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Abstract

Objective: Infancy is a critical period during which rapid growth potentially programs future disease risk. Identifying the
modifiable determinants of growth is therefore important. To capture the complexity of infant growth, we modeled growth
trajectories from birth to six months in order to compare the genetic and environmental influences on growth trajectory
parameters with single time-point measures at birth, three and six months of age.

Methods: Data were from Gemini, a population sample of 2402 UK families with twins. An average 10 weight measurements
per child made by health professionals were available over the first six months. Weights at birth, three and six months were
identified. Longitudinal growth trajectories were modeled using SITAR utilizing all available weight measures for each child.
SITAR generates three parameters: size (characterizing mean weight throughout infancy), tempo (indicating age at peak
weight velocity (PWV)), and velocity (reflecting the size of PWV). Genetic and environmental influences were estimated
using quantitative genetic analysis.

Results: In line with previous studies, heritability of weight at birth and three months was low (38%), but it was higher at six
months (62%). Heritability of the growth trajectory parameters was high for size (69%) and velocity (57%), but low (35%) for
tempo. Common environmental influences predominated for tempo (42%).

Conclusion: Modeled growth parameters using SITAR indicated that size and velocity were primarily under genetic
influence but tempo was predominantly environmentally determined. These results emphasize the importance of
identifying specific modifiable environmental determinants of the timing of peak infant growth.
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Introduction

Infancy is a critical period during which growth patterns may

program lifelong risk of obesity and chronic disease [1,2,3,4,5].

Normal infant growth consists of an initial fall in weight after

birth followed by increasing weight gain to a peak at six weeks

(peak weight velocity (PWV)) after which the rate of weight gain

declines to a plateau around six months [6]. Both weight velocity

and age at PWV (an indicator of growth tempo) vary between

infants. Similar to other tempo indicators (e.g. adiposity rebound,

puberty onset, peak height velocity), earlier PWV is associated

with a higher risk of adult disease [2,7,8,9]; suggesting that an

accelerated tempo of development is detrimental to longer-term

health. Rapid weight gain is a well-studied risk factor for obesity

[10], but weight gain based on just two weight measurements

cannot estimate age at PWV or characterize variations in velocity

throughout infancy, which may be crucial to the development of

chronic disease.

Quantitative genetic studies of single time-point weight measures

between birth and three months indicate that variation in weight is

primarily attributable to the environment; with just 10–44%

explained by genetic influences [11,12,13,14,15,16,17,18], whereas

from five months onwards genes play a larger role (66–90%

heritability) [13,18,19]. A summary of growth velocity can be

captured by using repeated measures of weight throughout infancy

and mathematically modeling growth trajectories using one of a

range of infant growth curve models [20,21,22,23]. Two studies

modeled infant growth velocity (using a polynomial of degree 4

model or the Count model) based on an average of 12 weight

measures between birth and 2.5 years in 681 children from 169

families [24], and in a large sample of twins (n = 3477 pairs) [22].

The heritability of growth velocity was estimated as 28% in the

family study but 63% in the twin sample [22,24].

No studies to date have characterized the heritability of the

timing of PWV, nor has any study established whether the

heritability of modeled growth parameters, which may be more

reliable because they use data from multiple time-points, is higher

than single time-point measures of weight. SuperImposition by

Translation And Rotation (SITAR) is a novel method of modeling

growth that estimates three parameters: size, velocity and tempo
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(equivalent to age at PWV) [25]. In this study we assessed the

contribution of genetic and environmental factors to single

measurements of weight at birth, three and six months and the

three SITAR growth parameters in a large twin birth cohort.

Methods

Ethics Statement
Parents provided informed written consent for their family to

participate in the study and ethical approval was granted by the

University College London Committee for the Ethics of non–

National Health Service Human Research. All aspects of data

collection and storage were in accordance with the standards

stipulated by this body.

Data came from Gemini [26], a birth cohort initiated in 2007 to

investigate genetic and environmental influences on appetite,

activity and growth from birth to 5 years. All families in England

and Wales with live twin births between March and December

2007 (n = 6754) were eligible for recruitment and were asked by

the Office of National Statistics for consent to be contacted by the

research team. A total of 3435 families (51%) agreed to be

contacted, of whom 2402 (70% of those contacted and 39% of all

eligible families) returned a baseline questionnaire. Sex and

gestational age were maternally reported. A validated question-

naire [27] established the zygosity of same-sex twin pairs as

monozygotic (MZ) or dizygotic (DZ) (opposite-sex twins are all

DZ). Children in England and Wales are measured regularly from

birth by health professionals and the values are recorded in a

personal health record kept by the parents. Parents were asked to

photocopy the relevant pages of their children’s health records or

transcribe the measurements into the questionnaire. Parents

returned the weight data when the twins were on average 8 (SD

2) months old, with a median of 10 (Inter-Quartile Range (IQR) 7)

weight measurements per child recorded between birth and a

median of 6.6 (IQR 3.1) months old.

