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Abstract.

R-matrix calculations usually require all the eigenvalues and eigenvectors of the
inner region Hamiltonian matrix. For molecular problems, particularly when large
configuration interaction expansions are used for the target, the Hamiltonian matrix
is often too large to be completely diagonalised. Berrington and Ballance (J. Phys. B:
At. Mol. Opt. Phys, 53 (2002) 2275) proposed a partitioned R-matrix theory which
only required a proportion of the solutions of the Hamiltonian matrix. This theory
was implemented and tested in the atomic R-matrix code. The theory is adapted
to the needs of R-matrix calculations on low-energy electron-molecule collisions. A
number of alternative procedures are tested. The best is shown to give reliable results
with explicit inclusion of only a fraction of the solutions. It is shown that with this
revised theory the number of solutions required does not depend on the complexity
of the target wavefunction even though this strongly influences the size of the final
Hamiltonian matrix. This method will be implemented as part of the UK molecular
R-matrix program suite.

1. Introduction

Electron molecule collisions and the related process of molecular photoionisation are
important in all environments containing cold plasmas. The theory of low-energy
electron molecule collisions has made rapid advances and a number of methods are
available to tackle problems of interest (Huo & Gianturco 1995). Prominent among
these is the R-matrix method (Burke & Berrington 1993).

The R-matrix method relies on splitting configuration space into an inner and
outer region. In the inner region the full electron-molecule problem is solved using basis
sets. The resulting calculations are performed with adapted quantum chemistry codes
but differ from standard quantum chemistry calculations both in the structure of the
wavefunction and in the requirements of the R-matrix method. In particular, in standard
R-matrix theory all solutions, ie eigenvalues and eigenvectors, of the Hamiltonian matrix
must be explicitly computed. This requirement acts as a strong constraint on the size of
problem that can practically be tackled, see Tennyson (1996b) and Rozum et al. (2003)
for example.

Recently Berrington & Ballance (2002), henceforth BB, proposed a partitioned R-
matrix theory. The major advantage of BB’s theory is that it does not require all
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solutions of the Hamiltonian matrix to construct R-matrices which can be used to
give reliable results up to a given electron collision energy. BB proposed not only a
basic partitioning scheme but also considered a method for error correction. They also
considered the energy derivative of the R-matrix and dipole matrix elements, topics that
will not be addressed here. BB implemented their theory for the atomic R-matrix code
and tested it for electron collisions on O"*. Their tests consider rather high collision
energies, over 1000 eV. Possibly as a consequence of this, BB retained between 40 %
and 60 % of their solutions for their partitioned R-matrix.

Pfingst et al. (1994) proposed an alternative molecular R-matrix procedure which
only required the explicit calculation of selected low-lying roots for their full Hamiltonian
matrix. Higher-lying roots were approximated by simpler and smaller static exchange
calculations. This method has been used for studying scattering off a single electronic
state for a variety of molecules, but has yet to be applied successfully to the more general
problem of coupled electronic states.

In this work BB’s partitioning scheme and error correction are adapted to molecular
systems. To achieve significant savings in the key Hamiltonian matrix diagonalisation
step this theory must require less than 20 % of the solutions. When considering BB’s
atomic partitioned R-matrix procedure it is important to remember that there are a
number of subtle differences between electron collisions with atoms and molecules. These
will be discussed in the following section which develops possible theories for a molecular
partitioned R-matrix method. In section 3, several variations of this theory are tested
for electron collisions from water and the CF, and CFj3 radicals. Section 4 presents
conclusions and discusses the physics which underlies the preferred theory.

