
BSI vs. non CVC-related 
BSI: 
 

Number of first BSI (CVC-
related)/CVC days before 
first BSI 
 

Number of first BSI (non-
CVC-related)/baby-days 
before first BSI 
 

3) Birth weight 3) Surgery 
Ventilation 
NC-CPAP 
(yes/no variables) 
 
Duration of CVC 
(censored at onset of BSI) 

3) No 

Perlman et al, 200758 
2 US NICUs 
(2001-2003) 
 

2,935 babies 

4) Ratio of BSI with gram-
positive pathogens vs. BSI 
with gram-negative 
pathogens: 
 

Number of first BSI/baby-
days before first BSI 
 

4) Birth weight 4) CVC  
Surgery 
Ventilation 
NC-CPAP 
(yes/no variables) 

4) No 

Stover et al, 200159 
41 US NICUS 
(1997) 
 

No number given Incidence per CVC days 
 

Birth weight Duration of CVC No 

 44 



 45 

1) Proportion of babies ≥1 
BSI16 
 

1) Gestational age, SGA, 
sex, mode of delivery, 
diagnostic category, 
antenatal steroids 

1) No 
 

1) Provision of handwash 
basins and infection 
control nurse 

2) Proportion of babies ≥1 
BSI18 

2) Birth model: Gestational 
age, SGA, sex, mode of 
delivery, diagnostic 
category, antenatal 
steroids 

2) No 
 
 
 

2) Low birth weight patient 
volume, provision of 
consultants and nurses 

The UK Neonatal Staffing 
Study Group, 2002, 2005 
54 UK NICUs 
(1998-1999) 

13,334 babies  
<1 month old corrected for 
gestation 
 

3) Proportion of babies ≥1 
BSI18 
 

3) 12hr model: admission 
temperature, blood 
analysis: most extreme 
PaCO2, mean appropriate 
FiO2 and lowest base 
excess 

3) No  
 
 

3) Low birth weight patient 
volume, provision of 
consultants and nurses 
 

a – SGA - small for gestational age, CVC - central venous catheter, SNAP II - Score for Neonatal Acute Physiology II, NEC - necrotising enterocolitis, NC-CPAP - nasal cannula 
continuous positive airway pressure, CVC-related BSI - BSI in the presence of a CVC, with no other identifiable site of infection, non CVC-related BSI - BSI occurring without a 
CVC present, or with another identifiable site of infection. 



Table 1.2 Variation in BSI incidence between NICUs before and after risk adjustment 

Authors Outcome measure Between NICU variation reduced by risk 
adjustment? 

How much residual variation between 
NICUs? 

Brodie et al, 2000 Time to BSI after admission Yes Statistically significant variation between 3/6 
NICUs 
 

1) Incidence per CVC days 1) Yes 1) Statistically significant variation for all CVC 
strata 

The Canadian 
Neonatal Network, 
2002, 2005 

2) Proportion of babies with ≥1 BSI 
 

2) Yes 2) Statistically significant variation for babies 
with birth weight <1500g 
   

1) Time to BSI after admission 1) Unable to determine: no crude measures 
provided 

1) BSI 3-10 days: statistically significant 
variation 

Carrieri et al, 2003 

2) Time to BSI after admission 
 

2) Unable to determine: no crude measures 
provided 

2) BSI 11-35 days: statistically significant 
variation 

Gaynes et al, 1991 Incidence per CVC days 
 

Unable to determine: no crude measures 
provided 

‘Significant between centre differences’, but no 
risk adjusted figures provided 
 

NICHD, 2002 Proportion of babies ≥1 BSI  
 

Unable to determine: no risk adjusted figures 
provided 

‘Statistically significant variation’, but no risk 
adjusted figures provided 
 

1) Number of first BSI/baby-days before first BSI 
 

1) Unable to determine: no crude measures 
provided 

1) Statistically significant variation in the overall 
rate of BSI 
 

2) Among babies treated with a CVC at any 
point:  
 
Number of first BSI/baby-days before first BSI 
 

2) Unable to determine: no crude measures 
provided 

2) No statistically significant variation in the rate 
of BSI among babies treated with a CVC 

Perlman et al, 2007 
 
 
 

3) Ratio of CVC-related BSI vs. non CVC-
related BSI  
 
Number of first BSI (CVC-related)/CVC days 
before first BSI 
 

Number of first BSI (non-CVC-related)/baby-
days before first BSI 

3) Unable to determine: no crude measures 
provided 

3) No statistically significant variation in the ratio 
of CVC-related BSI vs. non CVC-related BSI 
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4)  Ratio of BSI with gram-positive pathogens 
vs. BSI with gram-negative pathogens: 
 

Number of first BSI/baby-days before first BSI 
 

4) Unable to determine: no crude measures 
provided 

4) Statistically significant variation in the ratio of 
BSI with gram-positive pathogens vs. BSI with 
gram-negative pathogens 

Stover et al, 2001 Incidence per CVC days 
 

Yes for babies with birth weight 1501-2500g Variation remained, no information concerning 
statistical significance 
 

1) Proportion of babies with ≥1 BSI 1) Yes 1) Statistically significant variation in odds ratios 
between NICUs with >1 level 1 cot per 
handwash basin and NICUs with <1. More 
handwash basins led to lower outcomes 
 
Statistically significant variation in odds ratios 
between units with an infection control nurse 
and units without. Presence of an infection 
control nurse led to lower outcomes. 
 

2) Proportion of babies ≥1 BSI 2) Birth model: Yes 
 

2) Statistically significant variation for NICUs 
allocated to different strata of consultant 
provision. Lower consultant availability led to 
lower odds ratios. 
 

The UK Neonatal 
Staffing Study 
Group, 2002, 2005 

3) Proportion of babies ≥1 BSI 3) 12hr model: Yes 3) Statistically significant variation for NICUs 
allocated to different strata of consultant 
provision. Lower consultant availability led to 
lower odds ratios. 
 

 
 
 
 
 



Table 1.3 Risk adjustment in regional monitoring systems 

 System and setting (year established) Population Outcome measure Outcome measures adjusted for: 
The Canadian Nosocomial Infection 
Surveillance Program (CNISP)62 
Canada (2006) 

21 hospitals  
 
Babies with a CVC inserted 

Incidence of BSI per 
CVC days 
days of NICU stay  

 
 

Birth weight 
Duration of 

CVC 
NICU stay 
 

National Healthcare Safety Network 
(NHSN), previously the National 
Nosocomial Infections Surveillance 
System (NNIS)64 
USA 
NNIS (1970) 
NHSN (2005) 
 

140 NICUs 
 
Babies with a CVC inserted, or on a 
ventilator 

Incidence per  
CVC days  
days of NICU stayb 

Birth weight 
Duration of  

CVC 
NICU stay 

 

NEOCAT of CCLIN (Centre de 
Coordination de la Lutte contre les 
Infections Nosocomiales)61 
Paris and Western region, France (2006) 
 

9 NICUs 
 
Babies with a CVC inserted for >48hrs 

Incidence per  
CVC days 

 
 

Baby susceptibility factors 
Procedure-related factorsc  
Duration of CVC 
 

NEO-KISS (Krankenhaus Infektions 
Surveillance System)60 
Germany (1997) 

66 NICUs 
 
Babies with birth weight <1500g  

Incidence per  
CVC days,   
peripheral VC daysd,e 

 

Birth weight 
Duration of  

CVC 
peripheral VC 

 
Neonatal Infection Network (NeonIN) 
surveillance database17 
UK (2007) 
 

12 NICUs  
(pending further expansion) 

Frequency of BSI episodesf   None 

Vermont Oxford Network65 
USA, UK (1998) 

700 hospitals  
Babies with birth weight 501-1500g 

Proportion of babies ≥ 1 BSIf Birth weight 
 

VICNISS Hospital Acquired Infection 
Surveillance System63 
Victoria, Australia (2002) 
 

29 hospitals  
 

Incidence per  
CVC days 
peripheral VC days 

 

Birth weight 
Duration of  

CVC 
peripheral VC 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b - Incidence of pneumonia also reported per ventilator days and days of NICU stay, and stratified by birth weight 
c - Risk adjustment factors summarised for brevity  
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d - Peripheral venous catheter days 
e - Incidence of pneumonia also reported per ventilator days and continuous positive airway pressure days. Incidence of necrotising enterocolitis reported by days of NICU stay 
f - Outcome measures also reported for bacterial infection in cerebrospinal fluid and urine 

 



2. Overview of areas addressed in this thesis 

The main aim of this thesis was to establish risk factors for BSI incidence in NICUs, 

which could be adjusted for in order to give fair and meaningful comparisons of BSI 

incidence between hospitals. The results of various analytic approaches are compared 

and assembled to show a method of risk adjusted BSI monitoring that could be used in 

practice. 
 

The study population comprised all babies admitted to three inner London NICUs from 

2001 to 2005 (the precise months included varied according to the analysis). NICUs 1 

and 2 are level 3 units, with approximately 260 (NICU 1) and 430 (NICU 2) admissions 

each year. NICU 3 is a level 1 to 2 unit, with approximately 250 admissions each year 

(Level 1, 2 and 3 NICUs are defined in the Appendix to Chapter 2).62 All three units 

admit inborn babies and referrals. 

 

All of the surveillance studies and regional monitoring systems reviewed in Chapter 1 

relied on hospital staff entering the required information into a dedicated dataset. This 

study employed electronic, routine clinical records, which could accelerate data 

collection, minimise staff workload and cut costs in monitoring. 

 

I analysed BSI episodes recorded in routine microbiology laboratory data, in relation to 

potential risk factors recorded in NICU administrative data. The potential risk factors 

analysed fell into the following categories: factors reflecting susceptibility to infection 

at birth (for example gestational age, birth weight and inborn/outborn status) and 
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procedure-related factors reflecting susceptibility during the NICU stay (for example 

level of care, total parenteral nutrition and ventilation). 

 

I chose to present a range of analytic approaches for determining risk factors, for two 

reasons. Firstly, methods of data collection varied between NICUs. For example, for 

each baby, procedure-related factors could be recorded for each day of NICU stay, or as 

the sum of days treated with the procedure. This demanded a variety of corresponding 

statistical analyses. Secondly, I found that the most robust methods for determining risk 

factors were not appropriate in the context of routine monitoring, which demanded a 

simpler, more pragmatic approach. I present both simple and more complex methods, to 

assess consistency in their results. Table 2.1 gives a summary of the analytic approaches 

used. Wherever possible, analyses were performed for the hospitals separately and 

combined. This was to assess consistency in the effect of risk factors for BSI between 

NICUs, as well as to profit from a larger sample size with more explanatory power 

when the centres were combined. 

 

I also discuss issues related to monitoring, such as the potential provided by routine 

hospital data, data requirements for monitoring, the establishment of a case definition 

for BSI, and difficulties in differentiating between: true BSI and contaminated blood 

culture results, and maternally-transmitted and hospital-acquired BSI.  

 



Table 2.1 Summary of the analytic approaches used in this thesis  

Chapter and 
analysis 

Dataset BSI episodes 
linked to 
individual 
babies? 

Dates of BSI 
episodes 
analysed? 

Birth 
susceptibility 
factors 
analysed? 

Procedure-
related factors 
analysed? 

Outcome Analytic 
approach 

Relevance to 
NICU monitoring 

Chapter 3 
Aggregated 
analyses 
 

Aggregated 
dataset 
containing 
monthly totals of 
BSI episodes 
and baby-days 
 

No Yes  
(by month only) 

Yes Yes  All BSI episodes 
 
Recurrent BSI 
episodes included 

Analysed monthly 
rates of BSI 
 
Poisson 
generalised linear 
models 
 

Simple risk 
adjusted analyses 
suitable for routine 
monitoring 

Chapter 5 
1) Analyses of 
procedure-
related factors 
recorded as the 
sum of days 
treated  
 

 
1) Babies 
categorised 
according to 
baby 
susceptibility 
factors and the 
number of days 
treated with 
each invasive 
procedure 
 

 
1) Yes 

 
1) No 

 
1) Yes 

 
1) Yes 

 
1) All BSI episodes 
occurring >48 
hours after birth 
 
Recurrent BSI 
episodes included 

 
1) Analysed rates 
of BSI by baby 
 
Poisson 
generalised linear 
models 

 
1) An approach for 
analysing 
procedure-related 
factors recorded 
as the sum of days 
treated (as in the 
British Association 
of Perinatal 
Medicine minimum 
dataset prior to 
2004)  
 

2) Analyses of 
time to the 
development of 
BSI 

2) As above 2) Yes 2) Yes 2) Yes 2) No 2) Number of days 
before first BSI 
episode occurring 
>48 hours after 
birth 

2) Analysed time 
to first BSI episode 
 
Cox regression 
models 
Kaplan-Meier plots 
 

2) Not appropriate 
for monitoring as 
cannot assess risk 
from procedure-
related factors 

Chapter 6 
Analyses of 
factors 
predicting 
infection: 
poisson 
regression 

Dataset with 
each baby-day 
labelled 
according to 
procedure-
related 
exposures in 

Yes Yes Yes Yes, in the three 
days preceding 
a BSI episode 

The first BSI 
episode occurring 
>48 hours after 
birth 

Days with onset of 
a first BSI episode 
divided by total 
days of NICU stay. 
Baby-days 
censored at the 
first BSI episode. 

A robust method to 
determine factors 
predicting BSI. 
Required data 
structure too 
complex for 
monitoring on a 
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the previous 
three days 

 
Poisson 
generalised linear 
models with 
generalised 
estimating 
equations 
 

routine basis 

Chapter 7 
Analyses of 
factors 
predicting 
infection: case 
control study 

Case control 
dataset, with 
censoring ages 
labelled 
according to 
procedure-
related 
exposures in 
the previous 
three days 
 

Yes Yes Yes Yes, in the three 
days preceding 
a BSI episode 

The first BSI 
episode occurring 
>48 hours after 
birth 

Ratio of the odds 
of BSI in cases 
and controls 
 
Conditional logistic 
regression 

As above 

Chapter 8  
1) Method for 
prospective 
monitoring: 
yearly 
standardised 
infection ratios  
 

 
1) Aggregated 
dataset 
containing 
monthly totals of 
BSI episodes 
and baby-days 

 
1) No 

 
1) Yes  
(by year only) 

 
1) Yes 

 
1) Yes 

 
1) All BSI episodes 
occurring >48 
hours after birth 
 
Recurrent BSI 
episodes included 

 
1) Observed 
number of BSI 
episodes/expected 
number of BSI 
episodes 
 
 

 
1) Robust method 
for routine 
monitoring 

2) Method for 
prospective 
monitoring:  
quarterly 
sequential 
probability ratio 
test 
 

2) As above 2) No 2) Yes  
(by quarter only) 

2) Yes 2) Yes 2) As above 2) Observed 
number of BSI 
episodes/expected 
number of BSI 
episodes 
 
Thresholds to 
determine when 
observed deviates 
unacceptably from 
expected 
 

2) As above 

 



3. Simple risk adjusted analyses in electronic 

routine data 

 

3.1 Summary 

Hospital laboratory and administrative data were analysed for admissions over four 

years at two of the inner London NICUs. A dataset was generated of aggregated 

monthly totals of blood cultures, BSI episodes and baby-days for strata of level of care, 

gestational age at birth and hospital. The outcome was BSI episodes per 1000 baby-

days. Level of care, and to a lesser extent, gestational age, were strong risk factors for 

BSI. The rate ratio for BSI, adjusted for gestational age and sampling frequency and 

relative to the baseline, special care, was 3.37 (95% CI 2.38, 4.77) in intensive care and 

4.40 (95% CI 3.15, 6.15) in high dependency care.  

 

I demonstrate how electronic routine National Health Service data could be aggregated 

for BSI monitoring in NICUs. Adjustment of BSI incidence by level of care and 

gestational age could produce risk adjusted rates for meaningful comparisons between 

NICUs. I present simple risk adjusted analyses that could be carried out by routine 

prospective monitoring systems. 

 

3.2 Introduction 

Hospital laboratory and administrative data were analysed for admissions over four 

years at two of the inner London NICUs. As NICUs participating in monitoring have 
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limited time and resources, a dataset was generated which would permit the analysis of 

BSI incidence with minimal data manipulation. This consisted of aggregated monthly 

totals of blood cultures, BSI episodes and baby-days, stratified by potential risk factors 

for BSI. The outcome was BSI episodes per 1000 baby-days at each stratum. 

 

Potential risk factors were analysed in view of their suitability for risk adjusting 

between unit comparisons of BSI incidence. Gestational age at birth and NHS level of 

care were chosen for their existence and reliability in routine administrative records, and 

their likely association with BSI. Data concerning gestational age and level of care are 

routinely recorded and relatively complete because they are used for costing purposes.1 

The association between gestational age and BSI is well-known.30,36 As a standardised 

measure of the intensity of care in NICUs, level of care68 is likely to be associated with 

BSI and has not previously been evaluated in risk adjusted analyses. UK NHS levels of 

care are defined in detail in the Appendix to Chapter 3. I present simple risk adjusted 

analyses that could be carried out by routine prospective monitoring systems. 

 

3.3 Methods 

 

3.3.1 Study population 

Data were analysed for babies who were inpatients at NICU 1 and NICU 2, from the 1st 

of May 2001 to the 28th of February 2005. 
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Records for NICU 3 could not be used in this analysis because they did not contain 

information on level of care for each day of NICU stay (this is explained further in 

Chapters 4 and 5). 

 

3.3.2 Case definition 

An episode of BSI was defined as one or more blood cultures in which the same 

bacterial organism was isolated within a seven day period. For a given baby, multiple 

positive cultures could relate to the same BSI episode. If this was the case, within the 

seven day period, the date of the first blood sample was taken as the date of the episode. 

In neonates, a proportion of blood cultures positive for CONS may reflect 

contamination by skin commensals. Huang et al. (2003) carried out a prospective cohort 

study in a Taiwanese hospital between 1998 and 2001. Of the babies and children 

admitted to the hospital’s neonatal and paediatric intensive care units, 60 experienced a 

total of 67 episodes of CONS-positive blood cultures. Thirty (45%) of these episodes 

reflected contamination, if true BSI was defined as: the same strain of CONS in 

‘sequential’ blood cultures or a positive blood culture accompanied by clinical 

symptoms. ‘Sequential’ blood cultures were not defined, and no information was given 

regarding the reasons for blood sampling. Patients with a blood culture result revealing 

more than one organism were excluded from the analysis.70 To explore BSI potentially 

due to culture contamination, I performed separate analyses for total BSI, CONS, and 

non-CONS BSI. I also adjusted for differences in blood sampling frequency between 

hospitals as I expected that this could influence comparisons. The more cultures taken 

the greater the risk of detecting asymptomatic BSI or a contaminated culture. 
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3.3.3 Creating an aggregated dataset from electronic routine data  

Linkage of administrative records with blood culture records is not routinely performed 

in NICUs. Chapter 4 proposes that records could be linked automatically within the 

hospital to facilitate BSI monitoring. For this chapter, a data manager performed data 

linkage and prepared the data for analysis. Microbiology laboratory records, and records 

from the Patient Administration System (PAS) were extracted from 2/10/1995 to 

19/5/2005 for NICU 1, and from 1/1/2000 to 9/9/2005 for NICU 2. Blood cultures in the 

laboratory records were matched with PAS daily records using baby identity numbers 

and dates. Some blood sample dates fell just outside the corresponding baby’s 

admission period. For these discrepancies in data entry, the rules in Figure 3.1 were 

applied. These rules applied to few blood cultures, 53 (1.18%) of the total 4482 blood 

cultures from NICU 1 and 28 of the 3151 (0.89%) blood cultures from NICU 2. 385 

(8.6%) blood cultures from NICU 1 and 255 (8.1%) blood cultures from NICU 2 did not 

match baby identity numbers or admission periods in PAS records, and were excluded.  

 

17 babies in NICU 1 and 3 babies in NICU 2 had missing gestational ages. For NICU 1, 

gestational ages were recovered for 305 babies from the unit’s separate neonatal dataset. 

Daily records for each baby were aggregated to give monthly totals of blood cultures, 

infection episodes for CONS, non-CONS and total BSI and baby-days at each level of 

care and gestational age group. Datasets for the two hospitals were combined for the 

months for which they both supplied data; Jan 2000 to May 2005 inclusive. Within this 

period, an error in data extraction from the laboratories meant that blood culture data 

were missing for the months of: March to May 2005 for NICU 1; and January 2000 to 

April 2001 for NICU 2, so the data used for the analysis covered the complete months 
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of May 2001 to February 2005. The structure of this aggregated dataset is demonstrated 

in Figure 3.2.  

 

3.3.4 Statistical analyses 

Differences between NICUs were assessed for proportions of babies experiencing one 

or more BSI, proportions of BSI that were recurrent or repeat infections within babies 

(using two-sample Z-tests for proportions), and median length of NICU stay (using the 

Pearson chi-squared test of the equality of medians). 

 

I calculated the rate of BSI per baby days of stay. Poisson generalised linear models 

were fitted to investigate relationships between BSI and level of care, gestational age at 

birth, NICU and the number of blood samples taken. I also examined the relationship 

between BSI and month, in order to detect changes over time. Adjusted models were 

constructed using a forward stepwise model selection strategy, that fitted covariates 

which showed statistically significant relationships (p<0.01) with BSI in crude analyses.  

Goodness of fit was compared between models using Akaike’s information criterion 

(AIC, defined below).71 When the optimal combination of covariates had been defined, 

the AIC was compared between models fitted with and without interactions between 

level of care and gestational age. I also fitted a Poisson generalised linear model to 

examine differences in the number of blood samples taken between NICUs. 

 

The AIC is a parsimonious measure of goodness of fit for an estimated statistical model, 

which describes a trade-off between model precision (a greater log likelihood) and 

complexity (a higher number of parameters). Within a given dataset, competing models 
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may be ranked according to their AIC, with the one having the lowest AIC being 

considered as the best, ie. the model with the fewest parameters that still provides an 

adequate fit to the data. The AIC is defined as: 

 

AIC = - 2ln(L) + 2k 

k = number of parameters in the model 

L = maximised value of the likelihood function71 

 

The analyses were repeated for total, CONS and non-CONS BSI, and for each of the 

hospitals separately and combined. 

 

Monthly rates of total BSI were plotted by level of care for each NICU. Rates were 

aggregated for high dependency and intensive care because they were similar and 

because high dependency care had small numbers of babies for some months. 

 

All analyses for this thesis were carried out using R 2.7.072, Stata 10.073 and Microsoft 

Office Excel 200374 in a Windows environment. 

 

3.4 Results 

There were 208 BSI episodes at NICU 1 and 225 BSI episodes at NICU 2. Table 3.1 

shows the rates of BSI episodes for different organism classes. Similar distributions of 

organisms were found in both NICUs, with CONS predominating. In contrast to all 

subsequent chapters, results for statistical analyses in this chapter included probable 
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maternally-transmitted BSI occurring during the first 48 hours of life. Maternally-

transmitted BSI will be discussed in Chapter 5. 

 

I made a crude comparison between NICUs based on the proportion of babies who had 

one or more BSI episodes during their NICU stay. These proportions differed slightly, 

but non-significantly at the 1% level, for CONS BSI (10.9% for NICU 1 and 8.5% for 

NICU 2, two-sample Z-test p=0.04), and were similar for non-CONS BSI (3.4% for 

NICU 1 and 3.5% for NICU 2, p=0.86). Slightly more recurrent BSI occurred in NICU 

1 compared with NICU 2, but this difference was not statistically significant:  20.8% of 

CONS episodes were recurrences in NICU 1 versus 13.3% in NICU 2 (p=0.07); 1.7% of 

non-CONS episodes were recurrences in NICU 1 versus 1.3% in NICU 2 (p=0.82). The 

median length of stay differed between NICUs (13 days in NICU 1 and 7 days in NICU 

2 (Pearson chi-squared test p<0.001)). Tables 3.3, 3.4 and 3.5 show that crude and 

adjusted rates of BSI did not differ between NICUs and remained stable over time, 

whether measured as total BSI, CONS or non-CONS organisms.  

 

In terms of the AIC, level of care was the strongest single risk factor for BSI, with those 

in high dependency and intensive care being most at risk. Table 3.2 shows how the best 

adjusted model was selected using the AIC. This model included both level of care and 

gestational age at birth. These findings did not change when CONS and non-CONS BSI 

were analysed separately (Tables 3.3, 3.4 and 3.5). No significant interactions were 

found between level of care and gestational age. 
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As expected, gestational age was significantly associated with the rate of BSI in 

adjusted analyses, and this finding remained when CONS and non-CONS BSI were 

analysed separately (Tables 3.3, 3.4 and 3.5). As the last column shows, BSI risk was 

highest in the most premature and in term babies. In comparison, premature babies born 

in the third trimester, between 32 and 37 weeks, had the lowest risk. 

 

The rate of blood sampling per 1000 baby days was significantly higher in NICU 2 

(78.71) than in NICU 1 (61.85); the crude rate ratio was 1.27, (95% CI 1.20-1.35, 

p<0.001). Sampling rate was also significantly associated with the rate of BSI (CONS 

and non-CONS) in crude analyses. These findings suggest that differences in sampling 

rate could confound comparisons of BSI rates between NICUs, so sampling rate was 

included in the adjusted analyses. However, in the final models, its effect was no longer 

statistically significant after adjustment for level of care and gestational age (Tables 3.3, 

3.4 and 3.5). 

 

Most of the above findings remained unchanged when the NICUs were analysed 

separately. However, gestational age was a weaker risk factor for BSI in NICU 1, as its 

relationship with CONS BSI diminished in adjusted analyses. The sampling rate in 

NICU 1 was also significantly associated with CONS BSI in adjusted analyses 

(Appendix to Chapter 3, Tables 3.6 to 3.11).  

 

Figure 3.3 shows monthly rates of total BSI, by level of care for each NICU. 
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3.5 Discussion: the potential of electronic routine data for 

blood stream infection monitoring 

Both hospitals used electronic, rather than paper-based records, which has several 

advantages. Electronic platforms can carry large amounts of information whilst using 

minimal storage space, and can be easily backed-up to prevent loss of data. They can be 

accessed remotely, admit several users simultaneously, and can be accessed in a 

controlled and secure way for data protection, for example by requiring passwords. 

They can also be continuously modified and updated, and exported in electronic format 

ready for analysis. Since 2005, in view of the advantages of electronic data, an NHS 

web platform called Neonatal.net was developed by Clevermed Ltd, and is currently 

used in 70% of UK NICUs.1 Neonatal.net enables real-time electronic entry of patient 

data,75 and was designed to be incorporated into the NHS National Programme for IT 

when this is rolled out nationally.1 

 

In comparison with study-specific data collection, the use of routine hospital data may 

accelerate, facilitate and cut costs in NICU BSI monitoring. Because of this, it may also 

ensure that monitoring is sustainable over the long term. This chapter demonstrates a 

dataset that could be produced by hospital data managers relying exclusively on 

electronic routine data, and it demonstrates how this dataset could be used for risk 

adjusted monitoring of BSI in NICUs. Although the dataset would be suitable for 

monitoring once risk factors for BSI have been established, it had drawbacks for the 

initial identification of risk factors. A structure incorporating more variables was needed 

to evaluate more potential risk factors for BSI. In addition, the dataset could not reveal 

predictive  associations between risk factors and BSI. For example, the association 
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found between level of care and BSI may be due to increased intensities of care 

contributing to  BSI, but increased intensities of care may also be the consequence of 

infections causing babies’ conditions to deteriorate. It would be useful to determine 

predictive factors for BSI, so that clinicians can identify high risk groups who could 

benefit from preventive action or close monitoring. To examine predictive associations, 

analyses must focus on potential risk factors in the days preceding the onset of BSI. 

Chapter 4 describes the preparation of a dataset suited to further exploratory analyses of 

risk factors for BSI and predictive associations. It also describes alternative strategies 

for data linkage, as this chapter revealed that around 8% of blood culture records did not 

match baby identity numbers or admission periods in PAS records. Chapter 4 also 

highlights further aspects of electronic routine data that are necessary if it is to be used 

for BSI monitoring. 

 

The fact that NHS level of care was the strongest risk factor for BSI is not surprising as 

it is by definition a measure of vulnerability. The key implication is that adjustment of 

BSI incidence by level of care may be a simple method to give meaningful comparisons 

between NICUs. More specifically, the results suggest that BSI incidence could be 

stratified by both level of care and gestational age at birth as gestational age was also an 

independent risk factor for BSI in NICU 2. Data on gestational age and level of care is 

standardised across the NHS, routinely recorded and relatively complete and accurate 

because it is used for costing purposes.1 In Chapter 9 I will explain how appropriate 

methods of risk adjustment may change as the availability of data expands. 
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The findings highlight the importance of taking into account length of stay. Median 

length of stay in NICU 1 was nearly twice as long as for NICU 2, so although NICU 1 

may have had a slightly higher proportion of babies experiencing CONS BSI, the two 

units had similar numbers of CONS BSI episodes per days of stay. Despite these 

discrepancies, proportions of babies experiencing one or more infections are used in 

many studies reporting between-NICU comparisons.30,36,52 Incidence rates based on the 

number of BSI episodes divided by the total days of NICU stay may be preferable. 

These take into account differences in length of stay and capture recurrent infections. 

An awareness of length of NICU stay and recurrent BSI would increase clinicians’ 

understanding of reasons for variation between NICUs, in order to target infection 

control more effectively. Recurrent infections represented up to 20% of CONS episodes 

and up to 2% of non-CONS episodes. An increased length of stay may increase the risk 

of BSI, and may be amenable to reduction.  

  

In most analyses, blood sampling rate in the unit was not a significant risk factor for 

BSI, but it was weakly and significantly associated with CONS BSI in NICU 1. This 

suggests that a proportion of the ‘CONS episodes’ recorded for NICU 1 may have been 

an artefact of sampling itself, reflecting contaminated blood cultures. Monitoring 

systems should be aware that differences in sampling frequency can confound 

associations with BSI. A disadvantage of routine data is the lack of clinical symptoms 

which help to differentiate between true BSI and contamination. Reporting rates by 

broad organism groupings, as in this analysis for CONS and non-CONS, may be the 

only way to differentiate between infections more or less likely to represent 

contamination. Reporting rates by finer organism classes would not be practical, as 
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numbers of BSI episodes by year or month would be sparse (as shown in Table 3.1). 

The case definition for BSI, adjustment for sampling frequency and a method for 

differentiating maternally-transmitted from hospital-acquired BSI are discussed further 

in Chapter 5.  

 

Aspects of this analysis have been published in two letters to the ‘Journal of Hospital 

Infection’ (included in the Publications Appendix).76,77 

 

Key conclusions of Chapter 3 

Findings 

 I demonstrated how a dataset relying exclusively on electronic routine data 

could be used for risk adjusted analyses of BSI incidence in NICUs. 

 NHS level of care and gestational age at birth were the strongest independent 

risk factors for BSI. 

Conclusions 

 Electronic routine hospital data has the potential to facilitate long-term 

monitoring of BSI in NICUs. 

 Adjustment of BSI rates by level of care and a factor reflecting susceptibility 

to BSI at birth, such as gestational age, may produce meaningful 

comparisons between NICUs. 
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Figure 3.1 Rules for assigning blood cultures to PAS admission days 

 

 

 

 

 

 

 

 

 
A blood culture can be matched to a PAS admission day if: 
 
1. PAS admission date < Blood sample date < PAS discharge date 
OR 
2. Blood sample date = PAS date of birth & PAS admission date = PAS date of 
birth + 1 
OR 
3. Blood sample date = PAS discharge date + 1 
 
For condition 1, the blood sample date was not altered 
For condition 2, the blood sample was assigned to the PAS admission date 
For condition 3, the blood sample was assigned to the PAS discharge date 
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Figure 3.2 Diagram to describe stays in the NICU for three hypothetical babies over one month, and how these stays would be 

translated into the aggregated dataset 

 

 

Days of May 2001 
at NICU 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 … 31 

Baby 1 
Gestational age:  
25 weeks 
Admitted 5/5/01 
Died 12/5/01 

      C 
S 

  NC
S  
 

            

Baby 2 
Gestational age:  
36 weeks 
Admitted 16/5/01 
Discharged 20/05/01 

               C 
S  
 

      

Baby 3 
Gestational age:  
37 weeks 
Admitted 3/5/01 
Discharged 7/5/01 

  C 
S  
 

  
S 
 

                 

Special care  

High dependency  

Intensive care  

CONS infection 
episode 

C 

Non-CONS infection 
episode 

NC 

Blood sample taken 
 

S 
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Figure 3.2 (continued) Aggregated dataset 

    Totals of: 

Hospital Month Level of care 
Gestational 
age group 

CONS 
infection 
episodes 

Non-
CONS 

infection 
episodes 

All BSI 
infection 
episodes 

Baby-days 
(denominator) 

Blood 
samples 
takena 

1 May 2001 Special care <26 0 0 0 0 0 
1 May 2001 Special care 26-<28 0 0 0 0 0 
1 May 2001 Special care 28-<32 0 0 0 0 0 
1 May 2001 Special care 32-<37 0 0 0 2 0 
1 May 2001 Special care ≥37 0 0 0 1 0 
1 May 2001 Special care Missing 0 0 0 0 0 
1 May 2001 High dependency care <26 0 0 0 0 0 
1 May 2001 High dependency care 26-<28 0 0 0 0 0 
1 May 2001 High dependency care 28-<32 0 0 0 0 0 
1 May 2001 High dependency care 32-<37 1 0 1 3 1 
1 May 2001 High dependency care ≥37 0 0 0 1 0 
1 May 2001 High dependency care Missing 0 0 0 0 0 
1 May 2001 Intensive care <26 1 1 2 8 2 
1 May 2001 Intensive care 26-<28 0 0 0 0 0 
1 May 2001 Intensive care 28-<32 0 0 0 0 0 
1 May 2001 Intensive care 32-<37 0 0 0 0 0 
1 May 2001 Intensive care ≥37 1 0 1 3 2 
1 May 2001 Intensive care Missing 0 0 0 0 0 

a - Blood samples only stratified by level of care, not by gestational age 
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Figure 3.3 Monthly rates of total BSI and 95% confidence intervals, by level of care for each NICU  
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Table 3.1 Rates of BSI per 1000 baby days (numbers) according to organism groupingsb 

NICU 1 NICU 2 
Year Total 

baby-days 
CONS Group 

B strep 
Other 
GPos 

Gneg Yeasts Total Total 
baby-days 

CONS Group 
B strep 

Other 
GPos 

Gneg Yeasts Total 

2001 4865 4.52(22) 0.41(2) 0(0) 1.03(5) 0(0) 5.96(29) 4843 4.54(22) 0(0) 1.45(7) 1.03(5) 0(0) 7.02(34) 
2002 6838 6.43(44) 0.44(3) 0.88(6) 0.73(5) 0.15(1) 8.63(59) 7723 5.57(43) 0.26(2) 1.68(13) 0.65(5) 0.13(1) 8.29(64) 
2003 7370 4.61(34) 0.27(2) 1.22(9) 0.54(4) 0(0) 6.65(49) 8086 5.44(44) 0.25(2) 0.62(5) 0.87(7) 0.12(1) 7.30(59) 
2004 7315 5.47(40) 0.27(2) 1.09(8) 1.23(9) 0(0) 8.07(59) 8475 5.19(44) 0.59(5) 1.06(9) 0.35(3) 0(0) 7.20(61) 
2005 1292 6.19(8) 0(0) 0.77(1) 1.55(2) 0(0) 8.51(11) 1389 4.32(6) 0(0) 0.72(1) 0(0) 0(0) 5.04(7) 

b - Columns from left to right in each NICU refer to total baby-days, Coagulase-negative staphylococcus, Group B streptococcus, Gram-positive organisms 
other than Group B streptococcus, Gram-negative organisms, Yeasts, total 

 
 

.
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Table 3.2 NICU 1 and NICU 2 combined: forward model selection strategy 

for choosing the best adjusted model for total BSI 

Potential risk factors included in model 
(factors were included if they showed statistically 
significant relationships (p<0.01) with total BSI in 
crude analyses) 

AIC 

Level of care 1524.9 
Gestational age 1636.1 
Number of blood samples taken 1636.7 
Level of care and gestational age 1499.5 
Level of care, gestational age and number of 
blood samples taken 

1498 – lowest AIC indicates the best model 

Level of care interacting with gestational age, 
and number of blood samples taken 

1503.3 
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Table 3.3 NICU 1 and NICU 2 combined: crude and adjusted rate ratios for total BSI 

Potential risk factor 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 279/23,018 (12.12) 4.16 (3.27, 5.29) <0.001 3.37 (2.38, 4.77)  <0.001 
High dependency care 67/5177 (12.94) 4.11 (2.99, 5.65) <0.001 4.40 (3.15- 6.15)  <0.001 
Special care 87/30,001 (2.90)  1   1  
Total 433/58,196 (7.44)       

         
Gestational age (weeks)         

<26  136/11,977 (11.36) 1.29 (0.99, 1.67) 0.057 0.68 (0.51, 0.92)  0.011 
26-<28 72/7698 (9.35) 1.05 (0.77, 1.42) 0.762 0.62 (0.45, 0.86)  0.004 
28-<32 84/14,604 (5.75) 0.66 (0.49, 0.88) 0.005 0.51 (0.38, 0.69)  <0.001 
32-<37 45/13,038 (3.45) 0.39 (0.28, 0.56) <0.001 0.43 (0.30, 0.61)  <0.001 
≥37 96/10,871 (8.83)  1   1  
Missingc 0/8        

         
Hospital         

NICU 2 225/30,516 (7.37) 0.98  (0.81, 1.19) 0.866    
NICU 1 208/27,680 (7.51)  1     

         
Number of blood samples taken         

Linear increase   1.03 (1.03, 1.04) <0.001 1.01 (1.00, 1.03)  0.062 
         
Month         

Linear increase   1.00 (0.99, 1.01) 0.881    
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Table 3.4 NICU 1 and NICU 2 combined: crude and adjusted rate ratios for CONS BSI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Potential risk factor 
CONS episodes/baby-days 
(Rate per 1000 baby-days) 

Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 202/23,018 (8.78) 4.36  (3.27, 5.82) <0.001 3.14  (2.07, 4.74) <0.001 
High dependency care 45/5177 (8.69) 4.00  (2.72,  5.89) <0.001 4.39  (2.93, 6.57) <0.001 
Special care 60/30,001 (2.00)  1   1  
Total 307/58,196 (5.28)       

         
Gestational age (weeks)         

<26  96/11,977 (8.02) 1.51  (1.09, 2.09) 0.014 0.80  (0.56, 1.15) 0.222 
26-<28 57/7698 (7.40) 1.37  (0.95, 1.98) 0.089 0.81  (0.55, 1.20) 0.298 
28-<32 65/14,604 (4.45) 0.84  (0.59, 1.20) 0.333 0.65  (0.45, 0.94) 0.021 
32-<37 31/13,038 (2.38) 0.45  (0.29, 0.69) <0.001 0.49  (0.31, 0.75) 0.001 
≥37 58/10,871 (5.34)  1   1  
Missingc 0/8        

         
Hospital         

NICU 2 159/30,516 (5.21) 0.98  (0.78, 1.22) 0.839    
NICU 1 148/27,680 (5.35)  1     

         
Number of blood samples taken         

Linear increase   1.04  (1.03, 1.05) <0.001 1.02  (1.00, 1.03) 0.044 
         
Month         

Linear increase   1.00  (0.99, 1.01) 0.878    
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Table 3.5 NICU 1 and NICU 2 combined: crude and adjusted rate ratios for non-CONS BSI 

Potential risk factor 
Non-CONS episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 77/23,018 (3.35) 3.70  (2.38, 5.73) <0.001 4.01  (2.12, 7.60) <0.001 
High dependency care 22/5177 (4.25) 4.34  (2.47,  7.63) <0.001 4.39  (2.43, 7.95) <0.001 
Special care 27/30,001 (0.90)  1   1  
Total 126/58,196 (2.17)       

         
Gestational age (weeks)         

<26  40/11,977 (3.34) 0.96  (0.61, 1.49) 0.848 0.51  (0.31, 0.85) 0.009 
26-<28 15/7698 (1.95) 0.55  (0.30, 1.00) 0.051 0.32  (0.17, 0.61) <0.001 
28-<32 19/14,604 (1.30) 0.37  (0.22, 0.65) <0.001 0.29  (0.17, 0.51) <0.001 
32-<37 14/13,038 (1.07) 0.31  (0.17, 0.57) <0.001 0.34  (0.18, 0.63) 0.001 
≥37 38/10,871 (3.50)  1   1  
Missingc 0/8        

         
Hospital         

NICU 2 66/30,516 (2.16) 1.00  (0.71, 1.42) 0.998    
NICU 1 60/27,680 (2.17)  1     

         
Number of blood samples taken         

Linear increase   1.03  (1.01, 1.04) 0.001 1.00  (0.98, 1.03) 0.763 
         
Month         

Linear increase   1.00  (0.98, 1.01) 0.606    
         

c - Babies with missing variables were few and experienced few episodes of BSI. For this reason I considered it acceptable to remove them from the analyses. 
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4. Methods of data linkage and data 

requirements for monitoring 

 

4.1 Summary 

Further analyses of potential risk factors for BSI required the preparation of a dataset 

with a more complex structure to that described in Chapter 3, including the timing of 

potential risk factors occurring before infection. This chapter describes how I generated 

the more complex dataset, and how I employed various matching strategies to improve 

the linkage of laboratory blood culture records with administrative records. 