Statistical analyses
Continuous variables are described between twin pairs by

calculating the sample mean and SD of the means within each

twin pair. Analogously, the within-pair SD was calculated as the

SD of the difference within each twin pair. Categorical variables

are described with frequencies and percentages. Descriptive

analyses were performed in SPSS v15 (SPSS Inc, Chicago, IL).

Infant growth modeling. Weight growth curves were

analyzed using the SuperImposition by Translation and

Rotation (SITAR) method [25]. SITAR is a shape invariant

model with random effects, originally used for infant growth

modeling by Beath [28]. It involves the estimation of an average

growth curve for the sample, plus a set of three parameters for

each individual that together transform the average curve to

match the individual’s growth. The average curve is fitted as a

cubic spline and individual parameters are estimated as mixed-

model random effects based on at least one weight measure per

child. Growth curves for children with fewer measures of weight

are therefore ‘shrunk’ towards the average curve because of the

reduced information. Size is an up/down shift of the average

curve, indicating whether the infant is bigger or smaller than

average (see figure 1, panel A). Tempo is a left/right shift of the

average curve, indicating whether the timing of PWV is earlier or

later than average (figure 1, panel B). Velocity is a shrinking/

stretching of the age scale, because shrinking the age scale makes

the curve steeper (increasing velocity) and stretching the scale

creates a shallower slope (reducing velocity) - effectively this is a

rotation of the growth curve indicating the rate at which ‘growth

time’ passes for an individual relative to the average (figure 1,

panel C). The SITAR analysis was done using the nlme library

[29] in the statistical package R [30].

Separate SITAR models were fitted for first- and second-born

twins, and the parameter estimates were compared within twin

pairs. The modeling involved weight in kg and postmenstrual age

(weeks). Size was measured in kg, tempo in weeks and velocity in

fractional units, which multiplied by 100 correspond to a

percentage of mean velocity [31]. Negative values represent

smaller/earlier/slower and positive values larger/later/faster than

average.

Single time-point measures of weight at birth, three and six

months were identified for quantitative genetic analysis. Weight ‘at

three months’ was defined as weight measured between two and

four months closest to three months and weight ‘at six months’ was

weight measured between five and seven months closest to six

months (exact age was recorded). Weight standard deviation scores

(SDS) at birth, three and six months were calculated adjusting for

age, sex and gestational age based on the British 1990 growth

reference [32,33]. Change in weight SDS between birth and, three

or six months was calculated by subtracting weight SDS at the

earlier from weight SDS at the later time-point.

Heritability analyses. Heritability was estimated using

intra-class correlation (ICC) coefficients and quantitative genetic

analysis. ICCs assess similarity within and between twin pairs; a

higher ICC in MZ than DZ twin pairs indicates greater genetic

influence. All heritability analyses were adjusted for age and sex

using the residual method, a standard practice because age and sex

are perfectly correlated within same-sex pairs, which mimics and

inflates common environmental variation.

Quantitative genetic analysis provides robust estimates of genetic

and environmental influences by partitioning trait variation into an

additive genetic component (A; which makes more genetically

related children more similar), a common environment component

(C; environmental factors that make children in the same family

more similar) and a unique environment component (E; which

makes children in the same family more different but also includes

measurement error) as well as generating confidence intervals.

Using maximum-likelihood structural equation modelling, trait

variance is partitioned based on expected covariance structures

between MZ and DZ twins using the following assumptions: 1) MZs

share 100% of their DNA (so their coefficient of genetic relatedness

is 1); 2) DZs share 50% of their segregating genes (so their coefficient

of genetic relatedness is 0.5); 3) MZs and DZs have the same

common environmental exposures (fixing the covariance of the C

component is 1 for both types of twins); 4) each twin’s unique

environment is uncorrelated with their sibling. More constrained

sub-models dropping A or C or both were examined, but in all cases

the full ACE model fitted best (as judged by the Bayesian

Information Criterion and change in -2LL x2 tests of sub-models

producing a p,0.05) so only ACE model results are presented. Sex

differences in A, C and E were also investigated using a sex-

limitation model, but none were significant.

