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We present measurements of branching fractions and charge asymmetries for seven B-meson decays
with an �, �0, or! meson in the final state. The data sample corresponds to 89 � 106 BB pairs produced
from e�e� annihilation at the ��4S� resonance. We measure the following branching fractions in units
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of 10�6: B�B� ! ���� � 5:3 	 1:0 	 0:3, B�B� ! �K�� � 3:4 	 0:8 	 0:2, B�B0 ! �K0� � 2:9 	
1:0 	 0:2 (< 5:2, 90% C.L.), B�B� ! �0��� � 2:7 	 1:2 	 0:3 (< 4:5, 90% C.L.), B�B� ! !��� �
5:5 	 0:9 	 0:5, B�B� ! !K�� � 4:8 	 0:8 	 0:4, and B�B0 ! !K0� � 5:9�1:6

�1:3 	 0:5. The charge
asymmetries are Ach�B

� ! ���� � �0:44 	 0:18 	 0:01, Ach�B
� ! �K�� � �0:52 	 0:24 	

0:01, Ach�B
� ! !��� � 0:03 	 0:16 	 0:01, and Ach�B

� ! !K�� � �0:09 	 0:17 	 0:01.

DOI: 10.1103/PhysRevLett.92.061801 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
decays �! �� (���), �! �����0 (�3�), �0 !
����� (�0

���), �0 ! �0� (�0
��), !! �����0, �0 !

For the �! �� modes we use additional event-
selection criteria to reduce BB backgrounds from several
We report results of measurements of B decays to the
charmless final states �K0, ���, �K�, �0��, !K0,
!��, and !K� [1]. Only the last two of these decays
have been observed previously [2– 4]. Measurements of
the related B! �0K decays were published recently [5].
Charmless decays with kaons are usually expected to be
dominated by b! s loop (‘‘penguin’’) amplitudes, while
b! u tree transitions are typically larger for the decays
with pions. However, the B! �K decays are especially
interesting since they are suppressed relative to the abun-
dant B! �0K decays due to destructive interference
between two penguin amplitudes [6]. Thus the CKM-
suppressed b! u amplitudes may interfere significantly
with the suppressed penguin amplitudes. This tree-pen-
guin interference may lead to large direct CP violation in
the �K� decay as well as ���, and �0�� [7]; numerical
estimates have been provided in a few cases [8]. We
search for such direct CP violation by measuring the
charge asymmetry Ach 
 ��� � ���=��� � ��� in the
rates �	 � ��B	 ! f	�, for each observed charged final
state f	.

Charmless B decays are becoming useful to test the
accuracy of theoretical predictions such as QCD factori-
zation [9]. Phenomenological fits to the branching frac-
tions and charge asymmetries can be used to understand
the importance of tree and penguin contributions and
may even provide sensitivity to the CKM angle � [10].

The results presented here are based on data collected
with the BABAR detector [11] at the PEP-II asymmetric
e�e� collider [12] located at the Stanford Linear
Accelerator Center. An integrated luminosity of
81:9 fb�1, corresponding to �88:9 	 1:0� � 106 BB pairs,
was recorded at the ��4S� resonance (center-of-mass
energy

���
s

p
� 10:58 GeV).

Charged particles from the e�e� interactions are de-
tected, and their momenta measured, by a combination of
a vertex tracker (SVT) consisting of five layers of double-
sided silicon microstrip detectors, and a 40-layer central
drift chamber, both operating in the 1.5-T magnetic field
of a superconducting solenoid. We identify photons and
electrons using a CsI(Tl) electromagnetic calorimeter
(EMC). Further charged particle identification (PID) is
provided by the average energy loss (dE=dx) in the track-
ing devices and by an internally reflecting ring imaging
Cherenkov detector (DIRC) covering the central region.