 

Using the raw datasets for NICUs 1, 2 and 3, I linked blood culture records with 

administrative records using baby identity number and blood sample date. Records with 

no matches in this first step were linked using other identifiers such as date of birth and 

sex. Between 6% and 18% of blood culture records found no matches in administrative 

data. Datasets were prepared with records for each baby-day, including precise dates of 

BSI episodes and invasive procedures. 

 

The data management was laborious, and it revealed aspects of electronic routine 

hospital data that could be improved to facilitate BSI monitoring. These include a 

common data system for all participating NICUs, automatic linkage of microbiology 

laboratory blood culture records with this common system, and the use of daily patient 

care records.  
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4.2 Introduction 

As described in Chapter 3, after demonstrating the structure of a dataset suitable for 

routine monitoring, it was necessary to build a more complex dataset to determine risk 

factors for BSI and predictive associations. Factors predicting infection are useful for 

identifying high risk groups that may benefit from close monitoring or infection control 

interventions. To identify potentially predictive relationships, invasive procedures can 

be examined in the few days prior to the development of a BSI episode. The analyses in 

Chapter 3 relied on a dataset of aggregated monthly totals of infections and baby-days, 

for strata of potential risk factors. An analysis of predictive relationships required a 

dataset with a record for each baby-day, including precise dates of procedure-related 

factors and BSI episodes. In addition, as our data manager was unable to match 

approximately 8% of blood culture records with PAS records, I wanted to assess 

whether non-matches on baby identity number, possibly due to data entry errors, could 

be matched using other information, for example name, date of birth and sex. 

 

In this chapter I describe the the development and structure of the raw datasets for 

NICUs 1, 2 and 3, before explaining the procedures I used for data linkage and data 

management at each NICU. The Discussion section relates the structure of the raw 

NICU patient data to requirements for BSI monitoring. Current developments in 

regional shared, electronic routine medical record systems form a background to this 

discussion. 
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4.3 Development and structure of the raw datasets 

Raw datasets for all three NICUs were extracted by hospital data managers in 2005, 

before I started this PhD project in October 2006, except for the separate neonatal 

dataset from NICU 1, which was extracted in December 2006. I wrote to clinicians, a 

microbiologist and a data manager at the three NICUs to enquire about the development 

of the datasets, their responses form the basis of this section (personal communication, 

Dr Paul Ostro, University College London Hospitals NHS Trust, Dr Stephen Kempley 

and Dr Mike Millar, both at Barts and The London NHS Trust and Mayank Patel, Royal 

Free Hampstead NHS Trust). I also visited NICU 1 to learn about its clinical activities 

and data collection processes. 

 

Two types of data systems were used to store administrative and care information: 

Patient Administration Systems (PAS) (NICUs 1 and 2), and separate neonatal data 

systems (NICUs 1 and 3). PAS were used primarily to organise administrative activities 

within the hospital: ordering blood tests and x-rays, organising appointments in clinic, 

producing annual statistics and providing information for costing. PAS data were 

mainly entered by trained ward clerks, using information provided by medical and 

nursing staff. PAS were descended from computerised hospital records installed in the 

1970s, and had been updated in the 1980s at NICU 1 and in the 1990s at NICU 2.  

 

In more recent years separate neonatal data systems were developed specifically for the 

NICU environment at NICUs 1 and 3 to help organise neonatal care, with information 

entered by clinical staff, often by junior doctors. Information concerning blood cultures 
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was stored separately in microbiology laboratory data systems, whose main function 

was to communicate the results of blood cultures to clinical staff. 

 

Table 4.1 shows the structure and content of the raw datasets for all three NICUs. PAS 

data at NICU 1 were structured as a record for each NICU admission with dates and 

times of entry and exit to: the NICU, each level of care and other hospital specialties to 

which babies were admitted. The more modern PAS at NICU 2 incorporated a record 

for each baby-day and recorded procedure-related factors as either present or absent. 

The separate neonatal data systems at NICUs 1 and 3 contained a record for each baby 

including the sum of days treated with procedure-related factors. Microbiology 

laboratory data had a similar structure at all three NICUs, storing the date and result for 

each blood culture.  

 

As PAS had hospital-wide applications, datasets extracted from these systems contained 

dates of discharge to other hospital specialties including surgery. No other information 

was recorded concerning care outside the NICU, so it was unclear how many of these 

periods involved transfer to another hospital. Because NICU 1 provides specialist 

surgical care, we can assume that most babies remained within the hospital. At NICUs 2 

and 3, babies requiring specialist care would mostly have been discharged to a tertiary 

paediatric surgical unit nearby. 
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4.4 Data linkage for NICU 1 

 

4.4.1 Data linkage 

 

Conversion of Patient Administration System records to daily records 

To match blood culture records with PAS admission days, PAS data had to be expanded 

to contain a record for each baby-day. Entry and exit to each level of care was denoted 

by a date and time, and some levels converged on the same day. For example, baby 

1001 may have exited high dependency care and entered special care on the 11th July 

2002 at midday. To expand the data into baby-days, such days had to be assigned a 

single level of care for simplicity, and I chose to assign the level of care to which the 

baby was entering. For the example above, for baby 1001, the 11th July 2002 would be 

assigned to special care. Another approach would have been to assign the highest level 

of care which the baby experienced that day. For the example above, the 11th July 2002 

would be assigned to high dependency care. However this would have resulted in the 

more intensive levels of care being overrepresented in the dataset. Of the 66,491 baby-

days in the raw PAS data, 64,192 (96.5%) were assigned to NICU levels of care, 1667 

(2.5%) were assigned to other hospital specialties such as paediatrics or the maternity 

ward, and 632 (0.95%) were assigned to surgery.  

 

Linking blood culture records with Patient Administration System records 

Laboratory blood culture records were first linked to admission days in PAS using baby 

identity numbers and blood sample dates (using the rules for assigning blood cultures to 

PAS admission days described in Figure 3.1, Chapter 3). Blood culture records not 
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matching PAS admission days in this first step were matched using date of birth and sex 

(the only identifying information available in the laboratory data) and blood sample 

date. As date of birth and sex did not uniquely identify babies, hospital specialty 

information was also required to match. Of the remaining 264 blood cultures which 

could not be linked to PAS records, 27 tested positive for BSI and only 58 had hospital 

specialty recorded as NICU (either special care, high dependency or intensive care). 

Figure 4.1 summarises the linkage of blood culture records with PAS records, showing 

the numbers matched at each step. 

 

Linking separate neonatal data system records with Patient Administration System 

records  

The separate neonatal data system consisted of an admission dataset and a ventilation 

dataset. The admission dataset consisted of 2570 records (2570 babies). 2458 records 

were matched with babies in PAS records using baby identity number. A further 11 

records were matched using date of birth, sex and date of admission. This left 101 

records unmatched (4.1% of the total separate neonatal admission records). The 

ventilation dataset consisted of records for 1294 babies receiving ventilation, and 971 

could be matched with babies in PAS records using baby identity number. Most of the 

remaining 323 records (25% of the total ventilation records) probably referred to babies 

admitted outside the time period for which PAS records were provided. This cannot be 

assessed as the ventilation records did not contain dates of birth or admission. This also 

meant that these remaining records could not be matched on other identifiers. 
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4.4.2 Data cleaning 

For data fields included in both the PAS records and the separate neonatal data system, 

the PAS information was used for analysis unless variables were found to be missing. 

325 babies had missing gestational ages at birth in PAS records, of which 304 had this 

information recovered from the separate neonatal records. Similarly, 350 babies had 

missing delivery method information in PAS records, of which 299 had this information 

recovered from the separate neonatal data. Data entry errors resulted in three babies 

with years of birth prior to 1980. These were corrected to correspond with the year of 

admission. Four babies had negative numbers recorded for their days with ventilation, 

and these were corrected by calculating the duration of ventilation by subtracting the 

admission date from the extubation date.  

 

4.5 Data linkage for NICU 2 

 

4.5.1 Data linkage 

 

Preparation of Patient Administration System records 

The version of PAS employed by NICU 2 consisted of baby, admission and daily care 

records, which matched up exactly using baby identity numbers. These three datasets 

matched exactly because they formed an integrated system. Baby and daily care 

information could not be entered without an admission record. Unlike data from NICU 

1, data from NICU 2 did not include days spent in other hospital specialties or in 

surgery. These days could be inferred however, if a baby had been discharged from 

NICU then readmitted, using the field concerning where the baby was discharged to. 
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Calculating the days between discharge and readmission I was able to input and label 

these missing days. Of the resulting total 45,727 baby-days, 44,450 (97.21%) were 

assigned to NICU levels of care, 230 (0.50%) were assigned to other hospital 

specialties, 1,025 (2.24%) were assigned to surgery and 22 (0.05%) were missing a 

specialty.  

 

Linking blood culture records with Patient Administration System records  

Laboratory blood culture records were linked to admission days in PAS using baby 

identity numbers and blood sample dates (using the rules described in Figure 3.1, 

Chapter 3). 266 records (8.44% of the total blood culture records) found no matches, of 

which 32 tested positive for BSI. As the laboratory records contained no identifiers 

other than baby identity number, further matching was not possible, as shown in Figure 

4.2. 

 

4.5.2 Data cleaning 

Four babies had dates of birth recorded as occurring after their admission dates. Either 

the date of birth or the admission date was corrected, by checking when babies were 

born and admitted to NICU in the daily care record. 

 

Comparison with the data management described in Chapter 3 for NICUs 1 and 2 

In comparison with the data linkage performed by a data manager for Chapter 3, there 

were discrepancies in the numbers of blood culture records linked by baby identity 

number and sample date for NICU 1 (4097 linked previously versus 4171) and NICU 2 

(2896 versus 2885). There were two reasons for this, firstly our data manager took 
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account of the time of admission or discharge when assigning blood culture records. 

The data providers stated that these times were not reliable so I simply used admission 

and discharge dates. Secondly, I was interested in characterising time spent outside the 

NICU and in surgery, to investigate the BSI risk associated with these phases, and I was 

able to match more blood culture records to these periods, particularly for NICU 1.  

 

4.6 Data linkage for NICU 3 

 

4.6.1 Data linkage  

 

Conversion of neonatal data system records to daily records 

Neonatal data system records for NICU 3 contained admission and discharge dates, but 

did not contain any information concerning days spent in hospital specialties outside the 

NICU or in surgery. The records were expanded to contain a record for each baby day, 

giving 22,480 baby-days.  

 

Linking blood culture records with neonatal data system records  

Figure 4.3 summarises the linkage of blood culture records with neonatal data system 

days. Blood culture records were first linked to admission days using baby identity 

numbers and blood sample dates (using the rules for assigning blood cultures to 

admission days described in Figure 3.1, Chapter 3). Blood culture records not matching 

admission days in this first step were matched using surname, date of birth and sample 

date. As the blood culture and neonatal data system records had many discrepancies in 

the spelling of surnames, babies who could not be matched by name were matched by 
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date of birth and sample date. Further enquiries at NICU 3 revealed that many of the 

microbiology laboratory records were duplicates, existing simply to give further 

information regarding sample bottle type, rather than representing blood cultures 

themselves (personal communication, Mayank Patel, Royal Free Hampstead NHS 

Trust). These duplicates were removed from the matched and unmatched datasets. 333 

records (18.03% of the total remaining blood culture records) found no matches, of 

which 12 tested positive for BSI. 

 

4.6.2 Data cleaning 

One baby had a gestational age recorded as one week, this was changed to missing. 

Thirty-six babies had no admission date, 20 babies had no discharge date and 12 had 

neither. For 19 of those missing an admission date only, this information could be 

imputed from dates of birth. The remaining babies were excluded as their total number 

of admission days could not be calculated for further analyses. Errors in the entry of 

year of admission or discharge resulted in seven babies with lengths of NICU stay 

longer than one year. Errors in year of admission were corrected using year of birth as a 

guide, errors in year of discharge were corrected by summing days at each level of care 

to calculate the length of NICU stay. Three babies had admission or discharge dates 

recorded as occurring before their dates of birth. The erroneous admission or discharge 

dates were changed to the date of birth. 
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4.7 Time coverage, quality and completeness of the final 

datasets for NICUs 1, 2 and 3  

To ensure that datasets for NICU 1 and 2 covered the same time period as the analyses 

in Chapter 3, they were truncated to cover the complete months of May 2001 to 

February 2005. The dataset for NICU 3 was truncated to cover as much of this time 

period as possible, the complete months of May 2001 to July 2004. In contrast to the 

data management in Chapter 3, all complete admissions between the cut-off dates were 

included, rather than all baby-days. For example, consider a baby admitted before the 

cut-off date, on the 26th February 2005, and discharged after it, on the 2nd of March 

2005. The data management process described in Chapter 3 would have excluded the 

last two days of the baby’s NICU stay, whereas the dataset in this chapter would 

exclude the baby’s entire stay. This enabled analyses in which potential risk factors 

were recorded per baby, rather than aggregated per month as in Chapter 3. The structure 

of the resulting datasets, which each contain a record for each baby-day, is shown in 

Figure 4.4. These datasets formed the basis for the statistical analyses in all subsequent 

chapters. 

 

Table 4.2 compares data quality and completeness for various data fields, for the final 

datasets of the three NICUs. In terms of completeness, NICU 3 had the most missing 

data whereas NICU 2 had the least. Numbers of babies with unusual values for 

quantitative data can give an idea of data quality. In particular, 10 of the 1011 babies at 

NICU 1 (0.99%)  had recorded gestational ages above 42 weeks, including one with a 

gestational age of 48 weeks. Seventeen of the 1612 babies at NICU 2 (1.05%) had 

recorded birth weights above 4500g, including one with a reported birth weight of 
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8913g. It is unclear how many of these extreme values represent errors in data entry, so 

they were left unchanged. In the analyses described in following chapters, gestational 

age and birth weight were analysed as categorical variables. For example, the baby with 

a birth weight recorded as 8913g would be categorised in the highest birth weight 

category. This tempered the potential bias presented by such outliers. 

 

4.8 Discussion: further data requirements for blood stream 

infection monitoring in NICUs 

Following the recommendations from Chapter 3 for electronic routine hospital data, the 

data linkage and data management processes in this chapter revealed further aspects of 

data that are necessary or could be improved if they are to be used for BSI monitoring.  

 

It is essential that NICUs participating in monitoring use the same definitions and a 

common system for data capture and storage, to provide fair comparisons between each 

other. Although the three NICUs used similar definitions for most data fields, they 

differed in the extent of information stored concerning time spent away from the NICU. 

This could hinder fair comparisons, for example, of the effect of surgery on BSI. They 

also differed in data completeness and quality, as shown in Table 4.2. Data entry 

systems at NICU 2 incorporated automatic quality checks and mandatory fields, which 

explains the lower proportion of missing data when compared with the other two 

NICUs. Since 1997, the British Association of Perinatal Medicine (BAPM) has 

recommended a ‘minimum dataset’ of baby and unit level information, using common 

definitions, to standardise audits of activity and outcomes.78 In addition, two common 

systems for capture and storage of neonatal data have been developed, which comply 
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with the BAPM minimum dataset and run on the Neonatal.net platform. The 

Standardised Electronic Neonatal Database (SEND) was established in 2004, and is 

currently used in most neonatal units in England, including the NICUs featured in this 

thesis.75,79 The Maternal and Neonatal Electronic Recording System (MANNERS) was 

launched in 2007, and is used by several NICUs in the West Midlands.80 Both systems 

support the day-to-day running of the NICU, for example by producing discharge 

summaries, and enabling patient transfers by locating suitable cots and sharing 

information with other hospitals. They also collect data for audits, such as the National 

Neonatal Audit Programme,81 and for health service commissioning, such as the 

Payment by Results system.82 Thus both SEND and MANNERS are able to support the 

daily activity of units, whilst providing data suitable for fair comparisons between units, 

using common definitions and data entry protocols. Recognising the potential of a 

common, routine administrative data system, the non-risk adjusted NeonIN surveillance 

system17 reviewed in Chapter 1 intends to use SEND for its data capture in the future 

(personal communication, Dr. Paul Heath, St George’s Healthcare NHS Trust).  

 

To support infection monitoring, common data systems must automatically incorporate 

information concerning BSI, to reduce effort, maintain consistency between NICUs and 

improve data completeness and quality. Crude or unadjusted between-NICU 

comparisons of BSI incidence would be feasible without linking administrative and 

blood culture records by baby. Rates could be calculated using aggregated or total BSI 

episodes and baby-days from each data source respectively and separately. However, to 

provide risk adjusted comparisons, blood culture results must be linked to babies’ 

characteristics and invasive procedures recorded in administrative records. Linking 
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blood culture and administrative records for the three NICUs was labour intensive, 

particularly for records not matching on baby identity number and sample date. These 

were linked on identifiers which varied in availability between NICUs, giving 

inconsistencies in the proportion of records matched at each unit. Between 6% and 18% 

of blood culture records found no matches with administrative data and were excluded, 

which may have affected data completeness. At NICU 1, 78% of non-matching blood 

cultures were recorded as having originated from other hospital specialties such as 

‘Well babies’, indicating that they did not actually belong in data extraction for the 

NICU. This may also have been the case for non-matching blood cultures at NICU 2 

and NICU 3 (personal communication, Dr Mike Millar, Barts and The London NHS 

Trust). Unlike identity numbers, names, dates of birth and sex do not uniquely identify 

babies, so matching records on these identifiers has potential for error and consequences 

for data quality. To avoid the pitfalls of data linkage, common data systems could 

incorporate blood culture information as patient records are created. Neonatal staff 

participating in the MANNERS system enter infection and pathogen details in daily 

patient care records. For participation in a monitoring system, the details required would 

depend on the agreed case definition for BSI. The case definition used in this project, 

described in Chapter 3 and justified in detail in Chapter 5, relies solely on blood culture 

results from the laboratory. These could be automatically linked with the common data 

system on a daily basis, to reduce the burden of data entry for neonatal staff and the 

potential for error associated with manual data entry.  

 

Finally, daily patient records provide the best data format for infection monitoring, as 

they record precise dates for factors which change during the NICU stay and they can 

 88



improve data quality. In the three NICUs, factors which changed during the NICU stay, 

for example level of care and total parenteral nutrition, were recorded in three ways: the 

sum of days treated with the particular factor (NICU 1 and NICU 3), start and end dates 

for treatment (NICU 1) and in daily records (treatment with the factor on each day, 

yes/no) (NICU 2). To provide risk adjusted BSI rates for monitoring, the timing of BSI 

episodes in relation to potential risk factors must be known, to assess their association. 

The sum of days treated with a factor does not convey if treatment coincided with BSI. 

Start and end dates convey more timing information, but do not easily record, for 

example, if treatment was suspended for single days. Daily records precisely convey the 

timing of procedures in relation to BSI episodes, and provide a versatile format which is 

suited to data analysis software. BSI episodes and baby-days can be summed by month 

(as in Chapter 3), by quarter or year, or by days with potential risk factors, depending on 

the requirements of the monitoring system. Daily rather than retrospective data entry 

probably improves data quality, as events are fresh in the minds of staff. There is also a 

stronger incentive to maintain the quality of daily records, as they can provide a ‘live’ 

system for NICU management and neonatal network-wide cot-sharing. Both SEND and 

MANNERS use daily patient records in this way.  
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Key conclusions of Chapter 4 

 I created datasets for the three London NICUs, suitable for more complex 

analyses of various potential risk factors for BSI and predictive 

associations. 

 The data management process highlighted aspects of data collection that 

differed between NICUs. 

 Retrospective data linkage was time-consuming and between 6% and 18% 

of blood culture records found no matches in administrative data. 

 Daily patient care records conveyed the timing of procedures and BSI 

episodes with the greatest precision.  

 

Conclusions 

Aspects of electronic routine hospital data that are necessary if they are to be used 

for BSI monitoring include: 

 a common data system for all participating NICUs 

 automatic linkage of laboratory blood culture results with this common 

system, avoiding workload and error associated with manual data entry 

 the use of daily patient care records 

 

These recommendations are feasible, as shown by newly developed data systems 

such as SEND and MANNERS. 
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Figure 4.1 NICU 1: linking blood culture records with Patient 

Administration System records 
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Figure 4.2 NICU 2: linking blood culture records with Patient 

Administration System records 
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Figure 4.3 NICU 3: linking blood culture records with administrative 

records 
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Figure 4.4 Diagram to describe stays in the NICU for three hypothetical babies, and how these stays would be translated into a 

dataset with a record for each baby-day 
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Figure 4.4 (continued) Dataset with a record for each baby-day 

Baby Date 
Gestational 
age (wks) 

Birth 
weight (g) 

Sex 
Inborn/ 

Outborn 
Delivery 
method 

Level of care 
Total 

parenteral 
nutrition 

Ventilation 
CONS 

episode 
Non-CONS 

episode 

Blood 
sample 
taken 

1 5/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 0 0 
1 6/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 0 0 
1 7/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 1 0 1 
1 8/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 0 0 
1 9/5/2002 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 0 0 
1 10/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 1 1 
1 11/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 0 0 
1 12/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 0 0 

2 16/5/2001 32-<37 ≥1200 Female Inborn Vaginal 
High dependency 

care 
No No 1 0 1 

2 17/5/2001 32-<37 ≥1200 Female Inborn Vaginal 
High dependency 

care 
No No 0 0 0 

2 18/5/2001 32-<37 ≥1200 Female Inborn Vaginal 
High dependency 

care  
No No 0 0 0 

2 19/5/2001 32-<37 ≥1200 Female Inborn Vaginal Special care No No 0 0 0 
2 20/5/2001 32-<37 ≥1200 Female Inborn Vaginal Special care No No 0 0 0 
3 3/5/2001 ≥37 ≥1200 Male Inborn Vaginal Intensive care No No 1 0 1 
3 4/5/2001 ≥37 ≥1200 Male Inborn Vaginal Intensive care No No 0 0 0 
3 5/5/2001 ≥37 ≥1200 Male Inborn Vaginal Intensive care No No 0 0 1 

3 6/5/2001 ≥37 ≥1200 Male Inborn Vaginal 
High dependency 

care 
No No 0 0 0 

3 7/5/2001 ≥37 ≥1200 Male Inborn Vaginal Special care No No 0 0 0 
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Table 4.1 Structure of the raw datasets for NICUs 1, 2 and 3 

Dataset Time period covered Structure 
One record for each: 

Data fields 

NICU 1 
PAS NICU admission Baby identity number, date of birth, name, sex, gestational age at birth, delivery 

method, inborn/outborn status, dates and times of admission and discharge to the 
NICU, dates and times of admission and discharge to each level of care or other 
hospital specialty to which the baby was admitted 
 

Microbiology laboratory Blood culture Baby identity number, date of birth, sex, date the sample was taken, hospital 
specialty where the sample was taken, organism class and genus cultured 
 

Separate neonatal data 
system: admission 

Baby identity number, date of birth, sex, gestational age at birth, birth weight, 
delivery method, date of admission to the NICU 
 

Separate neonatal data 
system: ventilation 

1/1/1996 to 6/3/2005 
Datasets covered various time 
periods. They were truncated 
to cover the minimum period 
for which reliable data was 
received from the microbiology 
laboratory. 

Baby 

Baby identity number,  date of extubation, sum of days treated with: ventilation, 
nasal continuous positive airway pressure  
 

NICU 2 
PAS: baby Baby Baby identity number, date of birth, sex, gestational age at birth, birth weight, 

delivery method, inborn/outborn status 
 

PAS: admission NICU admission Baby identity number, where the baby was discharged to, dates and times of 
admission and discharge 
 

PAS: daily care Day of NICU stay Baby identity number, date, level of care, treatment with: ventilation, total parenteral 
nutrition (yes/no variables) 
 

Microbiology laboratory 

1/1/2000 to 9/9/2005 

Blood culture Baby identity number, date the sample was taken, organism class and genus 
cultured 
 

NICU 3 
Neonatal data system Baby Baby identity number, date of birth, name, sex, gestational age at birth, birth weight, 

delivery method, dates of admission and discharge, sum of days cared for in: 
special care, high dependency care, intensive care, sum of days treated with: nasal 
continuous positive airway pressure, total parenteral nutrition, long line, umbilical 
arterial catheter, umbilical venous catheter 
 

Microbiology laboratory:  

2/3/2001 to 30/7/2004 

Blood culture Baby identity number, date of birth, name, date the sample was taken, organism 
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positive blood cultures class and genus cultured 
 

Microbiology laboratory:  
negative blood cultures 

Blood culture Baby identity number, date of birth, name, date the sample was taken 
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Table 4.2 Data quality and completeness in the final datasets 

 NICU 1 NICU 2 NICU 3 
Time period covered 01/05/2001 to 28/02/2005 01/05/2001 to 28/02/2005 01/05/2001 to 31/07/2004 
Number of babies included 1011 1612 762 
Data completeness: 
Number of babies missing the following data fields (% of babies at each NICU): 

Gestational age at birth 16 (1.58) 0 10 (1.31) 
Birth weight 20 (1.98) 0 9 (1.18) 
Inborn/outborn status 31 (3.07) 0 36 (4.72) 
Sex 0 0 23 (3.02) 
Delivery method 17 (1.68) 5 (0.31) 62 (8.14) 

Data quality: 
Number of babies with gestational age at birth (range in weeks):  

<25 weeks 37 (21, 24) 42 (22-24) 11 (23, 24) 
>42 weeks 10 (43, 48) 3 (43) 0 

Number of babies with birth weight (range in g): 
<500g 6 (376, 493) 6 (356, 485) 3 (458, 480) 
>4500g 4 (4550, 4600) 17 (4576, 8913) 17 (4570, 5294) 

 
 



5. Exploring crude associations between 

potential risk factors and blood stream infection 

 

5.1 Summary 

This chapter explores associations between BSI and potential risk factors reflecting 

susceptibility at birth and between BSI and procedure-related factors which change 

during the NICU stay. The analysis made use of procedure-related factors which were 

recorded as the sum of days treated, and treatment periods of varying length were 

analysed in relation to the development of BSI. 

 

Birth weight and inborn/outborn status were significant independent risk factors for 

NICU-acquired BSI. When compared with babies weighing 1200g or more at birth, the 

rate ratio for BSI adjusted for inborn/outborn status was 2.00 (95% CI 1.54, 2.60) in 

babies weighing 700g to 1200g, and 3.43 (95% CI 2.60, 4.53) in babies weighing less 

than 700g. Babies with lower birth weights and outborn babies also contracted BSI 

earlier upon entry to the NICU. Days of stay in each of the NHS levels of care and days 

of treatment with total parenteral nutrition and ventilation were all significantly 

associated with BSI, however as these factors were correlated they could not be 

analysed together in multivariable models. 
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Birth weight and inborn/outborn status could be used to adjust BSI rates to give risk 

adjusted comparisons between NICUs. More complex analyses are required to explore 

associations between BSI and procedure-related factors.  

 

5.2 Introduction 

This chapter examines crude associations between BSI and procedure-related factors 

which change during the NICU stay, such as level of care and total parenteral nutrition. 

Chapters 6 and 7 will focus on associations which predict infection, by restricting 

analyses to procedure-related factors that preceded BSI episodes. This chapter provides 

a preliminary analysis, by analysing associations between varying durations of 

treatment with invasive procedures, and the development of BSI at any time during the 

NICU stay. This analysis was required to investigate certain procedures which were 

only recorded as the sum of days treated, which would otherwise be lost to the study. 

 

I also included an analysis of associations between BSI and factors reflecting 

susceptibility to infection at birth, such as birth weight and gestational age at birth. This 

analysis included Cox regression models to describe the effects of potential risk factors 

on how quickly babies were infected with BSI upon entering the NICU. 
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5.3 Methods 

 

5.3.1 Study population 

The datasets with records for each baby-day, described in Chapter 4, were used for the 

analysis. Because the dataset for NICU 3 included babies who were admitted on or after 

1st May 2001 and discharged up to and including 31st July 2004, the analyses for the 

other two NICUs were restricted to this time period to enable comparisons between all 

three NICUs. 

 

5.3.2 Case definition and a method to differentiate maternally-transmitted 

from hospital-acquired blood stream infection 

As in Chapter 3, an episode of BSI was defined as one or more blood cultures in which 

the same bacterial organism was isolated within a 7-day period.  

 

A method to differentiate maternally-transmitted from hospital-acquired blood stream 

infection 

The focus of this and the following chapters is on comparing rates of hospital-acquired 

infection between NICUs, to inform infection control practices. There is no easy way to 

differentiate maternally-transmitted from hospital-acquired BSI, apart from using timing 

of infection. Previous studies have used arbitrary thresholds between two and three days 

of age.16,30 I derived a threshold, by exploring age at first BSI episode using finite 

mixture latent class regression models with normally distributed components.83 I used 

the R library flexmix to fit models in this class.84 Because this threshold was to be 

used for the rest of this study, which concentrates mainly on NICUs 1 and 2, only data 
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for these two hospitals were used for its calculation, for the period 1st May 2001 to 28th 

February 2005.  

 

For these analyses I based my model selection strategy on the Bayesian information 

criterion (BIC). Like the AIC described in Chapter 3, Section 3.3.4, the BIC is another 

parsimonious measure of goodness of fit for an estimated statistical model, which 

describes the trade-off between model precision and complexity. Within a given dataset, 

competing models may be ranked according to their BIC values, with the one having the 

lowest BIC being the best. The BIC differs from the AIC in that the penalty for 

additional parameters is larger, thus it is more robust against over-parametrisation. This 

is an important aspect when fitting latent class mixture models, which may have many 

parameters. The BIC is given by: 

 

BIC = -2ln(L) + kln(n)  

L = maximised value of the likelihood function 

k = number of parameters in the model 

n = the number of independent observations used to fit the model, or the sample size85 

 

The optimal model had four components, and I calculated pairwise maximal differences 

in the empirical cumulative probability functions of these components. One of the 

maximal differences was at 2.23 days, indicating that the frequency of first BSI 

episodes drops sharply at this age. I hypothesised that this is due to a shift in the 

aetiology of BSI from maternally-transmitted to hospital-acquired at around day two of 

life. Figure 5.1 shows how this threshold was derived.  
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Figure 5.2 shows the organisms giving rise to BSI episodes by day of life. It also 

indicates a shift in the aetiology of BSI at around day two of life, as CONS, Group B 

streptococcus and Gram positive organisms other than Group B streptococcus show 

marked decreases. The importance of Group B streptococcal infections in the first two 

to three days of life has been described previously.32,86 CONS is less frequently a 

pathogen during this period,86 so the early spike in the number of CONS episodes may 

be partly the result of a high blood sampling frequency. In the first few days of life, 

blood samples may be taken more frequently as part of standard care as babies are often 

in an emergency situation. The blood sampling rate in days 1 and 2 of life (445.07 per 

1000 baby-days, 95% CI 424.32, 466.58) was significantly greater than the rate in days 

3 and 4 of life (70.67 per 1000 baby-days, 95% CI 62.54, 79.57). As described in 

Chapter 3 (Section 3.3.2 and Section 3.5), the more blood samples taken the greater the 

risk of detecting asymptomatic BSI or a blood culture contaminated with a commensal 

organism such as CONS.  

 

To concentrate on hospital-acquired BSI and to reduce blood sampling bias, I excluded 

BSI episodes from the first 48 hours of life. All further analyses in this thesis are based 

on BSI episodes occurring after the first 48 hours of life.  

 

5.3.3 Factors reflecting baby susceptibility at birth 

Babies were divided into categories of gestational age at birth in weeks (<26, 26-<28, 

28-<32, 32-<37, ≥37) and birth weight in grams (<700, 700-<1200, ≥1200). These strata 

were chosen to be comparable with a study by Holmes et al. (2008), which is described 

in Chapter 6.34 I modified this study’s categories by dividing babies with gestational 
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ages above 27 weeks into three categories rather than one, as variability in gestational 

age within this group was found to have a statistically significant relationship with BSI. 

 

Poisson generalised linear models 

I fitted Poisson generalised linear models to investigate relationships between BSI and 

gestational age, birth weight, inborn/outborn status, hospital, sex and delivery method. 

Adjusted models were constructed using forward fitting of covariates which showed 

statistically significant relationships (p<0.01) with BSI in crude analyses. As gestational 

age at birth and birth weight were correlated, separate adjusted models were built for 

each of these variables. Goodness of fit was compared between models using the AIC.  

 

Analyses of time to the development of blood stream infection 

Cox regression models were fitted to investigate relationships between potential risk 

factors reflecting susceptibility at birth, and the time to infection with a first BSI 

episode. Babies entered this analysis at the latest date of either their NICU admission or 

day three of life, and exited it at the earliest date of their first BSI episode or discharge 

from the NICU. The construction of multivariable models proceeded as for the Poisson 

generalised linear models described above. Kaplan-Meier plots were used to display 

time to BSI, for strata of risk factors shown to have a statistically significant effect on 

BSI in the Cox regression multivariable models. 

 

5.3.4 Procedure-related factors which change during the NICU stay 

This analysis made use of procedure-related potential risk factors which were recorded 

as the sum of days of treated (refer to Chapter 4, ‘Data fields’ section of Table 4.1), 
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rather than dates starting and stopping treatment, or daily records. These comprised all 

of the procedure-related variables for NICU 3 (level of care, total parenteral nutrition, 

ventilation, nasal continuous positive airway pressure (CPAP), long line, umbilical 

arterial catheter, umbilical venous catheter), and two for NICU 1 (total parenteral 

nutrition and ventilation). For this analysis, the remaining procedure-related variables 

(level of care at NICU 1 and all procedure-related variables at NICU 2) were converted 

to this format, by summing days of treatment using the records for each baby-day in the 

three datasets created in Chapter 4. Babies were categorised according to their number 

of days treated with each procedure-related factor (0, 1-3, 4-6 and ≥7 days). Again, 

these strata were chosen to be comparable with Holmes et al. (2008), who judged that 

the maximum time from BSI to the manifestation of clinical symptoms was about three 

days.34 Babies were also categorised according to number of blood samples taken (0-3, 

4-6, ≥7). By definition, babies with no blood samples taken had no BSI episodes, so 

they were grouped with babies with one to three blood samples. The structure of the 

datasets used, with babies categorised according to the sum of days treated with each 

invasive procedure, is demonstrated in Figure 5.3. 

 

Poisson generalised linear models 

I fitted Poisson generalised linear models to investigate relationships between BSI and 

procedure-related factors, which varied in availability between NICUs. Procedure-

related factors were not combined in multivariable models, as they were highly 

correlated.  
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It was not possible to analyse time to the development of BSI with procedure-related 

factors. As procedure-related factors were recorded as the sum of days treated for this 

analysis, their timing was not recorded in relation to BSI episodes. 

 

All analyses were repeated for total BSI, CONS and non-CONS BSI. Poisson regression 

analyses were repeated for the NICUs separately as well as combined. 

 

5.4 Results 

 

5.4.1 Factors reflecting baby susceptibility at birth 

 

Poisson generalised linear models 

There were no significant differences between NICUs in BSI rates per 1000 baby-days, 

whether measured as total BSI (6.14 at NICU 1, 6.29 at NICU 2 and 5.24 at NICU 3), 

CONS (4.42 at NICU 1, 4.53 at NICU 2 and 4.41 at NICU 3) or non-CONS (1.72 at 

NICU 1, 1.77 at NICU 2 and 0.83 at NICU 3) infection episodes (refer to Tables 5.1, 

5.2 and 5.3). It is important to note that, despite the relatively large sample size (2562 

babies and 58,046 baby-days), these rate ratios are underpowered. A power of 80% or 

above is desirable, but for the analysis of total BSI,  this would have required between 

double and triple the sample size obtained (between about 5000 and 8000 babies, or 

between 115,000 and 180,000 baby-days), which was not feasible for this study. Figure 

5.4 demonstrates this for total BSI rate ratios at NICU 1 and NICU 2. It shows that even 

with twice the sample size studied, the power to detect a rate ratio of two for NICU 2 

compared with NICU 1 would still only be about 45%.  
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Gestational age at birth, birth weight and inborn/outborn status were significantly 

associated with total BSI in crude analyses. As in the analyses for Chapter 3, BSI risk 

was highest in the most premature and in term babies. Preterm babies born in the third 

trimester, between 32 and 37 weeks, had the lowest risk. Babies with birth weights 

below 1200g were at increased risk for BSI, as were babies transferred to the NICU 

from another hospital after birth. Birth weight increased with gestational age (Figure 

5.5). As these two factors were correlated they could not be combined in the same 

multivariable model. In terms of the AIC, the optimal adjusted model included birth 

weight and inborn/outborn status (Table 5.1).  

 

These findings broadly remained when CONS and non-CONS BSI were analysed 

separately, except that non-CONS BSI was not significantly associated with 

inborn/outborn status (Tables 5.2, 5.3). When the NICUs were analysed separately, 

gestational age was a weaker risk factor for BSI in NICU 1 and NICU 2. Inborn/outborn 

status had no significant effect on non-CONS BSI at either NICU 1 or NICU 2, or on 

any BSI at NICU 3. As the study population at NICU 3 was relatively small, it 

contained too few non-CONS BSI episodes to permit some stratified analyses (Tables 

5.10 to 5.18, Appendix to Chapter 5). 

 

Neither sex nor delivery method had significant effects on total BSI, CONS or non-

CONS infection episodes. 
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Analyses of time to the development of blood stream infection 

The results shown in Table 5.4 are based on hazard rates, which for any point in time, 

describe the rate of first BSI episodes in the group of babies currently being observed. 