All available data on each weight/growth variable were used for

the genetic analyses, but single time-point data had some missing

cases, which meant that the sample size varied. Estimates of size,

tempo and velocity were available for 2340 twin pairs, while

weight SDS data were available for 2322 twin pairs at birth, 2110

pairs at three months and 1717 pairs at six months. Data on 2099

pairs were available for SDS change from birth to three months

and 1633 pairs for SDS change from birth to six months. Twin

analyses were carried out using Mx Maximum-Likelihood

Structural Equation Modeling Software (version 32; Virginia

Commonwealth University, Richmond, VA).

Genetics of Infant Growth
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Results

Descriptive characteristics of the Gemini sample are displayed

in Table 1. As expected of twins, they were born earlier and

smaller than the British 1990 reference singleton children. MZ

twins were also born earlier than DZ twins, which explained their

lower weight at birth, three and six months. The SITAR model for

first-born twins (based on 21,617 weights from 2340 individuals)

had a residual SD of 0.16 kg compared with a residual SD of 0.69

kg for the population growth curve with no random effects. Thus

the addition of the SITAR parameters to the model reduced the

variance by 94%; providing a much better fit to the data. Results

for the second-born twins were effectively the same as for the first-

born. The random effect parameters had means of zero (by

definition) and SDs of 0.68 kg for size, 3.7 weeks for tempo and

24% for velocity, which means that 95% of infants had sizes within

1.36 kg of mean size, tempos within 7.4 weeks of mean tempo, and

velocities within 48% of mean velocity [31].

The size parameter was positively correlated with weight at

birth, three and six months (r = 0.39, r = 0.41, r = 0.69 respective-

ly). Velocity was associated with greater changes in weight SDS

from birth to three (r = 0.68) and birth to six (r = 0.70) months. A

later PWV was associated with longer gestation (r = 0.23) and

lower weight SDS at birth, three and six months (r = 2.022,

r = 20.56, r = 20.22, respectively); conversely those who were

younger at PWV tended to be larger at all ages.

ICCs and results of the quantitative twin analyses for weight at

birth, three and six months, alongside SITAR growth parameters

are shown in Table 2. ICCs for all measures were higher for MZ

than DZ twins indicating genetic influence on infant growth; but

the difference varied across growth indicators. The twin analyses

indicated that heritability varied from just 38% at birth and three

months to 62% at six months. Weight SDS change between birth

and three months was 35% heritable, increasing to 57% for

change in weight SDS from birth to six months. Unique

environmental influences (which include measurement error)

explained most of the variation in birth weight, while common

environment effect was strongest for change in weight SDS from

birth to three months (Table 2).

The heritability of the SITAR growth parameters was moderate

for size (69%) and velocity (57%) but low for tempo (35%)

(Table 2). The common environment effect was highest for tempo

(42%) and lowest for size (11%). Environmental influences unique

to each twin explained a similar amount of variation for all three

SITAR parameters.

Discussion

In this exploration of the genetic architecture of early infant

growth, we observed differences in the heritability of early and

later weight, as well as between the three modeled growth

parameters (size, tempo and velocity). Like weight at six months,

size and velocity were highly heritable features of growth

trajectories. However, tempo showed a smaller genetic effect and

a stronger influence of the common environment. In the light of

evidence that peak weight velocity may be an important

determinant of later health, support for the influence of childhood

environments provides a valuable starting point for investigations

of the environmental determinants of infant growth.

Birth weight, weight at three months, and weight SDS change

from birth to three months, all had low heritability in the present

analysis, which is in line with previous studies [11,12,13,14,15,

16,18]. Our results indicate that environmental variation in birth

weight is predominantly owing to factors unique to each child. A

Norwegian family-based study of birth weight observed a similar

pattern, with estimates of 15% for the common vs. 32% for the

unique environment effect [17]. Unique environmental influences

may be higher for birth weight because placental factors affecting

nutrient transfer (such as chorionicity, placental fusion and central

vs. peripheral insertion of the umbilical cord) can create

differences even between MZ twins who share the same genes

and placenta [34,35]. Accounting for unique variation in placental

factors in twin analyses has been shown to increase the estimated

heritability of birth weight [14].

