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Observation of coherent single-electron dynamics is severely limited by experimental bandwidth. We
present a method to overcome this using moving quantum dots defined by surface acoustic waves. Each
dot holds a single electron, and travels through a static potential landscape. When the dot passes abruptly
between regions of different confinement, the electron is excited into a superposition of states, and
oscillates unitarily from side to side. We detect these oscillations by using a weak, repeated measurement

of the current across a tunnel barrier, and find close agreement with simulations.
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A wide range of modern and future technologies such as
quantum electronics, quantum optics, and quantum infor-
mation processing, rely directly on quantum mechanical
dynamics for their operation. For example, the charge state
or the spin state of a single electron trapped in a confine-
ment potential, or a quantum dot (QD), is the basis for a
quantum-bit (qubit) for various quantum computation
schemes [1-8]. Yet the coherent motion of a single-
electron wave function is extremely difficult to detect as
its time scale is normally in the picosecond regime. Past
gate-pulse experiments have successfully investigated the
charge states of double QDs containing many electrons
[9,10], but never in the single-electron regime where a
stronger confinement potential leads to a faster dynamic
process, exceeding the experimental bandwidth.

In order to investigate single-electron dynamics here, we
take a different approach: moving QDs defined by the
potential minima of surface acoustic waves (SAWs) of
wavelength ~1 um and frequency ~2.7 GHz are sent
through a static gate-defined circuit [11-13]. These dy-
namic dots, each containing a single electron, travel past a
tunnel barrier at the SAW velocity of ~2800 m/s. The
potential landscape defined by the surface gates provides a
fast-changing time-dependent potential in the rest frame of
the dynamic dots. For example, a change in potential over a
distance of 0.1 wm happens in ~40 ps. In this way we
avoid the bandwidth limitation of experimental circuits
without the need for gate pulses.

Eigenstates of a confined quantum system (such as an
electron in the ground state of a QD) are stationary in the
sense that the probability density of the wave function does
not change in time relative to the confinement potential.
However, such a quantum state is fragile: a sudden change
in the confinement potential can send the electron from the
ground state into a linear superposition of eigenstates. The
unitary evolution of a single particle in such a superposi-
tion of states produces a time-varying probability density.
In particular, the probability density arising from a super-
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position of two eigenstates oscillates with frequency AE/h
where AE is the energy gap between the two states and 4 is
Planck’s constant.

In our dynamic dot, the motion of the electron probabil-
ity density is induced by the sudden creation of a tunnel
barrier in the rest frame of each dot. The fast-changing
potential excites the electron into a superposition of states
which will oscillate from side to side. Electron tunneling
from a QD into a reservoir is usually described by an
exponential decay e /7 of the probability of the electron
staying in the dot after a time 7, where 7~ ! is the tunnel
rate. However, for the case described above, the oscilla-
tions of the wave function against the barrier cause an
oscillating tunnel rate: the tunnel rate increases when the
wave function is close to the barrier because of a larger
overlap with a state in the reservoir, but decreases when the
wave function is away from the barrier. The transit time
past the barrier is fixed by the gate geometry, but the
oscillation frequency can be tuned by sweeping gates to
change the confinement potential, which leads to an ex-
perimentally observable oscillation in the tunnel current, as
discussed in more detail below.

This dynamic process can be modeled by numerically
solving the single-electron time-dependent Schrodinger
equation [14]. The result of this can be seen for a simple
time-varying one-dimensional (1D) potential in Fig. 1.
Initially, the electron is placed in the ground state of the
QD on the left [Fig. 1(a)]. When the barrier potential Vj is
suddenly lowered [Fig. 1(b)] the electron is excited into a
superposition of states and the wave function oscillates
from side to side, periodically hitting the barrier. Fig-
ures 1(c) and 1(d) show the time evolution of the proba-
bility density of the wave function for the cases of weak
tunneling [Fig. 1(c)] and strong tunneling [Fig. 1(d)]. The
oscillations are approximately periodic (~5 ps period and
~0.8 meV excitation gap), because the lowest two states
(the ground state |0) and the first excited state |1)) are the
dominant components (higher states are less likely to be
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FIG. 1 (color online). Time-dependent one-dimensional model
demonstrating the oscillating tunnel rate. (a) Potential across the
tunnel barrier is calculated by solving the Laplace equation for
the gate geometry of our experimental device. (b) Barrier-gate
potential Vp is varied in time. (c) and (d) Time evolution of the
probability density of the wave function plotted as a color scale
(a brighter color shows a higher value) for the cases of a high
tunnel barrier (¢) and a low tunnel barrier (d). (e) and
(f) Probability density of the two extrema of the wave function
|L) (blue) and |R) (red), which can be approximated as a linear
combination of the ground state (|0)) and the first excited state
(I1)). The potential profile is plotted in brown.

excited and escape easily). The wave functions at the left-
and right-most positions can be written as |L) = a|0) —
Bl1) and |R) = «|0) + B|1), where |a|*> + |B]> =1, as
shown in Figs. 1(e) and 1(f).