2. Theory

2.1. Background

In R-matrix theory the internal region, discretized continuum wavefunction for the
electron scattering problem can be written:
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where A is the anti-symmetrisation operator and x,, represents the coordinates of the
n' electron. 9} is the wavefunction of the i*" N-electron target state, which itself is
usually represented as a configuration interaction (CI) expansion. wu;; is a continuum
orbital for which the dependence on the partial wave expansion, given by [/, has been
made explicit. For molecules this expansion over [ is in principle infinite but in practise
is usually rapidly convergent for low-energy collisions and can therefore be truncated at
some fairly low value of lmax. Yoo " represents terms where all (N + 1) electrons have
been placed in target orbitals. The exact choice of these “L?” configurations is quite
subtle (see (Tennyson 1996b) for example) but the number of such terms, ngy, is largely
determined by the choice of target CI expansion. ajx and by, are variational coefficients
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determined by diagonalising internal region Hamiltonian. The energy, Ej, associated
with \I/,]cv *1 is usually referred to as an R-matrix pole. By convention the energy of
an R-matrix pole is zero at the energy of the target ground state. This convention is
followed for the values of Ej quoted below.

The dimension of the Hamiltonian matrix, M, is given by

Nt Imax

M=nd+ZZnil (2)

i=1 I=lmin
where n, is the number of target states included in the expansion and n; is the number
of continuum functions implied by a given value of / and target state symmetry. The
number of terms in the sum over / may also depend on the symmetry of the target
state. It must be emphasised that for calculations using sophisticated target functions,
nq makes the dominant contribution to M.

An important quantity in the R-matrix method is the boundary amplitude, which
is the amplitude of the internal region wavefunction on the R-matrix sphere at r = a.
In terms of wavefunction (1) these are given by

Lz

Witk = Z uilj(a)ailjk- (3)
j=1

The R-matrix on the boundary can be constructed in terms of these boundary
amplitudes

M

Ry (a, E) = kzl wllk(Ei)quIZﬁk(a) + 0iirSw Ry} (4)
where E is the electron collision energy and R? is the Buttle correction which is included
in some circumstances to account for the truncation at n; of the continuum basis set
expansion (Burke & Berrington 1993). For the molecular problems, eq. (4) is often
written with a factor (2a)™" in front of the first sum. The value of this factor depends
on the precise definition of the radial continuum functions and boundary amplitude.
Here I follow BB and set this factor to unity.

The aim of partitioned R-matrix theory is to rewrite eq. (4) so that only P(< M)
solutions of the Hamiltonian matrix are explicitly required. For this method to yield
significant savings, particularly in the computationally expensive matrix diagonalisation
step of the calculation, it is desirable that P << M.

Berrington & Ballance (2002) (BB) start their partitioned R-matrix theory by
defining two quantities. The first quantity is Ey, which is an average or effective energy

for the poles omitted when only the lowest P solutions are explicitly considered. It is
defined by BB as:

EO _ (Zyzl HIJ — ZkPZI Ek) (5)
N-P ’
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where the first sum runs over all the diagonal elements of the Hamiltonian matrix giving
its trace. The second quantity is the total probability distribution of a given channel
on the R-matrix boundary

741

Si1 = Z(uilj(a))2- (6)

Jj=1

In terms of these quantities BB derive an expression for the partitioned R-matrix

P
1 1
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where the final term gives the error correction for which BB derived the expression

B =Y o) (55~ 5 o5 )
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where Ej;; is the energy of the continuum basis function u;;(z). The starting point for
the sum in eq. (8), J;, is chosen such that E;; > Ep, where Ep is the highest R-matrix
pole explicitly included in the sum in eq. (7).

2.2. A molecular theory

There are a number of problems with the application of the above theory directly to
the molecular case. The first problem to be addressed is the definition of the energy
of individual continuum orbitals, Ej;;. The numerical procedure used to generate
continuum orbitals (Salvini 1984) for the diatomic problem, and by analogy the one used
to generate Gaussian Type Orbitals (GTOs) to represent the continuum for scattering
from polyatomic molecules (Faure et al. 2002), give a well defined energy for the raw
continuum orbitals. However the need for strong orthogonalisation procedures between
the continuum orbitals and the molecular orbitals used to represent the target (Tennyson
et al. 1987, Morgan et al. 1998) mean that the energy of the resulting continuum
molecular orbital is not well defined. In practise this can be overcome by using the
relevant diagonal element of the Hamiltonian matrix H; ;. This gives a new expression
for the error correction term

niy 1 1
c _ o 2 o
R; = Z(Uzlg (a)) (Hilj,z'lj —-F Ey— E) ' Y
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This theory, which is closest to that BB tested, is called theory A below. Within
this theory there is some ambiguity over how the starting point for the sum in the error
correction, .J;, is defined. Possible definitions are that J; is chosen to include all diagonal
elements of the relevant continuum orbitals such that Hj;;; > Ep. Alternatively .J;
can be chosen such that the P lowest diagonal elements are omitted from the sum. In



