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We show that higher order intergroup covariances involving even number of qubits are necessarily
positive semidefinite for N-qubit separable states, which are completely symmetric under permutations of
the qubits. This identification leads to a family of sufficient conditions of inseparability based on the
negativity of 2kth order intergroup covariance matrices (2k = N) of symmetric N-qubit systems. These
conditions have a simple structure and detect entanglement in all even partitions of the symmetric
multiqubit system. The observables involved are feasible experimental quantities and do not demand full
state determination through quantum state tomography.
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An important problem in quantum information theory
[1,2] is the formulation of appropriate methods for detect-
ing entanglement and then finding measures that quantify
the degree of entanglement in multipartite systems. These
two issues are difficult to deal with in their full generality
for examining multipartite systems and therefore, a strat-
egy in their understanding is to focus on certain special
symmetric states [3]. The choice of the states with specific
symmetry is based both on feasible experimental possibil-
ities and on mathematical considerations [4]. In this com-
munication, we examine entanglement properties of even
number of qubits in quantum states obeying permutation
symmetry. Symmetric multiqubit states form an important
class due to their experimental significance [5,6]. Taking
advantage of the elegant mathematical structure associated
with symmetric states, we propose a set of sufficient but
not necessary conditions to detect entanglement via ex-
perimentally amenable interparticle covariance matrix.
The inseparability conditions obtained here are general-
izations of our earlier result [7] for pairwise entanglement
in symmetric multiqubit states. It is important to point out
that in Ref. [7] these conditions are shown to exhibit a
similar structure, involving the qubit cross correlations,
like those for the Gaussian states [8] and thus our approach
reveals a structural parallelism between the continuous
variable states and multiqubits considered here.

Symmetric multiqubit states remain invariant under
any permutation of the qubits and are therefore restricted
to a (N + 1)-dimensional subspace of the entire
2N_dimensional Hilbert space—allowing for a substantial
reduction in the state space. This is the maximal multi-
plicity space of collective angular momentum, J; = % X
Z]l=1 O I =X, Y, 2, (0, is the Pauli operator of uth
qubit) and is spanned by the eigenstates {|§,M);—5=
M= %} of J? (with maximum eigenvalue J = N/2) and J 2

An arbitrary N-qubit system is characterized by the
density matrix
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where 0,, =(I®I®...® 0,®1®...)—with o, ap-
pearing in the uth position—denotes the Pauli operator of
the uth qubit; a4, @y, ..., ay = 0,x,y, z and

_, (10 _ (01
7o o 1) %7 {1 o)
(0 —i /1 0
7o) %o 1)

the real coefficients T, o, o, are the averages

Talaz...a/,v =Tr [p(a-lal 0-2012 s O-NaN)]
= <0-1a] O2q, - -- O-NaN>J (2)

and Ty, o = 1 gives the normalization condition. Note that
the total number of independent parameters in this trace-
class density matrix is

Z(f>3r—1=22N—1.

For multiqubit states obeying exchange symmetry, the state
parameters Ty o, o, are symmetric under interchange of
any pair of indices (corresponding to swapping of the
qubits). So, the total number of parameters reduces to (N +
1)> — 1. Setting N — [ indices equal to 0 and remaining [
indices taking values x, y, z, we obtain moments of /th
order (I = N):

(1) _ _
Tiliz...il - <0'1i10'2i2 ---Uzi,> =

Ti i, ...i00.. )

where iy, iy, ..., ; = X, ¥, z. It is convenient to introduce
collective multi-indices i = {ijiy... i}, j = {j1ja--. Jibs
so that the moments 72 of even order 2k (with k =
1,2,...,[N/2)) may be arranged as 3% X 3 real symmet-
ric matrices and moments T®) of kth order are arranged as
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3% componental columns:

T = T

Uiy ig3 1 2Tk

and TH =70 = (4

iyip...iy

Let us consider k qubit operators A® and BW, associ-
ated with two different groups a and b:

) —

A k) pk)
A Ta,iy O ayiy +++ Tagip> Bj Tb1j Tbyjy + + Thyjy-

(&)

Arranging A™ and B® as a column £¥ of 2 - 3¢ operators
[correspondingly, é(k)f = (AWt BW) as a row of opera-
tors], we define the 2kth order variance matrix, as in
Ref. [7]

Vo =1 AgWAgDY + He), (6)

where Ag® = E0 — (£ Note that by construction (6),
V@9 is (2 - 3k X 2 - 3K)-dimensional real symmetric posi-
tive semidefinite matrix. The elements of the variance
matrix are

Vi = L{ER, EDD —{EMEDY

(where {£W), f;k)} = &b g?;k) + g?;k) £Myand V@ is cast in
a (3% X 3%) block form,

C(2k)

B0 | @)

A (2k)
Ve = (C(Zk)T

Clearly, the off-diagonal block C*¥ corresponds to 2kth

order covariances among the intergroup of multiqubits

CiY = (APBY) — APNBY) = T
In the second line of (9), we have used (3) and (4). The
diagonal blocks A Y and B®¥ are identical for a sym-
metric intragroup multiqubit system: ﬂl(z") 3(2]‘) =
<A5k)A§k)> (Agk)xAEk)) because the intragroup averages
are the same, viz., (Aﬁ.k)A;k)) = <]§Ek)§5k)> and (Agk)) =
<ng)>. Under identical local unitary transformations U ®
U ® ... ® U on the qubits—which preserve the symmetric

space structure—the blocks of the variance matrix change
as

- 1TV, 9)

A, ACK =
C2h — cCk =

Rﬂ(Zk)RT,

Rc(Zk)RT, (10)

with’ R =R®R®...

ktimes
trix, comprised of direct products (containing k factors) of
three-dimensional rotations R € SO(3)—-corresponding
uniquely to 2 X 2 unitary matrices U € SU(2).

We now focus on the question: how would multiqubit
entanglement manifest itself under different partitioning of
a symmetric system? Our identification here is that the
intergroup covariance matrix C?¥ holds a key to symmet-
ric multiqubit entanglement, coming from various even

® R, a 3% X 3* real orthogonal ma-

partitioning of the system. It is worth mentioning at this
juncture the important difference between the recent Letter
of Korbicz et al. [9] from our present work. These authors
have proposed necessary and sufficient conditions for en-
tanglement, reflected through two and three qubit parti-
tions of a symmetric multiqubit system. Strikingly, the
two-qubit result is shown [7] to be captured by the off-
diagonal block of the variance matrix. An important open
problem, concerning the inseparability features hidden in
all the even qubit reduced systems of a symmetric N-qubit
state, is what we are addressing here, by generalizing our
approach outlined in Ref. [7].

First of all, we note that positivity of the variance matrix
V% demands that the diagonal blocks A2 be positive
semidefinite. However, there are no constraints of positiv-
ity on the off-diagonal block C?% as such, though sepa-
rable symmetric states carry a distinguishing feature:

Theorem.—For every separable symmetric multiqubit
state, intergroup covariance matrices C%¥ of various order
2k = N are necessarily positive semidefinite.

Proof.—Consider a separable symmetric state of 2k
qubits, which is decomposable as a convex sum of direct

products of k-qubit density matrices p(k).

dpu=1 0=p,=1 (11

2k k k
pgep) = prpgv) ®p( )

In this state the interqubit averages <A§.">B‘§.k)) are also
separable:

APBY) ey = > putd9), (B,

=3, TOWTE (w), (12)

= p.(A9),AY),

where we have denoted Tr (p(k)A(-k)) = <Af.k))w and used the

fact <A§k))w = (Bg.k) ),» and the notation <A$k)>w = Tl.(k)(w). It
is also clear that

<A1(‘k) >sep B(k) >5ep ZPW T(k) (W) (13)

The real quadratic form Q@M = XTCPHx =

> ]C(Zk)X X, with an arbitrary real 3% componental col-
umn X, when evaluated in the separable state (11) gives