The hazard ratios compare rates at which babies are experiencing first BSI episodes, for 

different strata of various potential risk factors. For example, a hazard ratio of 2 

indicates twice the instantaneous rate of first BSI episodes in relation to the baseline 

comparison group. Hazard ratios can be interpreted as comparisons of the time to first 

BSI episode between strata. There were no significant differences between NICUs in 

the time to first BSI episode after admission to the NICU, whether measured as total 

BSI, CONS or non-CONS infection episodes. 

 

Gestational age, birth weight and inborn/outborn status were significantly associated 

with total BSI in crude analyses. In terms of the AIC, the optimal adjusted model 

included birth weight and inborn/outborn status (Table 5.4). Again, these findings 

remained when CONS and non-CONS BSI were analysed separately, except that non-

CONS BSI was not significantly associated with inborn/outborn status in crude analyses 

(Tables 5.5, 5.6). Figures 5.5 to 5.9 illustrate differential time to infection in strata of 

birth weight and inborn/outborn status for all BSI and CONS BSI, and in strata of birth 

weight for non-CONS BSI. The proportion of babies without BSI decreased over time. 

This decline was steeper for the more common CONS BSI than for non-CONS BSI. 
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5.4.2 Procedure-related factors which change during the NICU stay 

Procedure-related factors were highly positively correlated (p<0.001), an increase in 

one was significantly associated with increases in the others (Figure 5.5), so these 

factors could not be combined in multivariable models. 

 

Poisson generalised linear models 

Throughout this section, days of stay at each level of care and days of treatment with 

each invasive procedure are referred to as ‘short’ (1 to 3 days), ‘medium’ (4 to 6 days) 

or ‘long’ (7 or more days) periods. Risk ratios are expressed in relation to the baseline 

of 0 days, or no exposure to the procedure-related factor. 

 

Each level of care was strongly associated with total BSI, and BSI rates increased with 

the intensity of care. Any time spent in special care was associated with a halving in the 

risk of BSI. Long stays in high dependency care were associated with an increase in the 

risk of BSI by 50%. For intensive care, the risk of BSI increased between two-fold for 

short stays and four-fold for long stays (Table 5.7). These findings broadly remained 

when CONS and non-CONS BSI were analysed separately. However for non-CONS 

BSI, short and medium stays in special care were associated with a weaker protective 

effect and long stays in intensive care were associated with a greater risk (Tables 5.8 

and 5.9). When the NICUs were analysed separately, special care had no significant 

effect on any BSI at NICU 1. Intensive care had no significant effect on non-CONS BSI 

at NICU 2. The effect of intensive care appeared to be particularly strong at NICU 3. 

Compared with no days spent in this level, long stays were associated with an eleven-

fold increase in the risk of total BSI (Tables 5.19 to 5.27, Appendix to Chapter 5). As 
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the study population at NICU 3 was relatively small, the high rate ratios observed for 

some potential risk factors were accompanied by large confidence intervals. 

 

Information concerning specific procedure-related factors varied in availability between 

NICUs. Total parenteral nutrition was strongly associated with both CONS and non-

CONS BSI at the two NICUs where its use was recorded. At NICU 2, long periods of 

treatment with total parenteral nutrition were associated with a four-fold increase in the 

risk of total BSI. This association appeared to be stronger at NICU 3, where risk 

increased between eight and eleven-fold, depending on the length of treatment. Long 

periods of ventilation were associated with a three-fold increase in the risk of total BSI 

at all three NICUs. When the NICUs were analysed separately, ventilation was not 

significantly associated with CONS BSI at NICU 1, nor with non-CONS BSI at NICU 

2. Again associations with ventilation appeared to be stronger at NICU 3, with between 

three and seven-fold increases in BSI risk, depending on the length of treatment (Tables 

5.7 to 5.9 and Tables 5.19 to 5.27, Appendix to Chapter 5). 

 

Nasal continuous positive airway pressure was recorded at NICUs 1 and 3. It was not 

associated with any BSI at NICU 1, but long periods of treatment were associated with 

a three-fold increase in total BSI at NICU 3. Treatment with a long line, an umbilical 

arterial catheter or an umbilical venous catheter was recorded at NICU 3 and all three 

procedures were associated with increased risks of BSI. Surgery was recorded for 

NICUs 1 and 2 and was associated with a two-fold increase in the risk of total BSI, 

compared with no surgery (Tables 5.19 to 5.27, Appendix to Chapter 5). The number of 

blood samples taken was strongly associated with the risk of total BSI; in relation to 0 
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to 3 blood samples, 4 or more blood samples were associated with a four to five-fold 

increase in the risk of total BSI (Table 5.7).  

 

5.5 Discussion 

Of the factors reflecting baby susceptibility at birth, birth weight and inborn/outborn 

status were the strongest risk factors for BSI in both Poisson and Cox regression 

multivariable analyses. Babies with lower birth weights and outborn babies were at 

greater risk of developing BSI, and they also developed BSI earlier upon entering the 

NICU. This indicates that BSI rates could be adjusted for these two risk factors to 

compare rates between NICUs. I found no significant differences between NICUs in 

either total BSI, CONS or non-CONS infection rates. In contrast to Chapter 3, the 

analyses in this chapter included more potential risk factors reflecting baby 

susceptibility at birth, and found birth weight to be a stronger risk factor for BSI than 

gestational age at birth. In crude analyses for both chapters, babies born in the third 

trimester but before term (28-<32 or 32-<37 weeks gestation), were at lowest risk for 

BSI. This has not previously been reported but is plausible, as these babies are usually 

admitted to NICU for observation and help with feeding, but are otherwise healthy and 

not requiring invasive procedures. In contrast, more premature and term babies may be 

more prone to infection, either from extreme prematurity, or in term babies, from other 

serious complications such as congenital anomalies which may require invasive surgical 

care.  

 

Most procedure-related factors were found to be strongly associated with BSI and the 

risk of BSI increased with the intensity of care. Babies spending any time in special care 
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had a lower risk of BSI than babies who spent no time in special care. This is because, 

by definition, babies who spent no time in special care were exclusively looked after in 

the more intensive levels. In high dependency and intensive care, BSI risk increased 

with the duration of care, and intensive care was associated with the greatest risk. 

 

These analyses enabled exploration of risk factors recorded only as the sum of days 

treated. It also provided a simple exploration of risk factors which change over time, by 

analysing associations between treatment periods of varying length, and the 

development of BSI at any time during the NICU stay. Disadvantages of these analyses 

include the fact that factors analysed in this way were correlated with each other. As 

sicker babies received more intensive care and spent longer in the NICU, their days of 

stay at each of the levels of care and days of treatment with intensive procedures were 

positively correlated. It was therefore impossible to perform multivariable analyses, and 

associations found in univariable analyses may be subject to many confounders. For 

example, the association between BSI and total parenteral nutrition may be due to the 

fact that more vulnerable babies were treated with parenteral nutrition in the first place, 

or may be due to another invasive procedure correlated with parenteral nutrition, rather 

than to any effect of parenteral nutrition itself. Babies with longer periods of treatment 

with procedure-related factors spent more time in the NICU, which would also increase 

the probability of succumbing to BSI, as shown by the Kaplan-Meier plots.  

 

Because the timing of procedure-related factors in relation to BSI episodes was not 

taken into account, associations between them may reflect either cause or consequence. 

The procedure may contribute to the infection, or the procedure may have been 
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necessary as a result of deteriorating symptoms of infection. The disadvantages I have 

described in this and the preceding paragraph illustrate the limited value of factors 

recorded as the sum of days treated. Recognising this, the BAPM revised its 

recommendations for the neonatal ‘minimum dataset’ in 2004, to include daily records 

rather than the sum of days treated with procedure-related factors. It recommended daily 

recording of invasive procedures, such as parenteral nutrition, and all other factors 

necessary for defining NHS levels of care.87 Chapters 6 and 7 provide more complex 

analyses, using daily records of procedure-related factors and a method which enabled 

the levels of care to be analysed in the same multivariable model. These analyses 

described procedure-related factors which predict infection, as they were restricted to 

risk factors that preceded BSI episodes. 

 

In contrast to the analyses in Chapter 3, blood sampling frequency was strongly 

associated with BSI rates. This is because this chapter analysed the relationship between 

blood sampling frequency and BSI in individual babies, whereas Chapter 3 analysed 

this relationship at the unit level. Within individual babies, the number of blood samples 

taken was, by definition, strongly correlated with the number of BSI episodes, as blood 

samples were used to diagnose infection and to monitor the response to treatment. 

Within units, blood sampling frequency and BSI were less strongly correlated, as the 

experiences of many babies were combined. In addition, in Chapter 3, the relationship 

between blood sampling frequency and BSI rates was adjusted for the confounding 

effects of gestational age and days spent at each level of care. As my project focused on 

differences in BSI rates at the unit level, the approach for Chapter 3 was most relevant. 

This approach found that blood sampling rate was not a risk factor for total BSI.  
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As mentioned in Chapter 1, previous studies have used clinical symptoms to 

differentiate between ‘true’ BSI and contamination. However, Gastmeier et al. (2008) 

warn that differences between hospitals in the sensitivity and specificity of clinical 

diagnoses may lead to differences in HAI rates that are not necessarily associated with 

infection control. They chose 10 case studies from real adult patient records, including 

13 HAI defined by CDC criteria and agreed upon by an expert panel. In 169 adult 

intensive care units participating in the German Krankenhaus Infektions Surveillance 

System (KISS), the diagnosis of HAI for the case studies ranged in sensitivity from 31% 

to 100% (median 69%) and ranged in specificity from 65% to 100% (median 94%).88 

As mentioned in Chapter 3, Section 3.5, reporting BSI rates by organisms, for example 

by CONS and non-CONS, may be the only way to differentiate between infections 

more or less likely to represent contamination using routine data. Reporting rates of 

CONS may also be useful for monitoring and addressing contamination itself, as false 

positive blood cultures can lead to increased antibiotic use and longer durations of 

hospital stay. As results for CONS and non-CONS were similar, I focus on total BSI in 

the following four chapters. 
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Key conclusions of Chapter 5 

Findings  

 Birth weight and inborn/outborn status were strong independent risk factors 

for BSI. 

 NHS levels of care and other procedure-related factors may be strongly 

associated with BSI. 

 Recording the sum of days exposed to procedure-related factors had limited 

value for risk adjusted analyses. 

 Differences in sampling frequency did not confound comparisons of BSI 

rates between NICUs.  

Conclusions 

 Birth weight and inborn/outborn status could be used to adjust BSI rates to 

give risk adjusted comparisons between NICUs. 

 More complex analyses are required to determine if BSI rates could be 

adjusted by days at each level of care, or days with other procedure-related 

factors, to give risk adjusted comparisons between NICUs. 

 A monitoring system for hospital-acquired BSI in NICUs employing routine 

data could rely on rates of CONS, non-CONS or total BSI occurring after the 

first 48 hours of life. 
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Figure 5.1 Deriving a threshold to differentiate between maternally-

transmitted and hospital-acquired BSI 

 
Age at first BSI episode was explored using finite mixture latent class 
regression models. These were fitted with up to five components, and models 
were compared using the BIC. 
 

Number of components in model BIC 
1 2761.40 
2 2503.80 
3 2480.70 
4 2351.63 – lowest BIC indicates the best model 
5 2351.64 

 
Cumulative probabilities of the four model components against age at first 
BSI episode 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Maximal difference in cumulative probability between component 1 and 
component 2 
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Figure 5.2 Organisms giving rise to BSI episodes by day of life. Graph 

includes babies admitted to NICUs 1 and 2 between May 2001 and 

February 2005 inclusive 
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Figure 5.3 Diagram to describe stays in the NICU for three hypothetical babies, and how these stays would be translated into a 

dataset with babies categorised according to the sum of days exposed to each procedure-related factor 
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Figure 5.3 (continued) Dataset with babies categorised according to the sum of days exposed to each procedure-related factor 

Number of days treated in/with: 

Baby 
Gestational 
age (wks) 

Birth 
weight (g) 

Sex 
Inborn/ 

Outborn 
Delivery 
method Special 

care 

High 
dependency 

care  

Intensive 
care 

Total 
parenteral 
nutrition 

Ventilation 

Total 
CONS 

episodes 

Total 
non-CONS 
episodes 

Total  
baby-
days 

Total 
blood 

samples 
taken 

1 <26 700-<1200 Male Inborn Vaginal 0 0 ≥7 ≥7 ≥7 1 1 8 0-3 
2 32-<37 ≥1200 Female Inborn Vaginal 1-3 1-3 0 0 0 1 0 5 0-3 
3 ≥37 ≥1200 Male Inborn Vaginal 1-3 1-3 1-3 0 0 1 0 5 0-3 
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Figure 5.4 Graphs showing statistical power for increasing sample sizes 

and rate ratios, for total BSI.  
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Each plot corresponds to a multiple of the sample size. The contour lines show 
the statistical power to detect hypothetical rate ratios for total BSI incidence at 
each NICU. To read each graph, find the intersection of the rate ratios of 
interest, and read the statistical power on the corresponding contour line. For 
example, if the sample size was doubled, the statistical power to detect a rate 
ratio of two at NICU 2 and one at NICU 1 would be about 45%.  
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Figure 5.5 Graphs showing correlations between potential risk factorsb, c 
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Correlation coefficients: 
 
+1 indicates positive correlation 
-1 indicates negative correlation 
0 indicates no correlation 
 
For all correlations, p-value for the null hypothesis of no correlation was <0.001 
(H0=correlation coefficient of 0)  
 

b - Outliers were identified for some variables, for example one baby had a birth weight of 
8913g, another baby was in intensive care for 600 days. As mentioned in Chapter 4, it was 
often unclear whether extreme values represented errors in data entry, so they were left 
unchanged. Factors were analysed as categorical variables, which tempered the potential bias 
presented by outliers. 
c - TPN- total parenteral nutrition 
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Figure 5.6 Kaplan-Meier estimates showing time to infection with total BSI, 
by birth weightd 
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Figure 5.7 Kaplan-Meier estimates showing time to infection with total BSI, 
by inborn/outborn statusd 
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Figure 5.8 Kaplan-Meier estimates showing time to infection with CONS 
BSI, by birth weightd 
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Figure 5.9 Kaplan-Meier estimates showing time to infection with CONS 
BSI, by inborn/outborn statusd 
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Figure 5.10 Kaplan-Meier estimates showing time to infection with non-
CONS BSI, by birth weightd 
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d - The y-axis shows the proportion of babies in the NICU population who had never 
experienced a hospital-acquired BSI episode (total BSI, CONS or non-CONS, depending on the 
graph). The x-axis shows the number of days since NICU admission or day 3 of life, whichever 
came first. Vertical tick marks indicate when an uninfected baby was discharged from the NICU. 
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Table 5.1 Poisson regression models for the effect of birth susceptibility factors on total BSI, for NICUs 1, 2 and 3 

Potential risk factor 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
Gestational age (weeks)         

<26 117/10,101 (11.58) 2.57 (1.85, 3.58) <0.001    
26-<28 55/7097 (7.75) 1.71 (1.17, 2.51) 0.006    
28-<32 88/16,369 (5.38) 1.18 (0.83, 1.67) 0.347     
32-<37 37/14,331 (2.58) 0.55 (0.36, 0.84) 0.006    
≥37 50/10,090 (4.96)  1     
Missinge 0/58        

         
Birth weight (g)         

<700 104/8543 (12.17) 3.65 (2.79, 4.78) <0.001 3.43 (2.60, 4.53) <0.001 
700-<1200 135/18,792 (7.18) 2.15 (1.67, 2.77) <0.001 2.00 (1.54, 2.60) <0.001 
≥1200 108/30,658 (3.52)  1   1  
Missinge 0/53        

         
Where born         

Outborn 101/11,389 (8.87) 1.73 (1.37, 2.18) <0.001 1.28 (1.01, 1.63) 0.041 
Inborn 242/46,197 (5.24)  1   1  
Missinge 4/460        

         
Hospital         

NICU 3 76/14,499 (5.24) 0.85 (0.64, 1.13) 0.254    
NICU 2 146/23,199 (6.29) 1.02 (0.80, 1.29) 0.890    
NICU 1 125/20,348 (6.14)  1     

         
Sex         

Male 182/29,940 (6.08) 1.03 (0.83, 1.27) 0.811    
Female 165/28,030 (5.89)  1     
Missinge 0/76        

         
Delivery method         

Emergency CSf 145/22,096 (6.56) 1.11 (0.89, 1.39)  0.357    
Elective CSf 43/9251 (4.65) 0.78 (0.56, 1.10)  0.154    
Vaginal 156/26,144 (5.97)  1     
Missinge 3/555        
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Table 5.2 Poisson regression models for the effect of birth susceptibility factors on CONS BSI, for NICUs 1, 2 and 3 

Potential risk factor 
CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
Gestational age (weeks)         

<26 82/10,101 (8.12) 2.50 (1.69, 3.70)  <0.001    
26-<28 43/7097 (6.06) 1.86 (1.20, 2.90)  0.006    
28-<32 70/16,369 (4.28) 1.30 (0.87, 1.95)  0.194    
32-<37 28/14,331 (1.95) 0.58 (0.35, 0.94)  0.029    
≥37 36/10,090 (3.57)  1     
Missinge 0/58        

         
Birth weight (g)         

<700 76/8543 (8.90) 3.61 (2.63, 4.93)  <0.001 3.36 (2.43, 4.65) <0.001 
700-<1200 103/18,792 (5.48) 2.21 (1.65, 2.96)  <0.001 2.04 (1.50, 2.76) <0.001 
≥1200 80/30,658 (2.61)  1   1  
Missinge 0/53        

         
Where born         

Outborn 77/11,389 (6.76) 1.79 (1.37, 2.34) <0.001 1.33 (1.01, 1.76) 0.043 
Inborn 178/46,197 (3.85)  1   1  
Missinge 4/460        

         
Hospital         

NICU 3 64/14,499 (4.41) 0.99 (0.72, 1.37) 0.954    
NICU 2 105/23,199 (4.53) 1.02 (0.77, 1.35) 0.913    
NICU 1 90/20,348 (4.42)  1     

         
Sex         

Male 135/29,940 (4.51) 1.01 (0.79, 1.29) 0.919    
Female 124/28,030 (4.42)  1     
Missinge 0/76        

         
Delivery method         

Emergency CSf 115/22,096 (5.20) 1.23 (0.95, 1.59) 0.121    
Elective CSf 30/9251 (3.24) 0.76 (0.51, 1.14) 0.182    
Vaginal 112/26,144 (4.28)  1     
Missinge 2/555        
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Table 5.3 Poisson regression models for the effect of birth susceptibility 

factors on non-CONS BSI, for NICUs 1, 2 and 3 

Potential risk factor 
Non-CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
Gestational age (weeks)      

<26 35/10,101 (3.47) 2.75  (1.48, 5.11) 0.001 
26-<28 12/7097 (1.69) 1.34  (0.62, 2.89) 0.461 
28-<32 18/16,369 (1.20) 0.86  (0.43, 1.73) 0.679 
32-<37 9/14,331 (0.63) 0.48  (0.21, 1.10) 0.083 
≥37 14/10,090 (1.39)  1  
Missinge 0/58     

      
Birth weight (g)      

<700 28/8,543 (3.28) 3.79  (2.25, 6.41) <0.001 
700-<1200 32/18,792 (1.70) 1.96  (1.18, 3.26) 0.009 
≥1200 28/30,658 (0.91)  1  
Missinge 0/53     

      
Where born      

Outborn 24/11,389 (2.11) 1.55  (0.97, 2.48) 0.066 
Inborn 64/46,197 (1.39)  1  
Missinge 0/460     

      
Hospital      

NICU 3 12/14,499 (0.83) 0.48  (0.25, 0.92) 0.027 
NICU 2 41/23,199 (1.77) 1.02  (0.65, 1.60) 0.931 
NICU 1 35/20,348 (1.72)  1  

      
Sex      

Male 47/29,940 (1.57) 1.07  (0.70, 1.62) 0.764 
Female 41/28,030 (1.46)  1  
Missinge 0/76     

      
Delivery method      

Emergency CSf 30/22,096 (1.36) 0.82  (0.51, 1.30) 0.390 
Elective CSf 13/9251 (1.41) 0.84  (0.45, 1.56) 0.577 
Vaginal 44/26,144 (1.68)  1  
Missinge 1/555     
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Table 5.4 Cox regression models for the effect of birth susceptibility factors on total BSI, for NICUs 1, 2 and 3 

Potential risk factor BSI episodes/baby-days 
Crude hazard ratios 

(95% CI) p-value 
Adjusted hazard ratios 

(95% CI) p-value 
        

Gestational age (weeks)        
<26 70/4963 4.59 (3.10, 6.80) <0.001    
26-<28 39/4418 2.68 (1.72, 4.18) <0.001    
28-<32 68/12,979 1.46 (0.98, 2.16) 0.060    
32-<37 33/13,328 0.51 (0.32, 0.80) 0.003    
≥37 44/9263  1     
Missinge 0/58       

        
Birth weight (g)        

<700 61/3314 7.33 (5.28, 10.16) <0.001 6.80 (4.84, 9.54) <0.001 
700-<1200 96/13,143 3.16 (2.35, 4.24) <0.001 2.86 (2.10, 3.90) <0.001 
≥1200 97/28,494  1   1  
Missinge 0/58       

        
Where born        

Outborn 73/7671 2.06 (1.56, 2.71) <0.001 1.29 (0.97, 1.72) 0.085 
Inborn 177/37,005  1   1  
Missinge 4/333       

        
Hospital        

NICU 3 56/10,787 0.88 (0.63, 1.23) 0.467    
NICU 2 108/18,171 1.08 (0.81, 1.42) 0.612    
NICU 1 90/16,051  1     

        
Sex        

Male 139/23,526 1.10 (0.86, 1.40) 0.462    
Female 115/21,407  1     
Missinge 0/76       

        
Delivery method        

Emergency CSf 99/16,645 1.01 (0.77, 1.32) 0.942    
Elective CSf 34/8032 0.75 (0.51, 1.09) 0.135    
Vaginal 118/19,911  1     
Missinge 3/421       
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Table 5.5 Cox regression models for the effect of birth susceptibility factors on CONS BSI, for NICUs 1, 2 and 3 

Potential risk factor CONS BSI episodes/baby-days 
Crude hazard ratios 

(95% CI) p-value 
Adjusted hazard ratios 

(95% CI) p-value 
        
Gestational age (weeks)        

<26 60/5490 4.90 (3.16, 7.60) <0.001    
26-<28 34/4749 2.90 (1.78, 4.74) <0.001    
28-<32 60/13,330 1.66 (1.08, 2.56) 0.022    
32-<37 25/13,526 0.49 (0.29, 0.83) 0.008    
≥37 34/9396  1     
Missinge 0/58       

        
Birth weight (g)        

<700 53/3803 7.53 (5.26, 10.78) <0.001 7.11 (4.89, 10.33) <0.001 
700-<1200 84/13,789 3.49 (2.53, 4.83) <0.001 3.22 (2.30, 4.53) <0.001 
≥1200 76/28,899  1   1  
Missinge 0/58       

        
Where born        

Outborn 61/8146 2.00 (1.48, 2.70) <0.001 1.21 (0.88, 1.65) 0.243 
Inborn 148/38,070  1   1  
Missinge 4/333       

        
Hospital        

NICU 3 53/10,970 1.05 (0.74, 1.50) 0.784    
NICU 2 87/18,778 1.07 (0.79, 1.47) 0.650    
NICU 1 73/16,801  1     

        
Sex        

Male 113/24,414 1.02 (0.78, 1.34) 0.884    
Female 100/22,059  1     
Missinge 0/76       

        
Delivery method        

Emergency CSf 89/17,025 1.15 (0.86, 1.53) 0.356    
Elective CSf 27/8199 0.75 (0.49, 1.15) 0.183    
Vaginal 95/20,853  1     
Missinge 2/472       
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Table 5.6 Cox regression models for the effect of birth susceptibility 

factors on non-CONS BSI, for NICUs 1, 2 and 3 

Potential risk factor Non-CONS BSI episodes/baby-days 
Crude hazard ratios 

(95% CI) p-value 
     
Gestational age (weeks)     

<26 28/8696 4.21 (2.03, 8.72) <0.001 
26-<28 11/6168 1.98 (0.84, 4.66) 0.119 
28-<32 16/15,468 1.03 (0.47, 2.25) 0.941 
32-<37 9/14,042 0.52 (0.22, 1.25) 0.143 
≥37 12/9882  1  
Missinge 0/58    

     
Birth weight (g)     

<700 24/6649 6.89 (3.80, 12.50) <0.001 
700-<1200 27/17,603 2.56 (1.44, 4.54) 0.001 
≥1200 25/30,004  1  
Missinge 0/58    

     
Where born     

Outborn 21/10,413 1.63 (0.98, 2.70) 0.060 
Inborn 55/43,441  1  
Missinge 0/460    

     
Hospital     

NICU 3 10/13,728 0.48 (0.23, 0.98) 0.044 
NICU 2 37/21,783 1.12 (0.68, 1.82) 0.657 
NICU 1 29/18,803  1  

     
Sex     

Male 41/28,518 1.08 (0.69, 1.70) 0.739 
Female 35/25,720  1  
Missinge 0/76    

     
Delivery method     

Emergency CSf 25/20,641 0.77 (0.46, 1.27)  0.305 
Elective CSf 12/8973 0.85 (0.45, 1.63)  0.629 
Vaginal 38/24,196  1  
Missinge 1/504    
     

e - Babies with missing variables were few and experienced few episodes of BSI. For this 
reason I considered it acceptable to remove them from the analyses. 
f - CS- Caesarean section 
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Table 5.7 Poisson regression models for the effect of procedure-related 

factors on total BSI, for NICUs 1, 2 and 3 

Potential risk factor 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples taken      
≥7 170/13,907 (12.22) 5.06 (3.91, 6.55) <0.001 
4-6 89/9625 (9.25) 3.79 (2.82, 5.09) <0.001 
0-3 88/34,514 (2.55)  1  

      
Number of days spent in:      
      
Special care      
≥7 216/44,969 (4.80) 0.39 (0.31, 0.50)  <0.001 
4-6 11/2457 (4.48) 0.32 (0.17, 0.60)  <0.001 
1-3 14/2087 (6.71) 0.46 (0.26, 0.80)  <0.006 
0 106/8533 (12.42)  1  

      
High dependency care      
≥7 103/12,396 (8.31) 1.53 (1.20, 1.94)  <0.001 
4-6 19/3719 (5.11) 0.93 (0.58, 1.49)  0.756 
1-3 34/8024 (4.24) 0.76 (0.52, 1.09)  0.133 
0 191/33,907 (5.63)  1  

      
Intensive care      
≥7 259/30,368 (8.53) 3.90 (2.78, 5.45) <0.001 
4-6 18/3847 (4.68) 2.07 (1.19, 3.62)  0.011 
1-3 31/7246 (4.28) 1.88 (1.17, 3.01) 0.009 
0 39/16,585 (2.35)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 214/24,110 (8.88) 2.61 (2.03, 3.37)  <0.001 
4-6 15/2716 (5.52) 1.59 (0.92, 2.75)  0.100 
1-3 36/8538 (4.22) 1.21 (0.82, 1.79)  0.348 
0 82/22,682 (3.62)  1  
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Table 5.8 Poisson regression models for the effect of procedure-related 

factors on CONS BSI, for NICUs 1, 2 and 3 

Potential risk factor 
CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples taken      
≥7 124/13,907 (8.92) 4.78 (3.55, 6.42) <0.001 
4-6 67/9625 (6.96) 3.69 (2.63, 5.17) <0.001 
0-3 68/34,514 (1.97)  1  

      
Number of days spent in:      
      
Special care      
≥7 167/44,969 (3.71) 0.43 (0.33, 0.56) <0.001 
4-6 7/2457 (2.85) 0.29 (0.13, 0.63) 0.002 
1-3 10/2087 (4.79) 0.46 (0.24, 0.89) 0.022 
0 75/8533 (8.79)  1  

      
High dependency care      
≥7 75/12,396 (6.05) 1.50 (1.14, 1.99) 0.004 
4-6 17/3719 (4.57) 1.12 (0.68, 1.86) 0.647 
1-3 26/8024 (3.24) 0.78 (0.52, 1.19) 0.252 
0 141/33,907 (4.16)  1  

      
Intensive care      
≥7 193/30,368 (6.36) 3.65 (2.50, 5.34) <0.001 
4-6 15/3847 (3.90) 2.17 (1.17, 4.03) 0.014 
1-3 20/7246 (2.76) 1.52 (0.87, 2.67) 0.142 
0 31/16,585 (1.87)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 155/24,110 (6.43) 2.46 (1.84, 3.30) <0.001 
4-6 13/2716 (4.79) 1.79 (0.99, 3.25) 0.056 
1-3 28/8538 (3.28) 1.22 (0.78, 1.91) 0.378 
0 63/22,682 (2.78)  1  
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Table 5.9 Poisson regression models for the effect of procedure-related 

factors on non-CONS BSI, for NICUs 1, 2 and 3 

Potential risk factor 
Non-CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples taken      
≥7 46/13,907 (3.31) 6.03 (3.57, 1.02) <0.001 
4-6 22/9625 (2.29) 4.12 (2.25, 7.55) <0.001 
0-3 20/34,514 (0.58)  1  

      
Number of days spent in:      
      
Special care      
≥7 49/44,969 (1.09) 0.31 (0.19, 0.48) <0.001 
4-6 4/2457 (1.63) 0.40 (0.14, 1.14) 0.088 
1-3 4/2087 (1.92) 0.45 (0.16, 1.27) 0.130 
0 31/8533 (3.63)  1  

      
High dependency care      
≥7 28/12,396 (2.26) 1.58 (1.00, 2.52) 0.051 
4-6 2/3719 (0.54) 0.37 (0.09, 1.53) 0.172 
1-3 8/8024 (1.00) 0.68 (0.32, 1.43) 0.310 
0 50/33,907 (1.47)  1  

      
Intensive care      
≥7 66/30,368 (2.17) 4.84 (2.32, 0.10) <0.001 
4-6 3/3847 (0.78) 1.68 (0.45, 6.35) 0.441 
1-3 11/7246 (1.52) 3.24 (1.31, 8.07) 0.011 
0 8/16,585 (0.48)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 59/24,110 (2.45) 3.11 (1.85, 5.21) <0.001 
4-6 2/2716 (0.74) 0.91 (0.21, 3.92)  0.903 
1-3 8/8538 (0.94) 1.16 (0.51, 2.64)  0.729 
0 19/22,682 (0.84)  1  
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6. Analyses of factors predicting infection: 

Poisson regression 

 

6.1 Summary 

Clinicians need to know which factors predict BSI in order to identify high risk groups 

who could benefit from preventive action or close monitoring. I determined which 

procedure-related factors predict infection, by restricting analyses to risk factors that 

preceded BSI episodes. In comparison with Chapters 3 and 5, this chapter provides 

more complex analyses to determine which potential risk factors should be adjusted for 

when comparing BSI rates between NICUs.  

 

NHS level of care, total parenteral nutrition, birth weight, inborn/outborn status and 

postnatal age were significant independent risk factors for BSI, with level of care and 

total parenteral nutrition being the strongest. The rate ratio for BSI, adjusted for birth 

weight, inborn/outborn status and postnatal age, was 3.15 (95% confidence interval 

2.01, 4.94) for intensive care and 6.58 (4.18, 10.36) for high dependency care, relative 

to special care. Total parenteral nutrition was significantly associated with BSI 

incidence but explained less of the variance among babies than level of care. 

 

Days at each level of care, birth weight, inborn/outborn status and postnatal age are risk 

factors that should be adjusted for when comparing BSI rates between NICUs. The next 

chapter will address bias associated with differences in the length of hospital stay. 
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6.2 Introduction 

In this chapter I present analyses to determine which predictive risk factors should be 

adjusted for when comparing BSI rates between NICUs. In Chapter 3 and Chapter 5 I 

described simple associations between procedure-related factors and BSI. As described 

in Chapter 5, Section 5.5, because the timing of procedure-related exposures in relation 

to BSI episodes was not taken into account, some associations may have reflected 

consequences of infection. It would be useful for clinicians to know which factors 

precede or predict BSI, in order to identify high risk groups who could benefit from 

preventive action or close monitoring. In Chapter 6 and Chapter 7, I determine which 

procedure-related factors are most strongly predictive of BSI, by restricting analyses to 

factors preceding BSI episodes. As mentioned in Chapter 5, this was only possible for 

factors for which precise dates were recorded by NICU staff. This meant that data for 

NICUs 1 and 2 only could be included. 

 

6.3 Methods 

 

6.3.1 Study population 

The datasets described in Chapter 4 for NICUs 1 and 2, each of which contain a record 

for each baby-day, were used for the analysis. Data were analysed for babies admitted 

on or after the 1st May 2001 and discharged up to and including the 28th February 

2005.  
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6.3.2 Case definition 

As in Chapter 5, an episode of BSI was defined as one or more blood cultures in which 

the same bacterial organism was isolated within a seven day period, and BSI episodes 

and baby-days from the first 48 hours of life were excluded from the analyses. 

 

6.3.3 Potential risk factors 

As in Chapter 5, potential risk factors reflecting susceptibility to BSI at birth included 

gestational age at birth in weeks (<26, 26-<28, 28-<32, 32-<37, ≥37), birth weight in 

grams (<700, 700-<1200, ≥1200), inborn/outborn status, NICU, sex and delivery 

method.  

 

In Chapter 3 and Chapter 5 I suggested that procedure-related factors which change 

during the NICU stay may be associated with an increased risk of BSI. In this chapter, I 

determine which procedure-related factors predict BSI, and may therefore be amenable 

to infection control interventions. Factors which change during the NICU stay included: 

NHS level of care, total parenteral nutrition, ventilation, postnatal age in days (3-<10, 

10-<20, 20-<30, 30-<40, 40-<50, ≥50), the number of blood samples taken and surgery. 

 

Precise dates of treatment with total parenteral nutrition and ventilation were only 

available for NICU 2. To identify risk factors which may have a predictive role in BSI, I 

analysed procedure-related factors recorded in the three days preceding infection. For 

this three day period, the most intensive level of care was recorded and total parenteral 

nutrition and ventilation were labelled as either present or absent. The structure of the 
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datasets used, with each baby-day labelled according to procedure-related exposures in 

the previous three days, is shown in Figure 6.1. 

 

6.3.4 Statistical analyses   

 

Poisson regression models for rates of blood stream infection with potential risk factors 

The advantage of this approach was that it allowed comparisons with findings reported 

by Holmes et al. (2008).34 Following their methods, I calculated rates of BSI as days 

with onset of a first BSI episode divided by total days of NICU stay, for each level of 

each potential risk factor. To differentiate days of stay that may contribute to BSI from 

days of stay that may be the consequence of BSI, baby-days were counted up until the 

first BSI episode for infected babies and up until discharge from NICU for uninfected 

babies. Thus only risk factors preceding BSI episodes were included in the analyses. 

Poisson generalised linear models were fitted to estimate crude rate ratios for BSI, for 

each potential risk factor in turn. The models were fitted using generalised estimating 

equations, to account for the fact that days pertaining to the same baby were not 

independent. Poisson generalised linear models fitted using generalised estimating 

equations yield parameter estimates adjusted for within-subject correlation.89 Potential 

risk factors with significant associations with BSI (p<0.01) were examined in 

combination using Poisson generalised linear models and forward stepwise model 

selection for risk factors based on the quasi-likelihood information criterion (the QIC is 

defined in the paragraph below).90 As gestational age at birth and birth weight were 

correlated, separate adjusted models were built for each of these variables. A similar 

approach was taken for total parenteral nutrition and ventilation, which were also 
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correlated with each other and with level of care (for all correlations, the p-value for the 

null hypothesis of no correlation was <0.001) (refer to Chapter 5, Figure 5.5). The 

combination of risk factors giving the lowest QIC was included in the final adjusted 

model.90 

 

The QIC was used to assess goodness of fit as Poisson generalised linear models using 

generalised estimating equations do not satisfy the assumptions associated with the AIC 

and the BIC. The QIC is another measure of goodness of fit of an estimated statistical 

model, similar to the AIC described in Chapter 3, Section 3.3.4, and the BIC described 

in Chapter 5, section 5.3.2. However, the QIC is different in that it adjusts for over-

dispersion, or lack of fit, with a variance inflation factor c, and it is suitable for models 

fitted with generalised estimating equations. The QIC can be written as: 

 

QIC = -(1/c)2ln(L) + 2k 

k = number of parameters in the model 

c = variance inflation factor 

L = maximised value of the likelihood function90 

 

The analyses were repeated for each hospital separately. 
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6.3.5 Sensitivity analyses incorporating five and eight categories of birth 

weight and birth weight standardised for gestational age 

 

Analyses incorporating five and eight categories of birth weight 

It is possible that the three, broad birth weight categories used for the main analysis, and 

chosen by Holmes et al. (2008) (<700, 700-<1200, ≥1200g), may mask variations in 

BSI risk in babies with birth weights above 1200g. The ≥1200g birth weight category 

may include both babies born moderately preterm who are otherwise healthy and 

growing, and term babies undergoing surgery who may have more complex problems. 

This variation in risk was observed in Chapter 5 (Section 5.5) as babies with gestational 

ages between 28 and 36 weeks were at lower risk for BSI than term babies born at 37 

weeks or above. This variation in risk is more likely in this study than in Holmes et al. 

(2008). While both study populations were drawn from inner London, level 3 NICUs 

admitting inborn babies and referrals, this study included one NICU (NICU 1) admitting 

specialist surgical cases. In this sensitivity analysis I analysed the effect on BSI of birth 

weight split into five and eight categories, to differentiate effects in preterm and term 

babies, who I expected to differ slightly in birth weight. 

 

The following birth weight categories were used for the sensitivity analysis: 

 

1. Five categories: <700, 700<-1200, 1200-<2500, 2500-<3500, ≥3500g. These 

categories were comparable with those chosen by Holmes et al. (2008), except that 

babies with birth weights above 1200g were split into three groups rather than one. 
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2. Eight categories: <500, 500-<1000, 1000-<1500, 1500-<2000, 2000-<2500, 

2500-<3000, 3000-<3500, ≥3500g standard 500g birth weight groups. 

 

Analyses incorporating birth weight standardised for gestational age 

Chapter 5 showed that birth weight and gestational age were risk factors for BSI in 

separate analyses. This may signify that babies born smaller than expected for their 

gestational age are at increased risk for BSI. I therefore analysed the effect of birth 

weight standardised for gestational age, expressed as standard deviation scores, 

calculated using the lmsGrowth add-in to Microsoft Excel.91 Reference centile curves 

show the distribution of birth weight as it changes according to gestational age. The 

LMS method uses the British 1990 growth reference centiles,92 and it summarises this 

changing distribution using three curves representing the median (), coefficient of 

variation () and skewness () of birth weight against gestational age. The program 

standardised the birth weight (y) measurements in the dataset against this reference, 

using values appropriate for each baby’s gestational age and sex. Standard deviation 

scores (Z) were calculated thus: 
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The standard deviation score measured the number of standard deviations a baby’s birth 

weight lay, above or below the mean birth weight for his or her gestational age and sex 
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in the reference population. Babies with birth weights corresponding to the mean had a 

score of 0, those with birth weights above or below the mean had positive and negative 

scores, respectively. Because standard deviation score represents a single variable 

combining birth weight and gestational age, it enabled the two factors to be combined in 

the same Poisson regression model. However, it must be stressed that the score is a 

standardised measure and therefore cannot be used to assess the simple effects of either 

factor. 