Partitioned R-matrix theory for molecules )

principle these two methods could give different results but tests showed that in practise
the answers obtained were very similar.

A more serious problem with the direct implementation of BB’s theory for
molecules occurs with the definition of Ep, eq. (5). This definition averages over
all diagonal elements of Hamiltonian regardless of whether the configuration involved
makes any contribution to the boundary amplitude. This means that the many high-
lying, L? configurations, which by construction make no contribution to the boundary
amplitude, do contribute to the value Ey. As a result, systematic improvement of
the CI representation of a target, and the consequent increase in the number of L?
configurations, will lead to a steady rise in Ej even if all the other parameters of the
calculation remain the same. This is not desirable and it would seem to be preferable
to define Ej using only those configurations which contribute directly to the boundary
amplitudes and hence to the R-matrix.

Assuming that the Hamiltonian matrix is diagonally dominant, which is generally
the case, one can associated the lowest P diagonal elements with the lowest P R-matrix
poles. In this case one can obtain a value for Ej simply by averaging those diagonal
elements of the Hamiltonian matrix between continuum orbitals, Hy; 45, which are not
among the lowest P diagonal elements. This procedure is referred to as theory B below.
Note that this procedure will be satisfactory even when the values of higher-lying R-
matrix poles are not dominanated by the diagonal elements. Such a situation can arise
with large CI expansions.

There is a final problem with the error correction procedure proposed by BB and
adapted as theory A above. The use of the entire boundary amplitude of the higher-
lying continuum orbitals, (u;;j(a))?, in the error correction, eq. (9), will lead to an
over-correction if this orbital contributes to any significant extent to the lowest P states
explicitly considered in the first sum in eq. (7). It is straightforward to estimate the
contribution of continuum orbital to the states not explicitly included in the sum (7)
as:

P
k=1

Clearly orthonormality considerations show that X;; — 0 as P — M. BB’s original
procedure assumes Xj;; is unity for the higher orbitals. Tests performed below found
values in the range 0.8 — 0.9 were more typical. It was therefore decided to allow for
this in the error correction formula which then becomes

N4 1 1
il Z(um (a))" X (Hilj,ilj —E  Ep— E) "

J=J

Use of this expression with Theory B will be referred to as Theory C below.
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3. Test calculations

To test various alternative molecular partitioned R-matrix theories, calculations were
performed for electron collisions with a number of polyatomic molecules. These systems,
all of which have been the subject of previous studies, were chosen because the
Hamiltonian matrices were large but fully diagonalisable. However it should be noted
that Rozum et al (2003) abandoned some possible models for electron collisions with
CF3 because of the huge number of L? configurations which would make it impossible to
compute the diagonalise the full Hamiltonian. In all the calculations below the Buttle
correction, R is zero since it is not required by our polyatomic R-matrix code (Morgan
et al. 1997). These means that the full calculations should behave variationally.

For the tests reported below the ARPACK diagonaliser (Lehoucq et al. 1996) was
implemented in the inner region module SCATCI (Tennyson 1996a). This diagonaliser
obtains the P lowest solutions of an M dimensional Hamiltonian. Options to store
the Hamiltonian matrix elements in memory if possible, or on disk if necessary were
implemented. Tests showed that if % < 0.2, then the ARPACK diagonaliser is much
quicker than diagonalising the full matrix. As many of the Hamiltonian matrix elements
are zero, this procedure is also much cheaper on memory even for cases where the whole
matrix is retained in memory.

