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ABSTRACT 

 

Despite significant advances in our knowledge of the cellular and molecular 

elements of transplant immunology the 10 year survival probability for all human 

corneal grafts is 0.73.  In some ―high-risk‖ recipients it is as low as 0.37.  To date 

almost all our knowledge about the cellular events during acute corneal graft 

rejection comes from animal models.  

In mice, the presence of pre-existing host corneal vascularisation confers ―high-

risk‖ status on a graft and has been shown to accelerate rejection.  In the first 

part of this thesis the effect on survival of grafting to an inflamed conjunctival bed 

was investigated.  Using a mouse model of allergic conjunctivitis significantly 

reduced survival was seen in graft recipients with perioperative conjunctival 

inflammation.  This appeared to be due to the local effects of conjunctivitis rather 

than systemic effects of allergy/ atopy.   

Subsequent experiments investigated the effect of perioperative allergic 

conjunctivitis on the cellular components of both early (surgical trauma-induced, 

alloantigen-independent) and late (alloantigen-dependent; rejection) post-

keratoplasty anterior segment inflammation and demonstrated significant effects 

on both.   Grafts recipients with allergic conjunctivitis had significantly greater 

early post-operative corneal inflammation and associated corneal and 

conjunctival lymphangiogenesis.  Analysis of graft infiltrating cells during rejection 

in mice confirmed that large numbers of CD4+ cells, CD8+ cells and macrophages 

were recruited.  Flow cytometric analysis of human aqueous during acute 

endothelial rejection demonstrated for the first time the presence of CD4+ cells, 

CD8+ cells and a surprisingly high proportion of macrophages therein. In mouse 

recipients with allergic conjunctivitis eosinophils were found in both the graft itself 

and the ciliary body during rejection although the role of these cells during 

rejection is uncertain.   

Chemokine analysis during both murine and human corneal graft rejection 

demonstrated increased expression of the chemokine IP-10 (CXCL-10) 

suggesting a potentially important role for this protein in the rejection process. 
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MIP-1β Macrophage inflammatory protein-1 beta 

MOPS 3-(N-morpholino)propanesulphonic acid 

MST Median survival time 

NB Northern blot 

NDS Normal donkey serum 

NK Natural killer cell 

NOS Nitric oxide synthetase 

OCT Optimal cutting temperature compound 

PAC Perennial allergic conjunctivitis 

PAMP Pathogen-associated molecular pattern 

PBS Phosphate-buffered saline 

PE Phycoerythrin 

PerCP Peridinin chlorophyll protein 

PK Penetrating keratoplasty 

PRR Pattern recognition receptor 

RANTES Regulated upon activation, normal t cell expressed and secreted 
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RNA Ribonucleic acid 

RPA Ribonuclease protection assay 

RPM Revolutions per minute 

RT Room temperature 

RT-PCR Reverse transcriptase polymerase chain reaction 

SAC Seasonal allergic conjunctivitis 

SRW Short ragweed pollen 

SSC Side scatter 

Tc Cytotoxic T cell 

TCR T cell receptor 

TGF-β Transforming growth factor beta 

Th Helper T cell 

TLR Toll-like receptor 

TNF-α Tumour necrosis factor alpha 

Treg Regulatory T cell 

VEGF Vascular endothelial growth factor 

VEGFR Receptor for vascular endothelial growth factor 

VKC Vernal keratoconjunctivitis 

WT Wild-type 
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1.1. CORNEAL ANATOMY AND PHYSIOLOGY 

 

1.1.1. Anatomy 

 

The cornea is a transparent dome of tissue which forms the anterior one sixth of 

the eyeball.  It delimits the anterior chamber anteriorly.  Its diameter measures 

approximately 11.7 mm vertically and 12.6 mm horizontally.  It is thicker at the 

periphery (650+µm) than the centre (500-600 μm)(Klyce S.D. and Beuerman 

R.D., 2009). The cornea has five layers but only three of these are cellular.  

These layers are the epithelium, the stroma and the endothelium.  The other 

layers, known as Bowman‘s membrane and Descemet‘s membrane, constitute 

the basement membranes of the epithelium and endothelium respectively. The 

epithelium is stratified squamous and non-keratinised at the surface.  The surface 

epithelial cells are flattened and covered with glycocalyx and mucins which 

increase the ―wetability‖ of the cornea and contribute to the unusually smooth 

surface which is important in allowing efficient transmission of light.   

The stroma is relatively acellular and represents approximately 90% of the 

corneal thickness.  It consists of approximately 250 lamellae of collagen fibres. 

The endothelium is a monolayer of flattened cells on the posterior aspect of the 

cornea.  The normal cornea is avascular and contains no lymphatics. 

 

1.1.2. Corneal function 

 

The function of the cornea may be broadly divided into three; one structural and 

two optical.  Firstly, it forms part of the eyeball and so protects the intraocular 

contents from the external environment.  Secondly its unique property of 

transparency allows transmission of light.  Finally it is the most powerful refractive 

medium in the eye and so helps to focus the transmitted light/ image at the retina.   

The refractive power of the cornea is a function of its curvature and refractive 

index.  How it allows transmission of light is less clear.  Its avascular nature and 

smooth surface contribute but the most important factor is thought to be the 
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regular spacing of the collagen lamellae in the stoma which is maintained by 

keeping stroma at optimal hydration.  

 

1.1.3.  Endothelium 

 

The endothelial layer is the layer of greatest importance to corneal transplant 

immunologists for 2 reasons.  Firstly, unlike the cells of the stromal and epithelial 

layers, endothelial cells have no regenerative capacity.   Cells lost, whether due 

to immune-mediated damage or any other cause, are not replaced.  Adjacent 

cells may spread to fill any ―gaps‖.   Secondly, the endothelial cells play an 

essential role in maintaining corneal clarity by constantly pumping fluid from the 

stroma and so maintaining the stroma at optimal hydration to allow transmission 

of light.   

 

The endothelial cell count falls normally with age but the rate of attrition may be 

accelerated by intraocular surgery, trauma and various inflammatory and non-

inflammatory diseases.  During childhood the density of endothelial cells is 3000-

4000/mm2 and decreases steadily by 0.6% per year after age 18(Bourne and 

McLaren, 2004). Following corneal transplantation the endothelial cell count 

declines at an even faster rate particularly in the early post-operative years.  This 

rapid decline in endothelial cell density occurs even in the absence of rejection 

and is thought to be due to the combined effects of corneal storage media and 

surgical trauma(Armitage et al., 2003).  Hence, even in the absence of clinical 

episodes of immune rejection, the cell count may fall below the density required 

to maintain graft clarity.   The minimum density of endothelial cells required to 

maintain stromal clarity falls within the range 400-700 cells per mm2. The 

occurrence of immune-mediated endothelial rejection accelerates the rate of 

endothelial cell loss even further.  Unlike the cells in the epithelial layer, 

endothelial cells are post-mitotic.  Immune rejection of the endothelial layer is 

therefore a great threat to graft clarity as cells lost to immune-mediated damage 

are not replaced.  Endothelial rejection, left untreated, usually proceeds to 
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complete destruction of the endothelial layer with resultant loss of graft clarity.  

Even if treated, a certain proportion of endothelial cells are lost.  Therefore single 

or recurrent episodes of endothelial rejection, even if treated promptly, may lead 

to graft failure.   

 

 

1.2. PENETRATING KERATOPLASTY  

  

 

1.2.1. Penetrating Keratoplasty:  Epidemiology 

 
The first human penetrating keratoplasty, performed in 1905 by Eduard Zirm, was 

for a corneal chemical injury(Zirm, 1989).  Since then the procedure has evolved 

and has been used for a wide variety of corneal conditions. 

The cornea is now the most commonly transplanted tissue worldwide.  In the 

United States over 40,000 are performed annually(Darlington et al., 

2006,Ghosheh et al., 2007) while in the UK the number of corneal transplants 

each year exceeds 2000 (UK Transplant, 2008). 

 

1.2.2. Penetrating Keratoplasty:  Indications  

 

The vast majority of corneal grafts are undertaken to improve the optical function 

of the cornea although the technique is occasionally used to improve or maintain 

the tectonic function.  There is some geographical and temporal variation in the 

indications for PK.  Early iris-clipped lenses lead with time to endothelial cell loss 

and corneal decompensation.  Because these lenses were widely used for 

cataract surgery in North America, pseudophakic bullous keratopathy has been 

the commonest indication for PK there for the last 20 years and although 

advances in lens design, surgical equipment and viscoelastic have lead to a 

decrease in post-cataract surgery corneal decompensation(Ghosheh et al., 

2007), it remains a considerable problem(Cosar et al., 2002).     The commonest 

indication for PK outside the United States is keratoconus(Legeais et al., 
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2001,Al-Yousuf et al., 2004).  Other main indications include corneal dystrophies, 

traumatic corneal scarring, and regrafting for failed transplants.  

 

1.2.3. Penetrating Keratoplasty:  Survival 

 

The 5-year survival rate for corneal grafts for keratoconus is 90%(Coster and 

Williams, 2005).  Survival rates for renal transplants are similar(Loucaidou et al., 

2003) but, unlike solid-organ transplants, this figure is achieved for corneal grafts 

without systemic immunosuppression which may cause serious side-effects.   

Not all corneal transplant recipients can expect such a good outcome.   Large 

cohort outcome studies have identified a number of factors which, if present in 

the host, may have a detrimental effect on graft survival(Williams et al., 2006).  

The primary diagnosis is important.  As mentioned, those patients with 

keratoconus may expect a 5-year survival of 90%.  Those patients with 

pseudophakic bullous keratopathy, however, do less well with a 5-year survival 

rate of only 60%.  The reasons for this difference are not entirely clear.  Other 

risk factors for subsequent graft rejection include a previous ipsilateral failed graft 

and vascularisation of the host cornea, the latter being probably the most 

important and the factor most likely to lead to the need for systemic 

immunosuppression after corneal transplantation.   

 

Another factor which may shorten graft survival, and one which may be related to 

corneal vascularisation, is ipsilateral ocular inflammation.  Data from the 

Australian Corneal Graft Registry suggest that the timing of this inflammation is 

important, inflammation at the time of transplantation being the most 

dangerous(Coster and Williams, 2005).   Patients who have risk factors for graft 

rejection constitute the ―high-risk‖ group for transplantation.  The more risk 

factors and/or the greater the severity of these factors the greater the risk.  Many 

―high-risk‖ patients require systemic immunosuppression to prevent or delay early 

rejection.  The most commonly used drugs are cyclosporine, tacrolimus, sirolimus 

and mycophenylate mofetil but these have serious adverse effects and it is 
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difficult to justify their use in patients who have satisfactory vision in one eye.   

 

 

1.3. CLINICAL FEATURES OF CORNEAL GRAFT REJECTION  

 

1.3.1. Epithelial Rejection 

 

The cornea has five layers but only three of these are cellular and relevant as 

targets in the immune response. These layers are the epithelium, the stroma and 

the endothelium.  Unlike rejection of renal transplants, corneal graft rejection can 

be diagnosed clinically without the need for tissue biopsy.  During a rejection 

episode patients may complain of pain, photophobia or blurred vision.  The 

clinical signs depend on the layer of the cornea in which rejection is occurring.  

Clinically distinct rejection of individual layers does occur in humans.  These have 

been described in rabbits also by Khoudadoust(Khodadoust and Silverstein, 

1969).   

 

In epithelial rejection an elevated curvilinear white/ opaque line is seen in the 

epithelium. The visual implications of isolated epithelial rejection are not serious 

as epithelium quickly and constantly regenerates from the limbus and replaces 

the rejected cells.  However epithelial rejection is taken seriously as it proves that 

the recipient has been sensitised and has the capacity to reject the deeper 

corneal layers.   In practice epithelial rejection is seldom observed in the clinic.    

There are several explanations for this.  Firstly, because patients with isolated 

epithelial rejection are usually asymptomatic, it is possible that it is 

underdiagnosed.  Secondly, there is a limited window of opportunity for epithelial 

rejection to occur before the donor epithelium is replaced by host epithelium 

(corneal epithelium is replaced horizontally from stem cells at the limbus unlike 

skin epithelium which grow vertically from the basal layer.)  In mice the donor 

epithelium is replaced by recipient by 15 days(Hori and Streilein, 2001).   How 
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long this process takes in humans is uncertain.  There is evidence that human 

donor epithelium may be completely replaced by 3 months post-

transplantation(Lagali et al., 2009) but that some donor epithelial cells may 

persist beyond 1 year(Egarth et al., 2005).    

 

1.3.2. Stromal Rejection 

 

The clinical symptoms and signs of stromal rejection have two patterns.  It may 

manifest as subepithelial opacities which were described first by 

Krachmer(Krachmer and Alldredge, 1978).  These infiltrates have a similar 

appearance to those seen in viral keratitis but are seen only in the donor cornea 

and not in the host.  This type of stromal rejection is often asymptomatic but like 

epithelial rejection it may herald the onset of a more severe and visually 

significant process.   Rejection of the deeper stroma results in graft opacification 

and decreased visual acuity.  In practice, deep stromal rejection and endothelial 

rejection often occur together.  There is experimental evidence of repopulation of 

the stroma in irradiated mice by bone marrow-derived cells(Chinnery et al., 

2008).  The degree to which and the timing of stromal cell turnover in human 

cornea remains uncertain but, as in the epithelium, there may be a limited 

―window of opportunity‖ for rejection to occur before repopulation by host-derived 

cells.  Human donor stromal and endothelial cells last considerably longer than 

epithelial cells.  In one study donor stromal and endothelial cells were found in all 

explanted grafts examined up to a period of 32 years post-transplantation(Lagali 

et al., 2009). 

 

1.3.3. Endothelial rejection 

 

Patients with isolated endothelial rejection may present with pain, photophobia, a 

red eye and decreased visual acuity.  On examination there are visible cells or 

cell aggregates in the anterior chamber with accompanying ciliary injection.  
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There may be corneal stromal oedema the severity and extent of which depends 

on the longevity and severity of the attack and the pattern of endothelial cell loss.  

Two patterns of endothelial signs may be seen.  A line of leukocytes may be 

seen ―marching‖ across the endothelium leaving dead endothelium with overlying 

oedematous stroma in its wake.  This line often spreads out like a wave from an 

area of deep vascularisation to the graft host junction.  Alternatively a more 

diffuse corneal oedema may be seen with diffuse keratitic precipitates of variable 

density.  Transplants in which endothelial rejection is untreated or not reversed 

by treatment become oedematous on account of endothelial cell depopulation, 

with irreversible loss of transparency.  If commenced at an early enough time 

before functionally significant loss of endothelial cells, local steroid treatment 

reverses the endothelial rejection episode in most cases.  Steroid-resistant 

rejection is uncommon. 

 

 

 

1.4. INNATE IMMUNITY  

 

1.4.1. Barrier function 

 

The body is constantly under threat of infection/ infestation by a wide range of 

microorganisms (worms, protozoa, fungi, bacteria and viruses).   A wide range of 

innate immune mechanisms have developed to protect against microbial 

infection.  These innate immune mechanisms are immediately available and do 

not improve with repeated exposure to the microbe.   

Microbes are kept outside the body by the barrier function of the skin and 

mucosa.  Additional mechanisms such as cilia and lavage of fluids (eg tears) 

enhance the protection at the surface of the body.  In the eye, constituents of the 

tear film such as lysozyme and IgA provide additional innate protection against 

microbes. 
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1.4.2. Cellular mediators 

 

Microbes which manage to invade the body encounter various types of leukocyte.  

Macrophages and neutrophils can engulf and destroy (phagocytose) microbes.  

The microbe is recognised by pattern recognition receptors (PRRs) such as Toll-

like receptors (TLRs) on the cell surface of phagocytic cells.  These receptors 

have a strong affinity for surface molecular structures known as pathogen-

associated molecular patterns (PAMPs) which are shared by many infectious 

agents and low affinity for the molecular patterns on mammalian cell surface. 

 

The term macrophage was coined by Metchnikoff over one hundred years 

ago(Kaufmann, 2008) and describes the cell in terms of its most superficial 

structure and function.   In the era of molecular identification of cells many 

different cell surface markers can be used to identify macrophages depending on 

their state of maturity or activation.  These include CD11b, F4/80, MoMa (in 

mice), CD14, CD68 and CD163.  Macrophages have been found to carry out 

many and varied functions as part of both the innate and acquired immune 

response including phagocytosis, chemokine production and antigen 

presentation. Their phenotypic and functional heterogeneity is now well 

recognised.(Gordon and Taylor, 2005)  It is now thought that macrophages and 

dendritic cells originate from a common myeloid precursor(Auffray et al., 2009).  

These are released into the blood stream as immature versions known as 

monocytes and even at this stage phenotypically-recognisable sub-populations 

are seen which ultimately give rise to either resident tissue macrophages or DCs 

or to inflammation-elicited macrophages.  Further phenotypic heterogeneity 

arises from microenvironmental stimuli depending on the tissue and its cytokine 

and chemokine mileu. 

 

Extracellular killing of infectious agents is mediated by Natural Killer (NK) cells 

and eosinophils.  Natural killer cells bind non-specifically to and induce apoptosis 
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in virus-infected cells.  Eosinophils contain cytoplasmic granules with toxic 

proteins which are released to fight large parasites such as helminths. 

1.4.3. Humoral mediators 

 

The complement system is an important cascade of pro-inflammatory protein 

production which may be activated by the presence of microorganisms.  

Activated components of the complement system may kill microrganisms directly 

by attacking the cell membrane or indirectly by enhancing neutrophil chemotaxis 

and phagocytosis.   

 

 

 

1.5. ACQUIRED IMMUNITY  

 

1.5.1. Cellular mediators 

 

Acquired immunity is characterised by specificity for the antigen in question and 

by enhancement of the immune response on repeated exposure to the antigen. 

This response in mediated by lymphocytes.  Lymphoid tissue contains millions of 

lymphocytes each of which has a different recognition site for antigen.  On 

recognition of its complementary antigen, a lymphocyte can undergo clonal 

expansion to produce large numbers of cells with similar specificity for the 

antigen.  In this way the body has a very large number of specific immune 

responses at its disposal.   Important lymphocyte subsets include: 

Helper T cells (Th; CD4+ cells):  these cells secrete cytokines which activate 

other cells such as B lymphocytes and cytotoxic T lymphocytes. 

Cytotoxic T cells (Tc; CD8+ cells):  these destroy cells with intracellular infection 

(usually viral) 

B cells:  these cells become plasma cells and produce antibody    
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1.5.2. Humoral mediators 

 

The humoral mediators of specific immunity, known as antibodies, are produced 

by plasma cells which are derived from B-lymphocytes following exposure to a 

specific antigen.  Antibodies are generally involved in fighting extracellular 

infection.  Once the antibody binds to the antigen for which it has specificity it 

may activate the ―classical‖ complement cascade or facilitate phagocytosis.   

 

1.5.3. Major Histocompatibility Complex 

 

Although its physiological function was not discovered until much later, the 

importance of the major histocopatibility complex (MHC) was recognised early by 

the pioneers of transplant immunology. In 1937 Peter Gorer described a strain-

specific antigen in inbred mice which profoundly affected the survival of 

allogeneic tumour transplants(Klein, 1986).   This discovery was one of the most 

important steps in the development of human solid organ transplantation.  

Ironically, the field of human corneal transplantation was already well established 

by the time Gorer discovered MHC antigens.  Even today the benefit of MHC 

matching remains a matter of some controversy in corneal transplantation.  

The molecules within the MHC were originally defined by their ability to promote 

vigorous rejection of grafts exchanged between different members of a species.  

It became clear that a small number of gene products had a disproportionately 

large influence on allograft survival.  Known in humans as Human Leukocyte 

Antigens and in mice as H-2, these cell surface proteins are involved in binding 

and presentation of protein degradation products to T cell antigen receptors.   

 

For almost 40 years MHC products were known only for their ability to induce 

graft rejection.  Their physiological role, which is to act as cell surface markers 

which enable infected cells to signal cytotoxic and helper T cells, was not 

discovered until 1974(Zinkernagel and Doherty, 1974a,Zinkernagel and Doherty, 
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1974b).  These proteins are encoded by the Major Histocompatibility Complex on 

chromosome six in humans and chromosome 17 in mice.  These MHC genes are 

the most polymorphic in the human genome.  More than 1300 alleles are now 

known to be present at 12 expressed class I and II loci.   

Both MHC class I and class II consist of a trans-membrane glycoprotein folded in 

such a way as to form a ―groove‖.  This groove invariably contains a peptide, 8-9 

amino acids long in the case of class I and 13 amino acids long in class II.  The 

peptide is normally a self-derived protein degradation product but if the cell is 

infected or has phagocytosed foreign tissue, the MHC molecules may bear 

―foreign‖ peptides.   

 

MHC class I is found on all nucleated cells and plays an important role in the 

presentation of antigen to CD8 T cells.  MHC class II is found on antigen-

presenting-cells and is important in the presentation of antigen to CD4 T cells.   

The MHC-peptide complex interacts with the T cell receptor (TCR), a complex 

cell surface receptor.  CD3 forms an important and invariant part of the TCR.   

 

As well as TCR-MHC-peptide interaction it has become clear that a second 

signal is required for activation of T cells.  Numerous T cell accessory molecules 

and their ligands have been discovered.  Some of these accessory molecules are 

primarily co-stimulatory in nature while others are primarily adhesive.  Co-

stimulatory interactions complement or amplify intracellular signalling by the TCR.  

Adhesive interactions increase the duration of cell-cell contact.  The common 

function of all accessory molecules is to decrease the number/ strength of TCR-

MHC-peptide complexes necessary for T cell activation.  
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Co-stimulatory Molecules 

(Found on T cells) 

Ligands 

(Found on Antigen-presenting cells) 

CD28 (positive co-stimulation) 

ICOS (positive co-stimulation) 

 

CTLA4 (negative co-stimulation) 

PD-1 (negative co-stimulation) 

B7.1 , B7.2  (CD80 , CD86) 

ICOSL 

 

B7.1 , B7.2  (CD80 , CD86) 

PD-L1, PD-L2 

Table 1.1  T cell co-stimulatory molecules 

 

 

T Cell Molecules Ligands on APC 

CD2 

  

LFA-1 

LFA-3 (CD58) 

 

ICAM-1 

Table 1.2  Molecules enhancing T cell APC adhesion 

 

 

1.5.4. T cell tolerance 

 

T cells are not activated by cells bearing self-antigen because in the thymus, 

during T cell maturation, T cells with strong affinity for self-antigen are deleted 

(intrathymic clonal deletion).  In other words, self-reactive cells undergo a 

negative selection process in the thymus.  The tolerance induced by this process 

is known as central tolerance and is distinct from peripheral tolerance which 

occurs when anergy is induced in extrathymic T cells by peripheral antigens.   

Once the TCR-MHC-peptide complex has come together in peripheral lymphoid 

tissue, 4 distinct functional outcomes may be elicited.   

1. Productive T cell activation 

2. No response (Ignorance) 
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3. Activation-induced cell death (Peripheral deletion) 

4. Induction of unresponsiveness to subsequent antigen (Anergy) 

 

The later 3 outcomes lead to peripheral tolerance of the antigen.  Which of these 

outcomes actually occurs depends, largely, on the affinity of the clonotypic TCR 

for the MHC-peptide in question.  Other important factors which may influence 

the outcome include: 

 The state of the T cell ( naïve, memory, unresponsive) 

 Soluble factors (cytokines, chemokines) 

 The interactions between accessory molecules 

 The interaction with other cells such as regulatory T cells (Treg; 

CD4+CD25+ cells) 

 

 

 

1.6.  IMMUNOBIOLOGY OF CORNEAL ALLOGRAFT REJECTION  

 

1.6.1. Genes v Environment 

 

Transplanted tissue between genetically identical individuals does not undergo 

immunological rejection.  As mentioned, gene products known as 

histocompatibility antigens can provoke an immune response in genetically non-

identical individuals.  Therefore, the likelihood of rejection is, to a degree, 

genetically pre-determined.  For most organs, the greater the degree of genetic 

mismatch the greater the risk of rejection.   However, as is the case for most 

pathological processes, rejection is not entirely dependent on genetics.   

Inbred animals provide an excellent way of studying the role of genetic mismatch 

whilst controlling for other variables.  Corneal grafts between mice with major and 

multiple minor histocompatiblity antigen mismatches are rejected.  However, 

even when the graft is performed using a standardised surgical procedure by the 
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same surgeon between several pairs of animals using the same donor recipient 

inbred strain combination, the grafts are not always rejected at the same time.  

Furthermore, some grafts are not rejected at all during the study period which is 

typically two to three months( Figure1.1)(Osawa and Streilein, 2005).   

 

 

 

Figure 1.1  Cumulative survival of major and multiple minor H -disparate 
corneal allografts 

Balb/c mice received corneas from C57BL/6 donors.  Grafts were rejected at 
different timepoints with several grafts surviving for 112 days. (Adapted from 
Osawa H et al Cornea 2005;24;312-318) 
 

 

These basic data demonstrate that factors other than histo(in)compatablility must 

influence the process of immune rejection of transplanted tissue.  These factors 

may be especially important in corneal transplantation where, strangely, major 

histocompatibility matching appears to be of limited value. 

Most basic science research in corneal transplantation has focused on the 

following five questions: 

1. What are the cellular and molecular mechanisms involved in the process 

of immune rejection of corneal tissue? 

2. What is the role of MHC/mH matching in corneal transplantation? 
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3. What are the environmental factors (local & systemic) which influence the 

survival of corneal grafts? 

4. How do these environmental factors affect the cellular/ molecular 

mechanism(s) of rejection?  

5. Can environmental factors (macro environment) and/or molecular 

processes (micro environment) be modified to improve graft survival? 

The latter includes testing the effects of pharmacological interventions. 

 

1.6.2. Surgical trauma and the innate response 

 

Transplant rejection is a classic example of an acquired immune response.  

However the primary response to all organ grafts is via cellular mediators of 

innate immunity.  Despite advances in surgical technique and suture materials, 

all organ transplants involve a degree of surgically-induced tissue trauma.  In 

vascularised organs the trauma is due partly to hypoxia/perfusion injury and 

partly to mechanical trauma.  Hypoxia/perfusion injury is less important in the 

avascular cornea but the net effect of corneal transplantation is the creation of a 

circumferential full-thickness wound in the cornea between the donor and the 

host.  This induces a wound healing response which is characterised in the first 

instance by centripetal infiltration of the host cornea by innate immune cells such 

as neutrophils and macrophages to the tissues adjacent to the wound (Park and 

Barbul, 2004).   This inflammation is alloantigen-independent and occurs early 

after transplantation.  Later, following sensitisation, a rejection episode 

characterised by inflammation confined to the graft tissue may occur.  (Figure 

1.2) 

There is increasing interest in co-operation between the innate and acquired 

arms of the immune response and how each may be influenced by the other. The 

―danger‖ model proposed by Matzinger proposes that alarm signals activated by 

innate inflammation (tissue trauma, infection) enhance immunogenicity by 

activating antigen-presenting cells (APCs)(Matzinger, 2002).  As such, the 
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danger model predicts a role of innate immune cells in the afferent limb of the 

immune response arc.  

 

Ways in which innate immunity may facilitate a subsequent acquired response 

include: 

 Activation of resident macrophages/ DCs by Toll-like receptor (TLR) or other 

mechanism 

 Cytokine and chemokine release by innately activated macrophages/ DCs 

 Recruitment and maturation of cells with antigen presenting capacity 

 Recruitment of innate inflammatory cells which express VEGF and drive 

lymphangiogenesis. 

 

The common clinical observation that a period of alloantigen-independent 

corneal inflammation such as that caused by a loose corneal suture may trigger 

an episode of corneal graft rejection in a healthy graft up to 2 or 3 years after 

transplantation supports the hypothesis that innate inflammation may herald/ 

influence the acquired response and rejection.  Further evidence comes from 

experimental corneal transplantation in the ―high-risk‖ (vascularised recipient) 

model which is characterised by increased early infiltration of the graft by 

neutrophils and macrophages(Yamagami et al., 2005b).  In experimental cardiac 

transplantation in mice, modulation of early innate inflammation in the graft 

modifies survival.  Treatment of graft recipients with the neutrophil-depleting 

antibody RB6.8C5 significantly improved graft survival(Morita et al., 2001) 
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Figure 1.2  A schematic diagram demonstrating the relationship between 
post-transplant corneal inflammation and time 

 

 

 

1.6.3. Sensitisation 

 

The acquired immune response to corneal alloantigen has afferent and efferent 

components.  The afferent limb involves presentation of alloantigen to T 

lymphocytes.  This process, known as sensitisation, is thought to occur in the 

regional lymph nodes(Yamagami and Dana, 2001).  The antigens in question are 

proteins and peptides derived from donor cells and, in most forms of 

transplantation, the most potent of these are the Class I and Class II molecules of 

the Major Histocompatibility Complex.  Minor histocompatibility antigens 

constitute MHC-bound peptides with the unifying property of acting as 

alloantigens that induce allogeneic tissue rejection.  The designation of major- or 

minor histocompatibility refers to the relative importance of these antigens in 
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vascularised organ transplants.  Interestingly this distinction is less clear cut in 

corneal transplantation with minor h antigens appearing to be relatively more 

important. (Sonoda and Streilein, 1992,Sano et al., 1996) 

 

APCs are key cells in sensitisation to alloantigen.  Following transplantation the 

body contains, broadly 2 types of APC: donor APCs in the graft (passenger 

leukocytes) and recipient APCs in the adjacent tissues. Recipient antigen-

presenting cells (APCs) can enter the graft and endocytose exogenous 

alloantigen. In vascularised grafts entry of recipient APCs occurs via the blood 

supply.  Corneal transplantation rarely involves replacement of the entire cornea.  

Typically an 8mm button of donor cornea is sutured into a rim of recipient cornea 

to create a hybrid cornea with donor cells in the centre and recipient cells in the 

periphery.  Recipient APCs in the region of the graft-host interface may pick up 

donor antigen there or may cross the interface.  In any case, once they have 

phagocytosed antigen, recipient APCs then travel to the local lymph node where 

the exogenous alloantigen is presented on MHC class II molecules to naïve CD4 

cells and on MHC class I to naïve CD8 cells.  The exogenous antigen in question 

could be either a donor minor histocompatibility antigen or part of a donor major 

histocompatibility antigen(Benichou et al., 1992). One ―self‖ APC activates both 

CD4 and CD8 cells in what is known as the ―three cell model‖ of alloantigen 

presentation(Mitchison and O'Malley, 1987).  This type of antigen presentation 

does occur in the transplant setting and is known as “indirect” antigen 

presentation.  

 

There is also another form of antigen presentation which is unique to the 

transplant setting.  Known as “direct” antigen presentation, it is mediated by 

donor APCs(Lechler and Batchelor, 1982).  The ability of T-cells to recognise 

antigenic peptide in association with self-MHC is developed in the thymus by a 

process of positive selection of self-recognising T lymphocytes.  There is 

considerable experimental evidence that positively-selected T cells can only 

recognise antigen presented on self –MHC.  As such, T cells are said to be self-



 44 

restricted.   Under the rules of self restriction, alloantigen presented by donor 

APCs should not be recognised by host T cells if the major histocompatibility 

antigens are not matched.  In reality, the alloantigens are recognised by a 

significant number of host T cells(Detours and Perelson, 2000). Up to 24% of T 

cells have been found to be capable of reacting with non-self MHC molecules 

which suggests that self-restriction of T lymphocytes is not an absolute 

phenomenon.  Some of these lymphocytes may recognise, and be primed by, the 

alloantigenic MHC molecule itself regardless of the peptide it bears(Rogers and 

Lechler, 2001).   One explanation for direct allorecognition may be that certain 

lymphocytes recognise the foreign MHC +/- protein as self MHC + foreign 

protein(Rogers and Lechler, 2001). 

 

This method of antigen presentation is consistent with the three-cell model  and, 

in organs other than the cornea, appears to play an important role in acute 

allograft rejection(Pietra et al., 2000).  Directly primed T-cells constitute approx 

90% of the alloreactive cells during acute graft rejection in vascularised organ 

grafts(Benichou et al., 1999,Liu et al., 1993).  

It is thought that, for vascularised organ transplants, minimising the direct 

response may be the first step towards tolerance induction(Jiang et al., 2004).  

This is consistent with evidence from corneal transplantation which suggests that 

some of the factors which confer immune privilege do so by minimising or 

preventing direct antigen presentation.  For example, a normal donor cornea 

contains few mature APCs(Hamrah et al., 2003a) and a normal host cornea 

contains few lymphatics.  Previously published reports confirm that in normal-risk 

corneal transplantation the indirect route is primarily responsible for 

sensitisation(Illigens et al., 2002,Kuffova et al., 2008,Boisgerault et al., 2009) 

Nevertheless, the indirect route of antigen presentation is sufficient to induce 

sensitisation.   

Lechler and co-workers have reported a ―semi-direct‖ pathway of antigen 

presentation, whereby recipient APCs present whole donor MHC molecules as 
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well as their own MHC molecules (Herrera et al., 2004) but the possible role of 

this pathway in corneal transplantation has not been examined. 

 

1.6.4. Clonal expansion 

 

Once a T cell is activated in the lymph node there is rapid clonal expansion of 

alloantigen–specific T cells which enter the circulation.  The lifespan of these 

cells is limited and it follows that there is a limited window of opportunity for these 

cells to bring about graft destruction in the absence of continuous antigenic 

stimulation.  The rapid expansion of T-cells is followed by contraction as many 

effector T cells apoptose(Williams and Bevan, 2007).  Memory (central and 

effector) cells make up part of the T cell repertoire thereafter.  

In solid organ grafts the progression from the afferent to the efferent arms of 

immune response is relentless, resulting in early graft destruction in the absence 

of systemic immunosuppression.  The rejection pattern in corneal grafts is 

different with apparently tolerated grafts being rejected acutely many years after 

transplantation.  As such the temporal relationship between the afferent and 

efferent arms of the immune response is less clearcut. 
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Figure 1.3  A schematic diagram of the immune response to allogeneic 
donor cornea 

 

 

1.6.5. Effector Mechanisms: Lymphocytes 

 

Once primed in the regional lymph nodes, activated lymphocytes enter the 

peripheral circulation.  The avascular nature of the cornea and the blood-

aqueous barrier provide barriers to immune cell infiltration and endothelial cell 

destruction.  In the case of vascularised corneas immune cells have easier 

access to graft antigens/cells.   

 

A. Antigen presenting cells 

(APCs)  are activated and 
attracted as part of innate 
inflammatory response to 
surgery 

B. APCs travel to regional 

lymph nodes and present 
alloantigen to naïve CD4 T cells 
(Th cells) 

C. Activated Th cells are 

released in to blood stream and 
travel to the graft.  There they 
recognise alloantigen and 
orchestrate immune rejection. 
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The nature of graft-infiltrating cells in corneal allograft rejection has been studied 

in human and animal pathological specimens.  The cell types which appear in the 

highest numbers and with the greatest consistency are cells with specific immune 

capacity such as CD4 cells and CD8 cells, and cells with innate immune capacity 

such as macrophages and NK cells(Larkin et al., 1997a,Pepose et al., 1985)  

The presence of a cell in a tissue during rejection does not prove that the cell is 

causing rejection. The important questions of which cells cause endothelial cell 

destruction and by what mechanism(s) this occurs remain poorly understood.  

For instance the mechanisms of allorecognition in the effector stage of graft 

rejection are unclear.  

 

A particular conundrum has always been the question of how indirectly-primed T 

cells (host MHC (+mH) molecules) can recognise antigen on donor cells (donor 

MHC (+mH) molecules).  The discovery of the ―semi-direct‖ pathway of antigen 

presentation, whereby recipient APCs present whole donor MHC molecules as 

well as their own MHC molecules, provides an explanation for this(Herrera et al., 

2004).  Kuffova has recently provided convincing evidence of T cell clonal 

expansion in regional lymph nodes induced by cross-presentation of donor-

derived antigen on host APCs.(Kuffova et al., 2008)   

 

The requirement for T cells in graft rejection was established in a number of 

models of tissue transplantation.   Using irradiation and passive transfer of 

lymphocytes Hall demonstrated that T cells were necessary and sufficient to 

cause rejection of cardiac allografts(Hall et al., 1978).  Because both CD4 and 

CD8 have been found in pathological specimens of rejected corneal grafts much 

interest has fallen on the roles of these cells in corneal graft rejection. 

Convergent studies have demonstrated the presence of 2 distinct lymphocyte 

populations in response to a corneal allograft.   One group appear to be CD4+, 

IL-2 producing cells which are activated by indirect presentation of alloantigen.  

The other group are IFN-γ producing CD8+ cytotoxic cells with direct specificity 

for alloantigen(Boisgerault et al., 2001).  T cells may bring about destruction of 
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other cells either by direct cytotoxicity or indirectly by delayed-type-

hypersensitivity (DTH).  CD8+ cells act directly on target cells and are cytotoxic 

but it appears that CD8+ cells are less important in corneal graft rejection than in 

other organs.  In a rat  model treatment with anti-CD8 had no effect on corneal 

graft survival whereas treatment with anti-CD4 reduced the rate of rejection 

significantly.(Ayliffe et al., 1992)  One explanation for this may be that depletion 

of CD8+ cells with anti-CD8 is insufficient to prevent CD8-mediated rejection (Lee 

et al., 1994).   However the results of experiments with CD4-KO and CD8-KO 

mice were similar.  CD8-KO mice rejected their grafts at the same rate as wild-

type mice.  CD4-KO mice failed to reject Mh disparate or MHC disparate grafts.  

They did reject some grafts which were mismatched for Mh and MHC but at a 

lower rate than wild-type mice(Yamada et al., 1999a,Yamada et al., 2001).  While 

CD4+ cells are capable of using FasL to be directly cytotoxic, their primary modus 

operandi in corneal graft rejection appears to be via delayed-type hypersensitivity 

(DTH) by secreting cytokines and recruiting other cells such as macrophages. 

This is supported by the findings of Joo et al who showed that the DTH response 

(as measured by footpad swelling in response to injection of alloantigen) rather 

than the cytotoxic T lymphocyte(CTL)  response (as measured by chromium 

release from labelled donor target cells after in vitro exposure to recipient 

lymphocytes) was found in rejectors of corneal grafts(Joo et al., 1995).   However 

there appears to be considerable redundancy within the immune reponse to an 

allograft with several lines of investigation supporting alternative cellular 

pathways for graft destruction. 

 

Ksander showed that CTL was not induced in low-risk grafts acceptors or 

rejectors but was induced in high risk grafts all of which rejected(Ksander et al., 

1996).  Niederkorn‘s group has shown that high-risk graft rejection may be 

mediated by CD8+ or CD8- cells and that, confusingly, this may occur in the 

absence of systemic DTH or CTL responses(Niederkorn et al., 2006b).   They 

have also recently described CD4 T-cell independent rejection (Niederkorn et al., 
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2006a) which is mediated by CD8+ cells or by a novel population of CD4-CD8- 

(―double- negative‖) cells.   

We may conclude from these experiments that CD4+ cells play a more important 

role in graft rejection than CD8+ cells but that either cell type may mediate 

rejection and that neither is essential for the process.   

 

1.6.6. Effector Mechanisms: TH1/Th2 balance 

 

CD4(Th) cells mediate their effect by producing cytokines.  Depending on the 

cytokines produced, the response may be classified as a Th1 or Th2 response.  

Allograft rejection is thought to usually result from a Th1 response(King et al., 

2000,Dallman, 1995). Th1 cells produce IFN-γ and IL-2.  Th1 mediated 

inflammation is characterised by the presence of macrophages and is typically 

seen in delayed-type hypersensitivity reactions.  Th2 cells produce IL-4, IL-5 and 

IL-13.  Th2-mediated inflammation is characterised by the presence of 

eosinophils and is typically seen in allergic reactions or reactions to parasites.  

Transplant rejection was traditionally thought to be a Th1-driven process as 

analyses of cytokine production during unmodified rejection of corneal and other 

grafts showed a Th1 profile(Torres et al., 1996). 
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Figure 1.4  A schematic diagram showing induction and roles of Th1 and 
Th2 cells 

The figure also includes other pathways of T cell induction following antigen 
presentation [Th17 and Regulatory T cells (TREG)] the roles of which remain, as 
yet, undetermined in corneal allotransplantation. 
 

 

Chen explored the role of Th2 responses in transplantation by using the mouse 

model of neonatal tolerance.  Mice exposed to donor antigen at the neonatal 

stage become tolerant of skin allografts later.  The allospecific immune 

responses in the lymph nodes of tolerised mice were characterised by a much 

higher IL-4 / IFN-γ ratio than controls.  This led these authors to believe that 

inhibition of Th1 responses/ expansion of Th2 responses may be responsible for 

the induction of neonatal tolerance(Chen and Field, 1995,Chen et al., 1996).   

This, in turn, led investigators to artificially alter the Th1/Th2 response using 

various methods in an attempt to induce adult transplant tolerance.   
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Figure 1.4 shows several of the molecules/ cells that have been shown to be 

involved in producing a Th1 or Th2 response.  Investigators targeted these cells 

and molecules to induce ―Th2 bias‖ in a variety of tissue transplantation models.   

Methods used to increase Th2 responses included: 

 Inhibition of IL-12(Piccotti et al., 1996) 

 Systemic treatment with IL-4(He et al., 1998) 

 Gene therapy with IL-4/ IL-10(Furukawa et al., 2005) 

 Adaptive transfer of Th2 cells(VanBuskirk et al., 1996,Matesic et al., 

1998,Barbara et al., 2000) 

 Depletion of host CD8 cells(Chan et al., 1995) 

 MHC I matching of grafts (to prevent a CD8 response)(Le Moine et al., 

1999b) 

 Sensitisation to potent allergen(Yamada et al., 1999b,Beauregard et al., 

2005) 

 Use of IFN-γ KO mice as recipients(Hargrave et al., 2004,Simeonovic et 

al., 1999a) 

 

The first direct evidence that Th2 cells could mediate graft rejection came from 

an experiment by Van Buskirk who transfused Th2 cells to SCID mouse cardiac 

allograft recipients and observed acute rejection of the grafts(VanBuskirk et al., 

1996).  There has been no consensus on the question of whether ―Th-2 bias‖ 

improves graft survival(Piccotti et al., 1997,Tay et al., 2009).   As mentioned, 

neonatal tolerance of skin grafts was associated with increased Th2 responses.  

Treatment with IL-4 (the key Th2-polarising cytokine) was shown to significantly 

improve survival of neonatal cardiac allografts in adult mice(He et al., 1998).  

Combined gene therapy with IL-4 and IL-10 to rabbit hearts before 

allotransplantation improved graft survival from 7 days to more than 100 

days(Furukawa et al., 2005).   

Yet it is well known that Th2 responses are potentially harmful eg asthma and 

that they are capable of inducing graft rejection(VanBuskirk et al., 1996,Matesic 

et al., 1998). Barbara et al demonstrated that alloreactive Th2 cells were equally 
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as efficient as Th1 cells at inducing islet cell allograft rejection(Barbara et al., 

2000).   Promotion of Th2 response via inhibition of IL-12 was shown to 

accelerate rejection of cardiac grafts(Piccotti et al., 1996).   The lack of 

consensus may reflect the fact that so many different molecular pathways have 

been used and in so many different tissues and species to induce Th2-bias.  

Looking at one molecule, IL-4, the effects of post-transplant treatment on graft 

survival appear openly contradictory.   In cardiac transplants in mice and rabbits 

it appears to prolong survival(He et al., 1998).  In rat cardiac transplantation 

intragraft over expression of IL-4 was found to have no effect on survival(Ritter et 

al., 1999).  In rat hepatic transplants it converts tolerance to rejection(Wang et al., 

2005).   

