Submitted to Organometallics

Sulfur-Directed Olefin Oxidations: Observation of Divergent Reaction Mechanisms in the Palladium-Mediated Acetoxylation of Unsaturated Thioacetals

Journal:	Organometallics
Manuscript ID:	om-2011-000585.R1
Manuscript Type:	Communication
Date Submitted by the Author:	n/a
Complete List of Authors:	Mann, Sam; University College London, Chemistry Aliev, Abil; University College London, Department of Chemistry Tizzard, Graham; University of Southampton, Chemistry Sheppard, Tom; University College London, Chemistry

SCHOLARONE™ Manuscripts Sulfur-Directed Olefin Oxidations: Observation of Divergent Reaction Mechanisms in the Palladium-Mediated Acetoxylation of Unsaturated

Thioacetals

Sam E. Mann^a, Abil E. Aliev^a, Graham J. Tizzard^b and Tom D. Sheppard^a*

^aDepartment of Chemistry, University College London,

Christopher Ingold Laboratories, 20 Gordon St, London, WC1H 0AJ, UK.

^bUK National Crystallography Service, School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.

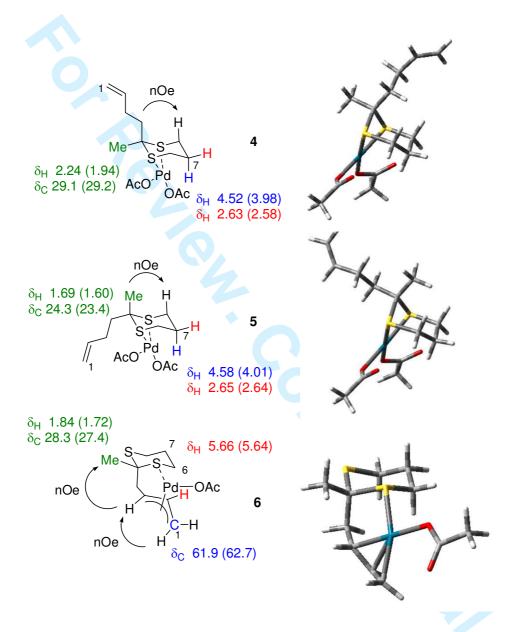
tom.sheppard@ucl.ac.uk

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

Summary: The Pd-mediated oxidation of unsaturated thioacetals gives either allyl or vinyl esters depending on the substrate structure. We report the characterization of a range of sulfur-stabilized palladium intermediates via a combined computational and experimental NMR approach, demonstrating that the oxidation proceeds via two divergent reaction mechanisms. We were also able to synthesize an unusual σ -bound Pd complex, via

acetoxypalladation of an unsaturated dithiane, which was characterized by X-Ray crystallography.

Palladium-mediated oxidation reactions play an important role in synthetic chemistry, providing methods for the conversion of alkenes to methyl ketones or aldehydes (Wacker process), 1,2 and ketones to enones (Saegusa oxidation). 3 More recently, there has been considerable interest in the Pd-mediated oxidation of alkenes to allylic esters, 4-9 and in oxidative alkene functionalisation reactions. ¹⁰ Typically these processes require a co-oxidant (e.g. benzoquinone/BQ, MnO₂, Cu salts, O₂) and these co-oxidants often play a complex role in the catalytic cycle. As a consequence, mechanistic studies using stoichiometric quantities of Pd salts are not always consistent with the results obtained from catalytic reactions.^{5,6,8} A good understanding of the reaction mechanism can be extremely valuable for optimizing reaction procedures and developing new transformations. In recent reports sulfur ligands have been employed for controlling the outcome of the Pd-catalysed oxidation of alkenes, to give either linear or branched allylic esters selectively. 7,8 Even in very early reports, the important effect of DMSO as a solvent in stoichiometric palladium oxidations was noted.9 The oxidation of alkenes to give allyl acetates is thought to proceed via a π -allyl Pd complex, although mechanistic studies have often given conflicting results.^{5,8,11} In this communication we report a study of the oxidation of unsaturated thioacetals with Pd(OAc)₂. The reaction can proceed via two divergent mechanisms to give either allylic or vinylic ester products, and these oxidation processes are operative under both stoichiometric and catalytic reaction conditions. In addition, the intermediate palladium complexes are stabilized by the thioacetal unit and can be observed and characterized by NMR, providing a detailed understanding of the reaction pathways.