& = pulTP WX - {pr[Tf%)x,-]}z, (14)

which is necessarily a positive semidefinite quantity, im-
plying in turn that C® =0; k=1,2,...,[N/2], in a
separable symmetric multiqubit state (11). This proves
our theorem. O

The above theorem leads to sufficient conditions for
entanglement associated with even number of qubits in a
symmetric state: if the intergroup covariance matrix C?¥ is
negative, then the symmetric multiqubit state exhibits
2k-qubit entanglement for k= 1,2,... with 2k = N.
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This leads to a hierarchy of inseparability conditions,
which test entanglement in even partitioning. For k = 1,
the condition C? < 0 has been shown in Ref. [7] to be a
direct consequence of Peres-Horodecki partial transpose
criterion [10] on two-qubit partitions of a symmetric multi-
qubit state. Thus, negativity of the covariance matrix C?
serves as both necessary and sufficient for pairwise entan-
glement in the symmetric N-qubit system. Any test which
confirms the negativity of the real symmetric 3% X 3%
covariance matrix C?% is sufficient to assert the insepara-
bility of the symmetric multiqubit state. In order to estab-
lish the negativity of C?¥), the Sylvester criterion [11] may
be used: negative value assumed by any of the principal
minors of a Hermitian matrix implies that the matrix is not
positive semidefinite. Thus a series of sufficient conditions
for entanglement of 2k qubits could be extracted from
negative principal minors (of various orders) [12] of the
corresponding covariance matrix C%. This brings out
inseparability constraints involving a few correlation ob-
servables, making our criterion experimentally amenable.
It may be noted that a series of inseparability conditions,
resulting from negative principal minors of various orders,
demonstrate [13] negativity of the (infinite-dimensional)
partial transpose of a bipartite continuous variable density
matrix, which is the Peres-Horodecki criterion [10] for
infinite-dimensional states.

We now test our inseparability conditions C?¥ < 0 by
considering some well-known examples of symmetric
N-qubit states, such as GHZ and W type states, which
have attracted experimental focus [5].

For an even [14] N-qubit GHZ state [15]:

1 1

|GHZy) = 7 5

(10p) + [15)) = —=(]00...0) + [11...1))

15)

we find that CY) has one negative eigenvalue, A7) =
—2lWN/2=11 The lower order covariances C?¥, for k <
N/2, are all positive semidefinite. This is obvious because
GHZ state is separable with the disposal of qubits. Thus,
our C-matrix criterion is in concordance with the known
result that the GHZ state is N-party entangled and is fragile
under disposal of particles [15].

From an experimental point of view, it may be noted that
the lowest order (see [12]) principal minor, which records
negativity of C™) is the diagonal element, with the index
i = {xxx...xy}

P =140 -

p—t - 1’

-2,

More specifically, even-N-qubit entanglement in GHZ
states is revealed [16] by the measurement of the N-qubit
observable <0’1x0'2x - O(N/2)YyOT(N/2)+1x T (N/2)+2x - - - O-Ny>

(where the qubit indices may be conveniently
interchanged).

if N/2 = even integer,

if N/2 = odd integer. (16)

Next, consider N-qubit W state [15]:

1
IWN>=\/—N(|100...0)+|010...0>+...). a7

Here, the covariance matrices C?¥, of all orders k =
1,2,...,[N/2], are negative (with only one negative ei-
genvalue, A0 = — %{l)). Therefore, W state of N qu-
bits is confirmed to exhibit 2k-qubit entanglement for all
values of k (with, of course, 2k = N). Here again, the
2k-qubit entanglement is seen explicitly through the mea-
surement of one of the diagonal elements of the covariance
matrix C2¥, with i = {zzz... z}, for which C'?¥ = 720 =
— 1. It is therefore sufficient to check that (o0, ... 0.)
is negative. Thus the W state has 2k-qubit entanglement in
all the even partitions 2k = 2,4,6, ... of the state. Our
results confirm that the W state is robust under disposal
of qubits [15].