We select �, �0, !, K0
S, and �0 candidates through the
����, K0
S ! ����, and �0 ! ��. We make the follow-

ing requirements on the invariant mass (in MeV) of their
final states: 490<m�� < 600 for ���, 520<m��� <
570 for �3�, 910< �m���;m���< 1000 for �0, 735<
m��� < 825 for !, 510<m�� < 1070 for �0, and
120<m�� < 150 for �0. For K0

S candidates we require
488<m�� < 508, the three-dimensional flight distance
from the event primary vertex to be greater than 2 mm,
and the angle between flight and momentum vectors, in
the plane perpendicular to the beam direction, to be less
than 40 mrad.

We make several PID requirements to ensure the
identity of the pions and kaons. Secondary tracks in
�3�, �0, and ! candidates must have DIRC, dE=dx, and
EMC outputs consistent with pions. For the B� decays to
an � or ! meson and a charged pion or kaon, the latter
(primary) track must have an associated DIRC signal
with a Cherenkov angle within 3:5 standard deviations
(�) of the expected value for either a � or K hypothesis.

A B-meson candidate is characterized kinemati-
cally by the energy-substituted mass mES � ��12 s� p0 
pB�2=E2

0 � p2
B�

1=2 and energy difference �E �
E�
B �

1
2

���
s

p
, where the subscripts 0 and B refer to the initial

��4S� and to the B candidate, respectively, and the aster-
isk denotes the ��4S� frame. The resolution on �E (mES)
is about 30 MeV (3:0 MeV). We require j�Ej � 0:2 GeV
and 5:2 � mES � 5:29 GeV.

Backgrounds arise primarily from random combina-
tions in e�e� ! qq events. We reject these by using the
angle �T between the thrust axis of the B candidate in the
��4S� frame and that of the rest of the charged tracks and
neutral clusters in the event. The distribution of j cos�Tj is
sharply peaked near 1:0 for combinations drawn from
jetlike qq pairs, and nearly uniform for B-meson decays.
We require j cos�Tj< 0:9, for all modes except the high-
background B� ! �0

���
� decay, where we determine

that the sensitivity is maximal for a 0.65 requirement.
We also use, in the fit described below, a Fisher discrim-
inant F that combines four variables: the angles with
respect to the beam axis of the Bmomentum and B thrust
axis [in the ��4S� frame], and the zeroth and second
angular moments L0;2 of the energy flow about the B
thrust axis. The moments are defined by Lj �

P
ipi �

j cos�ij
j, where �i is the angle with respect to the B thrust

axis of track or neutral cluster i, pi is its momentum, and
the sum excludes the B candidate.
061801-4



P H Y S I C A L R E V I E W L E T T E R S week ending
13 FEBRUARY 2004VOLUME 92, NUMBER 6
charmless final states. We reduce background from B!
���0, K��0, and K0�0 by rejecting ��� candidates that
share a photon with any �0 candidate having momentum
between 1.9 and 3:1 GeV=c in the ��4S� frame.
Additionally, we require E� < 2:4 GeV to suppress back-
ground from B! K�� and related radiative-penguin de-
cays. From Monte Carlo (MC) simulation [13] we
estimate that the residual charmless BB background is
negligible for all decays except those with �! �� and
�0 ! �0�, where we include in the fit described below a
BB component (which is less than 0.5% of the total
sample in all cases).

We obtain yields and Ach from extended unbinned
maximum-likelihood fits, with input observables �E,
mES, F , mres (the mass of the �, �0, or ! candidate),
for the ! decays, H 
 j cos�Hj, and for charged modes
the PID variable S�;K. The helicity angle �H is defined as
the angle, measured in the ! rest frame, between the
normal to the! decay plane and the flight direction of the
!. We incorporate PID information by using S� (SK), the
number of standard deviations between the measured
Cherenkov angle and the expectation for pions (kaons).

For each event i, hypothesis j (signal, continuum back-
ground, BB background), and flavor (primary �� or K�)
k, we define the probability density function (PDF)

P i
jk � P j�mES

i�P j��E
i
k�P j�F

i�P j�m
i
res�

� �P j�S
i
k���P j�H

i��: (1)

The terms in brackets for S and H pertain to modes with
charged track or! daughters, respectively. The absence of
correlations among observables in the background P i

jk is
confirmed in the (background-dominated) data samples
entering the fit. For the signal component, we correct for
the effect of the neglect of small correlations (see below).
TABLE I. Signal yield, estimated purity P, detection efficiency %
systematic uncertainties), measured branching fraction, backgroun
For B0 ! �K0 and B� ! �0��, the 90% C.L. upper limit is also

Mode Yield P (%) % (%)
Q

Bi (%) Signif.