In order to investigate these picosecond electron dynam-
ics, we fabricated the device shown in Fig. 2(a) on a
GaAs/AlGaAs heterostructure with a two-dimensional
electron gas (2DEG) 97 nm below the surface. The
2DEG density was 1.8 X 10" m~2, and the mobility was
160 m?/V's. Interdigitated transducers and surface gates
were formed by patterning NiCr/Au layers using electron-
beam lithography. The transducers were placed 2.5 mm
away from the center of the device, where the surface gates
define two parallel 1D channels. The transducers and the
channels were aligned so that SAWSs travel in the [110]
direction. Here, only the left transducer in Fig. 2(a) was
used. The resonant frequency of the transducer was f =
2.7149 GHz. An applied microwave power of 12.8 dBm
was pulse modulated with a duty ratio of 1:50 (10 us pulse
length and 500 ws pulse period) in order to minimize
sample heating [15]. This also resulted in a reduction of
the injected acoustoelectric current to [, = ef/50 ~
8.7 pA (e is the electronic charge) [16].
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FIG. 2 (color online). Experimental device. (a) Illustration of
the sample (bottom) and SEM image showing the surface gates
(top). The inset shows the central 3.5 um X 2.5 um of the
device. (b) Simplified experimental layout. SAWs carry a single
electron in each potential minimum through the completely
depleted top channel. At the weakest point of the tunnel barrier,
electrons can tunnel into the open 1D channel and escape into the
bottom-right exit (dotted line). The solid line in the top channel
illustrates the oscillations of the probability density.

Prior to measurement, the sample was cooled to 270 mK
with a positive bias of 0.3 V on all surface gates [17]. This
reduced the effect of switching noise, and the device
characteristics were stable throughout the measurements.
It also resulted in a shift of pinch-off characteristics by
0.3V, so that even with zero bias the 2DEG underneath the
gates was depleted. The voltages on all 18 surface gates
were independently controlled and carefully tuned so that
the top channel was depleted, whereas the bottom channel
was populated with electrons. The gate voltages were also
chosen so that the potential slope along the top channel was
shallow enough to keep the electrons confined [18]. Each
SAW potential minimum therefore formed a QD [12]. In
the bottom channel, from the tunnel-barrier region to the
bottom-right 2DEG, an open 1D channel filled with elec-
trons is formed. The effect of the SAW on the bottom
channel can be ignored because the SAW potential is
screened there [19]. As shown in Fig. 2(a), we label the
four gates that define the central region as top left (TL), top
center (TC), bottom center (BC), and Barrier.

Each SAW potential minimum captures a single electron
from the top-left 2DEG. These electrons are carried
through a depleted channel [top channel in Fig. 2(b)],
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generating a quantized current /;, [11]. As the dynamic
QDs pass through the tunnel-barrier region defined by the
Barrier, TC, and BC gates, they couple to an open channel
[bottom channel in Fig. 2(b)] acting as a reservoir, which is
populated with electrons up to the Fermi energy. The
entrance region to the bottom channel is strongly pinched
off so that SAWSs cannot carry electrons into it. Although
the lithographic length of the tunnel-barrier region is
~1 wm, the actual tunneling region is shorter and is likely
to be of the order of ~0.1 um, which gives a tunnel
duration of 7; ~ 40 ps. This arises naturally because the
background impurity potential causes a nonuniform barrier
height, and the tunneling will be dominated by the weakest
point in the barrier.

As illustrated by the solid line in Fig. 2(b), oscillations
between the |L) and |R) states are induced when the
electron enters the tunnel-barrier region. When the barrier
is weak enough, tunneling becomes possible and the wave
function decays as shown in Fig. 1(d). The barrier then
increases in height again and tunneling is suppressed as the
dynamic dots become decoupled from the bottom channel,
and the electrons exit into either the top-right or bottom-
right 2DEG. The probability that the electron did not
tunnel from the dynamic dot is determined by measuring
the output current /i, from the top channel. In this method,
the limitation in 7, allows us to investigate the dynamics of
the electron tunneling without needing to apply short
pulses to the electrodes. We also note that, unlike previ-
ous charge-coherence experiments where tens of electrons
reside in the QDs [9,10], only one electron is trapped in
each QD.

