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Abstract

The aims of this short note are two-fold. First, it shows that, for a random
variable X, the area under the curve of its folded cumulative distribution
function equals the mean absolute deviation from the median (MAD). Such
an equivalence implies that the MAD is the area between the cumulative
distribution function (CDF) of X and that for a degenerate distribution
which takes the median as the only value. Secondly, it generalises the folded
CDF to a p-folded CDF, and derives the equivalence between the area under
the curve of the p-folded CDF and the weighted mean absolute deviation from
the p-quantile (MADp). In addition, such equivalences give the MAD and
MADp simple graphical interpretations. Some other practical implications
are also briefly discussed.
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1. Introduction1

The folded cumulative distribution function for a random variable can be2

easily obtained by folding down the upper half of the cumulative distribution3

function (CDF). It is a simple graphical method for summarising distribu-4

tions, and has been used for the evaluation of laboratory assays, clinical trials5

and quality control (Monti, 1995; Krouwer and Monti, 1995).6
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The mean absolute deviation from the median (MAD) is obtained by7

averaging the absolute deviations over a population from its median. It is a8

summary statistic for measuring the variability or dispersion of a distribution.9

This short note first shows that the area under the curve of the folded10

CDF equals the MAD, and then generalises the folded CDF to a p-folded11

CDF and derives the equivalence between the area under the curve of the12

p-folded CDF and the weighted mean absolute deviation from the p-quantile,13

which has been used as a risk measure for portfolio optimisation (Ogryczak14

and Ruszczyński, 2002; Ruszczyński and Vanderbei, 2003).15

2. Relationship between the folded CDF and the MAD16

Consider a univariate, continuous random variable X, with probability17

density function (PDF) f(x), with CDF F (x) and with the support of f(x)18

being the interval [a, b]. For a discrete X, a derivation similar to the one19

below can be obtained and is thus omitted here.20

2.1. The theoretical case21

The CDF F (x) is a real-valued function in the range of [0, 1], defined as22

F (x) =

∫ x

a

f(y)dy . (1)

The folded CDF, denoted by G(x) hereafter, is obtained by folding down23

the upper half of the CDF. It is therefore a real-valued function in the range24

of [0, 1
2
], defined by25

G(x) =

{
F (x), if F (x) ≤ 1

2
,

1 − F (x), otherwise .
(2)

A folded CDF is also termed a mountain plot, in view of its shape.26

The MAD is defined by27

MAD =

∫ b

a

|x − m|f(x)dx , (3)

where m is the median of the distribution F (x) such that28 ∫ m

a

f(x)dx =

∫ b

m

f(x)dx =
1

2
. (4)
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By elementary algebra and interchange of variables for integration, it29

follows that the area under the curve of G(x) is30 ∫ b

a

G(x)dx =

∫ m

a

F (x)dx +

∫ b

m

{1 − F (x)}dx

=

∫ m

a

{∫ x

a

f(y)dy

}
dx +

∫ b

m

{∫ b

x

f(y)dy

}
dx

=

∫ m

a

{∫ m

y

dx

}
f(y)dy +

∫ b

m

{∫ y

m

dx

}
f(y)dy

=

∫ b

a

|y − m|f(y)dy . (5)

That is, the area under the curve of G(x) equals the MAD.31

2.2. The empirical case32

Suppose that we have a sample of N observations from the distribution33

F (x) and that, among the N observations, there are n distinct values {xi}n
i=134

with corresponding proportions p(xi). Without loss of generality, let x1 <35

x2 < . . . < xn.36

By abuse of notation, we use the same symbols for F (x), G(x), m, MAD37

and their empirical versions, when there is no ambiguity in the context.38

The empirical CDF, F (x), can be defined as39

F (x) =
∑
xi≤x

p(xi) . (6)

Empirically, the median m is any point such that40

F (m) ≥ 1

2
and

∑
xi≥m

p(xi) ≥
1

2
. (7)

If m = xK and m = xK+1 both satisfy (7) then any x-value such that41

xK ≤ x ≤ xK+1 qualifies to be the sample median. Otherwise, m is the42

unique xK for which (7) holds and in this case both inequalities are strict;43

this argument includes the case in which all the N observations are distinct.44
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Hence, the area under the curve of G(x) can be expressed as45

K−1∑
i=1

{G(xi)(xi+1 − xi)} + G(xK)(m − xK)

+ G(m)(xK+1 − m) +
n−1∑

i=K+1

{G(xi)(xi+1 − xi)}

=
K−1∑
i=1

{F (xi)(xi+1 − xi)} + F (xK)(m − xK)

+ {1 − F (m)} (xK+1 − m) +
n−1∑

i=K+1

[{1 − F (xi)} (xi+1 − xi)] . (8)

If we substitute equation (6) into equation (8), the area becomes46

K−1∑
i=1

{
(xi+1 − xi)

i∑
j=1

p(xj)

}
+ (m − xK)

K∑
j=1

p(xj)

+ (xK+1 − m)
n∑

j=K+1

p(xj) +
n−1∑

i=K+1

{
(xi+1 − xi)

n∑
j=i+1

p(xj)