Scheme 1 Reaction of unsaturated dithianes with Pd(OAc)₂.

$$\begin{array}{c|c}
 & Pd(OAc)_2 \\
\hline
 & CDCl_3 \\
\hline
 & Me
\end{array}$$

$$\begin{array}{c|c}
 & S \\
\hline
 & OAc \\
\hline
 & A \\$$

As part of an ongoing project on the development of new transformations of acetals, we examined the reaction of unsaturated dithiane 1 with 1 equiv. of Pd(OAc)₂ (Scheme 1).^{2,12} On standing overnight at room temperature, the allylic acetate 2 was observed as the major product, and was isolated in 78% yield. No trace of the corresponding branched acetate was observed in the crude NMR spectrum.^{7,13} The parent ketone 3 was not oxidized under similar reaction conditions to any significant extent, although after prolonged reaction times (ca. 48 h) a complex mixture of products was observed by NMR. In order to determine how the thioacetal group was directing the oxidation reaction, we carefully monitored the reaction by NMR in order to study any intermediate complexes. Upon treatment of 1 with Pd(OAc)₂ in CDCl₃, we observed immediate formation of an approximately 1:1 mixture of two isomeric complexes 4 and 5 (Figure 1). Over the course of around 15 minutes at room temperature, this mixture of complexes was converted into a single new species 6.

Figure 1 Structures of complexes **4**, **5** and **6**. Observed chemical shifts for selected atoms are shown, with calculated values from DFT in parentheses.¹⁴

Intermediate **6** has an NMR spectrum consistent with a π -allyl species, showing ¹³C resonances at 61.9, 115.2 and 77.5 ppm for carbons 1-3 (Figure 1). Deshielding of the protons on C-6 but not C-8 suggested that the Pd atom was only co-ordinated to one of the sulfur atoms. The NMR spectrum of the mixture of complexes **4** and **5** suggested co-ordination of the Pd to both sulfur atoms, however, with the protons at C-6 and C-8 shifted downfield in comparison to dithiane **1**. An unusually high chemical shift of around 4.5 ppm was seen for the axial proton at C-7 on the dithiane ring in both isomers of this complex. The structures of

4-6 were established using a combined application of NMR, semi-empirical (PM6) and quantum mechanical (QM) methods. ¹⁴ Initially, molecular structures were built satisfying the experimentally measured nuclear Overhauser effects (NOEs) and vicinal J-couplings. The geometries of these structures were optimized subsequently using PM6 calculations, followed by QM DFT (density functional theory) calculations. The final structures elucidated in this manner are shown in Figure 1. The observed NOEs suggest a chair conformation of the six-membered ring, the presence of which is further supported by the large values of ³J couplings for *trans*-diaxial protons. The equatorial/axial orientations of the 5-Me group in 4 and 5 are further supported by their ¹H and ¹³C chemical shifts. Significant high-frequency shifts of the 7-H_{ax} proton in 4 and 5 can be attributed to its spatial proximity to the oxygen atoms of the proposed structures (around 3.4 Å in the structures shown). The ¹H and ¹³C NMR shifts for the proposed structures of 4-6 were calculated using DFT and these values showed good agreement with those observed experimentally, including the unusual high-frequency shifts for the 7-H_{ax} proton in 4 and 5 (Figure 1 and Supporting Information).

Scheme 2 Reaction of unsaturated dithiane 7 with Pd(OAc)₂

The oxidation of closely related dithiane 7 proceeded very differently to the reaction of dithiane 1 (Scheme 2). Initial formation of a single complex 8 was observed, which over time evolved to give the vinyl acetate 9 as the major oxidation product in 23% yield. There was no evidence for the formation of allyl acetate products or the internal vinyl acetate, which might be expected to form via a Wacker-type oxidation. 1,2

Dithiane complex **8** had an NMR spectrum similar to **5**, with a high chemical shift for the axial proton at C-7 (4.53 ppm). This complex was formed *as a single stereoisomer* with the

palladium complexed to the same face as the carbon chain (Scheme 2). Over time 8 did not react to form a π -allyl complex but was instead slowly converted into the vinyl acetate 9 as the major oxidation product. The formation of terminal vinyl acetates in this type of oxidation reaction is highly unusual.¹⁶