 

6.4 Results 

A total of 236 first episodes of BSI were recorded, of which: 176 were Coagulase-

negative staphylococcus, 2 were Group B streptococcus, 27 were Gram positive 

organisms other than Group B streptococcus, 17 were Gram negative organisms, and 4 

were yeasts. Ten episodes were mixed cultures, of which six contained CONS. The 

analysis included 2269 babies (940 from NICU 1 and 1329 from NICU 2). The two 

NICUs had similar rates of BSI, of around 6 per 1000 baby-days. 

 

Level of care was the single strongest risk factor for BSI, in terms of optimising the 

QIC. Intensive care accounted for 36% of total NICU days (14,443/40,218) and 58% of 

BSI (138/236) and high dependency care accounted for 9% of NICU days 

(3603/40,218) and 20% of BSI (47/236) (Table 6.2). The optimal adjusted model 

consisted of level of care, birth weight, inborn/outborn status and postnatal age (Table 

6.3). 
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Total parenteral nutrition was the second strongest risk factor for BSI. In NICU 2, it 

accounted for 16% of NICU days (3375/21,281) and 56% of BSI (72/129). Total 

parenteral nutrition could not be adjusted for in models already including level of care, 

as these variables were correlated. The optimal adjusted model incorporating total 

parenteral nutrition also included birth weight, inborn/outborn status and postnatal age 

(Table 6.5). The effect of ventilation was attenuated by adjustment for birth weight, 

inborn/outborn status and postnatal age (adjusted rate ratio 1.30, 95% confidence 

interval 0.81, 2.11, p=0.277).  

 

As in Chapter 5, BSI risk was highest in the most premature and in term babies, with 

preterm babies born in the third trimester having the lowest risk. Babies with birth 

weights below 1200g were also at higher risk for BSI than heavier babies. The optimal 

adjusted model retained birth weight as an independent risk factor for BSI (Table 6.3). 

 

Outborn babies had a higher risk for BSI than inborn babies. The risk of BSI was 

highest between days 3 and 20 of life in crude analyses, and this effect remained after 

adjustment for level of care, birth weight and inborn/outborn status (Table 6.3). No 

significant associations were found between BSI and NICU, sex, delivery method, the 

number of blood samples taken or surgery.  

 

Similar results were found when the NICUs were analysed separately (Tables 6.3 and 

6.4). For NICU 1, birth weight was a strong risk factor for BSI in crude analyses, but it 

was not included in the multivariable model as it did not optimise the QIC (Table 6.4). 

Postnatal age was only a significant risk factor for BSI at NICU 2 (Table 6.5). 
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6.4.1 Sensitivity analyses incorporating five and eight categories of birth 

weight and birth weight standardised for gestational age 

 

Analyses incorporating five and eight categories of birth weight 

The sensitivity analyses based on five categories of birth weight revealed a reverse J-

shaped relationship. While babies with very low birth weights (below 700g) were at 

highest risk for BSI, babies with low to moderately low birth weights (between 1200g 

and 3500g) were at lowest risk. Babies weighing between 1200g and 3500g at birth 

were at lower risk than babies weighing more than 3500g. A similar relationship was 

found when birth weight was categorised into eight 500g birth weight groups, but 

confidence intervals were wide due to the small number of babies in some strata (n=10 

in the <500g birth weight group) (Table 6.2). In the multivariable analysis, variation in 

risk in babies with birth weights above 1200g diminished after adjustment for level of 

care, inborn/outborn status and postnatal age. As a result, the best fitting model, based 

on the QIC for goodness of fit, grouped babies with birth weights above 1200g into a 

single category (Table 6.3). 

 

Analyses incorporating birth weight standardised for gestational age 

I found no significant association between standard deviation scores and BSI in crude or 

adjusted analyses. Figure 6.2 describes the standard deviation scores which standardised 

birth weight measurements for gestational age. Scores could not be calculated for seven 

babies born at 21-22 weeks’ gestation, as reference centiles were not available for 

gestational ages below 23 weeks. Birth weight standardised for gestational age had no 
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significant effect on BSI in crude analyses, so it was not included in the adjusted models 

(Table 6.2). 

 

6.5 Discussion 

High intensity care and total parenteral nutrition in the previous three days were the 

strongest single risk factors for BSI. The optimal adjusted models combined these 

factors with birth weight, inborn/outborn status and postnatal age. 

 

In this chapter I used similar statistical methods to those of the study by Holmes et al. 

(2008)34 However, Holmes et al. analysed the risk associated with various specific 

invasive procedures in one NICU, whereas I also included NHS level of care as a 

composite potential risk factor and I analysed a larger study population spanning two 

NICUs. Holmes et al. identified parenteral nutrition and gestational age at birth below 

26 weeks as the only significant independent risk factors for BSI, and recommended 

stratification by these factors for BSI monitoring. I found similar results for total 

parenteral nutrition and a similarly strong association between BSI and NHS level of 

care. The effects of total parenteral nutrition and level of care on BSI could not be 

compared together in the same model as they were correlated. Which factors should be 

used for risk adjustment depend on the clinical and health service questions being 

addressed. When comparing overall quality of care between NICUs, adjustment for 

daily level of care may be preferable because it includes all babies across the full 

spectrum of risk. In contrast, only a minority (24%)67 of NICU patients receive 

parenteral nutrition, and the remaining babies have widely differing risks of BSI. 

Comparisons between NICUs could be based on BSI rates stratified by level of care. 
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This would describe BSI rates by their location and clinical team, which is useful for 

targeting infection control measures. Additional stratification of BSI rates by parenteral 

nutrition may be useful for monitoring infection control interventions focused on 

parenteral nutrition. 

 

In addition to level of care, the optimal multivariable model included birth weight, 

inborn/outborn status and postnatal age, indicating that these factors may also need to 

be adjusted for when comparing BSI incidence between NICUs. Birth weight and 

inborn/outborn status were described as independent risk factors for BSI in Chapter 5. 

In the crude model for both NICUs combined, babies between 3 and 20 days of age 

experienced twice the risk of BSI, compared with babies above 50 days of age (Table 

6.2). This effect was only evident at NICU 2 (Tables 6.4 and 6.5). It may be due to 

chance or because, as described in Section 6.3.5, babies at NICU 2 were predominantly 

born preterm, thus those surviving above 50 days of age were likely to be mostly 

healthy, growing and more resistant to BSI than newborn babies. In contrast, NICU 1 

included babies referred for neonatal surgery whose clinical course may have been more 

complex. 

 

As mentioned in Chapter 5 (Section 5.5), associations between potential risk factors and 

infections are not necessarily causal; they can arise from chance, from confounding by 

other risk factors, or they can reflect the consequence of infection. To determine factors 

predicting BSI, procedure-related factors were analysed for the three days preceding 

BSI. It is important to note that relationships found between BSI episodes and the risk 

factors closely preceding BSI are not necessarily causal relationships. Chronology is 
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only one requirement for establishing causality, another requirement is a biological 

mechanism for infection by invasive procedures, which is beyond the scope of this 

thesis. It is also important to remember that, as explained in Chapter 1 (Section 1.8), 

level of care is a composite risk factor that reflects a number of specific procedures and 

baby susceptibility factors, that could themselves be associated with infection. 

 

Length of hospital stay is an example of a potential risk factor which could have a 

complex association with BSI. A longer length of stay may increase the risk of 

infection, but it can also be the consequence of an infection which causes a baby’s 

condition to deteriorate. To determine factors predicting BSI, follow-up time was 

truncated at infection. However, this truncation is prone to bias, as it may result in 

systematic differences in follow-up time between infected and uninfected individuals 

(Figure 6.3).93 Studies in NICUs are more prone to this type of bias than studies in adult 

intensive care, as babies tend to have longer lengths of stay in intensive care. A novel, 

alternative analytical method to overcome bias associated with length of follow-up is 

presented in Chapter 7.  

 

Results for this analysis were similar to those for Chapter 5, except that neither the 

number of blood samples taken nor surgery showed significant relationships with BSI, 

in contrast with the previous chapter. This is likely to be because neither factor had a  

predictive relationship with BSI, which the analysis in this chapter was designed to 

detect. As described in Chapter 5, a baby’s overall number of blood samples taken was, 

by definition, strongly correlated with his or her number of BSI episodes, as blood 

samples were used to diagnose infection. This chapter found that the number of blood 
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samples taken in the three-day period of relevant exposure before a first BSI episode did 

not predict that episode. This suggests that increases in the frequency of blood sampling 

do not result in a greater risk of detecting asymptomatic BSI or a contaminated sample. 

This finding was in keeping with the results for Chapter 3, which showed no significant 

association between the number of blood samples taken and total BSI at the unit level in 

adjusted analyses. Similarly, Chapter 5 showed that babies undergoing surgery at any 

time during their NICU stay were more likely to experience BSI episodes, whereas the 

analysis in this chapter showed that, during the relevant period of exposure, treatment 

with surgery did not predict the development of a first BSI episode. The association 

found in Chapter 5 was probably due to the fact that babies undergoing surgery were 

likely to be susceptible to BSI through their more serious clinical conditions and 

increased requirement for invasive procedures, rather than through any effect of the 

surgery itself. In this chapter, blood sampling frequency and surgery did not predict the 

development of BSI episodes. 

  

6.5.1. Sensitivity analyses incorporating five and eight categories of birth 

weight and birth weight standardised for gestational age 

 

Analyses incorporating five and eight categories of birth weight 

The three birth weight categories chosen by Holmes et al. (2008) (<700, 700-<1200, 

≥1200g) were suitable for risk adjusting comparisons of BSI incidence between NICUs 

in this study. Variation in risk among babies with birth weights above 1200g diminished 

with adjustment for level of care, inborn/outborn status and postnatal age. The three 

birth weight categories therefore produced a more parsimonious model, which 
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optimised the QIC. This suggests that the study populations in Holmes et al. (2008) and 

this study were fairly similar, which is supported by the similarity in findings regarding 

parenteral nutrition described above. This similarity may indicate that the findings of 

both studies could be transportable to other level 3 NICUs, including those providing 

specialist surgical care. 

 

Analyses incorporating birth weight standardised for gestational age 

Birth weight standardised for gestational age had no significant effect on BSI in this 

study. This may be the result of a selection effect, as the babies most at risk of BSI, 

those who were very preterm (23 to 28 weeks’ gestation) and small for gestational age, 

were also those least likely to survive and be represented in the unit.  

 

Bartels et al. (2007) described an increased risk of BSI among babies born at 24 to 28 

weeks’ gestation who were also small for gestational age. They evaluated babies born 

between 2000 and 2004, within 47 German NICUs participating in the NEO-KISS 

infection surveillance system. The outcome was at least one episode of hospital-

acquired BSI, defined using modified CDC criteria.15 42% (163/392) of small for 

gestational age babies, defined as below the 10th percentile, experienced BSI episodes. 

87% (787/2526) of appropriate for gestational age babies, between the 10th and the 90th 

percentile, experienced BSI episodes (odds ratio 1.41, 95% CI 1.05 to 1.89, adjusted for 

various birth susceptibility and procedure-related factors) The authors speculated that 

this increased risk was due to interactions between nutritional status and immunological 

function.94 Low counts of white blood cells involved in immune function (total 

neutrophils, immature neutrophils, lymphocytes and monocytes) have been observed in 
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preterm small for gestational age babies, in comparison with their appropriate for 

gestational age counterparts.95  

 

Babies described as being most at risk from BSI, those who were very preterm (24 to 28 

weeks’ gestation) and small for gestational age, were few in this study (Table 6.1, refer 

to the first two columns of the first two rows in the table). This was probably due to a 

selection effect, which was not so evident in Bartels et al. (2008) as their study 

population was very large, covering 47 NICUs. Larger babies and babies with greater 

gestational ages may have been more likely to survive and be represented in the unit, as 

well as being more resistant to BSI. Studies investigating the risk of BSI in babies 

above 28 weeks’ gestation and small for gestational age are scarce, and they give 

conflicting results.94,96,97 Because my focus was to determine factors which could adjust 

for BSI risk in the entire NICU population, birth weight standardised for gestational age 

was not included in the final risk adjustment model.  
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Key conclusions of Chapter 6 

Findings  

 I identified level of care, total parenteral nutrition, birth weight, gestational 

age, inborn/outborn status and postnatal age as significant independent risk 

factors for BSI. 

 The analysis described in this chapter was able to elaborate predictive 

associations between procedure-related risk factors and BSI episodes. 

Conclusions 

 Adjustment of BSI rates by level of care, birth weight, inborn/outborn status 

and postnatal age could provide fair and meaningful comparisons between 

NICUs. 

 The analysis was prone to bias associated with differences in the length of 

follow-up between babies. This bias will be addressed in the following 

chapter. 
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Figure 6.1 Diagram to describe stays in the NICU for three hypothetical babies, and how these stays would be translated into a 

dataset with each baby-day labelled according to procedure-related exposures in the previous three days  
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Figure 6.1 (continued) Dataset with each baby-day labelled according to procedure-related exposures in the previous three 

days. For infected babies, baby-days were truncated at the first infection episode  

 
In previous three days: 

Baby Date 
Gestational 
age (wks) 

Birth 
weight (g) 

Sex 
Inborn/ 

Outborn 
Delivery 
method Highest level 

of care 

Total 
parenteral 
nutrition? 

Ventilation? 
Number of 

blood samples 
taken 

CONS 
episode 

Non-CONS 
episode 

1 5/5/2001 <26 700-<1200 Male Inborn Vaginal Other No No 0 0 0 
1 6/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 0 0 
1 7/5/2001 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 1 0 
2 16/5/2001 32-<37 ≥1200 Female Inborn Vaginal Other No No 0 1 0 
3 3/5/2001 ≥37 ≥1200 Male Inborn Vaginal Other No No 0 1 0 
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Figure 6.2 Description of standard deviation scores standardising birth 

weight measurements for gestational age 
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Standard deviation score and birth weight were positively correlated, showing a linear 
relationship: 

 
Correlation coefficient = 0.40 
p-value for the null hypothesis of no correlation <0.001 
(H0 = correlation coefficient of 0) 
 
Linear regression coefficient = 0.0006 (95% CI 0.0005, 0,0006) 
p-value for the null hypothesis of no linear relationship <0.001  
 
The dataset contained outliers for birth weight and gestational age. As mentioned in Chapter 5, 
Figure 5.5, factors were analysed as categorical variables, which tempered the potential bias 
presented by outliers. 
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Figure 6.3 If only days preceding infection are analysed, uninfected babies 

can contribute more person-time to the analysis. Example showing a baby 

with an infection at day 7 and discharge from NICU at day 14 
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Table 6.1 Number of babies by gestational age and standard deviation 

score 

 
 Standard deviation score 
Gestational 
age (weeks) <-2 -2-<-1 -1-<0 0-<1 1-<2 ≥2 Missing 

<26 1 11 46 48 9 4 7 
26-<28 9 21 33 26 12 5 0 
28-<32 39 58 92 87 35 12 0 
32-<37 94 122 186 141 68 38 1 
≥37 132 234 309 237 98 40 2 
Missing 0 0 0 0 0 0 12 
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Table 6.2 Crude Poisson regression models for NICU 1 and NICU 2 
combined 
 

 
Potential risk factor 

Days with onset of BSI/Total baby-days 
(Rate per 1000 baby-days) 

Crude rate ratios 

(95% CI) p-value 

    
Highest level of careb      

Intensive care 138/14,443 (9.55) 5.42  (3.78, 7.77) <0.001 
High dependency care 47/3603 (13.04) 7.30  (4.76, 11.19) <0.001 
Special care 36/20,919 (1.72)  1  
Otherc 15/1253     

     
Gestational age (weeks)      

<26 72/5619 (12.81) 2.67  (1.80, 3.94) <0.001 
26-<28 35/4398 (7.96) 1.58  (1.00, 2.48) 0.050 
28-<32 53/11,319 (4.68) 0.92  (0.61, 1.37) 0.668 
32-<37 30/10,620 (2.82) 0.51  (0.32, 0.81) 0.005 
≥37 46/8233 (5.59)  1  
Missingd 0/29     

     
Birth weight (g)      

<700g 62/3634 (17.06) 4.82  (3.39, 6.85) <0.001 
700g-<1200g 78/12,400 (6.29) 1.76  (1.29, 2.40) <0.001 
≥1200g 96/24,146 (3.98)  1  
Missingd 0/38     

     
Postnatal age (days)      

3-<20 153/20,991 (7.29) 1.97  (1.24, 3.13) 0.004 
20-<56 63/13,804 (4.56) 1.24  (0.75, 2.04) 0.407 
≥56 20/5423 (3.69)  1  

     
Inborn status      

Outborn 80/7571 (10.57) 2.21  (1.68, 2.89) <0.001 
Inborn 154/32,476 (4.74)  1  
Missingd 2/171     

     
Hospital      

NICU 2 129/21,281 (6.06) 1.08  (0.84, 1.41) 0.544 
NICU 1 107/18,937 (5.65)  1  

     
Sex      

Male 130/21,015 (6.19) 1.12  (0.86, 1.45), 0.413 
Female 106/19,203 (5.52)  1  

     
Delivery method      

Emergency CSe 92/15,531 (5.92) 0.97  (0.73, 1.29) 0.824 
Elective CSe 33/6789 (4.86) 0.79  (0.53, 1.17) 0.237 
Vaginal 110/17,856 (6.16)  1  
Missingd 1/42     

     
Number of blood samples takenb      
≥2 2/388 (5.15) 0.78  (0.19, 3.24) 0.734 
1 27/6169 (4.38) 0.69  (0.46, 1.02) 0.060 
0 207/33,661 (6.15)  1  

     
Surgeryb      

Yes 5/935 (5.35) 0.89  (0.38, 2.10) 0.796 
No 231/39,283 (5.88)  1  

      
Sensitivity analyses      
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incorporating five and eight 
categories of birth weight and 
birth weight standardised for 
gestational age 
      
Birth weight (g)      

<700 62/3634 (17.06) 2.28 (1.25, 4.17) 0.007 
700-<1200 78/12,400 (6.29) 0.83 (0.47, 1.49) 0.537 
1200-<2500 58/16,404 (3.54) 0.42 (0.24, 0.77) 0.004 
2500-<3500 24/6108 (3.93) 0.46 (0.24, 0.90) 0.022 
≥3500 14/1634 (8.57)  1  
Missingd 0/38     

      
Birth weight (g)      

<500 5/272 (18.38) 2.63 (0.79, 8.72)    0.114 
500-<1000 115/11,116 (10.35) 1.41 (0.80, 2.48)    0.238 
1000-<1500 46/10,232 (4.50) 0.57 (0.31, 1.05)    0.071 
1500-<2000 20/6957 (2.87) 0.35 (0.17, 0.69)    0.002 
2000-<2500 12/3861 (3.11) 0.36 (0.17, 0.79)    0.011 
2500-<3000 8/3180 (2.52) 0.28 (0.12, 0.67)    0.004 
3000-<3500 16/2928 (5.46) 0.66 (0.32, 1.37)    0.262 
≥3500 14/1634 (8.57)  1  
Missingd 0/38     

      
Standard deviation score      

<-2 38/5660 (6.71) 1.04 (0.68, 1.59) 0.849 
-2-<-1 49/7811 (6.27) 0.97 (0.66, 1.42) 0.855 
-1-<0 62/12,529 (4.95) 0.77 (0.54, 1.10) 0.147 
0-<1 61/9446 (6.46)  1  
1-<2 18/3052 (5.90) 0.91 (0.53, 1.55) 0.714 
≥2 6/1365 (4.40) 0.66 (0.30, 1.45) 0.296 
Missingd: gest age <23 weeks 2/317     
Missingd: birth weight missing 
or birth weight and gest age 
missing 

0/38     

      

 

 

 

 

 

 

 



Table 6.3 Adjusted Poisson regression models for NICU 1 and NICU 2 combined 

Sensitivity analyses incorporating five and eight categories of 
birth weight 

 
Potential risk factor 

 
Optimal risk adjustment model 

 
Adjusted rate ratios 

(95% CI) p-value 
QIC for model: 2526 

Model including five birth 
weight categories 

 
Adjusted rate ratios 

(95% CI) p-value 
QIC for model: 2529 

Model including eight birth 
weight categories 

 
Adjusted rate ratios 

(95% CI) p-value 
QIC for model: 2537 

    
Highest level of careb          

Intensive care 3.15 (2.01, 4.94) <0.001 3.16 (2.02, 4.94)    <0.001 2.90 (1.85, 4.54) <0.001 
High dependency care 6.58 (4.18, 10.36) <0.001 6.61 (4.19, 10.43)   <0.001 6.57 (4.15, 10.38)    <0.001 
Special care  1   1   1  
Otherc        

        
Birth weight (g)          

<700g 3.69 (2.37, 5.74) <0.001       
700g-<1200g 1.60 (1.09, 2.35) 0.016       
≥1200g  1        
Missingd        

        
Postnatal age (days)        

3-<10 2.79 (1.64, 4.74) <0.001 2.79 (1.64, 4.75)    <0.001 3.01 (1.76, 5.14) <0.001 
10-<20 2.94 (1.78, 4.83) <0.001 2.94 (1.78, 4.83)    <0.001 3.08 (1.87, 5.07) <0.001 
20-<30 1.93 (1.10, 3.39) 0.023 1.93 (1.10,  3.39)   0.022 1.98 (1.13, 3.48) 0.017 
30-<40 2.15 (1.19, 3.89) 0.011 2.15 (1.19, 3.88)    0.011 2.20 (1.22, 3.97) 0.009 
40-<50 1.42 (0.68, 2.96) 0.358 1.41 (0.68, 2.96)    0.358 1.42 (0.68, 2.96)     0.349 
≥50  1  1  1  

        
Inborn status        

Outborn 1.51 (1.12, 2.04) 0.007 1.51 (1.12, 2.03)    0.007 1.45 (1.08, 1.95)     0.014 
Inborn  1  1  1  
Missingd        
          

Birth weight (g)          
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<700g    3.00 (1.32, 6.80)    0.009    
700g-<1200    1.30 (0.59, 2.87)    0.513   
1200-<2500    0.84 (0.39, 1.81)    0.653   
2500-<3500    0.70 (0.30, 1.62)    0.403    
≥3500    1     
Missingd          

          
Birth weight (g)          

<500       3.65 (1.24, 10.75)    0.019 
500-<1000       2.23 (1.00, 4.94) 0.049 
1000-<1500       1.03 (0.47, 2.27)    0.934 
1500-<2000       0.77 (0.33, 1.79)    0.537 
2000-<2500       0.59 (0.22, 1.56)    0.286 
2500-<3000       0.55 (0.21, 1.45)    0.225 
3000-<3500       0.89 (0.35,  2.26)    0.804 
≥3500        1  
Missingd          
          



Table 6.4 Poisson regression models for NICU 1 

 
Potential risk factor 

Days with onset of BSI/Total baby-days 
(Rate per 1000 baby-days) 

Crude rate ratios 

(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

QIC for model: 1196 

         

Highest level of careb         
Intensive care 60/6400 (9.38) 5.68 (3.24, 9.97) <0.001 5.02 (2.65, 9.52) <0.001 
High dependency care 28/2418 (11.58) 7.02 (3.75, 13.14) <0.001 7.40 (3.84, 14.26) <0.001 
Special care 16/9540 (1.68)  1   1  
Otherc 3/579        

         

Gestational age (weeks)         
<26 33/2653 (12.44) 2.63 (1.49, 4.64) 0.001    
26-<28 17/2753 (6.18) 1.30 (0.67, 2.53) 0.442    
28-<32 28/5237 (5.35) 1.11 (0.61, 2.01) 0.730    
32-<37 10/4422 (2.26) 0.46 (0.21, 1.00) 0.048    
≥37 1/3843 (4.94)  1     
Missingd 0/29        

         

Birth weight (g)         
<700g 41/10,432 (3.93) 3.75 (2.21, 6.37) <0.001    
700g-<1200g 42/6743 (6.23) 1.65 (1.07, 2.56) 0.025    
≥1200g 24/1724 (13.92)  1     
Missingd 0/38        

         

Postnatal age (days)         
3-<10 26/4970 (5.23) 1.18 (0.62, 2.26) 0.614    
10-<20 35/4589 (7.63) 1.72 (0.93, 3.20) 0.085    
20-<30 13/3082 (4.22) 0.95 (0.45, 2.03) 0.898    
30=<40 11/2053 (5.36) 1.21 (0.55, 2.66) 0.638    
40-<50 9/1317 (6.83) 1.54 (0.67, 3.56) 0.312    
≥50 13/2926 (4.44)  1     

         

Inborn status         
Outborn 50/4696 (10.65) 2.71 (1.86, 3.95) <0.001 1.78 (1.17, 2.73) 0.008 
Inborn 55/14,070 (3.91)     1  
Missingd 2/171        
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Sex         
Male 58/9917 (5.85) 1.08 (0.74, 1.58) 0.705    
Female 49/9020 (5.43)  1     

         

Delivery method         
Emergency CSe 46/8138 (5.65) 0.95 (0.64, 1.41) 0.793    
Elective CSe 8/2069 (3.87) 0.65 (0.31, 1.35) 0.248    
Vaginal 52/8698 (5.98)  1     
Missingd 1/32        

         

Number of blood samples takenb         
≥2 1/181 (5.52) 0.93 (0.13, 6.90) 0.944    
1 13/2670 (4.87) 0.83 (0.47, 1.48) 0.533    
0 93/16,086 (5.78)  1     

         

Surgeryb         
Yes 2/291 (6.87) 1.22 (0.31, 4.84) 0.781    
No 105/18,646 (5.63)  1     

         

 



Table 6.5 Poisson regression models for NICU 2 

 
Potential risk factor 

Days with onset of BSI/Total baby-days 
(Rate per 1000 baby-days) 

Crude rate ratios 

(95% CI) p-value 

Adjusted rate ratios 
incorporating level of care 

(95% CI) p-value 
QIC for model: 1323 

Adjusted rate ratios 
incorporating total  
parenteral nutrition 

(95% CI) p-value 
QIC for model:1450 

Highest level of careb            
Intensive care 78/8043 (9.70) 5.36 (3.37, 8.52) <0.001 2.48 (1.34, 4.59) 0.004    
High dependency care 19/1185 (16.03) 8.38 (4.61, 15.23) <0.001 7.25 (3.73, 14.13) <0.001    
Special care 20/11,379 (1.76)  1   1     
Otherc 12/674           

            

Gestational age (weeks)            
<26 39/2966 (13.15) 2.90 (1.70, 4.96) <0.001       
26-<28 18/1645 (10.94) 2.15 (1.14, 4.04) 0.018       
28-<32 25/6082 (4.11) 0.80 (0.46, 1.39) 0.420       
32-<37 20/6198 (3.23) 0.54 (0.30, 0.96) 0.036       
≥37 27/4390 (6.15)  1        
Missingd 0/0           

            
Birth weight (g)            

<700g 38/1910 (19.90) 5.88 (3.69, 9.36) <0.001 5.78 (3.27, 10.22) <0.001 2.66 (1.58, 4.48)  <0.001 
700g-<1200g 36/5657 (6.36) 1.94 (1.24, 3.03) 0.004 2.22 (1.27, 3.86) 0.005 1.19 (0.71, 1.98)  0.508 
≥1200g 55/13,714 (4.01)  1   1   1  
Missingd 0/0           

            
Postnatal age (days)            

3-<10 56/6347 (8.82) 3.29 (1.66, 6.51) 0.001 5.06 (2.31, 11.09) <0.001 3.13 (1.45, 6.74) 0.004 
10-<20 36/5085 (7.08) 2.63 (1.29, 5.36) 0.008 4.09 (1.90,  8.80) <0.001 2.04 (0.90, 4.63) 0.086 
20-<30 15/3014 (4.98) 1.85 (0.82, 4.16) 0.138 2.93 (1.26, 6.81) 0.013 1.73 (0.72, 4.15) 0.218 
30-<40 11/1881 (5.85) 2.17 (0.91, 5.15) 0.079 2.98 (1.25, 7.13) 0.014 1.98 (0.78, 5.04) 0.153 
40-<50 1/1284 (0.78) 0.29 (0.04, 2.31) 0.239 0.38 (0.05, 2.93) 0.351 0.26 (0.03, 2.33) 0.229 
≥50 10/3670 (2.72)  1   1   1  

            

Inborn status            
Outborn 30/2875 (10.43) 1.95 (1.27, 3.00) 0.002 1.67 (1.12, 2.50) 0.013 1.58 (1.06, 2.35)  0.024 
Inborn 99/18,406 (5.38)  1   1   1  

  Missingd 0/0           
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Sex            

Male 72/11,098 (6.49) 1.14 (0.80, 1.64) 0.467       
Female 57/10,183 (5.60)  1        

            

Delivery method            
Emergency CSe 46/7393 (6.22) 0.99 (0.66, 1.48) 0.965       
Elective CSe 25/4720 (5.30) 0.83 (0.51, 1.33) 0.431       
Vaginal 58/9158 (6.33)  1        
Missingd 0/10           

            

Number of blood samples 
taken b 

           

≥2 1/207 (4.83) 0.68 (0.10, 4.85) 0.703       
1 14/3499 (4.00) 0.59 (0.35, 0.99) 0.047       
0 114/17,575 (6.49)  1        

            

Surgeryb            
Yes 3/644 (4.66) 0.73 (0.25, 2.16) 0.573       
No 126/20,637 (6.11)  1        

            
Total parenteral nutritionb            

Yes 72/3375 (21.33) 6.50 (4.53, 9.33) <0.001    4.30 (2.63, 7.04)  <0.001 
No 57/17,906 (3.18)  1      1  

            
Ventilationb            

Yes 75/7093 (10.57) 2.80 (1.99, 3.93) <0.001       
No 54/14,188 (3.81)  1        

b - In the previous three days 
c - ‘Other’ indicates that for the previous three days, the baby was outside the NICU. For example at another hospital or undergoing surgery. 
d - Days/babies with missing variables were few and represented few episodes of BSI. For this reason I considered it acceptable to remove them from the 
analyses. 
e - CS- Caesarean section 



7. Analyses of factors predicting infection: Case 

control study 

 

7.1 Summary 

In Chapter 6 I suggested that adjustment of BSI rates by level of care, birth weight,  

inborn/outborn status and postnatal age could provide meaningful comparisons between 

NICUs. This chapter provides an alternative analysis to that described in Chapter 6. It 

presents a novel method which can describe predictive associations between procedure-

related risk factors and BSI episodes, whilst removing bias in the length of follow-up. 

 

I used a case control study design: cases were babies experiencing at least one episode 

of BSI, and controls were babies who were present in the NICU at the same age (in 

days) as their matched case’s age at first BSI. This age was taken as the censoring day 

for both cases and controls. In conditional logistic regression models, NHS level of 

care, total parenteral nutrition, birth weight, gestational age at birth and inborn/outborn 

status were significant independent risk factors for BSI, with level of care being the 

strongest. The effect of postnatal age could not be evaluated in this analysis as this 

factor was used to match cases and controls. The odds ratio for BSI adjusted for birth 

weight and inborn/outborn status was 4.38 (95% CI 2.32, 8.27) in intensive care and 

14.63 (95% CI 6.94, 30.83) in high dependency care, relative to the baseline special 

care. The case control study gave larger risk estimates than the Poisson regression 

analyses described in Chapter 6. 
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The true effects on BSI of the risk factors analysed were likely to be between the effects 

estimated by the analytical approaches described in Chapter 6 and this chapter. Despite 

the methodological differences between the two analyses, they yielded similar 

conclusions. 

 

7.2 Introduction 

The previous chapter identified various significant independent risk factors for BSI, and 

suggested that adjustment of BSI rates by NHS level of care, birth weight, 

inborn/outborn status and postnatal age could provide meaningful comparisons between 

NICUs.  A strength of the analysis in Chapter 6 was its comparability with a previous 

study that had used similar analytic methods,34 however it was prone to bias associated 

with differences in the length of follow-up between babies with and without BSI. 

 

This chapter provides an alternative analysis to that described in Chapter 6, using 

logistic regression models assuming a matched case control design. Cases and controls 

were chosen from the same dataset used for Chapter 6. This is a novel method which 

can describe predictive associations between procedure-related risk factors and BSI 

episodes, whilst removing bias in the length of follow-up. 
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7.3 Methods 

 

7.3.1 Study population, case definition and potential risk factors 

The study population, case definition and potential risk factors were defined as for 

Chapter 6 (refer to Sections 6.3.1, 6.3.2 and 6.3.3). Probable maternally-transmitted BSI 

episodes occurring during the first 48 hours of life were excluded.  

 

In a case control study, factors used to match cases and controls cannot be analysed in 

regression models. Age at infection was used for matching cases and controls in this 

study, which ensured consistent follow-up time for babies within each matched pair, but 

it meant that the effect of postnatal age could not be analysed. To be able to investigate 

the BSI risk associated with the other potential risk factors, only age at infection was 

used for matching. 

 

7.3.2 Selection of controls  

Babies experiencing at least one episode of BSI were defined as cases. Controls were 

babies who were present in the NICU at the same age (in days) as their matched case’s 

age at first BSI. Controls were defined using the following control selection strategies: 

 

1 - Babies who had no episodes of BSI during their NICU stay 

2 - Babies who had no episodes of BSI on or before the age used for matching 

3 - Babies who had no episodes of BSI in the eight days up to and including the age 

used for matching 
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With control selection strategy 1, controls were babies who remained completely free 

of infection. Control selection strategy 3 included the greatest number of babies with 

potential experience of infection. 

 

For each control selection strategy, each case was matched with two controls. Except 

for one to two cases described in footnotes to the results tables, controls were not 

selected twice, so the vast majority of cases did not share controls. Each control 

selection strategy was carried out for the hospitals combined and separate. When the 

hospitals were combined, matched cases and controls did not necessarily come from the 

same NICU. When the hospitals were separated, all cases and controls were taken from 

the same NICU. 

 

Each case’s age at first BSI was the age used for matching, and this was taken as the 

censoring age for both cases and controls. In contrast to the Poisson regression models 

described in Chapter 6, this removed bias due to differences in follow-up by ensuring 

that infected and uninfected babies were observed for similar lengths of time. For each 

baby, I recorded the presence of each procedure-related factor in the three days prior to 

the censoring age. The structure of the datasets used, with censoring ages labelled 

according to the procedure-related exposures in the previous three days, is shown in 

Figure 7.1. 

 

7.3.3 Statistical analyses 

Conditional logistic regression models98 were fitted to estimate the ratio of the odds of 

BSI in cases and controls, between separate strata of each potential risk factor. Potential 
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risk factors significantly associated with BSI (p<0.01) were examined in combination 

using conditional logistic regression and stepwise forward selection of risk factors based 

on the AIC. As in Chapter 6, due to correlations between covariates, separate adjusted 

models were built incorporating gestational age at birth, birth weight, total parenteral 

nutrition and ventilation. The set of risk factors corresponding to the lowest AIC was 

included in the final adjusted model. Once the optimal combination of risk factors was 

defined, the AIC was compared between models fitted with and without interactions 

between level of care, total parenteral nutrition or ventilation and gestational age, birth 

weight or inborn/outborn status. The analyses were repeated for each control selection 

strategy and for each hospital separately. 

 

7.3.4 Sensitivity analyses incorporating five and eight categories of birth 

weight and birth weight standardised for gestational age 

As in Chapter 6, Section 6.3.5, I carried out the following sensitivity analyses: 

 

Analyses incorporating five and eight categories of birth weight 

To investigate effects in babies with birth weights above 1200g, I analysed the effect on 

BSI of birth weight split into five and eight categories: 

 

1. 700, 700<-1200, 1200-<2500, 2500-<3500, ≥3500g 

2. <500, 500-<1000, 1000-<1500, 1500-<2000, 2000-<2500, 2500-<3000, 3000-

<3500, ≥3500g 
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Analyses incorporating birth weight standardised for gestational age 

I also investigated whether babies born smaller than expected for their gestational age 

were at increased risk for BSI, by analysing the effect of birth weight standardised for 

gestational age, expressed as standard deviation scores.  

 

7.4 Results 

The 236 first episodes of BSI included in the analysis for Chapter 6 (whose constituent 

organisms are listed in Chapter 6, Section 6.4) were used to define the cases. When the 

hospitals were combined, each control selection strategy included 708 babies (236 cases 

and 472 controls), split roughly equally between both hospitals. 

 

Control selection strategy 1 

In keeping with the results from Chapter 6, level of care was the single strongest risk 

factor for BSI, in terms of optimising the AIC. The odds of infection were eleven to 

twelve times higher in babies recently cared for in high dependency or intensive care, 

rather than in special care (Table 7.1). The optimal adjusted model consisted of level of 

care, birth weight and inborn/outborn status (Table 7.2). No significant interactions 

were found between level of care and birth weight or between level of care and 

inborn/outborn status. 

 

Total parenteral nutrition was the second strongest risk factor for BSI. In NICU 2, the 

odds of infection were about ten times higher in babies recently treated with total 

parenteral nutrition, than in babies not recently treated with this procedure. The optimal 
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adjusted model incorporating total parenteral nutrition also included gestational age at 

birth and inborn/outborn status (Table 7.4). The effect of ventilation was attenuated by 

adjustment for gestational age and inborn/outborn status (adjusted odds ratio 1.74, 95% 

CI 0.84, 3.58, p=0.135). No significant interactions were found between total parenteral 

nutrition or ventilation and gestational age, or inborn/outborn status. 

 

As in Chapters 5 and 6, BSI risk was highest in the most premature and in term babies, 

in babies with birth weights below 1200g, and in outborn babies. The optimal adjusted 

model retained birth weight and inborn/outborn status as independent risk factors for 

BSI (Table 7.2). No significant associations were found between BSI and NICU, sex, 

delivery method, the number of blood samples taken or surgery (Table 7.1).  

 

Similar results were found when the NICUs were analysed separately (Tables 7.3 and 

7.4). However, for NICU 1, the optimal adjusted model included level of care, 

gestational age and inborn/outborn status, rather than level of care, birth weight and 

inborn/outborn status (Table 7.3). 

 

Control selection strategies 2 and 3 

By definition, the controls selected in strategy 1 could not include any babies with BSI 

episodes. For control selection strategies 2 and 3, babies could be counted twice in the 

analyses, as both case and control. When both hospitals were combined, 39 out of 708 

babies were counted twice in strategy 2, and 100 out of 708 babies were counted twice 

in strategy 3. 
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Analyses based on control selection strategy 2 gave similar results to those based on 

strategy 1. However, both crude and adjusted estimates of effect generally decreased 

(Tables 7.5, 7.6, 7.7, Appendix to Chapter 7). In addition, in crude analyses, gestational 

age was not significantly associated with BSI incidence at NICU 1 (Table 7.6, 

Appendix to Chapter 7) and inborn/outborn status was not significantly associated with 

BSI incidence at NICU 2 (Table 7.7, Appendix to Chapter 7). 

 

Analyses based on control selection strategy 3 also gave similar results to those based 

on strategy 1, but estimates of effect were decreased even further than those resulting 

from strategy 2 (Tables 7.8, 7.9, 7.10, Appendix to Chapter 7). In addition, when both 

hospitals were combined, the optimal adjusted model included level of care, gestational 

age and inborn/outborn status, rather than level of care, birth weight and inborn/outborn 

status (Table 7.8, Appendix to Chapter 7). At NICU 1, the optimal adjusted model 

included level of care and inborn/outborn status only (Table 7.9, Appendix to Chapter 

7). At NICU 2, inborn/outborn status was not significantly associated with BSI 

incidence in crude analyses (Table 7.10, Appendix to Chapter 7).  