In the model of high-risk corneal transplantation, Th2 immune deviation was 

achieved by repeated exposure to allergen (ova or keyhole limpet hemocyanin).  

Unsurprisingly, sensitisation with allergen induced a Th2 profile of cytokine 

production in response to the allergen.  Interestingly, sensitisation with allergen 

also induced a Th2 profile of cytokine production in response to alloantigen.  

These responses were associated with graft acceptance in high risk 

eyes(Yamada et al., 1999b). (Of note in this experiment was the fact that the 

grafts were MHC matched, Minor H Ag mismatched).  

Hargrave an co-workers studied corneal transplant rejection in Th2 immune-

biased mice using IFN KO mice(Hargrave et al., 2004).  Fully mismatched (Major 

and minor H ag) grafts were first transplanted into both IFN KO and wild-type 

mice.  No difference in graft survival between the two groups was found.  

Rejection in the ―Th2‖ mice was characterised by a predominant eosinophilic 

infiltrate while the wild-type ―Th1‖ mice had a predominantly mononuclear 

infiltrate. The experiment was subsequently repeated using mice mismatched 

only for MHC antigens but identical at minor h loci.  Again no difference in the 

incidence or tempo of graft rejection between IFNγ-KO mice and wild-type mice 

as found but their histology differed significantly as before.  The experiment was 

repeated using mice mismatched only for minor h antigens but matched at all 

MHC loci.  Interestingly, in this case, 50% of the grafts were rejected in the wild-
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type mice while none were rejected in the IFN KO mice.  However, if expression 

of MHC II on donor corneal Langerhans cells was induced prior to 

transplantation, 87% of these grafts were rejected in IFN KO mice. Again the 

histology demonstrated an eosinophilic infiltrate.   

These experiments demonstrated that MHC antigens on corneal allografts can be 

targeted by IFN-γ –independent immune mechanisms that culminate in Th1-

independent mechanisms of graft rejection where eosinophils are prominent 

amongst the graft-infiltrating cells at the effector stage of rejection.  It was also 

shown that, in the absence of MHC II-expressing Langerhans cells, minor-H 

antigens caused rejection that was IFN-γ- dependent.  Hence MHC-matching 

should help improve survival in TH-2 biased hosts.  Or, alternatively, Th2-bias 

should improve survival in MHC-matched hosts.  In their experiments on 

pancreatic islet cell transplantation, Li et al induced Th2 bias using antiIL-12 

monoclonal antibodies and found that this improved graft survival only in MHC-

matched grafts(Li et al., 1998). 

In their experiments Hargrave et al used BALB/c or BALB/c IFN-γ- deficient mice 

as the graft recipients and C57BL/6 mice as donors.  Recently Yamada reported 

the results of a similar experiments where the donor-recipient strains were 

reversed so C57BL/6 mice received BALB/c corneas(Yamada et al., 2009).   In 

these experiments the results were similar to Hargraves‘ up to a point.  Grafts 

mis-matched for mH and MHC rejected at similar rates in WT and IFN-γ KO 

animals with eosinohils infiltrating the grafts of IFN-γ KO recipients.  In animals 

mismatched for mH only, rejection rates were also similar in WT and IFN-γ KO 

animals and no eosinophils were found in rejected grafts.  

The important point here is that even if the degree of histoincompatablility is kept 

constant the immune response to alloantigen is different in different host strains 

of mice.  A more fundamental illustration of this is the fact that in BALB/c to 

C57BL/6 transplants the rejection rate is over 90% whereas in C57BL/6 to 

BALB/c recipients the rejection rate is approximately 50%.   

Hargraves finding of improved survival of mH-disparate grafts in Th2-biased 

recipients was in keeping with the findings of an earlier report by Yamada who 
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also used minor-H antigen mismatched mice to demonstrate that skewing the 

alloimmune response in a Th2 direction using allergen exposure results in a 

reduction in corneal graft rejection and suggests that MHC matching improves 

corneal graft survival in mice with Th2 immune bias.   

In Yamada‘s study Th2 bias was achieved by systemic sensitisation with the 

allergen ovalbumin(Yamada et al., 1999b).  Beauregard et al used a similar 

technique (using short ragweed pollen rather than ovalbumin) to achieve Th2 

bias in their study on corneal transplantation in the setting of allergic 

conjunctivitis.  Corneal graft rejection was accelerated in mice with allergic 

conjunctivitis and graft rejection in mice with allergic conjunctivitis was 

characterised by infiltration by eosinophils.  A study was designed to distinguish 

the effects of systemic sensitisation and local conjunctival inflammation on graft 

survival.  The accelerated rate of rejection was concluded to be due to systemic 

Th2 bias rather than local allergic conjunctival inflammation(Beauregard et al., 

2005).   This deleterious effect of Th2 bias on corneal graft survival is at odds 

with the results of Yamada and Hargraves.  Yamada used a similar method to 

induce Th2 bias but his experiments were in high-risk, MHC-matched grafts 

whereas Beauregards were in normal risk unmatched grafts.  In normal-risk 

recipients, unmatched donor grafts were reported by Hargrave to have 

unchanged survival but she used a different method of inducing Th-2 bias (IFN-

KO) than Beauregard. 

 

1.6.7. Effector Mechanisms: Eosinophils 

 

Whatever the effect on graft survival, where cellular mediators of rejection were 

studied in these various Th2-biased recipients, rejection was characterised by the 

presence of Th2 cytokines and graft infiltration by eosinophils (Matesic et al., 

1998,Beauregard et al., 2005,Hargrave et al., 2004,Chan et al., 1995,Piccotti et 

al., 1996,Simeonovic et al., 1999a).  It has been proposed that Th2 bias leads to 

the emergence of alternative effector mechanisms capable of destroying 

allografts.  The effector cells of the Th2 response include eosinophils and these 
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cells have been implicated in Th2-mediated allograft rejection.   Chan was the 

first to suggest a potential role for eosinophils in graft rejection(Chan et al., 1995).  

They may do so by secretion of cationic proteins such as major basic protein, 

eosinophil cationic protein, eosinophil-derived neurotoxin and eosinophil 

peroxidase.  Numerous models of eosinophilic graft rejection in Th2-biased hosts 

have been published since then.  These studies indicate that the relative 

contributions of alternative effector mechanisms of graft rejection may be dictated 

by the pre-existing Th1/Th2 bias in the recipient. 

Some studies of eosinophilic graft rejection have been characterised by an 

absence of CD8 cells(Chan et al., 1995,Braun et al., 2000).  Activated CD8 cells 

down-regulate Th2 responses by several mechanisms.  

 Secretion of IFN-gamma which has a direct antiproliferative effect on Th2 

cells 

 Prevention of Th2 polarisation by inducing the production of IL-12 by dendritic 

cells 

Le Moine studied skin grafts in mice of normal genetic background (ie without 

immune bias) but who were mismatched only at MHC class II.  Because the 

donor-recipient disparity does not involve class I antigens, CD8 cells had no role 

to play in the alloresponse and the subsequent graft rejection was associated 

with a dense eosinophilic infiltrate(Le Moine et al., 1999a). This indicates that the 

relative contributions of alternative effector mechanisms may be dictated by the 

degree of genetic mismatch of the grafts as well as the host Th1/Th2 balance.  A 

histological study of rejected human corneal grafts has shown a statistically 

significant increase in the number of eosinophils in grafts rejected by allergic 

hosts with keratoconus(Hargrave et al., 2003).  This raises the possibility that 

Th2-mediated eosinophilic responses may play a role in graft rejection in these 

patients and is consistent with the experimental data which has shown 

eosinophilic infiltration of the cornea during rejection of allografts in Th2-biased 

hosts. 
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1.6.8. Effector Mechanisms: Monocyte/macrophage 

 

The heavy mononuclear cell infiltrate which is consistently seen in rejected 

corneal allografts(Larkin et al., 1997b,Larkin et al., 1997a) is in keeping with a 

DTH reaction.  To investigate the role of macrophages in graft rejection Slegers 

depleted rat conjunctiva of macrophages using subconjunctival injections of 

clodronate liposomes.  This intervention lead to prevention of graft rejection 

suggesting that macrophages are necessary for graft rejection(Slegers et al., 

2004).  The macrophage is known to be an especially multifunctional cell with 

many roles within both the innate and acquired compartments of immunity.  In the 

context of acquired immunity macrophages may act as APCs in the afferent limb 

and as effector cells, in conjunction with CD4+ cells in ―delayed-type 

hypersensitivity‖.  Niederkorn‘s group attempted to separate these roles in 

corneal graft rejection.  They compared allograft survival in 1) nude recipients, 2) 

nude recipients with adoptive transfer of alloreactive CD4+ cells and 3) nude 

recipients with adoptive transfer of alloreactive CD4+ cells and local depletion of 

macrophages by subconjunctival injection of clotidronate liposomes. Their results 

suggest that macrophages are necessary as antigen presenting cells rather than 

as effector cells of graft destruction(Hegde et al., 2005).    The precise role of 

these cells in the effector arm of the rejection process remains unknown. 

 

1.6.9. Effector Mechanisms: Natural Killer cell 

 

Natural killer cells are cells with innate immune capacity which have been found 

in rejected corneal grafts and more recently, in high numbers, in the aqueous of 

experimental animals with corneal allograft rejection(Claerhout et al., 2004).  

These cells usually specialise in the elimination of virally infected cells.  The 

default function of a NK cell is to kill any cell with which it comes in contact.  Only 

the presence of self MHC class I on the cell inhibits this process.  In other words, 

NK cells kill any cell that does not bear self MHC class I (missing self 
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hypothesis).  In vitro studies have demonstrated the capacity of NK cells to kill 

allogeneic corneal endothelial cells(Claerhout et al., 2004). 

 

 

 

 

1.7. CORNEAL IMMUNE PRIVILEGE  

 

1.7.1. Clinical tolerance v immunological tolerance 

 

True immunological tolerance requires a deviation or muting of the immune 

response to the alloantigen so that even when the immune system is exposed to 

the antigen no response is elicited.   Renal transplant physicians define tolerance 

of a graft clinically as stable graft function in the absence of 

immunosuppression(Girlanda and Kirk, 2007).  This type of clinical tolerance is 

relatively common in low-risk corneal transplantation in both humans and 

experimental animals and this has led to the misconception that corneal 

transplantation has been ―solved‖.  The fact that corneal grafts reject many years 

after transplantation during which time they have functioned well without 

immunosuppression suggests that the tolerance is relative or, at least, that ―non-

rejection‖ is not the same as tolerance in the strict sense.   Apart from the specific 

diagnoses of keratoconus and endothelial dystrophy few indications for corneal 

transplantation can truly be considered low-risk.  Nevertheless it is clear that 

corneal transplants do enjoy a degree of immune privilege.  In fact the cornea is 

an immune-privileged tissue(Hori et al., 2000a) sitting in an immune-privileged 

site (the anterior chamber of the eye and the avascular peripheral corneal bed).   

 

A number of factors are known to contribute to the relative immune privilege of 

corneal tissue.   
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1.7.2. Avascularity of the cornea 

 

Early investigators attributed the immune privilege of the cornea entirely to its 

lack of vascularity i.e. sequestration of alloantigen from the immune 

response(Khodadoust and Silverstein, 1972).  There is no doubt that this is an 

important factor.  Animal models and multivariate analysis in large human cohort 

studies have identified corneal vascularisation as the most important factor 

conferring high-risk status on a corneal graft(Williams et al., 2008).    

 

1.7.3. Lack of mature APCs 

 

In both experimental and clinical transplantation a central button of cornea is 

used as the graft (rather than the entire cornea).  Until relatively recently the 

central corneal stroma was thought to contain no passenger APCs(Streilein et al., 

1979).  Recent work by Hamrah has established that it does, in fact, contain 

APCs but that they are immature and do not express MHC class II in the normal 

setting.(Hamrah et al., 2002,Hamrah et al., 2003b)  Secondly, the normal cornea 

is devoid of lymphatics to transport APCs.  Taken together, these data suggest 

that, in the low-risk setting, the direct route of antigen presentation would be less 

important in cornea than in tissues bearing mature APCs grafted to vascular 

sites.  This is confirmed by studies which showed that the indirect route of 

antigen presentation is more important in corneal graft rejection than in rejection 

of skin or retinal allografts(Illigens et al., 2002,Boisgerault et al., 2009).  This lack 

of influence of the direct route in corneal graft rejection may explain the following 

unusual findings: 

 In human studies, MHC Class I and Class II matching of corneal grafts has 

shown no survival benefit (CCTS, 1992).   

 In animal studies, mismatches in minor rather than major histocompatiblility 

antigens have been shown to be more important in influencing graft 

survival(Sano et al., 1996,Sano et al., 1997). 
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It is unlikely that the direct route of antigen presentation plays no role at all in 

corneal graft rejection.  Experimental modifications of both the graft and the 

recipient bed suggest that under certain conditions the direct route of antigen 

presentation (by passenger APCs) may be important.   

A study by Huq et al compared T-cell responses after corneal transplantation to 

normal (low-risk) and vascularised (high-risk) corneal beds and found directly-

primed CD4+ cells in the high-risk but not the low risk setting.  In addition, donor 

APC expression of co-stimulatory molecules was increased in the high risk 

setting(Huq et al., 2004).  Inflammation in the cornea up-regulates MHC class II 

expression(Donnelly et al., 1990) and the lymphangiogenesis which 

accompanies vascularisation provides a conduit for egress of APCs(Chen et al., 

2004).  These data suggest  that, in high-risk corneal graft rejection, direct 

presentation of alloantigen may play a relatively more important sensitising role 

than in low-risk transplantation (Huq et al., 2004).  An obvious therapeutic 

strategy might be to attempt depletion of passenger leukocytes prior to 

transplantation.  Zhang recently used several methods to do this, achieving a 

depletion of 39% of passenger leukocytes using anti-CD45 and complement.  

However this depletion failed to improve longevity of high-risk grafts(Zhang et al., 

2009). 

Niederkorn studied the role of Langerhans cells, a type of APC found in 

epithelium, on corneal graft rejection.  The central corneal epithelium contains 

relatively few of these cells.  Pre-operative cytokine-induced migration of 

Langerhans cells into donor central epithelium doubled the incidence of corneal 

allograft rejection (Niederkorn, 1995).   If the increased rate of rejection was truly 

due to the presence of donor Langerhans cells then there can be only two 

explanations : 1) the Langerhans cells activate T cells directly or 2) Langerhans 

cells activate T cells via the indirect/ semi-direct pathway but are particulary 

immunogenic.   

Interestingly pre-operative depletion of donor Langerhans cells does appear to 

improve graft survival(He and Niederkorn, 1996).  It may be that Langerhans 

cells are more immunogenic than other passenger leukocytes.  This is consistent 
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with the finding that the epithelium is the most immunogenic layer of the 

cornea(Hori et al., 2000b). 

 

 

 

 

1.7.4. Low MHC expression 

 

The stroma and endothelium have particularly low immunogenicity(Hori et al., 

2000b).   The endothelium, which is the most important target in rejection, 

expresses low levels of MHC I and II and high levels of Fas ligand which can 

induce apoptosis in immune cells and protect the graft (Niederkorn et al., 2006b).   

 

 

The following factors contribute to the immune privilege of the anterior chamber 

of the eye: 

1.7.5. Blood aqueous barrier 

 

Endothelial cells of the vasculature of the iris and ciliary body have highly 

selective tight junctions which restrict the movement of cells and proteins 

between the bloodstream and the aqueous, while still allowing the passage of 

substances essential to metabolic function (eg oxygen).  Under physiological 

conditions the aqueous does not contain leukocytes but inflammation of the 

anterior uvea leads to breakdown of the blood-aqueous barrier and extravasation 

of leukocytes and protein. 

 

1.7.6. Immunosuppresive factors in aqueous humour 

 

The cornea, or at least its endothelium, sits in the anterior chamber of the eye 

which has been shown to be an immune privileged site by Medawar(Medawar, 
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1948).  The aqueous humour which bathes the endothelial cells contains high 

levels of immunoregulatory cytokines such as TGF-β(Streilein et al., 

1992,D'Orazio et al., 1999).    

 

 

1.7.7. ACAID 

 

In addition, antigen placed in the anterior chamber of the eye alters the immune 

response (anterior chamber-associated immune deviation or ACAID) to 

subsequent exposure to the antigen even at a different site(Streilein et al., 1980).   

Antigen from the anterior chamber leaves the eye via several pathways but at 

least some leaves via the conventional aqueous outflow pathway and travels to 

the spleen(Camelo et al., 2005).  There the interaction of antigen, NKT cells, B 

cells and γδ T cells induces a type of relative tolerance(Streilein and Niederkorn, 

1981,Sonoda et al., 1999,Skelsey et al., 2001,Skelsey et al., 2003).  

 

 

 

 

 

 

1.8. CORNEAL TRANSPLANTATION IN SETTINGS CONFERRING HIGH 
REJECTION RISK   

 

It is recognised that certain clinical features induce a high risk of corneal graft 

rejection in humans.  These include previous immune-mediated graft failure, 

corneal vascularisation and ocular inflammation.  A mouse model of high-risk 

corneal transplantation exists whereby vascularisation of the host cornea is 

induced by placement of corneal sutures prior to transplantation.   Comparing the 

cellular and molecular immune responses in normal and ―high-risk‖ experimental 

corneal transplantation may be useful in that it may help to identify a ―volume 

control‖ in some aspect of the immune response to allogeneic tissue, 

manipulation of which may improve graft survival.
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The cellular steps to graft destruction may be summarised as follows: 

 

 

 

 

Direct route of antigen 

presentation 

Indirect route of antigen 

presentation 

Low-risk High-risk 

1 Egress of Donor APCs Host APCs infiltrate graft 

Egress of host APCs bearing antigen 

Egress of host APC from anterior 

uvea bearing antigen shed from 

endothelium 

Few APCs 

↓MHC II expression 

Few lymphatics  

Indirect antigen presentation 

―Quiet‖ eye 

More APCs 

↑MHC II expression 

Lymphatics 

Direct antigen presentation 

Inflamed eye 

2 ―Direct‖ Priming of T lymphocytes         

(Afferent Allorecognition) 

 ―Indirect‖ Priming of T lymphocytes                            

(Afferent Allorecognition)   

↓MHC II 

↓Co-stimulatory molecules 

ACAID 

↑MHC II 

↑Co- stimulatory molecules 

Erosion of ACAID 

3 Exposure of circulating primed 

lymphocytes and other leukocytes 

to graft 

Exposure of circulating primed 

lymphocytes and other leukocytes to 

graft 

Avascular  

―Quiet‖ eye 

Vascular 

Inflamed eye 

4 Recognition of alloantigen                           

( Efferent Allorecognition) 

Recognition of alloantigen                                             

( Efferent Allorecognition)          

↓ MHC expression ↑ MHC expression 

5 Recruitment of other effector cells Recruitment of other effector cells   

Table 1.3  The cellular steps to graft rejection 

Immune privilege 
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In a high-risk graft there is an erosion of immune privilege at one or more of 

these steps.  Low-risk grafts that reject later may be thought of as grafts that 

have acquired ‖high-risk‖ characteristics due to breakdown of immune privilege.  

In non-vascularised corneas immune rejection occurring months or years after 

transplantation is often seen to be preceded by an episode of alloantigen-

independent inflammation (e.g. loose suture, bacterial infection, viral infection) 

which may lead to recruitment of immune-competent cells, angiogenesis, 

lymphangiogenesis and up-regulation of MHC molecules on the graft cells. 

 

Each step and the factors within it contributing to immune privilege are 

reasonably well understood but the extent to which one step inevitably follows 

the preceding one is less clear.   On a fundamental level we may ask of grafts 

which are not rejected, whether the recipient has not been sensitised due to the 

immune system not ―seeing‖ the antigen (ignorance of the alloantigen), whether 

the immune system has seen the antigen but does not or cannot mount a 

response (tolerance of the antigen) or whether the immune system has seen the 

antigen and been sensitised but its effector cells cannot see the target antigen 

due to sequestration of the graft in its avascular bed.   

Measurements of ear thickening in response to injected alloantigen are used to 

measure delayed-type hypersenitvity reactions and, hence, sensitisation 

following transplantation.  Several studies have demonstrated reduced DTH in 

low-risk grafts compared to high risk and in acceptors of graft compared with 

rejectors(Sonoda and Streilein, 1993,Yamada et al., 1998).  Is this because no 

antigen has been presented?  Dana‘s group has demonstrated the presence of 

donor APCs in the draining lymph nodes hours after transplantation even in low-

risk models(Liu et al., 2002).  Although the number of these cells entering the 

lymph node is lower in low- than high-risk recipients their presence suggests that 

ignorance of alloantigen is unlikely to be absolute.   Assuming that some antigen 

has been presented by APCs in the lymph nodes, does the induction of true 

immunological tolerance account for the absence of DTH in these cases?  If so, 

we would expect secondary skin grafts to acceptors of corneal grafts to survive 
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indefinitely.  After anterior chamber injection of alloantigen most, but not all, skin 

grafts do survive(Streilein et al., 1980).  In corneal transplantation only the 

endothelium is in the anterior chamber and egress of antigen/ APCs from the 

other layers may be via different routes(Camelo et al., 2005).  Sonoda showed 

decreased DTH in acceptors of corneal allografts(Sonoda and Streilein, 1993) 

but this is unlikely to be the exclusive reason for their non-rejection.  In 

Khodadoust‘s experiments all acceptors of corneal grafts reject skin grafts from 

the same donor(Khodadoust and Silverstein, 1972).  This is in contrast with what 

happens following anterior chamber injection of antigen and implies that ACAID 

induced by corneal transplantation may not be as potent as that induced by 

intracameral antigen.  This may explain the finding that prior intracameral antigen 

improves corneal allograft survival beyond that of control corneal 

allografts(Niederkorn and Mellon, 1996).  The fate of grafts in pre-sensitised and 

post-sensitised animals is also interesting.  Following corneal transplantation to 

hosts which have been pre-senitised to alloantigen, some animals reject their 

grafts and some do not(Sonoda and Streilein, 1992).  This tells us that ACAID is 

not the only phenomenon responsible for immune privilege (ACAID cannot 

develop in presensitised hosts(Streilein et al., 1980)). 

If animals with non-rejected corneal grafts are subsequently sensitised to 

alloantigen some reject their grafts and some do not(Khodadoust and Silverstein, 

1972).  This tells us that sequestration of the (avascular) graft from the efferent 

arm of the immune response is also not the only phenomenon responsible for 

immune privilege.   

While it is tempting to speculate that a single step exists, manipulation of which 

would induce tolerance or absolute immune privilege in all cases, it is far more 

likely that the relative contributions to immune privilege at each step is different 

for each person and for each graft and there is no factor contributing to immune 

privilege that cannot be overcome by one of the many redundant cellular 

pathways and mechanisms known to bring about rejection.     
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1.9. TREATMENT OF ESTABLISHED REJECTION   

 

The mainstay of treatment for established rejection is intensive topical 

corticosteroid treatment.  The most commonly used regimen is prednisolone 

acetate 1% hourly(Koay et al., 2005,Randleman and Stulting, 2006).  This 

treatment effectively suppresses graft inflammation but once inflammation has 

been suppressed the question of whether graft clarity will return depends on the 

extent to which the endothelium has been damaged.   Topical steroid has many 

immunosuppressive effects on immune cells in the cornea chiefly by inducing the 

expression of anti-inflammatory genes (Annexin-1, SLPI) and repressing the 

expression of pro-inflammatory genes (cytokines, chemokines, adhesion 

molecules, MHC molecules)(Barnes, 2006).   Many of these anti-inflammatory 

effects occur in effector cells such as T cells and macrophages but 

glucocorticoids also affect DC function.  They have been shown to alter cytokine 

production(Toebak et al., 2007), to induce apoptosis in DCs(Brokaw et al., 1998) 

and to delay DC maturation with resultant impairment of antigen 

presentation(Piemonti et al., 1999,Rozkova et al., 2006).  Corticosteroids also 

inhibit angiogenesis but this is unlikely to be relevant in setting of acute rejection. 

Inhibition of IL-2 receptor production inhibits T-cell proliferation but this may not 

be an important effect of topical treatment as T cell proliferation occurs quite 

distal to the site of application in the regional lymph nodes.  Banerjee et al have 

demonstrated the development of conjunctival aggregates of leukocytes with the 

characteristics of conjunctiva-associated lymphoid tissue (CALT) following 

corneal transplantation in rats(Banerjee et al., 2003) but there has been little 

investigation into the role of conjunctiva-associated lymphoid tissue (CALT) in 

corneal transplant rejection.  Were clonal expansion of T-cells to occur in the 

conjunctiva, this would, presumably, be inhibited by topical corticosteroid.  A role 

for CALT would also provide a scientific rationale for the topical use of 

cyclosporine in treatment and prevention of corneal graft rejection.  Some 

clinicians choose to treat endothelial rejection with systemic as well as topical 

corticosteroid.  However a trial of intravenous methylprednisolone in addition to 
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intensive topical treatment did not show an improvement in outcome compared 

with topical treatment alone(Hudde et al., 1999).   

 

1.10. PREVENTION OF REJECTION   

 

The key to minimising immune-mediated graft failure is a dual strategy of (i) 

identifying patients pre- and post-operatively who are at high rejection risk and 

tailoring their treatment appropriately and (ii) educating graft recipients as to the 

signs and symptoms of rejection and how to seek help should these occur.   

Pre-operative risk factors for rejection include unmodifiable factors such as a 

previously rejected ipsilateral graft or previous herpetic keratitis and factors which 

are modifiable to a greater or lesser degree such as corneal vascularisation or 

active external eye inflammation.   All ocular inflammation should be brought 

under control where possible before elective corneal transplantation.   A degree 

of regression of corneal vessels may be induced by topical steroid treatment 

particularly in an inflamed cornea.  More established vessels may be difficult to 

treat.  There is a broad spectrum of severity of corneal vascularisation and hence 

risk in terms of circumference, radial ingrowth and depth of vessels.  Corneal 

surgeons are most concerned about deep vessels and vessels close to the 

(projected) graft-host interface(Koay et al., 2005).   

One rational approach is to management of high rejection risk corneal 

transplantation is the use of systemic immunosupression with calcineurin 

inhibitors or sirolimus.  Unfortunately there is a lack of high-level evidence 

favouring any of these treatments which leads to some variablilty in practice.   

Long(er)-term local immunosupression with topical corticosteroid appears to be 

useful in preventing rejection (Nguyen et al., 2007) but the benefit must be 

weighed against such risks as glaucoma, susceptibility to infection and impaired 

corneal wound-healing.   
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1.11. CHEMOKINES AND THEIR RECEPTORS   

 

1.11.1. Chemokine biology 

 

The recruitment of leukocytes from within the vasculature to a focus of 

inflammation is a multistep process involving adhesion to and passage through 

vascular endothelium followed by migration across a chemotactic gradient.  This 

process is governed by chemokines, a family of low-molecular-weight 

polypeptides which bind to G-protein-coupled receptors on leukocytes(Luster, 

1998).  Chemokines are 8 – 15 kd polypeptides whose primary function is to 

govern the trafficking of leukocytes.  The chemokines are divided into 4 families 

depending on the arrangement of their cysteine residues at the N-terminus. More 

than 50 chemokines have been identified.  They are classified as belonging to 

one of four chemokine families: C chemokines, CC chemokines, CXC 

chemokines and CX3C chemokines according to their chemical structure (Figure 

1.5). The vast majority of which fall into either the CXC chemokine-receptor 

family or the CC chemokine-receptor family(Ono et al., 2003).  

  

Figure 1.5  The structure of chemokine classes 

From Wikipedia  www.wikipedia.org 
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Chemokine receptors are also divided into 4 families according to the ligands 

they bind (CXC family, C family, CX3C family and CC family)(Roitt and Delves, 

2003).  Chemokine receptors are polypeptides consisting of 7 transmembrane 

alpha-helical domains linked to G proteins.  Many more chemokine ligands have 

been discovered than receptors leading to a degree of redundancy/ promiscuity.  

Chemokine receptors are found almost exclusively on leukocytes with each 

subset of leukocyte having a characteristic profile of chemokine receptor and 

ligand expression.  Broadly speaking, CC chemokines are chemotactic for T-cells 

and monocytes and CXC chemokines are chemotactic for neutrophils.  This is 

particularly true of the subset of CXC chemokines which have a characteristic 

glutamate-leucine-arginine motif near the N terminal of the molecule(Charo and 

Ransohoff, 2006). (so called ELR+ CXC chemokines, these include IL-8 and KC/ 

Gro-α). The primary role of chemokines appears to be in coordinating leukocyte 

movement but they also play a role in leukocyte activation.  
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Family Chemokine Alternative Names 

CC CCL1 I-309/ TCA-3 

CCL2 MCP-1/  MCAF 

CCL3 MIP-1α/ LD78α 

CCL4 MIP-1β 

CCL5 RANTES 

CCL6 C10/MRP-1 

CCL7 MCP-3 

CCL8 MCP-2 

CCL9/10 MRP-2/ CCF18/ MIP-1γ 

CCL11 Eotaxin-1 

CCL12 MCP-5 

CCL13 MCP-4 

CCL14 HCC-1/ HCC-3 

CCL15 HCC-2/ Leukotactin-1 

CCL16 HCC-4/LEC/ LCC-1 

CCL17 TARC 

CCL18 DCCK1/ PARC/ AMAC-1 

CCL19 MIP-3β/ ELC/ Exodus-3 

CCL20 MIP-3α/ LARC/ Exodus-1 

CCL21 6Ckine/ SLC/ Exodus-2 

CCL22 MDC/STCP-1/ ABCD-1 

CCL23 MPIF-1 

CCL24 MPIF-2/ Eotaxin-2 

CCL25 TECK 

CCL26 SCYA26/ Eotaxin-3 

CCL27 CTACK/ ALP/ ESkine 

   

CXC CXCL1 GROα/ KC 

CXCL2 GROβ 

CXCL3 GROγ 

CXCL4 PF4 

CXCL5 ENA-78 

CXCL6 GCP-2 

CXCL7 NAP-2 

CXCL8 IL-8 

CXCL9 Mig 

CXCL10 IP-10 

CXCL11 I-TAC 

CXCL12 SDF1α/β 

CXCL13 BLC/BCA-1 

CXCL14 BRAC/Bolekine 

CXCL15 Lungkine 

   

C XCL1 Lymphotactin/ SCM-1α 

XCL2 SCM-1β 

   

CX3C CX3CL1 Fractalkaline/ Neurotactin 

Table 1.4 Classification of chemokines 
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Because graft destruction is mediated by infiltrating immune cells, interest has 

fallen on the role of chemokines in this process.  Chemokine expression has 

been studied in various models of transplantation and a wide variety of 

chemokines are found to be expressed following transplantation.  The challenge 

has been and remains in finding the functional relevance of these chemokines in 

the transplant setting. 

Given that chemokines help to mediate movement and activation of inflammatory 

cells both the timing and direction of cell movement must be considered in the 

context of corneal transplantation.  Regarding direction, one must consider not 

only inflammatory cell ingress but also inflammatory cell (APC) egress from the 

graft.  Regarding timing, one must remember that in the early post-operative 

period there is considerable inflammation in the graft which constitutes a wound-

healing (innate) response to surgical trauma.   This inflammation is alloantigen-

independent.  Alloantigen-dependent inflammation occurs later and is 

responsible for allograft rejection.  When studying chemokine expression in 

transplantation, ideally it is best to try to identify whether the chemokine is 

primarily involved in cell ingress or egress, in alloantigen-independent or 

alloantigen-dependent inflammation.  These timings are not always possible to 

separate in practice. 

When appraising results of studies of chemokine expression following 

allotransplantation there are issues of tissue specificity, species specificity and 

even strain specificity.  In addition when looking at kinetics there is the issue of 

which fixed point to relate to: time of transplantation or time of rejection.  With all 

of these factors to consider it may be too much to expect consistency in the 

results of studies of chemokine expression during rejection of various 

transplanted tissues.  Nevertheless certain consistent patterns are evident as 

demonstrated in table 1.5. 
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 Tissue Year Method Animal Human Early Late 

isograft Skin 

 

1996 
2000 
1999 

NB 
NB / E 

NB 

Kondo  
Kondo  
Koga  

 KC, MCP-1 
KC, MIP-1α, MIP-1β  

-- 
 
-- 

Heart 

 

1997 
2000 
2001 
2000 
2001 

NB  
RPA / E 

NB 
NB 

RT-PCR 

Fairchild  
Yun  

Morita  
Kapoor  

 

 
 
 
 

Melter 

MCP-1 
MIP2, MCP1 

KC, MCP-1, MIP-1α, MIP-1β 
-- 

-- 
-- 
 
 
-- 

Cornea 

 

2001 
1999 
2007 
2006 

RT-PCR 
RPA 

 
CBA 

King  
Yamagami  

Pillai 

 
 
 

Funding 

RANTES,MCP-1, MIP-1α, MIP-1β RANTES,MCP-1, MIP-1α, MIP-1β  
Eotaxin 
-- 
-- 

allograft Skin 

 

1996 
2000 
1999 

NB 
NB / E 

NB 

Kondo  
Kondo  
Koga 

 KC, MCP-1, MIP-1α, MIP-1β 
KC, MIP-1α, MIP-1β 

 

RANTES, IP-10  
 
IP-10, Mig 

Heart 

 

1997 
2000 
2001 
2000 
2001 

NB 
RPA/E 

NB 
NB 

RT-PCR 

Fairchild  
Yun  

Morita  
Kapoor  

 

 
 
 
 

Melter 

IP-10, MCP-1, and KC  
MIP-2, MCP-1  

KC, MCP-1, MIP-1α, MIP-1β  
IP-10,  Mig  

MIP-1α, MIP-1β, RANTES 
Lymphotactin, RANTES, IP-10 
  
 
IP-10  

Cornea 

 

2008 
2001 
1999 

 
2007 

 
 

2006 

E 
RTPCR 

RPA 
 

RTPCR 
 
 

CBA 

Amescua  
King 

Yamagami   
 

Pillai 

 
 
 
 
 
 
 

Funding 

KC  
RANTES,MCP-1, MIP-1α, MIP-1β 

 
RANTES, MCP-1, MIP-1α, MIP-1β > 
RANTES, MCP-1, MIP-1α, MIP-1β, MIP-2, IP-
10, Eotaxin 
IP-10, MIP-2, MIG, MIP-1β, MIP-1α, MCP-1, 
RANTES, Eotaxin, Lymphotactin, MIP-1γ, 
Fractalkine 
MCP-1,IL-8, MIP-1β 

Table 1.5  Chemokine expression following organ transplantation 

This table summarises experimental and clinical data on chemokine expression following transplantation of various 
tissues.  Although various techniques were used, there is some consistency in the results.  KC, MCP-1, MIP-1α and MIP-
1β are seen in the early days post-transplantation.  This expression is presumed to be related to alloantigen-independent 
inflammation.  Later, expression of RANTES, MCP-1 and IP-10 are seen.  This expression is presumed to be related to 
alloantigen-dependent inflammation. 
NB Northern Blot, E Elisa, RPA ribonuclease protection assay, RTPCR reverse transcriptase polymerase chain reaction, 
CBA cytometric bead array 
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1.11.2. Chemokine and chemokine receptor expression in 
vascularised organ transplantation 

 

Chemokine expression following transplantation has been studied in skin, renal 

and cardiac allografts.  Although there is considerable tissue specificity in the 

expression of chemokines following transplantation, certain consistent patterns 

have emerged.  Investigators used northern blot and elisa analysis to study 

chemokine gene expression after tissue transplantation.  In studies using mouse 

models of skin and cardiac transplantation two reasonably consistent patterns of 

chemokine expression were revealed.   Looking first at the early post-operative 

period (day3) increased expression of KC and MCP-1 in both allograft and 

isografts was seen in both skin and cardiac grafts(Kondo et al., 1996,Fairchild et 

al., 1997).  In cardiac isografts and allografts increased expression of these 

chemokines is seen at 6 hours post-transplantation(Morita et al., 2001).  By day 

8, expression was reduced to normal levels.  The fact that expression of these 

chemokines was similar in allografts and isografts suggests that these they are 

involved in mediating allo-independent inflammation  i.e innate immune 

responses.  

Looking at the timing of the chemokine expression it would appear to correspond 

to the response to surgical trauma and ischaemia/reperfusion injury.   KC and 

MCP-1 are known to be chemotactic for neutrophils and macrophages 

respectively.  The increased expression of KC and MCP-1 has been shown to 

correspond to the early post-operative influx of neutrophils and 

macrophages(Yun et al., 2000). 

In the later post-operative period another pattern of chemokine expression 

emerged whereby increased expression of RANTES and IP-10 was seen in 

allografts but not in isografts in the days before rejection suggesting a role for 

these chemokines in alloantigen-dependent inflammation.  This pattern of 

chemokine expression was seen in both cardiac and skin grafts(Kondo et al., 

1996,Fairchild et al., 1997,Koga et al., 1999,Koga et al., 2000,Yun et al., 2000). 

A study of human pathological specimens has also confirmed increased 
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expression of IP-10 and its receptor CXCR3 in rejected cardiac allografts(Melter 

et al., 2001).  Mig was expressed in skin allografts during rejection and never in 

isografts(Koga et al., 1999).    

MIP-1α and MIP-1β were also seen in skin and cardiac isografts and allografts in 

the first 2 days after transplantation(Kondo et al., 2000,Morita et al., 2001) but 

were later found only in cardiac allografts and not skin(Fairchild et al., 1997).  In 

summary the expression of chemokines appears to be bi-modal with an early 

peak at about 3 days post-transplantation and a later peak in the days 

immediately prior to rejection.  The early peak appears to represent a response 

to surgical trauma and ischaemia/ reperfusion in vascular organs.  The later peak 

appears to represent graft rejection. 

 

1.11.3. Chemokine and chemokine receptor expression in corneal 
transplantation 

 

Protein and mRNA findings in corneal allografts and isografts following 

transplantation are summarised in Table 1.4.  King et al studied chemokine 

expression using RT-PCR in the rat model of corneal transplantation and found 

that RANTES, MCP-1, MIP-1a and MIP-1b were expressed at similar level in 

isografts and allografts in the early post-operative period (day 3-7) but that later 

on (day 9-13) expression was greater in allografts.  IP-10 expression was not 

measured(King et al., 2000).   

Yamagami et al studied chemokine expression using RPA comparing isografts, 

rejected/ rejecting allografts and accepted allografts.   For the chemokines 

Lymphotactin, RANTES, MIP-1α, MIP-1β, MIP-2, IP-10, MCP-1 differential 

expression was observed in various groups in the order: rejected allograft > 

accepted allograft> isograft.  The greatest difference in expression between 

accepted and rejected allograft was in IP-10 and RANTES.   No TCA-3 

expression was seen in any group.  Some eotaxin expression was seen in all 

groups but there was no difference in expression between groups.  Interestingly 

this model used C57BL/6 recipients of Balb/c donors.  When this donor-recipient 
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strain was reversed the results were similar with the exception of IP-10 which 

was no longer expressed at a high level in rejected allografts.   The timing is 

important here.  Eyes were harvested when 50% of allografts had rejected.  In 

this case that was at 3-4 weeks post-transplantation(Yamagami et al., 1999). 

Pillai used RT-PCR to study chemokine expression in the first 14 days after 

corneal transplantation.  In this model rejection occurred at about day 11 and  

there was a marked increase over days 7-11 in allografts but not in isografts in 

the following chemokines:  IP-10, RANTES, Eotaxin, MIP-1α, MIP-1β, MCP-1, 

Lymphotactin, Fractalkine(Pillai et al., 2008a). 

An RPA study by Yamagami looked at early chemokine expression (i.e. in the 

first 6 days post-op) after corneal transplantation again in the mouse model.  In 

this case the comparison was not only between isografts and allografts but also 

―high-risk‖ allografts.   ―High-risk‖ status was conferred by inducing 

vascularisation of the host cornea prior to transplantation.   During the first 6 days 

post-transplantation expression of RANTES, MCP-1, Mip-1a, Mip-1b, Eotaxin 

and MIP-2 were equal in isografts and low-risk allografts but was significantly 

higher in high risk allografts.   This increased chemokine expression was 

associated with higher numbers of infiltrating innate immune cells (macrophages 

and neutrophils) into high-risk grafts than low-risk grafts at days 3 and 6 post-

transplantation(Yamagami et al., 2005b).   Amescua et al also studied early 

chemokine expression in low- and high-risk corneal grafts and found a peak in 

KC expression in high compared to low-risk grafts at day 3.  However unlike 

Yamagami‘s study, numbers of graft-infiltrating neutrophils were similar over the 

first 2 post-operative weeks(Amescua et al., 2008).   

 

The results of these studies are consistent with those in solid organs.   The 

demonstration of no difference between iso and allografts in terms of chemokine 

expression in the early postoperative period again suggests that this expression 

relates to alloantigen-independent inflammation.   In the cornea this cannot be 

said to be due to ischaemia/ reperfusion injury as the cornea is avascular.  It 

appears to be due to surgical trauma and wound-healing.  Pillai found that 
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suturing alone caused significant increases in corneal expression of chemokines 

including Mip-1b, MIP-2, MCP-1, RANTES, IP-10 and eotaxin(Pillai et al., 2008b).  

Later increased expression in allografts but not isografts is due to rejection or at 

least an allogeneic immune response.  In experimental studies, the timing of this 

depends on the timing of rejection in a particular strain combination.  Funding 

studied chemokine expression in human aqueous humour during acute 

endothelial rejection using multiplex bead array technology and found increased 

level of MCP-1, Mip-1b and CXCL8 in aqueous of eyes with rejecting grafts 

compared to controls.  Finally, there appears to be a difference in chemokine 

expression kinetics in high- and low- risk corneal grafts(Yamagami et al., 2005b). 

 

 

 

1.11.4. Chemokines and APCs 

 

Chemokines and their receptors also govern movements of APCs in health and 

disease.  Chinnery et al found a role for CX3CR1 in the normal recruitment of  

MHC class II+ putative DCs to corneal epithelium(Chinnery et al., 2007).   