A systematic series of test calculations were performed with each theory on the
three systems mentioned. For brevity only the key features of these calculations are
presented below.

3.1. Water

Tests for electron scattering from water were based on the 7-state calculations of 2A;
symmetry reported by Gorfinkiel et al. (2002). For this calculation M = 5208.

Fig. 1 shows calculations performed using BB’s theory with no error correction and
error correction performed using theory A described above. In the absence of error
correction the eigenphase sum is systematically too low, conversely the error corrected
eigenphases are too high albeit somewhat closer the correct answer denoted ’full’ in
the figure. For all cases displayed the eigenphase sums obtained using the partitioned
R-matrix theory are a poor approximation to the correct results.

The partitioned R-matrix results displayed in fig. 1 were all obtained using fairly
small values of P. Using P = 180 and eq. (5) gives Ey = 163.0 eV, which rises to
165.1 eV for P = 270. As P is increased the results for Theory A both with and without
error correction move monotonically towards the correct eigenphase sums. However this
movement is fairly slow and it was found that even with error correction it was necessary
to include explicitly about 50 % of the poles to get acceptable results. This number is
disappointingly high and suggests that theory A is not an adequate approximation.

By contrast fig. 2 gives results obtained using theory C. This theory gives
significantly lower values of Ej, 45.9 and 89.9 eV for P = 200 and 400 respectively.
With P = 200, which is less than 4 % of the poles, excellent agreement is obtained with
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Figure 1. Eigenphase sums as a function of scattering energy for electron — water
collisions with total 2A; total symmetry. Details of the different models used are given
in the text.

the full eigenphases up to 12 eV and good agreement is obtained up to 17 eV. With
P = 400, the excellent agreement extends above 15 eV. In this context it should be
noted that eigenphase sums are arbitrary to modulo 7 and the water eigenphases sums
displayed are unusually complicated. In particular the apparent disagreement between
the P = 400 eigenphases sums and the other calculations in the 14 eV region can be
eliminated by adding 7 to the P = 400 results in this region.

3.2. CF,

Test calculations on low-energy electron collisions with the CF5 radical were performed
for A; symmetry using the 7-state model of Rozum et al. (2002). For this model
M = 2397.

Fig. 3 reports a series of calculations performed using theory A for which values
of Ey span the range 131.3 eV for P = 250 to 173.5 eV for P = 1500. The results are
somewhat unexpected. They show that as the number of poles explicitly considered,
P, is increased from 250 to 1000 the eigenphase sum, which is already too high for
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Figure 2. Eigenphase sums as a function of scattering energy for electron — water
collisions with total 2A; total symmetry. Details of the different models used are given
in the text

P = 250, gets higher. Only for P > 1250 do the eigenphase sums begin to move
towards the correct value. As variational considerations show that theory A without
the error correction must underestimate the eigenphase sum, this suggests that BB’s
error correcting method, as used in theory A, is over-correcting for the errors.

Fig. 4 compares calculations with P = 250 for theories A, B and C. While theory A,
eq. (5) gives Fy = 131.3 eV for P = 250, this is reduced to 75.5 eV for theories B and C,
which use the same method to compute Ey. P = 250 is too small to get really converged
results for this system but is used for clarity. It is clear that the approximation improves
as one moves from theory A to C, and that theory C gives a considerable improvement.

3.3. CFs

One important further test is to study the behaviour as the size of the calculation is
increased. Results for this test are only presented for theory C as the other theories do
not perform well for this problem. These test calculations were performed for electron
scattering from CF3 which has been the subject of a recent study by Rozum et al. (2003).
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Figure 3. Eigenphase sums as a function of scattering energy for electron — CF,
collisions with total 2A; total symmetry. Details of the different models used are given
in the text.

Rozum et al. discussed the use of a number of possible scattering models which differed
in the target electrons which were correlated in the CI expansion and hence in the
number L? terms included in the scattering wavefunction. Several of these models were
deemed impractical because the number of L? configurations implied made it impossible
to diagonalise the complete scattering Hamiltonian.