�3��
� 28�10

�9 30 23 23 4.4
����

� 59 	 14 31 31 39 6.6
��� 7.9
�3�K

� 15�8
�7 24 23 23 2.6

���K� 38 	 11 33 23 39 5.3
�K� 6.1
�3�K

0 2:6�4:1
�3:1 20 23 8 0.8

���K
0 8:6�4:8

�3:8 47 24 14 3.2
�K0 3.3 2:9
�0
����

� 17�7
�6 38 28 17 3.9

�0
���

� �4�11
�9 17 30

�0�� 3.4 2:7
!�� 101 	 17 37 23 89 9.1
!K� 83 	 14 39 22 89 10.0
!K0 33�9

�8 51 20 31 7.5
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The likelihood function is

L � exp

�
�
X
j;k

Yjk

�YN
i

�X
j;k

YjkP i
jk

�
; (2)

where Yjk is the yield of events of hypothesis j and flavor
k found by maximizing L, and N is the number of events
in the sample.

We determine the PDF parameters from simulation for
the signal and BB background components, and from
(mES, �E) sideband data for continuum background. We
parametrize each of the functions P sig�mES�, P sig��Ek�,
P j�F �, P j�Sk�, and the peaking components of P j�mres�
with either a Gaussian, the sum of two Gaussians, or an
asymmetric Gaussian function as required to describe the
distribution. Slowly varying distributions (mass, energy,
or helicity angle for combinatoric background) are repre-
sented by linear or quadratic dependencies. The peaking
and combinatoric components of the ! mass spectrum
each have their own H shapes. The combinatoric
background in mES is described by the function
x

��������������
1 � x2

p
exp��$�1 � x2��, with x 
 2mES=

���
s

p
and pa-

rameter $. Large control samples of B decays to charmed
final states of similar topology are used to verify the
simulated resolutions in �E and mES. Where the control
data samples reveal differences from MC in mass or
energy offset or resolution, we shift or scale the resolution
used in the likelihood fits.

In Table I we show for each decay mode the measured
branching fraction, together with the quantities entering
into its computation. Typically seven parameters of the
background PDF are free in the fit, along with signal and
background yields, and for charged modes the signal
and background Ach. For calculation of branching
, daughter branching fraction product, significance (including
d (Aqq

ch ) and signal (Ach) charge asymmetries for each mode.
given.

B�10�6� Aqq
ch Ach

5:6�2:1
�1:8 �0:004 	 0:010 �0:52 	 0:31

5:2 	 1:3 �0:001 	 0:011 �0:41 	 0:22
5:3 	 1:0 	 0:3 �0:003 	 0:008 �0:44 	 0:18 	 0:01

3:1�1:7
�1:5 �0:008 	 0:016 �0:43 	 0:51

3:5 	 1:1 �0:011 	 0:016 �0:55 	 0:26
3:4 	 0:8 	 0:2 �0:010 	 0:011 �0:52 	 0:24 	 0:01

1:8�2:9
�2:2

3:2�1:8
�1:4

	 1:0 	 0:2 (< 5:2)
3:8�1:7

�1:4
�0:8�2:4

�2:0
	 1:2 	 0:3 (< 4:5)
5:5 	 0:9 	 0:5 �0:012 	 0:006 0:03 	 0:16 	 0:01
4:8 	 0:8 	 0:4 �0:003 	 0:009 �0:09 	 0:17 	 0:01
5:9�1:6