Yamagami found a critical role for CCR5 in the recruitment of class II+ cells to 

corneal epithelium in response to injury(Yamagami et al., 2005a).   The 

expression of chemokine receptors on DCs depends on their state of 

maturation(McColl, 2002).  Once immature DCs have taken up antigen they 

begin to express increased levels of CCR7(Dieu et al., 1998) and this appears to 

play an important role in DC egress via lymphatic vasculature from skin (Saeki et 

al., 1999) and also from the cornea(Jin et al., 2007).   CCL19 and CCL21, ligands 

for CCR7, are expressed by lymphatic vasculature(Jin et al., 2007).   
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Chemokine Expressed by: Receptor Found on: 

GROα/ KC   
(CXCL1) 

Monocytes, Fibroblasts, 
Endothelium, Epithelium 

CXCR2 Neutrophils, Monocytes  

Endothelium  

MCP-1 
(CCL2) 

Monocytes, Macrophages, 
Fibroblasts, Endothelium, 

Epithelium 

CCR2 Monocytes, Immature 
DCs, Memory T cells 

MIP-1α 
(CCL3) 

Macrophages, 
Lymphocytes, Neutrophils, 

Mast cells, NK cells > 
epithelium, fibroblasts 

CCR1 T cells, Monocytes, 
Mast cells, Eosinophils, 
Basophils 

CCR5 T cells, Monocytes 

MIP-1β 
(CCL4) 

Macrophages, 
Lymphocytes, Neutrophils, 

Mast cells, NK cells > 
epithelium, fibroblasts 

CCR5 T cells, Monocytes 

RANTES 
(CCL5) 

T cells, Macrophages, 
Fibroblasts, Endothelium, 

Epithelium 

CCR1 T cells, Monocytes, 

Eosinophils, Basophils 

CCR3 Eosinophils, Basophils 

Mast cells, Th2 CD4 
cells 

CCR5 T cells, Monocytes 

IP-10 
(CXCL10) 

Monocytes, Endothelium, 
Fibroblasts 

CXCR3 Th1 CD4 cells, Mast 
cells, Mesangial cells 

Lymphotactin 

(XCL1) 

CD8 cells CXCR1 T cells, NK cells 

Table 1.6  Nomenclature, origin, receptors and target cells of selected 
chemokines expressed following corneal transplantation 

(Charo and Ransohoff, 2006,Roitt and Delves, 2003,Hedrick and Zlotnik, 
1998,Deshmane et al., 2009,Levy, 2009,Maurer and von, 2004,Geiser et al., 
1993).   
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1.11.5. Chemokines as therapeutic targets in transplantation 

 

In a model of cardiac allograft rejection, knockout of the CCR1 gene in recipients  

doubled graft survival(Gao et al., 2000).  Graft survival was also prolonged in 

CCR5 KO recipients of cardiac allografts(Gao et al., 2001).  In the same report 

RANTES KO and MIP-1α KO recipients of cardiac allografts rejected them at a 

similar rate to WT recipients.  RANTES and MIP-1α are the main ligands of both 

of the receptors CCR1 and CCR5 (both ligands bind to both receptors).  These 

data suggest that if CCR1 and CCR5 play roles in graft rejection, then this role is 

mediated by binding of ligands other than MIP-1α and RANTES. On the other 

hand, targeting of the RANTES by an alternative method using anti-chemokine 

gene therapy (Fleury et al., 2006) has has been shown to prolong cardiac 

allograft survival.   

Similar discrepancies have been found between methods used to target the 

receptor CX3CR1.  Grafting to CX3CR1 KO animals did not improve 

survival(Haskell et al., 2001) but treatment with anti- CX3CR1 or anti Fractalkine 

did improve survival of cardiac allografts(Robinson et al., 2000).  Treatment with 

antiserum to MIG was found to prolong survival of skin and cardiac 

allografts(Koga et al., 1999,Miura et al., 2001).   

All of the above targets relate to chemokines found during rejection.  Morito also 

targeted CXCL1, one of the early chemokines found during alloantigen-

independent inflammation with antiserum and found that it prolonged survival of 

cardiac allografts suggesting that modulation of early cellular events in the graft 

may have far-reaching effects in terms of graft survival(Morita et al., 2001) 

Hamrah et al have studied the roles of various chemokines and their receptors 

using knockout mice and the mouse model of corneal transplantation.  Grafts in 

CCR2-, CCR5-, and Mip-1a KO mice did not show significant improvements in 

survival but those in CCR1 KO recipients did(Hamrah et al., 2007).  Pillai used a 

viral vector encoding the general chemokine inhibitor vMIPII and found that this 

significantly improved graft survival(Pillai et al., 2008a). 
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IP-10 has been found with consistency during rejection of all types of allografts 

however considerable controversy remains as to its importance and that of its 

receptor in the rejection process(Halloran and Fairchild, 2008).  In particular there 

appears to be inconsistency regarding the usefulness of CXCR3 and IP-10 as 

targets to prolong graft survival.  Hancock showed that survival of cardiac 

allografts was improved in CXCR3 KO recipients and in recipients treated with 

anti-CXCR3 (Hancock et al., 2000).  The same group then used anti IP-10 serum 

and IP-10 KO mice and found that graft survival improved when KO grafts were 

given to wild type recipients but not when the situation was reversed suggesting 

that expression of IP-10 from donor cells was more important in the rejection 

process than in recipient cells(Hancock et al., 2001).   More recently there have 

been conflicting reports which question the potential of pharmacological blockade 

of CXCR3 in prolonging graft survival(Kwun et al., 2008,Uppaluri et al., 

2008,Zerwes et al., 2008).   Hamrah found no improvement in survival of corneal 

grafts in CXCR3- and IP-10 KO recipients(Hamrah et al., 2007).   

 

 

 

1.12. LYMPHANGIOGENESIS    

 

 

1.12.1. History 

 

The thoracic duct was described as long ago as 1650 by Pecquet.  It was 

discovered independently by Rudbeck who published his description of the 

lymphatic system in 1653.  Rudbeck became involved in a bitter dispute with 

another contemporary anatomist Bartholinus, who was the first to use the term 

―lymphatics‖, over the priority of their findings.  Use of dye techniques allowed 

detailed anatomic delineation of lymphatic vessels but it took hundreds of years 

before the function of the lymphatics began to be unravelled.  In contrast Harvey 

described the function of the systemic circulation in detail and correctly in 1628. 
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Several important findings in the late 19th century paved the way for the discipline 

of immunology: 

 Pasteur‘s popularisation of germ theory 

 The beginning of the humoral theory of immunity  

 Metchnikoff‘s discovery of phagocytosis.   

Looking retrospectively at these discoveries and considering also i) the well-

recognised presence of lymphadenopathy in several infectious diseases and ii) 

Virchow‘s (correct) assumption (in 1858) that lymph nodes filter lymph(Virchow, 

1975), it seems obvious that lymph nodes would play an important role in 

immunity.  It took until 1935 for lymph nodes to be identified as the site of 

antibody formation(McMaster and Hudack, 1935) and even that was not 

accepted for several years(Ehrich and Harris, 1945).   It took another 50 years or 

so (until the discovery of the physiological role of MHC molecules and the T cell 

receptor) for the afferent limb of the cellular acquired immune response to be 

relatively fully worked out.   
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Figure 1.6  Lymphatics of the head and neck 

Photograph of an engraving from Mascagni‘s atlas 1787. (from Kanter MA. 
Plastic and reconstructive surgery 1987) 
 

 

In the field of transplantation it was well recognised in the early part of the 20th 

century that ―homografts‖ of skin did not survive unless they were from 

genetically identical individuals(Loeb, 1937).  However the mechanism of graft 

destruction remained a mystery and it certainly was not universally thought to be 

immune-mediated.   Holman in 1924 suggested that these grafts may be 

antigenic but this hypothesis lay fallow for many years(Murray, 1965).     
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In clinical and experimental studies in the 1940‘s Medawar showed that the 

process of graft rejection was immune-mediated(Gibson and Medawar, 

1943,Medawar, 1944) but uncertainty remained as to whether it was via cellular 

or humoral immunity.  Typical cellular changes were recorded in histological 

examination of rejected grafts but debate persisted as to whether these 

represented cause or effect of rejection.  As late as 1942 some prominent 

surgeons felt that graft infiltrating cells were not involved in graft 

destruction(Stone, 1942).  This issue was clarified in 1954 by Mitchison who 

transplanted lymph nodes from mice who had rejected skin allografts to naïve 

mice and conferred adaptive immunity on the naïve animals (whereas serum 

transfer did not) (Mitchison, 1954).  At that stage it was clear that graft rejection 

was a cell-mediated immune response in which lymph nodes played a part.  In 

the early 1960‘s two groups demonstrated that excision of the draining lymph 

node prolonged skin graft survival(Stark et al., 1960,Swartzendruber et al., 1963).  

In 1967 Hall demonstrated qualitative changes in the cellular content (increased 

proportion of macrophage-type cells) in the afferent lymphatics in response to a 

skin allograft(Hall, 1967). In 1968 BIllingham showed the importance of intact 

afferent lymphatics in skin graft rejection(Barker and Billingham, 1968).   In 1970 

Collin showed that corneal vascularisation accelerated the delivery of antigen to 

the draining lymph nodes(Collin, 1970).  Looking back this appeared to be a 

good time to explore the role of afferent lymphatics in the response to allografts 

more thoroughly but this did not happen (apart from several studies confirming 

the importance of the draining lymph node in corneal transplant 

immunology)(Plskova et al., 2004,Yamagami and Dana, 2001).   

 

Possible reasons for this include: 

1) The cellular mechanisms of the afferent arm of antigen presentation remained 

unclear at the time.  In 1957 Snell did suggest a role of macrophages in 

antigen presentation but this was amongst several other putative 

theories(Snell, 1957).   The concept of antigen-presenting cells seems to 

have been a ―slow burner‖ only gaining acceptance after several lines of 
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investigation in the 1960s (Mitchison, 1969) and 1970s (Silberberg-Sinakin et 

al., 1976) and culminating in the discovery of the T Cell Receptor in 

the1980s(Schwartz, 1985). 

2) Several developments at the time (discovery of T cell B cell co-operation, 

development of the plaque assay and development of the lymphocyte 

cytolysis Cr51 release assay)  made research into the effector mechanisms of 

lymphocytes more attractive (the ―business end‖ of the cellular immune 

response) 

3) In most circumstances afferent lymphatics are established and unmodifiable, 

eg skin.  The only option to modify these would have been excicion and that 

may have been deemed impractical. 

4) Lymphatics are clear channels containing colourless fluid.  Dye techniques 

used to study lymphatics at this time were technically very challenging.  

(Nevertheless this did not deter Collin who published extensively on 

pathological growth of corneal lymphatics in the 1960s and 70s.)(Collin, 

1966,Collin, 1970,Collin, 1974)   

 

In early years of 21st century there was a renewed interest in lymphangiogenesis.  

Possible reasons for this include:   

 

1) During the 70‘s /80‘s /90‘s the function of antigen-presenting cells became 

better understood, especially after the discovery of the T cell receptor.  This 

brought the afferent part of immune arc into sharper focus. 

2) Investment in cancer research facilitated research into afferent lymphatic cell 

traffic in the context of cancer metastasis. 

3) New molecular markers for lymphatic endothelium were discovered.  These 

include VEGFR-3, LYVE-1 and podoplanin. 

4) New discoveries were made in the field of VEGF/ angiogenesis eg. VEGFR-3 

and its ligands VEGF-C and VEGF-D. 
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1.12.2. Vascular Endothelial Growth Factor 

 

Lymphangiogenesis occurs in normally developing tissues (except cornea) and in 

pathological conditions such as inflammation, cancer and wound healing 

(including cornea).  Since their discovery in 1989 the role of vascular endothelial 

growth factors (VEGFs) in angiogenesis and vasculogenesis of blood vessels 

has been extensively studied.  VEGFs and their receptors also play an important 

role in lymphangiogenesis. 

The VEGF family consists of 5 members: VEGF-A, VEGF-B, VEGF-C, VEGF-D 

and Placental growth factor.  These have different affinities for each of the 3 

VEGF receptors: VEGFR-1, VEGFR-2 and VEGFR-3. 

 

 

Figure 1.7  VEGF receptors 

 

 

Traditionally, VEGFR-1 and 2 are found on vascular endothelium and VEGF-R3 

is found on lymphatic endothelium.  The ligands of VEGFR-3 are VEGF-C and 

VEGF-D and the VEGF-C/ VEGF-D/ VEGFR-3 axis has been shown to be an 

essential mediator of lymphatic endothelial cell migration, proliferation and 

survival(Achen and Stacker, 2008).  
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More recent evidence shows that VEGFR-2 is found on lymphatic endothelium 

and may possibly play a role in lynphangiogenesis, possibly by dimerising with 

VEGFR-3.  VEGF-C and VEGF-D are known ligand of VEGFR-3 which induce 

growth of lymphatic vessels (Karpanen and Alitalo, 2008).  Downstream 

signalling cascades after VEGF receptor ligation remain incompletely understood 

but several genes have been identified, based on studies in mouse mutants, to 

be involved in lymphatic vascular development and maturation(Karpanen and 

Alitalo, 2008). 

 

1.12.3. Corneal lymphangiogenesis 

 

The cornea provides a convenient model for the study of lymphangiogenesis.  In 

2001 Mimura demonstrated increased expression of VEGF-C and VEGFR-3 

accompanying haem- and lymphangiogensis in the rat cornea in the days 

following injury in a model of corneal neovascularisation(Mimura et al., 2001).    

In 2004 Chen showed that inhibition of VEGFR-3 reduced the number of APCs 

draining from the cornea which in turn reduced DTH reactions and prolonged 

graft survival.  Interestingly it appeared to do so without significantly reducing 

corneal lymphatic ingrowth(Chen et al., 2004).  

Cursiefen showed in 2004 that in normal rejection risk mouse corneal 

transplantation post –transplantation haemangiogensis is accompanied by 

lymphangiogenesis.  Importantly there was no difference in the rate of both 

haem- and lymphangiogenesis between allo- and isografts(Cursiefen et al., 

2004a).  This suggests that post-keratoplasty lymphangiogenesis is alloantigen-

independent i.e. mediated by innate immunity.   Cursiefen also showed that 

inhibition of VEGF-A using sequential intraperitoneal injections of an anti-VEGF 

trap inhibited haem- and lymphangiogenesis and prolonged graft survival.  From 

these data it is not possible to say whether the improved graft survival was due to 

inhibition of haemangiogenesis or lymphangiogenesis (both were equally 

inhibited).  This finding of a potential role for VEGF-A in lymphangiogenesis was 

novel and was confirmed in another paper also in which the same authors 
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showed that suture-induced corneal lymphangiogenesis was accompanied by 

influx of inflammatory cells (mostly neutrophils but also macrophages which 

express VEGF-C).  VEGF trap inhibited numbers of infiltrating cells after 

placement of a corneal suture(Cursiefen et al., 2004b) and   depletion of 

macrophages inhibited lymphangiogenesis.  The following hypothesis was 

proposed:  Macrophages are recruited to the cornea in response to VEGF-A.  

These macrophages secrete VEGF-A, VEGF-B and VEGF-C which induce 

haem- and lymphangiogenesis by binding to their respective receptors on 

vascular endothelium.   

 

In this hypothesis it is not entirely clear where the original VEGF-A comes from.  

Studies on the early cellular response to wounding / grafting in all tissues 

consistently demonstrate an early influx of macrophages and neutrophils(Park 

and Barbul, 2004).  Both cell types have been shown to express VEGF in vitro 

and in vivo(Scapini et al., 2004,Lin et al., 2006).  Neutrophils entering the cornea 

in this context have been demonstrated to produce VEGF-A(Edelman et al., 

1999). 

 

In a follow-up paper from the same group, Maruyama et al in 2005 provided 

further evidence that adaptive immunity is not involved in corneal 

lymphangiogenesis.  Their results also showed that corneal lymphatics express 

CD11b.  In their experiment conjunctival macrophages were depleted with 

cotidronate liposomes and this inhibited suture-induced corneal 

lymphangiogenesis.  Interestingly treatment with clotidronate liposomes also 

decreased the influx of CD11b+ cells(Maruyama et al., 2005). (One inconsistency 

in their work is that in this paper the authors identify graft-infiltrating CD11b+ cells 

as macrophages yet their earlier paper reports that CD11b+ cells in the cornea 

are predominantly neutrophils(Cursiefen et al., 2004b)). A novel finding reported 

in this paper by Maruyama et al was that peritoneal macrophages have the 

capacity to form tube-like structures in vitro(Maruyama et al., 2005) leading the 

authors to conclude that macrophages may act as progenitor lymphatic 
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endothelial cells during inflammation.  This is supported by the finding of 

macrophages in the conjunctiva which express the lymphatic endothelial marker 

LYVE-1(Chen et al., 2005,Xu et al., 2007).   There is evidence also in renal 

transplantation of incorporation of recipient-derived progenitor cells in lymphatic 

endothelium(Kerjaschki et al., 2006).  The precise role(s) of macrophages/ 

CD11b+ cells in corneal lymphangiogenesis remains unclear.   They may act as 

progenitor cells and may also secrete VEGF-C to induce lymphangiogenesis 

indirectly. 

 

 

1.13. ALLERGIC CONJUNCTIVITIS 

 

1.13.1. Atopy 

 

Asthma, eczema and allergic rhinoconjunctivitis are recurrent inflammatory 

conditions of the lungs and airways, the skin and the mucous membranes 

respectively.  They are known as atopic diseases and tend to occur in individuals 

with an underlying ―atopic‖ tendency.  The precise nature of this tendency 

remains uncertain.  Traditionally atopic inflammation has been thought to be 

precipitated by exposure to environmental antigens such as pollen.  More 

recently we have become aware of intrinsic genetic determinants which appear to 

predispose to atopic disease by modifying expression of proteins involved in 

innate immune defense such as those responsible for the bodies barrier function.  

The best-described of these is the filaggrin gene in eczema the natural history of 

which appears to involve considerable gene-environment interaction(Bieber, 

2008,van den Oord and Sheikh, 2009).     

The prevalence of atopic diseases appear to be increasing(Law et al., 2005) and 

although several theories have been proposed to try to explain this phenomenon 

(increased rate of caesarean sections, increased hygiene with decreased 

exposure to microbes in childhood), none are supported by strong evidence. 
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1.13.2. General features of allergic conjunctivitis 

 

Allergic diseases of the eye comprise of a number of different 

inflammatory conditions that share common features such as seasonal variation, 

association with atopic disease and presumed involvement, to a greater or lesser 

extent, of the type 1 hypersensitivity mechanism in their pathophysiology.  It is 

traditionally classified into five distinct entities: seasonal allergic conjunctivitis 

(SAC), perennial allergic conjunctivitis (PAC), vernal keratoconjunctivitis (VKC), 

atopic keratoconjunctivitis (AKC), and giant papillary conjunctivitis (GPC). 

The most common type of allergic eye disease, seasonal allergic 

conjunctivitis (hay fever conjunctivitis), is also the least serious in terms of visual 

outcome. Studies of SAC epidemiology using routine data on hospital admissions 

and primary care consultations are limited by the facts that not all sufferers seek 

help from healthcare professionals and that sales of ―over the counter‖ hay fever 

medications are not recorded(Anandan et al., 2006).  However it has been 

estimated that SAC and PAC together account for 98% of allergic eye 

disease(Ono and Abelson, 2005).  AKC and VKC, although much rarer, are more 

likely to lead to visual impairment, with AKC being the most destructive disease 

and having the worst visual prognosis.   

 

1.13.3. Seasonal allergic conjunctivitis 

 

Of the allergic eye diseases, SAC represents the most ―pure‖ form of type 1 

hypersensitivity.  As the name suggests, the symptoms and signs are intermittent 

and occur rapidly following exposure to a specific allergen, with patients often 

having a personal or family history of atopy. In the absence of prolonged 

exposure to allergen, attacks are short-lived.  The commonest seasonal allergen 

is pollen with tree pollen predominating in spring, grass pollen in summer and 

ragweed pollen in autumn.  Symptoms are typically absent during winter.  The 

severity of signs and symptoms vary from patient to patient depending on the 

specific allergen and the exposure.   Patients usually complain of intense itching 
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of the eyes associated with a watery discharge.  The conjunctiva is injected and, 

in more severe cases, there may be conjunctival chemosis and lid oedema.   

  

1.13.4. Perennial allergic conjunctivitis 

 

PAC is less common than SAC.  Although the symptoms and signs of 

these diseases are the same, the distinction between them lies in the timing of 

the symptoms.   Whereas SAC sufferers have symptoms for a defined period of 

time, PAC sufferers are sensitive to allergens that are present year-round and so 

are perennially symptomatic.  ―Household‖ allergens such as the dust mite or pet 

dander are the usual offenders in PAC.  These patients may also be sensitive to 

seasonal allergens and so there may be a superimposed seasonal element to 

their symptoms.   

 

1.13.5. Atopic keratoconjunctivitis 

  

AKC constitutes a more relentless form of conjunctival inflammation than either 

SAC or VKC.  Atopic dermatitis (eczema), a pruritic skin condition that affects 3% 

of the population, is present in 95% of patients with AKC(Bielory, 2000).  

Conversely, 25-40% of atopic dermatitis patients have AKC(Foster and Calonge, 

1990).   

Typically patients have had atopic dermatitis since childhood with ocular 

symptoms developing at a later stage.  Symptoms may begin in the late teens or 

early twenties but the peak incidence is between the ages of 30 and 50.   Males 

are more commonly affected than females and there is often a personal or family 

history of other atopic diseases.  Unlike SAC, and most cases of VKC, the 

symptoms tend to be perennial.   

Bilateral itching of the eyelids and periorbital skin is the most frequent symptom.  

Patients also complain of tearing, photophobia, discharge, burning and blurred 



 89 

vision.  Depending on the severity of corneal involvement, patients may complain 

of a foreign body sensation and pain. 

The periorbital skin typically has the dry, indurated and scaly appearance of 

eczema.  Eyelid swelling may contribute to the generalized wrinkling of the skin. 

Colonisation of the lid margin with staphylococcus with resultant staphylococcal 

blepharitis is common(Tuft et al., 1992). There is typically a papillary reaction on 

the tarsal conjunctiva.  The bulbar conjunctiva may show non-specific signs of 

inflammation such as hyperaemia or chemosis.  Rarely, papillary hyperplasia of 

the limbal conjunctiva occurs resulting in a gelatinous limbal nodule similar to 

those seen in limbal VKC.  Prolonged or severe inflammation may result in 

conjunctival cicatrisation. 

Visual deterioration in AKC is most commonly caused by corneal complications.  

Corneal scarring in AKC may result from vascularisation, infection or ectasia.  A 

broad spectrum of corneal disease may be seen depending on the severity and 

chronicity of inflammation.  Punctate epithelial erosions are seen early in the 

course of the disease.  The severity of the corneal erosions correlates with the 

number of inflammatory cells(especially eosinophils) in brush cytology samples 

from the superior tarsal conjunctiva(Takano et al., 2004).  Peripheral corneal 

vascularisation, which may be associated with opacification, is common.  These 

changes may occur as a result of limbal stem cell deficiency.  Rarely, corneal 

vascularisation may encroach on the visual axis and cause visual impairment.  

Epithelial erosion may coalesce to form non-infectious corneal ulcers.  Toxic 

granule proteins derived from conjunctival eosinophils have been implicated in 

the pathogenesis of these ulcers(Messmer et al., 2002).   

 

 

 

1.13.6. Vernal Keratoconjunctivitis 

 

 A disease of childhood, VKC accounts for 0.5% of allergic eye 

disease(McGill et al., 1998).  Like AKC it has a male preponderance but onset is 
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much earlier, typically late in the first decade.  It is seen most commonly in 

temperate climates such as those of the Mediterranean, South Africa and North 

America.  There is frequently a personal or family history of atopy but this 

association is not as strong as in other types of allergic eye disease, with a large 

proportion of VKC patients having no such history.  

In the majority of cases the disease shows seasonal variation with 

symptoms typically appearing in spring and lasting about six months.  Additional 

recurrences in winter are common.  In some cases the disease evolves over time 

into a more chronic, perennial form of inflammation with up to one quarter of VKC 

patients having a perennial form of the disease from the outset(Bonini et al., 

2000).  Although serious visual complications may occur, VKC is a less 

destructive disease than AKC and usually burns itself out by the early 

twenties(Leonardi and Secchi, 2003). 

 Symptoms are usually bilateral but may be asymmetrical and, like all 

allergic eye diseases, itching is a cardinal feature.  Photophobia is also prominent 

and patients may complain of tearing and a mucoid discharge.  Depending on the 

severity of corneal involvement, they may also complain of a foreign body 

sensation or pain.   

In contrast to AKC, the periorbital skin is usually unaffected.  The disease 

is further classified into tarsal, limbal or mixed VKC depending on the location of 

the conjunctival inflammatory signs.   

In tarsal disease the inflammation is predominantly in the superior tarsal 

conjunctiva although the bulbar conjunctiva may show non-specific signs such as 

injection or chemosis.  The superior tarsal conjunctiva develops a papillary 

reaction.  Papillae are typically large (>1mm) and diffuse giving a ―cobblestone‖ 

appearance.  These tarsal papillae tend to persist even when the disease is 

quiescent but become hyperaemic and oedematous during periods of disease 

activity.  The presence of a thick, mucoid, white secretion associated with these 

papillae is another indicator of disease activity.   

Sight-threatening complications occur less frequently in the cornea than in AKC.  

However, both non-specific and pathognomonic corneal signs are seen.  In a  



 91 

series of 195 patients with VKC, 9.7% developed corneal ulcers and 6% 

developed a permanent decrease in visual acuity(Bonini et al., 2000).  

Abnormalities of the central and superior cornea are most commonly seen in 

tarsal disease.  In its earliest form there may be only punctuate epithelial 

erosions.  These may, with time, coalesce to form larger erosions that may in turn 

evolve into the characteristic ―shield‖ ulcer of VKC.   

 

 

Figure 1.8 Vernal keratoconjunctivitis: Signs of disease activity 

Giant papillae are seen on the everted tarsal conjunctiva (A).  A macroerosion 
has formed on the subjacent superior cornea in the same eye (B).   
 

1.13.7.  Immunobiology of seasonal allergic conjunctivitis 

 

The most acute form of allergic eye disease— seasonal allergic 

conjunctivitis—involve a typical mast cell (IgE) mediated Type I hypersensitivity 

reaction. This reaction occurs in three phases: the sensitization phase, the early 

phase, and the late phase. The sensitization phase occurs on initial exposure of 

the ocular surface to aeroallergens. These allergens are phagocytosed by the 

antigen presenting cells (APCs) on the conjunctival mucosal epithelium. They are 

processed within the APCs and presented on the surface of these cells as a 

peptide fragment in association with the major histocompatibility complex (MHC) 

class II molecule. This allergen/MHC complex on the surface of APCs then 

interacts with naïve T-helper (Th) cells causing maturation of these naïve cells in 
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lymphoid tissue to Th2 cells resulting in the production of cytokines which interact 

with naïve B cells. This causes antibody class switching to occur in these B cells 

such that they start to produce immunoglobulin E (IgE)(McGill et al., 1998). This 

IgE binds to the high affinity receptor (FcRI) on the surface of mast cells and 

basophils.  

 

When this sensitized eye encounters the same allergen on a subsequent 

occasion, a Type I hypersensitivity response is triggered as allergen attaches 

itself to mast cell linked IgE antibodies, causing cross linking of these antibodies. 

This causes changes in the mast cell outer membrane making the mast cell more 

permeable to calcium ion with subsequent mobilization of intracellular calcium. 

When a critical mass of IgE antibodies become cross-linked, this increased 

permeability causes the mast cells to rupture and degranulate, releasing a variety 

of primary inflammatory mediators stored in their preformed granules. These 

include histamine, serotonin, eosinophil and neutrophil chemotactic 

factors(Leonardi et al., 2007). It is these mediators that are responsible for the 

symptoms of the early phase response, usually beginning within seconds of 

subsequent allergen exposure and lasting for up to 40 minutes after exposure. 

This released histamine binds to receptors on adjacent tissues to cause the 

classical symptoms of itching, swelling and oedema, and redness. Furthermore, 

the aggregation of the FcRI receptors triggers a complex biochemical 

intracellular cascade involving the metabolism of arachidonic acid from 

membrane phospholipids into various prostaglandins, thromboxanes and 

leukotrienes. These factors are the newly formed mast cell mediators, which 

contribute to the inflammatory reaction by the recruitment of additional 

inflammatory cells, leading to the late phase reaction. 

The late phase reaction begins between 4 to 12 hours after the release of the 

mast cell mediators(Choi and Bielory, 2008).  It peaks at about 24 hours and, in 

the absence of repeated antigen exposure, settles at about 72 hours(Choi and 

Bielory, 2008,Li et al., 1996). This response is characterized histologically by 
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infiltration of the conjunctiva by neutrophils, basophils, eosinophils ,lymphocytes 

and macrophages(Leonardi et al., 1992,Li et al., 1996,Bacon et al., 2000,Choi 

and Bielory, 2008)—these all serve to amplify the conjunctival mucosal 

inflammatory reaction.  

More chronic forms of allergic conjunctivitis are characterized by cellular 

infiltrates (T lymphocytes, macrophages) which are less typical of a clear-cut 

Type 1 hypersensitivity response and are more suggestive of a DTH 

response(Metz et al., 1996). 

 

 

1.13.8.  Pharmacotherapy of Allergic conjunvtivitis 

 

1.13.8.1.  Antihistamines 

 

Antihistamines work by binding to the histamine (H) receptors thus preventing the 

action of this powerful mediator. Although there are four known distinct histamine 

receptors, the phrase ‗anti-histamine‘ as used in the pharmacotherapy of allergic 

eye disease refers to antagonists of the H1 receptor.  Histamine, through its 

action on these receptors, plays a key role in allergic inflammation.  H1 receptor 

antagonists may be classified according to their chemical class (e.g. piperazines, 

piperadines etc.) but are more usefully categorised as either sedating- or non-

sedating antihistamines.  In general, older or ‗first-generation‘ H1 receptor 

antagonists such as chlorpheniramine or cyclizine are sedating while newer 

‗second-generation‘ agents are non-sedating.     

Second generation H1 receptor antagonists (non-sedating antihistamines) 

are used for the topical treatment of the benign forms of allergic conjunctivitis 

(SAC and PAC), and these include levocabastine, azelastine and emedastine. 

They all bind selectively to H1 receptors in the conjunctiva, have little or no effect 

on dopaminergic, adrenergic or sertotoninergic receptors and have been shown 
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to be effective at relieving symptoms of allergic conjunctivitis(Solomon et al., 

2001,Bielory et al., 2005).. 

 

1.13.8.2.  Mast Cell Stabilizers 

 

This group includes the compounds sodium cromoglygate, lodozamide, ketotifen, 

nedocromil sodium and the more recently introduced olopatadine. Mast cell 

stabilizers are effective in both mild and severe form of allergic eye disease and 

have the advantage of having very few side effects, either locally or systemically. 

However, for patients to receive long-term benefit from them such that expected 

exposure to allergen reduces the tryptase and inflammatory cells after allergen 

challenge, treatment is needed for many years(Solomon et al., 2001).  

Sodium cromoglygate is the prototypic mast cell secretion inhibitor—it is the 

oldest and most widely used agent of this family of drugs. However despite its 

extensive use, the mechanisms of its action remain elusive. Nedocromil sodium 

can prevent immune responses, such as mast cell degranulation, and this may 

be due to its ability to inhibit chloride ion flux in mast cells, epithelial cells and 

neurons. An alternative mechanism of this action may be by the inhibition of IgE 

production by B cells(Solomon et al., 2001) .  

 

1.13.8.3.  Dual-acting Agents 

 

Dual-acting agents are the newest generation of antiallergic agents and are 

named for their antihistamine effects and their inhibition of mediator release. 

They offer the advantage of rapid relief of symptoms, produced by immediate 

histamine receptor antagonism, coupled with the long-term disease modifying 

benefits of mast cell stabilization. The drugs in this category include olopatadine 

and ketotifen.  Olopatadine hydrochloride is a selective H1 receptor antagonist 

and inhibitor of mast cell degranulation, preventing the release of histamine and 

other mediators of the allergic immune response(Bielory, 2002). Studies have 
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shown it to be significantly more effective than placebo in relieving the itchiness 

and redness of ocular allergy for up to 8 hours(Abelson, 1998). It is an effective 

treatment for SAC and PAC and has the advantage of not only being well-

tolerated by the patient, but also only requiring twice-daily dosing.   

 

1.13.8.4. Corticosteroids 

 

Topical steroids preparations are the most effective therapy for use in moderate 

to severe forms of allergic eye disease.  However long-term use is associated 

with an increased risk of the development of cataracts and glaucoma and can 

potentiate ocular herpetic infections. In fact, topical steroids are responsible for 

the 2% incidence of glaucoma in VKC patients(Bonini et al., 2004). They work by 

inhibiting phospholipase A2, an enzyme essential in the synthesis of the 

prostaglandins. They are also able to inhibit the degranulation of mast cells and 

basophils, and histamine synthesis. In T cell dependent AKC and VKC, sodium 

cromoglycate has been used either prophylactically or as maintenance therapy to 

control mild symptoms only, but is ineffective in acute exacerbations. In acute 

exacerbations, even the newer class of mast cell stabilizers may not be enough 

and under these circumstances, steroids (dexamethasone) tends to be used in 

doses of up to one drop hourly especially if a keratopathy is present (McGill et al., 

1998). 

 

1.13.8.5.  Calcineurin Inhibitors 

 

The calcineurin inhibitors, cyclosporin A and tacrolimus, are used to induce 

systemic immunosuppression following organ transplantation.  The enzyme 

calcineurin plays an important role in T cell receptor signalling following antigen 

presentation.  Cyclosporin A and tacrolimus inactivate calcineurin, thereby 

inhibiting IL-2 production and T cell activation(Denton et al., 1999).  In addition, 

cyclosporine A inhibits histamine release from mast cells and basophils(Bonini et 
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al., 2004).  Systemic cyclosporine A has been shown to improve symptoms in 

severe AKC(Hoang-Xuan et al., 1997) but its use is associated with potentially 

life-threatening side effects, such as renal failure, which must be taken into 

account when considering its use in non life-threatening diseases.   

Topical preparations of cyclosporine A are used to try to reduce the requirement 

for topical steroid in severe allergic eye disease(Donnenfeld and Pflugfelder, 

2009).  Numerous studies over the past 20 years have shown topical 

cyclosporine to be effective at reducing symptoms and signs of steroid-

dependent AKC. Preparations used include a 2% ointment(Hingorani et al., 

1998) and a 0.05% drop(Akpek et al., 2004).  Topical cyclosporine has also bee 

effective in reducing symptoms of VKC (BenEzra et al., 1988,Secchi et al., 1990).  

Tacrolimus has been approved for topical use in atopic dermatitis.  It is available 

as an ointment in two strengths 0.1% and 0.03% and there are reports of its use 

in severe allergic eye disease(Attas-Fox et al., 2008,Joseph et al., 2005).  

 

 

1.13.9.  Allergic conjunctivitis and human penetrating keratoplasty 

 

Ocular inflammation is a recognised risk factor for corneal graft rejection.  The 

phrase ocular inflammation, however, covers a broad spectrum of disease 

severity ranging from blepharitis to autoimmune disease-induced corneal melting.  

Although the conjunctival inflammation during an attack may be quite severe, 

seasonal allergic conjunctivitis is generally considered to lie towards the milder 

end of the spectrum of ocular inflammation.   This is probably because it occurs 

relatively infrequently, lasts a relatively short time, is often self-limiting and has an 

excellent visual prognosis.  The effect of seasonal allergic conjunctivitis on 

human corneal graft survival is unknown.  Many patients with seasonal allergic 

conjunctivitis are atopic.  Systemic atopy has many effects on the immune 

system and the effects of these, in turn, on human corneal graft survival are also 

unclear.   SAC is often a co-morbidity for patients with keratoconus yet when 



 97 

graft survival is stratified according to the indication for transplantation, recipients 

with keratoconus have the best survival probability(Williams et al., 2008).  

 

Mahmood reported outcomes of a non-comparative series of corneal grafts in 

recipients with known histories of VKC and concluded that visual outcomes in 

these patients were good and post-operative complications were low(Mahmood 

and Wagoner, 2000). 

An additional problem in studying the effect(s) of allergic eye disease on human 

corneal transplantation is the fact that most surgeons increase the intensity and 

length of post-operative topical steroid treatment in patients with a history of 

severe allergic eye disease (especially VKC or AKC).    

This is borne out by the findings of Egrilmez et al who reported good outcomes in 

graft recipients with VKC but found an increase in post-operative complications 

such as premature suture loosening and steroid-related cataract(Egrilmez et al., 

2004).   On the other hand Wagoner compared outcomes after penetrating 

keratoplasty in patients with (n=80) and without (n=384) VKC and found no 

significant differences in either survival or post-operative complications.(Wagoner 

and Ba-Abbad, 2009). 

Investigators suggest a poor prognosis in graft recipients with AKC yet 

comparative data are hard to find(Easty et al., 1975,Ghoraishi et al., 1995).  

There are no human data available on the effect of seasonal allergic 

conjunctivitis on corneal transplant survival. 

 

Patients with allergic conjunctivitis suffer not only from the local effect of allergic 

inflammation but also have underlying genetic, structural and immunological 

tendencies towards atopy which may also, in theory, influence the immune 

response to transplanted tissue.   The finding that graft survival was no different 

in recipients with or without VKC suggests that the net effects of local 

conjunctival changes and systemic atopic tendency on the immune response to 

the graft were not significant.   These data are open to other interpretations.  It is 

possible that the local effects and systemic causes of VKC work in opposite 
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directions with one counterbalancing the other.  It is also possible that increased 

frequency/ length of topical steroid treatment in recipients with VKC masked a 

potential effect on graft survival. 

Kirkness looked at corneal transplant outcomes in patients with keratoconus and 

found no difference in survival in those with (28%) and without atopy(Kirkness et 

al., 1990).  These data seem to suggest that even the associated systemic atopy 

does not influence graft survival in allergic conjunctivitis.  On the other hand, 

Cursiefen has shown that graft survival is shorter in corneal graft recipients with 

atopic dermatitis(Nguyen et al., 2008) and that this effect appears to be 

independent of the history of allergic eye disease.  These data would support the 

hypothesis that accelerated corneal graft rejection in recipients with atopic 

disease is due to systemic features of atopy and their effects on the immune 

response.  This hypothesis is also supported by the experimental work of 

Niederkorn who reported accelerated corneal graft rejection in experimental 

animals with allergic airways disease(Niederkorn et al., 2009).  

 

It is difficult to study ―allergic eye disease‖ in humans as a risk factor for corneal 

graft rejection because this diagnosis includes at least 3 different diseases:  SAC, 

VKC, and AKC.  In addition, in each case the disease may be active or quiescent 

which gives, in theory, at least 6 different clinical scenarios.  An elective 

transplant would rarely or never be perfromed in an eye with active disease.  

Quiescence either occurs naturally or is pharmacologically induced prior to 

surgery.  Accordingly, data from human corneal transplantation are unlikely to be 

sufficient to differentiate the effects of active (in-season) allergic eye disease and 

quiescent disease.   

In summary, the problems with trying to study effects of allergic eye disease in 

humans include: 

 Difficulty in measuring the prevalence of allergic eye disease amongst 

transplant recipients especially those with less severe disease. 

 Surgeons‘ tendency to wait until quiescence of conjunctival inflammation 

has been induced (either pharmacologically or naturally) before operating. 



 99 

 Surgeons‘ tendency to prescribe extra topical steroid in graft recipients 

with allergic eye disease. 

 

An important and interesting phenomenon seen in atopic recipients of corneal 

grafts is that of atopic sclerokeratitis(Lyons et al., 1990).  This condition is 

characterised by severe post-operative scleral and corneal inflammation with 

―cheese-wiring‖ of the corneal sutures.  This condition, which becomes evident 

within 3 to 4 weeks of transplantation, usually requires systemic 

immunosuppression to maintain a healthy graft. 

 

1.14. AIMS 

 

My original aims were: 

 

 To investigate the effect of perioperative allergic conjunctivitis on corneal 

allograft survival and infiltrating cells during graft rejection 

 To characterize the phenotype of inflammatory cells in human aqueous 

during acute corneal allograft endothelial rejection in naïve and atopic 

recipients of corneal allografts. 

 

Early results from the experiments carried out to address these aims allowed 

generation of new hypotheses resulting in additional aims.  These included: 

 

 To investigate the effect of perioperative allergic conjunctivitis on 

chemokine expression during graft rejection 

 To measure chemokine and cytokine expression in human aqueous during 

corneal allograft rejection 

 To investigate the effect of perioperative allergic conjunctivitis on early 

post-keratoplasty corneal inflammation and lymphangiogenesis 

 

 



 100 

2. CHAPTER 2: General descriptions of the methods 
used in these experiments including some discussion 
on optimisation of techniques 
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2.1. Introduction 

 

This chapter contains detailed descriptions of the individual techniques used in 

my experiments.  These include descriptions of how the techniques were 

optimized.  Description of methodology in later chapters concentrates mostly on 

experimental design and the reader is referred to this chapter for detailed 

description of the individual techniques. 

 

2.2. CORNEAL TRANSPLANTATION   

 

2.2.1. General considerations 

 

The mouse model of corneal transplantation has been in use by several groups 

over the past two decades(Sonoda and Streilein, 1992,Ardjomand et al., 2003,He 

and Niederkorn, 1996).  The advantages of a mouse model over other larger 

animals are: 

 Mice are less expensive to buy and keep than larger animals. 

 A wide range of reagents are available for analyzing murine tissue and 

cells. 

 Many inbred strains of mice are available which allow control of 

histocompatibility in transplants. 

 Many mice with specific genes ―knocked-out‖ are available allowing study 

of the specific role of certain proteins in transplantation. 

The disadvantages of the mouse model are: 

 The procedure is technically difficult 

 The diagnosis of rejection is based on the loss of graft clarity and is 

subjective. 
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2.2.2. Albino Host: Animals 

 

Female 6-8 week old A/J strain mice (H-2k; Harlan UK, Bicester, UK) were used 

in the allergic conjunctivitis induction protocol and subsequently as corneal 

allograft recipients.  Adult female C57BL/6 strain (H-2b; Harlan UK, Bicester, UK), 

which provide a full MHC mismatch and multiple minor mismatches, were used 

as donors. 

Albino mice have 2 important advantages over pigmented mice as recipients in 

the mouse model of corneal transplantation: 

1. The visible pattern of iris vessels allows easier grading of corneal clarity (see 

figures 2.1 & 2.2) 

2. In my hands, the surgery is technically easier and results are better in albino 

than pigmented recipients 

  

2.2.3. Albino Host: Surgical technique 

 

To dilate the pupil, graft recipients received an intraperitoneal injection of 50μl of 

atropine sulphate (10mg/ml) and cyclopentolate 1% and phenylephrine 2.5% 

eyedrops 15 minutes prior to surgery.  Donor mice were sacrificed and their eyes 

enucleated and placed in a Petri-dish containing sterile PBS.  The eye was held 

underwater using a micro notched forceps (Duckworth and Kent, Baldock,UK) 

and the epithelium and superficial stroma of the cornea was scored concentric 

with the limbus using a 2.5mm corneal trephine (Geuder, Heidelberg, Germany).  

Fixation of the donor eye under water was made easier by taping a thin strip of 

Styrofoam (approximately 4mm thick) to the base of the Petri-dish.  Removal of a 

disc of Styrofoam using the 2.5mm trephine provided a ―divot‖ into which the eye 

could sit, allowing easier manipulation.  Using a 21G needle the anterior chamber 

was entered at a point along the score on the cornea.  Using this entry site as a 

starting point, the donor corneal button was excised along the score using curved 

microscissors.  This procedure was performed while keeping the donor cornea 
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under PBS at all times.  The donor cornea button remained in PBS while the 

recipient bed was prepared.   

 

Recipient mice were anaesthetized with intraperitoneal injection of fentanyl 

fluanisone and midazolam.  The anaesthetic solution was drawn up containing 1 

part Midazolam (2 mg/ml), 1 part Hypnorm and 2 parts water for injection. The 

resulting mixture contained 0.5 mg/ml midazolam, 2.5 mg/ml fluanisone and 

0.079 mg/ml fentanyl citrate and was administered as a single intraperitoneal 

injection of 0.15ml (or 10ml/kg body weight approximately).  Once anaesthetized, 

the mouse was positioned lying on its side with its head resting on a small block 

of Styrofoam so that the eye receiving the graft faced directly upwards.  With the 

mouse in this position a drop of sterile PBS placed on the mouse eye would 

remain sitting over the eye creating a ―bubble‖ through which the rest of the 

operation was performed.  This ―bubble‖ technique prevents drying of the 

recipient lens following removal of the recipient cornea and prevents cataract 

formation.  This technique also maintains the submersion of donor endothelium in 

PBS while the graft is being sutured in place and has a protective effect on the 

endothelium. 