Scheme 3 Proposed mechanism of the Pd-mediated oxidation reactions.

$$R = Me$$

$$R^{1} = H$$

$$R^{1} =$$

On the basis of these observations it seems that two divergent reaction mechanisms can operate during the oxidation of these unsaturated dithianes (Scheme 3). Initial formation of the palladium dithiane complexes 10 and/or 11 occurs prior to oxidation. Reaction can then occur via abstraction of an allylic hydrogen atom to give π -allyl complex 6, followed by attack of acetate to give the allyl acetate product 2. The π -allyl complex 6 has the palladium co-ordinated to an equatorial lone pair on the sulfur, with the tether occupying an axial position. Alternatively, direct acetoxypalladation to give σ -complex 12 can occur, followed by β -hydride elimination to give the vinyl acetate product 9. This latter process presumably becomes more favorable with a bulkier chain (R=Me) for two reasons: (i) abstraction of the allylic hydrogen atom to form a π -allyl complex is more difficult; (ii) complex 10, with the bulky chain occupying an equatorial position, becomes favored over 11. This latter effect may prevent access to the intermediate conformer necessary for the formation of a π -allyl complex similar to 6, which contains the unsaturated chain in an axial position.

We then sought to determine whether these mechanisms were also operative under catalytic conditions (Scheme 4). With MnO₂ and benzoquinone (BQ) as co-oxidants,^{4b} and we found that unsaturated thioacetals 1 and 7 could be oxidized to give the corresponding acetates 2 and 9. The R¹ group (H or Me) did not appear to affect the reaction outcome, with dithianes 13 and 17 giving analogous allyl and vinyl acetate products to 14 and 18 respectively. Other esters could readily be introduced by addition of 2 equiv. of the carboxylic acid to the reaction mixture (15-16 and 19). Although the vinyl acetate products were only obtained in moderate yields, it is notable that the isolated yield of 9 is significantly higher than that obtained in the stoichiometric reaction. This is likely to be a consequence of the instability of these vinyl acetates in the presence of excess Pd salts.¹⁵

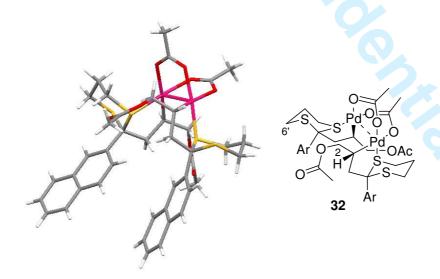
Scheme 4 Catalytic oxidation reactions of unsaturated dithianes.

We also found that the dithiane-directed oxidation reaction could be carried out chemoselectively in the presence of another oxidizable alkene, allyl anisole **20** (Scheme 5). In the absence of dithiane **1**, **20** was oxidized to give the corresponding allylic acetate **21** in 93% yield. However, only the unsaturated dithiane was oxidized to any significant extent, when a mixture of **1** and **20** was treated under the same conditions, with **20** being recovered in 86% yield together with a trace of the corresponding oxidation product **21**.

Scheme 5 Chemoselective oxidation of an unsaturated dithiane in the presence of another alkene.

Given that the oxidation pathway seems to be significantly affected by the conformation of the dithiane ring, we also examined the reaction of dithiolane 22. This gave a mixture of the allyl and vinyl acetate products 23 and 24 in 93% overall yield (Scheme 6). The two isolated products 23 and 24 were shown not to interconvert under the reaction conditions, although vinyl acetate 24 was slowly oxidized to give geminal acetate 25 after prolonged reaction times. These experiments provide further evidence that the two types of oxidation product are produced via divergent reaction pathways and not via Pd-mediated isomerisation processes. A stoichiometric reaction of 22 with $Pd(OAc)_2$ in $CDCl_3$ led to the formation of small quantities of 24, together with the π -allyl complex 26 which gradually reacted to give 23.

Scheme 6 Oxidation of an unsaturated dithiolane.


Although the formation of the vinyl acetate products 9 (and 24) appears to proceed via an intermediate Pd σ -complex such as 12, we were unable to observe this intermediate by NMR.

However, we found that treatment of dithiane 27 with Pd(OAc)₂ (Scheme 7) gave a stable Pd σ-complex 29 via an intial short-lived dithiane complex 28.¹⁷

Scheme 7 Formation of stable Pd σ -complexes.