}

=
K∑

j=1

{(m − xK + xK − xK−1 + . . . + xj+1 − xj)p(xj)}

+
n∑

j=K+1

{(xK+1 − m + xK+2 − xK+1 + . . . + xj − xj−1)p(xj)}

=
K∑

j=1

{(m − xj)p(xj)} +
n∑

j=K+1

{(xj − m)p(xj)}

=
n∑

j=1

{|xj − m|p(xj)} . (9)

As the MAD can be defined as47

MAD =
n∑

i=1

{|xi − m|p(xi)} , (10)

equation (9) shows that the area under the curve of G(x) equals the MAD.48
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Furthermore, equations (5) and (9) suggest that the MAD is the area, or49

a measure of absolute difference, between F (x) and the CDF for a degenerate50

distribution which takes the median m as the only value.51

3. Generalisations to the p-folded CDF and the MADp52

The folded CDF can be generalised to a p-folded CDF, denoted by Gp(x)53

hereafter and given by54

Gp(x) =

{
F (x), if F (x) ≤ p ,

1 − F (x), otherwise ,
(11)

where p ∈ (0, 1).55

Similarly, the MAD can also be generalised to a mean absolute deviation56

from the p-quantile, denoted by MADp hereafter and given by57

MADp =

∫ b

a

|x − mp|f(x)dx , (12)

where, for p ∈ (0, 1), mp = F−1(p) is the p-quantile.58

Then, as implied by equation (5), the p-folded CDF is related to the59

MADp through
∫ b

a
Gp(x)dx = MADp . In addition, the MADp is a measure of60

absolute difference between F (x) and the CDF for a degenerate distribution61

which takes mp as the only value.62

However, when p is a value other than 1/2, Gp(x) is not continuous at63

mp. Hence, here we define Gp(x) as a weighted version of that in equation64

(11):65

Gp(x) =

{
1−p

p
F (x), if F (x) ≤ p ,

1 − F (x), otherwise ,
(13)

for p ∈ (0, 1), such that Gp(x) is continuous at mp with Gp(mp) = 1 − p.66

Accordingly, the MADp is defined as a weighted version of that in equation67

(12):68

MADp =

∫ b

a

max

{
1 − p

p
(mp − x), x − mp

}
f(x)dx , (14)
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such that69 ∫ b

a

Gp(x)dx =

∫ mp

a

1 − p

p
F (x)dx +

∫ b

mp

{1 − F (x)}dx

=

∫ mp

a

1 − p

p
(mp − y)f(y)dy +

∫ b

mp

(y − mp)f(y)dy

=

∫ b

a

max

{
1 − p

p
(mp − y), y − mp

}
f(y)dy; . (15)

that is, the weighted MADp equals
∫ b

a
Gp(x)dx, the area under the curve of70

Gp(x).71

From equation (14), we can make the following observations. First, when72

p = 1/2, the MADp reverts to the MAD. Secondly, the relative weight re-73

ceived by the values of X larger than mp is p
1−p

. When p > 1/2, p
1−p

> 1;74

hence, the values of X larger than mp receive a heavier weight than that75

received by the values smaller than mp , and the larger the p, the larger the76

relative weight p
1−p

. Such a pattern reverses if p < 1/2 . In both cases, it77

indicates that, roughly speaking, a deviation from mp to a more extreme sit-78

uation receives a heavier weight than a deviation from mp to a less extreme79

situation, when the overall variability is summarised by the MADp .80

Therefore, such an MADp can be used as a measure of risk, as adopted81

in mean-risk models for portfolio optimisation by Ogryczak and Ruszczyński82

(2002), Ruszczyński and Vanderbei (2003), Miller and Ruszczyński (2008)83

and Choi and Ruszczyński (2008), for example. These studies have discussed84

the relationship between the MAPp and expected shortfall, sometimes termed85

conditional value at risk, average value at risk or expected tail loss.86

4. Implications for practice87

Our results have a number of practical implications.88

First, analogously to the Bland-Altman difference plot (Altman and Bland,89

1983; Bland and Altman, 1986, 1999), which is popular in medical statistics90

and analytic chemistry, the folded CDF is also a graphical tool for assessing91

agreement between two assays or methods, often by representing the differ-92

ence between the two assays by a random variable X. Both plots can be93

readily understood by the users who may not be statisticians or operations94

research analysts.95
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Compared with the Bland-Altman difference plot, the folded CDF stresses96

more the median and tails of the difference. If the two assays are ‘unbiased’97

with each other (Krouwer and Monti, 1995), the median would be close to98

zero. If the variability between the two assays is large, the width near the99

bottom of the folded CDF would be large, analogously to a confidence inter-100

val.101

Complementary to such a width, the area under the curve of the folded102

CDF is another measure of the variability between the two assays, roughly103

through visual inspection or precisely through quantitative computation.104

Therefore, the equivalence between the under-curve area and the MAD sug-105

gests, and provides a theoretical justification of, this measure.106

Secondly, the weighted mean absolute deviation from the p-quantile, shown107

as the MADp in equation (14), includes the MAD as a special case and, more108

importantly, has been adopted as a risk measure in mean-risk models for109

portfolio optimisation. It is well defined and investigated (Ruszczyński and110

Vanderbei, 2003). Moreover, it is a very generic measure of dispersion or111

risk, and can be used in other risk-management practice.112

Lastly but importantly, the equivalences give the MAD and MADp sim-113

ple graphical interpretations for practitioners from outside the statistics and114

operations research communities.115
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