 

The recipient epithelium and superficial stroma of the cornea was scored 

concentric with the limbus using a 2.0mm corneal trephine (Geuder, Heidelberg, 

Germany).  Using a 21G needle the anterior chamber was entered at a point 

along the score on the cornea.  Using this entry site as a starting point, the 

recipient corneal button was excised along the score using curved microscissors.  

The donor button was next transferred from the Petri dish into the ―bubble‖ of 

PBS overlying the recipient eye.  11-0 nylon suture on a 3.8mm 3/8 circle taper 

point needle was used to suture the graft to the host cornea.  To secure the graft 

a first suture was tied with a releasable knot.  This suture was not cut but used to 

secure the graft as a continuous suture with typically 10 bites (Figure 2.1).  Once 

the final bite was taken the original knot was released and the ends tied securely.  

It was not possible to bury the knot in the thin mouse cornea.  
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At the end of the procedure chloramphenicol ointment was applied and a 

blephorraphy was performed using 7-0 vicryl suture (Ethicon).  This was opened 

after 48 hours and, at this stage, eyes with infection, haemorrhage, cataract, 

significant anterior synechiae or iris prolapse through the wound were excluded.  

Thereafter, the eyes were examined three times weekly under brief inhalational 

isoflurane anaesthesia and the graft graded as described below.  Corneal 

sutures were removed at 7 days.  Mice were placed in an anaesthetic chamber.  

The isoflurane vaporiser was set at 2% with an oxygen flow rate of 2L/min.  Once 

the mice lost their righting reflex they were removed from the chamber and a 

drop of proxymetacaine was placed on the cornea before removal of sutures.   

 

 

 

 

 

2.2.4. Albino Host: Grading system 

 

The following corneal opacity grading system was used.  This system has 

previously been described and used in experimental studies of corneal 

transplantation. 

0: Completely transparent cornea 

1; Minimal corneal opacity, but iris vessels easily visible 

2: Moderate corneal opacity, iris vessels still visible 

3: Moderate corneal opacity, only pupil margin is visible 

4: Complete corneal opacity, pupil not visible 

Corneal graft rejection was diagnosed when the corneal clarity score increased to 

3 in a graft which was previously transparent following surgery (Figure 2.2).  
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Figure 2.1  A mouse corneal transplant at 1 week post-surgery with suture 
in situ 

The pupil is central and circular indicating an absence of wound synechiae. 

 

 

 

 

Figure 2.2  Diagnosis of corneal transplant rejection in albino mice 

A. A transparent graft.  The graft and pupil margins are indicated by large and 
small arrows respectively. Iris vessels are easily seen through the transplant 
(grade 0).  B. A rejected graft. Iris vessels are no longer discernible through the 
graft although the pupil margin (small arrow) can be identified (grade 3).  
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2.2.5. In vivo measurement of corneal thickness  

 

Measurements of central graft thickness were taken using the Corneogage 

pachymeter  (Sonogage, Cleveland, Ohio) in the donor cornea prior to excision 

and again immediately post-transplantation.  Further measurements were taken 

under brief inhalational anaesthesia on post-operative day 2 and on alternate 

days thereafter.  Mice were placed in an anaesthetic chamber.  The isoflurane 

vaporiser was set at 2% with an oxygen flow rate of 2L/min.  Once the mice lost 

their righting reflex they were removed from the chamber and a drop of 

proxymetacaine was placed on the cornea.  The Corneogage pachymeter probe 

was placed on the centre of the graft in a gentle dabbing motion until a reading 

was recorded.    For each measurement three readings were recorded and the 

average calculated.  Repeat measurements were taken by the same examiner or 

by a second examiner to assess intra-observer and inter-observer variability 

respectively. 

 

2.2.6. Pigmented host: Animals 

 

As mentioned, albino animals are preferrable as graft recipients.  However, 

pigmented mice must be used as recipients in certain circumstances.  For 

instance, mice with a specific gene knockout of interest may only be available on 

a pigmented background. 

Female 6-8 week old C57BL/6 strain (H-2b; Harlan UK, Bicester, UK) were used 

as corneal allograft recipients.  Adult female Balb/c strain (H-2d; Harlan UK, 

Bicester, UK), which provide a full MHC mismatch and multiple minor 

mismatches, were used as donors.  
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2.2.7. Pigmented Host: Surgical technique 

 

Once proficiency was gained in transplanting to albino mice, grafts were 

attempted in pigmented recipients.  As before, isografts were performed to 

differentiate surgical failure from rejection.  Interestingly when using the same 

technique as used in albino recipients (with 90% success) the success rate was 

0%.  Grafts in pigmented recipients became opaque in the early days after 

transplantation and failed to clear.  Significant anterior synechiae were usually 

present (Figure 2.3).  The reason(s) for this are not clear.  Certainly the iris in 

pigmented animals appeared during surgery and on histology of normal eyes 

(Figure 2.4) to be a thicker and more substantial structure than that in albinos.   

The increased thickness of the pigmented iris may have contributed to synechiae 

formation by bringing the anterior surface of the iris closer to the corneal 

endothelium.  (Mice have relatively shallow anterior chambers due to the 

relatively large crystalline lens).  It is also possible that the melanocytes in 

pigmented irides contribute somehow to increase the ―stickiness‖ of the iris.  

Whatever the cause for the anterior synechiae it was felt that these may be 

causing the surgical graft failure, so the surgical technique was modified as 

follows to try to prevent or at least minimise synechiae formation: 

 

A smaller diameter 2.0mm donor button was sutured into a 1.5 mm recipient 

corneal bed with a continuous 11-0 nylon suture (instead of a 2.5mm button into 

a 2mm bed).  At the end of the procedure a tarsorraphy was performed.  This 

was opened after 24 hours and a drop of pilocarpine 1% was instilled.  

Thereafter, the eyes were examined three times weekly under brief inhalational 

isoflurane anaesthesia and the graft graded. Corneal sutures were removed at 7 

days post-transplantation.   
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Figure 2.3  Anterior chamber drainage angle in eyes post- transplantation 

 

Panel A shows part of a cross section of an A/J (albino) recipient eye which has 
received a corneal allograft.  The anterior chamber drainage angle between the 
iris (black arrow) and the corneal endothelium (white arrow) is open with no 
synechia between the iris and the wound.  Panel B shows part of a cross section 
of a C57BL/6(pigmented) recipient eye which has received a corneal allograft.  
The anterior chamber drainage angle between the iris (black arrow) and the 
corneal endothelium (white arrow) is closed due to synechia between the iris and 
the wound.  
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Figure 2.4  The iris in normal mouse eyes 

 

Panel A shows part of a cross-section of a normal A/J (albino) eye stained with 
haematoxylin and eosin.  The arrow indicates the iris which is relatively thin.  
Panel B shows part of a cross-section of a normal C57BL/6 (pigmented) eye 
stained with haematoxylin and eosin.  The arrow indicates the iris which is 
relatively thick.   
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2.2.8. Pigmented Host: Grading system 

 

1. Completely transparent cornea 

2. Moderate corneal opacity, only pupil margin is visible 

3. Complete corneal opacity, pupil not visible 

 

The grading system in albino mice makes use of the clear visibility of iris 

vasculature by transillumination to allow subtle grading of corneal clarity.  Iris 

detail is much less visible in pigmented mice and so the grading system in 

pigmented mice was modified accordingly. When grafting to pigmented recipients 

some investigators use this 1-3 grading system(Niederkorn et al., 2006b) whilst 

others persist with the more detailed scoring system used in albino mice. 

Corneal graft rejection was diagnosed when the corneal clarity score increased to 

3 in a graft which was previously transparent following surgery (see Figure 2.5).  
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Figure 2.5  Diagnosis of corneal transplant rejection in pigmented mice 

 

A. A transparent graft. Pupil and iris detail visible (grade 1).  B. A rejected graft. 
Pupil no longer visible (grade 3).  
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2.2.9. Surgical success rate 

 

When learning to perform orthotopic corneal grafts in albino mice, isografts were 

performed first so as to eliminate immune rejection as a cause of graft failure.  

i.e. failure of an isograft was due only to suboptimal surgical technique.   Even in 

isografts initial surgical success rates were low, mostly due to cataract formation.   

With practice and due attention to surgical technique the success rate improved 

to 90% (Figure 2.6) and syngeneic grafts were found to become transparent at 

variable timepoints up to day 6.   

Once surgical success rates were at 90% in albino mice transplantation was 

attempted in pigmented mice.  Even using the modified technique, surgical 

success rates in pigmented eyes remained low and never improved above 40%. 

(Figure 2.6 
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Figure 2.6  Success rate of corneal transplantation in mice 

 
The bars represent the percentage surgical success rate within each group of 10 
mice. For example in albino mice the success rate for grafts 1 to 10 was 0% and 
the success rate for grafts 11 to 20 was 20%. 
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2.3. EXPERIMENTAL ALLERGIC CONJUNCTIVITIS   

 

Mice were sensitized to the allergen short ragweed pollen (SRW) over a 15 day 

period(Nakamura et al., 2003).  This sensitization period is required for the 

generation of systemic Th2 responses and subsequent challenge with topical 

SRW results in severe allergic conjunctivitis.  Mice were sensitized by 

intraperitoneal (i.p.) injection of short ragweed (SRW; Greer Laboratories, Inc, 

Lenoir, NC, USA) pollen 200 µg with 2 mg aluminium hydroxide as an adjuvant 

(Alum; Sigma. St. Louis, MO, USA) suspended in 0.4 ml phosphate-buffered 

saline (PBS; Invitrogen, Paisley, UK) on days 0, 7, and 14.   When making the 

suspension for intraperitoneal injection, typically enough was made for 25 

injections.                          

200µg x 25 = 5000µg = 5mg SRW 

2mg x 25 = 50 mg Alum 

400µl x 25 = 10000µl = 10ml PBS  

 

The jar of short ragweed pollen was removed from the -20oC refrigerator, its lid 

unscrewed slightly, and placed in a vacuum chamber with silica gel for 2 hours to 

prevent hydration while it heated to room temperature.  SRW and Alum was 

measured by comparing volume with a given volume of PBS.  Previous 

experiments by laboratory colleagues had established that : 

The volume of 1mg SRW = 4µl,    5mg SRW = 20µl 

The volume of 1mg Alum = 5µl,     50mg Alum= 250µl 

The mixture was prepared in the fume hood with the air circulation turned off to 

prevent dispersion of the allergen.   The base of the hood was covered in 

aluminium foil and paper towels soaked in 70% ethanol to absorb any spillage of 

allergen.  Aliquots of 5mg SRW and 50mg Alum were made up as follows: 

250µl of PBS was pipetted into an Eppendorf tube.  With a spatula, an equal 

volume of Alum was carefully measured in to other sterile Eppendorf tubes.   

20µl of PBS was pipetted into an Eppendorf tube.  With a spatula, an equal 

volume of SRW was carefully measured in to other sterile Eppendorf tubes.   The 
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tubes were then closed, wiped with 70% ethanol, sealed with laboratory film and 

stored at -20oC until needed.   

 

To make the suspension for 25 injections 8 ml of sterile PBS was pipetted into a 

sterile 10ml tube.  1ml of sterile PBS was added to an Eppendorf containing an 

aliquot of 50mg of Alum.  This was mixed and transferred to the 8ml of sterile 

PBS in the 10 ml tube.  1ml of sterile PBS was added to an Eppendorf containing 

an aliquot of 5mg of SRW.  This was mixed and transferred to the 10 ml tube.  

The suspension was vortexed for 30 minutes.  For each injection 400µl of 

suspension was drawn into a 1 ml syringe.  The mouse was held is such a way 

that the abdomen was exposed and the skin of the abdomen was reasonably 

taut.  The suspension was injected intraperitoneally using a 25G needle.   

 

The sensitization period also involved treatment with eyedrops (SRW pollen 500 

µg with 25 µg Alum suspended in 5 µl PBS) to both eyes on days 8 and 15.  

 When making the suspension for eyedrops for sensitisation, typically enough 

was made for 100 eyedrops.                   

500µg x 100 = 50000µg = 50mg SRW 

25µg x 100 = 2500µg= 2.5mg Alum 

5µl x 100= 500µl = 0.5ml PBS  

Aliquots of 50mg SRW and 2.5mg Alum were made up in sterile Eppendorf tubes 

using the same method described above.  To make the suspension 0.5ml sterile 

PBS was added to the tube containing the 2.5mg of Alum.  This was mixed and 

transferred to the tube containing the 50mg SRW.  The suspension was vortexed 

for 30 minutes.   

 

To administer the eyedrops the mouse was held in one hand and 5µl of 

suspension was dropped onto the eye.  The eyelids were then gently 

manipulated using a cotton bud to facilitate movement of the allergen into the 

conjunctival fornices. 
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The experimental challenge of 500 µg of SRW in 5 µl PBS was administered 

topically on day 27,.Eyedrops for challenge were made up in a similar way to 

those for sensitization the only difference being that no alum was added.  

Using this protocol, allergic conjunctivitis was induced as evidenced by infiltration 

of the conjunctiva by large numbers of eosinophils at 48 hours post-challenge 

(Figure 2.7). 
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Figure 2.7  Allergic conjunctivitis in an A/J mouse 

This figure shows part of a cross-section through the eyeball, conjunctiva and lid 
of an A/J mouse at 48 hours post-challenge with SRW.  The section has 
undergone immunoperoxidase staining for Major Basic Protein (Eosinophils) and 
has been counterstained with Methyl Green (picture courtesy of Dr Masaharu 
Ohbayashi) 
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2.4. IMMUNOPEROXIDASE IMMUNOHISTOCHEMISTRY   

 

2.4.1. Removal and embedding of mouse eyes 

 

Once the desired timepoint/ endpoint was reached, mice were killed by CO2 

inhalation in a closed chamber and either the whole eye was enucleated or the 

eye was exenterated along with the conjunctiva and lids.  To enucleate the eye, it 

was proptosed manually and a curved forceps was placed behind the globe.  The 

retro bulbar tissues were gripped firmly and the eye enucleated, usually along 

with the optic nerve a pad of orbital fat and part of the conjunctiva.  

Enucleated eyes were embedded in optimal cutting temperature compound (OCT 

compound; Sakura Finetek Europe BV, Zoeterwoude, The Netherlands) and 

oriented within the OCT compound so that the visual axis was parallel with the 

aluminium plate (Figure 2.8).   The aluminium plate was then placed on a 

liquid nitrogen-cooled duralumin plate until the OCT compound had completely 

frozen.  Specimens were stored at -70oC.   

 

 

 

 

 

 



 118 

 

Figure 2.8  Embedding of the enucleated eye in OCT compound 

An aluminium ring was placed on an aluminium plate.  This creates a shallow 
cylindrical ―mold‖ which is filled with OCT compound.  The enucleated mouse eye 
is placed in the OCT compound and orientated so that the visual axis is parallel 
with the plate.  Sectioning of the frozen cylinder provided an appropriate cross-
sections of the cornea/ graft for analysis. 
 

 

To exenterate the eye a stab was made with a sharp scissors through the 

cranium approximately 2 mm caudal to the lateral canthus. The scissors was 

then used to cut through the lids and periorbital bone in a pentagon shape as 

illustrated in Figure 2.9.  
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Figure 2.9  Exenteration of the mouse eye 

This figure courtesy of Dr Masaharu Ohbayashi 
 

The lids, conjunctiva and eyeball are exenterated in such a way that the nasal 

side has one straight edge (yellow), and the temporal side has 2 edges (blue) 

that intersect to form an angle (Figure 2.9).  The resultant pentagon-shaped 

tissue allows easy orientation of the conjunctiva when cutting. 

Following exenteration great care was taken to remove all bone from the 

specimen as this would have impaired the quality of frozen-sections.   The 

specimen was embedded in OCT compound as illustrated in Figure 2.8 and 

frozen on a liquid nitrogen-cooled duralinium plate.  Using this technique it was 

possible to preserve the normal morphology/ architecture of the conjunctiva and 

eyelids during sectioning (Figure 2.10). 
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Figure 2.10  Histology of mouse eyelid and conjunctiva 
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2.4.2. Cutting and staining of sections 

 

8µm thickness cryostat sections were cut and allowed to dry in air for 1 hour and 

circled with a ―DAKO‖ pen (Dako, Ely,UK).   Sections were fixed in a mixture of 

30% methanol and 70% acetone (VWR International, Lutterworth, UK) at 4oC for 

5 minutes and then washes in PBS three times for 5 minutes each time.  

Sections were then incubated with 200µl 5% skimmed milk in a moist chamber at 

room temperature for 30 minutes to block non-specific protein-binding sites.  

During incubation primary antibody was prepared by diluting it appropriately in 

1% Bovine Serum Albumin (BSA; Sigma-Aldrich, Poole, United Kingdom) in PBS 

(100ml PBS + 1g BSA + 0.01g sodium azide [Sigma-Aldrich, Poole, United 

Kingdom]).   

 

The following primary rat anti-mouse antibodies were used: 

 

Clone Target Cellular distribution/ 
function 

Isotype Dilution Company 

RM4-5 Mouse CD4 Found on T helper and 
Regulatory T cells.  It is a 
co-receptor for the T cell 
receptor with specificity 
for MHC class II.  

IgG2A 1:100 BD (Oxford, UK) 

YTS105.18 Mouse CD8 Found on T cytotoxic 
cells.  It is a co-receptor 
for the T cell receptor with 
specificity for MHC class 
I. 

IgG2A 1:100 Serotec 

(Kidlington, UK) 

CI:A3-1 Mouse 

F4/80 

Found on the surface of 
mouse  macrophages of 
myeloid origin. 

IgG2b 1:300 Serotec 

 Mouse 

MBP 

Found in granules of 
eosinophils.  It induces 
histamine release and is 
directly toxic to helminths 
and mammalian cells  

IgG1 1:400 Dr. Lee       

(Mayo Clinic)
* 

Isotype control  IgG2A 1:100 Serotec 

Isotype control  IgG2b 1:100 Serotec 

Isotype control  IgG1 1:400 Serotec 

Table 2.1  Antibodies used in peroxidase immunohistochemistry 

* This antibody was kindly provided as a gift by Dr. Lee 
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The following parameters were optimised by practicing staining on positive 

control specimens (mouse spleen) and failed corneal allografts (Figure 2.6):   

 Dilution of primary antibody (1:50 – 1:400) 

 Length of incubation of primary antibody (1hour v overnight) 

 Temperature of incubation of primary antibody (room temperature v 4oC) 

Blocking solution was shaken off and 200µl of primary antibody were added and 

incubated overnight at 4 oC in a moist chamber.  Sections were then washed 

three times in PBS and placed in a solution of 145 ml methanol and 5 ml 30% 

hydrogen peroxide (VWR International, Lutterworth, UK ) (1%H202 in 100% 

methanol) for 20 minutes at room temperature to quench endogenous 

peroxidase acivity.  Sections were washed 3 times in PBS and then incubated 

with 200µl universal immunoperoxidase polymer for mouse tissue sections 

(Histofine® Simple Stain Mouse Max PO; Nichirei Biosciences, Tokyo, Japan) for 

1 hour in a moist chamber at room temperature.  Sections were then washed 3 

times in PBS.  8 tablets of Tris buffer (Sigma, Poole, UK) were dissolved in 120 

ml of distilled water.  20mg of diaminobenzidine (VWR International Ltd, 

Lutterworth, UK) was added to this solution and mixed for 10 minutes.  200µl of 

H202 was added to the solution.  Slides were placed in the dH20/Tris/DAB/H202 

solution for approximately 2 minutes.  Strength of the reaction was gauged by 

observing a positive control slide under the microscope for a few seconds.  After 

approximately 2 minutes the DAB reaction was stopped by washing slides in PBS 

and then in distilled water.   Sections were counterstained by dipping in 

haematoxylin (Fluka BioChemica, Buchs, Switzerland) and washing in distilled 

water until clear.  4 containers of ethanol (VWR International Ltd, Lutterworth, 

UK) for differentiation were prepared: 70% (30 ml dH2O + 70 ml Ethanol); 95% ( 

5ml dH2O + 95 ml Ethanol); 100% ; 100%.  Slides were dipped in each solution 

10 times and left submerged in the final container for 2-5 minutes.  Slides were 

dipped 10 times in each of 3 xylene (VWR International Ltd, Lutterworth, UK) 

solutions and left in the last container for 2-5 minutes.  Slides were mounted with 

glass covers and DPX mounting medium (VWR International Ltd, Lutterworth, 

UK). 
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Figure 2.11  Peroxidase immunohistochemistry of corneal allografts 

      

Concentrations of anti-CD4, anti-CD8 and anti-F4/80 antibodies were optimised 
using mouse spleen as a positive control and using failed corneal allografts.   A 
concentration of 1:400 for the anti-MBP antibody was recommended by a 
colleague who had experience using this antibody on mouse conjunctiva.  On 
examining rejected corneal allografts in allergic graft recipients it became 
apparent that this concentration was suitable for corneal staining also. 
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2.5. FLUORESCENT IMMUNOHISTOCHEMISTRY   

 

2.5.1. Introduction 

 

8µm thickness cryostat sections were cut and allowed to dry in air for 1 hour and 

circled with a ―DAKO‖ pen.   Sections were fixed in a mixture of 30% methanol 

and 70% acetone at 4oC for 5 minutes and then washes in PBS three times for 5 

minutes each time.   Sections were stained first with a green fluorochrome, either 

by direct or indirect immunohistochemistry and then with PE-conjugated anti-

CD11b.  

 

 

2.5.2. Direct staining with FITC-labelled antibody 

 

For direct staining sections were blocked with a 1:100 solution (diluted in 1% 

BSA in PBS) of 5µg/ml anti mouse CD16/CD32 ( ―Fc blocker‖; BD, Oxford, UK) at 

room temperature for 30 minutes in a moist chamber to block endogenous Fc 

binding.  During incubation primary antibody was prepared by diluting it 

appropriately in 1% BSA in PBS.  The primary antibody which was fluorescence-

labelled was spun down before use (10,000 rpm for 10 minutes at 4 oC).  

Antibodies used for direct fluorescent staining were: 

 

Clone Target Isotype Fluorochrome Conc Company 

CI:A3-1 F4/80 IgG2b FITC 1:100 Serotec 

Isotype control IgG2b FITC 1:100 BD 

Table 2.2  Antibodies used for direct staining in fluorescent 
immunohistochemistry 
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Blocking solution was shaken off and 200µl of primary antibody were added and 

incubated for 2 hours at room temperature in the dark in a moist chamber.  

Sections were then washed three times in PBS, this and all subsequent steps 

being performed in darkness (using aluminium foil to protect from light where 

necessary).   

 

2.5.3. Indirect staining with Alexa Fluor 488 -labelled antibody 

 

For indirect staining sections were blocked first with 5% skimmed milk for 30 

minutes at room temperature in a moist chamber and then with 10% normal 

donkey serum (Stratech Scientific, Newmarket, UK) in PBS for 30 minutes at 

room temperature in a moist chamber.  During incubation primary antibody was 

prepared by diluting it appropriately in 1% BSA in PBS.  Antibodies used for 

indirect fluorescent staining were: 

 

Clone Target Cellular distribution/ 

Function 

Isotype Dilution Company 

223322 LYVE-1 A cell surface hyaluronan 
receptor found on lymphatic 
endothelial cells.  

IgG2a 1:400 R&D systems 

(Abingdon, UK) 

NIMP-R14 Gr-1 This antigen is found on the 
cell surface of a variety of 
myeloid-derived cells.  Often 
used as a marker of 
neutrophils it is seen on 
monocytes during 
differentaition and also found 
on myeloid suppressor cells. 

IgG2b 1:400 AbCam 

 (Cambridge, UK) 

Isotype control  IgG2a 1:400 Serotec 

Isotype control  IgG2b 1:400 Serotec 

Table 2.3  Antibodies used for indirect staining in fluorescent 
immunohistochemistry 

 

Blocking solution was shaken off and 200µl of primary antibody were added and 

incubated for 2 hours at room temperature in a moist chamber.  Sections were 

then washed three times in PBS.  Secondary (fluorescence-labelled) antibody 
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was prepared by diluting it appropriately in 1% BSA in PBS and spinning it down 

before use.  Secondary antibody used was Alexa 488-conjugated Donkey anti-

Rat IgG (MolecularProbes, Invitrogen, Paisley, UK; clone A-21208) used at 

dilution of 1:1000.  200µl of secondary antibody were added and incubated for 1 

hour at room temperature in the dark in a moist chamber.  Sections were then 

washed three times in PBS, this and all subsequent steps being performed in 

darkness (using aluminium foil to protect from light where necessary).   

2.5.4. Direct staining with PE-labelled anti-CD11b 

 

Primary antibody was prepared by diluting it appropriately in 1% BSA in PBS and 

spinning down before use (10,000 rpm for 10 minutes at 4 oC).  Antibody used for 

direct fluorescent staining was: 

Rat anti Mouse CD11b-PE (BD) (Control PE- Rat IgG2b)    

  

Clone Target Isotype Fluorochrome Conc Company 

M1/70 CD11b IgG2b PE 1:100 BD 

Isotype control IgG2b PE 1:100 BD 

Table 2.4  Antibodies used for direct staining in fluorescent 
immunohistochemistry 

 

200µl of primary antibody were added and incubated for 1 hour at room 

temperature in the dark in a moist chamber.  Slides were washed in distilled 

water and mounted with glass cover slips and fluorescence gel mounting 

medium.   

Cellular staining with PE-conjugated anti-CD11b under these conditions worked 

well but had one major disadvantage in that the fluorescence faded extremely 

quickly during imaging which meant the sections could be imaged only once. 

 

Staining results of fluorescent immunohistochemistry using the methods 

described here are shown in Figure 2.12. 
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Blocking First Colour Second Colour 

F

c 

Sk 

Milk 

nd

s  

1
o
 x  

 

inc 2
o
 x incubatio

n 

Anti- x incubatio

n 

 + + LYVE 

1 

40

0 

2 hours @ 

RT 

Alexa 488 1000 1 hour @ 

RT 

CD11b 10

0 

1 hour @ 

RT 

+   F4-80 10

0 

2 hours @ 

RT 

- - - CD11b 10

0 

1 hour @ 

RT 

 + + Gr1 40

0 

2 hours @ 

RT 

Alexa 488 1000 1 hour @ 

RT 

CD11b 10

0 

1 hour @ 

RT 

Table 2.5  Summary of the protocol for fluorescent immunohistochemistry 

 
Fc= anti-CD16/anti-CD32 antibody (―Fc blocker‖) 
NDS= Normal Donkey serum 
RT= Room Temperature 
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Figure 2.12  Fluorescent immunohistochemistry of mouse host cornea 2 
days after corneal transplantation 

Cells infiltrating the host cornea were imaged on a Zeiss LSM510 confocal 
microscope (x400 magnification).  Cells stain positively for CD11b (A), Gr-1 (B) 
and F4/80 (C) but are not stained by the corresponding isotype control antibodies 
(E-G).  Anti-LYVE-1 antibody stained structures at the limbus (D) but these did 
not stain with the isotype control antibody (H).  White scalebar = 50μm 
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2.6. CORNEAL WHOLEMOUNT  

 

Cross-sections of mouse corneal grafts were used to stain and count cells 

entering the host cornea following corneal transplantation.  To study the ingrowth 

of new lymphatic vessels following transplantation I considered using cross-

sections from the same eyes as were used to study cellular infiltrates.  Lymphatic 

vessels in these sections can be stained with antibody against LYVE-1, a marker 

for lymphatic endothelium (Figure 2.13).  An advantage of this method would be 

that fewer animals would be needed as sections from the same specimen eyes 

as were used for analysis of cellular infiltration could be used but this method 

would have several disadvantages.  Firstly, on cross section lymphatics are 

measurable in one dimension only.  Secondly, a section may ―hit‖ or ―miss‖ the 

lymphatic vessels which grow in an approximate radial fashion and so may not 

accurately reflect the extent of lymphatic ingrowth. 

After consideration, the final decision was to repeat the experiment and perform 

wholemount staining of the corneas with LYVE-1 as i) this would give a more 

comprehensive measure of corneal lymphangiogenesis and ii) this was the 

method used by other investigators.   

Whole eyes were excised at days 2 and 6 post-transplantation.  The sclera was 

punctured and eyes were fixed in acetone for 1 hour at room temperature.  The 

cornea was excised at the limbus and any remaining conjunctiva was removed.  

With a blade, four slits were made in the peripheral cornea at 90o to each other to 

give the cornea a cruciform shape and facilitate flat-mounting.  Corneas were 

washed in PBS 6 times for 5 minutes each time.  They were blocked with 2% 

BSA in PBS for 1 hour at room temperature and with 10% normal donkey serum 

for 1 hour at room temperature. During incubation primary antibody was prepared 

by diluting it appropriately in 1% BSA in PBS.  Antibody used for indirect 

fluorescent staining was: 

 

Anti-LYVE-1 (R&D)  CLONE:  223322    dilution 1:1000 
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Corneas were incubated overnight at room temperature in a six-well plate 

containing primary antibody.  After 6 washes in PBS they were incubated for 1 

hour at room temperature in darkness with Alexa488-conjugated donkey anti-rat 

antibody followed by washing and mounting with fluorescence mounting gel 

medium and glass covers.   

Wholemounts were imaged by fluorescent microscopy (Olympus).   An image of 

each quadrant was captured with original magnification of x100.    Radial 

ingrowth of LYVE-1+ vessels from the limbus was measured in each quadrant by 

a masked observer using image analysis software (Soft Imaging System GnbH, 

Munster, Germany).  First the system was calibrated by photographing a 1mm 

scale at the same magnification (x100).  Using a freehand drawing tool on the 

software a line was traced manually over each lymphatic vessel and its branches.   

The software automatically calculates the length of each line and these values 

were recorded and the combined total length of lymphatic vessels in each 

quadrant was calculated.  The totals for each quadrant were added to give a 

measure of lymphatic ingrowth for each cornea.  At least 4 corneas were 

analysed per group per timepoint.  Mean values were calculated. 
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Figure 2.13  LYVE-1 expression in cornea after transplantation 

 

There is relatively little expression of LYVE-1, a marker for lymphatic 
endothelium, in normal mouse cornea.  This is demonstrated in panels A and B 
which show a details of a frozen section (original magnification x100) and a 
corneal wholmount (original magnification x100) respectively.  In panel B there is 
extensive LYVE-1 expression on vessels in the conjunctiva and the limbus (L) 
and there are relatively few LYVE-1 vessels extending into the peripheral cornea.  
6 days after corneal allotransplantation subepithelial linear ingrowth of LYVE-1+ 
structures is seen both on frozen section (C) and corneal wholemount (D).  
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2.7. FLOW CYTOMETRY  

 

2.7.1. General considerations 

 

Flow cytometry is a technique used to study characteristics of particles 

suspended in a liquid.  In biology the particles most often analysed are cells and 

the specific cells of most interest to immunologists are leukocytes.  Cell types 

may be distinguished on the basis of physical charactersistics such as size 

(measured by forward scatter [FSC]) or granularity (measured by side scatter 

[SSC]).  Fluorochrome-conjugated antibodies may be used to measure the 

expression of specific cell surface (or intracellular) proteins on cells.  The outputs 

of such analsyses are typically histograms which describe the expression of a 

single protein/antigen and scatter plots which correlate the expression of two 

proteins/antigens. 

 

2.7.2. Preparation of peripheral blood for flow cytometry 

 

First, using peripheral blood from a normal volunteer, staining conditions and flow 

cytometry parameters were optimised for the antibodies listed in Table 2.3.  This 

section describes the technique used to stain cells with these antibodies.  The 

rationale for my choice of antibodies to use for the analysis is explained in the 

introduction to Chapter 5.  
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Clone CD Isotype Fluorochrome Activity Company 

SK3 CD4 IgG1 FITC Helper T 

Cell 

BD 

SK1 CD8 IgG1 PE Cytotoxic T 

Cell 

BD 

mØP9 CD14 IgG2b APC Monocyte/ 

Macrophage 

BD 

2D1 CD45 IgG1 PerCP Pan-

leukocyte 

BD 

Isotype control IgG1 FITC Isotype 

control 

BD 

Isotype control IgG1 PE Isotype 

control 

BD 

Isotype control IgG2b APC Isotype 

control 

eBioscience( 

Hatfield, UK) 

Isotype control IgG1 PerCP Isotype 

control 

BD 

Table 2.6  Antibodies used in flow cytometry of blood and aqueous 

 

Two 100µl samples of anticoagulated whole peripheral blood were transferred to 

EDTA-coated microtubes.  One tube was stained with 5µl each of fluorochrome-

labelled anti-CD45, anti-CD4, anti-CD8 and anti-CD14 monoclonal antibodies 

(Table 2; all antibodies from BD except the APC-conjugated IgG2b isotype control 

(eBioscience SanDiego, USA)).  The other was stained with fluorochrome-

labelled isotype-matched control antibodies.  Cells were incubated with 

antibodies for 40 minutes in darkness at room temperature. 

Then each sample was mixed with 1 ml of lysis buffer (BD), allowed to stand for 

10 minutes at room temperature and then centrifuged at 300g for 5 minutes at 

4°C. The cell-free supernatant was then discarded and the cells washed once 

with PBS, resuspended in PBS and analysed immediately by 4-colour flow 

cytometry.   
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2.7.3. Acquisition of data 

 

Events were acquired using a Partec flow cytometry machine (Partec, Munster, 

Germany).  The flow cytometry settings were optimised by repeating flow 

cytometry on peripheral blood from a healthy volunteer.  Once optimised this 

technique and was used to analyse peripheral blood from patients with and 

without corneal allograft endothelial rejection in the experiments described in 

Chapter 6.  Typically 6000 events were recorded and the typical settings used on 

the flow cytometer when acquiring data for peripheral blood were:  
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partec PAS

Region Gate Count Count/ml %Gated Mean-x CV-x% Mean-y CV-y%
Q1 G1 1       -    0.03 0.39    0.00 1.95    0.00
Q2 G1 129     -    3.81 10.35   29.82 2.27    77.79
Q3 G1 51      -    1.50 0.34    10.17 0.26    37.34
Q4 G1 3208    -    94.66 3.10    157.84 0.29    39.09
QA1 G1 0       -    0.00 -    -    -    -    
QA2 G1 212     -    6.26 18.88   35.09 64.35   64.25
QA3 G1 62      -    1.83 0.35    11.81 0.29    39.64
QA4 G1 3115    -    91.92 2.33    110.68 0.31    33.61
QB1 G1 0       -    0.00 -    -    -    -    
QB2 G1 289     -    8.53 4.63    76.73 7.24    56.17
QB3 G1 44      -    1.30 0.33    9.19 0.34    41.35
QB4 G1 3056    -    90.17 3.25    157.70 0.46    34.90
R1 G1 3389    -    100.00 12.24   31.11 35.35   44.45
RN1 G1 3389    -    100.00 3.33    150.25 -    -    

Speed: 5.0
Enable Parameter Gain Log L-L U-L Comp. FSC SSC FL1 FL2 FL3 FL4 IC LogBias: ON

FSC - 141.5 log3 50.0 999.9 -- - - - - - -
SSC - 135.5 log3 10.0 999.9 - -- - - - - -
FL1 - 420.0 log4 10.0 999.9 - - -- 7.5 - - 0.1
FL2 - 429.0 log4 10.0 999.9 - - 7.0 -- - - 0.1
FL3 - 472.0 log4 10.0 999.9 - - - - -- - -
FL4 - 396.0 log4 10.0 999.9 - - - - 2.5 -- 0.1

 

Table 2.7  Typical flow cytometry parameters for acquisition of data from 
peripheral blood 

 

2.7.4. Analysis of data 

 

Data were analysed using Flowmax analysis software (Partec).  In the first 

instance events were analysed using a scatter plot of forward scatter(FSC) v side 

scatter (SSC)  and histograms displaying fluorescent activity collected in 

fluorescence 1 (FL1, green channel), fluorescence 2 (FL2, orange-red channel), 

fluorescence 3 (FL3, red channel) and fluorescence 4 (FL4, deep red channel) 

respectively.   

Distinct clusters of events could be seen on the scatter plots of peripheral blood 

(Figure 2.14; A-C).  The settings on the flow cytometer were adjusted so that the 

histogram peaks in FL1, 2, 3 and 4 for unstained blood lay at the left of the plot 

(Figure 2.14; A).  Exposure of the blood to PerCP-linked anti-CD45 increased the 

fluorescence of the sample in FL3 and moved the histogram peak to the right 
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(Figure 2.14; C) showing that these cells were CD45+.  A ―twin peak‖ of CD45 

staining was typically seen reflecting the fact that lymphoytes express more 

CD45 than granulocytes.   Exposure of the blood to isotype controls had no effect 

on the position of the histogram peak (Figure 2.14; B).   
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Figure 2.14  Staining with PerCP-labelled anti-CD45 of peripheral blood 
from a normal volunteer 

Distinct clusters of events could be seen on the scatter plots of peripheral blood 
(A-C).  The settings on the flow cytometer were adjusted so that the histogram 
peak for unstained blood lay at the left of the plot (A).  Exposure of the blood to 
PerCP-linked anti-CD45 increased the fluorescence of the sample and moved 
the histogram peak to the right (C) showing that these cells were CD45+.  
Exposure of the blood to isotype controls had no effect on the position of the 
histogram peak (B).   
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When analysing events in flow cytometry a specific subset of events is often of 

particular interest and the way in which these events are isolated is known as 

―gating‖.  For my analyses I was interested in white blood cells only.   The 

physical characterstics of individual leukocyte sub-populations on the FSC/SSC 

plot have been well-described(Calvelli et al., 1993)  and investigators typically 

use this plot to isolate or ―gate‖ the cells of particular interest.   

 

To ensure that only leukocytes were analysed a gate could be drawn manually 

around the leukocyte clusters on the FSC/SSC plot.  An alternative strategy 

would be to use staining with the CD45 (pan-leukocyte) antibody to define which 

events were leukocytes.  Gating on the CD45+ events confirmed that these 

events were the same as those within the known leukocyte clusters on the 

scatter plot (Figure 2.15 A&B).  Therefore either technique could be used to gate 

on leukocytes.  For experiments I decided to use a gate drawn manually around 

the leukocyte cluster as defined by their physical properties on the FSC/SSC 

scatter plot (Figure 2.15 C) as this is the strategy used by most investigators.  

 

The results for staining with antibodies against CD4, CD8 and CD14 are shown 

in Figure 2.16.  A second (smaller) peak was seen to the right of the main peaks 

in FL1, 2 and 4 respectively.  This shows that a certain proportion of the events in 

the sample were positive for CD4 (Figure 2.16; A), CD8 (Figure 2.16; B) and 

CD14 (Figure 2.16; C) respectively.  No second peak was seen in analyses of 

samples exposed to isotype-matched controls.  (Figure 2.16; D,E,F). 
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Figure 2.15  Gating on leukocytes in peripheral blood 

A region gate (RN1) was selected on the histogram depicting CD45 staining of 
peripheral blood cells to select CD45+ events (B).  On the scatter plot events that 
fall within this gate are shown in red while other events are black (A).  Red (i.e. 
CD45+) events correspond with the known leukocyte clusters on the scatter plot 
(C).   
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Figure 2.16  Optimising anti-CD4, anti-CD8 and anti-CD14 antibodies 

 
A proportion of the CD45+ events were also positive for CD4 (A), CD8 (B) and 
CD14 (C) respectively as evidenced by second peak on each histogram.  No 
second peak was seen on histograms of peripheral blood stained with isotype 
controls (D-F). 
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2.8. CYTOMETRIC BEAD ARRAY   

 

2.8.1. Aqueous and blood samples 

 

Cytometric bead array sets (Becton Dickinson) were used to detect the following 

proteins: 

 

Cytokines Chemokines 

IL-2 

IL-4 

IL-6 

TNF-α 

IFN-γ 

MCP-1 

RANTES 

MIP-1α 

Eotaxin 

IP-10 

Table 2.8  Proteins measured by cytometric bead array 

  

2.8.2. Preparation of CBA Human Soluble Protein Flex Set Standards 

 

A lyophilized standard sphere for each set was placed in a 10 ml tube.  The 

standards were reconstituted with 4 ml of Assay Diluent from the Master Buffer 

kit (BD) and allowed to equilibrate for 15 minutes at room temperature.  10ml 

tubes were labeled and arranged in the following order: 1:2, 1:4, 1:8, 1:16, 1:32, 

1:64, 1:128 and 1:256.  500 µL of Assay Diluent was pipetted to each tube.  A 

dilution was performed by transferring 500 µL from the Top Standard to 

the 1:2 dilution tube and mixing thoroughly . Serial dilutions were continued by 

transferring 500 µL from the 1:2 tube to the 1:4 tube and so on to the 

1:256 tube and mixing thoroughly.  One tube containing 500 µL of Assay Diluent 

alone was prepared to serve as the 0 pg/mL negative control. 

 

The approximate concentration (pg/mL) of each BD™ CBA Human Soluble 

Protein Flex Set Standard in each dilution tube is shown in Table 2.9. 
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Table 2.9  Cytometric Bead array human soluble protein flex set standard 
concentrations after dilution 

This table was taken from the Becton Dickinson cytometric bead array human 
soluble protein master buffer kit instruction manual. 
 

 

 

2.8.3. Preparation of CBA Capture Beads 

 

 

Samples Number of tests 

Standard dilutions 10 

Aqueous (rejection) 11 

Aqueous (control) 8 

Serum (rejection) 11 

Serum (control) 8 

Total 48 

Table 2.10  Number of tests in cytometric bead array 

 

Enough capture beads were prepared for 55 tests.   Capture beads are supplied 

in a concentrated form so that 1.0 µL = 1 test.  Each capture bead stock vial was 

vortexed to resuspend the beads.   

Total volume of concentrated beads required for 55 tests = 10x55x1 µL= 550 µL 

Total volume of diluted beads required for 55 tests = 55 x 50 = 2750 µL 

Volume of capture bead diluent requried for 55 tests = 2200 µL 
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55 µL of each capture bead was added to an Eppendorf tube.  0.5 ml of wash 

buffer was added and the tube centrifuged at 200 g x 5 minutes.  The 

supernatant was carefully aspirated and discarded.  The beads were 

resuspended in Capture bead diluent, transferred to a 10 ml tube and further 

diluted with Capture bead diluent to a final volume of 2750 µL. 

 

2.8.4. Preparation of PE Detection Reagents 

 

PE Detection Reagents were prepared for 55 tests.   PE Detection Reagents are 

supplied in a concentrated form so that 1.0 µL = 1 test.   Care was taken to 

protect the PE Detection Reagents from exposure to direct light at all times.  

Total volume of concentrated PE Detection Reagents required for 55 tests = 

10x55x1 µL= 550 µL 

Total volume of diluted PE Detection Reagents required for 55 tests = 55 x 50 = 

2750 µL 

Volume of PE Detection Reagent diluent requried for 55 tests = 2200 µL 

2200 mL of PE Detection Reagent diluent was pipetted to a 10 mL tube wrapped 

in aluminium foil.  55 µL of each PE Detection Reagent was added to the tube 

which was stored at 4oC until use.   

 

2.8.5. BD CBA Human Soluble Protein Flex Set Assay Procedure 

 

48 Eppendorf tubes were prepared for assay.  The mixed capture beads were 

vortexed for 5 seconds and 50 µL added to each assay tube.  50 µL of standard 

dilutions were added to the first 10 tubes.  50 µL of the 38 samples to be tested 

were added to the other tubes.  The assay tubes were mixed gently and 

incubated for 1 hour at RT.  50 µL of the Mixed PE Detection Reagent were then 

added to each assay tube.  Assay tubes were mixed gently and incubated for 2 

hours at RT. 
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After incubation 1 mL of Wash Buffer was added to each tube and tubes were 

centrifuged at 200 x g for 5 minutes at RT.  The supernatants were then carefully 

aspirated and discarded.  300 µL of Wash Buffer was added to each assay tube 

and tubes were vortexed briefly to resuspend the beads. 