The σ -complex complex 29 has a distinctive signal for the proton at C_2 (3.26 ppm, dddd). The structure of this σ -complex was subsequently confirmed for the naphthalene-substituted analogue 32 via single crystal X-ray diffraction (Figure 2). Interestingly, these complexes are formed as single diastereisomers (based on the NMR spectrum), despite the fact that three stereogenic centers are generated during the reaction.

Figure 2 X-ray crystal structure of 32.

The complex is dimeric with two bridging acetate ligands linking the Pd atoms with an intermetallic distance of only 2.959 Å. Each Pd atom is co-ordinated to a single sulfur atom via the axial lone pair, and adopts a square-planar geometry. This dimeric structure appears to

be maintained in solution as an NOE was observed between the protons at C-2 and C-6 (Figure 2). This highly rigid structure presumably accounts for the fact that the complexes do not readily undergo β -hydride elimination. In fact, treatment of **29** with an equivalent of pyridine only led to β -acetoxyelimination and regeneration of the starting dithiane **27** (Scheme 7).

We were also able to generate analogous σ -complex 33 by carbo-palladation of dithiane 27 using phenyltributylstannane in the presence of a Pd(II) salt (Scheme 8). 10

Scheme 8 Carbo-palladation of dithiane **27**.

The NMR of complex 33 was somewhat broad, possibly due to monomer-dimer exchange. However 33 could readily be converted to the monomeric complex 34, which was more easily characterized by NMR. Oxidation of the carbon-palladium bond in dimer 33 with oxone proceded smoothly, with concomitant deprotection of the dithiane, to give a mixture of the alkene 35, the alcohol 36 and the chloride 37²⁰ in 82% overall yield.

In summary, we have demsonstrated that two divergent reaction mechanisms operate during the Pd-mediated oxidation of unsaturated thioacetals, leading to allyl and vinyl acetates. The reaction intermediates can be characterized via NMR due to the useful stabilizing effect of the thioacetal group, and the two reaction mechanisms operate under both catalytic and stoichiometric conditions. We were also able to prepare a series of highly unusual Pd σ -complexes containing β -hydrogen atoms, which could be charactized via NMR

studies, and in one case, single crystal X-ray diffraction. We anticipate that thioacetals can be used to control many other transition-metal catalyzed reactions and to facilitate the direct observation of a variety of reaction intermediates. Further work is underway to extend the scope of these sulfur-directed organometallic reactions, and the results will be reported in due course.

This work was supported by the EPSRC (EP/E052789/1: Advanced Research Fellowship to T.D.S.) and University College London (studentship to S.E.M.). We thank the EPSRC national crystallography service at Southampton and the EPSRC national mass spectroscopy service at Swansea for analytical support, and Dr Stephen Goldup (QMUL) for helpful discussions.

Supporting Information Available. Full experimental procedures and details of the NMR shift calculations for complexes **4-6**, spectroscopic data for all new compounds, and X-ray crystallographic data for complex **32**.

- (a) Muzart, J. Tetrahedron 2007, 63, 7505-7521; (b) Anderson, B. J.; Keith, J. A.;
 Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 11872-11874; (c) Keith, J. A.; Henry, P. M.
 Angew. Chem. Int. Ed. 2009, 48, 9038-9049.
- (2) For Wacker oxidation of unsaturated thioethers, see: Raghavan, S.; Krishnaiah, V.; Rathore, K. *Tetrahedron Lett.* **2008**, *49*, 4999-5002.
 - (3) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011-1013.
- (4) (a) Bäckvall, J. E.; Hopkins, R. B.; Grennberg, H.; Mader, M. M.; Awasthi, A.K. J. Am. Chem. Soc. 1990, 112, 5160-5166; (b) Heumann, A.; Åkermark, B. Angew. Chem.

Int. Ed. 1984, 23, 453-454; (c) Topics in Organometallic Chemistry; Popp, B. V.; Stahl, S. S.; Springer-Verlag, Berlin Heidelberg, 2006.