We now investigate the implications of our inseparabil-
ity conditions C*® < 0 for mixed states: to this end, sup-
pose that experimentally produced W and GHZ states have
noiselike admixture of incoherently superposed symmetric
states:

(1—-x)
oy = g Py Halel 0=x=1. (g
where Py = zﬁ///j_ N2 |5 M){% M| denotes the projection

operator onto the symmetric subspace Sym (C? ® C?> ®
...®C?) of N qubits [Py is an identity matrix in the
symmetric subspace of qubits and hence Py /(N + 1) cor-
responds to a maximally disordered separable symmetric
state], and |) is either a N-qubit |GHZ)y or |W)y state.
For the least eigenvalue of the covariance matrix C%) to be
negative, the mixing parameter x has to be greater than a
certain threshold value. We find the following range of x
for which inseparability is indicated via negativity of C*%)
for N =2, 4 and 6 qubits:

GHZ — noisy state: 0.25 <x =1,
0.0625<x =1,
0.014<x=1,

for N = 2.
for N = 4. (19)
for N = 6.

for N = 2.
for N = 4. (20)
for N = 6.

W — noisy state: 0.25 <x =1,
0.0899 <x =1,
0.042<x=1,

We observe that the x range for N-qubit entanglement is
smaller for the noisy W state [see (20)], than that (19) for
the noisy GHZ state. But eventually for large N, both the
noisy states remain entangled for all values of x. A more
general trend (but a restricted domain for x) is found by
examining the lowest order principal minor: the noisy GHZ
state is NV (even) qubit entangled, when % <x =1 (veri-

fied by demanding that the diagonal element TV =

ii
(I-x) _

ey X< 0; the index i = {xx...y}). For mixed noisy
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state of W, the inseparability range—for N-qubit entan-

glement—is identified to be m < x = 1, resulting from
(1—x)

the negative diagonal element T,(,N ) = e
{zz...z2}.

Entanglement in various even partitions of the W-noisy
state (18) are examined by using the n qubit reduced W
noisy state,

—x, with i =

n (1—1x)
pgc\)]isy)(W) = m N—n
+ x[w |WN—n><WN—n|

e |0Nn><0Nn|} 1)

The covariance matrices of all even partitions of the W
noisy state are found to be negative, in a specific insepa-
rability range of the mixing parameter x. For example we
find that a W noisy state is two-qubit entangled when
NZN_+212 <x = 1. Note that this inseparability range for
two-qubit entanglement is much restricted than the one
realized for entanglement in the largest even partition of
the state [see (20)]. As N increases x — 1, indicating that
in the large N limit the two-qubit partition of a noisy W
state is separable throughout the range 0 = x < 1. The
n-qubit reduced GHZ noisy state is a convex sum of three
separable states Py_,/(N —n + 1), |0y_,XOy_,|, and
[1y_,X1y_,| and is thus a separable state.

In conclusion, we have here generalized our formalism
of the symmetric two-qubit inseparability condition, ex-
pressed in terms of interqubit covariance matrix [7], to all
even qubit partitions of symmetric N-qubit systems. This
takes the form of a hierarchy of inseparability conditions
on the intergroup covariance matrices of even order:
C?) <0, k=1,2,... with 2k = N. Only for k =1 (i.e.,
for two-qubit partitions) the inseparability condition is
both necessary and sufficient, and for all other values of
k, these conditions are only sufficient. We have illustrated
their use for both pure and mixed states involving GHZ-
and W-type states. The symmetric multiqubit system con-
sidered here facilitates a richer analysis in terms of SO(3)
irreducible tensors [17]. The irreducible tensor approach
leads to a family of criteria [17] for entanglement based on
covariance matrices involving collective angular momen-
tum variables and is suitable to test inseparability in macro-
scopic atomic ensembles [6]. Our approach suggests
further generalization to d-level symmetric multiparticle
systems also.
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