 

2.8.6. Acquisition and analysis 

 

Assay tubes were analysed immediately by two-colour flow cytometry (FACScan; 

BD).  Analysis was performed using CBA software (Cellquest, FCAPArray; BD) 

which creates standard curves using data from the serial dilutions of known 

concentrations of recombinant human cytokines and chemokines (Figure 2.17) 

and uses these curves to convert fluorescence units of individual samples to 

cytokine and chemokine concentrations (pg/ml). 
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Figure 2.17  Standard curves constructed using data from the serial 
dilutions of known concentrations of recombinant human cytokines and 
chemokines 
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2.9. RNA EXTRACTION 

 

2.9.1. General considerations 

 

Earlier experiments by laboratory colleagues indicated that at least 20µg of RNA 

would be necessary for a ribonuclease protection assay.  To achieve this it had 

been found that at least 3 whole eyes would be required per sample. 

 

2.9.2. Extraction of RNA 

 

Whole eyes were removed at day 12 post keratoplasty.  3 eyes were 

homogenised in 1 ml Trizol (Invitrogen, Paisley, UK) in an Eppendorf tube with a 

power homogeniser.  200µl of chloroform was added to the trizol/ homogenised 

tissue solution.  The tube was capped and shaken vigorously by hand for 15 

seconds.  The tube was incubated at room temperature for 3 minutes.  The tube 

was centrifuged at 10000 rpm for 15 minutes at 4oC.  The aqueous phase was 

transferred into a new tube. 

500µl of isopropyl alcohol was added to the aqueous phase.  The tube was 

incubated at room temperature for 10 minutes.  The tube was centrifuged at 

10000 rpm for 10 minutes at 4oC.  The supernatant was removed with great care 

taken to avoid inadvertently removing the tiny pellet of RNA.  1ml of 75% EtOH 

was added to the pellet and the tube shaken by vortex vigorously.  The tube was 

centrifuged at 8000rpm for 10 minutes at 4oC.  The supernatant was removed. 

The RNA pellet was air-dryed for 10 minutes and then dissolved in 50µl of 

RNAse-free water. 

 

 

 

 



 146 

2.9.3. Measuring Optical Density (A 260nm) 

 

99µl of RNAse-free water was put in each of 4 new eppendorf tubes.  1µl of RNA 

solution from the sample was put in these tubes (100x dilution).  50µl of dilute 

sample was placed in the spectrophotometer tube and the ultraviolet absorbance 

was measured at 260nm.  The concentration of RNA calculated using the 

knowledge that an RNA concentration of 40µg/ml has an absorbance of 1. 

 

2.9.4. Assessment of RNA degradation 

 

RNA integrity was tested by running small aliquots of RNA sample on a 1.5% 

agarose gel to detect 18S and 28S bands.  5M sodium hydroxide was prepared 

by dissolving 20g NaOH in 100ml of autoclaved deionised water.  20X 3-N-

morpholine-propane-sulphonic acid (MOPS) was prepared by adding 83.7g 

MOPS, 3.72g EDTA and 13.61g Sodium acetate to 200ml autoclaved distilled 

water.  The pH was adjusted to 7.0 using 5M NaOH and the volume was made 

up to 1L with autoclaved triple-distilled water sterile filtered using a 0.2µm filter. 

1X MOPS gel running buffer was prepared by adding 1g of Agarose to a conical 

flask and adding 85ml of autoclaved distilled water.  The flask was heated in a 

microwave until the agarose had dissolved and then allowed to cool.  5ml of 20X 

MOPS buffer was added to the flask followed by 5.5ml of formaldehyde (38% 

stock) and 5µl of Ethidium Bromide. The agarose was poured into a mould whilst 

still hot and allowed to set for 1 hour.  A sample buffer was prepared in an 

eppendorf tube containing: 10µl of Formamide, 3.5µl of formaldehyde (38% 

stock) and 1µl of 20X MOPS buffer.  5µg of RNA sample in RNAse-free water 

was added to the buffer and the total volume made up to 20µl using RNAse-free 

water.  The sample was heated at 55oC for 15 minutes.  It was then placed on ice 

immediately for 2 minutes.  The agarose tank was assembled and 1X MOPS gel 

running buffer was added.  2µl of loading dye solution was added to the sample 

in the eppendorf tube.  20µl of the sample was loaded onto the gel and run at 

32V for 90 minutes.  RNA samples were stored at -80oC.  
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2.10. RIBONUCLEASE PROTECTION ASSAY   

 

2.10.1. Technique of Ribonuclease Protection Assay (RPA) 

 

RPA is a laboratory technique used in biochemistry and genetics to identify 

individual RNA molecules in a heterogeneous RNA sample extracted from cells. 

The technique can identify one or more RNA molecules of known sequence even 

at low total concentration. The extracted RNA is first mixed with antisense RNA 

or DNA probes that are complementary to the sequence or sequences of interest 

and the complementary strands are hybridized to form double-stranded RNA (or 

a DNA-RNA hybrid). The mixture is then exposed to ribonucleases that 

specifically cleave only single-stranded RNA but have no activity against double-

stranded RNA. When the reaction runs to completion, susceptible RNA regions 

are degraded to very short oligomers or to individual nucleotides; the surviving 

RNA fragments are those that were complementary to the added antisense 

strand and thus contained the sequence of interest.  The protected double-

stranded RNA fragments and a small sample of the original probe are then 

separated on a denaturing polyacrylamide gel, causing the dsRNA to dissociate 

into single strands.  After electrophoresis, the gel is dried, and radioactive signals 

are measured.  The intensity of the radioactive signal generated is directly 

proportional to the amount of specific target mRNA in the original total RNA 

sample.  Specific bands can be identified for each chemokine on the basis of the 

migration patterns of the undigested probes.  In kits where multiple chemokines 

are tested, at least one of the plasmids will contain a sequence for the ―house-

keeping‖ gene glyceraldehydes-3-phosphate dehydrogenase (GADPH).  GADPH 

is expressed in tissues at a constant level, regardless of the activation status of 

the cells and, therefore, is used as a control for intersample variation in RNA 

loading. 

Our samples (20μg RNA in each sample) were sent on dry ice to the laboratory 

of Dr Dai Miyazaki at Tottori University in Japan where the RPA was performed.  

http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Genetics
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Concentration
http://en.wikipedia.org/wiki/Antisense
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Hybridisation_%28molecular_biology%29
http://en.wikipedia.org/wiki/Ribonuclease
http://en.wikipedia.org/wiki/Oligomer
http://en.wikipedia.org/wiki/Nucleotide
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The mCK-5c (BD Pharmingen) kit was used for testing for RNA expression of the 

following mouse chemokines: 

Lymphotactin, RANTES, MIP-1β, MIP-1α, MIP-2, IP-10, MCP-1, TCA-3, Eotaxin 

Using this kit 20μg of RNA was hybridised overnight at 56oC with 300pg of        

(α-32P) uridine-triphosphate-labeled antisense riboprobes.  Nuclease-protected 

RNA fragments were resolved on sequencing gels and subjected to 

autoradiography. 

 

 

Figure 2.18  Manufacturer’s example of a Ribonuclease Protection Assay 
using the mCK-5c kit 

This figure was taken from the BD Pharmingen mCK-5c instruction guide.  On the 
basis of the undigested probes‘ migration patterns (seen on left), specific bands 
are identified for each chemokine  
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2.10.2. Analysis of results of RPA 

 

Protected bands can be observed after exposure of the gel to x-ray film.  Specific 

bands are identified by comparing their indivivual migration patterns to those of 

undigested probes (Figure 2.18).  The bands were quantitated by densitometric 

analysis (ImageJ, National Institute of Health, Bethesda, USA)(, 2009).  Each 

lane on the gel contained several bands each of which represented RNA of a 

chemokine gene (Figures 2.18 and 2.19; A).  Using a digital photograph of the 

gel and a gel analysis tool on the ImageJ software, a 2-dimensional plot of the 

density of each band was constructed (Figure 2.19;C). 

 

 

 

 

 

Figure 2.19  Analysis of RPA results using ImageJ 

 

A digital image of the sequencing gel containing chemokine bands is opened in 
ImageJ (A).  The lane of interest is marked using a rectangular box (B; box in 
yellow).  The gel analysis tool on ImageJ then creates a 2-dimensional plot of the 
density of each band (C).  The area under each peak may be calculated. 
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Each peak on the plot represents a band and the density of the band was 

calculated by dropping vertical line from each trough and measuring the area 

under each peak.  The areas for each chemokine and GADPH were measured 

and the chemokine/GADPH ratio was calculated.  This ratio, expressed in 

arbitrary units, reflects the relative abundance of the target mRNA compared with 

the GAPDH mRNA in each sample. These ratios were then used to determine 

whether differences in target mRNA expression exist between samples. 

This technique has been used by many investigators to quantify the expression 

of RNA in ocular tissues(Yamagami et al., 1999,Ohta et al., 2000).   

 

 

 

 

 

 

 

 

 

2.11. STATISTICS  

 

2.11.1. Actuarial graft survival data 

 

Median graft survival time (MST) was calculated for each group and Kaplan-

Meier survival curves were constructed(Kaplan EL and Meier P, 1958).  Survival 

was compared using the log-rank test.   

 

2.11.2. Agreement 

 

Bland-Altman plots were constructed to assess systematic bias in corneal 

thickness measurements by ultrasound pachymetry(Bland and Altman, 1986).  
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Pearson‘s product-moment correlation coefficient was calculated to measure 

correlation 

 

2.11.3. Parametric data 

 

The unpaired Student‘s T test was used to compare mean values between 

groups. 

 

2.11.4. Non-parametric data 

 

The Mann-Whitney-U test was used to compare median values between groups. 

 

 

 

For each statistical test values of p < 0.05 were defined as statistically significant. 
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3. CHAPTER 3:  Effect of allergic conjunctivitis on the 
immune response to allogeneic donor cornea: 
Survival, immunohistochemistry and chemokine 
expression 
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3.1. INTRODUCTION   

 

Over 100 years after the first human corneal allograft, many of the factors which 

are likely to lead to graft failure have been identified.  Unfortunately, the 

prognosis for survival in these ―high-risk‖ grafts has improved little in that time.  

Corneal vascularisation, previous graft failure and glaucoma are all associated 

with an accelerated rate of graft failure, most commonly due to immune-mediated 

rejection.  Ipsilateral ocular inflammation has also been identified as a predictor 

of graft failure(Coster and Williams, 2005).  Furthermore, the timing of this 

inflammation appears to be important with perioperative inflammation having the 

worst prognosis.   

The aim of this study was to investigate the effect of a specific type of 

perioperative ocular inflammation- allergic conjunctivitis- on corneal allograft 

rejection.  Allergic conjunctivitis is important in the context of corneal 

transplantation for 2 reasons.  Firstly, it is the most prevalent form of ocular 

inflammation in general.  It may actually be over-represented in corneal 

transplant patients given the association between allergic eye disease and 

keratoconus (Gasset et al., 1978,Harrison et al., 1989,Weed et al., 2008), the 

commonest indication for corneal transplantation(Cursiefen et al., 1998,Legeais 

et al., 2001).  Secondly, atopy is associated with a skewing of the T helper cell 

immune responses towards Th2 (Metz et al., 1997,Romagnani, 2000).  

Alterations in Th1/Th2 bias may influence the immune response to an allograft.   

Convergent studies have identified the CD4 cell (Th) as the key effector cell in 

corneal allograft rejection (Yamada et al., 1999a,Haskova et al., 2000).  Activated 

Th cells secrete cytokines which in turn activate and recruit effector cells.  Th 

cells may be classified as Th1 (IL-2, IFN-γ) or Th2 (IL-4, IL-5, IL-10) depending 

on the profile of their cytokine secretion.  Traditionally allograft rejection has been 

thought to be a Th1-mediated process(Dallman, 1995).  This is largely true of 

unmodified experimental corneal allotransplantation (i.e. where neither the donor 

nor recipient has undergone any specific preparation, treatment or genetic 

deletion) (Torres et al., 1996,King et al., 2000).  However Th2 and Th1 cells 
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cross-regulate each other and it has been hypothesized that by enhancing the 

Th2 response, the Th1 response would be attenuated and graft tolerance 

achieved (Chen and Field, 1995).  Experimental strategies to deviate the immune 

response towards Th2 in cardiac allografts have had mixed results in terms of 

allograft survival (Takeuchi et al., 1992,Piccotti et al., 1996,Braun et al., 2000).  

However one concept has become clear:  a Th2-dominant response to 

alloantigen is capable of graft destruction, possibly via novel effector 

mechanisms such as eosinophilic infiltration (Chan et al., 1995). 

Prior sensitisation to allergen has been shown to induce an increased Th2 

response to alloantigen and, as in other types of allograft, the effect of this on 

corneal allograft survival have been mixed.  In a model of high risk corneal 

transplantation to a vascularised recipient bed, Th2-bias was reported to extend  

graft survival (Yamada et al., 1999b).  However in a model of normal risk 

transplantation, in which there is no clinical feature in the recipient or recipient 

eye conferring high rejection risk, accelerated corneal allograft rejection was 

found in the setting of allergic conjunctivitis and this was attributed to the Th2-

bias induced by systemic sensitisation with allergen (Beauregard et al., 2005). 

This chapter examines the effect of perioperative allergic ocular inflammation on 

allograft survival and on the composition of the inflammatory infiltrate during 

rejection. 
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3.2. THE EFFECT OF ALLERGIC CONJUNCTIVITIS ON GRAFT SURVIVAL 
AND GRAFT-INFILTRATING CELL PHENOTYPE  

 

3.2.1. Research questions  

 

 What is the effect of perioperative allergic conjunctivitis on mouse corneal 

allograft survival? 

 Is any observed effect due to systemic or local influences of the allergic 

conjunctivitis induction protocol? 

 Is any observed effect due to alloantigen-independent inflammation? 

 What is the effect of perioperative allergic conjunctivitis on graft-infiltrating 

cells during rejection? 

3.2.2. Experimental methods and design 

 

The techniques of induction of allergic conjunctivitis and corneal transplantation 

were used in this experiment.  These techniques have been described in detail in 

chapter 2.  The protocol for induction of allergic conjunctivitis has been described 

in detail in chapter 2 and is summarised here in Figure 3.1.  The experimental 

design for this experiment was as described in Figure 3.2.  The primary 

comparison was between naïve recipients of corneal allografts and recipients 

with perioperative allergic conjunctivitis i.e. recipients that had been sensitised to 

and challenged with shortragweed pollen at the time of transplantation.  These 

animals were designated Sens+ Chall+.  To control for the possible individual 

confounding effects of systemic sensitisation to shortragweed pollen and local 

challenge with short ragweed pollen, some animals were sensitised but received 

no challenge at the time of transplantation (Sens+ Chall-).  Others were not 

sensitized but received a challenge with short ragweed pollen at transplantation 

(Sens- Chall+).  

Eyes were enucleated at rejection and peroxidase immunohistochemical staining 

was performed as described in chapter 2 using antibodies to the following 

antigens: 
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CD4, CD8, F4/80, MBP 

Chapter 2 contains a detailed description of these antibodies and optimised 

concentrations and conditions for their use in immunohistochemistry. 

Digital images of corneal sections were captured using an Olympus digital light 

microscopy system.  Positive-staining cells in the central cornea and the ciliary 

body were counted.  Because rejected corneal allografts demonstrate variable 

thickness due to oedema, it was not appropriate to count the number of cells per 

unit area.  Instead, the number of positive cells throughout the full thickness of a 

x100 field of the central stroma of each section was counted.   Cells were 

counted in 3 sections per rejected graft.   At least 5 grafts were examined in each 

group.   The mean number of cells in the grafts was calculated. 

Sections of the ciliary body were imaged by light microscopy and their cross-

sectional areas measured using image analysis software (Soft Imaging System 

GnbH, Munster, Germany).  The number of positive-staining cells in each ciliary 

body section was counted using high magnification and expressed as cells / 0.1 

mm2.  Cells were counted in 3 sections per eye.   At least 5 eyes were examined 

in each group.  The mean number of cells in each ciliary body was calculated.    

 

 

Figure 3.1  Protocol for induction of allergic conjunctivitis in mice 
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Figure 3.2  Experimental design part 1 
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3.2.3. Results 

3.2.3.1. Survival of corneal allografts 

 

Baseline survival of C57BL/6 allografts in naïve A/J mice was first established.  

By 60 days 73% of these naïve A/J mice rejected their allografts with a median 

survival time (MST) of 36 days.  Allografts were then performed in A/J mice that 

had been sensitised to SRW pollen.  Immediately following transplantation, these 

sensitised mice were challenged with SRW eyedrops in the transplant recipient 

eye, to induce allergic conjunctivitis.  These sensitised & challenged (Sens+ 

Chall+) A/J mice rejected 100% of their allografts with a significantly lower MST of 

16 days (p<0.001).  Next corneal allografts were performed in sensitised mice 

which were then mock-challenged with PBS in the graft recipient eye.  These 

mice, which were sensitised but not challenged (Sens+ Chall-), rejected their 

grafts in similar tempo to naïve mice, with 71% of grafts rejected with MST 32 

days (Figure 3.3). This was significantly slower than the rate of rejection in Sens+ 

Chall+ mice. (p=0.001).  Mice that were not sensitised but were challenged at the 

time of transplantation rejected 100% of grafts at an MST of 31 days.   Median 

survival times of corneal grafts in each group are shown in Table 3.1.  P values 

for pairwise comparison of graft survival between groups using the Log Rank test 

are shown in Table 3.2. 

These data suggest that the presence of perioperative allergic conjunctivitis 

significantly decreases the time to subsequent allograft failure and that this effect 

due more to local conjunctival inflammation than to any systemic effects of the 

allergic conjunctivitis induction protocol. 
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3.2.3.2. Survival of corneal isografts 

 

To establish whether the failure of grafts in allergic mice was primarily due to a 

specific response against alloantigens or non-specific allergic inflammation, 

syngeneic corneal grafts were performed in sensitised A/J mice which were then 

challenged with SRW eyedrops in the graft eye to induce allergic conjunctivitis.   

100% of these syngeneic grafts survived for 60 days.   This indicates that the 

accelerated graft failure seen in recipients with allergic conjunctivitis is due to 

alloantigen-dependent inflammation i.e immune rejection. 

 

 

 

 

Donor Recipient Median Survival Time 

(days) 

C57BL6 A/J (Naïve) 36  

C57BL6 A/J (Sens+Chall+) 16 

C57BL6 A/J (Sens+ Chall-) 32 

C57BL6 A/J (Sens- Chall+) 31 

A/J A/J (Sens+Chall+) >60 

Table 3.1  Median survival times of corneal grafts in each group 
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Figure 3.3  Actuarial corneal transplant survival 

Allografts in Sens+ Chall+ eyes (red curve) (n=12; MST = 16 days) were rejected 
at a significantly faster tempo than either those in naïve eyes (black curve) (n=11; 
MST=36days), those in Sens+ Chall- eyes (grey curve) (n=14; MST=32) or those 
in Sens- Chall+ eyes (green curve) (n=6; MST=31 days). Isografts in sensitised 
and challenged eyes (blue line) (n=4) survived beyond 60 days.   
 

 

 

 

 Naive Sens+ Chall+ Sens+ Chall- Sens- Chall+ 

Naive  <0.001 0.941 0.218 

Sens+ Chall+ <0.001  0.001 0.006 

Sens+ Chall- 0.941 0.001  0.283 

Sens- Chall+ 0.218 0.006 0.283  

Table 3.2  P values for pairwise comparison of graft survival between 
groups using the Log Rank test. 
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3.2.3.3. Immunohistochemistry of rejected allografts 

 

The phenotypes of graft-infiltrating cells were characterised using 

immunohistochemistry and comparisons made between rejected grafts in naïve, 

Sens+ Chall+ and Sens+ Chall- mice.  There were no significant differences 

between in the numbers of CD4+, CD8+ and F4/80+ cells infiltrating the grafts at 

the time of rejection in all groups (Fig 3.4). Within each group, there were no 

significant differences in numbers of graft-infiltrating CD4+, CD8+ and F4/80+ 

cells.  

MBP+ cells were found consistently in rejected grafts in Sens+ Chall+ mice but 

were seldom found in rejected grafts in naïve mice or Sens+ Chall- mice (Figure 

3.5).  Despite the significant association (p = 0.01) between the presence of 

perioperative allergic conjunctivitis and the presence of an eosinophilic infiltrate 

at the time of graft rejection , the number of graft-infiltrating eosinophils in Sens+ 

Chall+ eyes  was significantly lower than those of CD4+ cells, CD8+ cells or 

macrophages (Figure 3.4 ).   

MBP+ cells were also seen consistently in the uveal tract of Sens+ Chall+ eyes at 

the time of rejection (p=0.003).  They were not found in rejected grafts in Sens+ 

Chall- eyes and were seldom seen in naïve eyes (Figure 3.6).  

At the time of rejection eosinophils were seen in the conjunctiva of Sens+ Chall+ 

eyes but were not seen in Sens+ Chall- or naïve eyes (Figure 3.7).   

No infiltrating cells were seen in the sclera of corneal graft recipients.  In 

particular no eosinophils were seen in the sclera during rejection in Sens+ Chall+ 

recipients indicating that this model does not provide model of allograft-induced 

atopic sclerokeratitis (Figure 3.7; D). 
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3.2.3.4. Immunohistochemistry of isografts 

 

Eosinophils were also seen, at 60 days, in the conjunctiva of Sens+ Chall+ eyes 

that had received isografts (Fig. 3.7).   However no eosinophils were seen in the 

isografts in Sens+ Chall+ eyes at 60 days nor were they seen in the ciliary body of 

these eyes.  An additional group of isografts was performed in Sens+ Chall+ eyes 

and these eyes were removed for immunohistochemistry on post-operative day 

20.  In this group also eosinophils were found in the conjunctiva but none were 

seen infiltrating the graft or ciliary body indicating that eosinophils in the 

graft/ciliary body during allograft rejection are unlikely to represent part of the 

wound-healing, innate inflammatory respone.  

 

 

 

Figure 3.4  Immunohistochemistry of rejected corneal grafts 

The number of cells in a x100 field staining for CD4, CD8, MBP (eosinophils) and 
F4/80 (macrophages) were counted and the mean +/- SE are shown.  CD4+ cells, 
CD8+ cells and macrophages were seen consistently in all allograft groups.  
Eosinophils were seen predominantly in allografts in eyes that had perioperative 
allergic conjunctivitis but not in isografts.  * p< 0.01 
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Figure 3.5  Immunohistochemical staining in rejected corneal grafts 

Photomicrographs of corneal sections from rejected grafts stained by peroxidase 
immunohistochemistry and imaged at an original magnification of x200. 
Eosinophils are seen in Sens+ Chall+ eyes but not in naïve eyes or Sens+ Chall-  
eyes.  CD4+, CD8+ and F4/80+ cells are seen in all groups. 
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Figure 3.6  5  Immunohistochemical staining for Major Basic Protein in 
ciliary body 

Eosinophils were seldom seen in the ciliary body of naïve eyes (A) during corneal 
allograft rejection and were never seen in Sens+ Chall- eyes (B).  Eosinophils 
(arrows) were seen in the ciliary body of Sens+ Chall+ eyes during rejection (C).  
The histogram (D) depicts the number of MBP-positive cells per 0.1mm2 of ciliary 
body.  * p< 0.05. 
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Figure 3.7  Immunohistochemical staining for Major Basic Protein in 
conjunctiva. 

At the time of allograft rejection no eosinophils are seen in naïve eyes (A) or 
Sens+ Chall- eyes (B).  Eosinophils (arrows) are seen in the conjunctiva (but not 
the sclera) of Sens+ Chall+ eyes (C).   Eosinophils are also seen in the 
conjunctiva of Sens+ Chall+ eyes 60 days after receiving a syngeneic graft (D). 
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3.3. THE EFFECT OF SENSITISATION ON THE HOST CORNEA   

 

3.3.1. Research question 

 

Does the allergic conjunctivitis protocol alter the number of antigen-presenting 

cells and lymphatic vessels in the cornea prior to transplantation and final 

challenge? 

 

 

 

3.3.2. Experimental methods and design 

 

The experimental design for this experiment was as described in Figure 3.8.  

Mice were sensitised to shortragweed pollen as described in detail in Chapter 2.  

Eyes were enucleated and fluorescence immunohistochemical staining was 

performed as described in detail in Chapter 2 using the following antibodies: 

 

PE-conjugated anti-CD11b (macrophage/ neutrophil/ dendritic cell marker) 

PE-conjugated anti-CD11c (dendritic cell marker) 

Anti-LYVE-1 

Alexa 488-conjugated Donkey anti-Rat IgG 
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Figure 3.8  Expermental design part 2 

 

 

 

3.3.3. Results 

 

Large numbers of infiltrating CD11b+ and smaller numbers of CD11c+ cells were 

seen in the cornea 6 days following placement of corneal sutures.   LYVE-1 

staining was also consistently seen in the corneal stroma in these eyes.   By 

comparison, few CD11b+ and CD11c+ cells and no LYVE-1 staining were seen in 

the cornea in either normal eyes or in Sens+ Chall- eyes.  (Figure 3.9) 
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Figure 3.9  Effect of sensitisation on the host cornea 

Although the sensitization protocol does involve topical exposure to short 
ragweed it does not alter the corneal stromal content of dendritic cells (CD11c) or 
macrophages (CD11b) and does not induce the formation of new lymphatics 
(LYVE-1).  This is in contrast to the established model of high-risk corneal 
transplantation (suture-induced corneal inflammation). 
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3.4. THE EFFECT OF ALLERGIC CONJUNCTIVITIS ON CHEMOKINE 
EXPRESSION AFTER CORNEAL TRANSPLANTATION   

 

3.4.1. Research question 

 

Does perioperative allergic conjunctivitis alter the expression of the chemokines 

Eotaxin and RANTES during corneal allograft rejection? 

 

3.4.2. Experimental methods and design 

 

The techniques of induction of allergic conjunctivitis and corneal transplantation 

were used in this experiment.  These techniques have been described in detail in 

chapter 2.  The experimental design for this experiment was as illustrated in 

Figure 3.10.  Eyes were enucleated at day 12 post-transplantation and RNA was 

extracted as described in Chapter 2, the RNA from 3 eyes at a time being pooled 

for each RNA sample.  RNA was analysed by Ribonuclease Protection Assay as 

described in Chapter 2.  This technique provided data not only on Eotaxin and 

RANTES but also on MIP-1α, MIP-1β, MIP-2, MCP-1, IP-10 and Lymphotactin. 

Deciding on the best timepoint for RNA extraction was difficult.  King showed that 

peak expression of chemokines in the rat cornea co-incided with the clinical 

onset of rejection(King et al., 2000).  In cardiac transplantation increased 

chemokine expression was noted just before onset of rejection(Fairchild et al., 

1997).  Pillai and colleagues, studying corneal allografts in mice, later found a 

peak in chemokine expression also just before onset of clinical rejection(Pillai et 

al., 2008a).   Both King and Pillai showed peaks of post-transplant chemokine 

expression at days 11-14 but they used very predictable donor recipient 

combination in their respective models of corneal allograft rejection where all 

grafts were rejected within a day or two of each other.   My models were quite 

different with onset of rejection ranging over 43 days in naïve recipients and over 

20 days in recipients with allergic conjunctivitis.   This meant that while one graft 

was rejecting and presumably expressing increased levels of rejection-



 170 

associated chemokines another may be healthy and expressing low levels of 

chemokines.  It was not possible to extract the RNA on the day that rejection was 

observed because the RNA from 3 eyes had to be pooled for each sample and it 

was unlikely that 3 eyes would consistently reject on the same day.  One 

approach, used by Yamagami et al (Yamagami et al., 1999) was to extract the 

RNA at the timepoint where 50% of grafts had rejected i.e. the median survival 

time.  In my groups this would have meant extracting RNA at different timepoints 

(36 days in naïve recipients and 16 days in recipients with allergic conjunctivitis) 

and this did not seem to be scientifically correct.   Onset of clinical rejection was 

first observed at day 13 in recipients with allergic conjunctivitis and at day 17 in 

naïve recipients.  It was therefore decided to extract the RNA at the same 

timepoint (day 12) in all groups.   Isografts were performed in naïve recipients 

and recipients with allergic conjunctivitis as additional controls. 

RNA extraction, Ribonuclease Protection Assay and analysis of RPA results 

were performed as described in detail in Chapter 2.   

 

Figure 3.10  Experimental design part 3 
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3.4.3. Results 

 

The RNA from 3 animals was pooled to give 12 samples (9 eyes per group = 3 

samples per group).  At least 20 μg of RNA would be required for analysis of 

each sample.  Greater than 20 μg of RNA was extracted from 10 of the 12 

samples (Table 3.3).  The presence of distinct 28S and 18S bands on gel 

analysis of the extracted RNA indicated that the extracted RNA was reasonably 

intact (Figure.3.11) 

 

 
 
 
 

 Sample Quantity of RNA (μg) 

 

 

 

Allografts 

 

 

Sens+ Chall+ 

1 31.65 

2 39.04 

3 0 

 

Naive 

4 57.45 

5 53.66 

6 43.67 

 

 

 

Isografts 

 

Sens+ Chall+ 

7 72.93 

8 51.77 

9 69.8 

 

Naive 

10 18.57 

11 40.93 

12 21.67 

Table 3.3  Quantity of RNA extracted from mouse eyes 

Note each sample contained the pooled RNA from 3 whole eyes from which the 
conjunctiva had been removed. 
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Figure 3.11  Integrity of RNA extracted from mouse eyes 

The samples are numbered 1-12 and these numbers correspond to those of the 
samples described in table 3.3.  Each sample contains the RNA extracted from 3 
whole eyes at day 12 post corneal transplantation. The presence of distinct 28S 
and 18S bands on gel analysis of the extracted RNA indicated that the extracted 
RNA was reasonably intact.  Samples 3 and 10 contained little RNA (see table 
3.3) and have correspondingly low band visibility. 
 

 

 

Chemokine results were obtained for 10 samples each of which contained 

combined RNA from 3 eyes (10 lanes; 2 x allergic allograft, 3 x naïve allograft, 3 

x allergic allograft, 2 x naïve isograft).    The output of the ribonuclease protection 

assay is a photo of a gel.  Bands in each lane represent chemokine RNA.  Figure 

3.12 shows a representative lane from each group.  The densities of the bands 

were calculated for each chemokine as described in Chapter 2 and the mean 

value for each group was calculated. 
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Figure 3.12  Chemokine gene expression after corneal transplantation in 
A/J hosts 

Autoradiography. Twenty micrograms of pooled RNA was applied in each lane. 
On the basis of the undigested probes‘ migration patterns (seen on left), specific 
bands were identified for each chemokine: lane A, representative allergic 
allografts; lane B, representative naïve allografts; lane C, representative allergic 
isografts; lane D, representative naïve isografts. 
 

 

 

As discussed in chapter 2 the quantification of RNA expression using 

densitometric analysis is only loosely quantitative especially for the 3 chemokines 

at the lower end of each lane where the image was relatively overexposed.  

Therefore when comparing between groups (lanes) I chose to recognise 

differences in the mean chemokine expression that were a multiple of 2 or 



 174 

greater to denote a significant difference.  The results are described for each 

chemokine on an individual basis and are illustrated in Figure 3.13. 

 

Lymphotactin 

Lymphotactin expression was increased in naïve recipients of allografts 

compared to naïve recipients of isografts, allergic recipients of isografts and 

allergic recipients of allografts.  

 

RANTES 

RANTES expression was increased in naïve recipients of allografts compared to 

naïve recipients of isografts, allergic recipients of isografts and allergic recipients 

of allografts.  

 

MIP-1β 

There were no clear differences in expression of MIP-1β across the four groups. 

 

MIP-1α 

There were no clear differences in expression of MIP-1α across the four groups. 

 

MIP-2 

There were no clear differences in expression of MIP-2 across the four groups. 

 

IP-10 

IP-10 expression was increased in naïve recipients of allografts compared to 

naïve recipients of isografts, allergic recipients of isografts and allergic recipients 

of allografts.  

 

MCP-1 

There were no clear differences in expression of MCP-1 across the four groups. 
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TCA-3 

There were no clear differences in expression of TCA-3 across the four groups. 

 

Eotaxin 

There were no clear differences in expression of Eotaxin across the four groups. 

 

The primary question in relation to chemokine expression was whether increased 

expression of chemokines chemotactic for eosinophils (Eotaxin and RANTES) 

would be increased in allograft rejection in eyes with perioperative allergic 

conjunctivitis compared with rejection in naïve eyes.  In allergic allografts there 

was no obvious difference in expression of eotaxin compared with naïve 

allografts at day 12.   Allergic allografts expressed obviously less RANTES than 

naïve grafts at day 12.    

In animals with perioperative allergic conjunctivitis there were no clear 

differences in chemokine expression at day 12 between recipients of allografts 

and recipients of isografts (Figure 3.13).  These data suggest that either 

perioperative allergic conjunctivitis inhibits chemokine expression during graft 

rejection or that the day 12 timepoint missed any rejection-associated increase in 

chemokine expression in eyes with perioperative allergic conjunctivitis. 
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Figure 3.13  Chemokine gene expression after corneal transplantation in 
A/J hosts:  Normalized densitometric analyses   

The y axis represents arbitrary units expressed as a percentage of GADPH 
expression.    
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3.5. DISCUSSION  

 

3.5.1. Effect of allergic conjunctivitis on graft survival 

 

Data from large cohort outcome studies have demonstrated the negative impact 

on graft survival of ocular inflammation at the time of corneal 

transplantation(Williams et al., 1989).  The results of our study are consistent with 

these data and show that allergic conjunctivitis, in particular, accelerates corneal 

allograft rejection.  This result is also consistent with the finding by Beauregard 

and coworkers of an increased tempo of corneal graft rejection in their model of 

chronic post-operative allergic conjunctivitis(Beauregard et al., 2005).   Whereas 

Beauregard continued to challenge his graft recipients after transplantation I 

performed a single challenge at the time of surgery.  These data indicate that 

allergic inflammation in the perioperative period alone is sufficient to shorten graft 

survival.   

 

3.5.2. The effect of allergy on the composition of graft infiltrate at rejection 

 

The immune response to alloantigen comprises an afferent and an efferent arm.  

In the afferent arm antigen-presenting cells (APC) travel from the graft bearing 

alloantigen to regional lymph nodes where it is presented to T cells.  The efferent 

arm culminates in infiltration and destruction of the graft by a variety of effector 

cells.  Our finding of CD4+ cells, CD8+ cells and macrophages in rejected grafts is 

consistent with previous reports in mouse and human corneal 

transplantation(Larkin et al., 1997a,Kuffova et al., 2001).  No inflammatory 

response was seen in the sclera of allergic recipients of corneal allografts 

suggesting that this does not provide an experimental model of atopic 

sclerokeratitis which is a well-recognised entitiy in atopic patients post-

transplantation(Lyons et al., 1990). 
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We have shown that perioperative allergic conjunctivitis influences the effector 

arm of the immune response in that it is associated with an eosinophilic infiltrate 

during graft rejection.  Corneal graft infiltration by eosinophils has been 

previously described in rejected human allografts in patients with allergic 

conjunctivitis (Hargrave et al., 2003) and in a mouse model of allergic 

conjunctivitis(Beauregard et al., 2005).   Eosinophilic infiltration is a prominent 

feature of unmodified rejection in corneal and pancreatic xenotransplants  

(Simeonovic et al., 1999b,Tanaka et al., 2005,Larkin et al., 1995).  In animal 

models of skin and cardiac allotransplantation  eosinophilic infiltration is seen 

characteristically in Th2-biased animals(Braun et al., 2000,Le et al., 1999b).  

 

Three questions need to be addressed regarding eosinophils: (i) are they 

specifically recruited to the cornea during graft rejection? (ii) Are they contributing 

to graft destruction? And (iii) are they responsible for the increased tempo of graft 

rejection?  

Eosinophils entering the cornea and anterior chamber in allergic eyes appear to 

do so as part of the specific response to alloantigen, supported by the 

observation of no eosinophils in isograft recipient eyes with allergic conjunctivitis 

despite their presence in the conjunctiva.  Eosinophils themselves are part of the 

innate immune system and do not have specificity for alloantigen.  They may 

however be recruited by Th2-biased CD4+ cells with specificity for alloantigen.  

Prior sensitisation with allergen as in our model has been shown to bias the 

animal toward Th2 response (even to an unrelated antigen)(Yamada et al., 

1999b,Beauregard et al., 2005).  Therefore one explanation for the presence of 

eosinophils is that in animals that have previously been sensitized to allergen, 

exposure of CD4 cells to alloantigen induces a TH2 phenotype which recruits 

eosinophils to the graft during rejection.  If this was the case eosinophils may be 

expected in the graft infiltrate of rejected grafts in sensitized recipients who were 

not challenged (sens+chall-) as these animals would also be Th2-biased.   

However no eosinophils were seen in rejected grafts of this group in my 

experiment.  Beauregard performed a similar experiment and also found no 
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eosinophils in this group.    It therefore appears that prior sensitization alone is 

not sufficient to produce a graft infiltrate of eosinophils but that active allergic 

conjunctivitis at the time of transplantation is required.  

Sens+ Chall+ graft recipients have many eosinophils in their conjunctiva.  During 

graft rejection one possible route of alloreactive cell trafficking to graft stroma is 

from the surrounding conjunctiva (the ―side door‖).   Therefore another 

explanation for their presence in the cornea during rejection is that the 

conjunctiva, at the time of graft rejection, still contains eosinophils following the 

allergen exposure and that these eosinophils enter the cornea from the 

conjunctiva during graft rejection along with other mediators of rejection.  Reports 

on the longevity of the late cellular response in animal models of allergic 

conjunctivitis suggest it lasts 2-3 days(Choi and Bielory, 2008).  In our model, first 

rejection was seen at 15 days post-transplantation (and post allergen exposure).   

Immunohistochemical analysis of the conjunctiva during rejection showed that 

eosinophils were present in the conjunctiva during rejection (i.e at 15 + days 

post-allergen exposure) which suggests that the cellular mediators of the late 

phase of allergic conjunctivitis remain in the conjunctiva for longer than has been 

thought.     If these eosinophils were simply ―dragged in‖ to the cornea from the 

conjunctiva during rejection along with other more specific cellular mediators,  we 

would not expect to see eosinophils in the anterior uveal tract (which provides an 

alternative access to the graft endothelium via the anterior chamber) as even in 

allergic conjunctivitis these tissues do not contain eosinophils.  However we do 

see eosinophils in the ciliary body during rejection in recipients with allergic 

conjunctivitis.      

 

The capacity of eosinophils in parasitic and allergic inflammation to initiate and 

sustain an inflammatory response is largely due to the release of cationic 

proteins including major basic protein, eosinophil cationic protein, eosinophil 

peroxidase and eosinophil-derived neurotoxin (Rothenberg and Hogan, 2006).  

These proteins can directly injure mammalian cells and can induce cytokine and 

chemokine release from bystander cells.    Eosinophils certainly have the 
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capacity to injure the graft but their importance as effector cells in corneal 

allograft rejection remains undetermined.  That said, of the  CD4 cells, CD8 cells 

and macrophages that have been consistently found in the infiltrate of rejected 

grafts,  only CD4 cells have been shown to play an essential role in the rejection 

process(Yamada et al., 1999a).  Although graft-infiltrating eosinophils were seen 

exclusively in the context of allergic conjunctivitis, we found their absolute 

number to be less than those of CD4 cells, CD8 cells or macrophages.   

These data suggest to me that eosinophils enter the cornea/anterior chamber as 

part of the acquired immune response to alloantigen but that for this to happen 

the animal must be both sensitized to allergen and challenged with the allergen 

at the time of surgery.  The number of eosinophils being much less that the other 

cellular mediators of rejection, it is not plausible that these cells are alone 

responsible for the accelerated rate of rejection.  However they may represent a 

change in the effector component of the acquired immune response brought 

about by the presence of allergic conjunctivitis at the time of corneal 

transplantation. 

 

3.5.3. Local versus systemic effects of allergy 

 

Animals in the model of allergic conjunctivitis we report underwent two 

interventions, either of which could in theory have influenced graft survival.  The 

preliminary sensitisation of animals to SRW skews subsequent T cell cytokine 

responses towards Th2 as shown by Yamada (Yamada et al., 1999b) .  

Subsequent challenge with topical SRW induced local ocular inflammation.   

The sensitisation process does involve some instillation of allergen on the ocular 

surface.  In our model there was no exposure to allergen in the 2 weeks prior to 

the final challenge.  The conjunctiva of these animals appears normal clinically 

prior to challenge.  Histological examination of the cornea prior to final allergen 

challenge reveals no difference to a naïve cornea in terms of lymphatic vessel 

and cells with antigen-presenting capacity (CD11b+ and CD11c+). 
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It is of interest that animals sensitised to SRW but not challenged at the time of 

transplantation rejected allografts at a similar tempo to naïve animals.   This 

suggests that local inflammation rather than any change in Th2 bias is 

responsible for the increased tempo of allograft rejection following perioperative 

allergic conjunctivitis because if systemic changes induced by the sensitisation 

process were responsible for the accelerated rate of rejection we would have 

expected these animals to reject their grafts at a different rate to naïve animals.   

For reasons that are not clear, this finding is in contrast with the report by 

Beauregard et al that, in their model of allergic conjunctivitis, the increased tempo 

of allograft rejection was attributable to sensitisation to allergen rather than local 

inflammation(Beauregard et al., 2005).   

Beauregard found that the tempo of rejection was accelerated in allograft 

recipients with active allergic conjunctivitis (Sens+ Chall+) as compared to naïve 

recipients and these results were similar to ours.   Their allergic conjunctivitis 

induction protocol differed slightly from ours in that we challenged the conjunctiva 

with SRW only once (immediately following transplantation) whereas they 

challenged with allergen throughout the post-transplantation period of 

observation.   Therefore our study adds new information that allergic 

inflammation at the time of surgery is sufficient to accelerate subsequent 

rejection.   

The fundamental difference between our results and those of Beauregard 

however lies in the groups of animals that were sensitised but not challenged 

(Sens+ Chall-).  In our study these animals rejected grafts at a similar rate to 

naïve animals.  In Beauregard‘s they rejected grafts at an accelerated rate similar 

to animals that were challenged with allergen which seems to suggest that the 

accelerated rate of rejection is due to systemic changes induced by the 

sensitization protocol.   

The question of the differential effects of local and systemic atopic phenomena 

on corneal graft rejection is a key one.    
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Beauregard et al report increased expression of IL-4 and Il-5 (Th2 cytokines) by 

T cells of ―Atopic‖ graft recipients in response to alloantigen but it is not clear 

from their data whether this refers to  Sens+ Chall+ recipients, Sens+ Chall- 

recipients or both.  Interestingly, they, like us, found no eosinophils in rejected 

grafts of sensitized recipients who were not challenged with allergen suggesting 

that the Th2 effector mechanisms are more marked in the presence of allergic 

conjunctivitis than in sensitized animals without allergic conjucntivitis.   

 

Differences in the models of allergic conjunctivitis may explain in part the 

variance in results: a different strain of graft recipient mouse was used in the 

experiments we report.  We used A/J mice as recipients whereas they used 

BALB/c mice.  As outlined in the introduction to the thesis immune responses 

may be quite different in different strains of mice even under similar 

conditions(Yamada et al., 2009). 