- (5) Åkermark, B.; Hansson, S.; Rein, T.; Vagberg, J.; Heumann, A.; Bäckvall, J. E. *J. Organomet. Chem.* **1989**, *369*, 433-444.
- (6) (a) Grennberg, H.; Bäckvall, J. E. Chem. Eur. J. 1998, 4, 1083-1089; (b) Grennberg, H.; Simon, V.; Bäckvall, J. E. Chem. Comm. 1994, 265-266; (c) Jabre-Truffert, S.; Delmas, A. M.; Grennberg, H.; Åkermark, B.; Waegell, B. Eur. J. Org. Chem. 2000, 219-224; (d) Kozitsyna, N. Y.; Bukharkina, A. A.; Martens, M. V.; Vargaftik, M. N.; Moiseev, I. I. J. Organomet. Chem. 2001, 636, 69-75; (e) Lin, B. L.; Labinger, J. A.; Bercaw, J. E. Can. J. Chem. 2009, 87, 264-271; (f) Yang, H.; Khan, M. A.; Nicholas, K. M. J. Mol. Catal. 1994, 91, 319-334; (g) Zanoni, G.; Porta, A.; Meriggi, A.; Franzini, M.; Vidari, G. J. Org. Chem. 2002, 67, 6064-6069; (h) Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 15116-15119.
- (7) (a) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem.
 Soc. 2005, 127, 6970-6971; (b) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346-1347.
- (8) Henderson, W. H.; Check, C. T.; Proust, N.; Stambuli, J. P. Org. Lett. 2010, 12, 824-827.
- (9) Kitching, W.; Rappopor. Z; Winstein, S.; Young, W. G. *J. Am. Chem. Soc.* **1966**, 88, 2054-2055.
- (10) (a) Kalyani, D.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 2150-2151; (b)Kalyani, D.; Satterfield, A. D.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 8419-8427; (c)

- Urkalan, K. B.; Sigman, M. S. Angew. Chem. Int. Ed. 2009, 48, 3146-3149; (d) Werner, E.W.; Urkalan, K. B.; Sigman, M. S. Org. Lett. 2010, 12, 2848-2851.
- (11) (a) Hansson, S.; Heumann, A.; Rein, T.; Åkermark, B. J. Org. Chem. 1990,55, 975-984; (b) Jia, C. G.; Muller, P.; Mimoun, H. J. Mol. Catal. A: Chem. 1995, 101, 127-136.
- (12) For the Pd-mediated isomerisation of an unsaturated thioether, see: McCrindle, R.; Alyea, E. C.; Ferguson, G.; Dias, S. A.; McAlees, A. J.; Parvez, M. *J. Chem. Soc.*, *Dalton Trans.* **1980**, 137-144.
- (13) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. *Chem. Rev.* **2010**, *110*, 890-931.
 - (14) For full details of the calculations, see the Supporting Information
- (15) The vinyl acetate products undergo further oxidation in the presence of excess Pd (see scheme 6), in some cases to a complex mixture of products.
- (16) (a) Kozitsyna, N. Y.; Vargaftik, M. N.; Moiseev, I. I. *J. Organomet. Chem.*2000, 593, 274-291; (b) Larock, R. C.; Hightower, T. R. *J. Org. Chem.* 1993, 58, 5298-5300;
 (c) Minami, T.; Nishimoto, A.; Nakamura, Y.; Hanaoka, M. *Chem. Pharm. Bull.* 1994, 42, 1700-1702; (d) Tanaka, M.; Urata, H.; Fuchikami, T. *Tetrahedron Lett.* 1986, 27, 3165-3168.
- (17) An analogous Pd σ -complex appeared to form from the corresponding alkyl dithiane (27, Me in place of Ph) but the NMR spectrum was less clean.
- (18) For a recent example of a stable Pd σ-complex containing β-hydrogen atoms, see: Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. *J. Am. Chem. Soc.* **2002**, *124*, 13662-13663.

- (19) (a) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141-1144;
 (b) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439-2463; (c) Powers, D. C.; Geibel,
 M. A. L.; Klein, J.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050-17051.
- (20) (a) Carr, K.; Sutherland, J. K. J. Chem. Soc., Chem. Commun. 1984, 1227-1228; (b) Ramos, S. S.; Almeida, P.; Santos, L.; Motherwell, W. B.; Sheppard, T. D.; Costa, M. C. Tetrahedron 2007, 63, 12608-12615.

For table of contents use only:

The Palladium-mediated oxidation of unsaturated thioacetals proceeds via two divergent reaction mechanisms leading to allyl and vinyl acetate products.