Between birth and three months, growth rates change rapidly

and therefore weight at a single time-point during this period may

not reflect size as reliably as at later points when growth rates

stabilize [36]. Lower reliability reduces estimates of heritability

and common environment and inflates the unique environment

effect, which could contribute to the apparent low heritability of

weight in early life. However, the first three months of life has also

been identified as a critical period when growth is nutrition

dependent [37], and because nutrition is primarily an environ-

mental exposure (albeit affected by infant appetite [38]), this could

Figure 1. Average weight and weight velocity curves for extremesa of size (A), tempo (B) and velocity (C) in infancy. a Extreme groups
were based on tertiles (T1, T2, T3) of SITAR parameters such that ‘small’ children were in T1 for size and T2 for tempo and velocity and ‘big’ children
were in T3 for size and T2 for tempo and velocity; ‘early’ children were in T1 for tempo and T2 for size and velocity and ‘late’ children were in T3 for
tempo and T2 for size and velocity; ‘slow’ children were in T1 for velocity and T2 for tempo and size and ‘fast’ children were in T3 for velocity and T2
for tempo and size.
doi:10.1371/journal.pone.0019918.g001
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offer an alternative explanation for the low heritability for

immediate postnatal growth; consistent with the moderate shared

environment effect observed in this analysis.

By six months there was evidence for a stronger genetic

influence on weight. Studies of human growth and body

composition [39] indicate that immediate postnatal weight gain

is predominantly composed of fat mass, but by six months, gain in

lean mass makes a larger contribution, as indicated by increased

height growth after six months [40]. Adult height is 80% heritable

[41] and therefore if weight in later infancy has a greater

contribution from height gain, then this may partly explain the rise

in heritability observed during this period.

Modeling growth using all available weight measures using

SITAR generates three variables that indicate individual variation

from the average growth curve for the group. Heritability of the

size parameter was 69%; similar to results for weight measures

taken after 5 months [13,18,19] and to our estimate for weight

SDS at six months. The higher heritability may also reflect

Table 1. Descriptive statistics of weight and weight change in infancy in the Gemini cohort.

Monozygotic twins Dizygotic twins

N (pairs) Overall Within pair N (pairs) Overall Within pair

Mean (SD) SD Mean (SD) SD

Sex Male n (%) 345 (47%) 400 (25%)

Female n (%) 384 (53%) 389 (24%)

Opposite sex n (%) 816 (51%)

Gestational age (weeks) 727 35.6 (2.5) 1598 36.5 (2.4) b

Age (weeks) at three month weight measurement 636 12.9 (1.5) 0.0 1421 13.0 (1.4) 0.0

Age (weeks) at six month weight measurement 515 25.6 (1.9) 0.0 1139 25.8 (1.9) 0.0

Weight (kg) at birth 707 2.34 (0.52) 0.34 1561 2.52 (0.49) b 0.41

Weight (kg) at three months 636 5.03 (0.88) 0.51 1421 5.22 (0.80) b 0.76

Weight (kg) at six months 515 6.98 (0.95) 1.03 1139 7.16 (0.89) b 1.40

Weight gain (kg) from birth to three months 634 2.69 (0.61) 0.34 1409 2.70 (0.57) 0.58

Weight gain (kg) from birth to six months 514 4.68 (0.78) 0.89 1119 4.67 (0.71) 1.27

Weight SDS at birth a 706 20.53 (0.85) 0.93 1555 20.57 (0.76) 1.06

Weight SDS at three months a 635 20.28 (1.01) 0.88 1415 20.28 (0.93) 1.10

Weight SDS at six months a 515 20.28 (1.05) 1.22 1137 20.25 (0.97) 1.51

Change in weight SDS from birth to three months a 633 0.26 (0.94) 0.66 1404 0.28 (0.84) 0.88

Change in weight SDS from birth to six months a 514 0.30 (1.04) 1.16 1119 0.31 (0.95) 1.43

aStandard deviation scores were calculated from weight, exact age at 3 or 6 months, gestational age and sex compared with British 1990 growth reference data [33].
bIndicates DZ is significantly different from MZ twin pairs at p,0.0001.
doi:10.1371/journal.pone.0019918.t001

Table 2. Intra-class correlations and heritability of weight, weight change and SITAR growth parameters from birth to six months
in Gemini.