Our experimental protocols also differed.  We designed Sens+ Chall+ and Sens+ 

Chall- groups to represent, as closely as possible, the clinical picture seen in 

allergic conjunctivitis patients with and without active or uncontrolled conjunctival 

disease.  Therefore our Sens+ Chall- animals received one mock challenge with 

PBS in the corneal graft (ipsilateral) eye and nothing in the contralateral eye.  

Graft recipients in the study by Beauregard et al received repeated mock 

challenges with PBS in the ipsilateral eye and repeated SRW challenges in the 

contralateral eye.  One possibility is that, as mice rub their eyes vigorously after 

challenge with SRW, inadvertent contralateral transfer of SRW occurs.  This also 

raises the possibility that accelerated graft rejection in these models of allergic 

conjunctivitis may be due to the mechanical effects of eye rubbing alone.   

 

There is evidence to support the idea that the increased rate of rejection in 

allergic disease is due to systemic rather than local factors.  Niederkorn‘s group 

has gone on to study the effects of allergic airway disease on experimental 

corneal transplantation and found that in the presence of allergic airways 

disease, the tempo of corneal allograft rejection is also increased(Niederkorn et 
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al., 2009).  This suggests that both allergic conjunctivitis and allergic airway 

disease have a similar effect on corneal graft survival and suggests either that 

this effect may be due to common systemic effects of allergy (eg Th2-bias) rather 

than localised tissue inflammation or that this effect on corneal allograft survival 

is caused by allergen-induced mucosal inflammation at either site.   

In this paper the animals were sensitized with srw in the same way as per 

experimental allergic conjunctivitis.  Allergen challenge is delivered intra-nasally.   

One potential concern here is again the delivery of a potent allergen to the face 

of mice and the risk of spread of allergen to the eyes during face/ eye rubbing 

after allergen delivery.  This paper contained no data regarding the effect of 

intranasal allergen challenge on the conjunctiva.  However, no eosinophils were 

found in rejected grafts in animals with allergic airway disease which suggests to 

me that these animals did not have allergic conjunctivitis(Niederkorn et al., 2009). 

Cursiefen reports decreased survival of corneal grafts in humans with atopic 

dermatitis(Nguyen et al., 2008).   These patients may have allergic conjunctivitis 

but in this study the rate of rejection was increased even for those patients 

without a reported history of allergic conjunctivitis suggesting that allergic 

conjunctivitis is not the important factor in the increased rate of graft rejection 

seen in these patients.   This finding is consistent with the work of Niederkorns 

group who attribute the accelerated rate of rejection in sensitized animals to 

―atopy‖.    

 

It is important to consider what the animal models of allergic conjunctivitis 

represent.  A single challenge with allergen in a sensitized animal induces a 

condition which I believe to be analogous to severe seasonal allergic 

conjunctivitis in humans.  Repeated exposure to allergen induces a chronic 

condition which may be more analagous to perennial allergic conjunctivitis 

(personal communication from Masaharu Ohbayashi).  But what do sensitized 

animals represent?  After sensitization with high doses of allergen these animals 

exhibit some of the systemic immunological features seen in human atopy such 

as increased titres of IgE and increased Th2 responses to antigen.  However 
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atopy is a complex condition the precise cause of which remains uncertain and it 

may be an oversimplification to say that sensitization with allergen produces 

atopy.  We must therefore interpret these results for sensitized+challenged- 

animals with caution when attempting to translate them in to the human setting.   

 

There is also evidence to support the idea that the local effects of allergy may 

influence the immune response to alloantigen.  Some of this evidence is indirect.  

For example Ozaki et al found increased expression of MHC class II in the 

cornea in experimental allergic conjunctivitis(Ozaki et al., 2004).   In our 

laboratory we have reported increases in the number and alterations in the 

phenotype of conjunctival dendritic cells in response to allergen 

challenge(Ohbayashi et al., 2007).  These findings raise the possibility that 

alloantigen recognition in the afferent limb may be enhanced in Sens+ Chall+ 

recipients of allografts. 

De Vries et al have shown that allograft inflammation mediated by mast cell 

degranulation breaks peripheral tolerance of alloantigen(de Vries et al., 2009).  

This finding is highly relevant to our model as it has been shown that IgE-

mediated mast cell degranulation is a key step in the mouse model of allergic 

conjunctivitis(Fukuda et al., 2009).  De Vries showed that local mast cell 

degranulation induced systemic changes which caused breakdown of tolerance 

not only at the site of mast cell degranulation but also at distal tolerised allografts.  

They report a decrease in the number and function of Tregs and suggest that this 

may be the mechanism by which mast cell degranulation breaks down graft 

tolerance.   

The idea of local degranulation of mast cells affecting allografts at other sites is 

very interesting because it could explain the discrepancy between my findings 

and those of Niederkorns group in relation to the fate of allografts in 

sensitized+challenged- animals. 
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 Local allergic 

inflammation 

Distal allergic 

inflammation 

Accelerated 

rejection 

Eosinophils 

Flynn Y N Y Y 

N N N N 

Beauregard Y Y Y Y 

N Y (conj) Y N 

N N N N 

Niederkorn N Y (airway) Y N 

N N N N 

 

In all cases allografts in animals with mast cell degranulation either locally to the 

graft or distally are rejected at an increased tempo.  In animals with neither local 

nor distal mast cell degranulation graft rejection is not accelerated. 

However there are at least two reasons to doubt that mast cell degranulation is 

the missing link in these discordant data.  Firstly, De Vries showed that mast cell 

degranulation in an isograft did not induce rejection of a tolerised distal allograft 

suggesting that widespread breakdown in tolerance is only caused by mast cell 

degranulation in allografted tissue and not autologous tissue.  Secondly, DeVries‘ 

findings relate to tolerised grafts where Tregs have had time to develop and there 

is no evidence that these apply to newly transplanted grafts.  

 

3.5.4. The effect of allergy on chemokine expression in corneal allograft 
rejection 

 

To try to shed more light on the reason(s) for the presence of eosinophils in the 

graft during rejection an experiment was performed to determine chemokine 

expression during graft rejection.  The hypothesis in this experiment was that 

greater expression of chemokines chemotactic for eosinophils (Eotaxin, 

RANTES) would be seen in allergic allografts than in naïve recipients.  This 

would support the theory that eosinophils are actively recruited to the graft during 

acute rejection.    
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As far as eotaxin was concerned there there was no obvious difference and 

RANTES expression was diminished in allergic recipients compared to naïve.  

There are at least 2 explanations/ interpretations for/of these results.   The first is 

that these results represent an accurate representation of differential chemokine 

expression between naïve and allergic recipients of allografts.  In this case the 

results would not support the theory that eosinophils are actively actively 

recruited to the graft during acute rejection in allergic recipients.   The other 

explanation is that these chemokine data represent 2 distinct snapshots of 2 

distinct dynamic processes.  Following transplantation, chemokines rise, plateau 

and fall at highly individual rates.  These rates are different for each chemokine 

but are also influenced by the mileu of the graft.  e.g. in the ―high-risk‖ model 

chemokine expression of several chemokines are elevated in the early post-

operative period compared to normal-risk grafts(Yamagami et al., 2005b).   Early 

chemokine expression usually relates to innate immune cells infiltrating the 

wound with later chemokine expression correlating with effector cell influx.    

Because eosinophils made up part of the effector cell infiltrate in allergic 

recipients I was primarily interested in eosinophils and their chemokines around 

the time of rejection.   Chemokine expression was measured at day 12 as it was 

one day before rejection was first seen in allergic recipients of allografts.   In the 

naïve recipients chemokine expressin was also measure at day 12 (although in 

this group first rejection was not seen until day 15).   The increased expression of 

lymphotactin, RANTES and IP-10 in naïve allografts compared with naïve 

isografts was consistent with previous reports of chemokine expression post 

corneal allotransplantaion(Yamagami et al., 1999,Pillai et al., 2008a).  RANTES 

is produced by a wide variety of cell types and is a particulary pleiotropic 

chemokine with affinity for the receptors CCR1, CCR3 and CCR5(Levy, 2009).   

In experimental cardiac transplantation, gene knockout of either the CCR1 or 

CCR5 receptors improves graft survival(Gao et al., 2000,Gao et al., 2001).  In 

experimental corneal transplantation gene knockout of CCR1 improves graft 

survival but knockout of CCR5 does not(Hamrah et al., 2007).  IP-10 is produced 

by endothelium, fibroblasts and monocytes in response to IFN-γ.  It has affinity 
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for the CXCR3 receptor on CD4 cells.  There are conflicting reports regarding the 

benefit of targeting IP-10 and/or its receptor on graft survival in experimental 

cardiac transplantation.  There has been one report of a study of experimental 

corneal transplantation in recipients with knockout of the IP-10 or CXCR3 genes, 

neither of which improved graft survival(Hamrah et al., 2007).  Lymphotactin is 

produced by activated CD8 cells and has affinity for the CXCR1 receptor on T 

cells and NK cells(Hedrick and Zlotnik, 1998).  I could find no reports of 

experiments where either lymphotactin or its receptor was targeted in studies of 

transplantation. 

It is interesting that there was no obvious difference in chemokine expression 

between allergic recipients of allografts and allergic recipients of isografts.  One 

possibility is that I missed a peak in chemokine expression in the allergic allograft 

group (either before or after day 12).  My reasons for choosing this timepoint 

have been outlined in the methods section 3.4.2 of this chapter.  I think that the 

most important thing I learned from this particular experiment was that, for 

comparative studies of post-operative chemokine expression, measurements at 

multiple timepoints are more useful than measurements at a single timepoint.  

 

This technique has been used by many investigators to quantify the expression 

of RNA in ocular tissues(Yamagami et al., 1999,Ohta et al., 2000).  In the image 

sent to me by my collaborators in Japan the film appears to have been slightly 

overexposed particularly in the lower part (Figure 3.12) which results in less 

clear-cut peaks and troughs in the right-hand part of the output (Figure 2.18; C) 

which made the intensity of the GADPH band, in particular, more difficult to 

measure.  I tried unsuccessfully to reduce the background intensity using the 

―Subtract Background‖ function on ImageJ.  I concluded that with the quality of 

film available to me this method was only semi-quantitative.  I also realised that 

using this method I could not compare the chemokine expression within each 

sample as the relative background intensity increased further down each lane but 

I could compare the difference in intensity between lanes of each individual 

chemokine.  I also realised that I was less likely to identify differences in 
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chemokine expression for the 3 chemokines at the lower (more saturated) part of 

the gel (MCP-1, TCA-3, Eotaxin) than those at the top (less saturated). 

 

3.5.5. Chapter summary 

 

The work presented in this chapter has demonstrated that: 

 

 Allergic conjunctivitis at the time of corneal transplantation significantly 

increases the tempo of allograft rejection. 

 Local conjunctival inflammation appears to be more important than 

systemic effects of sensitization to allergen in causing this change in the 

tempo of rejection. 

 That graft and anterior uveal infiltration by eosinophils is seen during graft 

rejection in corneal graft recipients with allergic conjunctivitis.  

 At a specific timepoint close to the first onset of rejection no marked 

increase in expression of the eosinophil-chemotactic chemokines 

RANTES and Eotaxin was seen in corneal recipients with allergic 

conjunctivitis compared with naïve recipients. 
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4. CHAPTER 4: The effect of allergic conjunctivitis on 
the immune response to allogeneic donor cornea:  
Innate immune cells, lymphangiogensis and the 
counter-effects of topical dexamethasone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 190 

4.1. INTRODUCTION   

 

The results described in chapter 3 demonstrated that perioperative ipsilateral 

allergic conjunctivitis accelerated corneal allograft rejection and that this 

accelerated rate of rejection was associated with changes in the composition of 

the graft-infiltrating cell population during allorejection.  Infiltration of the graft 

during allogeneic rejection is the end phase of a process which begins 

immediately after transplantation.  The data described in chapter 3 suggested 

that local conjunctival inflammation is more important in accelerating rejection 

than systemic changes such as Th2 bias.   Research from other laboratories has 

shown that the late phase reaction in allergic conjunctivitis peaks at 4-24 hours 

after allergen challenge(Choi and Bielory, 2008)  and lasts 48-72 hours(Li et al., 

1996) .  With these data in  mind, the following broad hypothesis was formulated: 

early cellular events in the cornea, which contribute to the process of rejection, 

may be modified in the setting of allergic conjunctivitis.  A corollary of this 

hypothesis was that local treatment of allergic conjunctivitis would reverse or 

mitigate the modifications in the cellular events in the cornea and improve graft 

and reverse of mitigate the acceleration of graft rejection seen in the setting of 

allergic conjunctivitis. 

Early cellular events following corneal transplantation are known to involve 

infiltration of innate immune cells such as macrophages and neutrophils(Kuffova 

et al., 2001).  Normal cornea contains no blood or lymphatic vessels and this 

contributes to its immune privileged status.  Pre-existing blood vessels in the 

cornea are a recognised risk factor for rejection but new blood vessels may also 

grow in to an avascular cornea after transplantation and these also increase the 

risk of rejection(Chung et al., 2009,Cursiefen et al., 2004b).   In the other well-

characterised model of high rejection risk corneal transplantation, in which donor 

cornea is transplanted into a vascularised recipient corneal bed, early infiltration 

of the graft with neutrophils and macrophages is significantly increased 

compared with normal/ low rejection risk grafts although the precise role and 

degree of influence of these cells on sensitisation and rejection dynamics 
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remains unclear(Yamagami et al., 2005b).  Vascularised recipient cornea also 

contains lymphatic vessels which facilitate sensitisation of the host to alloantigen.  

Data presented in Chapter 3 demonstrated that the sensitisation process did not 

induce corneal lymphatics (i.e. there were no pre-existing lymphatics at the time 

of transplantation).  However it is now known that corneal lymphatics grow in to 

the graft host interface after transplantation(Cursiefen et al., 2004a) . Corneal 

blood vessels are easy to study as they are visible in vivo.  It is now recognised 

that corneal angiogenesis is accompanied by corneal lymphangiogenesis.  

Corneal lymphangiogenesis has been shown to be induced by innate / 

alloantigen-independent inflammation in the cornea (Cursiefen et al., 2004b) but 

provides a conduit for egress of APCs which sensitise the host to alloantigen.  

With the discovery of new markers for lymphatic endothelium, there has been 

renewed interest in corneal lymphangiogenesis not only for its role in corneal 

transplant immunology but also as a model for studies of lymphangiogenesis in 

relation to cancer metastases(Achen and Stacker, 2008).    

New markers for lymphatic endothelial cells have been used by several groups to 

confirm the presence of lymphatic vessels in normal mouse conjunctiva.  A 

population of individual non-vascular cells in the conjunctiva have been shown to 

express markers of lymphatic endothelium and it has been proposed that these 

cells contribute to the ingrowth of new corneal lymphatic vessels in response to 

corneal inflammation(Chen et al., 2005,Xu et al., 2007).   

A more specific hypothesis, therefore, was that allergic conjunctivitis may modify 

both the number of CD11b+ cells (innate immune cells) and the ingrowth of new 

lymphatic vessels entering the host cornea after transplantation.  
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4.2. THE EFFECT OF TREATMENT OF ALLERGIC CONJUNCTIVITIS ON 
GRAFT SURVIVAL   

4.2.1. Research question  

 

What is the effect of short term post-operative olopatadine and dexamethsone 

0.1% treatment on corneal allograft survival in the setting of perioperative allergic 

conjunctivitis? 

 

4.2.2. Methods/ Experimental design 

 

The techniques of induction of allergic conjunctivitis and corneal transplantation 

were used in this experiment.  These techniques have been described in detail in 

chapter 2 and modified slightly as described below.  

The experimental design was as shown in Figure 4.1.  Animals were challenged 

with short ragweed pollen immediately after completing suturing of the corneal 

allograft.  After 5 minutes a drop of PBS/ dexamethasone 0.1% (Maxidex, Alcon, 

Hunnenberg, Switzerland) or olopatadine (Opatanol, Alcon,) or dexamethasone 

0.1% & olopatadine was instilled in the grafted eye.  A blephorraphy was 

performed and this was opened the next day and drops were instilled in the 

grafted eye twice daily for one week.  Thereafter graft clarity was assessed three 

times per week as described in chapter 2. 
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Figure 4.1 Experimental design part 1 
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4.2.3. Results 

 

Median survival in PBS-treated animals was 21 days.  In comparison, survival in 

dexamethasone treated animals was significantly prolonged (MST 30 days; 

p=0.008; Figure 4.2).  Survival in animals treated with both dexamethasone 0.1% 

and olopatadine was also significantly prolonged (MST 55 days; p=0.003).  

However survival in animals treated by olopatadine alone (MST 24 days) was not 

significantly different from that in animals treated with PBS (MST 21 days; p= 

0.547).  Furthermore although the difference in MST between those treated with 

dexamethasone alone (30 days) and those treated with dexamethsone and 

olopatadine (55 days) appeared quite large, this difference did not reach 

statistical significance (p= 0.517).   Median graft survival times in each group are 

shown in Table 4.1.  P values for pairwise comparison of allograft survival 

between treatment groups using the Log Rank test are shown in table 4.2. 

These data suggest that the effect of perioperative allergic conjunctivitis on 

corneal allograft survival may be mitigated by twice daily perioperative treatment 

with dexamethsone 0.1% but not olopatadine.    

 

 

Donor Recipient Treatment for 7 days MST 

C57BL6 A/J with allergic 

conjunctivitis 

PBS bd 21 

C57BL6 A/J with allergic 

conjunctivitis 

Dexamethsone 0.1% bd 30 

C57BL6 A/J with allergic 

conjunctivitis 

Olopatadine bd 24 

C57BL6 A/J with allergic 

conjunctivitis 

Dexamethsone 0.1% bd  

&  Olopatadine bd 

55 

Table 4.1 Median survival times of corneal allografts in each treatment 
group 
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Figure 4.2 Effect of perioperative topical anti-inflammatory treatment on 
corneal graft survival in recipients with allergic conjunctivitis 

Treatment with twice-daily topical dexamethasone 0.1% drops for one week after 
surgery (red curve) significantly prolonged corneal allograft survival in eyes with 
perioperative allergic conjunctivitis compared to treatment with twice daily PBS 
drops (black curve).  
 

 

 

 PBS Dexamethasone Olopatadine Dexametathasone 

& Olopatadine 

PBS  0.008 0.547 0.003 

Dexamethasone 0.008  0.101 0.517 

Olopatadine 0.547 0.101  0.011 

Dexametathasone 

& Olopatadine 

0.003 0.517 0.011  

Table 4.2 P values for pairwise comparison of allograft survival between 
treatment groups using the Log Rank test. 

 
 

 



 196 

4.3. THE EFFECT OF ALLERGIC CONJUNCTIVITIS ON CORNEA-
INFILTRATING CD11b+ CELLS  

 

4.3.1. Research question 

 

What is the effect of perioperative allergic conjunctivitis on the number of host 

cornea-infiltrating CD11b+ cells in response to corneal allotransplantation?  

 

4.3.2. Methods/ Experimental design 

 

The techniques of induction of allergic conjunctivitis and corneal transplantation 

were used in this experiment.  These techniques have been described in detail in 

chapter 2.  The experimental design for this experiment was as described in 

Figure 4.3.  Eyes were eviscerated at days 2 and 6 and fluorescent 

immunohistochemical staining was performed as described in chapter 2 using the 

following antibodies: 

 

FITC-conjugated anti-F4/80 

PE-conjugated anti-CD11b 

Anti-LYVE-1 

Anti-Gr1 

Alexa 488-conjugated Donkey anti-Rat IgG 

 

Chapter 2 contains a detailed description of these antibodies and optimised 

concentrations and conditions for their use in immunohistochemistry. 

 

Single colour images of cross sections of the host cornea, the graft-host junction 

and the centre of the graft were captured on a fluorescence microscope 

(Olympus).  For 2-colour staining, images were captured using a Zeiss LSM510 

confocal laser scanning microscope (Carl Zeiss, Jena, Germany).   
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Positive-staining cells in a x 400 field of the host cornea were counted by a 

masked observer.  Cells were counted in 3 sections per rejected graft.   At least 4 

eyes per timepoint were examined in each group. Mean number of infiltrating 

cells were calculated.  

 

 

Figure 4.3 Experimental design part 2 

 

 

 

4.3.3. Results 

 

Aggregates of CD11b+ cells were seen at the limbus of both naïve and allergic 

recipients of allografts at 48 hours (Figure 4.4;B) .  At this timepoint inflammatory 

cell infiltration of the cornea was greater in the host than the graft (Figure 4.4; C).  

Significantly more CD11b+ cells were seen in the host cornea at 48 hours post 
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corneal transplantation in allergic eyes than in naïve eyes (84.46 v 38.14; p= 

0.029; Figure 4.5).  Two morphologically and immunohistochemically distinct 

subsets of CD11b+ cells were seen in the host cornea:  ovoid CD11b+ Gr-1+ cells 

(neutrophils)and more elongated CD11b+ F4/80+ cells (macrophages)(Figure 4.5; 

C, D).   Relatively few CD11b+ cells were seen in the centre of the graft at 48 

hours post-transplantation and there was no significant difference in the numbers 

of CD11b+ cells in the centre of the graft at this timepoint between naïve (8.13 +/- 

3.85, mean=+/- SE) and allergic (14.53 +/- 7.74) graft recipients (p= 0.48).  

By day 6 post-transplantation large numbers of CD11b+ cells were seen in the 

graft as well as the host cornea (Figure 4.4; E).  At day 6 post-transplantation the 

host cornea in allergic recipients contained slightly more CD11b+ cells than naïve 

recipients but this difference was not statistically significant (Figure 4.5; E).   

Linear and circular LYVE-1+ structures could be seen in the host cornea of both 

naïve and allergic recipients (Figure 4.6).  The circular structure was seen at the 

limbus and represents a large annular lymphatic vessel.  The linear structures 

represent smaller lymphatic vessels growing into the host cornea.   These 

structures were LYVE-1+CD11b- and appeared to grow in the superficial stroma/ 

subepithelial plane (Figure 4.6).  A small number of the CD11b+ cells entering the 

cornea following corneal transplantation also stained positive for LYVE-1 (Figure 

4.6; C).     

It would have been possible to measure the length of linear ingrowth of these 

LYVE-1+ structures as a way to compare lymphatic ingrowth between naïve and 

allergic recipients of corneal allografts.  For reasons discussed in Chapter 2 a 

new experiment was planned which would use corneal wholemount staining to 

assess lymphatic ingrowth. 
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Figure 4.4 Entry of CD11b+ cells to the cornea after corneal transplantation 

(A) A photomicrograph of part of a haematoxylin-stained section of a normal 
mouse eye showing the limbal conjunctiva.  (B) A haematoxylin-stained section 
showing the corresponding part of a mouse eye 2 days post corneal 
transplantation.  Large numbers of cells have aggregated in the limbal 
conjunctiva forming a ―hump‖ in cross-section (black arrow).  (C) A section 
showing the graft-host junction (white arrow) at 2 days post- corneal 
transplantation.  Following corneal transplantation CD11b+ cells (red) enter the 
host cornea presumably via the limbal conjunctiva.  Large numbers of these cells 
are seen in the host cornea but few have crossed the graft-host junction and 
entered the graft stroma.  (D)  A section showing the graft at 2 days post-corneal 
transplantation.  A few CD11b+ cells are seen in close proximity to the graft 
endothelium but relatively few cells have infiltrated the graft at this point.  (E) A 
section showing the graft-host junction (white arrow) at 6 days post- corneal 
transplantation.  Large numbers of CD11b+ cells (red) are now seen in both the 
host cornea and the graft.  (F)  A section showing the graft containing many 
CD11b+ cells (red) at 6 days post-corneal transplantation.   
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Figure 4.5 CD11b+ cells in host cornea 

At day 2 significantly greater numbers of CD11b+ cells were seen in the host 
cornea of allergic (B; CD11b=red) allograft recipients than naïve (A; CD11b=red) 
recipients (E; * p=0.029).   There was no significant difference at day 6.  Two 
morphologically and immunohistochemically distinct subsets of CD11b+ cells 
were seen in the host cornea:  ovoid CD11b+ Gr-1+ cells (CD11b=red, Gr-
1=green; C) and cigar-shaped CD11b+ F4/80+ cells (CD11b=red; F4/80=green; 
D) 
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Figure 4.6 LYVE-1 expression in host cornea. 

Accompanying the influx of CD11b+ cells (red) into host cornea of both naïve and 
allergic recipients of corneal allograft there were circular (A) and linear (B) 
structures which stained positive for LYVE-1(green).  Only occasional CD11b+ 
LYVE-1+ double positive cells (yellow) were found amongst the infiltrating cells 
(C).  
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4.4. THE EFFECT OF ALLERGIC CONJUNCTIVITIS ON CORNEAL 
LYMPHANGIOGENESIS   

 

4.4.1. Research questions 

 

What is the effect of perioperative allergic conjunctivitis on corneal 

lymphangiogenesis in response to corneal allotransplantation?  

 

Is any observed effect of perioperative allergic conjunctivitis on corneal 

lymphangiogenesis mitigated by use of topical g Dexamethasone 0.1%? 

 

4.4.2. Methods/ Experimental design 

 

The techniques of induction of allergic conjunctivitis and corneal transplantation 

were used in this experiment.  These techniques have been described in detail in 

chapter 2.  The experimental design for this experiment was as described in 

Figure 4.7.   The technique for staining and imaging lymphatic vessels ingrowth 

in whole corneal wholemounts is described in detail in Chapter 2. 

Wholemounts were imaged by fluorescent microscopy (Olympus).   An image of 

each quadrant was captured with original magnification of x100.    Radial 

ingrowth of LYVE-1 + vessels from the limbus was measured in each quadrant by 

a masked observer using image analysis software (Soft Imaging System GnbH, 

Munster, Germany).  First the system was calibrated by photographing a 1mm 

scale at the same magnification (x100).  Using a freehand drawing tool on the 

software a line was traced manually over each lymphatic vessel and its branches.   

The software automatically calculated the length of each line and these values 

were recorded and the combined total length of lymphatic vessels in each 

quadrant was calculated.  The totals for each quadrant were added to give a 

measure of lymphatic ingrowth for each cornea.  At least 4 corneas were 

analysed per group per timepoint.  Mean values were calculated. 
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Figure 4.7 Experimental design part 3 

 

 

4.4.3. Results 

 

At day 2 post-transplantation significantly more LYVE-1+ radial vessel ingrowth 

was detected in allergic recipients of allografts than in naïve recipients 

(cumulative length 2564 μm v 1189 μm;   p=0.014; Figure 4.8).   At day 6 post-

transplantation the lymphatic ingrowth approached the graft-host interface and 

there was no significant difference between allergic and naïve recipients of 

corneal grafts (cumulative length of 12908μm v 13527μm).  No lymphatic 

ingrowth beyond the graft-host interface was seen at this timepoint. 

At days 2 and 6 post transplantation radial ingrowth of LYVE-1+ vessels was 

significantly reduced in dexamethasone-treated allergic recipients of allograft 

compared with untreated recipients (Figure 4.9; cumulative length at day 2 of 

2564μm v 1141μm; p= 0.029; cumulative length at day 6 of 12908μm v 3387μm; 

p= 0.009) 
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Figure 4.8 Corneal lymphangiogenesis after corneal allotransplantation 

Panels A-D show representative images of corneal wholemounts stained with 
anti LYVE-1 in naïve (A, C) and allergic (B, D) recipients of corneal transplants at 
day 2 (A, B) and day 6 (C, D) post-transplatation. Panel E is a histogram 
describing the mean cumulative lymphatic ingrowth (error bars show SEM). At 
day 2 post-transplantation significantly more LYVE-1+ radial vessel ingrowth 
(green) was detected in allergic recipients (B) of allografts than in naïve 
recipients(A, E; *  p=0.014)  There was no statistically significant difference in 
lymphatic ingrowth at day 6 between naïve (C) and allergic (D) graft recipients. 
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Figure 4.9 Effect of Treatment on corneal lymphangiogenesis 

Panel A is a histogram describing the mean cumulative lymphatic ingrowth (error 
bars show SEM).  Panels B and C are representative pictures of corneal 
wholemounts stained with anti-LYVE-1 at days 6 post corneal transplantation in 
an allergic recipient (B) and an allergic recipient treated with 6 days of twice-daily 
dexamethasone 0.1% (C). Treatment with twice-daily topical dexamethasone 
0.1% significantly inhibits corneal lymphangiogeneis at days 2 (p=0.029) and 6 
(p=0.009) in allograft recipients with allergic conjunctivitis (A; *= p<0.05).  
Extensive LYVE-1+ vascular ingrowth can be seen on the wholemount of a 
cornea at 6 days post-transplantation in an untreated recipient with perioperative 
allergic conjunctivitis (B).  By comparison, relatively little ingrowth is seen at day 
6 in the recipient treated with twice daily dexamethasone 0.1% drops (C).   
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4.5.  DISCUSSION   

 

4.5.1. CD11b+ cells in the host cornea 

 

The finding of increased numbers of CD11b+ cells in host cornea at day 2 post –

transplantation in allergic recipients of corneal grafts is a novel finding.   

CD11b is a functional molecule which together with CD18, forms part of the 

integrin Mac-1 which regulates leukocyte adhesion and migration(Solovjov et al., 

2005).  Mac-1 is expressed on macrophages and several authors appear to use 

CD11b as a marker of macrophages(Chen et al., 2005,Maruyama et al., 2005).  

However Mac-1 is also expressed on neutrophils.  Accordingly the CD11b+ cells 

in the cornea in my experiments were seen to stain not only with antibodies 

against markers macrophages (F4/80) but also against those for neutrophils (Gr-

1).   These cells represent the early innate response to corneal injury.  It is also 

possible that the population of CD11b+Gr-1+ in the cornea following 

transplantation represents myeloid suppressor cells.  If so, the net effect of the 

increased numbers of these cells seen in the setting of allergic conjunctivitis may 

be to cause a reduction in corneal inflammation.  

 

In the vascularisation high-risk model of corneal transplantation, early infiltration 

with neutrophils and macrophages was also increased(Yamagami et al., 2005b).   

This high-risk model is characterized by the presence blood and lymphatic 

vessels in the host cornea prior to transplantation.   Vascularisation of the cornea 

provides ready access for ingress and egress of immune cells.  Because a 

normal cornea contains few/no blood vessels, inflammatory cells enter the 

corneal stroma, when required, via the limbal conjunctiva.  In the allergic 

conjunctivitis model the conjunctiva was seen to be heavily infiltrated with 

CD11b+ cells at 48 hours post transplantation(Ohbayashi et al., 2007,Fukushima 

et al., 2009).  This conjunctival inflammation appears to facilitate or cause the 

entry to the cornea of increased numbers of inflammatory cells.    
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My data suggest that at 2 days post-transplantation most of the inflammatory 

cells in the cornea are confined to the host.  Relatively few cells were seen in the 

graft at this stage but this situation changes at day 6 when large numbers of 

CD11b+ cells are seen in the centre of the graft.  These data are not consistent 

with those of  Kuffova  who found a sustained peak of CD11b+ cell infiltration of 

the graft between 6 hours and 6 days post-transplantation(Kuffova et al., 2001) .   

In my model there appears to be a lag-time for entry of CD11b+ cells to the graft.  

Whether this is due to a relative barrier effect of the graft-host interface or simply 

due to the fact that the cells are moving in a centripetal direction and take more 

time to reach the centre is not clear.     

 

 

4.5.2. Corneal lymphangiogenesis 

 

There appears to be a strong relationship between infiltration of the cornea with 

CD11b+ cells and the development of new lymphatic vessels(Maruyama et al., 

2005).  This has been attributed mostly to the macrophage cohort of CD11b+ 

cells although the exact mechanism has not been established.   

A population of CD11b+ cells in the conjunctiva have been found to also stain for 

the lymphatic endothelial markers LYVE-1(Xu et al., 2007) and VEGFR-

3(Hamrah et al., 2004).  One theory that has been suggested is that these cells 

enter the cornea in response to inflammation and incorporate themselves into 

developing lymphatics.   Dana found that the typical response to a corneal suture 

was a decrease in the numbers of conjunctival LYVE-1+ cells and an increase in 

the numbers of corneal LYVE-1+ cells suggesting that the conjunctival LYVE-1+ 

cells enter the cornea and contribute to lymphangiogenesis(Chen et al., 2005).  

In our experiments we found that very few CD11b+ cells infiltrating the cornea 

were LYVE-1+.  In addition many CD11b+ cells were Gr-1+ (neutrophils) and not 

F4/80+ (macrophages).  This suggests that only a proportion of the infiltrating 

cells have the capacity to contribute directly to lymphangiogenesis.   Lymphatic 

vessels in the cornea and conjunctiva were CD11b- on immunohistochemistry 
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suggesting either that newly recruited CD11b+LYVE-1+ cells did not contribute 

directly to the new lymphatic endothelium or that these cells lose the CD11b 

marker once they incorporate into the new lymphatic endothelium.   In a study of 

de novo lymphangiogenesis in human renal transplantation Kerjaschki et al also 

found that endothelial progenitor cells did not retain the CD11b marker once 

incorporated into new lymphatics(Kerjaschki et al., 2006).  Maruyama has 

described LYVE-1+CD11b+ double positive vessels in the cornea on 

wholemount(Maruyama et al., 2005).  We did not perform double staining in 

corneal wholemounts but it is possible that there is an inconsistency in staining 

between the techniques of immunohistochemistry and corneal wholemount.    

Another theory regarding the role of CD11b+ macrophages in corneal 

lymphangiogenesis is that they release VEGF-C, a potent pro-lymphangiogenic 

cytokine which is a ligand for VEGFR3(Kerjaschki, 2005).  

 

The role of neutrophils (which are also CD11b+) in this process has not been 

explored.  Cursiefen et al report that neutrophils are the dominant CD11b+ cells in 

cornea at one week after corneal suture placement(Cursiefen et al., 2004b).   A 

later paper by the same group describes the use of clotidronate liposomes to 

inhibit CD11b+ influx to the cornea after transplantation and found that in this 

setting lymphangiogenesis was inhibited(Maruyama et al., 2005).  From the data 

presented in their papers, clotidronate liposomes appeared to inhibit influx of all 

CD11b+ cells to the cornea and to inhibit corneal lymphangiogenesis but the 

differential roles of macrophages and neutrophils were not explored.  

 

Shimizu has studied the role of the Mac-1 molecule in cardiac transplantation and 

found that, in a mouse model, cardiac transplantation to Mac-1 KO recipients 

improved graft survival as compared to WT recipients.  To investigate whether 

this effect was due to impaired macrophage function or impaired neutrophil 

function, Mac-1 KO graft recipients were reconstituted with WT macrophages and 

WT neutophils.  Adoptive transfer of WT macrophages reduced survival while 

adoptive transfer of WT neutrophils did not affect survival suggesting that any 
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functional role of Mac-1/ CD11b in cardiac transplantation is due to its presence 

on macrophages but not on neutrophils(Shimizu et al., 2008). On other hand 

there are reports which support a role for neutrophils in rejection of cardiac 

allografts.  Morita depleted neutrophils in cardiac graft recipients using the anti-

Ly6G mAb, RB6.8C5 and found that this improved graft survival(Morita et al., 

2001). 

 

If inhibiting CD11b+ influx inhibits lymphangiogenesis, does increasing CD11b+ 

influx accelerate lymphangiogenesis?   Based on my observations described 

above, the answer appears to be yes but only very slightly.  The difference 

between allergic and naïve eyes was marginal (but statistically significant) at day 

2 and there was no difference at all at day 6 by which time lymphangiogenesis 

had reached the graft-host interface in both groups.   Although at day 6 CD11b+ 

cells had entered the graft no lymphatic vessels were evident in the graft at this 

time suggesting either a) that CD11b+ cell infiltration is necessary but not 

sufficient for corneal lymphangiogenesis b) that the wound at the graft host 

interface provides a barrier to lymphatic ingrowth or c) that there is a lag between 

CD11b+ cell influx and lymphangiogenesis and that lymphatic vessels may have 

been observed in the graft in a group at a later timepoint if such a group had 

been included in the experimental design.  

 

4.5.3. Inhibition of corneal lymphangiogenesis with topical corticosteroid 

 

Investigators have reported inhibition of corneal lymphangiogenesis using 

inhibitors of VEGF-A or VEGFR-3 with associated improvements in graft survival 

(Chen et al., 2004,Bachmann et al., 2008).  Post-operative topical corticosteroids 

are currently used on all human corneal graft recipients but until now we have 

known little about their effect on corneal lymphangiogenesis.  Collin described 

inhibition of limbal lymphatic growth by topical corticosteroid over 20 years 

ago(Boneham and Collin, 1995) and we have confirmed this finding in the setting 

of corneal allotransplantation.   There is experimental evidence that topical 
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corticosteroids inhibit influx of CD11b+ innate immune cells to the cornea and 

corneal haemangiogenesis(Basu et al., 1981,Nakao et al., 2007).  Inhibition of 

innate immune cell infiltration of the host cornea and/ or inhibition of VEGF-A 

secretion by infiltrating cells may be the mechanisms by which topical 

corticosteroid inhibits lymphangiogenesis.   

 

 

4.5.4. Effect of topical treatment on graft survival in recipients with allergic 
conjunctivitis 

 

Short-term post-operative topical dexamethasone treatment improved long-term 

corneal allograft survival.  The local effects of corticosteroids on the immune 

response are many and varied and it is implausible that inhibition of 

lymphangiogenesis is the sole reason for the improvement in graft survival seen.  

However, it is likely to be a contributory factor.   

One question that has not been addressed, and which would help to decipher 

how much of the beneficial effects of dexamethasone 0.1% is due to the 

suppression of allergic conjunctivitis and how much is due to other effects of the 

treatment, is: what is the effect of topical dexamethasone 0.1% on the survival 

and post-operative lymphangiogenesis in naïve recipients of corneal allografts?  I 

became aware of this weakness in my experimental design relatively late and 

was unable to revisit this question.  However, other laboratories have 

demonstrated a beneficial effect of topical corticosteroid on survival time in low 

rejection risk small animal corneal transplantation  (Zhang et al., 2000,Williams et 

al., 1987).   

Short-term post-operative topical olopatadine treatment did not improve long-

term corneal allograft survival.  This may be interpreted in a number of ways.  On 

one hand it may be interpreted as indicating that treatment of perioperative 

allergic conjunctivitis is not effective at improving corneal graft survival.  Given 

that olopatadine has less far-ranging effects on immune function than 

dexamethasone and, as such, is a more specific therapy for allergic conjunctivitis 



 211 

these data appear to support the proposal by Niederkorn that the accelerated 

rate of rejection in atopic mice is not related to local conjunctival inflammation.  

On the other hand, we must bear in mind the mechanism of actions of 

olopatadine which are mast cell stabilization and antihistamine effect.  Mast cell 

degranulation and histamine release are key events in the early phase of allergic 

conjunctivitis(Fukuda et al., 2009).  There is currently much interest in the role of 

mast cells in tolerance induction in acquired immune responses.   DeVries 

recently showed that mast cell degranulation led to rejection of previously 

tolerised skin grafts and that this effect was mitigated by prior stabilization of 

mast cells(de, V et al., 2009).  Although a mast-cell stabilizing drug (olopatadine) 

was used in this experiment it is probably not correct to say that the effect of 

mast cell stabilization on corneal graft survival in the setting of allergic 

conjunctivitis has been tested.  Mast cell degranulation occurs rapidly, 

extensively and explosively in our model in response to a once-off exposure to 

allergen.  Therefore subsequent treatment with olopatadine as in this study may 

be likened to ―closing the barn door after the horse has bolted‖.  To test the 

effectiveness of a mast cell stabilser on allergic conjunctivitis and graft survival it 

may have been better to use an additional group who were treated before 

exposure to allergen as in DeVries‘ study. 

Our results suggest enhancement of lymphatic vessels running in a subepithelial 

plane in the cornea in response to allergen-induced conjunctival inflammation in 

the hours following corneal transplantation.  It is possible that this may facilitate 

APC movement from the cornea to the draining lymph nodes and that this 

contributes to the accelerated rejection seen in the setting of allergic 

conjunctivitis.  Whether these phenomena are caused specifically by conjunctival 

inflammation induced by allergen challenge and not by conjunctival inflammation 

of other causes is not known but I would think this unlikely.  It is probable that 

conjunctival inflammation induced by any cause would have a similar effect but I 

did not test this hypothesis as I was unaware of an equally humane and 

reproducible method of inducing non-allergic conjunctivitis in mice.  Survival data 

from such an experiment would certainly shed further light on the question of 
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whether local inflammation or systemic immune effects of allergy/atopy are 

responsible for the increased tempo of corneal graft rejection seen in recipients 

with allergic conjunctivitis. 

4.5.5. Chapter summary 

 

The work presented in this chapter has demonstrated the following: 

 

 Short-term perioperative treatment with dexamethasone 0.1% drops 

mitigates the adverse effect of perioperative allergic conjunctivitis on 

corneal allograft survival. 

 Corneal allograft recipients with perioperative allergic conjunctivitis have 

significantly greater numbers of host cornea-infiltrating CD11b+ leukocytes 

at 2 days post transplantation than naïve recipients.  

 Corneal allograft recipients with perioperative allergic conjunctivitis have 

slightly greater centripetal ingrowth of new lymphatic vessels at 2 days 

post transplantation than naïve recipients.  

 The ingrowth of new corneal lymphatic vessels after corneal 

transplantation in animals with allergic conjunctivitis is significantly 

inhibited by treatment with dexamethasone 0.1% drops. 
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5. CHAPTER 5:  Understanding the mouse model of 
corneal allograft rejection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 214 

5.1. INTRODUCTION   

 

Most information on the sequence of events in rejecting corneas has been 

obtained from experimental animal models of corneal transplantation(Larkin, 

1994). The descriptive analyses of events in unmodified corneal graft rejection 

have come from the inbred rat(Williams and Coster, 1985,Larkin et al., 1997b), 

mouse(Zhang et al., 1996,Yamagami et al., 1999) and rabbit(Rayner et al., 2000) 

models of transplantation. Corneal transplantation in small rodents is technically 

very difficult, but they have the important advantage over larger animals in that 

genetically identical inbred strains are available, which allows control for many 

experimental variables. Studies from these species have demonstrated a 

correlation between inflammatory infiltrates in aqueous humour samples from the 

anterior chamber, pathological sections of cornea and local lymph nodes. 

However a problem with descriptive studies, and to a greater extent in studies of 

experimental therapies in all mouse and rat graft transplantation models, is that 

rejection is diagnosed subjectively on the first post-operative examination day on 

which graft transparency is lost. This end-point can be difficult to determine and 

the subjectivity may hinder determination of graft survival.  In contrast, the onset 

of rejection in rabbit allografts is indicated by endothelial or epithelial rejection 

lines.   

 

During the experiments described in chapters 3 and 4 three specific problems for 

identifying graft rejection in mice were identified: 

1. The loss of iris detail can be a subjective phenomenon.   

2. Occasionally grafts opacify and linger at grades 1-2 for a relatively long 

period before reaching grade 3.   

3. Occasionally grafts opacify in one part of the graft only so that part of the 

graft would be at Grade 0 and part would be at Grade 3. (Figure 5.1) 

 

In addition the temporal relationship between loss of graft clarity and immune-

mediated inflammation in the graft remains unclear.  For example it was 
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sometimes found that grafts of opacity grade 4 would have relatively few graft-

infiltrating cells as compared with those of opacity grade 3.  This apparent 

anomaly may have implications for studies of effector cell mechanisms in graft 

destruction. 

It would be a significant advance if thickness of the very thin cornea in rodents 

could be directly measured at sequential examinations following transplantation. 