 

7.4.1 Sensitivity analyses incorporating five and eight categories of birth 

weight and birth weight standardised for gestational age 

 

Analyses incorporating five and eight categories of birth weight 

The sensitivity analyses did not reveal any significant variation in BSI risk for babies 

with birth weights above 1200g (Table 7.1). In the multivariable analysis, the model 
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including three birth weight categories was optimal, having the smallest AIC (Table 

7.2). 

 

Analyses incorporating birth weight standardised for gestational age 

Birth weight standardised for gestational age had no significant effect on BSI in crude 

analyses, so it was not included in the multivariable models (Table 7.1). 

 

The results of these sensitivity analyses were consistent with the results of the Poisson 

regression analyses in Chapter 6, described in Section 6.4.1 and discussed in Section 

6.5.1.  

 

7.5 Discussion 

As in Chapter 6, highest NHS level of care and total parenteral nutrition in the previous 

three days were the strongest single risk factors for BSI. The optimal adjusted models 

combined these risk factors with either birth weight or gestational age at birth and 

inborn/outborn status. 

 

In this chapter I present a novel, alternative analytical method in the case control study 

design. As described in Chapter 6 (Section 6.5), previous analyses of predictive 

relationships between potential risk factors and BSI episodes have truncated follow-up 

time at infection for infected babies, and at discharge from the NICU for uninfected 

babies.34 This approach is prone to bias as follow-up time differs systematically 

between infected and uninfected individuals.93 The case control analyses avoided this 

bias, as infected and uninfected babies were followed up for similar lengths of time. By 

 174



simulating censoring dates for controls, I created equivalent, age-matched time points 

for cases and controls. However, as explained in Section 7.3.1, whilst ensuring 

consistent follow-up for cases and controls, this approach precluded the analysis of 

postnatal age, which was found to be a significant independent risk factor for BSI in the 

Poisson regression analyses described in Chapter 6. 

 

Whereas the Poisson regression models in Chapter 6 compared admission days with and 

without infection, the analyses based on control selection strategy 1 in this chapter 

compared babies experiencing infection with babies never having experienced infection. 

These babies may differ in susceptibility in ways that are not measured, and that may be 

correlated with potential risk factors. The associations found between potential risk 

factors and BSI may thus be partly due to these unmeasured confounders. This 

confounding may explain why the associations found in the case control study were 

stronger than those established by the Poisson regression models. Associations may also 

have been stronger for the case control study because conditional logistic regression 

models estimate odds ratios, which are larger than rate ratios for non-rare events. 

Confidence intervals were also wider for the results of the case control study in 

comparison with the results of the Poisson regression models, because of the smaller 

number of subjects analysed. On the other hand, the Poisson regression analyses 

included prolonged periods of follow up of uninfected babies, during which more 

mature babies exposed to potential risk factors would have been less susceptible to 

infection than at earlier ages. This may have attenuated associations between risk 

factors and BSI. The true effects on BSI of the risk factors analysed are therefore likely 

to be in between the effects estimated by these two analytical approaches. Despite the 
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methodological differences between the two analyses, in practice they yielded similar 

conclusions. I would recommend using both approaches when analysing risk factors for 

BSI in NICUs. 

 

The unmeasured differences in susceptibility between cases and controls described 

above may also explain why effect estimates decreased with control selection strategies 

2 and 3. From strategy 1 to strategy 3, the rule specifying that controls should not have 

had a BSI episode was progressively relaxed, and controls became closer in 

susceptibility to cases. Differences between cases and controls in unmeasured 

confounders may therefore have reduced, which may have decreased the estimates of 

effect for the risk factors I analysed. The results for control selection strategy 1 

described factors which predict whether a baby experiences any infection during the 

NICU stay. The results for control selection strategy 3 described factors which predict 

when a baby experiences infection. In this respect, control selection strategy 3 was 

closest to the Poisson regression method described in Chapter 6. In terms of infection 

monitoring, control selection strategy 3 may be the most relevant, provided the 

assumption that eight days following a BSI episode is sufficient time for a baby’s 

infection risk to return to his or her baseline. This assumption is reasonable, as 

following an infection episode, we could expect about five days of antibiotic treatment, 

followed by about three days for the development of clinical symptoms of a new 

infection, prompting a repeat blood culture. In strategies 2 and 3, some babies featured 

as both cases and controls. This may have introduced bias as cases spending longer 

periods in the NICU were more likely to also be included as controls. Babies remaining 

for longer in the NICU may have more complex conditions requiring very invasive care, 
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which would make them more susceptible to BSI and would decrease estimates of 

effect. However, babies spending longer in the NICU may also be more mature and less 

susceptible to infections, which would increase estimates of effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key conclusions of Chapter 7 

Findings  

 Optimal adjusted models generally included level of care, birth weight 

and inborn/outborn status as the strongest independent predictors for 

BSI when the NICUs were combined. 

Conclusions 

 This confirmed the conclusion of Chapter 6 that adjustment of BSI 

rates by these factors could provide meaningful comparisons between 

NICUs.  

 The case control study design is a novel, alternative analytical method 

which can elaborate predictive associations between risk factors and 

BSI, whilst minimising bias associated with the length of follow-up. 

 However, this approach did preclude the evaluation of postnatal age, 

which was found to be a significant independent risk factor for BSI in 

Chapter 6. 

 

 

 177



Figure 7.1 Diagram to describe stays in the NICU for three hypothetical cases and their controls. NICU stays were translated 

into a dataset with censoring ages labelled according to procedure-related exposures in the previous three days  
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Controls selected according to control scheme 1 
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Figure 7.1 (continued) Dataset with censoring ages labelled according to procedure-related exposures in the previous three 

days. Baby-days were truncated at the censoring age 

 
In three days prior to censoring age: 

Baby 
Censoring 
age (days) 

Gestational 
age (wks) 

Birth 
weight (g) 

Sex 
Inborn/ 

Outborn 
Delivery 
method Highest level 

of care 

Total 
parenteral 
nutrition? 

Ventilation? 

Number 
of blood 
samples 

taken 

CONS 
episode 

Non-CONS 
episode 

Total 
baby-days in 
NICU up to 

and including 
censoring 

age 
1 4 <26 700-<1200 Male Inborn Vaginal Intensive care Yes Yes 0 1 0 3 
4 4 ≥37 ≥1200 Female Inborn Elective 

CS 
High 

dependency 
care 

No No 1 0 0 4 

2 2 32-<37 ≥1200 Female Inborn Vaginal Other No No 0 1 0 1 
5 2 <26 <700 Male Outborn Vaginal Intensive care Yes Yes 0 0 0 2 
3 1 ≥37 ≥1200 Male Inborn Vaginal Other No No 0 1 0 1 
6 1 ≥37 ≥1200 Male Inborn Vaginal Other No No 0 0 0 1 
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Table 7.1 Case control study, control selection strategy 1. Crude results 

for NICU 1 and NICU 2 combined 

 

Potential risk factor 
Number 
of cases 

Number of 
controls 

Crude odds ratios  
(95% CI) p-value 

      
Highest level of carec      

Intensive care 138 130 11.16 (6.51, 19.13) <0.001 
High dependency care 47 41 12.32 (6.32, 23.98) <0.001 
Special care 36 286  1  
Otherd 15 15    

      
Gestational age (weeks)      

<26 72 32 7.43 (3.97, 13.89) <0.001 
26-<28 35 39 3.35 (1.69, 6.64) 0.001 
28-<32 53 127 1.23 (0.71, 2.12) 0.460 
32-<37 30 159 0.48 (0.28, 0.82) 0.007 
≥37 46 114  1  
Missinge 0 1    

      
Birth weight (g)      

< 700g 62 21 18.26 (8.99, 37.09) <0.001 
700g-<1200g 78 107 3.61 (2.31, 5.61) <0.001 
≥1200g 96 342  1  
Missinge 0 2    

      
Inborn status      

Outborn 80 78 2.78 (1.88, 4.11) <0.001 
Inborn 154 389  1  
Missinge 2 5    

      
Hospital      

NICU 2 129 240 1.16 (0.85, 1.58) 0.344 
NICU 1 107 232  1  

      
Sex      

Male  130 245 1.14 (0.83, 1.55) 0.426 
Female 106 227  1  

      
Delivery method      

Emergency CSf 92 181 0.98 (0.69, 1.39) 0.895 
Elective CSf 33 79 0.79 (0.50, 1.27) 0.333 
Vaginal 110 211  1  
Missinge 1 1    

      
Number of blood samples takenc      
≥2 2 2 1.77 (0.24, 12.77) 0.572 
1 27 66 0.77 (0.46, 1.31) 0.342 
0 207 404  1  

      
Surgeryc      

Yes 5 12 0.83 (0.29, 2.37) 0.732 
No 231 460  1  

      
Sensitivity analyses 
incorporating five and eight 
categories of birth weight and 
birth weight standardised for 
gestational age 

     

      
Birth weight (g)      

<700 62 21 10.01 (3.61, 27.77) <0.001 
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700-<1200 78 107 1.96 (0.82, 4.67) 0.128 
1200-<2500 58 234 0.48 (0.21, 1.13) 0.092 
2500-<3500 24 81 0.61 (0.25, 1.50) 0.285 
≥3500 14 27  1  
Missinge 0 2    

      
Birth weight (g)      

<500 5 1 16.28 (1.50, 176.87) 0.022 
500-<1000 115 79 4.09 (1.70, 9.85) 0.002 
1000-<1500 46 117 0.92 (0.38, 2.25) 0.856 
1500-<2000 20 105 0.33 (0.13, 0.86) 0.024 
2000-<2500 12 60 0.35 (0.13, 0.97) 0.044 
2500-<3000 8 42 0.34   (0.12, 1.02) 0.054 
3000-<3500 16 39 0.83 (0.31, 2.23) 0.711    
≥3500 14 27  1  
Missinge 0 2    

      
Standard deviation score      

<-2 38 68  0.95 (0.56, 1.61) 0.843 
-2-<-1 49 85 0.93 (0.58, 1.50) 0.773 
-1-<0 62 146 0.68 (0.43, 1.05) 0.083 
0-<1 61 98   1  
1-<2 18 51 0.57 (0.31, 1.07) 0.081 
≥2 6 19 0.50 (0.19, 1.32) 0.164 
Missinge: gest age <23 weeks 2 3    
Missinge: birth weight missing 
or birth weight and gest age 
missing 

0 2    

      

 
 

 

 

 

 

 

 

 



Table 7.2 Case control study, control selection strategy 1. Adjusted results for NICU 1 and NICU 2 combined. 

Sensitivity analyses incorporating five and eight categories of birth 
weight 

Potential risk factor 

Optimal risk adjustment model 
 

Adjusted odds ratios 
(95% CI) p-value 

AIC for model: 291 

Model including five birth 
weight categories 

 
Adjusted odds ratios 

(95% CI) p-value 
AIC for model: 294 

Model including eight birth weight 
categories 

 
Adjusted odds ratios 

(95% CI) p-value 
AIC for model: 299 

          
Highest level of carec          

Intensive care 4.38 (2.32, 8.27) <0.001 4.42 (2.33, 8.38) <0.001 4.84 (2.49, 9.38) <0.001 
High dependency care 14.63 (6.94, 30.83) <0.001 14.36 (6.83, 30.19) <0.001 15.50 (7.24, 33.20) <0.001 
Special care  1   1   1  
Otherd          
          

Birth weight (g)          
< 700g 12.03 (4.76, 30.43) <0.001       
700g-<1200g 2.37 (1.35, 4.16) 0.003       
≥1200g  1        
Missinge          

          
Inborn status          

Outborn 1.97 (1.16, 3.35) 0.012 2.04 (1.19, 3.47) 0.009 1.65 (0.99, 2.75) 0.057 
Inborn  1   1   1  
Missinge          

          
Birth weight (g)          

<700g    7.77 (1.81, 33.39) 0.006    
700g-<1200    1.52 (0.43, 5.34) 0.513    
1200-<2500    0.59 (0.18, 1.97) 0.389    
2500-<3500    0.72 (0.20, 2.63) 0.623    
≥3500     1     
Missinge          

          
Birth weight (g)          

<500       17.26 (1.04, 287.64) 0.047 
500-<1000       2.91 (0.84, 10.16) 0.093 
1000-<1500       0.78 (0.23, 2.64) 0.688 
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1500-<2000       0.45 (0.12, 1.67) 0.235 
2000-<2500       0.41 (0.10, 1.74) 0.228 
2500-<3000       0.37 (0.09, 1.52) 0.168 
3000-<3500       1.32 (0.31, 5.71) 0.710 
≥3500        1  
Missinge          

          

 
 



Table 7.3 Case control study, control selection strategy 1. Results for NICU 1g 
 

Potential risk factor 
Number of 

cases 
Number of 
controls 

Crude odds ratios 
(95% CI) p-value 

Adjusted odds ratios 
(95% CI) p-value 

         
Highest level of carec         

Intensive care 60 41 12.64 (5.82, 27.49) <0.001 8.30 (2.96, 23.25) <0.001 
High dependency care 28 27 10.51 (4.23, 26.09) <0.001 15.08 (5.06, 44.97) <0.001 
Special care 16 139  1   1  
Otherd 3 7       

         
Gestational age (weeks)         

<26 33 16 11.76 (4.30, 32.15) <0.001 2.15 (0.57, 8.07) 0.256 
26-<28 17 20 3.82 (1.47, 9.95) 0.006 0.73 (0.20, 2.65) 0.637 
28-<32 28 51 2.07 (0.98, 4.40) 0.058 1.31 (0.49, 3.49) 0.593 
32-<37 10 66 0.38 (0.14, 1.01) 0.053 0.30 (0.08, 1.05) 0.060 
≥37 19 60  1   1  
Missinge 0 1       

         
Birth weight (g)         
≤ 700g 24 12 16.77 (5.62, 49.98) <0.001    
700g-<1200g 42 57 3.81 (2.02, 7.21) <0.001    
≥1200g 41 144  1     
Missinge 0 1       

         
Inborn status         

No 50 38 3.41 (2.06, 5.67) <0.001 1.72 (0.83, 3.59) 0.146 
Yes 55 172  1   1  
Missinge 2 4       

         
Sex         

Male 58 100 1.29 (0.84, 2.00) 0.242    
Female 49 114  1     

         
Delivery method         

Emergency CSf 46 83 1.16 (0.71, 1.91) 0.546    
Elective CSf 8 22 0.77 (0.33, 1.82) 0.555    
Vaginal 52 108  1     
Missinge 1 1       
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Number of blood samples takenc         
≥2 1 1 2.18 (0.13, 35.21) 0.583    
1 13 20 1.37 (0.65, 2.91) 0.411    
0 93 193  1     

         
Surgeryc         

Yes 2 3 1.33 (0.22, 7.98) 0.753    
No 105 211  1     

         

 
 

 

 

 

 



Table 7.4 Case control study, control selection strategy 1. Results for NICU 2 

 
 
 

Potential risk factor 
Number of 

cases 
Number of 
controls 

Crude odds ratios 
(95% CI) p-value 

Adjusted odds ratios 
incorporating level of care 

(95% CI) p-value 
AIC= 171.45 

Adjusted odds ratios 
incorporating total 
parenteral nutrition 

(95% CI) p-value 
AIC= 192.39 

            
Highest level of carec            

Intensive care 78 76 9.32 (4.64, 18.70) <0.001 3.60 (1.54, 8.39) 0.003    
High dependency care 19 15 10.40 (4.13, 26.19) <0.001 10.61 (4.02, 28.01) <0.001    
Special care 20 156  1   1     
Otherd 12 11          

            
Gestational age (weeks)            

<26 39 14 10.66 (4.18, 27.22) <0.001    3.07 (1.01, 9.34) 0.048 
26-<28 18 14 4.72 (1.81, 12.34) 0.002    1.72 (0.58, 5.12) 0.333 
28-<32 25 64 1.09 (0.50, 2.36) 0.827    0.62 (0.25, 1.52) 0.296 
32-<37 20 99 0.50 (0.25, 1.00) 0.051    0.48 (0.22, 1.04) 0.062 
≥37 27 67  1      1  
Missinge 0   0          

            
Birth weight  (g)            
≤ 700g 38 14 11.12 (5.17, 23.94) <0.001 6.16 (2.29, 16.57) <0.001    
700g-<1200g 36 44 3.56 (1.96, 6.47) <0.001 2.21 (1.01, 4.82) 0.046    
≥1200g 55 200  1   1     
Missinge 0   0          

            
Inborn status            

No 30 23 3.18 (1.72, 5.90) <0.001 1.83 (0.83, 4.04) 0.133 2.21 (0.96, 5.07) 0.062 
Yes 99 235  1   1   1  
Missinge 0 0          

            
Sex            

Male 72 139 1.09 (0.70, 1.70) 0.706       
Female 57 119  1        

            
Delivery method            

Emergency CSf 46 92 0.98 (0.61, 1.57) 0.943       
Elective CSf 25 51 0.97 (0.55, 1.70) 0.914       
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Vaginal 58 114  1        
Missinge 0 1          

            
Number of blood samples takenc            
≥2 1 2 0.94 (0.08, 10.36) 0.956       
1 14 39 0.64 (0.32, 1.29) 0.215       
0 114 217  1        

            
Surgeryc            

Yes 3 6 1 (0.25, 4.00) 1.00       
No 126 252  1        

            
Total parenteral nutritionc            

Yes 72 29 9.98 (5.38, 18.49) <0.001    6.32 (3.14, 12.70) <0.001 
No 57 229  1      1  

            
Ventilationc            

Yes 75 63 4.86 (2.92, 8.11) <0.001       
No 54 195  1        

            
   c - In the three days prior to the censoring age 
   d - ‘Other’ indicates that for the three days prior to the censoring age, the baby was outside the NICU. For example at another hospital or undergoing surgery. 

e - Babies with missing variables were few and represented few episodes of BSI. For this reason I considered it acceptable to remove them from the analyses. 
f - CS- Caesarean section 
g - For cases with higher ages (in days) at BSI, the number of controls available for selection became scarce. For control selection strategy 1 at NICU 1, two cases 
with ages at BSI of 111 and 132 days had to share controls with other cases.  

 
 
 

 



8. A method for monitoring blood stream 

infection in neonatal intensive care units  

 

8.1 Summary 

Findings from previous chapters are collated to propose a method for prospective 

monitoring of NICU-acquired BSI. The method is demonstrated for NICUs 1 and 2, to 

illustrate how it could be applied to a larger group of units. Two monitoring techniques 

are demonstrated which could be used in tandem. Both relied on comparisons of 

observed numbers of BSI episodes at each NICU with expected numbers derived from 

both units. Comparisons were adjusted for differences between hospitals and over time 

in the distributions of: baby-days spent at each NHS level of care, birth weight, 

inborn/outborn status and postnatal age. 

 

Firstly, to give standardised infection ratios, observed numbers of BSI episodes were 

divided by expected numbers for each NICU and year. These showed no significant 

differences between hospitals, except for a slightly increased incidence for NICU 1 in 

2002 (standardised infection ratio 1.43, 95% CI  1.08, 1.85). Secondly, a sequential 

probability ratio test (SPRT) can trigger alarms if BSI incidence increases significantly 

over time. No significant increases or decreases were observed for either NICU over the 

time period. 
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Both monitoring techniques are easy to implement with software available to NICUs. 

They can monitor changes in infection incidence over time and could encourage sharing 

of improved infection control practices between NICUs.  

 

8.2 Introduction: synthesis of thesis findings into a method 

for prospective monitoring 

This chapter brings together findings from the previous chapters to propose a method 

for prospective monitoring of BSI in NICUs that could be used in practice. 

 

Findings from the various analytic approaches used in Chapters 3, 5, 6 and 7 

consistently showed that there was no significant difference in the incidence of BSI 

between the NICUs analysed. In this chapter I demonstrate a method for comparative 

monitoring in NICUs 1 and 2, which could be applied to a wider group of NICUs which 

may display significant differences.  

 

The analytic approaches used in previous chapters showed that the strongest predictors 

for BSI incidence recorded in routine data were: NHS level of care, total parenteral 

nutrition, birth weight, gestational age, and inborn/outborn status. The risk adjustment 

model which most consistently provided a good fit to the data, whilst describing risk for 

all babies throughout their NICU stay, included level of care, birth weight and 

inborn/outborn status. The analytic approach described in Chapter 6 enabled the 

evaluation of postnatal age, and its results indicated that this factor should also be 

included in the risk adjustment model. I will demonstrate a method for monitoring BSI 
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incidence, adjusted for differences between hospitals and over time in the distributions 

of: baby-days spent at each NHS level of care, baby-days grouped according to 

postnatal age, and babies cared for with various birth weights and inborn/outborn status. 

 

As described in Chapter 5, if a monitoring system is to rely on current routine data 

systems, positive blood cultures provide the only information on which to base a case 

definition for BSI. If NICUs wish to differentiate between infections more or less likely 

to represent blood sample contamination, rates can be reported separately for CONS and 

non-CONS BSI. As I found patterns in CONS and non-CONS BSI incidence to be 

broadly similar, I will demonstrate a method for monitoring total BSI incidence. In 

Chapter 5 I also described a shift in the aetiology of BSI from maternally-transmitted to 

hospital-acquired at around day two of life. In this chapter I used data from day three of 

life to demonstrate monitoring for hospital-acquired BSI. 

 

I will describe a monitoring method encompassing two approaches: yearly standardised 

infection ratios and a quarterly sequential probability ratio test (SPRT).  

 

8.3 Methods 

 

8.3.1 Study population and case definition 

As mentioned in Chapter 5, adjustment of BSI incidence by procedure-related factors 

was only possible if precise dates were recorded for these variables, so the risk adjusted 

monitoring method could only be demonstrated for NICUs 1 and 2, and not for NICU 3. 
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The study population and case definition were defined as in Chapters 6 and 7 (refer to 

Sections 6.3.1 and 6.3.2). I excluded probable maternally-transmitted BSI episodes 

occurring during the first 48 hours of life. Chapters 6 and 7 included only the first 

episode of BSI per baby, in order to concentrate on predictive risk factors for infection. 

In this chapter I aimed to monitor the burden of infection in NICUs, so all BSI episodes 

were included.  

 

8.3.2 Creating an aggregated dataset 

In Chapter 3, I demonstrated an aggregated dataset relying on routine data, which would 

permit the monitoring of BSI incidence with minimal data manipulation (refer to Figure 

3.2). Instead of re-using this dataset, I aggregated the datasets created in Chapter 4 

(Figure 4.4), which contain a record for each baby-day, because they were created using 

the more thorough strategies to match blood cultures with administrative data. I 

generated a dataset with a structure resembling that described in Chapter 3 (Figure 3.2), 

consisting of aggregated quarterly totals of BSI episodes and baby-days, stratified by 

NHS level of care, birth weight, inborn/outborn status and postnatal age. The following 

birth weight strata were chosen: <700g, 700-<1200g, ≥1200g, as these categories best 

described variation in BSI risk in Chapters 6 and 7 (Section 6.4.1 and Section 7.4.1). 

Strata of 3-<20 days and ≥20 days of postnatal age were chosen, as the risk of BSI was 

significantly greater in babies below 20 days of age than in older babies (Chapter 6, 

Section 6.5). BSI episodes and baby-days from the first two days of life were removed, 

as early-onset BSI is likely to reflect maternally-transmitted infection. Baby-days 

pertaining to babies with missing birth weights and/or missing inborn/outborn status 

were also removed, as these could not be stratified. Rates were aggregated by quarter 
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rather than by month, as I judged that quarterly monitoring would maintain continuity 

of surveillance whilst minimising workload for NICUs. 

 

8.3.3 Estimating expected numbers of BSI episodes 

Both the yearly standardised infection ratios and the quarterly SPRT were based on a 

comparison of the observed number of BSI episodes against the number expected 

according to a risk adjustment procedure. Expected numbers were estimated using a 

Poisson generalised linear model. The model included data for both hospitals over the 

whole time period. The outcome was episodes of BSI, the offset or denominator was 

baby-days, and level of care, birth weight category, inborn/outborn status and postnatal 

age category were included as covariates. The model’s coefficients referred to the 

expected rate of BSI for each risk stratum (refer to the worked example in Figure 8.1). 

These rates were multiplied by the numbers of stratified baby-days for each hospital and 

year (for standardised infection ratios) and for each hospital and quarter (for the SPRT). 

This gave the number of BSI episodes expected, given variations between hospitals and 

over time in the number of baby-days at each risk stratum.   

 

8.3.4 Yearly standardised infection ratios 

Standardised infection ratios were calculated by dividing the observed by the expected 

number of BSI episodes, for each hospital and year.99 Confidence limits assuming 

Poisson counts were defined for each ratio. 
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8.3.5 Quarterly sequential probability ratio test 

The SPRT is a method for continuous monitoring first developed by Wald.100 It defines 

thresholds to determine when the observed outcome diverges unacceptably from the 

expected. These thresholds could be set for a single time point using confidence 

intervals. However, this does not allow for the fact that, with many time points, the true 

null hypothesis is likely to be eventually rejected, which could result in unfair 

accusations of poor performance. The SPRT allows for multiple time points and is 

described below. 

 

The test statistic100,101 

The SPRT was designed to carry out a test of a null hypothesis H0, versus an alternative 

H1 defined as: 

 

H0 : no increase in observed numbers of BSI episodes over expected 

H1 : a level of performance considered importantly divergent.  

 

I considered H1 as a 30% increase over the expected number of BSI episodes. An 

‘important’ change in BSI incidence has not been defined for the NICU context, so this 

was an arbitrary figure, chosen as Kilbride et al. (2003) considered a 30% change in 

BSI incidence to be an important indicator of infection control practices within the 

Vermont Oxford Network of NICUs.52 The choice of H1 is discussed further in Chapter 

9. 
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The SPRT involves plotting, for each yearly quarter, t: 

Xt = Xt-1 + Wt 

X = 0 0 

Where t = 1,2,3… is the yearly quarters numbered sequentially for the whole time 

period  

 

For each value of t, the probability of witnessing the observed number of BSI episodes, 

Yt, is proportional to: L0t under H0, and L1t under H1 

 

 

 

 

Wt = log(L1t/L0t) 

  

The observed numbers of BSI episodes follow a Poisson distribution, so Wt can be 

calculated thus: 

 

Wt = Ytlog(R1) - λ0(R1-1)

where 

Yt = observed number of BSI episodes 

λ0 = expected number of BSI episodes 

R1 = λ1/ λ0 = change to be measured

 

I assumed λ1/ λ0 = 1.3, corresponding to a 30% increase as previously defined.
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Thresholds100,101 

Values of the test statistic lie between lower and upper thresholds denoted a and b. 

When the test statistic exceeds b, H1 is accepted over H0, and when it is less than a, H0 

is accepted over H1. The thresholds form horizontal lines, and are defined as: 

 

a = log[β/(1- α)] 

b = log[(1- β)/α)] 

 

where 

α - probability of eventually rejecting H0 when it is true (Type I error) 

β - probability of eventually rejecting H1 when it is true (Type II error) 

 

The values of α and β can be chosen to reflect the relative costs of making the two types 

of error. Because they are defined for the whole SPRT process, rather than for each 

quarter, they account for multiple testing. Several values can be chosen for α and β 

respectively, to denote different degrees of urgency, for example ‘alert’ and ‘alarm’. I 

chose equal values for α and β, which gave the following values for a and b:  

 

α = β = 0.01 for ‘alert’, corresponding to:  

a = - 4.6 

b = 4.6 

 

α = β = 0.001 for ‘alarm’, corresponding to: 

a = - 6.91 

b = 6.91 
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The calculation of the test statistic was restarted (by bringing the cumulative calculation 

back to 0) when the ‘accept H0’ boundary a was crossed. This avoided the build-up of 

credit, where unacceptable increases in infection rates are masked by previous 

decreases.  

 

I also constructed an SPRT for which H1 was defined as a 30% decrease below the 

expected number of BSI episodes. The test statistic was calculated the same way, except 

that R1 was defined as 0.7 (λ1/ λ0 = 0.7).  

 

Finally, I constructed an SPRT to detect increases in infection incidence without risk 

adjustment. Expected numbers of BSI episodes were estimated by multiplying the 

single, non-stratified rate of BSI for both hospitals over the whole time period, by the 

numbers of baby-days in each quarter, for each hospital.  

 

8.4 Results 

A total of 322 episodes of BSI were included in the monitoring method, of which: 232 

were CONS, 4 were Group B streptococcus, 46 were Gram positive organisms other 

than Group B streptococcus, 35 were Gram negative organisms and 5 were yeasts. 2230 

babies were included (901 from NICU 1 and 1329 from NICU 2). The slight 

discrepancy compared with the number of babies analysed in Chapter 6 (2269) is 

because baby-days that could not be stratified were excluded. 24 babies not cared for in 

either special care, high dependency or intensive care after day two of life (for example 

because they were treated in surgery) were excluded, as were 15 babies with missing 

birth weights and/or missing inborn/outborn status.  
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Tables 8.2 to 8.6 (Appendix to Chapter 8) show the stratified observed numbers of BSI 

episodes and baby-days for each hospital and year. Figure 8.2 shows quarterly rates of 

BSI, for both hospitals. As the study period ran from May 2001 to February 2005 

inclusive, the first and last years and quarters did not contain data for the full time 

interval. This did not affect the analysis, as expected numbers of BSI episodes were 

calculated for the truncated numbers of baby-days observed. 

 

8.4.1 Yearly standardised infection ratios 

Table 8.1 shows standardised infection ratios for each hospital and year. The ratios were 

mostly close to 1, indicating no statistically significant difference between observed and 

expected numbers of BSI episodes. However in 2002, NICU 1 had more BSI episodes 

than expected, and this difference was significant (56 observed/39.26 expected, ratio 

1.43, 95% CI (1.08, 1.85), observed BSI rate 9.18 per 1000 baby-days). 

 

8.4.2 Quarterly sequential probability ratio test 

Figure 8.3 shows the risk adjusted SPRTs to detect increases in BSI incidence. Far from 

indicating any problems with infection control, the test statistic crossed the lower 

threshold, a, during April to June 2004 for NICU 1, and during January to February 

2005 for NICU 2. This indicated an acceptance of H0 over H1, and the assurance that a 

30% increase in observed numbers of BSI episodes over expected numbers had not 

occurred. Calculation of the test statistic was restarted at this point. 
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Figure 8.4 shows the SPRTs to detect decreases in BSI incidence. The test statistic 

crossed the lower threshold, a, during April to June 2002 for both hospitals. This 

indicated an acceptance of H0 over H1, signifying that a 30% decrease in observed 

numbers of BSI episodes over expected numbers had not occurred. The relatively early 

acceptance of H0 corresponded with a small, but non-significant, rise in BSI incidence 

during April to June 2002 for both NICUs, visible in Figure 8.2. Calculation of the test 

statistic was restarted at this point, and remained between the two thresholds for the rest 

of the study period. 

 

Figure 8.5 shows the SPRTs to detect increases in BSI incidence, constructed without 

risk adjustment. It is similar to the corresponding risk adjusted chart, except that the test 

statistic crossed the lower ‘accept H0’ threshold, a, two yearly quarters earlier for NICU 

2 (July to September 2004). 

 

8.5 Discussion 

In keeping with the findings in previous chapters, there was no significant difference in 

BSI incidence between NICUs or over time. This chapter demonstrates what could be 

carried out in larger groups of NICUs, which may display significant differences.  

 

Standardised infection ratios provide a straightforward method for comparing hospitals 

and can be included in annual reports. Infection control investigations could be targeted 

at units with BSI incidence significantly above expected (with a standardised infection 

ratio significantly above one). However, this measure does not take account of the fact 

that, with increasing hospitals and time points, it becomes more likely that a ratio will 
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exceed one significantly, simply by chance. This multiple testing problem may have 

given rise to the slightly increased ratio for NICU 1 in 2002. Monitoring systems should 

be aware of this problem, to avoid unfairly penalising units with single high ratios. 

Standardised infection ratios should be used in conjunction with the SPRT, which is 

better suited to continuous monitoring over shorter intervals because it takes multiple 

time points into account. It can also include an adjustment for multiple hospitals, like 

the one described below. 

 

The SPRT can trigger alarms if BSI incidence increases significantly over time. As the 

priority of a monitoring system is to detect unacceptable increases in incidence, the 

SPRT to detect decreases is not useful for long-term surveillance. However, it could be 

used to detect target decreases in incidence following infection control interventions. 

The SPRT is a novel approach to infection monitoring in NICUs. It is a robust method 

for comparisons over time, but it provides less information concerning differences 

between hospitals than the standardised infection ratios. Spiegelhalter et al. (2003)102 

recommend the following modifications to the SPRT, depending on a system’s 

priorities. H1 should be defined so that the chart detects the lowest range in incidence 

deemed acceptable. Different values for α and β can be chosen to reflect the relative 

costs of making Type I and Type II error. If a monitoring system wishes to avoid falsely 

identifying a satisfactory NICU as ‘higher risk’, then α should be very small. If it is 

keen not to miss a ‘higher risk’ NICU, then β should be very small. When comparing a 

large number of NICUs, more stringent thresholds are appropriate. For example, if α = β 

= 0.1 is chosen, of 10 units performing normally, we would expect one to cross the 

threshold just by chance. When monitoring n units, α = β could be adjusted to 0.1/n for 
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‘alert’ or 0.01/n for ‘alarm’. Resetting of the test statistic when it crosses the ‘accept H0’ 

boundary can retain sensitivity to changes in performance. However, NICUs should be 

aware that a series of these restarts avoids acceptance of the hypothesis that there is no 

increase in observed numbers of BSI episodes over expected (or avoids the acceptance 

of H0). This would, overall, increase the probability of falsely concluding that there is a 

significant increase (or increase the chance of a Type I error to 1) and decrease the 

probability of falsely concluding that there is no significant increase (or decrease the 

chance of a Type II error to 0).102 

 

Tables 8.2 to 8.6 (Appendix to Chapter 8) show that both monitoring techniques relied 

on small numbers of baby-days for some strata. This should not matter in practice, but 

for simplicity NICUs may prefer to group high dependency care, which includes the 

fewest babies, with intensive care, which shares a similar risk of BSI. As an alternative 

to using the Poisson regression model, expected rates can be calculated by dividing BSI 

episodes by baby-days in each risk stratum, for both hospitals over the whole time 

period, which gives almost identical results. Neither monitoring technique takes account 

of the fact that hospitals may have varying numbers of BSI episodes which are recurrent 

within babies. The risk adjustment model described would not be strictly accurate in 

this case, as babies experiencing one infection may be more or less likely to experience 

another, over and above the risk factors already adjusted for. This is difficult to correct 

for with aggregated datasets, as recurrent infections are no longer linked with babies and 

cannot be identified. However, the development of datasets with daily records for each 

baby could allow regression models which estimate expected rates adjusted for 

recurrencies. In the NICUs I analysed, the proportions of recurrencies within hospital-
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acquired BSI episodes were similar: 30% were recurrent at NICU 1 and 25% were 

recurrent at NICU 2 (95% CI for difference - 0.04, 0.15, p = 0.315). These percentages 

differ from the proportions of recurrent infections given in Chapter 3, Section 3.5, 

because they exclude probable maternally-transmitted BSI episodes from the first 48 

hours of life. 

 

 

 

 

  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Both monitoring techniques were adjusted for differences between 

hospitals and over time in the distributions of: baby-days spent at each 

NHS level of care, baby-days grouped according to postnatal age and 

babies cared for with various birth weights and inborn/outborn status. 

 Standardised infection ratios are most informative concerning 

differences between hospitals, whereas SPRTs are more robust for 

monitoring changes over time. 

Conclusions 

 Used together, standardised infection ratios and SPRTs could provide a 

powerful tool for evaluating risk-adjusted changes in BSI incidence 

between NICUs. 

Key conclusions of Chapter 8 

Findings  

 Standardised infection ratios showed that BSI incidence, analysed on a 

yearly basis, was similar for NICUs 1 and 2. 

 The SPRTs showed no substantial changes in BSI incidence over time. 
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Figure 8.1 Expected BSI rates 

 
Exponentiated coefficients of the Poisson generalised linear model 
 

Intercept (baseline rate of BSI)  
Corresponding to special care, birth weight ≥1200g, inborn and 
postnatal age ≥20 days 0.001 
Rate ratios corresponding to changes in the baseline to:  

High dependency care 5.73 
Intensive care 4.36 
Birth weight 700g-<1200g 1.08 
Birth weight <700g 1.76 
Outborn status 1.23 
Postnatal age 3-<20 days 1.76 

 
 
Worked example: calculating an expected rate 
 

For the stratum defined by intensive care, birth weight 700g-<1200g, outborn status and postnatal age 3-<20 days 
BSI rate estimated by the model  0.001 x 4.36 x 1.08 x 1.23 x 1.76 = 0.01 or ~10 per 1000 baby-days 

 
 
Expected rates (per 1000 baby-days) for each risk stratum (calculated using exact coefficients, rather than the rounded coefficients shown above) 

 
Birth weight (g) <700 700g-<1200 ≥1200 
Inborn/outborn status Inborn Outborn Inborn Outborn Inborn Outborn 
Postnatal age (days) 3-<20 ≥20 3-<20 ≥20 3-<20 ≥20 3-<20 ≥20 3-<20 ≥20 3-<20 ≥20 
Level of care             

Special care 4.44 2.53 5.48 3.12 2.72 1.55 3.36 1.91 2.52 1.43 3.11 1.77 
High dependency care 25.43 14.46 31.37 17.84 15.58 8.86 19.22 10.93 14.41 8.20 17.78 10.11 
Intensive care 19.37 11.02 23.89 13.59 11.87 6.75 14.64 8.33 10.98 6.24 13.54 7.70 
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Figure 8.2 Quarterly rates of BSI episodes, per 1000 baby-daysa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NICU 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NICU 2 

a - As the study period ran from May 2001 to February 2005 inclusive, the first and last quarters 
did not contain the full three months of data. The vertical lines are 95% CIs.
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Figure 8.3 Risk adjusted SPRTs to detect a 30% increase in BSI episodes 
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Figure 8.4 Risk adjusted SPRTs to detect a 30% decrease in BSI episodes 
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Figure 8.5 Crude SPRTs to detect a 30% increase in BSI episodes 
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Table 8.1 Standardised infection ratios (95% CI) by NICU and year 

 
Year NICU 1 NICU 2 
2001 0.79 (0.48, 1.22) 0.96 (0.63, 1.41) 
2002 1.43 (1.08, 1.85) 1.22 (0.92, 1.59) 
2003 0.91 (0.65, 1.24) 0.98 (0.71, 1.32) 
2004 0.77 (0.54, 1.08) 0.96 (0.70, 1.28) 
2005 0.41 (0.01, 2.31) 0.28 (0.01, 1.56) 
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9. Discussion and future directions for research 

 
9.1 Summary of thesis findings 

The premise of this thesis was that comparisons between NICUs can reveal important 

differences in BSI incidence, which may result from variations in infection control 

practices. Examination of these differences can reveal NICUs with potentially better 

practices, which can be shared with other units. The systematic literature review in 

Chapter 1 showed that adjustment for case mix and the use of invasive procedures is 

commonly regarded as necessary for fair and meaningful comparisons of BSI incidence 

between NICUs. However, there is no consensus on how risk adjustment should be 

carried out. The review also indicated that the use of electronic routine hospital data 

would accelerate data collection and minimise staff workload in monitoring. 