�1:3 	 0:5
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FIG. 1 (color online). Projections of the B candidate mES and
�E for (a),(b) B� ! ���, and (c),(d) B� ! �K�. Points with
errors represent data, shaded histograms the �! �����0

subset, solid curves the full fit functions, and dashed curves
the background functions (the peaking BB background compo-
nent is negligible). These plots are made with a requirement on
the likelihood and thus do not show all events in the data
samples.
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fractions, we assume that the decay rates of the ��4S� to
B�B� and B0B0 are equal. For the � and �0 decays, we
combine results from the two decay channels by adding
the values of �2 lnL, taking proper account of the corre-
lated and uncorrelated systematic errors. The estimated
purity is the ratio of the signal yield to the effective
background plus signal; we estimate the effective back-
ground by taking the square of the uncertainty of the
signal yield as the sum of effective background plus
signal. In Figs. 1 and 2 we show projections onto mES

and �E of subsamples enriched with a mode-dependent
threshold requirement on the signal likelihood (computed
ignoring the PDF associated with the variable plotted). To
show separately in (a)–(d) the components of these
samples with a primary pion or kaon we require S�;K & 2.
FIG. 2 (color online). Projections of the B candidate mES and
�E for (a),(b) B� ! !��; (c),(d) B� ! !K�; and (e),(f)
B0 ! !K0. Points with errors represent data, solid curves the
full fit functions, and dashed curves the background functions.
These plots are made with a requirement on the likelihood and
thus do not show all events in the data samples.
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The statistical error on the signal yield and Ach is
taken as the change in the central value when the quantity
�2 lnL increases by one unit from its maximum value.
The significance is taken as the square root of the differ-
ence between the value of �2 lnL (with systematic
uncertainties included) for zero signal and the value at
its minimum. For �K0 and �0�� we quote a 90% con-
fidence level (C.L.) upper limit, taken to be the branching
fraction below which lies 90% of the total of the like-
lihood integral in the positive branching fraction region.
For the charged modes we also give the charge asymme-
try Ach.

Most of the yield uncertainties arising from lack of
knowledge of the PDFs have been included in the statis-
tical error since most background parameters are free in
the fit. Varying the signal PDF parameters within their
estimated uncertainties, we estimate the uncertainties in
the signal PDFs to be 1–3 events.We verify the validity of
the fit procedure and PDF shapes by demonstrating that
the likelihood of each fit is consistent with the distribu-
tion found in simulation.

Uncertainties in our knowledge of the efficiency, found
from auxiliary studies, include 0:8Nt%, 2:5N�%, and 3%
for a K0

s decay, where Nt and N� are the number of signal
tracks and photons, respectively. Our estimate of the B
production systematic error is 1:1%. The neglect of cor-
relations among observables in the fit can cause a system-
atic bias; the correction for this bias (< 10% in all cases)
and assignment of systematic uncertainty (1–5%), is
determined from simulated samples with varying back-
ground populations. Published data [14] provide the un-
certainties in the B-daughter product branching fractions
(1%). Selection efficiency uncertainties are 1% (3% in
B� ! �0

���
�) for cos�T and �1% for PID. Using several

large inclusive kaon and B-decay samples, we find a
systematic uncertainty for Ach of 1.1% due mainly to
the dependence of reconstruction efficiency on the charge
of the high momentum charged track. The values of Aqq

ch
(see Table I) provide confirmation of this estimate.

In conclusion, we find significant signals for five
B-meson decays. The measured branching fractions, and
for the B	 modes the charge asymmetries, are given in
Table I. These are the first charge asymmetry measure-
ments for the decays B� ! ��� and B� ! �K�, since
these modes along with B0 ! !K0 have not been ob-
served previously. We quote 90% C.L. upper limits for
the B0 ! �K0 and B� ! �0�� branching fractions,
where the significances are only 3:3� and 3:4�, respec-
tively. All branching fraction and charge asymmetry
measurements are consistent with, but more precise
than, previous measurements [2–4,15]. Though uncer-
tainties are large, the values of Ach for the two decays
with ! mesons are small as expected theoretically; the
consistencies with zero asymmetry for B� ! ���

(B� ! �K�) are 2:4� (2:1�). These are channels in
which large asymmetries may be anticipated [7].
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