In this way, it has been possible to perform longitudinal objective measurements 

of rabbit graft thickness using a clinical pachymeter, modified for use in rabbit in 

which central thickness is 330μ(Rayner et al., 2000).  

 

 

 

Figure 5.1 A mouse corneal allograft 

Most of the graft is clear with easily visible iris detail (Grade 0).  However part of 
the graft is opacified with loss of iris detail.  
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5.2. RESEARCH QUESTIONS   

 

The aims of the work described in this chapter were to: 

 

 evaluate the feasibility and reproducibility a pachymetry technique to 

measure mouse corneal thickness 

 correlate increases in corneal transplant thickness with clinical and 

histological signs of rejection. 

 

 

5.3. EXPERIMENTAL METHODS AND STUDY DESIGN   

 

The technique of corneal transplantation, as described in detail in Chapter 2, was 

used in this experiment.  C57BL/6 corneas were used as donors.  A/J mice were 

used as recipients.  Using the Corneogage pachymeter (Sonogage, Cleveland, 

USA) measurements of the donor cornea thicknes were taken pre-operatively, 

post-operatively and on alternate days thereafter as described in section 2.2.5 of 

chapter 2.   

 

The eyes containing the first 4 grafts to reach clinical grade 4 were enucleated 

and embedded in OCT compound as described in section 2.4.1 of chapter 2.  

Following this the first 4 grafts to reach clinical grade 3 were removed and so on.  

 

Corneal sections were cut, fixed and stained with haematoxylin.  Digital images 

of corneal sections were captured using an Olympus digital light microscopy 

system.  Cells in the central corneal graft were counted.  Because rejected 

corneal allografts demonstrate variable thickness due to oedema, it was not 

appropriate to count the number of cells per unit area.  Instead, the number of 

positive cells throughout the full thickness of a x100 field of the central stroma of 

each section was counted.   Cells were counted in 3 sections per rejected graft.   



 217 

4 grafts were examined in each group.   The mean number of cells in the grafts 

was calculated.   

Using a measurement tool on the Olympus software the central thickness of the 

frozen sections through each corneal graft was measured.  Central corneal 

thickness was measured in 3 sections per rejected graft.   4 grafts were 

examined in each group.   The mean the mean central corneal thicknesses were 

calculated.   

 

 

 

Figure 5.2 Study design 
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5.4. RESULTS   

 

 

5.4.1. Changes in corneal thickness post-transplantation 

 

Both allografts and isografts demonstrated an early increase in corneal thickness 

which peaked at post-operative day 2 to day 4 (Figure 5.4).  Thereafter corneal 

thickness in isografts declined slowly to a level approaching that of the normal 

cornea whereas allografts demonstrated a subsequent rapid gross thickening.   

This thickening was demonstrable both in-vivo with pachymetry and ex-vivo on 

frozen sections (Figure 5.5).   

 

 

 

 

Figure 5.3 Post-operative changes in corneal graft thickness 

Changes in corneal thickness in 2 representative allografts and 1 representative 
isograft in the first month after transplantation as measured by pachymetry. 
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Figure 5.4 Relationship between graft clarity and corneal thickness 

Graft clarity and histological features at clinical grades 1-4 following experimental 
corneal allotransplantation in the mouse model.  Note the increases in graft 
thickness on histological sections of grafts at each successive grade. 
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5.4.2. Correlation between corneal thicknesses measured in-vivo with 
pachymetry and ex-vivo on frozen sections.   

 

 

Comparing corneal thickness measured in vivo with pachymetry and ex vivo on 

frozen sections the mean bias was -45.35µm.  This means that, assuming there 

were no artefactual changes in corneal thickness of the frozen sections, the 

pachymeter overestimated thickness, on average by 45.35µm.  This appears to 

have been largely due to inaccuracies at higher corneal thicknesses.  On the 

Bland-Altman plots measurements above 400µm appear to be more grossly 

overestimated by the pachymeter (Figure 5.6 A).   When measurements above 

400µm were excluded the mean bias was -16.44µm with 95% agreement 

between -60.66µm and 27.78µm (Figure 5.6 B).  Visual inspection of the Bland-

Altman plot can identify systematic errors in relationship between difference in 

measurement values and their average.  i.e. one method of measurement may 

systematically give a higher or lower value than another (even though the two 

methods of measurement may correlate very well).  There was no obvious 

systematic error up to thickness of 400 µm.   
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Figure 5.5  Correlation and agreement between in vivo and ex vivo 
measurements of corneal thickness 

Correlation and agreement between corneal thickness measured in-vivo with 
pachymetry and ex-vivo on frozen sections as demonstrated by an X-Y scatter 
plot (A) and a Bland-Altman plot (B).  Note the increased error for measurements 
of thickness greater than 400µm.  When these measurements were excluded the 
mean bias was much reduced and no other systematic error was observed (C, D) 
Explain diagrams 
 

 

 

 

5.4.3. Reproducibility of in-vivo measurements of corneal thickness 

 

There was a good correlation between repeated values of corneal thickness 

measured with pachymetry by the same observer. (R2=0.96 ;  Figure 5.7).  No 

systematic error was seen on the Bland-Altman plot.  Mean difference was 
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3.96µm with 95% limits of agreement between 32.58 and -24.66µm.   

There was also a good correlation between measurements by independent 

observers. (R= 0.92; Figure 5.8)  Again no systematic error was seen on Bland-

Altman plot.   Mean difference was -11.35µm with 95% limit of agreement 

between 33.04 and -55.74µm.   

 

 

 

 

 

 

 

Figure 5.6 Intraobserver variation of in vivo measurements of corneal 
thickness 

There was a high correlation between repeated values of corneal thickness 
measured with pachymetry by the same observer. (R2=0.96 ; A).  No systematic 
error was seen on the Bland-Altman plot(B).  Mean difference was 3.96µm. 
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Figure 5.7 Interobserver variation of in vivo measurements of corneal 
thickness 

There was a high correlation between measurements by independent observers. 
(R= 0.92; B)  No systematic error was seen on Bland-Altman plot (B).   Mean 
difference was -11.35µm. 
 

 

5.4.4. Corneal thickness and clinical grade 

 

The mean corneal thickness measurement by pachymetry increased with each 

increase in the clinical grade (Table 5.1).   All grafts of clinical grades 0, 1and 2 

had thicknesses of < 300µm while all grafts of clinical grades 3 and 4 had 

thicknesses >300µm (Figure 5.9). 

 

Clinical grade n of measurements Mean corneal thickness 

0 22 134.86 +/- 4.6 

1 32 184.38 +/- 4.76 

2 11 233.36 +/- 10.85 

3 7 357.83 +/- 22.45 

4 4 595.75 +/- 45.35 

Table 5.1 Corneal graft thickness 
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Figure 5.8 Measurements of thickness in clinically rejected and non-
rejected corneal grafts. 

Median graft thickness was significantly greater in rejected (grades 3 and 4) 
versus non-rejected (grades 0,1 and 2). P<0.0001.  All clinically non-rejected 
grafts had thicknesses of <300µm.  All clinically rejected grafts had thicknesses 
≥300µm.   Horizontal bars represent medians. 
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5.4.5. Correlation of graft thickness with number of stromal cells 

 

The increase in corneal thickness seen as graft opacification progresses from 

grade 0 to grade 2 is associated with increased cellularity of the graft stroma 

(Figures 5.5, 5.10).  Further increases in thickness beyond grade 2 / 300µm did 

not appear to be associated with further increases in graft stromal cellularity 

(Figure 5.10).   

 

 

 

 

 

 

 

 

Figure 5.9 Correlation of graft thickness with number of stromal cells 

The increase in corneal thickness seen as grafts progress from grade 0 to grade 
2 is associated with increased cellularity of the graft stroma.  Further increases in 
thickness beyond grade 2 / 300µm do not appear to be associated with further 
increases in graft cellularity. 
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5.5. DISCUSSION   

 

 

A key shortcoming of the mouse model of corneal transplantation is imprecision 

in diagnosis of rejection.  In rabbits and rats, endothelial precipitates can in most 

graft recipients be directly visualised as a clear rejection end-point(Katami, 1991), 

especially valuable in studies of interventions to delay or accelerate rejection; this 

diagnostic feature is rarely seen in the smaller mouse eye.  Previously reported 

criteria for diagnosis of mouse graft rejection rely on subjective assessment of 

graft clarity.   

The experiment described in this chapter has shown that mouse central corneal 

graft thickness may be reliably measured in vivo up to thickness of 400 µm using 

a clinical pachymeter, and that graft thickness increases during allograft rejection.  

In this study a small number of measurements in grafts of grade 4 opacity 

suggest that pachymeter measurements of greater than 400 µm are less reliable. 

This is not of undue concern, as these measurements were made in grafts 

examined later than the clinically observed onset of rejection, a situation that 

usually does not occur in experimental studies of graft rejection.  Early transient 

post-operative graft thickening was seen in both allografts and isografts.  This 

thickening, which has also been described in the rabbit model of corneal 

transplantation(Rayner et al., 2000), occurs too early to be mediated by a specific 

immune response and is most likely due to surgery-induced, alloantigen-

independent inflammation.  We found rejection-associated graft thickening to be 

a rapid process, with grafts moving from baseline to maximal thickness in about 

one week.    

The finding that all grafts of grades 0, 1 and 2 had thicknesses of <300 µm 

whereas all grafts of grades 3 and 4 had thicknesses >300 µm suggests that 

using an increase in graft thickness to 300 µm to identify established rejection 

would be as good as the existing method of grading by an experienced observer.   

Use of pachymetric graft measurements would have a number of advantages 

over other criteria to diagnose rejection. First, this technique would provide an 
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objective measure of graft thickness, eliminating some observer bias.  In this 

context it is notable that very few published studies of rodent corneal graft 

rejection report masking of the examining investigator with respect to 

experimental intervention groups. Second, it would standardise the diagnosis of 

experimental graft rejection, allowing better comparison of survival results 

between different laboratories.  Third, it can be used by inexperienced observers.  

The mean interobserver bias of 11.35 µm is insignificant in the context of 

increases in graft thickness from 134 µm (grade 0) to 300 µm (at rejection).   

In published studies and earlier work from our own laboratory, graft opacity grade 

3 has been used as an end-point because the loss of iris detail at this grade is a 

more definite feature than the much more subjective signs designating opacity 

grades 1 and 2.  Notwithstanding, it is clear that grafts at grade 2 contain 

infiltrating immune cells and are probably undergoing rejection (Figures 5.4, 

5.10).   

It is of interest that there was no linear correlation between the increase in graft 

thickness and the number of graft-infiltrating cells during rejection.  Early 

thickening of the graft was associated with a large graft infiltrate. Inflammatory 

cells were seen adhering to the endothelium on histological sections of grafts 

with early (grade 2) thickening (Figure 5.5). Thereafter the graft continued to 

thicken without further increases in graft-infiltrating cells.  Grafts at opacity grade 

4 contained surprisingly few cells.  Given the rapid nature of graft thickening, this 

suggests that cellular immune-mediated inflammation in the graft stroma during 

rejection in this model is quite short-lived, and that endothelial injury and 

decompensation is a more significant determinant of corneal thickness change in 

the late phase of rejection.   It is easier to study the cellular mediators of stromal 

cell rejection than those of endothelial rejection and human and animal studies 

have largely relied on the analysis of stroma-infiltrating cells in sections of 

rejected corneal grafts.  It has been assumed, not unreasonably, that those cells 

mediating stromal rejection are the same as those mediating endothelial 

rejection.  Rejected human grafts are invariably studied at quite a long interval 

after onset of rejection. In mice the numbers of stroma-infiltrating cells appear to 



 228 

peak early after onset of rejection and decrease in established rejection.  If this 

were to occur in human rejection then further questions would be raised as to the 

relevance of the inflammatory cells seen on histopathological examination of graft 

stroma to the process of endothelial rejection.   

In experimental corneal pachymetry may allow discrimination between (i) onset of 

rejection and (ii) maximal graft inflammation, either of which may be of particular 

interest to investigators as an experimental endpoint.  We found that graft 

inflammation was maximal when thickness was close to 300 µm rather than 

much higher.  Use of a graft thickness cut-off of 300 µm for rejection would 

therefore coincide with maximal graft inflammation, a measurement of value in 

studies of effector mechanisms of graft rejection.  On the other hand a graft 

thickness of greater than 200 µm could be used to diagnose the earliest onset of 

rejection.  This lower figure is based on our finding of large numbers of graft-

infiltrating cells in specimens at thickness between 200 µm and 300 µm.  A 

potential disadvantage of using graft thickness of 200 µm would be the risk of 

false positives, given that i) some grafts show early post-surgery (presumably 

alloantigen-independent) thickening to approximately this level and ii) the fact 

that there is some inter/ intra observer error.  Whichever cut-off is used as an 

experimental endpoint, I feel that graft pachymetry will be a useful tool in 

experimental corneal transplantation in small animals. 
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6. CHAPTER 6: Aqueous humour alloreactive cell 
phenotypes, cytokines and chemokines in human 
corneal allograft endothelial rejection 
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6.1. INTRODUCTION   

6.1.1. Biopsy of transplanted organs 

 

Allogeneic rejection of transplanted tissues is a complex immunological process 

culminating in the infiltration and destruction of the tissue by host leukocytes.  

The need for tissue biopsy to diagnose rejection in vascularised organ grafts has 

allowed study of the phenotype of graft-infiltrating cells(Hancock et al., 1983) 

during acute rejection of these grafts.   As long ago as 1958, histological analysis 

of rejecting skin allografts identified macrophages and lymphocytes as the 

predominant mediators of immune rejection in that tissue(Brent et al., 1958).   

Biopsy of corneal tissue is not performed or necessary during acute corneal graft 

rejection because graft transparency would be compromised by scarring at the 

surgery site and corneal graft rejection can be diagnosed by direct observation of 

the eye.  Accordingly, surprisingly little information is available on the cellular and 

molecular mediators of acute corneal graft rejection in humans.  Almost all 

information on the effector components in the early phase of acute corneal graft 

rejection comes from animal models 

 

 

6.1.2. Phenotype of graft-infiltrating cells during rejection 

 

In the experiments described in chapter 3 I identified CD4+ T lymphocytes, CD8+ 

lymphocytes, and macrophages in acutely rejected mouse corneal allografts.  

These data are consistent with reports describing corneal graft rejection in other 

rabbits and rats(Williams et al., 1992,Larkin et al., 1997b).   Published 

histopathological studies of replaced human grafts that have failed following 

rejection also report CD4+ T lymphocytes, CD8+ lymphocytes, and macrophages 

in the graft but these studies describe  cellular changes at a long interval after 

observed rejection onset and prolonged topical steroid administration(Larkin et 

al., 1997a).  Data from my experiments desribed in Chapter 5 demonstrated 

variation in the numbers of graft-infiltraing cells in relation to the clinical course of 
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rejection with considerable reduction in the number of graft-infiltrating cells in the 

later stages of rejection.  If such a phenomenon were to occur in humans, then 

the results of pathological studies of rejected corneal grafts would not reflect 

accurately the cellular events during acute rejection.  In addition pathological 

studies on rejected human corneal grafts provide information on cells infiltrating 

the graft stroma only and no information on the alloreactive cells in the aqueous 

humour which interact directly with the endothelium of donor cornea, itself critical 

for maintenance of graft transparency.  

 

 

6.1.3. Aqueous sampling and analysis of inflammatory cells in human 
aqueous 

 

Cells in the aqueous are accessible to sampling and diagnostic anterior chamber 

sample removal has been shown to be a safe procedure in corneal transplant 

rejection and in uveitis(Van der and Rothova, 1997,Calder et al., 1999).  Flow 

cytometry has been used by a number of groups to identify subtypes of 

leukocytes in aqueous humour during acute anterior uveitis.    In 1986 

Deschenes desribed the use of flow cytometry to measure proportions of 

cytotoxic T-, helper T- and B lymphocytes in aqueous humour of patients with 

acute anterior uveitis (Deschenes et al., 1986).  Deschenes and other early 

adopters of flow cytometry for aqueous analysis were predominantly interested in 

lymphocytes subsets(Wang et al., 1995).  Later Muhaya et al and Calder et al 

evaluated proportions of other leukocytes as well as lymphocyte subsets in 

anterior uveitis and consistently found monocytes(Calder et al., 1999,Muhaya et 

al., 1998).   Curnow looked at lymphocytes in more detail measuring expression 

of the chemokine receptor CXCR4 on lymphocytes in aqueous during acute 

anterior uveitis and found that this receptor was up-regulated in patients treated 

with glucocorticoids(Curnow et al., 2004b).       

Reinhard and colleagues have analysed cells in aqueous humour during acute 

corneal graft rejection using cytospin microscopy(Reinhard et al., 2002).  This 
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paper demonstrated that aqueous from patients who are undergoing endothelial 

rejection contains macrophage / monocytes, lymphocytes and 

granulocytes(Reinhard et al., 2002) but it did not describe the relative quantity of 

each subset.   

Using the flow cytometry machine in our laboratory (Partec) expression of 4 

different proteins on the surface or inside (intracellular staining) cells could be 

measured simultaneously.  Given the evidence for a role for CD4+ cells in corneal 

graft rejection it was tempting to assume that these cells would be found in 

aqueous humour, to use one antibody against CD4 and to use the other 3 

available markers/ colours to measure functional determinants of CD4+ activity 

e.g. costimulatory molecule ligands (CD28, CD40) or markers for the regulatory T 

cell subset (CD25, FoxP3).  In the end I decided that, because there were so few 

data available on aqueous cell phenotypes during corneal graft rejection, it would 

be best to use antibodies against CD4, CD8 and CD14 to try to answer the most 

fundamental questions.  (see chapter aims).   I considered using the fourth colour 

to try to identify eosinophils (I had hoped to recruit some patients with graft 

rejection and a history of atopy or allergic eye disease).  This would have allowed 

a direct comparison with the results of cell phenotypes in rejected mouse corneal 

grafts.  However, when I learned that no single cell surface marker could be used 

to identify human eosinophils I disregarded this plan.  For the fourth colour I also 

considered using an antibody against natural killer cells which have been found 

in aqueous of rats during corneal graft rejection.   In order to quantify proportions 

of leukocytes staining with each marker I needed to be able to identify which 

events were leukocytes.  In analysis of peripheral blood leukocytes can be 

identified in characteristic clusters of events on the FSC/SSC plot.  I was not sure 

whether this would be the case in aqueous so I decided to use my final colour to 

stain for the pan-leukocyte marker, CD45, which would confirm the presence (or 

absence) of leukocytes in the aqueous samples.  
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6.1.4. Analysis of inflammatory cytokines and chemokines in human 
aqueous 

 

The expression of pro-inflammatory cytokines and chemokines in corneal tissue 

during corneal allograft rejection has been studied in experimental animals using 

RT-PCR and ribonuclease protection assay (Torres and Kijlstra, 2001,Pillai et al., 

2008a,Yamagami et al., 1999,King et al., 2000).  There are no reports of analysis 

of aqueous cytokines and chemokines in animal models of corneal 

transplantation.  This is probably due to the fact that, in the species of animals 

usually used as recipients (rodents), the volume of aqueous humour is small. 

The chemokines found with greatest consistency in the analyses of corneal/ 

ocular tissue were MCP-1, RANTES, MIP-1α and IP-10(Yamagami et al., 1999).  

I therefore decided to measure these chemokines in human aqueous.  In addition 

I decided to measure Eotaxin.  (At the beginning of the study I had hoped to 

recruit some graft rejection patients with a history of atopy/ allergic eye disease 

and whilst I did not have a suitable cellular marker for eosinophils for use in the 

cellular analysis, I felt that expression of Eotaxin which is chemotactic for 

eosinophils would be relevant and worth measuring). 

Cytometric bead array has been used for analysis of aqueous humour cytokines 

in patients with uveitis(Curnow et al., 2005) and appears to be a reliable method 

for the estimation of protein concentration in aqueous humour, agreeing 

reasonably well with ELISA measurements(Ooi et al., 2006).  One previous study 

of human aqueous during corneal allograft rejection was published while my own 

study was ongoing.  In this study Funding and co-workers used multiplex beads 

to quantify some of the inflammatory markers in aqueous during acute human 

corneal graft rejection(Funding et al., 2006).   The chemokines MCP-1,IL-8, MIP-

1β were found in human aqueous during corneal graft rejection and not in normal 

aqueous.  In addition they found expression of the following cytokines:  IL-1β, IL-

2, IL-4, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-17, IFN-γ and TNF-α. 
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6.1.5. Chapter aims 

 

The aims of the work presented in this chapter were to: 

 

 Establish whether leukocytes could be identified in human aqueous 

samples during acute rejection of corneal graft endothelium. 

 Identify and quantify the proportion of leukocytes in aqueous humour 

during rejection that stained positive for CD4, CD8 and CD14. 

 Compare the proportions of CD4+, CD8+ and CD14+ leukocytes in 

aqueous humour with those in peripheral blood. 

 Measure the concentrations of cytokines and chemokines in aqueous 

humour in normal patients and patients with acute corneal graft endothelial 

rejection. 

 Measure the concentrations of cytokines and chemokines in serum in 

normal patients and patients with acute corneal graft endothelial rejection. 
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6.2. EXPERIMENTAL METHODS AND DESIGN  

 

 

 

Figure 6.1 Study design 

 

 

 

6.2.1. Aqueous humour sample collection 

 

Aqueous humour (100 -200µl) samples were obtained via anterior chamber 

paracentesis with either an insulin syringe or an aqueous micropipette (Figure 

6.2; Becton Dickinson, Oxford, UK).  Topical proxymetacaine was instilled in the 

patient‘s eye.  A drop of povidone iodine 5% was instilled 5 minutes prior to 

sampling.  For patients with corneal graft rejection an eyelid speculum was 

inserted to fix the eyelids in position during aqueous sampling.  The patients 
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head was positioned on the chin rest of the slit lamp and the needle was inserted 

through the temporal cornea into the anterior chamber taking care to avoid 

intersecting with the needle tip any corneal vessels near the entry site.  Aqueous 

was slowly withdrawn whilst observing the consequent shallowing of the anterior 

chamber.  The needle was withdrawn from the anterior chamber at a time 

deemed safe to avoid any contact of the needle tip and iris/ lens.  This typically 

led to a yield of between 100-200μl of aqueous humour.  The aqueous was 

transferred to an EDTA-coated Eppendorf tube and taken directly to the 

laboratory for immediate analysis.  Simultaneous peripheral venous blood 

samples (2 ml) were taken from each patient into an EDTA- coated tube.  

Control aqueous samples were taken after the initial corneal incision during 

cataract surgery. 

 

 

Figure .6.2 Aqueous micropipette 

 

 

6.2.2. Flow Cytometry- Acquisition 

 

Acquisition of flow cytometry data for peripheral blood has been described in 

detail in chapter 2.  Aqueous samples were handled as follows: 

 

Aqueous humour (AH) samples were transferred to EDTA-coated microtubes and 

centrifuged at 300g for 5 minutes at 4°C.  Thereafter the cell-free supernatant 
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was collected and stored in aliquots at -70°C for later analysis by cytometric bead 

array.  The cell pellet was resuspended in 200µl PBS and divided evenly into two 

tubes.  One tube was stained with 5µl each of fluorochrome-labelled anti-CD45, 

anti-CD4, anti-CD8 and anti-CD14 monoclonal antibodies (antibodies described 

in detail in Chapter 2).  The other was stained with fluorochrome-labelled isotype-

matched control antibodies (all antibodies have been desrcribed in detail in 

Chapter 2).  Cells were incubated with antibodies for 40 minutes in darkness at 

room temperature. 

Then cells were centrifuged at 300g for 5 minutes at 4°C and resuspended in 

PBS for 5 minutes.  They were then centrifuged at 300g for 5 minutes at 4°C and 

finally resuspended in PBS before being analysed immediately by 4-colour flow 

cytometry without fixation.  

  

 

6.2.3. Flow Cytometry- Analysis 

 

 

For peripheral blood samples a gate was drawn manually around the leukocyte 

cluster as defined by their physical properties on the FSC/SSC scatter plot and 

the resulting events were analysed by creating quadrants to determine the 

percentages of CD45+ events which were also positive for CD4, CD8 and CD14 

respectively.  Quadrant analysis allows the determination of proportions of 

double-stained cells in a scatter plot of one colour versus another (Figure 6.3) 

In samples where a leukocyte cluster could be identified, aqueous humour was 

analysed in the same way.   
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Figure 6.3. Quadrant analysis of double-stained cells 

The proportion of CD45+CD4+ (A), CD45+CD8+ (B) and CD45+CD14+ (C) double 
positive cells could be measured using quadrant analysis.  
Plots for peripheral blood stained with isotype controls are shown in panels D, E 
and F.  The cells show low fluorescence with few positive events. 
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6.3. RESULTS   

 

6.3.1. Patient demographics 

 

Patients‘ diagnoses and demographics are summarised in Table 5.1. 

 

 Sex Age  Primary corneal diagnosis 

1 F 62  Pseudophakic bullous keratopathy (PBK) 

2 F 85  PBK 

3 M 76  Fuchs endothelial disease (FED) 

4 F 73  PBK 

5 M 65  PBK 

6 F 81  FED 

7 M 83  PBK 

8 M 51  PBK 

9 F 72  FED 

10 M 65  Microbial keratitis 

11 M 38  Keratoconus 

Table 6.1 Age, sex and primary diagnoses of patients with corneal graft 
rejection 

 

6.3.2. Sample collection and rejection outcome  

 

There were no complications of aqueous humour paracentesis.  Following 

paracentesis patients were treated with hourly topical dexamethasone 0.1% and 

chloramphenicol drops four times per day to the involved eye.  As determined by 

elimination of intraocular inflammation, rejection was reversed in all 11 cases. In 

two patients the grafts did not recover transparency even though anterior 

chamber inflammation was eliminated, presumably due to extensive endothelial 

cell loss by the time of reversal, and these grafts were deemed to have failed. 
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6.3.3. Identification of leukocytes in aqueous of patients with rejection 

 

The volume of aqueous humour collected from each patient was approximately 

100 to 200µl.  In all samples many events were visible on the FSC/SSC 

scatterplot.  In 8 of the 11 aqueous humour samples there was an observable 

cluster of events on these plots (Figure 6.4;A).   Aqueous stained with PerCP-

labelled anti-CD45 antibody revealed a second peak in fluorescence suggesting 

that some of the events on the scatter plot were cells expressing CD45 i.e. were 

leukocytes.  By gating on the CD45+ events it became clear that the CD45+ 

events corresponded with the visible cluster of events on the scatterplot (Figure 

5.3).  The median number of CD45+ events observed per sample was 199 (range 

81-837).  Apart from the CD45+ cluster there tended to be a lot of other events on 

the scatterplot which were CD45- (Figure 6.4).   In 3 samples no observable 

CD45+ cluster of events was visible on the FSC/SSC scatter plot although in 

each of these cases cells had been observed in the anterior chamber at the time 

of diagnosis of rejection.  I can only conclude that the cells in these samples were 

lost during the staining process.   
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Figure 6.4.  Identifying leukocytes in human aqueous 

A cluster of events is visible on the scatterplot (A).  Gating on the CD45+ events 
(Region gate RN1 in panel B) confirms that the events within the cluster on the 
scatterplot (seen in red in A) are CD45+ i.e. are leukocytes.   
Exposure to PerCP-labelled IgG1 (isotype control for anti-CD45 antibody) does 
not lead to a shift in fluorescence or a second peak in fluorescence as seen in 
Panel B.  This shows that the second peak in fluorescence in aqueous stained 
with anti-CD45 antibody is due to specific affinity for the antibody for these cells. 
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6.3.4. Analysis of normal aqueous 

 

As in rejection samples many events were seen on the scatterplot which were 

predominantly CD45-.  As in control staining of aqueous during rejection, a small 

and similar amount of positivity was seen for both CD45 and isotype control.  The 

typical cluster of events on scatterplot which represented cells in rejection 

samples were not seen (Figure 6.5). 

 

Figure 6.5.  Flow cytometry of normal aqueous 

Many events are seen on the scatter plot (A).  These events are CD45-.  There is 

no difference in staining between anti-CD45 (B) and its isotype control (C,D).   
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In some control samples a cluster of events was visible on the scatterplot.  

Gating on these events demonstrated that they were CD45-  i.e. were not 

leukocytes (Figure 6.6.)  One possibility is that they represent cellular debris 

released from the iris in response to the initial paracentisis during cataract 

surgery.   

 

 

 

 

Figure 6.6.  CD45 staining in normal aqueous 

In some control samples of aqueous, taken during routine cataract surgery, a 
cluster of events was visible on the scatter plot.  These are seen in region R1 in 
panel A.  Gating on these events revealed that, unlike the events seen during 
graft rejection, they were CD45-. 
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6.3.5. Aqueous and peripheral blood cell phenotypes 

 

To quantify proportions of the leukocyte subsets a gate was drawn manually 

around the leukocyte event cluster on the scatter plot.  The events within this 

gate were confirmed as CD45+ and only these events were used in the analysis.   

The relative proportions of CD45+CD4+, CD45+CD8+ and CD45+CD14+ events 

were calculated using quadrant analysis (Figure 6.7).  Isotype control staining of 

aqueous showed a small amount of positive staining (Figure 6.7) which was most 

likely due to retained antibody (samples were washed only once to minimise cell 

loss). 

T-lymphocytes (CD45+CD4+ and CD45+CD8+) and monocytes/macrophages 

(CD45+CD14+) were present in the aqueous of all patients with endothelial 

rejection (Fig 6.7).  The percentages of each phenotype of white blood cells in 

aqueous and peripheral blood are presented in Table 6.2.  The majority (58%) of 

immune cells in aqueous during rejection were CD14+.  This percentage of 

monocytes / macrophages in aqueous during rejection was significantly higher 

than that in peripheral blood (median value of 63.0% v 9.3%; p<0.0001; Figure 

6.8).  This was also true of CD8+ cells (median value of 18.5% v 9.9%; p= 0.036).  

Although the percentage of CD4+ cells was higher in aqueous during rejection 

than in peripheral blood (median value of 24.9% v 14.5%), this difference was not 

statistically significant.   The percentage of CD14+ cells in peripheral blood during 

rejection was significantly higher than that in control samples (median value of 

9.3% v 7.3%; p=0.036).  There were no significant differences between the 

percentages of either CD4+ or CD8+ cells in peripheral blood in rejection and in 

controls respectively (Fig 6.9). 
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Figure 6.7 Flow cytometry of aqueous humour 

These CD45+ leukocytes were further analysed in terms of their expression of 
CD4, CD8 and CD14  
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Figure 6.8 Phenotypes of inflammatory cells in aqueous during rejection 

Points shown are the values for each cell phenotype in aqueous humour (n=8, 
cells were not seen on flow cytometric analysis of 3 of the 11 samples) and 
peripheral blood (n=11) in patients undergoing acute endothelial rejection. 
CD14+CD45+ were the most frequent cells in aqueous humour during rejection 
followed by CD4+CD45+ and CD8+CD45+.  The respective proportions of 
CD14+CD45+ and CD8+CD45+ in aqueous (●) were significantly higher than 
those in peripheral blood (○) (*p<0.05, **p<0.0001).   Horizontal lines are at the 
median values. 
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Figure 6.9 Phenotypes of inflammatory cells in peripheral blood during 
rejection 

 

The proportion of CD14+CD45+ cells in peripheral blood was significantly higher 
during rejection (●) than in controls (○) (*p<0.05).  Negative controls samples 
were aqueous samples taken at the time of elective cataract surgery. Horizontal 
lines are at the median values. 
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 CD45+CD4+ CD45+CD8+ CD45+CD14+ 

Aqueous rejection 24.89 18.49 63.04 

Aqueous control No cells No cells No cells 

Blood rejection 14.45 9.86 9.33 

Blood control 12.48 10.45 7.25 

Table 6.2 Phenotypes of cells found in aqueous humour and peripheral 
blood expressed as median % of all CD45+ cells.   

See also Figures 5.8 and 5.9 for individual data points 

 

 

 

 

6.3.6. Cytokines and chemokines in aqueous and peripheral blood 

 

The cytokines and chemokines tested are listed in table 5.3.  Only the cytokine 

IL-6 and the chemokines MCP-1 and IP-10 were found at high levels in aqueous 

during endothelial rejection (Figure 6.10).  Expression of each of these three 

molecules was found also in control samples, but the levels during rejection were 

significantly higher than those in controls.  No expression of MIP-1a or eotaxin 

was found in the aqueous humour of control patients, but low levels of both were 

seen in aqueous during rejection (summarised in Table 6.3).  Levels of IFN-γ and 

TNF-α were very low or below the levels of detection. 

No significant differences were found in the expression of cytokines and 

chemokines in peripheral blood between rejection and control samples 

(summarised in Table 6.4).  It is of interest that very high levels of RANTES were 

found in peripheral blood of both groups (median 4097.1 pg/ml in rejection and 

4827.2 in controls).   
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 Rejection Control  

 Median 

(pg/ml) 

Range 

(pg/ml) 

Median 

(pg/ml) 

Range 

(pg/ml) 

p value 

IL-2 0 0 0 0 _ 

IL-4 0 0 0 0 _ 

IL-6 5399.29 8.58-46354.69 24.67 0-93.69 0.0015 

IFN-γ 0 0-5.02 0 0 _ 

TNF 0 0 0 0 _ 

MCP-1 819.8 291.6-10252.31 394.9 254.61-650.5 0.0258 

MIP-1a 3.06 0-16.88 0 0 0.007 

IP-10 6008.66 25.6- 7857.45 22.53 2.51- 592.6 0.0015 

Eotaxin 8.70 0-20.29 0 0 0.002 

RANTES 0 0 0 0 _ 

Table 6.3 Levels of cytokines and chemokines found in aqueous humour 
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 Rejection Control  

 Median 

(pg/ml) 

Range 

(pg/ml) 

Median 

(pg/ml) 

Range 

(pg/ml) 

p value 

IL-2 0 0 0 0 - 

IL-4 0 0 0 0 - 

IL-6 0 0 0 0 - 

IFN-γ 0 0 0 0 - 

TNF 0 0 0 0 - 

MCP-1 0 0-42.23 19.07 0-47.26 0.41 

MIP-1a 0 0 0 0 - 

IP-10 53.28 14.48-138.7 45.22 28.2-104.6 0.96 

Eotaxin 13.03 0-24.02 25.51 7.06-52.88 0.09 

RANTES 4885.61 1866.75-9262.3 4827.2 2171.69- 

9842.89 

0.96 

Table 6.4 Levels of cytokines and chemokines found in serum 
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Figure 6.10 Inflammatory cytokines and chemokines 

Statistically significant increases in expression of IL-6, MCP-1, IP-10, Eotaxin and 
Mip-1α were seen in aqueous during rejection compared with controls.  
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6.4. DISCUSSION   

 

 

6.4.1. Cells in aqueous humour 

 

Normal aqueous humour is devoid of inflammatory cells, a state maintained by 

non-permeable capillaries in the iris (the blood-aqueous barrier; BAB) and a 

contributory factor in ocular immune privilege. Other investigators have reported 

the absence of leukocytes in aqueous humour samples analysed by flow 

cytometry(Deschenes et al., 1986,Calder et al., 1999). We also found no 

leukocytes in normal aqueous.  In various types of ocular inflammation the BAB 

breaks down and inflammatory cells migrate into the aqueous.  In corneal graft 

rejection alloreactive cells which migrate into the aqueous can adhere to and 

destroy the corneal endothelium: cells can be directly observed at clinical 

examination as a linear aggregate progressing over a period of days across the 

donor but not adjacent recipient endothelium. 

Although anterior chamber paracentesis is a procedure which carries the risk of 

intraocular infection, sampling of aqueous humour in anterior uveitis (rather than 

transplant rejection specifically) for diagnostic and research purposes is relatively 

common and has been shown to have a low complication rate(Van der and 

Rothova, 1997).  In corneal graft rejection aqueous humour sampling is 

unnecessary for diagnostic purposes and has rarely been performed for research 

purposes, presumably due to safety concerns.  Although the number of patients 

recruited to this study was small, no patient suffered an adverse event as a result 

of aqueous sampling.   

With a range of 81 to 837, the number of cells analyzed was low by comparison 

with typical flow cytometry analyses from other types of sample (i.e. other than 

aqueous humour).  The volume of fluid removed from the eye was necessarily 

small because the total volume of aqueous is small (approx 600 µl) and thus only 

a limited amount may be removed without collapsing the anterior chamber and 

causing further damage to the endothelial monolayer.  However, notwithstanding 
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the small volume of fluid analysed, the cellular yield was low in comparison with 

aqueous humour samples of patients with acute anterior uveitis.  This is probably 

due to the fact that the anterior chamber reaction in graft rejection is less florid 

than that in severe anterior uveitis.  Investigators of uveitis usually take aqueous 

samples from eye with the most severe inflammation.  Cellular reactions in 

aqueous of 2+ to 4+ are typical in eyes examined in studies of uveitis(Deschenes 

et al., 1986) (Wang et al., 1995) .  We are confident that despite the low numbers 

of cells, distinct populations of these 3 cells types could be identified by flow 

cytometric analysis (see Figure 6.7). However I acknowledge that these results 

need to be interpreted with caution.  In future studies it would be possible to 

double the yield of cells by not dividing the aqueous sample for staining with 

isotype-matched controls.  Blood cells could arguably be stained with control 

antibodies. 

 

Our finding of macrophages and lymphocytes in aqueous during acute 

endothelial rejection is consistent with my data from the mouse model of corneal 

transplantation and with data from human and animal solid organ grafts(Hancock 

et al., 1983,Christen et al., 2009).  Early experiments by Medawar and Billingham 

established the adaptive nature of the immune response to allogeneic 

tissue(Medawar, 1944).  These studies coupled with the consistent finding of 

lymphocytes in acutely rejecting allografts has led to most of the focus, across all 

fields of transplantation biology, directed at cells of the adaptive immune 

response and CD4+ lymphocytes in particular.  Depletion studies in rodent 

models of corneal transplantation have demonstrated an important role for CD4+ 

cells(Yamada et al., 1999a), although recent evidence suggests that rejection 

may occur independent of these cells(Niederkorn et al., 2006a) .  CD8+ cells 

appear to have the capacity to mediate rejection but their role appears to be less 

important than CD4+ cells(Yamada et al., 2001).  Both CD4+ and CD8+ cells were 

identified in this study of human aqueous during rejection but at a lower 

frequency than cells of monocyte / macrophage lineage. The relatively large 

proportion of CD14+ cells in aqueous humour compared with peripheral blood 
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suggests selective recruitment of these cells rather than an indiscriminate 

breakdown of the BAB. 

 

 

6.4.2. The role of macrophages 

 

Given the relative prominence of CD14+ cells in aqueous humour during 

rejection, the potential role of macrophages in the rejection process is of 

particular interest.   

There has been recent interest in the potential role of cells of the innate immune 

response such as macrophages in allograft rejection(Wyburn et al., 2005,LaRosa 

et al., 2007).  Much interest has focused on the early cellular events after 

transplantation in which innate immune cell infiltration is seen prior to lymphocyte 

infiltration(Kuffova et al., 2001).  Innate immune cells express pattern recognition 

receptors which discriminate infectious non-self from self, but more recently are 

also thought to detect host-derived ―stress‖ molecules from damaged tissue.  In 

vascularised grafts ischaemia-reperfusion injury is believed to be a major 

stressor leading to an innate immune response.  While this is less important in 

transplantation of cornea, an avascular tissue, the mechanical trauma alone of 

suturing in the donor may cause significant tissue damage.  The ―danger‖ model 

proposed by Matzinger proposes that such alarm signals enhance 

immunogenicity by activating antigen-presenting cells (APCs)(Matzinger, 2002).  

As such, the danger model predicts a role of innate immune cells in the afferent 

limb of the immune response arc and it is very likely that macrophages play an 

important role in this part of the immune response to allogeneic cornea, one line 

of supporting evidence being the enhanced rat corneal graft survival reported 

following depletion of conjunctival macrophages with clodronate 

liposomes(Slegers et al., 2000).  Although we found high proportions of 

macrophages in aqueous during rejection, we believe that this is unrelated to the 

surgical trauma response as rejection onset in all patients examined occurred 

months or years after transplantation.   
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The reason why acute rejection occurs in some patients up to two or more years 

after transplantation is unclear.  It is possible in some corneal recipients that 

rejection is precipitated by a sub-clinical allo-independent local inflammatory 

episode in the cornea, such as infection: in such circumstances macrophages 

seen in aqueous might represent an innate immune response to this initiating 

stimulus.  Alternatively or in addition, macrophages may constitute part of the 

efferent immune response to allogeneic tissue. Our finding of macrophages as 

the highest proportion of cells in an established rejection episode suggests that 

they have an effector role, at least.  Although the presence of macrophages is a 

consistent finding during rejection of allografts generally, their precise role in the 

effector phase of the rejection process remains undetermined.  Macrophages are 

among the most versatile of inflammatory cells.  Experimental evidence suggests 

that they are more important in the afferent than in the efferent arm of the 

immune response to transplanted tissue(Hegde et al., 2005).  They are however 

capable of producing an array of pro-inflammatory cytokines and chemokines, 

some of which have been shown to be capable of inducing apoptosis of corneal 

endothelium(Sagoo et al., 2004).  Release of cytokines from macrophages into 

the aqueous is unikely to be a direct cause of endothelial cell loss in human 

corneal endothelial graft rejection.  During rejection endothelial cell loss is limited 

to the graft with no ―collateral damage‖ seen in host endothelium (which is bathed 

in the same aqueous) suggesting a more specific method of killing.   Two recent 

reports have demonstrated an important role for macrophages not only in antigen 

presentation, but as effector cells in the rejection of intraocular tumours(Boonman 

et al., 2006,Dace et al., 2008).  In a mouse model of skin transplantation 

Yamamoto et al have demonstrated that, allograft-induced macrophages are 

more cytotoxic than T lymphocytes and that this cytotoxicity is directed 

specifically towards allogeneic tissue(Yamamoto et al., 1998).   While it is known 

that both CD4+ and CD8+ cells recognise donor cells through MHC class I and 

class II molecules respectively, the mechanisms by which macrophages might 

recognise allogeneic cells are unknown.  Yamamoto et al postulate the presence 
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of unique surface molecules distinct from TCR, NK receptor and cytophilic 

antibodies on allograft-induced macrophages.  A recent study by Zecher et al 

looked at skin hypersensitivity responses to injected allogeneic splenocytes in 

mice and found that a specific cellular immune response could be mounted 

against allogeneic cells in lymphocyte-depleted mice(Zecher et al., 2009).  This 

alloreactivity could be reduced by depletion of either neutrophils or macrophages 

in the host and could be conferred by adoptive transfer of monocytes.  

Furthermore this response was seen to be dependent on non-MHC disparities 

between donor and responder strains.  These findings also suggest the existence 

of innate allorecognition systems which are independent of MHC.   Horne et al 

recently described a critical role for effector macrophages in mediating CD4 cell-

dependent alloimune injury of transplanted liver parenchymal cells.  Horne and 

co-workers propose a paradigm to explain the specificity of tissue damage by 

effector macrophages and their results suggest that alloantibody provides the link 

between the acquired immune response and effector macrophages(Horne et al., 

2008).  However, on account of the unique immunological features of the anterior 

chamber microenvironment, findings in rejection of transplants at other sites 

cannot be assumed to be operational in corneal transplantation.  For example 

Niederkorn and co-workers have specifically examined the roles of macrophages 

in both afferent and efferent limbs of immune rejection in experimental corneal 

transplantation and has shown that macrophages are more important in the 

afferent limb(Hegde et al., 2005).    