Intra-class correlations
Additive
genetic (A) a

Common
environmental
(C) a

Unique
environmental
(E) a

MZ DZ

Weight SDS at birth b 0.53 (0.48, 0.59) 0.34 (0.29, 0.38) 38 (25, 51) 12 (2, 22) 50 (45, 55)

Weight SDS at three months c 0.68 (0.64, 0.72) 0.47 (0.43, 0.51) 38 (28, 48) 29 (20, 37) 33 (30, 37)

Weight SDS at six months c 0.77 (0.73, 0.80) 0.47 (0.42, 0.51) 62 (53, 73) 15 (6, 24) 22 (20, 26)

Change in weight SDS from birth to three months c 0.76 (0.72, 0.79) 0.56 (0.52, 0.59) 35 (26, 44) 37 (29, 44) 28 (25, 32)

Change in weight SDS from birth to six months c 0.81 (0.77 0.83) 0.54 (0.50, 0.59) 57 (47, 67) 21 (13, 30) 22 (19, 25)

Size d 0.80 (0.77, 0.82) 0.48 (0.44, 0.52) 69 (60, 77) 11 (3, 18) 20 (18, 23)

Tempo d 0.76 (0.73, 0.79) 0.60 (0.57, 0.63) 35 (27, 42) 42 (35, 48) 24 (21, 27)

Velocity d 0.84 (0.82, 0.86) 0.49 (0.45, 0.53) 57 (50, 65) 26 (19, 32) 17 (15, 19)

a% of variation (95%CI) estimated from standard ACE model-fitting analyses to model heritability of continuous data.
bAdjustments to scores: scores modeled were residuals adjusted for gestational age and sex.
cAdjustments to scores: scores modeled were residuals adjusted for gestational age, exact age at 3 or 6 months and sex.
dAdjustments to scores: scores modeled were residuals adjusted for sex.
doi:10.1371/journal.pone.0019918.t002

Genetics of Infant Growth

PLoS ONE | www.plosone.org 4 May 2011 | Volume 6 | Issue 5 | e19918



improved reliability of ‘size’ (which summarizes many weights)

compared with single measures of weight. Our estimate of 57%

heritability for velocity was similar to the estimate for change in

weight SDS from birth to six months in the present study, and also

to velocity derived from a different model of growth in twins

during the first two years [22], although higher than was found in

a family-based study [24]. There is evidence that some obesity

genes are associated with both weight (a proxy for size) and weight

gain (a proxy for velocity) in early infancy [42,43,44]. Multivariate

heritability models investigating the genetic correlation between

size, velocity and tempo could add further insight into the

physiological control of growth in infancy.

We are not aware of any previous studies that have examined

the heritability of the timing of PWV (tempo in the SITAR model).

Our results showed low heritability for tempo compared with size

and velocity. Previous studies of the magnitude of PWV have

shown associations with an earlier onset of puberty (a indicator of

tempo in later childhood) [45], suggesting that infant and later

childhood growth tempo are linked. Earlier maternal menarche

has also been associated with more rapid growth in their infants;

linking tempo across generations [46]. However, our estimate of

heritability for tempo in infancy was lower than has been observed

for the timing of puberty [47,48,49]; supporting different

biological processes. The evidence that tempo is under primarily

environmental influence is important in the light of evidence that

growth and health risk are programmed [50]. It highlights the

need for studies that directly assess the potential environmental

exposures.

The present study is strengthened by the use of data from a

large, population-based sample with multiple weight measures

made by health professionals, which have been shown to be

accurate compared with clinic measures [36]. SITAR modeling

averages information across measurement occasions and therefore

minimizes measurement error as well as summarizing growth over

time, allowing for more reliable estimates. There are also

limitations. Although the Gemini sample is reasonably represen-

tative of families in England and Wales [26], higher SES families

are over-represented, as observed in other cohort studies [51,52].

Twins also grow differently from singletons during infancy [53],

although there is no evidence to indicate differences in the

underlying physiology of growth. The twin method also makes

several assumptions [54], e.g. that MZ and DZ twins have equal

sharing of common environmental exposures, but even if the equal

environments assumption is violated, the effect on heritability

estimates is relatively small and unlikely to alter the qualitative

conclusion that genetic influence on tempo is lower than on size or

velocity. Zygosity was estimated using a validated parent-report

questionnaire that has previously demonstrated 96% accuracy for

classifying twins correctly compared with DNA testing [27].

Conclusions
Using modeled growth parameters, we have shown that size and

velocity are highly heritable whereas tempo (age at PWV) is largely

explained by environmental factors. A better appreciation of the

environmental determinants of infant growth will help inform the

development of effective early interventions to promote healthy

weight.
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