 

The main aim of the thesis was to establish risk factors for BSI incidence recorded in 

routine data at three London NICUs. These risk factors could be adjusted for to give 

meaningful comparisons between NICUs. I presented a range of analytic approaches to 

determine risk factors (summarised in Chapter 2, Table 2.1) for two reasons. Firstly, the 

way in which procedure-related factors were recorded varied between NICUs, which 

required a variety of analytic methods. Secondly, I explored various methods for 

establishing risk factors to determine a robust approach. These methods included 

analyses of aggregate data (Chapter 3), analyses of procedure-related factors recorded as 

the sum of days treated (Chapter 5), investigation of time to the development of BSI 

(Chapter 5), and analyses of risk factors predicting BSI (Chapter 6 and Chapter 7). I 
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assessed consistency in the results, and the advantages and disadvantages of each 

method.  

 

Chapter 6 and Chapter 7 provided the two most robust methods for determining risk 

factors for BSI, these methods involved Poisson regression and a case control study. 

The two methods had different strengths, so I recommended using both approaches 

when analysing risk factors for BSI incidence in NICUs. They focused on risk factors 

preceding BSI, which can therefore be regarded as predictors, rather than potential 

consequences of BSI. Predictive risk factors can identify high risk groups who could 

benefit from preventive action or close monitoring. The Poisson regression method 

described in Chapter 6 permitted the investigation of postnatal age, which was found to 

be a significant independent risk factor for BSI, but it was prone to bias associated with 

the length of follow-up. The case control study method in Chapter 7 removed this bias, 

but it led to larger estimates of effect. The true effects of the risk factors analysed were 

likely to be in between the effects estimated by the two analytical approaches. Despite 

the differences between the two analyses, in practice they yielded similar conclusions. 

These conclusions were consistent with the interpretation of the results in previous 

chapters. In the dataset used for this thesis, daily level of care, birth weight, 

inborn/outborn status and postnatal age were significant independent risk factors for 

BSI.  

 

In Chapter 8 I demonstrated a method for prospective, comparative monitoring of BSI 

incidence, adjusted for the risk factors I had established, using a pragmatic aggregated 
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dataset. The prospective monitoring method demonstrated what could be carried out in 

larger groups of NICUs to achieve the objectives of monitoring described in Chapter 1: 

 

 Assess the burden of infection 

 Monitor changes in infection incidence over time and to trigger alarms if 

incidence increases significantly 

 Encourage sharing of improved infection control practices between NICUs 

 Monitor the outcome of interventions to improve infection control 

 

To inform NICUs concerning infection burden, feedback to NICUs could include yearly 

or quarterly observed and expected rates of BSI episodes. Rates could be stratified by 

predictive risk factors to display groups at higher risk who may benefit from close 

monitoring or preventive action. The standardised infection ratio method could 

encourage sharing of improved practices between NICUs. In any units with BSI 

incidence significantly below expected (with a standardised infection ratio significantly 

below one), infection control practices could be investigated as potentially better 

practices. These could be shared with any units with BSI incidence significantly above 

the expected. Risk adjusted standardised ratios are increasingly being used to 

investigate differences in outcomes between hospitals with a view to improving the 

overall quality of care. They are used to measure variations in adult surgical site 

infections within the German Krankenhaus Infektions Surveillance System (KISS),99 as 

well as variations in hospital mortality within several countries.103,104 
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The risk adjusted SPRT is a novel approach to infection monitoring in NICUs. It can 

trigger alarms if BSI incidence increases significantly over time, which could prompt 

investigation into the cause of the increase and the instigation of measures to control 

infection. As the priority of a monitoring system is to detect unacceptable increases in 

incidence, the SPRT to detect decreases is not useful for long-term surveillance. 

However it could be used to detect target decreases in incidence following infection 

control interventions.  

 

Used together, standardised infection ratios and the SPRT could provide risk adjusted 

monitoring using minimal time, effort and expense. Standardised infection ratios 

provide a straightforward method for comparing hospitals and can be included in annual 

reports, whereas the SPRT is better suited to continuous monitoring over time. Both rely 

on existing data collection systems, and can be calculated using software easily 

available to NICUs, such as Microsoft Excel. A data manager could arrange procedures 

for the extraction of the necessary information in to pre-prepared spreadsheets on a 

quaterly basis. Ward clerks or NICU staff would then require only minimal training to 

understand the necessary concepts and to produce the statistics in tables and graphs such 

as those shown in Chapter 8, which could be included in regular reports and audits.  

 

9.2 Thesis findings in the current UK context 

These findings are timely as they comply with recent recommendations made to the UK 

Department of Health. The second National Audit Office report on HAI recommended 

the development of infection surveillance initiatives in high risk areas such as adult, 

paediatric and neonatal intensive care.105 In response to this, the Steering Group on 
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Healthcare Associated Infection convened the ‘Surveillance in adult, paediatric and 

neonatal intensive care and high dependency units’ subgroup in April 2006, to provide 

advice to the Health Protection Agency and the Department of Health. In 2007, the 

work of the Steering Group was passed to the Advisory Committee on Antimicrobial 

Resistance and Healthcare Associated Infection (ARHAI), which published 

recommendations for HAI surveillance in February 2010. A key recommendation was 

that surveillance should use routine patient management systems to minimise costs and 

staff workload, thus ensuring long-term buy-in from hospital management and staff. It 

noted that the reporting of childhood infections by paediatricians was low in several 

studies conducted through the British Paediatric Surveillance Unit, underlining the need 

to ‘become more innovative and use routinely available data sources rather than 

conducting a series of individual and more expensive projects.’ The Appendix to 

Chapter 9 gives the full criteria for HAI surveillance established in the report.106 

 

The recommendation to exploit routine data is possible due to recent developments in 

the collection and storage of neonatal records, described in Chapter 4 (Section 4.8). 

Firstly, NICUs are increasingly using the same definitions and common systems for 

data capture and storage, which will facilitate risk adjusted comparisons between them. 

This began with the recording of ‘minimum datasets’ using standard definitions, such as 

the Neonatal Critical Care Minimum Dataset and the BAPM dataset.78 Common 

neonatal data systems, the most widespread of which is SEND, now incorporate these 

minimum datasets. Secondly, information collected by systems such as SEND is likely 

to be fairly complete and accurate. SEND is used for the day-to-day running of the 

NICU, as well as for collecting data for audits and health service commissioning. There 

is therefore considerable incentive to keep its content complete, accurate and current. 
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This is enhanced by the inclusion of automatic quality checks and mandatory fields in 

the data entry process.75 The exciting potential of SEND as a resource for monitoring 

and research has been recognised by the Neonatal Data Analysis Unit, which exploits it 

for the National Neonatal Audit Programme and the Newborn Patient Safety 

Programme among other projects.106 

 

As described in Chapter 4 (Section 4.8), further aspects of SEND are relevant to the 

monitoring method devised in this thesis. Firstly, SEND currently records all the factors 

used to adjust for differences in risk between NICUs, as levels of care, birth weight, 

inborn/outborn status and date of birth (used to calculate postnatal age) are required for 

each baby by the BAPM minimum dataset.78 Secondly, SEND records data items used 

to calculate levels of care on a daily basis, as this is also a BAPM requirement.87 Daily 

patient records provide the best format for infection monitoring, as BSI episodes and 

baby-days can be reported by days with potential risk factors.  

 

If a routine neonatal data system is to be used for infection monitoring, it must be linked 

with information concerning infection episodes. The case definition used for monitoring 

BSI represents an important trade-off. On the one hand, case definitions including 

clinical symptoms help to differentiate between clinically-relevant BSI and subclinical 

infection or contaminated blood cultures, but they require skilled data collection by 

clinicians. On the other hand, case definitions based on blood cultures alone may be 

more ambiguous, but they could rely on routine data from hospital microbiology 

laboratories. This would reduce the burden of data collection and may therefore provide 

a monitoring system that is more practical and sustainable than one relying on clinician 
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reporting. In Chapter 4 (Section 4.8) I argued that microbiology laboratory data should 

be automatically linked with neonatal data systems.  

 

An advantage of using routine microbiology laboratory data in BSI monitoring is that 

blood sampling frequency can be measured and taken into account. As explained in 

Chapter 3, Section 3.3.2, variations in blood sampling frequency could confound 

comparisons of BSI incidence, although confounding by blood sampling frequency was 

not detected in the population studied for this thesis. As explained in Chapter 5 (Section 

5.5), if NICUs wish to differentiate between infections more or less likely to represent 

blood sample contamination using routine data, rates can be reported separately for 

CONS and non-CONS BSI. I found patterns in CONS and non-CONS BSI incidence to 

be broadly similar.  

 

The NeonIN surveillance system described in Chapter 1 is similar to the monitoring 

system proposed in this thesis because it relies on positive blood cultures (excluding 

cultures for CONS) and it plans to link with neonatal data systems such as SEND 

(personal communication, Dr. Paul Heath, St George’s Healthcare NHS Trust). It differs 

from the system proposed here because it relies on reporting of infection episodes by 

clinicians. In addition, it is not risk-adjusted, its aim being to determine patterns of 

bacterial organisms in NICUs, not to provide multicentre comparisons to improve the 

overall quality of care.17 
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9.3 Future directions for research 

The approach for monitoring described in Chapter 8 should be validated using a larger 

number of NICUs. As I analysed only two NICUs from the same city, the scope for 

detecting variation was small. Even before risk adjustment, they had similar incidences 

of infection which changed little over time, as shown by the similar curves for the crude 

and risk adjusted SPRTs. This was compounded by the fact that expected rates were 

based on data for both the hospitals combined. The consistency found may partly be the 

result of comparing ‘like with like’. A greater number of NICUs would increase the 

potential to detect variation, and would provide more generalisable expected rates based 

on the overall average. The time period used to calculate expected rates should also be 

considered carefully. For example, following an infection control intervention leading 

to an overall, sustained decrease in infection incidence, expected rates should be  

recalculated to maintain sensitivity to increases in incidence. 

 

Ideally, performance of the monitoring system should be tested in about five or six 

NICUs, which equates to a neonatal network. This is convenient as neonatal networks 

are more likely to share common data systems, which would facilitate monitoring. A 

BSI monitoring system based on routine data must be constantly reevaluated as neonatal 

data systems evolve. The case definition for BSI could include some clinical symptoms, 

where these are captured by data systems. Similarly, the appropriate method of risk 

adjustment may evolve with neonatal data systems, as risk adjustment factors were 

chosen for their existence and reliability in routine data as well as for their association 

with BSI. As any statistical monitoring technique may include unforeseen bias and 

inaccuracies, the comparison of multiple techniques is most informative. I have 
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demonstrated two techniques in Chapter 8 which could be used in conjunction with each 

other, but NICUs may wish to develop more depending on the time and resources 

available to them. 

 

I found no evidence that differences in sampling frequency affected comparisons of BSI 

incidence between the NICUs analysed. However, differences in sampling frequency 

should always be investigated before NICUs are included in a monitoring system. If 

these differences are shown to confound comparisons of BSI incidence in multivariable 

analyses, measures can be taken to standardise blood sampling protocols between 

NICUs. Standardisation of blood sampling protocols is always desirable. This could 

involve the definition of clinical signs required before a blood sample is taken, as well 

as criteria for the method of sampling itself. Between 1997 and 2000, six NICUs in the 

Vermont Oxford Network implemented standardisation guidelines relating to the 

sampling method. These guidelines included: a requirement for two blood cultures on 

suspicion of BSI, protocols to prepare the skin for phlebotomy, and a recommended 

blood sample volume of 1ml.52 

 

In addition to the further research described above, a successful monitoring system will 

require thorough consultation with the stakeholders. Firstly, neonatologists and 

infection control specialists should define the threshold used to determine an 

‘unacceptable’ increase in infection over time. For the SPRT described in Chapter 8, I 

defined this threshold (H1) as a 30% increase over the expected number of BSI 

episodes. NICUs participating in a monitoring system should decide on their own 

threshold, based on their priorities, resources and current infection rates. Secondly, 
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NICU staff must decide on the actions they will take in the event of significant variation 

in infection incidence between units or over time. As described in Chapter 1 (Section 

1.3 and Section 1.4), interventions could include the introduction of aseptic techniques 

for invasive procedures, hygiene promotion programmes and changes to NICU 

environments and staffing.16,44,45 Collaborative quality improvement initiatives could be 

introduced at the group level.51-53 ARHAI recommended that the economic effects of 

surveillance and infection control interventions must be assessed during the planning 

phase. Although investment could be more than offset by decreases in BSI and its 

associated effects such as hospital stays, treatment, readmissions, re-operations and 

social support, this economic benefit should not be taken for granted.106  

 

Thirdly, consultation among stakeholders should determine who will have access to the 

results of surveillance. The purpose of this thesis was to provide an approach for 

improving the care of babies in NICU, by alerting staff to clinically important increases 

in BSI incidence and by triggering the sharing of improved practices between units. As 

a minimum, feedback to NICUs should include their own performance in relation to the 

overall group. Issues such as whether NICUs should have access to the BSI rates of 

other participating units, or whether the results of monitoring should be made available 

to other stakeholders or the general public are beyond the scope of this thesis. Research 

and consultation will be necessary to determine best practice in these areas, to avoid the 

negative connotations associated with ranking or penalising units, which may have 

adverse effects on the morale of staff. Experience from other infection surveillance 

systems stresses that engagement with staff is fundamental to the success of any 

monitoring system.52,99,107,108 



 

Key conclusions of Chapter 9 

 I achieved the main aim of this PhD project, which was to establish risk 

factors for BSI incidence in NICUs, which could be adjusted for to give 

meaningful comparisons of BSI incidence between hospitals. 

 The Poisson regression method described in Chapter 6 and the case 

control study method described in Chapter 7 have different strengths, and 

should be used together for determining risk factors for BSI incidence in 

NICUs. 

 The thesis demonstrated a method for risk adjusted, comparative 

monitoring of BSI incidence, relying exclusively on routine data. 

 Standardised infection ratios, used in conjunction with SPRTs can fulfill 

the objectives of monitoring BSI incidence in NICUs. 

 The findings of this thesis are timely. Recent recommendations made to 

the UK Department of Health call for infection surveillance in intensive 

care units and the exploitation of recent developments in routine 

electronic data systems. 

 The approach to monitoring must be validated in a wider group of 

NICUs. Research and consultation must determine ways to optimise the 

potential benefits of monitoring, whilst engaging NICU staff in the 

process. 
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Appendix to Chapter 1 

Pubmed literature search terms 
 
Search 1 - premature OR low birth weight OR very low birth weight OR neonatal 
intensive care OR neonatal intensive care unit OR neonatal intensive care units OR 
neonatal ICU OR neonatal ICUs OR NICU OR NICUs OR newborn intensive care OR 
newborn intensive care unit OR newborn intensive care units OR newborn ICU OR 
newborn ICUs OR neonatal critical care OR neonatal critical care unit OR neonatal 
critical care units OR neonatal high dependency OR neonatal high dependency care OR 
neonatal high dependency care unit OR neonatal high dependency care units OR 
neonatal high dependency unit OR neonatal high dependency units OR special care OR 
special care unit OR special care units OR special care baby unit OR special care baby 
units OR SCBU OR SCBUs 
Results: 145,776 studies 
 
Search 2 - bacteraemia OR bacteremia OR bloodstream infection OR bloodstream 
infections OR blood stream infection OR blood stream infections OR sepsis OR septic 
OR septicaemia OR septicaemic OR septicemia OR septicemic 
Results: 115,480 studies 
 
Search 3 – monitoring OR surveillance OR incidence OR risk-adjusted OR risk 
adjusted OR adjusted OR stratified OR time trends OR longterm OR long term OR 
long-term 
Results: 1,778,491 studies 
 
Search #1 AND #2 AND #3 
Results: 2372 studies 
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Embase free text literature search terms 
 
Search 1 - premature OR low birth weight OR very low birth weight  
Results: 76,845 studies 
 
Search 2 - neonatal intensive care OR neonatal intensive care unit OR neonatal 
intensive care units OR neonatal ICU OR neonatal ICUs OR NICU OR NICUs OR 
newborn intensive care OR newborn intensive care unit OR newborn intensive care 
units OR newborn ICU OR newborn ICUs OR neonatal critical care OR neonatal 
critical care unit OR neonatal critical care units 
Results: 10,434 studies 
 
Search 3 - neonatal high dependency OR neonatal high dependency care OR neonatal 
high dependency care unit OR neonatal high dependency care units OR neonatal high 
dependency unit OR neonatal high dependency units  
Results: 1 study 
 
Search 4 - special care OR special care unit OR special care units OR special care baby 
unit OR special care baby units OR SCBU OR SCBUs 
Results: 2325 studies 
 
Search 5 - bacteraemia OR bacteremia OR bloodstream infection OR bloodstream 
infections OR blood stream infection OR blood stream infections OR sepsis OR septic 
OR  septicaemia OR septicaemic OR septicemia OR septicemic 
Results: 101,335 studies 
 
Search 6 - monitoring OR surveillance OR incidence OR risk-adjusted OR risk 
adjusted OR adjusted OR stratified OR time trends OR longterm OR long term OR 
long-term 
Results: 1,037,069 studies 
 
Search (#1 OR #2 OR #3 OR #4) AND #5 AND #6 
Results: 1105 studies 
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Embase thesaurus mapping literature search terms 
 
Search 1 - LOW-BIRTH-WEIGHT.DE. OR PREMATURE-LABOR.DE. OR 
PREMATURITY.W..DE. OR VERY-LOW-BIRTH-WEIGHT.DE. OR NEWBORN-
SEPSIS.DE. OR NEWBORN-MORTALITY.DE. OR SEPSIS.W..DE. OR 
INFECTION.W..DE. 
Results: 155,485 studies 
 
Search 2 - PREMATURITY.W..DE. OR NEWBORN-INTENSIVE-CARE.DE. OR 
PREMATURE-LABOR.DE. OR HOSPITAL-INFECTION.DE. OR VERY-LOW-
BIRTH-WEIGHT.DE. OR CENTRAL-VENOUS-CATHETERIZATION.DE. OR 
SEPSIS.W..DE. OR EXTUBATION.W..DE. OR NEWBORN-CARE.DE. OR 
NEWBORN-SEPSIS.DE. OR NEWBORN-DISEASE.DE. OR LOW-BIRTH-
WEIGHT.DE. OR NEWBORN-INFECTION.DE. 
Results: 129,754 studies 
 
Search 3 - PREGNANCY.W..DE. OR DELIVERY.W..DE. OR INTENSIVE-
CARE.DE 
Results: 219,324 studies 
 
Search 4 - NEWBORN-CARE.DE. OR INTENSIVE-CARE.DE. OR PREMATURE-
LABOR.DE. OR HOSPITALIZATION.W..DE. OR SEPSIS.W..DE. 
Results:  139,565 studies 
 
Search 5 - SEPSIS.W..DE. OR BACTEREMIA.W..DE. OR SEPTIC-SHOCK.DE. OR 
INTENSIVE-CARE.DE. OR NEWBORN-SEPSIS.DE. OR BACTERIAL-
INFECTION.DE. OR HOSPITAL-INFECTION.DE. OR GRAM-NEGATIVE-
INFECTION.DE. OR MYCOSIS.W..DE. OR HYGIENE.W..DE. OR 
INFECTION.W..DE. OR SEPTICEMIA.W..DE. OR MENINGOCOCCOSIS.W..DE. 
OR LOW-BIRTH-WEIGHT.DE. OR NEWBORN-MORTALITY.DE. OR 
ENTEROBACTER-INFECTION.DE. OR MORBIDITY.W..DE. 
Results: 342,313 studies 
 
Search 6 - HOSPITAL-INFECTION.DE. OR HEALTH-CARE-PLANNING.DE. OR 
BACTEREMIA.W..DE. OR MICROBIOLOGY.W..DE. OR INFECTION-
CONTROL.DE. OR MYCOSIS.W..DE  
Results: 97,534 studies 
 
Search (#1 or #2 or #3 or #4) and #5 and #6 
Results: 28,622 studies 
 
Limits imposed: only studies in humans and children 
Results: 2570 studies (overlap with Embase free text search: 27 studies) 
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Searching bibliographies of shortlisted papers  

 

Bibliographies of the ten final shortlisted studies were reviewed for relevance. 

 

Searching related articles  

 

For each of the ten shortlisted studies, the first 20 studies in the ‘related articles’ 

function within PubMed were reviewed for relevance. 

 

Searching conference proceedings 

 

Reviewed from January 2005 to October 2009: 

 

 Annual Meeting for the European Society for Paediatric Infectious Diseases 

(ESPID) 

 European Congress of Clinical Microbiology and Infectious Diseases 

(ECCMID) 

 Neonatal Updates 

 UK Paediatric Research Society 
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Searching regional surveillance systems 

 

Google search 

 

Search 1- Country/region hospital infection monitoring 

Search 2- Country/region hospital infection surveillance 

 

Search 3- Country/region hospital infection neonatal intensive care monitoring  

Search 4- Country/region hospital infection neonatal intensive care surveillance 

 

Substitute country/region for: 

 

UK 

Netherlands 

Germany 

Belgium  

France 

Europe 

USA 

Canada 

Australia 

International 

 

 

This resulted in 40 Google searches (4 searches  10 countries).  

The first 30 search results for each were scanned for relevance. 

 



Appendix to Chapter 2 

British Association of Perinatal Medicine (2001) ‘Standards for Hospitals providing 

Neonatal Intensive and High Dependency Care (Second Edition) and Categories of 

Babies requiring Neonatal Care’, British Association of Perinatal Medicine, London, 

UK. Permission to reproduce this information was confirmed by the BAPM in January 

2011. 

 

Designation of Neonatal Units 

 

Level 1 

Units provide Special Care but do not aim to provide any continuing High Dependency 

or Intensive Care. This term includes units with or without resident medical staff. 

 

Level 2 

Units provide High Dependency Care and some short-term Intensive Care as agreed 

within the network. 

 

Level 3 

Units provide the whole range of medical neonatal care but not necessarily all specialist 

services such as neonatal surgery. 
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Appendix to Chapter 3 

British Association of Perinatal Medicine (2001) ‘Standards for Hospitals providing 

Neonatal Intensive and High Dependency Care (Second Edition) and Categories of 

Babies requiring Neonatal Care’, British Association of Perinatal Medicine, London, 

UK. Permission to reproduce this information was confirmed by the BAPM in January 

2011. 

 

Designation of levels of care 

 

Intensive Care 

These babies have the most complex problems. They need 1:1 care by a nurse with a 

neonatal qualification. The possibility of acute deterioration is such that there should be 

the constant availability of a competent doctor. 

 

1. receiving any respiratory support via a tracheal tube and in the first 24 hours after its 

withdrawal 

2. receiving NCPAP for any part of the day and less than five days old 

3. below 1000g current weight and receiving NCPAP for any part of the day and for 24 

hours after withdrawal 

4. less than 29 weeks gestational age and less than 48 hours old 

5. requiring major emergency surgery, for the pre-operative period and post-operatively 

for 24 hours 

6. requiring complex clinical procedures: 

• Full exchange transfusion 

• Peritoneal dialysis 

• Infusion of an inotrope, pulmonary vasodilator or prostaglandin and for 24   

hours afterwards 

7. any other very unstable baby considered by the nurse-in-charge to need 1:1 nursing 

8. a baby on the day of death. 
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High Dependency Care 

A nurse should not be responsible for the care of more than two babies in this category 

 

1. receiving NCPAP for any part of the day and not fulfilling any of the criteria for 

intensive care 

2. below 1000g current weight and not fulfilling any of the criteria for intensive care 

3. receiving parenteral nutrition 

4. having convulsions 

5. receiving oxygen therapy and below 1500g current weight 

6. requiring treatment for neonatal abstinence syndrome 

7. requiring specified procedures that do not fulfil any criteria for intensive care: 

• Care of an intra-arterial catheter or chest drain 

• Partial exchange transfusion 

• Tracheostomy care until supervised by a parent 

8. requiring frequent stimulation for severe apnoea. 

 

Special Care 

A nurse should not be responsible for the care of more than four babies receiving 

Special or Normal Care. 

 

Special care is provided for all other babies who could not reasonably be expected to be 

looked after at home by their mother. 

 

Normal Care 

Is provided for babies who themselves have no medical indication to be in hospital. 

 

 



Table 3.6 NICU 1: crude and adjusted rate ratios for total BSI 

Potential risk factor 
BSI episodes/baby-days 

(Rate per 1000 baby days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 122/9809 (12.44) 4.68 (3.24, 6.75) <0.001 1.89 (1.05, 3.41) 0.035 
High dependency care 49/3846 (12.74) 4.59 (3.00, 7.04) <0.001 4.74 (3.09, 7.28) <0.001 
Special care 37/14,025 (2.64)  1   1  
Total 208/27,680 (7.51)       

         
Gestational age (weeks)         

<26 62/5078 (12.21) 1.60 (1.07, 2.38) 0.022 1.03 (0.67, 1.60)  0.891 
26-<28 42/4628 (9.08) 1.18 (0.77, 1.83) 0.448 0.84 (0.53, 1.33)  0.455 
28-<32 50/7352 (6.80) 0.90 (0.59, 1.36) 0.610 0.82 (0.54, 1.25)  0.360 
32-<37 15/5513 (2.72) 0.36 (0.20, 0.65) 0.001 0.41 (0.22, 0.74)  0.003 
≥37 39/5101 (7.65)  1   1  
Missingc 0/8        

         
Number of blood samples taken         

Linear increase   1.06 (1.04, 1.07) <0.001 1.05 (1.02,1.08) <0.001 
         
Month         

Linear increase   1.00 (0.99, 1.01) 0.389    
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Table 3.7 NICU 1: crude and adjusted rate ratios for CONS BSI 

Potential risk factor 
CONS episodes/baby-days 
(Rate per 1000 baby days) 

Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 89/9809 (9.07) 4.67  (3.04, 7.19) <0.001 1.83  (0.91, 3.68) 0.088 
High dependency care 32/3846 (8.32) 4.11  (2.46, 6.86) <0.001 4.25  (2.54, 7.12) <0.001 
Special care 27/14,025 (1.93)  1   1  
Total 148/27,680 (5.34)       

         
Gestational age (weeks)         

<26 42/5078 (8.27) 1.76  (1.06, 2.90) 0.028 1.12  (0.65, 1.92) 0.683 
26-<28 34/4628 (7.35) 1.56  (0.92, 2.63) 0.097 1.09  (0.62, 1.89) 0.771 
28-<32 39/7352 (5.30) 1.14  (0.68, 1.89) 0.622 1.03  (0.62, 1.73) 0.906 
32-<37 9/5513 (1.63) 0.35  (0.16, 0.75) 0.007 0.39  (0.18, 0.85) 0.017 
≥37 24/5101 (4.70)  1   1  
Missingc 0/8        

         
Number of blood samples taken         

Linear increase   1.06  (1.04, 1.08) <0.001 1.05 (1.02, 1.09) 0.003 
         
Month         

Linear increase   1.00  (0.99, 1.01) 0.754    
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Table 3.8 NICU 1: crude and adjusted rate ratios for non-CONS BSI 

Potential risk factor 
Non-CONS episodes/baby-days 

(Rate per 1000 baby days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 33/9809 (3.36) 4.68  (2.31, 9.49) <0.001 2.04  (0.67, 6.27)  0.212 
High dependency care 17/3846 (4.42) 5.90  (2.70, 12.88) <0.001 6.05  (2.76, 13.28) <0.001 
Special care 10/14,025 (0.71)  1   1  
Total 60/27,680 (2.17)       

         
Gestational age (weeks)         

<26 20/5078 (3.94) 1.34  (0.69, 2.62) 0.392 0.89  (0.42, 1.88) 0.778 
26-<28 8/4628 (1.73) 0.59  (0.25, 1.38) 0.223 0.43  (0.17, 1.07) 0.069 
28-<32 11/7352 (1.50) 0.51  (0.24, 1.12) 0.093 0.48  (0.22, 1.05) 0.066 
32-<37 6/5513 (1.09) 0.37  (0.14, 0.96) 0.040 0.43  (0.17, 1.12)  0.086 
≥37 15/5101 (2.94)  1   1  
Missingc 0/8        

         
Number of blood samples taken         

Linear increase   1.05  (1.02, 1.08)  <0.001 1.05  (1.00, 1.11) 0.054 
         
Month         

Linear increase   1.01  (0.99, 1.03) 0.266    
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Table 3.9 NICU 2: crude and adjusted rate ratios for total BSI 

Potential risk factor 
BSI episodes/baby-days 

(Rate per 1000 baby days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 157/13,209 (11.89) 3.78  (2.75, 5.20) <0.001 4.29  (2.55, 7.20) <0.001 
High dependency care 18/1331 (13.52) 3.64  (2.12, 6.24) <0.001 3.90  (2.10, 7.25) <0.001 
Special care 50/15,976 (3.13)  1   1  
Total 225/30,516 (7.37)       

         
Gestational age (weeks)         

<26 74/6899 (10.73) 1.09  (0.77, 1.54) 0.625 0.47  (0.32, 0.70) <0.001 
26-<28 30/3070 (9.77) 0.97  (0.62, 1.51) 0.890 0.44  (0.28, 0.71) 0.001 
28-<32 34/7252 (4.69) 0.48  (0.31, 0.73) 0.001 0.31  (0.20, 0.49) <0.001 
32-<37 30/7525 (3.99) 0.41  (0.26, 0.63) <0.001 0.42  (0.27, 0.66) <0.001 
≥37 57/5770 (9.88)  1   1  
Missingc 0        

         
Number of blood samples taken         

Linear increase   1.04  (1.02, 1.05) <0.001 1.00  (0.98, 1.03) 0.695 
         
Month         

Linear increase   0.99  (0.98, 1.00) 0.293    
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Table 3.10 NICU 2: crude and adjusted rate ratios for CONS BSI 

Potential risk factor 
CONS episodes/baby-days 
(Rate per 1000 baby days) 

Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 113/13,209 (8.55) 4.13  (2.80, 6.08) <0.001 3.47  (1.86, 6.50) <0.001 
High dependency care 13/1331 (9.77)  3.98  (2.10, 7.57) <0.001 5.14  (2.45, 10.78) <0.001 
Special care 33/15,976 (2.07)   1   1  
Total 159/30,516 (5.21)        

         
Gestational age (weeks)         

<26 54/6899 (7.83)  1.33  (0.87, 2.05) 0.189 0.58  (0.36, 0.95) 0.029 
26-<28 23/3070 (7.49)  1.25  (0.73, 2.11) 0.416 0.57  (0.32, 1.01)  0.054 
28-<32 26/7252 (3.59)  0.61  (0.37, 1.02) 0.059 0.41  (0.24, 0.69) 0.001 
32-<37 22/7525 (2.92)  0.50  (0.29, 0.85) 0.011 0.52  (0.30, 0.89)  0.017 
≥37 34/5770 (5.89)   1   1  
Missingc 0        

         
Number of blood samples taken         

Linear increase   1.04  (1.03, 1.06) <0.001 1.02  (1.00, 1.05)  0.189 
         
Month         

Linear increase   1.00  (0.99, 1.01) 0.929    
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Table 3.11 NICU 2: crude and adjusted rate ratios for non-CONS BSI 

Potential risk factor 
Non-CONS episodes/baby-days 

(Rate per 1000 baby days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
NHS level of care         

Intensive care 44/13,209 (3.33) 3.12  (1.78, 5.46) <0.001 7.21  (2.86, 18.14)  <0.001 
High dependency care 5/1331 (3.76) 2.97  (1.10, 8.06) 0.032 2.03  (0.65, 6.36) 0.224 
Special care 17/15,976 (1.06)  1   1  
Total 66/30,516 (2.16)       

         
Gestational age (weeks)         

<26 20/6899 (2.90) 0.73  (0.40, 1.33) 0.303 0.31  (0.16, 0.62) 0.001 
26-<28 7/3070 (2.28) 0.56  (0.24, 1.31) 0.180 0.26  (0.10, 0.63) 0.003 
28-<32 8/7252 (1.10) 0.28  (0.12, 0.62) 0.002 0.18  (0.08, 0.42) <0.001 
32-<37 8/7525 (1.06) 0.27  (0.12, 0.60) 0.001 0.28  (0.13, 0.63)  0.002 
≥37 23/5770 (3.99)  1   1  
Missingc 0        

         
Number of blood samples taken         

Linear increase   1.02  (1.00, 1.05) 0.055 0.97  (0.93, 1.01)  0.184 
         
Month         

Linear increase   0.98  (0.97, 1.00)  0.073    
         

c - Babies with missing variables were few and experienced few episodes of BSI. For this reason I considered it acceptable to remove them from the analyses. 
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Appendix to Chapter 5 

 
Table 5.10 Poisson regression models for the effect of birth susceptibility factors on total BSI, for NICU 1 

Potential risk factor 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

       
Gestational age (weeks)       

<26 43/3937  (10.92) 2.32 (1.35, 3.98) 0.002  
26-<28 18/3218  (5.59) 1.19 (0.62, 2.26) 0.605  
28-<32 34/5573  (6.10) 1.28 (0.73, 2.24) 0.388  
32-<37 11/3836  (2.87) 0.59 (0.28, 1.23) 0.157  
≥37 19/3760  (5.05)  1   
Missinge 0/24      

       
Birth weight (g)       

<700 31/2623  (11.82) 2.86 (1.80, 4.55) <0.001 2.27  (1.39, 3.70) 0.001 
700-<1200 51/7759  (6.57) 1.59 (1.06, 2.38) 0.025 1.28  (0.83, 1.98) 0.258 
≥1200 43/9933  (4.33)  1   1  
Missinge 0/33      

       
Where born       

Outborn 59/5895  (10.01) 2.26 (1.59, 3.22) <0.001 1.91  (1.30, 2.79) <0.001 
Inborn 64/14,227  (4.50)  1   1  
Missinge 2/226      

       
Sex       

Male 64/10,530  (6.08) 0.97 (0.69, 1.38) 0.880  
Female 61/9818  (6.21)  1   
Missinge 0/0      

       
Delivery method       

Emergency CSf 51/8814  (5.79) 0.88 (0.61, 1.27) 0.496  
Elective CSf 11/2135  (5.15) 0.78 (0.41, 1.49) 0.454  
Vaginal 62/9321  (6.65)  1   
Missinge 1/78      

       

 243 



Table 5.11 Poisson regression models for the effect of birth susceptibility factors on CONS BSI, for NICU 1 

Potential risk factor 
CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

       
Gestational age (weeks)       

<26 27/3937  (6.86) 1.85 (0.98, 3.47) 0.057  
26-<28 14/3218  (4.35) 1.17 (0.56, 2.42) 0.676  
28-<32 27/5573  (4.84) 1.29 (0.69, 2.42) 0.432  
32-<37 7/3836  (1.82) 0.47 (0.19, 1.16) 0.101  
≥37 15/3760  (3.99)  1   
Missinge 0/24      

       
Birth weight (g)       

<700 21/2623  (8.01) 2.53 (1.46, 4.37) <0.001 1.91  (1.06, 3.41) 0.030 
700-<1200 36/7759  (4.64) 1.46 (0.91, 2.34)  0.115 1.12  (0.67, 1.87) 0.659 
≥1200 33/9933  (3.32)  1   1  
Missinge 0/33      

       
Where born       

Outborn 44/5895  (7.46) 2.46 (1.62, 3.73)  <0.001 2.18  (1.39, 3.43) <0.001 
Inborn 44/14,227 (3.09)  1   1  
Missinge 2/226      

       
Sex       

Male 45/10,530  (4.27) 0.93 (0.61, 1.40) 0.722  
Female 45/9818  (4.58)  1   
Missinge 0/0      

       
Delivery method       

Emergency CSf 39/8814  (4.42) 0.95 (0.62, 1.46)  0.806  
Elective CSf 7/2135  (3.28) 0.70 (0.32, 1.56)  0.385  
Vaginal 44/9321  (4.72)  1   
Missinge 0/78      
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Table 5.12 Poisson regression models for the effect of birth susceptibility 

factors on non-CONS BSI, for NICU 1 

Potential risk factor 
Non-CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
Gestational age (weeks)      

<26 16/3937 (4.06) 4.10  (1.37, 12.27) 0.012 
26-<28 4/3218 (1.24) 1.25  (0.31, 5.00) 0.751 
28-<32 7/5573 (1.26) 1.25  (0.37, 4.28) 0.720 
32-<37 4/3836 (1.04) 1.01  (0.25, 4.04) 0.988 
≥37 4/3760 (1.06)  1  
Missinge 0/24     

      
Birth weight (g)      

<700 10/2623 (3.81) 3.97  (1.65, 9.55) 0.002 
700-≤1200 15/7759 (1.93) 2.01  (0.90, 4.47) 0.087 
≥1200 10/9933 (1.01)  1  
Missinge 0/33     

      
Where born      

Outborn 15/5895 (2.54) 1.84  (0.94, 3.60) 0.074 
Inborn 20/14,227 (1.41)  1  
Missinge 0/226     

      
Sex      

Male 19/10,530 (1.80) 1.10  (0.57, 2.14) 0.775 
Female 16/9818 (1.63)  1  
Missinge 0/0     

      
Delivery method      

Emergency CSf 12/8814 (1.36) 0.71  (0.34, 1.48) 0.363 
Elective CSf 4/2135 (1.87) 0.98  (0.33, 2.90) 0.972 
Vaginal 18/9321 (1.93)  1  
Missinge 1/78     
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Table 5.13 Poisson regression models for the effect of birth susceptibility factors on total BSI, for NICU 2 

Potential risk factor 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
Gestational age (weeks)         

<26 52/4960  (10.48) 1.77 (1.10, 2.86) 0.019    
26-<28 25/2447  (10.22) 1.72 (0.99, 3.00) 0.054    
28-<32 25/6297  (3.97) 0.66 (0.38, 1.16) 0.149    
32-<37 19/5747  (3.31) 0.53 (0.29, 0.97) 0.040    
≥37 25/3748  (6.67)  1     
Missinge 0/0        

         
Birth weight (g)         

<700 52/4278  (12.16) 3.22 (2.18, 4.76) <0.001 3.04  (2.02, 4.58) <0.001 
700-<1200 45/6706  (6.71) 1.77 (1.18, 2.66) 0.006 1.72  (1.14, 2.59) 0.010 
≥1200 49/12,215  (4.01)  1   1  
Missinge 0/0        

         
Where born         

Outborn 38/4081  (9.31) 1.69 (1.17, 2.45) 0.005 1.21  (0.82, 1.78) 0.346 
Inborn 108/19,118  (5.65)  1   1  
Missinge 0/0        

         
Sex         

Male 80/12,574  (6.36) 1.02 (0.74, 1.41) 0.912    
Female 66/10,625  (6.21)  1     
Missinge 0/0        

         
Delivery method         

Emergency CSf 52/7505  (6.93) 1.12 (0.78, 1.60) 0.551    
Elective CSf 26/4840  (5.37) 0.86 (0.55, 1.35) 0.513    
Vaginal 68/10,844  (6.28)  1     
Missinge 0/10        
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Table 5.14 Poisson regression models for the effect of birth susceptibility factors on CONS BSI, for NICU 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Potential risk factor 
CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

Adjusted rate ratios 
(95% CI) p-value 

         
Gestational age (weeks)         