 

The CD14 molecule, which has been used to identify macrophages in acute renal 

graft rejection in humans(Bogman et al., 1989), is a pattern recognition receptor 

(PRR) which, along with Toll-like receptor 4, acts as a co-receptor for bacterial 

lipopolysaccharide.  Polymorphisms in both CD14 and TLR4 have been shown to 

influence survival of allografts in humans(Palmer et al., 2007,Palmer et al., 2006).  

However there is no evidence that PRRs can recognise non-infectious non-self 

molecules, i.e. alloantigen.   
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Attempting to pin down the precise role of monocyte or macrophages in an 

inflammatory process is extremely difficult as the macrophage is an extremely 

versatile cell in terms of both phenotype and function(Taylor et al., 2005,Gordon 

and Taylor, 2005).   

Macrophages in a tissue may be broadly categorised into those that are resting 

and those that are activated.  Activation may be as part of the innate immune 

response via pathogen-associated molecular patters (PAMPs) or as part of the 

acquired immune response either in a ―classical‖ or ―alternative‖ fashion.    

Classically macrophages are activated by IFN-γ secreted by Th1 CD4+ cells.  

The activated macrophage secretes its own cytokines and chemokines and 

phagocytoses antigen.  In addition classical activation of macrophages activates 

the enzyme nitric oxide synthetase (NOS2) which metabolises L-Arginine and 

leads to release of nitric oxide (NO) and reactive oxygen species.   Alternative 

activation of macrophages is induced by IL-4 from Th2 cells and, in turn, induces 

an alternative metabolic pathway for L-Arginine by the enzyme Arginase 1 

(ARG1)(Gordon and Taylor, 2005).  The metabolism of L-Arginine by the 

enzymes iNOS and ARG in myeloid cells appears to be important in modulating 

T cell responses(Bronte and Zanovello, 2005).  

  

A population of myeloid cells, known as myeloid suppressor cells, with the 

capacity to inhibit T cell activation and proliferation have been identified.  Filipazzi 

et al report a population of CD14 monocytes with myeloid suppressor function 

(even in the absence of NO)(Filipazzi et al., 2007).   It is unlikely that the 

monocyte/ macrophages recruited to the aqueous during cornea graft endothelial 

rejection are resting.  However, even if we assume these cells are activated, we 

do not know whether their effect is pro- or anti-inflammatory. The absence in 

aqueous sampkes of the pro-inflammatory cytokines typically associated with 

graft rejection (IFN-γ and TNF-α) would support a potential suppressive/ 

modulatory role for the myeloid cells. 

Nicholls has reported low levels of both IFN-g and NO in macrophages in anterior 

chamber in rats undergoing corneal allograft rejection and higher levels of both in 
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macrophages in the stroma raising the possibility of distinct immunological 

processes in individual layers of the cornea(Nicholls and Dick, 2008).   

 

 

 

6.4.3. Chemokines and cytokines in aqueous during graft rejection 

 

 

6.4.3.1. MCP-1 and MIP-1α 

 

The expression of MCP-1 and Mip-1α in human aqueous during acute 

endothelial rejection is consistent with findings in the mouse model of corneal 

transplantation (Yamagami et al., 1999).  In my experiment described in Chapter 

3 I compared chemokine expression in whole eyes following transplantation of 

corneal allografts and isografts respectively.  In allografts expression of MCP-1 

seemed slightly greater and of MIP-1α seemed slightly less than in isografts.   

The increased levels of the chemokines MCP-1 and MIP-1α in aqueous were 

consistent with the finding of large numbers of monocyte / macrophages.  MCP-

1, which is a ligand of the chemokine receptors CCR1 and CCR5, is chemotactic 

for macrophages(Charo and Ransohoff, 2006).  It is interesting that there 

appears to be relatively high constitutive expression of this protein in normal 

aqueous.  Funding et al. have also reported constitutive expression of MCP-1 in 

aqueous with increased expression during rejection and our findings are 

consistent with this(Funding et al., 2006).   The biological role of constitutively 

expressed MCP-1 remains unknown.  Normal aqueous is devoid of leukocytes.  

However McMenamin has identified a population of macrophages in the iris, 

which are believed to have a sentinel function as a component of innate 

immunity(McMenamin et al., 1994).  It is possible that constitutively expressed 

MCP-1 is involved in trafficking of these cells. The increased expression of MIP-

1α, whilst statistically significant, was small and is of uncertain biological 
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significance.  Genetic knockout of MIP-1α or its receptor CCR2 in corneal graft 

recipients did not improve survival in a mouse model of corneal 

allotransplantation(Hamrah et al., 2007). 

 

 

6.4.3.2. IP-10 

 

The expression of IP-10 (CXCL10) in human aqueous during acute endothelial 

rejection is consistent with findings by others in the mouse model of corneal 

transplantation (Yamagami et al., 1999).  I also found greater expression of IP-10 

following allografts than isografts in the experiments described in chapter 3.  IP-

10, a ligand of the chemokine receptor CXCR3, is secreted by monocytes and 

endothelial cells and is chemotactic for T cells(Baggiolini, 1998).  It is possible 

that expression of these chemokines by macrophages in the aqueous helps to 

recruit and activate T cells which bear the relevant chemokine receptors(Panzer 

et al., 2004), in which case these chemokines or their receptors may provide 

therapeutic targets for the treatment and/or prevention of rejection(Haskova et 

al., 2007).  

The very high levels of IP-10 in aqueous has not been described before but is 

consistent with findings during rejection of other transplanted tissues(Melter et 

al., 2001,Segerer et al., 2001).  However considerable controversy remains as to 

its importance and that of its receptor in the rejection process(Halloran and 

Fairchild, 2008).  In particular there appears to be inconsistency regarding the 

usefulness of CXCR3 and IP-10 as targets to prolong graft survival.  Hancock 

showed that survival of cardiac allografts was improved in CXCR3 KO recipients 

and in recipients treated with anti-CXCR3 (Hancock et al., 2000).  The same 

group then used anti IP-10 serum and IP-10 KO mice and found that graft 

survival improved when KO grafts were given to wild type recipients but not when 

the situation was reversed suggesting that expression of IP-10 from donor cells 

was more important in the rejection process than in recipient cells(Hancock et al., 

2001).   More recently there have been conflicting reports which question the 
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potential of pharmacological blockade of CXCR3 in prolonging graft 

survival(Kwun et al., 2008,Uppaluri et al., 2008,Zerwes et al., 2008,Rosenblum et 

al., 2009).    

Hamrah found no improvement in survival of corneal grafts in CXCR3- and IP-10 

KO recipients respectively(Hamrah et al., 2007).   

 

6.4.3.3. RANTES and Eotaxin 

 

This model and my own results described in chapter 3 also demonstrated 

increased expression of RANTES during rejection but this was not seen in 

human aqueous humour.  High level constitutive expression of RANTES in 

peripheral blood was found and this is consistent with one previous 

report(Whitcomb et al., 2007).  Eotaxin, which is chemotactic for eosinophils, was 

expressed at low levels in human aqueous during rejection and not at all in 

normal aqueous.  Eosinophils were found in rejected corneal grafts in the setting 

of allergic eye disease in my earlier experiments.   In the mouse model I did not 

find increased expression of eotaxin in allergic eyes during rejection but this may 

have been due to the timing of the sample.  I had hoped that I might recruit some 

patients with a history of allergic eye disease or atopy for the human study but 

unfortunately, no patients in our human study had a history of allergic eye 

disease.   

 

6.4.3.4. IL-6 

 

During endothelial rejection very high aqueous levels of IL-6 were also found. 

This result is consistent with the findings of Funding et al.(Funding et al., 

2005,Funding et al., 2006) IL-6 is a pleiotropic cytokine which is produced by 

leukocytes (macrophages and T-cells) and by fibroblasts and activated 

endothelial cells in inflamed tissue(Kishimoto, 2005).  It has been identified in 

aqueous humour in various forms of anterior uveitis(Murray et al., 
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1990,Petrinovic-Doresic et al., 1999) and has also been shown to play a role in 

chronic inflammatory diseases in bowel and joint synovium(Atreya et al., 

2000,Nowell et al., 2003).  Its first recognised immunological role was as a ―B-cell 

stimulatory factor‖ which  stimulated B lymphocytes to become plasma cells and 

produce immunoglobulin(Kishimoto, 2005). The receptor for IL-6, IL-6R, is found 

on not only on leukocytes but also on hepatocytes through which it stimulates 

production of acute phase proteins such a C-reactive protein.  

At the cell surface IL-6 binds to IL-6R and these associate with gp130 a cell 

surface signal transduction component which is common to several cytokine 

receptors.  IL-6R also exists as a soluble receptor, sIL-6R, and allows this 

cytokine to influence function of cells not bearing IL-6R.  In a process known as  

trans-signalling IL-6 bind to sIL-6R and these then associate with membrane 

bound gp130 which is ubiquitously expressed.  Trans-signalling in the anterior 

chamber during acute uveitis appears to be a tightly-regulated process due to 

increased expression of soluble gp130, an inhibitor of IL-6 trans-signalling(Simon 

et al., 2008). 

A number of specific effects of IL-6 on T-cell function have been described: 

It promotes Th2 differentiation(Diehl and Rincon, 2002).   

It protects T cells from apoptosis(Teague et al., 1997) and this has been shown 

to occur in the anterior chamber in acute uveitis(Curnow et al., 2004a).  

It inhibits differentiation of regulatory T cells and TGF-β production(Dienz and 

Rincon, 2009).   There is some evidence that IL-6 may reduce ocular immune 

privilege in anterior uveitis by inhibiting TGF-β(Ohta et al., 2000). 

IL-6 also appears to play an important role in the transition from innate to 

acquired immune response by inhibiting neutrophil accumulation and enhancing 

recruitment of macrophages and T-cells(Jones, 2005). 

The effects of IL-6 on immune cell function are so many and varied that it has 

been presented at various times as both a pro- and anti-inflammatory 

mediator(Jones, 2005).  The beneficial effects of tocalizumab, a new monoclonal 

antibody against IL-6R in clinical trials for patients with Crohn‘s disease(Ito et al., 

2004) and rheumatoid arthritis(Jones et al., 2009) provide interesting precedents 
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for the use of specific IL-6 inhibitors in inflammatory eye disease in the clinical 

setting.  However, in the case of corneal graft rejection, further work using IL-6 

KO animals and/or specific inhibitors of IL-6 would be required to try to first 

unravel the role of IL-6.   

 

6.4.3.5. IFN-γ and TNF-α 

 

IFN-γ is produced by T helper and T cytotoxic cells as well as NK cells.  It is the 

hallmark cytokine of Th1 cells and inhibits Th2 differentiation.  It upregulates 

MHC class I and II expression and activates macrophages(Roitt and Delves, 

2003).   

TNF- α is produced mostly by macrophages but also by Th cells, B cells  and NK 

cells.  It induces E-selectin on endothelium. It activates macrophages and 

stimulates cytokine secretion(Roitt and Delves, 2003).  It also acts with other 

cytokines to induce features of the ―acute phase reaction‖ such as fever. 

Increased expression of IFN-γ and TNF-α has been reported in homogenised 

rejecting corneal grafts at the mRNA level in the rat model of corneal 

transplantation(King et al., 2000).  Increased TNF expression has been observed 

at the mRNA and protein levels in rejecting human renal grafts(Krams et al., 

1992,Noronha et al., 1992), though the finding of increased expression of IFN-γ 

in renal grafts has been less consistent(Vandenbroecke et al., 1991,Nast et al., 

1994).  Rayner measured levels of bioactive TNF in rabbit aqueous humour 

following corneal allotransplantation.  Increased but markedly fluctuating 

expression of TNF was seen which correlated loosely with the observed onset of 

endothelial rejection(Rayner et al., 2000).   IFN-γ and TNF-α proteins have been 

detected in human aqueous humour during both corneal graft rejection and 

anterior uveitis, but at relatively low levels as compared with other cytokines and 

chemokines(Funding et al., 2006,Sijssens et al., 2007).    Sagoo found that 

prolonged exposure to relatively high concentrations of IFN-γ or TNF- α led to 

apoptosis of corneal endothelial cells(Sagoo et al., 2004).  However immune 

rejection-induced graft endothelial cell death is unlikely to be caused by 
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indiscriminate damage to endothelial cells due to increased aqueous levels of 

inflammatory cytokines.  We know this because of the clinical observation that 

endothelial damage seen in immune rejection is always specific for the graft and 

leaves the host endothelium, which is bathed in the same aqueous, undamaged.   

However, given that macrophages and Th1 lymphocytes have been shown to be 

key mediators of graft destruction and given that these cells were found in human 

aqueous humour, we might have expected to find their hallmark cytokines in 

aqueous also. The findings of very low levels or absence of IFN-γ and TNF-α, 

respectively, in our aqueous samples during graft rejection were not consistent 

with previous reports and appear counterintuitive.    

The reasons for the discrepancies between our findings and those of other 

transplantation models are not clear.  My data suggests that IFN-γ does not play 

a prominent role in the effector of corneal graft rejection.  This is consistent with 

reports in animal models that genetic knockout of IFN-γ does not alter graft 

survival in animals mismatched for major and minor histocompatibility 

antigens(Yamada et al., 2009,Hargrave et al., 2004).  Detailed anayses of the rat 

model of corneal transplantation by Nicholls has shown that IFN-γ is expressed 

during rejection by cells in the stroma but not by cells aggregating on the 

endothelium of the graft(Nicholls et al., 2006).   Furthermore, on analysis of 

lymphocytes in the aqueous during corneal allograft rejection in mice, she found 

few that expressed IFN- γ although, interestingly, many did express TNF-

α(Nicholls and Dick, 2008).   Taken together these data raise the possibility of 

differential cytokine expression by cells in different layers of the cornea and in the 

anterior chamber. 

 

 

6.4.4. Chapter summary 

 

The work presented in this chapter has demonstrated the following: 
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 During acute endothelial corneal graft rejection monocytes and helper and 

cytotoxic T lymphocytes entered the aqueous humour the number of 

mococytes being relatively higher than those of cytotoxic or helper T 

lymphoctyes. 

 Relatively large increases in expression of IL-6, MCP-1 and IP-10 were 

seen in aqueous humour during acute endothelial corneal graft rejection 

while relatively small increase in expression of Eotaxin and MIP-1α were 

seen. 

 No measurable IFN-γ or TNF-α was found in aqueous humour during 

acute endothelial corneal graft rejection. 

 

In comparison to published histopathology findings on excised rejected human 

corneal allografts, these reults provide more detailed information on the effector 

phase of corneal graft rejection and examines much earlier changes. The 

findings are concordant to a degree with those from my own and othe rodent 

models of corneal graft rejection but provide further evidence of a significant role 

of the innate immune system in rejection.   
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7. Chapter 7:  General Discussion of Results 
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7.1. INTRODUCTION   

 

 

7.1.1. Corneal transplantation 

 

The cornea is the most commonly transplanted human tissue.  5 year survival 

rates vary between 90% and 50% depending on the indication for the graft and 

the presence or absence of other specific features in the host.  The commonest 

reason for graft failure is immune-mediated rejection. 

100 years of research into corneal transplantation has provided several key 

insights into the mechanism(s) of immune rejection.  For example, we know that 

it is a cell-mediated process.  However we do not yet have the tools to prevent 

rejection in every case and particularly in those at high rejection risk. 

True immunological tolerance of allografted corneal tissue is the ultimate goal for 

researchers and clinicians involved in corneal transplantation.  This may become 

a reality in the future.  Until then small incremental increases in knowledge about 

the cellular and molecular mechanisms of rejection may help to identify new 

strategies to improve graft survival. 

 

 

7.1.2. Aims of the thesis 

 

My original aims were: 

 

 To investigate the effect of perioperative allergic conjunctivitis on corneal 

allograft survival and infiltrating cells during graft rejection 

 To characterize the phenotype of inflammatory cells in human aqueous 

during acute corneal allograft endothelial rejection in naïve and atopic 

recipients of corneal allografts. 
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Early results from the experiments carried out to address these aims allowed 

generation of new hypotheses resulting in additional aims.  These included: 

 

 To investigate the effect of perioperative allergic conjunctivitis on 

chemokine expression during graft rejection 

 To measure chemokine and cytokine expression in human aqueous during 

corneal allograft rejection 

 To investigate the effect of perioperative allergic conjunctivitis on early 

post-keratoplasty corneal inflammation and lymphangiogenesis 

 To investigate the role of topical dexamethasone 0.1% on corneal 

lymphangiogenesis and graft rejection in the settinf of allergic conjunctivitis 

 

 

 

 

 

7.2. ALLERGIC CONJUNCTIVITIS AND CORNEAL TRANSPLANTATION   

 

7.2.1. Summary and discussion of my findings 

 

Prior or perioperative corneal inflammation is a recognized risk factor for corneal 

graft rejection.  The effect of allergic conjunctivitis on corneal graft rejection in 

humans is unknown but many surgeons treat atopic recipients of corneal 

allografts with more aggressive topical or systemic immunosuppression on an 

empirical basis.  Mice with allergic mucosal inflammation in either the conjunctiva 

or airways have been shown to reject corneal allografts at an increased tempo.   

The reason(s) for this are not entirely clear.  A fundamental question is whether 

this accelerated rejection is due to local effects of allergic conjunctivitis on the 

cornea and ocular surface or whether it is due to systemic changes in the 
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immune response brought about by the sensitization protocol which may or may 

not approximate atopy. 

Niederkorn‘s group has reported results of several experiments with which they 

tried to answer this question.  In these experiments, when allografts were 

performed in mice with contralateral allergic conjunctivitis the rate of rejection 

was accelerated in a similar fashion to that in mice with ipsilateral allergic 

conjunctivitis.  Similar results were found in mice with no allergic conjunctivitis but 

who were exposed to intranasal allergen to produce allergic airway disease.   It 

was concluded from these results that systemic effects of allergy were more 

important than local effects on corneal graft survival. However they did not study 

mice that were sensitized to allergen but had no allergen challenge whatsoever 

(at any mucosal site).   Therefore an alternative interpretation of their results 

might be that allergic inflammation at any mucosal surface (ipsilateral 

conjunctiva, contralateral conjunctiva, airways) leads to accelerated corneal graft 

rejection.    

In my experiments accelerated rejection was also seen in recipients of corneal 

allografts with ipsilateral allergic conjunctivitis.  There is broad agreement that 

active ipsilateral allergic conjunctivitis accelerates corneal graft rejection.  In 

relation to this phenomenon, certain aspects of my experiment were novel.  The 

timing of allergen challenge (a single challenge immediately post-operatively) 

was a new experimental design and showed that perioperative allergic 

conjunctivitis was sufficient to induce accelerated rejection at a later date.  In 

addition I introduced a novel control group in my experiment: a group of allograft 

recipients who were sensitized to allergen but not challenged with allergen.  

These animals did not show an accelerated rate of graft rejection and rejected 

corneal allografts at a similar tempo to naïve animals.  These results suggested 

to me that local conjunctival allergic inflammation is a more important factor than 

systemic changes induced by sensitization to allergen in accelerating subsequent 

corneal graft rejection.   

Niederkorn‘s group felt that systemic effects were most important while my data 

suggested local factors were more important.  It may be that under different 
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circumstances (eg strain specificity, experimental design) the systemic and local 

effects of allergy have differential effects on graft rejection. Nevertheless the 

discordance in the data is unsatisfactory.   

 

The situation is not helped by a lack of clear mechanistic data to support one or 

other hypothesis.  Several associated phenomena have been observed in 

association with the accelerated rate of graft rejection in allergic conjunctivitis but 

it is not clear whether these are causal.  These include systemic effects such as 

increased Th2 responses in animals sensitized with allergen.  The effect of 

Th1/Th2 bias on allograft survival has been studied across a wide variety of 

transplanted tissues, species and experimental conditions and the results have 

been very inconsistent.  Even in corneal transplantation, 2 different groups have 

shown that Th2-bias improved graft survival albeit for MHC-matched grafts only.    

In my experiment the accelerated rejection of corneal grafts in eyes with allergic 

conjunctivitis appeared to occur with the hallmarks of Th2-mediated inflammation 

(eosinophils).  This does not offer conclusive proof that systemic Th2 bias 

accelerates graft rejection.  It may be that Th2-bias is merely one of the changes 

that occur in animals with allergic conjunctivitis and that when rejection is 

accelerated due to another cause, it occurs via Th2 cells.  Sensitized+challenged- 

animals which have been shown to have increased Th2 responses did not reject 

their grafts at an accelerated tempo.  However if these animals do have 

increased Th2 responses they are not sufficiently increased to cause infiltration 

of the graft/ uvea by eosinophils during rejection.  It could be therefore that 

sensitized+challenged-  animals have increased Th2 responses but that this Th2 

bias is increased even further by challenging with allergen at the time of 

transplantation leading to subsequent rejection by Th2 cells and eosinophils. 

 

Local changes in the cornea and conjunctiva occur in response to local exposure 

to allergen and it is plausible that these changes might enhance an immune 

response to antigen but again there are no conclusive data to prove this.  These 

local responses include: 
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 Infiltration of the conjunctiva with neutrophils, macrophages, eosinophils 

and lymphocytes(Choi and Bielory, 2008) 

 Alterations in the number and phenotype of conjunctival dendritic 

cells(Ohbayashi et al., 2007) 

 Maturation of corneal antigen-presenting cells(Ozaki et al., 2004)   

 

My experiments have provided new data regarding local corneal and conjunctival 

changes which occur in corneal transplantation during allergic conjunctivitis and 

which could accelerate initiation of a specific immune response against 

alloantigen.  Cells of the innate immune system (neutrophils and macrophages) 

are known to enter the cornea in response to injury as part of the wound-healing 

response.  I have shown that in the presence of allergic conjunctivitis the 

numbers of these cells entering the host cornea is significantly increased.  

Macrophages have been shown to play an important role in the generation of 

new lymphatic vessels which grow centripetally from the corneal limbus following 

corneal transplantation.  My work has shown that in the early days post-

transplantaion the ingrowth of these vessels appears to be slightly increased in 

the presence of allergic conjunctivitis.  Furthermore, early post-operative 

treatment with dexamethasone 0.1% significantly inhibits lymhangiogenesis and 

mitigates the effects of allergic conjunctivitis on corneal graft survival.  On one 

level these data support a mechanistic role for the increase in corneal 

lymphangiogenesis in the acclerated rate of graft rejection.  However there are at 

least 2 caveats to this interpretation: 1) dexamethasone 0.1% is not a specific 

inhibitor of lymphangiogenesis and is known to have many other effects on the 

immune response and 2) I did not study the effects of dexamethasone treatment 

on lymphangiogenesis and survival in naïve corneal grafts.  We do know that 

dexamethasone treatment improves survival in the naïve rat model of corneal 

transplantation.  Therefore, although dexamethasone treatment does reverse 

some of the changes in the graft associated with the presence of allergic 

conjunctivitis, the improvement in survival seen may be due to the influence of 

dexamethasone on other factors independent of allergic conjunctivitis.  
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In the setting of allergic conjunctivitis changes are seen in both the systemic and 

the local responses to allogeneic cornea.  It may be an oversimplification to try to 

distinguish between the two in terms of their effect on corneal grafts.  For 

example it is possible that active allergic inflammation induces further systemic 

changes above and beyond those seen in animals who have undergone 

sensitization alone and that these changes lead to accelerated graft rejection.  

This would explain the slow tempo of rejection in my sensitized animals which 

were not challenged as well as the fast rejection in Niederkorns‘ animals which 

were challenged at sites other than the eye receiving the graft. 

One line of evidence supporting this hypothesis is the widespread systemic 

breakdown in peripheral tolerance seen following local mast cell degranulation in 

tolerised skin grafts.  Interestingly this phenomenon was seen only for 

inflammation mediated by mast-cells and not other types of inflammation.  Mast 

cells are known to play an important role in the development of tolerance.  

Another line of evidence is the presence of eosinophils in the graft / anterior 

uveal tract of sensitized+challenged+ recipients and their absence in 

sensitized+challenged- recipients suggesting that challenge with allergen at the 

time of rejection may increase systemic Th2 bias even further.  However if this 

was the case we might expect a similar phenomenon to occur when animals are 

challenged elsewhere with allergen (eg in the opposite eye or in the lungs).  

However although challenge at these distal sites leads to accelerated corneal 

graft rejection, eosinophils are not seen amongst the graft infiltrating cells.  

 

If local conjunctival changes alone are responsible for the accelerated rate of 

rejection in allergic conjunctivitis then the question arises as to whether this 

would be true of conjunctivitis secondary to any other cause.  We did not study 

this question but it is an important one.  We are not aware of any other model of 

conjunctivitis which is as consistent, as florid and yet humane as the allergic 

conjunctivitis model.  I think that it is likely that local changes such as changes in 

APC number and function and even lymphangiogensis would occur with 
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conjunctivitis of any cause and would not be surprised to see acceleration of graft 

rejection in the presence of florid conjunctivitis of any cause.  However if the fate 

of the grafts is influenced also/ instead specifically by mast cell cell degranulation 

then other types of conjunctivitis may not have as significant an effect on graft 

survival as allergic conjunctivitis. 

 

When considering the clinical implications of these experiments, the first thing to 

consider is what the model actually represents in human terms.  I feel that of all 

the types of allergic conjunctivitis seen in humans, this animal model is most akin 

to seasonal allergic conjunctivitis in that it is caused by IgE-dependant mast cell 

degranulation(Fukuda et al., 2009).  Therefore, on the most fundamental level, 

these results suggest that one should not perform a graft in a patient with active 

SAC.  The local effects of SAC are self limiting and are usually modifiable with 

topical treatment so keratoplasty should be postponed until conjunctival disease 

is quiescent.   Considering more chronic forms of allergic conjunctivitis such as 

AKC we are probably moving away from what the model represents which makes 

it less easy to know how to translate the findings to a human clinical scenario.  In 

his experiments Beauregard continued to challenge his mice regularly with 

allergen following corneal transplantation (as compared to my single 

postoperative challenge) and he observed accelerated graft ejection in these 

eyes.   Chronic exposure of the conjunctiva to allergen produces a more chronic 

form of allergic conjunctivitis with local expansion of conjunctiva-associate 

lymphoid tissue (personal communication Mark Ohbayashi).   Therefore it is 

probably safe to extrapolate my findings to include more chronic forms of allergic 

conjunctivitis.  Again best possible control of local conjunctival inflammation 

before performing keratoplasty would be ideal.   AKC can be more difficult to 

control than SAC but this disease usually responds to topical corticosteroid of 

appropriate potency, frequency of instillation and length of treatment.   Standard 

treatment following penetrating keratoplasty involves intensive instillation of 

topical corticosteroid in the first post-operative weeks with gradual tapering of the 
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frequency of instillation over subsequent months.  In patients at high-rejection 

risk the frequency of instillation is tapered more slowly/ over a longer period. 

 

The one thing we can not control is the patients underlying tendency toward 

atopy.  The effect of atopy on graft survival remains a grey area.  Although my 

results suggest that this is less important than the local activity of the disease in 

the eye in its influence on graft survival, there are other lines of investigation 

which refute this.  Niederkorn‘s group have reported accelerated corneal graft 

rejection in recipients with both allergic conjunctivitis and allergic airways disease 

and attributed this to the systemic changes in immune response seen in these 

atopic conditions(Niederkorn et al., 2009,Beauregard et al., 2005).  Cursiefen has 

reported a reduction of human graft survival in recipients with atopic dermatitis 

with or without ocular involvement(Nguyen et al., 2008).    Yildiz et al have 

reported a tendency towards higher rates of graft rejection in patients with a self-

reported history of atopy(Yildiz et al., 2009).  Ironically, the limited data available 

on graft recipients with allergic eye disease (VKC) suggests that outcomes are 

reasonably good in terms of graft survival(Wagoner and Ba-Abbad, 2009) but as 

mentioned in Chapter 1, studies on human allergic conjunctivitis are open to 

several errors such as low power ,loose phenotyping and variable post-operative 

treatment regimes. 

 

Based on the findings by myself and others as described above I would consider 

the following patients as increased rejection risk: 

 

 Active conjunctivitis of any cause 

 History of AKC or VKC whether active or not 

 History of atopy 

 

Post-operatively I would treat all alloantigen-independent inflammation of the 

ocular surface aggressively.   
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7.2.2. Future work 

 

There are two ways of looking at the future in relation to my work in this area.  

Firstly I see experiments which could be done to address issues which arose 

directly from my own work.  These include: 

 Challenging sensitized mice at various timepoints post-transplantation to 

study the effect of the timing of challenge on graft survival. 

 Transplantation in mice with non-allergic conjunctivitis to assess the 

specificity of the change in tempo of graft rejection seen in allergic 

conjunctivitis. 

 Treatment of recipients with mast-cell stabilizer prior to transplantation/ 

challenge to properly assess the effect of mast-cell stabilistation. 

 Fitting of mice with anti-scratch collars to prevent eye-rubbing after 

challenge to assess the possibility that eye-rubbing might contribute to the 

accelerated rate of graft rejection in allergic conjunctivitis. 

 

In relation to the (slightly) earlier post-keratoplaty corneal lymphangiogenesis 

seen in eyes with allergic conjunctivitis, I would have liked to carry out the 

following further experiments: 

 Measurement of the effect of topical dexamethasone treatment on corneal 

lymphangiogenesis and graft survival in naïve eyes. 

 Measurement and comparison of donor-induced DTH responses (ear 

swelling assay) at 1 and 2 weeks in naïve and allergic recipients of corneal 

grafts, the hypothesis being that eyes with earlier lymphatic ingrowth 

would be sensitized earlier and show a more marked DTH response at 1 

week. 

 Measurement and comparison of VEGF A and VEGF C expression in the 

cornea of naïve and allergic recipients of corneal allografts at days 2 and 

6. 

 Measurement of the effect of neutrophil depletion on corneal 

lymphangiogensis and graft survival in naïve and allergic animals. 



 275 

 Analysis of the effects of allergen exposure on conjunctival lymphatic 

vasculature using immunohistochemistry and wholemounted tissue.  A 

former laboratory colleague has begun this project and his early work has 

demonstrated a marked increase in both lymphoid tissue and associated 

lymphatic vessels I the conjunctiva in a model of chronic allergic 

conjunctivitis involving repeated exposure to allergen. 

 

Other experiments while not related directly to issues arising from my own work 

will help provide important data concerning the effects of atopy and allergic 

conjunctivitis on the immune response to donor cornea.  UK transplant collects 

demographic and sequential clinical data including history of atopy on all corneal 

graft recipients in the UK.  Future comparison of survival data and incidence of 

rejection between atopic and non-atopic patients will provide further evidence to 

help answer the question of whether atopy is a significant risk factor for human 

corneal graft rejection.   

As long as the causes of atopy remain unknown it will be difficult to untangle its 

immunological sequelae.  Advances in understanding of pathophysiology of 

atopy will help to understand its effect on individual tissues. 

A more definite area for future investigation is that of inhibition of corneal 

lymphangiogenesis.  Inhibitors of  VEGF A have been shown to be effective at 

inhibiting corneal lymphangiogensis in animal models and at improving corneal 

graft survival(Bachmann et al., 2008,Cursiefen et al., 2004a).  However further 

work is required to tease out the differential benefits of inhibition of 

haemangiogenesis and lymphangiogenesis.   Pilot studies in animals and 

humans have shown that topical use of the anti-VEGF A monoclonal antibody 

(mAb) bevacizumab is safe and effective at reducing established corneal 

vascularistation(Dastjerdi et al., 2009a).  In a mouse model of high-risk corneal 

transplantation due to vascularisation of the host cornea, subconjunctival but not 

topical bevacizumab improved graft survival(Dastjerdi et al., 2009b).  Bourghardt 

Peebo et al have recently identified lymphatic vessels in vivo in human cornea 

using confocal microscopy(Bourghardt et al., 2009).  Using these tools it will be 
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possible to study the effects of topical anti-VEGF mAbs on post-keratoplasty 

corneal haemangiogenesis and lymphangiogenesis in humans. 

It is clear that angiogenesis is caused by allo-antigen independent inflammation 

in the cornea(Cursiefen et al., 2004a).  It is impossible to perform graft without 

causing allo-antigen independent inflammation but the challenge is to minimize it 

at the time of transplantation and thereafter.  Despite advances in technology 

one of the commonest sources of alloantigen-independent corneal inflammation 

in humans is the sutures used to secure the graft.  A broken suture in particular 

serves as a marked stimulus to local inflammation.  But even adequately tight/ 

buried sutures provide a stimulus for local corneal angiogenesis and 

lymphangiogenesis.  New femtosecond laser technologies are providing novel 

ways to cut donor and recipient corneas so that the donor and recipient material 

―lock‖ together more securely than the traditional hand-cut graft and so may 

require fewer sutures.   Whether this reduces corneal angiogenesis & 

lymphangiogeneis remains to be seen.    
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7.3. CELLULAR MEDIATORS OF CORNEAL GRAFT REJECTION  

 

7.3.1. Summary and discussion of my findings 

 

The precise mechanism(s) by which cell death is brought about during immune 

rejection of transplanted corneal tissue remain unknown.  Experiments on 

laboratory animals have shown that immune rejection of transplanted tissue is an 

acquired immune response that is a) specific and b) cell-mediated(Medawar, 

1944,Mitchison, 1954).  Direct observation of corneal endothelium during 

rejection reveals aggregates of immune cells adhering to the transplanted 

endothelial cells but not the host endothelial cells.  Often the cellular aggregates 

form a line which slowly ―marches‖ across the grafted endothelial sheet leaving 

dead or dysfunctional endothelial cells in its wake.  The precise make up of these 

cellular aggregates and the precise method by which they induce endothelial cell 

death remain uncertain.   

Histopathological studies of human and animal rejected grafts have described 

consistently CD4+, CD8+ and macrophage cell populations.  Other cell types such 

as NK cells and eosinophils have been found but with less frequency.   Human 

pathological studies are limited by the fact that what is seen on the 

histopathology may not represent what is happening during acute rejection as 

human grafts are usually replaced at a long interval after graft failure.  Which 

cell(s) are most important in graft rejection?  Experiments using gene KO animals 

and depleting antibodies suggest that CD4 cells are the most important in that 

they are necessary for graft rejection to occur.  (Niederkorn has suggests that 

even these are not necessary)  However we do not know whether the CD4 cell is 

capable of inducing cell death directly itself or whether it does so by directing the 

activities of other cells like CD8 or macrophages. 

My data confirm previous reports of CD4+, CD8+ and macrophage cell 

populations infiltrating mouse corneal grafts during rejection.  I have also 

performed flow cytometry of human aqueous during corneal graft rejection and 

reported the presence of CD45+ cells therein.  Control aqueous from normal eyes 
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did not contain CD45+ cells.  I have further identified and quantified CD4+, CD8+ 

and CD14+ subsets of these leukocytes in human aqueous during endothelial 

graft rejection.  While the numbers of cells were admittedly quite small and the 

results do need to be interpreted with some caution, there did appear to be more 

macrophages in human aqueous during rejection than either CD4+ lymphocytes 

or CD8+ lymphocytes.  Questions which remain to be answered about monocytes 

in the anterior chamber during graft rejection include: 

 Is their net effect pro-or anti-inflammatory?  

 Do they contribute directly to endothelial cell death? If so, how? 

 Do they contribute indirectly to endothelial cell death? If so, how? 

In the mouse corneal graft recipients with active perioperative allergic 

conjunctivitis eosinophils were seen amongst the graft infiltrating cells during 

rejection.   

7.3.2. Future developments 

 

The limitation in terms of further flow cytometric studies on human aqueous in 

graft rejection is the low cellular yield from aqueous samples. This could be 

improved by not splitting the aqueous sample for staining with isotype-matched 

controls (blood cells could arguably be used instead for control analysis).  It may 

also be improved by selection of patients with the most severe clinically 

observable anterior chamber reaction for sampling and possibly by refining the 

staining technique.  The flow cytometry experiments I would like to run include: 

 Identification and quantification of NK cells in aqueous 

 Identification and quantification of the regulatory T cell subset of CD4 cells 

 Measurement of costimulatory molecules and reciprocal receptors on 

monocytes and lymphcytes. 

 Measurement of arginase /iNOS in monocytes. 

Intravital microscopy/ live imaging of immune cells is a relatively new discipline 

which is providing new and important information on immune cell structure and 

function(Spencer et al., 2008).  In vivo and ex vivo studies using confocal 
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microscopy and two-photon fluorescent microscopy provide 3D and 4D (x,y,z and 

time) data on immune cells and their movements and interactions with other 

cells(Nitschke et al., 2008).   Confocal microscopy has been used to image 

dynamic interaction of leukocytes with vascular endothelium in human allergic 

conjunctivitis.(Lim et al., 2006)  Using confocal microscopy we have been able to 

image leukocytes adherent to the endothelium during acute endothelial rejection.  

We are aware from our flow cytometry study that there are at least 2 types of 

immune cell in the anterior chamber during rejection –lymphocytes and 

monocytes.  Analysis of confocal microscopy images in human cornea relies on 

morphology to distinguish cell types but in the images we generated of corneal 

endothelium I could not identify any clear morphological features which could be 

used to identify these two cell types.  Two-photon fluorescence microscopy has 

allowed identification and dynamic imaging of individual cell subtypes in 

experimental animals(Beltman et al., 2009).   Cells are marked either by genetic 

manipulation of the animal so that the cells of interest express green fluorescent 

protein or by reconstitution of animals with fluorochrome-labelled cells or both.   

Using this technology, investigators have measured changes in dendritic cell 

morphology and motility in response to antigenic and other stimuli in bowel, skin 

and cornea(Ward et al., 2007,Nishibu et al., 2006,Chieppa et al., 2006).  

Valuable information about T cell activation in lymph nodes has also been 

obtained by studying movies of APC/lymphocyte interaction therein(Bousso, 

2008).  There are fewer reports of two-photon imaging of effector cell dynamics in 

inflamed tissue but cornea, being transparent, would be a tissue most suited to 

such studies. 
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7.4. CYTOKINE AND CHEMOKINE EXPRESSION DURING CORNEAL 
GRAFT REJECTION   

 

7.4.1. Summary and discussion of my findings 

 

I studied chemokine expression around the time of corneal graft rejection in 

humans and mice.  My results are summarized in Table 7.1. 

 Mouse Human 

IP-10 + ++ 

RANTES + - 

MCP-1 - ++ 

MIP-1α - + 

Eotaxin - + 

MIP-1β - Not tested 

Lymphotactin + Not tested 

TCA-3 - Not tested 

MIP-2 - Not tested 

IL-2 Not tested - 

IL-4 Not tested - 

IL-6 Not tested ++ 

IFN-γ Not tested - 

TNF-α Not tested - 

Table 7.1 Chemokine and cytokine expression during corneal allograft 
rejection. 

Expression was measured in whole mouse eyes using ribonuclease protection 
assay and in human aqueous humour using cytometric bead array. 
 

 

IP-10 was expressed in both mouse and human eyes during rejection.  Other 

results were less consistent.  These differences may reflect species-specificity of 

the response but there were also fundamental differences in the study designs 

which may account for these differences.  The mouse samples were taken at a 
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fixed timepoint which may or may not have been the point of maximal chemokine 

expression. The study in mice used a less sensitive assay (RPA) than that in 

humans (CBA) and the study in mice measured RNA in whole eyes whereas the 

human study measured protein expression in aqueous humour.   

In mice there was no evidence of differential expression of chemokines in naïve 

and allergic recipients of corneal grafts.   The finding of increased expression of 

IP-10, RANTES and Lymphotactin was consistent with previous 

reports(Yamagami et al., 1999).   The finding of increased IL-6 and MCP-1 in 

human aqueous was also consistent with a previous report(Funding et al., 2006) 

but the presence of IP-10, Eotaxin and MIP-1α has not been previously reported.  

Animal studies using gene-knockout animals and specific chemokine/ cytokine 

and chemokine/ cytokine receptor inhibitors can provide information as to the 

specific role, if any, of individual chemokines, cytokines and their receptors in an 

inflammatory process as well as identifying potential therapeutic targets.  Some 

of these studies have already been carried out in relation to corneal 

transplantation the results of which are summarized in Table 7.2.   

 

Intervention Reported effect on allograft survival 

IL-1R antagonist Significantly prolonged(Dana et al., 1997) 

IFN-γ KO host No effect(Yamada et al., 2009) 

CCR1 KO host Significantly prolonged(Hamrah et al., 2007) 

CCR2/MIP1α KO No effect(Hamrah et al., 2007) 

CCR5 KO host No effect(Hamrah et al., 2007) 

CXCR3 KO host No effect(Hamrah et al., 2007) 

Anti-RANTES ab No effect(Hamrah et al., 2007) 

MIP1α KO host No effect(Hamrah et al., 2007) 

IP-10 KO host No effect(Hamrah et al., 2007) 

Anti-KC Significantly prolonged in High-risk model(Amescua et al., 

2008) 

Table 7.2 Reported effect of targetting cytokines/ chemokine and their 
receptors on corneal allograft survival 
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7.4.2. Future Work 

 

Whilst I did not find any evidence of differential chemokine expression in naïve 

and allergic recipients of corneal allografts, my study design was such that I 

cannot say conclusively that there is no difference in chemokine expression.  A 

future study measuring chemokine expression at sequential timepoints following 

transplantation in these two groups may provide a more conclusive answer to this 

question.   

Future animal studies using gene-knockout animals and specific chemokine and 

chemokine receptor inhibitors will provide information as to the specific role if any 

of individual chemokines, cytokines and their receptors in corneal graft rejection.   

Monoclonal antibodies against cytokines/chemokines or their receptors are 

typically licensed for use in common chronic inflammatory conditions such as 

rheumatoid arthritis and inflammatory bowel disease and then, based on 

research which demonstrates common cellular/ molecular pathways of 

inflammation, are used off-licence to treat ocular inflammatory conditions.  This 

has been the case for anti-TNF monoclonal antibodies in uveitis(Vazquez-Cobian 

et al., 2006).  Many more monoclonal antibodies are emerging for clinical use in 

the treatment of inflammatory conditions eg Tocilizumab (mAb against IL-6R) in 

rheumatoid arthritis(Jones et al., 2009).     Several companies are carrying out 

Phase 2 clinical trial of small molecule inhibitors or the chemokine receptors 

CCR1, CCR2, CCR5 and CXCR3(Charo and Ransohoff, 2006). 

Given the acute nature of graft rejection it is difficult to imagine mAbs against 

cytokines, chemokines and their receptors being generally useful as treatments 

of acute rejection in the way that they have been in more chronic forms of ocular 

inflammation.  But it is possible that as we gain more information about their 

specific roles in the rejection process, they may be of use in prevention of 

rejection in certain patients at higher risk of rejection in future.   
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7.5. PUBLICATIONS ARISING FROM THE WORK PRESENTED IN THIS 
THESIS  

 

Immune homeostasis and the eye: Penetrating keratoplasty.   
Flynn TH, Larkin DF 
In: Darlene A. Dartt, Editor. Encyclopaedia of the eye, Vol 3. Oxford: Academic 

Press; 2010. pp. 290-295 

 

The Effect of Allergic Conjunctivital Inflammation on the Allogeneic 
Response to Donor Cornea 
Flynn TH, Ohbayashi M, Ikeda Y, Ono SJ, Larkin DF  
Investigative Ophthalmology and Visual Science 2007; 48(9): 4044-9 

 

Aqueous humour alloreactive cell phenotypes, cytokines and chemokines 
in corneal allograft rejection 
Flynn TH, Mitchison NA, Ono SJ, Larkin DF 
American Journal of Transplantation 2008; 8(7): 1537-44 

 

Use of ultrasonic pachymetry for measurement of changes in corneal 
thickness in mouse corneal transplantation 
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