In BB’s partitioned R-matrix theory and theory A discussed above, in-
creasing the number of L? configurations tends to increase the number of
R-matrix poles lying at higher energies. Test calculations were there-
fore performed using an expansion of 6-target states and 'A’ symmetry
within the C; point group. Two different sets of L? configurations were
tested; these were generated using the recipe (1a'2a'3a'4a’5a'6a'7a'1a"2a"3a")*
(8a’9a'10a’11a’12a’13a'4a"5a"6a" 7a")* which gives ngy = 2798 configurations and
(1a'2d'3d'4a’5a'6a'1a"2a"3a”)'® (7a'8a’'9a’'10a’11a'12a'13a’4a"5a"6a"7a")'® which gives
ng = 4595 configurations. The number of target states and the size of the contin-
uum basis was kept the same in both calculation giving M — ng = 278 configurations
in both cases. These numbers illustrate the dominance of L? in determining the size of
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Figure 4. Eigenphase sums as a function of scattering energy for electron — CF,
collisions with total 2A; total symmetry. Details of the different models used are given
in the text.

the Hamiltonian matrix, M, in molecular calculations.

Theory C performs very well for both the electron — CF3 cases studied, see Fig. 5.
The value of Ej given by theory C is the same for both cases, 41.6 eV for P = 200
and 65.2 eV for P = 400. Partly as a consequence of this the results appear to be be
insensitive to ng, the number of L? terms included. This is a very encouraging result
which suggests that this version of the partitioned R-matrix theory should still perform
well even with very large numbers of L? functions.

4. Conclusions

The partitioned R-matrix theory of Berrington & Ballance (2002) has been adapted to
electron-molecule calculations where only relatively low collision energies are important.
The equations of the recommended version of this theory can be summarised as

P
1 1
Ri W ,E = 3 i —
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where Fj is defined as the average of the diagonal Hamiltonian matrix elements involving
continuum functions whose energy is greater than Ep. The error correcting term is given

by

41 1 1
= jzzh(uilj(a))QXilj (Hilj,ilj —E Ep- E) ' (13)
This form of the the theory will be implemented as a standard of option in the UK
R-matrix codes (Morgan et al. 1998).

Of course the usual observable parameter in an electron scattering experiment is the
cross section not the eigenphase. Electron impact electronic excitation cross sections,
particularly dipole forbidded ones, tend to be sensitive to the details of any calculation,
so it is important to check the behaviour with the partitioning approximation. Tests
showed that these cross sections are very stable with respect to P for calculations
performed using theory C. Thus, for example, calculations which studied impact
excitation to the lowest excited state of water, the X *A’ — 13A” transition, for P = 200
and P = 400 were indistinguishable from those performed using a full calculation. The
only exception was a small region about 7.5 eV where there were small changes in the
energy dependence of the structure in the excitation cross section. This behaviour is
also shown by the eigenphases, see fig. 2.

It is anticipated that the use of partitioned R-matrix theory will significantly extend
the complexity of target configuration interaction expansions and hence scattering
wavefunctions that can be routinely used. One desirable feature of the chosen form
of partitioned R-matrix theory is that it appears to be insensitive to the size of target
expansion. The wavefunction information needed to construct the R-matrix on the
boundary is carried by configurations of the form target wavefunction times continuum
basis. Although the target wavefunction itself may be very complicated, there are
relatively few configurations of this type, normally only a few hundred, even for a large
multi-state calculation. This is because each target state is represented by a single
wavefunction and the continuum functions are chosen to span the energy region of
interest and not all energies, which limits their number. It should therefore be not
altogether surprising that the number of R-matrix poles which need to be explicitly
considered to get well converged results corresponds approximately to the number of
target times continuum configurations used in the calculation and that these solutions
themselves span the energy range of interest. Other configurations, which give rise
to higher poles, are important but largely contribute to the complicated and slowly
convergent, electron-electron correlation problem. By construction, these interactions
are confined to the inner region which contains the entire target wavefunction. That
they do not contribute significantly in the outer region should therefore not be a surprise.
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