<26 38/4960  (7.66) 2.16 (1.19, 3.93) 0.012    
26-<28 18/2447  (7.36) 2.07 (1.04, 4.10) 0.038    
28-<32 19/6297  (3.02) 0.84 (0.43, 1.66) 0.618    
32-<37 15/5747  (2.61) 0.70 (0.34, 1.44) 0.335    
≥37 15/3748  (4.00)  1     
Missinge 0/0        

         
Birth weight (g)         

<700 38/4278  (8.88) 3.61 (2.25, 5.77) <0.001 3.35 (2.04, 5.48) <0.001 
700-<1200 35/6706  (5.22) 2.11 (1.31, 3.41) 0.002 2.02 (1.24, 3.29) 0.005 
≥1200 32/12,215  (2.62)  1   1  
Missinge 0/0        

         
Where born         

Outborn 29/4081  (7.11) 1.83 (1.20, 2.81) 0.005 1.27 (0.81, 1.99) 0.296 
Inborn 76/19,118  (3.98)  1   1  
Missinge 0/0        

         
Sex         

Male 58/12,574  (4.61) 1.04 (0.71, 1.52) 0.853    
Female 47/10,625  (4.42)  1     
Missinge 0/0        

         
Delivery method         

Emergency CSf 41/7505  (5.46) 1.33 (0.87, 2.03) 0.187    
Elective CSf 19/4840  (3.93) 0.95 (0.56, 1.62) 0.850    
Vaginal 45/10,844  (4.15)  1     
Missinge 0/10        
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Table 5.15 Poisson regression models for the effect of birth susceptibility 

factors on non-CONS BSI, for NICU 2 

Potential risk factor 
Non-CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
Gestational age (weeks)      

<26 14/4960 (2.82) 1.19 (0.53, 2.69)  0.669 
26-<28 7/2447 (2.86) 1.21 (0.46, 3.17)  0.704 
28-<32 6/6297 (0.95) 0.40 (0.14, 1.10)  0.075 
32-<37 4/5747 (0.70) 0.28 (0.09, 0.90)  0.032 
≥37 10/3748 (2.67)  1  
Missinge 0/0     

      
Birth weight (g)      

<700 14/4278 (3.27) 2.50 (1.23, 5.07) 0.011 
700-<1200 10/6706 (1.49) 1.14 (0.52, 2.48) 0.750 
≥1200 17/12,215 (1.39)  1  
Missinge 0/0     

      
Where born      

Outborn 9/4081 (2.21) 1.35 (0.65, 2.83) 0.424 
Inborn 32/19,118 (1.67)  1  
Missinge 0/0     

      
Sex      

Male 22/12,574 (1.75) 0.97 (0.53, 1.80) 0.930 
Female 19/10,625 (1.79)  1  
Missinge 0/0     

      
Delivery method      

Emergency CSf 11/7505 (1.47) 0.70 (0.34, 1.43) 0.327 
Elective CSf 7/4840 (1.45) 0.68 (0.29, 1.60) 0.380 
Vaginal 23/10,844 (2.12)  1  
Missinge 0/10     
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Table 5.16 Poisson regression models for the effect of birth susceptibility 

factors on total BSI, for NICU 3 

Potential risk factors 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
Gestational age (weeks)      

<26 22/1204 (18.27) 8.61 (3.49, 21.24) <0.001 
26-<28 12/1432 (8.38) 3.94 (1.48, 10.50) 0.006 
28-<32 29/4499 (6.45) 3.02 (1.25, 7.27) 0.014 
32-<37 7/4748 (1.47) 0.67 (0.22, 1.98) 0.464 
≥37 6/2582 (2.32)  1  
Missinge 0/34     

      
Birth weight (g)      

<700 21/1642 (12.79) 7.20 (3.76, 13.80) <0.001 
700-<1200 39/4327 (9.01) 5.05 (2.82, 9.04) <0.001 
≥1200 16/8510 (1.88)  1  
Missinge 0/20     

      
Where born      

Outborn 4/1413 (2.83) 0.52 (0.19, 1.43)  0.208 
Inborn 70/12,852 (5.45)  1  
Missinge 2/234     

      
Sex      

Male 38/6836 (5.56) 1.10 (0.70, 1.72)  0.681 
Female 38/7587 (5.01)  1  
Missinge 0/76     

      
Delivery method      

Emergency CSf 42/5777 (7.27) 1.69 (1.04, 2.76) 0.035 
Elective CSf 6/2276 (2.64) 0.61 (0.25, 1.48) 0.271 
Vaginal 26/5979 (4.35)  1  
Missinge 2/467     
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Table 5.17 Poisson regression models for the effect of birth susceptibility 

factors on CONS BSI, for NICU 3 

Potential risk factors 
CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
Gestational age (weeks)      

<26 17/1204 (14.12) 6.65 (2.62, 16.88) <0.001 
26-<28 11/1432 (7.68) 3.61 (1.34, 9.77) 0.011 
28-<32 24/4499 (5.33) 2.50 (1.02, 6.11) 0.045 
32-<37 6/4748 (1.26) 0.57 (0.18, 1.77) 0.331 
≥37 6/2582 (2.32)  1  
Missinge 0/34     

      
Birth weight (g)      

<700 17/1642 (10.35) 6.22 (3.11, 12.45) <0.001 
700-<1200 32/4327 (7.40) 4.42 (2.39, 8.17) <0.001 
≥1200 15/8510 (1.76)  1  
Missinge 0/20     

      
Where born      

Outborn 4/1413 (2.83) 0.63 (0.23, 1.74) 0.632 
Inborn 58/12,852 (4.51)  1  
Missinge 2/234     

      
Sex      

Male 32/6836 (4.68) 1.10 (0.67, 1.79) 0.706 
Female 32/7587 (4.22)  1  
Missinge 0/76     

      
Delivery method      

Emergency CSf 35/5777 (6.06) 1.59 (0.94, 2.70) 0.082 
Elective CSf 4/2276 (1.76) 0.46 (0.16, 1.32) 0.149 
Vaginal 23/5979 (3.85)  1  
Missinge 2/467     
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Table 5.18 Poisson regression models for the effect of birth susceptibility 

factors on non-CONS BSI, for NICU 3 

Potential risk factors 
Non-CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
Gestational age 
(weeks) 

     

<26 5/1204 (4.15)  -  
26-<28 1/1432 (0.70)  -  
28-<32 5/4499 (1.11)  -  
32-<37 1/4748 (0.21)  -  
≥37 0/2582   -  
Missinge 0/34     

      
Birth weight (g)      

<700 4/1642 (2.44) 21.95 (2.45, 19.62)  0.006 
700 - <1200 7/4327 (1.62) 14.51 (1.79, 117.87)  0.012 
≥1200 1/8510 (0.12)  1  
Missinge 0/20     

      
Where born      

Outborn 0/1413 (0.0)  -  
Inborn 12/12,852 (0.93)  -  
Missinge 0/234     

      
Sex      

Male 6/6836 (0.88) 1.10 (0.35, 3.41)  0.870 
Female 6/7587 (0.79)  1  
Missinge 0/76     

      
Delivery method      

Emergency CSf 7/5777 (1.21) 2.44 (0.63, 9.45) 0.195 
Elective CSf 2/2276 (0.88) 1.75 (0.29, 10.50) 0.538 
Vaginal 3/5979 (0.50)  1  
Missinge 0/467     

      
e - Babies with missing variables were few and experienced few episodes of BSI. For this 
reason I considered it acceptable to remove them from the analyses. 
f - CS- Caesarean section 
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Table 5.19 Poisson regression models for the effect of procedure-related 

factors on total BSI, for NICU 1 

Potential risk factors 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples taken      
≥7 68/5277 (12.89) 5.33 (3.48, 8.15) <0.001 
4-6 26/2847 (9.13) 3.75 (2.23, 6.32) <0.001 
0-3 31/12,224 (2.54)  1  

      
Number of days spent in:      
      
Special care      
≥7 92/16,015 (5.74) 0.78 (0.49, 1.24) 0.296 
4-6 4/786 (5.09) 0.62 (0.21, 1.80) 0.382 
1-3 7/658 (10.64) 1.28 (0.55, 3.00) 0.566 
0 22/2889 (7.62)  1  

      
High dependency care      
≥7 63/7287 (8.65) 1.86 (1.26, 2.76)  0.002 
4-6 4/1321 (3.03) 0.64 (0.23, 1.79)  0.399 
1-3 17/3216 (5.29) 1.12 (0.64, 1.97)  0.692 
0 41/8524 (4.81)  1  

      
Intensive care      
≥7 92/11,110 (8.28) 3.40 (1.94, 5.96)  <0.001 
4-6 8/1532 (5.22) 2.09 (0.88, 4.99)  0.096 
1-3 11/2311 (4.76) 1.90 (0.86, 4.19)  0.110 
0 14/5395 (2.59)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 66/7779 (8.48) 1.96 (1.32, 2.92) <0.001 
4-6 4/735 (5.44) 1.23 (0.44, 3.45) 0.691 
1-3 16/3248 (4.93) 1.12 (0.63, 2.01) 0.701 
0 39/8586 (4.54)  1  

      
Nasal continuous positive 
airway pressure 

     

≥7 63/8630 (7.30) 1.38 (0.95, 2.00) 0.094  
4-6 2/754 (2.65) 0.49 (0.12, 2.03) 0.329 
1-3 11/2172 (5.06) 0.93 (0.49, 1.80) 0.839 
0 49/8792 (5.57)  1  

      
Surgery      

Yes 34/3562 (9.55) 1.81 (1.22, 2.68) 0.003 
No 91/16,786 (5.42)  1  
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Table 5.20 Poisson regression models for the effect of procedure-related 

factors on CONS BSI, for NICU 1 

Potential risk factors 
CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios  
(95% CI) p-value 

      
No of blood samples taken      
≥7 46/5277 (8.72) 4.14  (2.57, 6.65) <0.001 
4-6 17/2847 (5.97) 2.82  (1.53, 5.17) <0.001 
0-3 27/12,224 (2.21)  1  

      
Number of days spent in:      
      
Special care      
≥7 68/16,015 (4.25) 0.91  (0.51, 1.61) 0.738 
4-6 3/786 (3.82) 0.73  (0.21, 2.55) 0.625 
1-3 5/658 (7.60) 1.44  (0.52, 4.00) 0.484 
0 14/2889 (4.85)  1  

      
High dependency care      
≥7 45/7287 (6.18) 1.95  (1.22, 3.12) 0.006 
4-6 3/1321 (2.27) 0.71  (0.21, 2.32) 0.566 
1-3 14/3216 (4.35) 1.35  (0.71, 2.57) 0.357 
0 28/8524 (3.28)  1  

      
Intensive care      
≥7 64/11,110 (5.76) 2.76  (1.49, 5.11) 0.001 
4-6 7/1532 (4.57) 2.14  (0.84, 5.42) 0.111 
1-3 7/2311 (3.03) 1.41  (0.56, 3.59) 0.467 
0 12/5395 (2.22)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 44/7779 (5.66) 1.65  (1.04, 2.61) 0.033 
4-6 3/735 (4.08) 1.16  (0.36, 3.80) 0.804 
1-3 12/3248 (3.69) 1.06  (0.54, 2.06) 0.870 
0 31/8586 (3.61)  1  

      
Nasal continuous positive 
airway pressure 

     

≥7 46/8630 (5.33) 1.49  (0.95, 2.33) 0.080 
4-6 2/754 (2.65) 0.73  (0.18, 3.06) 0.672 
1-3 9/2172 (4.14) 1.14  (0.54, 2.37) 0.736 
0 33/8792 (3.75)  1  

      
Surgery      

Yes 23/3562 (6.46) 1.66  (1.03, 2.67) 0.036 
No 67/16,786 (3.99)  1  
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Table 5.21 Poisson regression models for the effect of procedure-related 

factors on non-CONS BSI, for NICU 1 

Potential risk factors 
Non-CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples taken      
≥7 22/5277 (4.17) 13.35  (4.60, 38.75) <0.001 
4-6 9/2847 (3.16) 10.06  (3.10, 32.67) <0.001 
0-3 4/12,224 (0.33)  1  

      
Number of days spent in:      
      
Special care      
≥7 24/16,015 (1.50) 0.56  (0.25, 1.25) 0.155 
4-6 1/786 (1.27) 0.43  (0.05, 3.42) 0.423 
1-3 2/658 (3.04) 1.01  (0.21, 4.75) 0.992 
0 8/2889 (2.77)  1  

      
High dependency care      
≥7 18/7287 (2.47) 1.68  (0.82, 3.43) 0.154 
4-6 1/1321 (0.76) 0.51  (0.07, 3.87) 0.513 
1-3 3/3216 (0.93) 0.62  (0.18, 2.19) 0.461 
0 13/8524 (1.53)  1  

      
Intensive care      
≥7 28/11,110 (2.52) 7.24  (1.73, 30.40) 0.007 
4-6 1/1532 (0.65) 1.83  (0.17, 20.19) 0.622 
1-3 4/2311 (1.73) 4.85  (0.89, 26.46) 0.068 
0 2/5395 (0.37)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 22/7779 (2.83) 3.19  (1.42, 7.17) 0.005 
4-6 1/735 (1.36) 1.50  (0.19, 12.00) 0.702 
1-3 4/3248 (1.23) 1.37  (0.41, 4.54) 0.611 
0 8/8586 (0.93)  1  

      
Nasal continuous positive 
airway pressure 

     

≥7 17/8630 (1.97) 1.14  (0.57, 2.25) 0.712 
4-6 0/754 (0.00) - - - 
1-3 2/2172 (0.92) 0.520  (0.12, 2.26) 0.384 
0 16/8792 (1.82)  1  

      
Surgery      

Yes 11/3562 (3.09) 2.22  (1.09, 4.53) 0.029 
No 24/16,786 (1.43)  1  
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Table 5.22 Poisson regression models for the effect of procedure-related 

factors on total BSI, for NICU 2 

Potential risk factors 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples taken      
≥7 61/5683 (10.73) 3.42 (2.33, 5.03) <0.001 
4-6 40/4028 (9.93) 3.14 (2.05, 4.81) <0.001 
0-3 45/13,488 (3.34)  1  

      
Number of days spent in:      
      
Special care      
≥7 74/17,088 (4.33) 0.29 (0.20, 0.40) <0.001 
4-6 7/1220 (5.74) 0.33 (0.15, 0.73) 0.006 
1-3 6/992 (6.05) 0.32 (0.14, 0.75) 0.009 
0 59/3899 (15.13)  1  

      
High dependency care      
≥7 19/2382 (7.98) 1.32 (0.81, 2.16) 0.261 
4-6 5/865 (5.78) 0.95 (0.39, 2.33) 0.910 
1-3 16/2894 (5.53) 0.89 (0.53, 1.51) 0.674 
0 106/17,058 (6.21)  1  

      
Intensive care      
≥7 106/13,085 (8.10) 2.55 (1.58, 4.11) <0.001 
4-6 6/1362 (4.41) 1.33 (0.54, 3.32) 0.535 
1-3 14/2980 (4.70) 1.41 (0.71, 2.79) 0.326 
0 20/5772 (3.47)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 106/12,737 (8.32) 2.00 (1.32, 3.01) <0.001 
4-6 6/1276 (4.70) 1.09 (0.45, 2.64) 0.840 
1-3 5/2781 (1.80) 0.41 (0.16, 1.06) 0.066 
0 29/6405 (4.53)  1  

      
Total parenteral nutrition      
≥7 106/10,965 (9.67) 3.92 (2.57, 5.98) <0.001 
4-6 9/1331 (6.76) 2.71 (1.27, 5.75) 0.010 
1-3 4/686 (5.83) 2.33 (0.82, 6.66) 0.114 
0 27/10,217 (2.64)  1  

      
Surgery      

Yes 53/5507 (9.62) 1.91 (1.36, 2.68) <0.001 
No 93/17,692 (5.26)  1  
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Table 5.23 Poisson regression models for the effect of procedure-related 

factors on CONS BSI, for NICU 2 

Potential risk factors 
CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples 
taken 

     

≥7 45/5683 (7.92) 3.55 (2.26, 5.58) <0.001 
4-6 28/4028 (6.95) 3.09 (1.86, 5.13) <0.001 
0-3 32/13,488 (2.37)  1  

      
Number of days spent in:      
      
Special care      
≥7 55/17,088 (3.22) 0.30 (0.20, 0.45) <0.001 
4-6 4/1220 (3.28) 0.27 (0.10, 0.75) 0.012 
1-3 4/992 (4.03) 0.30 (0.11, 0.85) 0.023 
0 42/3899 (10.77)  1  

      
High dependency care      
≥7 13/2382 (5.46) 1.26 (0.70, 2.27) 0.437 
4-6 5/865 (5.78) 1.32 (0.54, 3.27) 0.543 
1-3 11/2894 (3.80) 0.86 (0.46, 1.61) 0.632 
0 76/17,058 (4.46)  1  

      
Intensive care      
≥7 78/13,085 (5.96) 2.68 (1.52, 4.73) <0.001 
4-6 5/1362 (3.67) 1.59 (0.57, 4.41) 0.374 
1-3 8/2980 (2.68) 1.15 (0.48, 2.74) 0.753 
0 14/5772 (2.43)  1  

      
Number of days treated 
with: 

     

      
Ventilation      
≥7 78/12,737 (6.12) 2.24 (1.36, 3.70) 0.002 
4-6 5/1276 (3.92) 1.39 (0.52, 3.73) 0.510 
1-3 3/2781 (1.08) 0.38 (0.11, 1.27) 0.116 
0 19/6405 (2.97)  1  

      
Total parenteral nutrition      
≥7 79/10,965 (7.20) 4.64 (2.75, 7.83) <0.001 
4-6 7/1331 (5.26) 3.34 (1.39, 8.06) 0.007 
1-3 2/686 (2.92) 1.85 (0.43, 8.01) 0.410 
0 17/10,217 (1.66)  1  

      
Surgery      

Yes 37/5507 (6.72) 1.82 (1.22, 2.72) 0.003 
No 68/17,692 (3.84)  1  
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Table 5.24 Poisson regression models for the effect of procedure-related 

factors on non-CONS BSI, for NICU 2 

Potential risk factors 
Non-CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples 
taken 

     

≥7 16/5683 (2.82) 3.11 (1.49, 6.46) 0.002 
4-6 12/4028 (2.98) 3.26 (1.49, 7.14) 0.003 
0-3 13/13,488 (0.96)  1  

      
Number of days spent 
in: 

     

      
Special care      
≥7 19/17,088 (1.11) 0.25 (0.13, 0.49) <0.001 
4-6 3/1220 (2.46) 0.50 (0.15, 1.70) 0.265 
1-3 2/992 (2.02) 0.38 (0.09, 1.63) 0.190 
0 17/3899 (4.36)  1  

      
High dependency care      
≥7 6/2382 (2.52) 1.48 (0.61, 3.55) 0.383 
4-6 0/865 (0.00)  -  
1-3 5/2894 (1.73) 0.99 (0.38, 2.54) 0.977 
0 30/17,058 (1.76)  1  

      
Intensive care      
≥7 28/13,085 (2.14) 2.24 (0.93, 5.42) 0.072 
4-6 1/1362 (0.73) 0.74 (0.09, 6.16) 0.782 
1-3 6/2980 (2.01) 2.01 (0.65, 6.24) 0.226 
0 6/5772 (1.04)  1  

      
Number of days treated 
with: 

     

      
Ventilation      
≥7 28/12,737 (2.20) 1.53 (0.74, 3.15) 0.248 
4-6 1/1276 (0.78) 0.53 (0.07, 4.13) 0.544 
1-3 2/2781 (0.72) 0.48 (0.10, 2.18) 0.339 
0 10/6405 (1.56)  1  

      
Total parenteral 
nutrition 

     

≥7 27/10,965 (2.46) 2.69 (1.30, 5.57) 0.007 
4-6 2/1331 (1.50) 1.62 (0.36, 7.41) 0.532 
1-3 2/686 (2.92) 3.15 (0.69, 14.36) 0.139 
0 10/10,217 (0.98)  1  

      
Surgery      

Yes 16/5507 (2.91) 2.15 (1.15, 4.02) 0.017 
No 25/17,692 (1.41)  1  

      

 
 

 257



Table 5.25 Poisson regression models for the effect of procedure-related 

factors on total BSI, for NICU 3 

Potential risk factors 
BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples taken      
≥7 41/2947 (13.91) 10.76 (5.66, 20.48) <0.001 
4-6 23/2750 (8.36) 6.35 (3.16, 12.76) <0.001 
0-3 12/8802 (1.36)  1  

      
Number of days spent in:      
      
Special care      
≥7 50/11,866 (4.21) 0.30 (0.19, 0.49) <0.001 
4-6 0/451 (0.00)  -  
1-3 1/437 (2.29) 0.13 (0.02, 0.98) 0.047 
0 25/1745 (14.33)  1  

      
High dependency care      
≥7 21/2727 (7.70) 1.51 (0.90, 2.54) 0.119 
4-6 10/1533 (6.52) 1.27 (0.64, 2.52) 0.494 
1-3 1/1914 (0.52) 0.10 (0.01, 0.71) 0.021 
0 44/8325 (5.29)  1  

      
Intensive care      
≥7 61/6173 (9.88) 11.42 (4.59, 28.42) <0.001 
4-6 4/953 (4.20) 4.71 (1.26, 17.53) 0.021 
1-3 6/1955 (3.07) 3.39 (1.03, 11.11) 0.044 
0 5/5418 (0.92)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 42/3594 (11.69) 6.82 (3.72, 12.48) <0.001 
4-6 5/705 (7.09) 4.08 (1.47, 11.32) 0.007 
1-3 15/2509 (5.98) 3.42 (1.65, 7.08) <0.001 
0 14/7691 (1.82)  1  

      
Total parenteral nutrition      
≥7 62/5512 (11.25) 8.32 (4.49, 15.44) <0.001 
4-6 0/441 (0.00)  -  
1-3 2/130 (15.38) 10.79 (2.41, 48.21) 0.002 
0 12/8416 (1.43)  1  

      
Nasal continuous positive 
airway pressure 

     

≥7 45/5126 (8.78) 2.90 (1.73, 4.87) <0.001 
4-6 3/743 (4.04) 1.31 (0.39, 4.40) 0.660 
1-3 7/2089 (3.35) 1.06 (0.45, 2.50) 0.890 
0 21/6541 (3.21)  1  

      
Long line      
≥7 56/5230 (10.71) 7.43 (4.07, 13.59) <0.001 
4-6 3/445 (6.74) 4.58 (1.30, 16.06) 0.018 
1-3 4/271 (14.76) 10.12 (3.30, 31.03) <0.001 
0 13/8553 (1.52)  1  

      
Umbilical arterial catheter      
≥7 22/1555 (14.15) 4.26 (2.51, 7.21) <0.001 
4-6 10/1243 (8.05) 2.42 (1.21, 4.87) 0.013 
1-3 7/1060 (6.60) 1.97 (0.88, 4.41) 0.101 
0 37/10,641 (3.48)  1  
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Umbilical venous catheter      
≥7 19/1828 (10.39) 3.55 (2.01, 6.26) <0.001 
4-6 13/708 (18.36) 6.22 (3.26, 11.85) <0.001 
1-3 12/1554 (7.72) 2.60 (1.34, 5.05) 0.005 
0 32/10,409 (3.07)  1  



Table 5.26 Poisson regression models for the effect of procedure-related 

factors on CONS BSI, for NICU 3 

Potential risk factors 
CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples taken      
≥7 33/2947 (11.20) 11.55 (5.53, 24.15) <0.001 
4-6 22/2750 (8.00) 8.10 (3.73, 17.58) <0.001 
0-3 9/8802 (1.02)  1  

      
Number of days spent in:      
      
Special care      
≥7 44/11,866 (3.71) 0.35 (0.21, 0.60) <0.001 
4-6 0/451 (0.00)  -  
1-3 1/437 (2.29) 0.17 (0.02, 1.30) 0.089 
0 19/1745 (10.89)  1  

      
High dependency care      
≥7 17/2727 (6.23) 1.46 (0.82, 2.58) 0.200 
4-6 9/1533 (5.87) 1.36 (0.66, 2.82) 0.408 
1-3 1/1914 (0.52) 0.12 (0.02, 0.84) 0.033 
0 37/8325 (4.44)  1  

      
Intensive care      
≥7 51/6173 (8.26) 9.55 (3.81, 23.92) <0.001 
4-6 3/953 (3.15) 3.53 (0.84, 14.77) 0.084 
1-3 5/1955 (2.56) 2.83 (0.82, 9.76)  0.100 
0 5/5418 (0.92)  1  

      
Number of days treated with:      
      
Ventilation      
≥7 33/3594 (9.18) 5.77 (3.04, 10.96) <0.001 
4-6 5/705 (7.09) 4.39 (1.57, 12.32) 0.005 
1-3 13/2509 (5.18) 3.19 (1.48, 6.88) 0.003 
0 13/7691 (1.69)  1  

      
Total parenteral nutrition      
≥7 50/5512 (9.07) 6.71 (3.58, 12.60) <0.001 
4-6 0/441 (0.00)  -  
1-3 2/130 (15.38) 10.79 (2.41, 48.21) <0.001 
0 12/8416 (1.43)  1  

      
Nasal continuous positive 
airway pressure 

     

≥7 37/5126 (7.22) 2.79 (1.59, 4.89) <0.001 
4-6 3/743 (4.04) 1.53 (0.45, 5.20) 0.495 
1-3 6/2089 (2.87) 1.06 (0.42, 2.68) 0.898 
0 18/6541 (2.75)  1  

      
Long line      
≥7 44/5230 (8.41) 5.84 (3.15, 10.84) <0.001 
4-6 3/445 (6.74) 4.58 (1.30, 16.06) 0.018 
1-3 4/271 (14.76) 10.12 (3.30, 31.03) <0.001 
0 13/8553 (1.52)  1  

      
Umbilical arterial catheter      
≥7 16/1555 (10.29) 3.58 (1.96, 6.52) <0.001 
4-6 9/1243 (7.24) 2.52 (1.20, 5.28) 0.014 
1-3 7/1060 (6.60) 2.28 (1.00, 5.16) 0.049 
0 32/10,641 (3.01)  1  
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Umbilical venous catheter      
≥7 15/1828 (8.21) 3.32 (1.77, 6.24) <0.001 
4-6 11/708 (15.54) 6.24 (3.09, 12.57) <0.001 
1-3 11/1554 (7.08) 2.82 (1.40, 5.69) 0.004 
0 27/10,409 (2.59)  1  

 



Table 5.27 Poisson regression models for the effect of procedure-related 

factors on non-CONS BSI, for NICU 3 

Potential risk factors 
Non-CONS BSI episodes/baby-days 

(Rate per 1000 baby-days) 
Crude rate ratios 
(95% CI) p-value 

      
No of blood samples 
taken 

     

≥7 8/2947 (2.71) 8.40 (2.23, 31.67) 0.002 
4-6 1/2750 (0.36) 1.10 (0.11, 10.61) 0.932 
0-3 3/8802 (0.34)  1  

      
Number of days spent 
in: 

     

      
Special care      
≥7 6/11,866 (0.51) 0.15 (0.05, 0.47) 0.001  
4-6 0/451 (0.00)  -  
1-3 0/437 (0.00)  -  
0 6/1745 (3.44)  1  

      
High dependency care      
≥7 4/2727 (1.47) 1.81 (0.53, 6.18) 0.344 
4-6 1/1533 (0.65) 0.80 (0.10, 6.49) 0.833 
1-3 0/1914 (0.00)  -  
0 7/8325 (0.84)  1  

      
Intensive care      
≥7 10/6173 (1.62)  -  
4-6 1/953 (1.05)  -  
1-3 1/1955 (0.51)  -  
0 0/5418 (0.00)  -  

      
Number of days treated 
with: 

     

      
Ventilation      
≥7 9/3594 (2.50) 20.45 (2.59, 161.41) 0.004 
4-6 0/705 (0.00)  -  
1-3 2/2509 (0.80) 6.38 (5.78, 70.34) 0.130 
0 1/7691 (0.13)  1  

      
Total parenteral 
nutrition 

     

≥7 12/5512 (2.18)  -  
4-6 0/441 (0.00)  -  
1-3 0/130 (0.00)  -  
0 0/8416 (0.00)  -  

      
Nasal continuous 
positive airway pressure 

     

≥7 8/5126 (1.56) 3.61 (0.96, 13.62) 0.058 
4-6 0/743 (0.00)  -  
1-3 1/2089 (0.48) 1.06 (0.11, 10.21) 0.958 
0 3/6541 (0.46)  1  

      
Long line      
≥7 12/5230 (2.29)  -  
4-6 0/445 (0.00)  -  
1-3 0/271 (0.00)  -  
0 0/8553 (0.00)  -  

      
Umbilical arterial      
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catheter 
≥7 6/1555 (3.86) 8.59 (2.62, 28.14) <0.001 
4-6 1/1243 (0.80) 1.79 (0.21, 15.35) 0.594 
1-3 0/1060 (0.00)  -  
0 5/10,641 (0.47)  1  

      
Umbilical venous 
catheter 

     

≥7 4/1828 (2.19) 4.78 (1.28, 17.80) 0.020 
4-6 2/708 (2.82) 6.12 (1.19, 31.56) 0.030 
1-3 1/1554 (0.64) 1.39 (0.16, 11.87) 0.765 
0 5/10,409 (0.48)  1  



Appendix to Chapter 7 

Table 7.5 Case control study, control selection strategy 2. Results for NICU 1 and NICU 2 combined 

Potential risk factor 
Number of 

cases 
Number of 
controls 

Crude odds ratios 
(95% CI) p-value 

Adjusted odds ratios 
(95% CI) p-value 

         
Highest level of carec         

Intensive care 138 155 5.63 (3.71, 8.54) <0.001 3.15 (1.88, 5.30) <0.001 
High dependency care 47 41 7.59 (4.26, 13.49) <0.001 7.84 (4.23, 14.52) <0.001 
Special care 36 266  1   1  
Otherd 15 10       

         
Gestational age (weeks)         

<26 72 54 3.53 (2.05, 6.07) <0.001    
26-<28 35 43 2.00 (1.09, 3.69) 0.026    
28-<32 53 127 1.01 (0.61, 1.68) 0.957    
32-<37 30 144 0.46 (0.27, 0.79) 0.005    
≥37 46 104  1     
Missinge 0 0       

         
Birth weight (g)         

<700g 62 33 6.68 (3.98, 11.23) <0.001 4.42 (2.25, 8.66) <0.001 
700g-<1200g 78 121 2.41 (1.61, 3.60) <0.001 1.61 (0.96, 2.70) 0.071 
≥1200g 96 318  1   1  
Missinge 0 0       

         
Inborn status         

No 80 86 2.43 (1.67, 3.52) <0.001 1.67 (1.04, 2.68) 0.033 
Yes 154 384  1   1  
Missinge 2 2       

         
Hospital         

NICU 2 129 263 0.96 (0.70, 1.31) 0.791    
NICU 1 107 209  1     

         
Sex         

Male 130 239 1.20 (0.87, 1.64) 0.262    
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Female 106 233  1     
         
Delivery method         

Emergency CSf 92 184 0.94 (0.67, 1.33) 0.736    
Elective CSf 33 76 0.82 (0.52, 1.31) 0.410    
Vaginal 110 210  1     
Missinge 1 2       

         
Number of blood samples takenc         
≥2 2 3 1.24 (0.20, 7.50) 0.816    
1 27 63 0.83 (0.50, 1.38) 0.468    
0 207 406  1     

         
Surgeryc         

Yes 5 7 1.43 (0.45, 4.50) 0.542    
No 231 465  1     

         



Table 7.6 Case control study, control selection strategy 2. Results for NICU 1h 
 

Potential risk factor 
Number of 

cases 
Number of 
controls 

Crude odds ratios 
(95% CI) p-value 

Adjusted odds ratios 
(95% CI) p-value 

         
Highest level of carec         

Intensive care 60 75 4.84 (2.54, 9.23) <0.001 4.69 (2.26, 9.72) <0.001 
High dependency care 28 27 5.99 (2.81, 12.75) <0.001 6.80 (2.99, 15.48) <0.001 
Special care 16 108 1    1  
Otherd 3 4       

         
Gestational age (weeks)         

<26 33 33 2.24 (0.95, 5.26) 0.064    
26-<28 17 28 1.44 (0.58, 3.56) 0.434    
28-<32 28 59 0.96 (0.42, 2.20) 0.926    
32-<37 10 57 0.33 (0.13, 0.82) 0.018    
≥37 19 37  1     
Missinge 0 0       

         
Birth weight (g)         
≤ 700g 24 20 4.28 (1.99, 9.23) <0.001    
700g-<1200g 42 75 1.93 (1.07, 3.48) 0.028    
≥1200g 41 119  1     
Missinge 0 0       

         
Inborn status         

No 50 56 2.69 (1.58, 4.56) <0.001 1.56 (0.83, 2.93) 0.167 
Yes 55 157  1   1  
Missinge 2 1       

         
Sex         

Male 58 114 1.04 (0.66, 1.63) 0.877    
Female 49 100  1     

         
Delivery method         

Emergency CSf 46 92 0.99 (0.61, 1.62) 0.970    
Elective CSf 8 19 0.84 (0.35, 1.98) 0.688    
Vaginal 52 103  1     
Missinge 1 0       
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Number of blood samples takenc         
≥2 1 1 1.83 (0.11, 31.04) 0.677    
1 13 29 0.88 (0.40, 1.97) 0.763    
0 93 184  1     

         
Surgeryc         

Yes 2 4 1 (0.18, 5.46) 1.00    
No 105 210  1     

         

 
 
 
 
 
 
 
 
 
 
 



Table 7.7 Case control study, control selection strategy 2. Results for NICU 2 

 
Potential risk factor 

Number of 
cases 

Number of 
controls 

Crude odds ratios 
(95% CI) p-value 

Adjusted odds ratios 
incorporating level of care 

(95% CI) p-value 
AIC= 172.12 

Adjusted odds ratios 
incorporating total 
parenteral nutrition 

(95% CI) p-value 
AIC= 201.57 

            
Highest level of carec            

Intensive care 78 79 7.08 (3.84, 13.06) <0.001 2.67 (1.28, 5.59) 0.009    
High dependency care 19 18 9.24 (3.73, 22.91) <0.001 9.30 (3.54, 24.46) <0.001    
Special care 20 152  1   1     
Otherd 12 9          

            
Gestational age (weeks)            

<26 39 20 7.77 (3.36, 18.00) <0.001    1.86 (0.69, 5.05) 0.221 
26-<28 18 11 7.09 (2.56, 19.64) <0.001    2.39 (0.78, 7.30) 0.128 
28-<32 25 54 1.74 (0.83, 3.64) 0.141    0.66 (0.27, 1.60) 0.363 
32-<37 20 100 0.58 (0.29, 1.17) 0.130    0.42 (0.20, 0.91) 0.028 
≥37 27 73  1      1  
Missinge 0 0          

            
Birth weight (g)            
≤ 700g 38 15 10.79 (4.96, 23.51) <0.001 8.26 (3.13, 21.82) <0.001    
700g-<1200g 36 36 4.31 (2.26, 8.20) <0.001 3.99 (1.77, 9.00) 0.001    
≥1200g 55 207  1   1     
Missinge 0 0          

            
Inborn status            

No 30 37 1.92 (1.09, 3.39) 0.025       
Yes 99 221  1        
Missinge 0 0          

            
Sex            

Male 72 140 1.06 (0.70, 1.60) 0.779       
Female 57 118  1        

            
Delivery method            

Emergency CSf 46 89 0.98 (0.60, 1.58) 0.919       
Elective CSf 25 60 0.79 (0.45, 1.36) 0.387       
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Vaginal 58 108  1        
Missinge 0 1          

            
Number of blood samples takenc            
≥2 1 2 0.62 (0.05, 7.45) 0.708       
1 14 45 0.50 (0.24, 1.05) 0.067       
0 114 211  1        

            
Surgeryc            

Yes 3 7 0.86 (0.22, 3.31) 0.823       
No 126 251  1        

            
Total parenteral nutritionc            

Yes 72 35 10.05 (5.29, 19.11) <0.001    7.42 (3.45, 15.97) <0.001 
No 57 223  1      1  

            
Ventilationc            

Yes 75 68 3.59 (2.29, 5.64) <0.001       
No 54 190  1        

            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7.8 Case control study, control selection strategy 3. Results for NICU 1 and NICU 2 combined 

Potential risk factor 
Number of 

cases 
Number of 
controls 

Crude odds ratios 
(95% CI) p-value 

Adjusted odds ratios 
(95% CI) p-value 

         
Highest level of carec         

Intensive care 138 168 5.73 (3.60, 9.13) <0.001 3.29 (1.87, 5.78) <0.001 
High dependency care 47 58 5.10 (2.96, 8.78) <0.001 4.89 (2.81, 8.49) <0.001 
Special care 36 225  1   1  
Otherd 15 21       

         
Gestational age (weeks)         

<26 72 56 3.32 (1.95, 5.65) <0.001 2.26 (1.07, 4.78) 0.032 
26-<28 35 56 1.63 (0.90, 2.94) 0.106 1.39 (0.65, 2.99) 0.397 
28-<32 53 126 0.99 (0.61, 1.63) 0.981 0.98 (0.54, 1.80) 0.958 
32-<37 30 130 0.52 (0.30, 0.88) 0.016 0.75 (0.41, 1.39) 0.363 
≥37 46 103  1   1  
Missinge 0 1       

         
Birth weight (g)         
≤ 700g 62 52 3.95 (2.50, 6.25) <0.001    
700g-<1200g 78 129 2.17 (1.45, 3.25) <0.001    
≥1200g 96 290  1     
Missinge 0 1       

         
Inborn status         

No 80 95 2.04 (1.43, 2.92) <0.001 1.36 (0.87, 2.10) 0.173 
Yes 154 374  1   1  
Missinge 2 3       

         
Hospital         

NICU 2 129 243 1.16 (0.83, 1.62) 0.393    
NICU 1 107 229  1     

         
Sex         

Male 130 256 1.03 (0.76, 1.41) 0.832    
Female 106 216  1     

         
Delivery method         

Emergency CSf 92 185 0.97 (0.69, 1.37) 0.860    
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Elective CSf 33 74 0.87 (0.55, 1.37) 0.542    
Vaginal 110 212  1     
Missinge 1 1       

         
Number of blood samples takenc         
≥2 2 5 0.63 (0.11, 3.67) 0.610    
1 27 75 0.62 (0.36, 1.05) 0.074    
0 207 392  1     

         
Surgeryc         

Yes 5 12 0.82 (0.28, 2.41) 0.724    
No 231 460  1     

         



Table 7.9 Case control study, control selection strategy 3. Results for NICU 1 

Potential risk factor 
Number of 

cases 
Number of 
controls 

Crude odds ratios 
(95% CI) p-value 

Adjusted odds ratios 
(95% CI) p-value 

         
Highest level of carec         

Intensive care 60 65 5.34 (2.88, 9.91) <0.001 4.83 (2.45, 9.54) <0.001 
High dependency care 28 36 5.10 (2.42, 10.73) <0.001 5.37 (2.40, 11.97) <0.001 
Special care 16 109  1   1  
Otherd 3 4       

         
Gestational age (weeks)         

<26 33 28 4.11 (0.84, 9.22) 0.001    
26-<28 17 28 2.02 (0.85, 4.82) 0.112    
28-<32 28 57 1.57 (0.74, 3.33) 0.235    
32-<37 10 47 0.57 (0.23, 1.42) 0.227    
≥37 19 54  1     
Missinge 0 0       

         
Birth weight (g)         
≤700g 24 19 4.88 (2.22, 10.70) <0.001    
700g-<1200g 42 66 2.19 (1.25, 3.85) 0.006    
≥1200g 41 129  1     
Missinge 0 0       

         
Inborn status         

No 50 50 2.93 (1.75, 4.92) <0.001 1.94 (1.08, 3.49) 0.026 
Yes 55 161  1   1  
Missinge 2 3       

         
Sex         

Male 58 117 0.98 (0.62, 1.56) 0.937    
Female 49 97  1     

         
Delivery method         

Emergency CSf 46 79 1.23 (0.75, 2.00) 0.409    
Elective CSf 8 24 0.69 (0.28, 1.68) 0.414    
Vaginal 52 110  1     
Missinge 1 1       
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Number of blood samples takenc         
≥2 1 2 1.04 (0.09, 11.49) 0.976    
1 13 22 1.23 (0.57, 2.67) 0.593    
0 93 190  1     

         
Surgeryc         

Yes 2 3 1.33 (0.22, 7.98) 0.753    
No 105 211  1     

         

 
 
 
 
 
 
 
 
 
 



Table 7.10 Case control study, control selection strategy 3. Results for NICU 2 

Potential risk factor 
Number of 

cases 
Number of 
controls 

Crude odds ratios 
(95% CI) p-value 

Adjusted odds ratios 
incorporating level of care 

(95% CI) p-value 
AIC= 192.13 

Adjusted odds ratios 
incorporating total 
parenteral nutrition 

(95% CI) p-value 
AIC= 226.57 

            
Highest level of carec            

Intensive care 78 92 4.63 (2.70, 17.94) <0.001 1.81  (0.90, 3.64) 0.095    
High dependency care 19 16 6.83 (2.92, 15.96) <0.001 8.81  (3.56, 21.81) <0.001    
Special care 20 134  1   1     
Otherd 12 16          

            
Gestational age (weeks)            

<26 39 25 4.68 (2.17, 10.10) <0.001    1.99 (0.84, 4.71) 0.116 
26-<28 18 17 2.63 (1.12, 6.20) 0.027    1.08 (0.41, 2.86) 0.873 
28-<32 25 57 1.16 (0.57, 2.34) 0.679    0.69 (0.32, 1.52) 0.361 
32-<37 20 93 0.49 (0.24, 1.00) 0.052    0.39 (0.18, 0.83) 0.015 
≥37 27 66  1      1  
Missinge 0 0          

            
Birth weight (g)            
≤ 700g 38 25 5.31 (2.86, 9.86) <0.001 5.71  (2.30, 14.16) <0.001    
700g-<1200g 36 45 2.85 (1.64, 4.97) <0.001 3.37  (1.61, 7.06) 0.001    
≥1200g 55 188  1   1     
Missinge 0 0          

            
Inborn status            

No 30 36 1.89 (1.09, 3.28) 0.023       
Yes 99 222  1        
Missinge 0 0          

            
Sex            

Male 72 150 0.91 (0.60, 1.39) 0.667       
Female 57 108  1        

            
Delivery method            

Emergency CSf 46 91 0.95 (0.58, 1.54) 0.823       
Elective CSf 25 56 0.85 (0.48, 1.49) 0.570       
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Vaginal 58 110  1        
Missinge 0 1          

            
Number of blood samples takenc            
≥2 1 5 0.31 (0.03, 2.69) 0.286       
1 14 48 0.45 (0.22, 0.91) 0.027       
0 114 205  1        

            
Surgeryc            

Yes 3 9 0.64 (0.17, 2.50) 0.525       
No 126 249  1        

            
Total parenteral nutritionc            

Yes 72 51 5.19 (3.12, 8.63) <0.001    4.08 (2.26, 7.36) <0.00
1 

No 57 207  1      1  
            
Ventilationc            

Yes 75 80 2.74 (1.80, 4.16) <0.001       
No 54 178  1        

            
c - In the three days prior to the censoring age 
d - ‘Other’ indicates that for the three days prior to the censoring age, the baby was outside the NICU. For example at another hospital or undergoing surgery. 
e - Babies with missing variables were few and represented few episodes of BSI. For this reason I considered it acceptable to remove them from the analyses. 
f - CS- Caesarean section 
g - For cases with higher ages (in days) at BSI, the number of controls available for selection became scarce. For control selection strategy 1 at NICU 1, two cases 
with ages at BSI of 111 and 132 days had to share controls with other cases.  
h - For control selection strategy 2 at NICU 1, one case with age at BSI of 132 days had to share controls with another case. 
 