Figure 3(a) shows I, as a function of the TC gate
voltage Vrc while the TL gate voltage is incremented. As
Vrc is made more negative, I, decreases from the quan-
tized value of the injected current. The reduction in the
output current is because the electrons are squeezed to-
wards the barrier, which increases the tunnel current /; =
Iy — Iop- At first glance, Ii,, appears featureless (except
for a plateau of unknown origin around —0.65 V) showing
a smooth change in /7, as expected from usual electron
tunneling behavior. However, removing slowly varying
features using a high-pass filter [20] reveals reproducible
oscillations with a visibility ~1% of I;, [Al,, in Fig. 3(b)].
Similar oscillations, although with a smaller amplitude and
a smaller number of periods, were also observed when the
roles of the two channels were swapped.

The behavior of these oscillations is consistent with the
theoretical model described earlier (elimination of spuri-
ous effects is discussed in Ref. [21]). When V¢ is swept,
the confinement potential, and hence the excitation gap,
changes. If the excitation gap is increased, the frequency of
the wave-function oscillation increases. Therefore, the
wave function oscillates faster, fitting an extra portion of
the oscillations within the fixed tunnel duration. If this
extra portion corresponds to the time when the wave func-
tion is further from the barrier (mainly in state |L)), I
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FIG. 3 (color online). The behavior of the output current 7,
from the top channel as the top- center (TC) and top-left (TL)
gate voltages are varied. (a) A plot of I,,. As the TC gate is
swept negatively, electrons are squeezed out of the top channel,
and hence /I, decreases from the quantized current ef/50 =
8.7 pA. (b) The value Al,, where slowly varying features are
removed by a high-pass filter reveals a set of small-amplitude
oscillations. The oscillations gradually die away past —0.3 V.
The origin of the crescent-shape feature in this regime is un-
known.

decreases because the total time for which the electron
stays close to the barrier decreases. On the other hand, if
the extra portion occurs when the wave function is closer to
the barrier (mainly in state |R)), extra tunneling will occur
and I is enhanced [in the experiments, the background in
I always increases as V¢ is made more negative because
the tunnel barrier becomes weaker; see Fig. 3(a)]. We note
that, although we arbitrarily chose 40 ps as the tunnel
duration for this simulation, this should not be taken as a
strict requirement for the observation of the oscillations in
I7. We investigated various channel-potential profiles and
found that the oscillations in I can be observed as long as
the number of periods within the tunnel duration is ~10 or
less. We also note that our tunnel duration is shorter than
both the phonon scattering time expected in a QD [22] and
the charge-coherence time reported in Ref. [9].

In Fig. 4(a) the Barrier-gate dependence of the oscilla-
tions in I is shown. The oscillations move to a more
negative Vpc when the Barrier gate is made more negative.
This behavior is reproduced using the model described in
Fig. 1, where the potential across the barrier is determined
by solving the Laplace equation for our gate geometry [23].
Although the actual voltages used are somewhat different
(such a discrepancy is expected for this type of potential
calculation), similar behavior to the experiments is ob-
tained with comparable periods of oscillation in both
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FIG. 4 (color online). (a) and (b) The behavior of Altop as the
Barrier and TC gate voltages are incremented: (a) Experimental
data. (b) Filtered value A p of the probability p to stay in the dot
is plotted from the simulation. (c) Perpendicular magnetic-field
dependence. Dotted lines follow the constant excitation gap
calculated from a theoretical model of an elliptical QD [24].

gate voltages, as shown in Fig. 4(b). In this regime, making
Ve more negative decreases the excitation gap whereas
making the Barrier-gate voltage more negative increases
the excitation gap. This is consistent with an intuitive
picture that, with a weak tunnel barrier, making V¢
more negative leads to a larger coupling between the dot
and reservoir states and hence to a weaker confinement
energy, whereas increasing the barrier potential leads to a
stronger confinement.

Further evidence for this model comes from the behavior
of the oscillations in a perpendicular magnetic field B
[Fig. 4(c)]. The crescent-shaped features correspond to
contours of constant oscillation frequency, i.e., constant
excitation gap. While a more negative Vyc decreases con-
finement, applying B increases confinement in a QD. The
SAW minimum can approximately be considered to be an
elliptical dot elongated in the SAW transport direction (in
the y direction), because the channel confinement in the
x direction is usually much stronger than the confinement
by the SAW potential. The oscillation frequency can then
be calculated [24] by assuming a SAW amplitude of 20 mV
and fitting a linear relationship between Vpc and the con-
finement energy in the x direction. The fit was performed
by assuming that the three main dark contours in Fig. 4(c)
correspond to N, N + 1, and N + 2 oscillation periods. We
find good qualitative agreement to the data with N = 8§,

which is consistent with the dynamical simulations in
Fig. 1. Our results demonstrate a new technique for the
observation of coherent charge dynamics occurring on a
few-picosecond time scale. A deeper understanding of
such dynamics is important, not only from a fundamental
physics perspective, but also in the development of future
quantum information technologies such as quantum infor-
mation processors [1-3].
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