Appendix to Chapter 8 

Table 8.2 Stratified BSI episodes and baby-days (BSI rate per 1000 baby-days) for 2001 b, c 
 

NICU 1    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/77 (0) 1/60 (16.67) 1/560 (1.79) 0/235 (0) 1/1074 (0.93) 0/113 (0) 
High dependency care 1/33 (30.30) 0/25 (0) 0/34 (0) 1/26 (38.46) 0/175 (0) 0/8 (0) 
Intensive care 1/113 (8.85) 8/414 (19.32) 1/307 (3.26) 3/397 (7.56) 1/126 (7.94) 1/20 (50.00) 

 
NICU 2    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/108 (0) 0/42 (0) 1/287 (3.48) 1/98 (10.20) 6/1346 (4.46) 0/217 (0) 
High dependency care 0/1 (0) 0/9 (0) 0/37 (0) 0/15 (0) 2/123 (16.26) 0/13 (0) 
Intensive care 7/699 (10.01) 2/94 (21.28) 3/395 (7.59) 1/324 (3.09) 3/224 (13.39) 0/18 (0) 
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Table 8.3 Stratified BSI episodes and baby-days (BSI rate per 1000 baby-days) for 2002 b, c 
NICU 1    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/165 (0) 0/101 (0) 0/613 (0) 1/268 (3.73) 5/1845 (2.71) 0/349 (0) 
High dependency care 2/42 (47.62) 0/9 (0) 1/78 (12.82) 5/170 (29.41) 8/361 (22.16) 5/85 (58.82) 
Intensive care 8/356 (22.47) 3/145 (20.69) 5/342 (14.62) 10/877 (11.40) 3/237 (12.66) 0/61 (0) 

 
NICU 2    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/151 (0) 0/7 (0) 1/371 (2.70) 1/184 (5.43) 11/2987 (3.68) 0/150 (0) 
High dependency care 1/28 (35.71) 0/0 (0) 0/77 (0) 1/20 (50.00) 3/215 (13.95) 1/54 (18.52) 
Intensive care 8/537 (14.90) 8/655 (12.21) 8/843 (9.49) 10/478 (20.92) 2/363 (5.51) 1/53 (18.87) 
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Table 8.4 Stratified BSI episodes and baby-days (BSI rate per 1000 baby-days) for 2003 b 
 

NICU 1    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/230 (0) 0/12 (0) 2/736 (2.72) 0/113 (0) 5/2333 (2.14) 1/129 (7.75) 
High dependency care 0/47 (0) 0/10 (0) 3/219 (13.70) 1/177 (5.65) 3/486 (6.17) 2/235 (8.51) 
Intensive care 2/162 (12.35) 2/193 (10.36) 5/433 (11.55) 9/689 (13.06) 1/289 (3.46) 3/139 (21.58) 

 
NICU 2    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/27 (0) 0/0 (0) 0/797 (0) 0/187 (0) 4/2959 (1.35) 0/187 (0) 
High dependency care 0/0 (0) 0/0 (0) 0/46 (0) 0/1 (0) 2/119 (16.81) 1/19 (52.63) 
Intensive care 12/737 (16.28) 5/424 (11.79) 12/1221 (9.83) 1/83 (12.05) 5/615 (8.13) 1/34 (29.41) 
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Table 8.5 Stratified BSI episodes and baby-days (BSI rate per 1000 baby-days) for 2004 b 

 
NICU 1    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/0 (0) 0/17 (0) 1/1156 (0.87) 0/92 (0) 2/1867 (1.07) 1/156 (6.41) 
High dependency care 0/0 (0) 3/127 (23.62) 1/158 (6.33) 0/15 (0) 3/424 (7.08) 0/35 (0) 
Intensive care 1/94 (10.64) 9/655 (13.74) 9/789 (11.41) 0/376 (0) 4/381 (10.50) 0/92 (0) 

 
NICU 2    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/54 (0) 0/114 (0) 0/437 (0) 0/160 (0) 9/2986 (3.01) 1/241 (4.15) 
High dependency care 0/5 (0) 0/0 (0) 1/48 (20.83) 0/6 (0) 4/365 (10.96) 0/7 (0) 
Intensive care 12/793 (15.13) 6/431 (13.92) 7/1135 (6.17) 2/306 (6.54) 4/552 (7.25) 0/32 (0) 
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Table 8.6 Stratified BSI episodes and baby-days (BSI rate per 1000 baby-days) for 2005 b, c 
 
NICU 1    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/0 (0) 0/0 (0) 0/56 (0) 0/0 (0) 0/205 (0) 0/0 (0) 
High dependency care 0/0 (0) 0/0 (0) 0/0 (0) 0/0 (0) 0/42 (0) 0/0 (0) 
Intensive care 0/0 (0) 1/80 (12.5) 0/10 (0) 0/9 (0) 0/5 (0) 0/0 (0) 

 
NICU 2    
Birth weight <700g 700g-<1200g ≥1200g 

 Inborn Outborn Inborn Outborn Inborn Outborn 
Level of care       

Special care 0/57 (0) 0/0 (0) 0/52 (0) 0/0 (0) 0/386 (0) 0/69 (0) 
High dependency care 0/0 (0) 0/0 (0) 0/3 (0) 0/0 (0) 0/2 (0) 0/0 (0) 
Intensive care 0/42 (0) 0/0 (0) 0/69 (0) 0/27 (0) 0/54 (0) 1/31 (32.26) 

b - Figures are not shown stratified for postnatal age, due to small numbers in some strata  
c - As the study period ran from May 2001 to February 2005 inclusive, 2001 and 2005 do not contain the full twelve months of data 
 
 

 
 

 280 



Appendix to Chapter 9 

HAI surveillance criteria recommended by the ARHAI Surveillance 

Subgroup 

Advisory Committee on Antimicrobial Resistance and Healthcare Associated Infection 

(ARHAI) Surveillance Subgroup (2010) Report on HCAI Surveillance Priorities – 

Recommendations for HCAI surveillance in England. Permission to reproduce this 

information was confirmed by the ARHAI in January 2011. 

http://www.dh.gov.uk/ab/ARHAI/index.htm. Accessed July 2010 

 
Criteria  Factors to be considered  

1. Clearly defined and agreed with outcome-related objectives  
 

 Involve infections where the outcome results in significant mortality 
and/or morbidity  

 The costs of the surveillance are justified by its potential impact  
 Involve conditions associated with a significant economic burden to the 

health service, to patients or to society  
 Link to relevant aspects of antimicrobial resistance  
 Provide performance measures for intra-organisational, national and, 

where relevant, international, extra-organisational comparisons  
 Resources are allocated to produce the optimal balance between local 

and others’ needs  
 Surveillance data informs regular audit cycles  
 Link with systems that ensure effective implementation of changes to 

practice that emerge from the surveillance/audit processes  
 Incorporate arrangements that allow assessment of organisational 

outcomes  
 
2. Accurate and timely data with reproducibility consistent with defined 
objectives  
 

 Data collection methodology provides accurate data  
 Takes account of lengths of patient stay  
 Takes account of variations over time  
 The methodology ensures appropriate sensitivity for the condition being 

surveyed  
 Effective validation systems are in place  
 Adequate post-discharge follow-up  
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3. Data collection utilises informatics systems effectively  
 

 Utilise routine patient management systems  
 Incorporate efficient, reliable and accurate IT systems (e.g. internet, 

intranet, personal digital assistants, scanned forms)  
 
4. Programme integrated with other data management systems  
 

 ’Piggy-backs’ onto existing data collection systems  
 Avoids duplication in relation to data collection  
 Utilises existing surveillance initiatives, e.g. National Vascular Database, 

ICNARC  
 
5. Data informs local services, commissioners, relevant government 
departments, Royal Colleges, professional organisations, general public and the 
media  
 

 Processes are in place to make results available early in formats that are 
informative and comprehensible to the target audience  

 The information is utilised for related professional issues e.g. consultant 
appraisal, revalidation  

 Processes exist to provide epidemiology and statistics training for 
relevant groups  
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Summary Comparisons of bacteraemia incidence between neonatal
intensive care units (NICUs) can identify centres with effective infec-
tion control, whose practices can be shared with other units. For fair
comparisons, infection incidence must be risk-adjusted to control for
differences between centres in the vulnerability of babies and the
intensity of invasive procedures which can introduce infection. We
reviewed risk adjustment methods for between-NICU comparisons of
bacteraemia incidence, both in the published literature and in regional
and national NICU infection monitoring systems. PubMed and Embase
were searched for studies reporting risk-adjusted bacteraemia inci-
dence in more than one NICU. An internet search found NICU infection
monitoring systems in Western industrialised countries. In all nine stud-
ies that met the inclusion criteria, risk adjustment reduced but did not
eliminate variation in bacteraemia incidence between NICUs. In both
the studies and the regional monitoring systems, adjustment for baby
susceptibility generally involved stratification by factors measured at
birth. Adjustment for length of stay and invasive procedures involved
reporting incidence by days with a device, such as central venous
catheter days. Methods for NICU infection monitoring lack consistency.
Adjustment for factors measured at birth fails to capture changes in
susceptibility throughout admission and adjustment for device days
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does not adequately reflect risk to babies not treated with the device.
Further research should address variation in risk for all babies through-
out their NICU stay.
ª 2008 The Hospital Infection Society. Published by Elsevier Ltd. All rights
reserved.

Introduction

Between 2% and 10% of babies admitted to neonatal
intensive care units (NICUs) experience at least one
episode of bacteraemia, which can lead to death
and other serious adverse outcomes.1e3 The major-
ity of bacteraemia episodes are hospital-acquired,
and often preventable through improvements in
hygiene practices and infection control.4e6

Suggestions that bacteraemia monitoring itself
might decrease infection rates7 are supported by
evidence from a systematic review of >100 ran-
domised controlled trials showing that audit and
feedback alone produce small to moderate
improvements in clinical practice.8,9 When compar-
ative monitoring has been used to trigger sharing of
improved practices between units, substantial
reductions in infection incidence appear to have
been achieved.10e12

Comparisons are complicated by the fact that
some of the variation observed between NICUs is
attributable to factors other than quality of care,
such as case mix, babies’ length of stay and the
invasivemedical procedures carried out, all ofwhich
can influence hospital-acquired infection.13 Tomake
fair and meaningful comparisons between hospitals,
a multicentre monitoring system must adjust for
these factors. Any residual variation may be ex-
plained, at least in part, by factors amenable to
change, such as hygiene practices. To formulate
a method for risk adjustment, factors must be iden-
tified which are both associated with infection and
reliably recorded. These factors can then be used
to stratify infection incidence, or can be included
in a statistical risk adjustment model.

We performed a systematic review to determine
methods used for risk adjustment in studies that
compared infection incidence between NICUs,
and to determine how much infection incidence
varied before and after risk adjustment. We also
determined the extent to which these approaches
for risk adjustment are being used by regional
surveillance systems for NICU-acquired infection
around the world. We discuss different approaches
for risk adjustment and suggest ways to improve
robustness of comparisons and consistency of
reporting.

Methods

Systematic review of studies reporting
risk adjustment

Studies were included if they reported any measure
of the frequency of bacteraemia at more than
one NICU and comparative results that were risk-
adjusted. We accepted any approach for risk
adjustment, including stratification for risk factors,
for example reporting infections as rates per cath-
eter days, as well as the inclusion of risk factors in
a statistical risk adjustment model. We accepted
any definition for hospital-acquired bacteraemia,
but excluded studies concentrating on delivery-
associated bacteraemia in the first few days of life.

We combined three sets of search synonyms re-
lating to NICU, bacteraemia, and monitoring or risk
adjustment to search PubMed and Embase databases
(with Embase thesaurus mapping) in any language
until October 2007 (search strategy available from
theauthors).Oneperson (P.P.) reviewedall titles and
abstracts for potentially eligible articles. Studies
meeting the inclusion criteria were reviewed by
two reviewers (P.P. and R.G.). We also searched
reference lists and ‘related articles’ of all included
studies (using PubMed). Abstracts from relevant
conferences were reviewed from 2005 to 2007.

Review of regional monitoring systems

As both infections and organisational structures
vary greatly among NICUs in developing countries,
we included only monitoring systems from Europe,
North America and Australasia to ensure general-
isability. The search was performed in Google using
short phrases and the region of interest.

Results

Systematic review of studies reporting
risk adjustment

Quality of literature
Nine studies met our inclusion criteria (Figure 1)
(Table I).1,14e21 Case definitions for bacteraemia
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varied in complexity from a first positive blood cul-
ture,1,21 to hospital-acquired bacteraemia defined
by US Centers for Disease Control and Prevention
(CDC) criteria.17,18,20,22 Two studies excluded
bacteraemia acquired before NICU admission by
including only diagnostic blood cultures taken at
least 48 h after admission.14,16 CDC criteria state
that ‘there must be no evidence that the infection
was present or incubating at the time of hospital
admission’, but give no time threshold.22 All but
two studies distinguished hospital-acquired from
delivery-associated bacteraemia, using thresholds
ranging from 48 to 72 h after birth.18,20

Risk adjustment
Table I shows that most studies took into account
the duration of exposure, by reporting incidence
per baby days of stay or per central venous cath-
eter (CVC) days, sometimes with Cox regression
or KaplaneMeier analyses of time to infection.16,17

Four studies did not take into account length of

stay, and reported only one or more infections
per baby.1,14,19,21

Adjustment for baby susceptibility and organ-
isational factors was performed by stratifying
bacteraemia incidence by birthweight, or by in-
cluding baby susceptibility factors in a risk ad-
justment model.14,18,20 Adjustment for medical
procedures was performed by reporting bacterae-
mia per days with a CVC. Other studies included
medical procedures in a risk adjustment model:
some factors were included as binary variables
(e.g. CVC: yes/no), some as durations censored
at the onset of bacteraemia or removal of the
CVC or ventilator, and others as time-dependent
variables updated continuously during a baby’s
stay.16,17

Two studies addressed the possibility that differ-
ences in blood sampling frequency between hos-
pitals could influence comparisons, as the more
samples taken the greater the risk of detecting
asymptomatic bacteraemia or a contaminated

4193 rejected after
scanning titles and

abstracts

79 rejected after full
text review

88 full papers reviewed

6020 studies found
PubMed: 2372
Embase: 3648

Total (minus overlap): 4281

9 studies included
0 from conference

proceedings

0 from PubMed
‘related articles’

searches
0 from bibliographies

9 studies

Figure 1 Flow diagram of the process and results of the systematic literature review.
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sample. The UK Neonatal Staffing Study Group
(2005) found no association between the ratio of
positive to all blood cultures and the incidence of
bacteraemia or any of their risk adjustment vari-
ables. Brodie et al.measured a two-fold variation in
the frequency of blood sampling among NICUs, but
reported that differences in bacteraemia incidence
between NICUs remained significant when results
for the commonest contaminant, coagulase-
negative staphylococcus, were removed from the
analysis.16

All nine studies showed residual variation in bac-
teraemia incidence between NICUs after risk adjust-
ment. Five studies reported a reduction in between-
NICU variation with risk adjustment (Table II).

Regional monitoring systems

Table III shows the seven regional monitoring
systems found.23e29 Case definitions varied in com-
plexity from a positive bacterial culture (excluding
cultures for coagulase-negative staphylococcus) to
CDC case definitions, while NEO-KISS (Krankenhaus
Infektions Surveillance System) modified the CDC
case definition for use in neonates.24,27,29,30 Four
systems exclude bacteraemia acquired before
NICU admission by including only diagnostic blood
cultures taken at least 48 h after admission, or
rejecting infections with evidence that they
were acquired elsewhere.23,24,26,29 Two systems
differentiate between delivery-associated and
hospital-acquired bacteraemia, using thresholds
of 48 or 72 h after birth.26,28

Risk adjustment
Five systems provide some adjustment for duration
of exposure, by reporting incidence by catheter
days, or catheter days and baby days of stay.23e26,29

All systems except NeonIN use some methods of
risk adjustment. Being based around the original
US CDC surveillance system, these are remarkably
similar; adjustment for baby susceptibility factors
by stratification into birthweight groups, and
adjustment for medical procedure-related factors
by reporting incidence by catheter days. NEO-CAT
incorporates several factors in a multivariable risk
adjustment model.

Although most systems do not directly adjust for
differences in blood sampling frequency between
NICUs, their case definitions attempt to control for
differences in blood sample contamination by, for
example, requiring that a positive blood culture be
associated with clinical symptoms or a CVC.25

The Vermont Oxford Network goes further in rec-
ommending ‘potentially better practices’ to stan-
dardise sampling technique between participating
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NICUs, for example by recommending a minimum
blood sample of 1 mL.11

Most case definitions combine clinical evidence
of infection with blood culture results and conse-
quently require active reporting by clinicians. As
data storage generally differs between hospitals,
the methods for its collection are usually specific to
the NICU. We found no evidence that any system

exclusively uses electronic hospital administrative
data.

Discussion

Overall, risk adjustment attenuated but did not
remove differences in infection incidence between

Table II Variation in bacteraemia incidence between NICUs before and after risk adjustment

Authors Outcome measure Between-NICU
variation

reduced by risk
adjustment?

How much residual
variation between NICUs?

Canadian Neonatal
Network, 2002, 2005

(1) Incidence per
CVC days

(1) Yes (1) Statistically significant variation
for all CVC strata

(2) Proportion of
babies with �1
bacteraemia

(2) Yes (2) Statistically significant variation
for babies with birthweight <1500 g

Brodie et al., 2000 Time to
bacteraemia
after admission

Yes Statistically significant
variation between 3/6 NICUs

Carrieri et al., 2003 (1) Time to
bacteraemia
after admission

(1) Unable
to determine:
no crude measures
provided

(1) Bacteraemia 3e10 days:
statistically significant variation

(2) Time to
bacteraemia
after admission

(2) Unable to
determine: no crude
measures provided

(2) Bacteraemia 11e35 days:
statistically significant variation

Gaynes et al., 1991 Incidence per
CVC days

Unable to determine:
no crude measures
provided

‘Significant between-centre differences’,
but no risk-adjusted figures provided

NICHD, 2002 Proportion of
babies
�1 bacteraemia

Unable to determine:
no risk-adjusted
figures provided

‘Statistically significant variation’, but
no risk-adjusted figures provided

Stover et al., 2001 Incidence per
CVC days

Yes for babies
with birthweight
1501e2500 g

Variation remained, no information concerning
statistical significance

UK Neonatal
Staffing Study Group,
2002, 2005

(1) Proportion of
babies with �1
bacteraemia

(1) Yes (1) Statistically significant variation in odds
ratios between NICUs with >1 level 1 cot
per handwash basin and NICUs with <1.
More handwash basins led to lower outcomes
Statistically significant variation in odds
ratios between units with an infection
control nurse and units without. Presence
of an infection control nurse led to
lower outcomes.

(2) Proportion
of babies �1
bacteraemia

(2) Birth model: Yes (2) Statistically significant variation for NICUs
allocated to different strata of consultant
provision. Lower consultant availability
led to lower odds ratios.

(3) Proportion of
babies �1
bacteraemia

(3) 12 h model: Yes (3) Statistically significant variation for NICUs
allocated to different strata of consultant
provision. Lower consultant availability led to
lower odds ratios.

CVC, central venous catheter; NICU, neonatal intensive care unit.
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NICUs. Residual variation could indicate residual
confounding due to case mix or invasive medical
procedures, differences in data quality, or differ-
ences in the quality of care. The UK Neonatal
Staffing Study Group suggests that residual varia-
tion is due to differences in quality of care:
measures of risk-adjusted bacteraemia showed
statistically significant associations with NICU
organisational factors such as the provision of
neonatal consultants, hand washbasins and infec-
tion control nurses. There is general consensus
that risk adjustment is necessary, feasible and
effective, but there is no agreement as to the best
method for carrying it out.

Our review highlights the need for more consis-
tent outcome measures and risk adjustment
methods. AEurope-wide survey of hospital infection
control physicians revealed that their strongest
consensus research priority is standardisation of
surveillance systems for international comparison
of hospital-acquired infection incidence.31 Consis-
tency in the choice of denominator is the minimum
requirement; most studies and regional monitoring
systems reported incidence by baby or catheter
days, controlling for variations betweenNICUs indu-
ration of exposure to infections, which is recom-
mended in order to avoid bias in comparative
studies.32 Reporting rates also captures recurrent
infections within the same baby, which is not possi-
ble if reporting consists of a proportion of babies ex-
periencing one or more bacteraemias.

Meaningful international comparisons also require
consistency in the baby susceptibility factors and
medical procedures chosen for risk adjustment.Most
studies and regional monitoring systems adjust for
factors measured at birth, such as birthweight, but
this does not adjust for changes in a baby’s suscep-
tibility throughout his or her NICU stay. Days with
a CVC can provide such a continuous measure, but
they exclude the 80% of NICU babies not treatedwith
a CVC, who may have widely differing risks of
infection.15 Holmes et al. question the use of CVC
days for risk adjustment, as their multivariable anal-
ysis found parenteral nutrition to be a stronger pre-
dictor of bacteraemia than CVC use alone.33

Nevertheless, parenteral nutrition is used to treat
aminority (24%) of babies in theNICU.34 Furtheranal-
yses could investigate the attributable risk of differ-
entmedical procedures; if a procedure is responsible
for the burden of bacteraemia in a unit, it may be an
acceptable risk adjustment variable even if it is used
to treat a minority of babies. Current estimates sug-
gest that only w40% of bacteraemia are CVC-re-
lated.15 Otherwise continuous composite risk
adjustment variables may be preferable; capturing
multiple risk factors and all babies throughout their

NICU stay. An example is days of stay at each NICU
level of care, which in some countries is updated
daily and allocated to all babies according to clinical
status.35

The only regional monitoring system not perform-
ing risk adjustment is NeonIN, which aims to provide
simple, rapid determination of the patterns of
organisms in NICUs, with data entry by busy clini-
cians. NeonIN highlights dual requirements for NICU
monitoring: rapid data collection and feedback and
more time-consuming comparisons of risk-adjusted
rates. Both approaches are necessary; the former
can alert clinicians to sudden changes, the latter is
essential for quality of care benchmarking. For both
approaches, the use of routine electronic clinical
records would minimise staff workload and acceler-
ate the collection of data, but must be balanced
against the use of case definitions that include
clinical observations, which can require skilled data
collection and stand-alone data systems. It is possi-
ble that, with the standardisation of improved blood
sampling techniques such as those recommended by
the Vermont Oxford Network, blood sample contam-
ination could be reduced andwith it the requirement
for clinical symptoms to differentiate an episode of
bacteraemia from a contaminated sample. More
detailed data systems are being developed, such as
the Standardised Electronic Neonatal Database in
the UK and the Canadian NICU Network, which in the
future may support common definitions based on
routine electronic data.34,36

Risk adjustment is widely recognised as neces-
sary for meaningful comparisons of bacteraemia
rates between NICUs. However, there is a lack of
consistency in the case definitions, outcome mea-
sures and risk adjustment methods used. Case
definitions should be developed that allow data
extraction from routine electronic data, thereby
accelerating data collection and minimising staff
workload. Most regional monitoring systems agree
that adjustment for duration of exposure is
a minimum requirement; further research should
investigate the possibility of adjustment for rou-
tinely recorded, continuous, composite measures
of baby susceptibility and risk from medical pro-
cedures. The development of shared, detailed
routine electronic clinical record systems has the
potential to facilitate all of these improvements.
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Variation in infection incidence between
neonatal intensive care units can depend on
the measures used

Madam,

Bloodstream infection (BSI) incidence varies be-
tween neonatal intensive care units (NICUs).1 When
comparative BSI monitoring is used to trigger shar-
ing of improved practices between units, it can
reduce infection rates substantially.2 We compared
the incidence of BSI in two Inner London tertiary
NICUs, using two different measures: the propor-
tion of babies developing one or more BSIs; and
the rate of BSI per baby-days.

We analysed linked National Health Service
laboratory and patient administrative data for
admissions over a period of four years (admissions
per year: 260 in NICU 1 and 430 in NICU 2). An
episode of BSI was defined by one or more blood
cultures for the same bacterial organism within
seven days. Because ~30% of blood cultures posi-
tive for coagulase-negative staphylococcus (CoNS)
may reflect blood sample contamination, we per-
formed separate analyses for CoNS and non-CoNS
BSI.3 For each NICU, we calculated the percentage
of babies (admissions) developing one or more
BSIs, and the rate of BSI by dividing total BSI

episodes by total baby-days of NICU stay. We also
calculated monthly rates of BSI, median lengths
of NICU stay, and percentages of BSI that were re-
current within babies. Differences between NICUs
were assessed for statistical significance using
two-sample Z-tests for proportions, Poisson gener-
alised linear models for rates, and non-parametric
k-sample tests for medians.

A total of 58 196 baby-days were included in the
analyses. Of these, 10.9% of babies developed
CoNS BSI in NICU 1 compared with 8.5% in NICU 2
(P¼ 0.04). Rates of CoNS BSI per 1000 baby-days
were similar for both units: 5.3 for NICU 1 and
5.2 for NICU 2 [crude rate ratio: 1.0; 95% confi-
dence interval (CI): 0.8e1.2]. The proportion of
babies developing non-CONS BSI was similar in
both units (3.4% NICU 1 vs 3.5% NICU 2; P¼ 0.86),
as were rates of non-CoNS BSI per 1000 baby-days
(2.2 NICU 1 vs 2.2 NICU 2; crude rate ratio: 1.0;
95% CI: 0.7e1.4). The median length of stay was
significantly longer in NICU 1 (13 days versus
7 days, P< 0.001). Slightly more recurrent BSI oc-
curred in NICU 1 compared with NICU 2, but these
differences were not statistically significant: 20.8%
of CoNS episodes were recurrences in NICU 1 ver-
sus 13.3% in NICU 2 (P¼ 0.07); non-CoNS recur-
rences comprised 1.7% in NICU 1 and 1.3% in NICU
2 (P¼ 0.82).

The findings highlight the importance of taking
into account length of stay. Median length of stay
in NICU 1 was nearly twice as long as for NICU 2, so
although NICU 1 may have had a higher proportion
of babies experiencing CoNS BSI, the two units had
similar numbers of CoNS BSI episodes per days of
stay. Differences in infection incidence must be
measured and interpreted with caution. Propor-
tions of babies experiencing one or more infections
are used in many studies reporting between-NICU
comparisons.2,4,5 Rates may be preferable as they
take into account differences in length of stay
and capture recurrent infections. An awareness
of length of NICU stay would allow clinicians to
investigate BSI in more detail, in order to target
infection control more effectively. An increased
length of stay may increase the risk of BSI, and
may be amenable to reduction. Conversely, it
could be the consequence of a higher incidence
of BSI, as babies with infections are kept in the
NICU for longer. As a minimum, comparisons of
BSI incidence between NICUs should be adjusted
for differences in length of NICU stay. Figure 1
demonstrates this adjusted comparison by month.

Using appropriate measures is but one element
of making fair and meaningful comparisons of
infection incidence between units. Analyses should
also adjust for differences in case mix and invasive
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medical procedures, which can also affect BSI
incidence regardless of quality of care.1 We previ-
ously reported a method of adjusting for these
confounding factors.6 If, as in our analyses, com-
parisons rely on routine hospital data, the effort
and cost involved in data collection is decreased.
However, a disadvantage of routine data is that
clinical symptoms required to differentiate be-
tween true BSI and blood sample contamination
are lacking. Reporting rates by organisms, as in
this analysis for CoNS and non-CoNS, offers a crude
but easy way to differentiate between infections
more or less likely to represent contamination. It
is also important to monitor CoNS BSI, as even
‘false positive’ blood cultures result in the in-
creased use of antibiotics and longer lengths of
hospital stay. Further research is needed to evalu-
ate appropriate methods of risk adjustment as the
availability of reliable data expands.
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Endemic carbapenem-resistant Acinetobacter
baumannii in a Brazilian intensive care unit

Madam,

In recent years, strains of multidrug-resistant
Acinetobacter baumannii have emerged as
important nosocomial pathogens, causing ventila-
tor-associated pneumonia, bacteraemia, and uri-
nary tract infection.1,2 Several outbreaks caused
by this micro-organism have been reported.3 How-
ever, the endemic situation of this hospital patho-
gen has been little investigated. In the present
study, we evaluated contamination in an intensive
care unit (ICU) caused by endemic carbapenem-
resistant Acinetobacter baumannii (CR-Ab) strains,
using environmental and patient cultures.

This prospective study was conducted from
January to July 2008, in an eight-bed adult ICU,
in a 120-bed Brazilian university hospital. All
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Risk stratification by level of care for comparing
bloodstream infection rates in neonatal
intensive care units

Madam,

Comparisons of bloodstream infection (BSI) inci-
dence between neonatal intensive care units
(NICUs) can identify centres with potentially
better practices for infection control, which can

be shared with other units.1 To provide fair
comparisons, infection rates must take into
account differences between centres in the vul-
nerability of babies and the intensity of invasive
procedures that can introduce infection. Factors
associated with infection must be identified, which
can be used to stratify infection rates to give
meaningful comparisons between hospitals and
over time.2

To formulate a strategy for monitoring, we
examined gestational age at birth and daily Na-
tional Health Service (NHS) level of care, as factors
which could stratify BSI rates, to compare two
inner London tertiary NICUs with 260 and 430
admissions each year. Level of care has not pre-
viously been evaluated in risk-adjusted analyses; it
is a standardised measure of the intensity of care,
which is daily and routinely recorded for each baby
throughout NHS NICUs.3

We used linked NHS laboratory and patient
administrative data for admissions over four years,
producing daily counts of positive blood cultures
and babies at each level of care and gestational
age band. An episode of BSI was defined as one or
more blood cultures in which the same bacterial
organism was isolated within a seven-day period.
This method of data collation was chosen to reflect
what could easily be carried out by hospital data
managers for routine monitoring.

We fitted crude and adjusted Poisson generalised
linear models to investigate relationships between
the rate of BSI per baby-days of stay and level of
care, gestational age, NICU and blood sampling
frequency. We investigated blood sampling fre-
quency as this could influence comparisons; the
more samples taken the greater the risk of detecting
asymptomatic BSI or a contaminated sample.

NHS level of care and gestational age were
strongly associated with the rate of BSI, with level
of care being the strongest predictor. The best
adjusted model, in terms of minimising the Akaike
information criterion, included both factors.4 The
rate of BSI was 7.4 per 1000 baby-days and did
not differ between NICUs. The rate ratio for
BSI, adjusted for gestational age and sampling
frequency and relative to the baseline, special
care, was 3.37 [95% confidence interval (CI):
2.38, 4.77] in intensive care and 4.40 (95%
CI: 3.15, 6.15) in high dependency care.

Level of care is itself a measure of vulnerability,
so its relationship with BSI is not surprising. The
key implication of this is that stratification by level
of care could provide a simple risk adjustment tool
for meaningful comparisons of BSI between NICUs.
This is illustrated in Figure 1, which shows monthly
rates of BSI, by level of care for each NICU. Within
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levels of care different procedures may confer dif-
ferent risks, but this broad stratification provides
a consistent approach across the NHS. Aggregation
of rates for high dependency and intensive care is
appropriate as they encompass similar invasive
procedures. However, if numbers allow, differenti-
ation into the three levels would provide more
discriminatory power.

A weakness of gestational age as a risk adjust-
ment measure is that it represents susceptibility to
infection at birth, without taking into account
changes in susceptibility throughout the NICU
stay. By contrast, level of care is updated daily,
so stratification for level of care incorporates
changes in risk throughout the NICU stay. Risk
factors used in previous studies include days with
a central venous catheter (CVC),2 or days with
parenteral nutrition.5 Parenteral nutrition may be
a stronger predictor of BSI than CVC use alone.5

Both procedures provide a continuous measure of
risk, but are used to treat a minority of babies in
the NICU; 20% for CVCs and 24% for parenteral
nutrition.6,7 The remaining babies have widely
differing risks for infection. An advantage of level
of care is that it reflects risk status for all babies
for every day of stay.

In addition, stratification by level of care de-
scribes rates by their location and clinical team,
which is relevant for targeting infection control

measures. Moreover, level of care data are stand-
ardised across the NHS, routinely recorded and
relatively complete and accurate because they are
used for costing purposes. Disadvantages include
the fact that clinical symptoms required to differ-
entiate between true BSI and contamination are
not routinely collected (although we found no
significant association between blood sampling
rate and BSI rate in the adjusted analysis, which
would be expected if many positive blood cultures
represented contamination). In addition, we did
not differentiate between BSI which is hospital-
acquired and the w20% of BSI occurring in the first
two days of life, which is likely to be maternally
transmitted. Such distinction by age at infection
is possible, but involves more intensive data
management. As the quality of routine neonatal
data improves, further research will be needed
to evaluate more complex methods of risk
adjustment.
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Figure 1 Monthly rates of bloodstream infection, by level of care for each neonatal intensive care unit (NICU)
(incidence per 1000 baby-days against calendar month and 95% confidence interval). (a) Special care. (b) High depen-
dency and intensive care.
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Survey of gut colonisation with
Stenotrophomonas maltophilia
among neonates

Madam,

Stenotrophomonas maltophilia is a nosocomial
pathogen with inherent and mutationally acquired
antibiotic resistance.1 Studies have implicated this
organism in bacteraemia and neonatal infections.1e3

Trimethoprim/sulfamethoxazole remains the ther-
apy of choice for infections with S. maltophilia
worldwide.1,4 However, this antibiotic is not
usually used in neonates as it increases risk of
hyperbilirubinaemia.5

In India w52% of all neonatal deaths are due to
sepsis.6 Sick neonates are admitted to a neonatal
intensive care unit (NICU) for treatment. However,
the ICU is a focal point for the emergence and
spread of antibiotic-resistant pathogens.7 Anti-
biotic resistance frequently poses more difficulty
in neonates where the options for therapy are
limited, especially for S. maltophilia, for example,
where the antibiotic of choice is generally not
empirically given to neonates. S. maltophilia is
thus a real threat in NICUs.

Surveillance of colonisation by S. maltophilia in
the NICU may be an effective way of monitoring
the carriage and antibiotic resistance pattern of the
organism. We therefore evaluated the carriage
of S. maltophilia as a part of a larger study to
understand the colonisation pattern of Gram-
negative organisms and their effect in neonates.
The gut of hospitalised patients is often colonised
with pathogens, and organisms from the gut may
be a predictor of nosocomial infections.

The study was carried out in a 20-bedded NICU
in a tertiary care centre in Kolkata. Samples were
collected over a one-year period. In all, 243 babies
were included in the study. Gastric aspirates were
collected from the neonates within 4 h of birth
(GA1) and also at any time if the babies were clin-
ically diagnosed with sepsis (GA2). An attempt was
also made to collect a faecal sample within 24 h of
the collection of GA2.

The gastric aspirates were stored at 4 �C and the
faecal samples were kept at room temperature and
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