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A

The aim of this thesis has been to help elucidate the potential contribution of core-collapse

supernovae (SNe) to the dust-enrichment of galaxies. It has long been hypothesised that

SNe are a major source of dust in the Universe, an assumption that has gained support with

the discovery that many of the earliest-formed galaxies are extremely dusty and infrared-

luminous, as evidenced by the efficient detection of their redshifted infrared emission at

submillimeter wavelengths. Massive-star, core-collapse SNe, of Types II, Ib and Ic, arising

from the starbursts that power these galaxies, are plausible sources of this dust. However,

very little is currently known about how much dust forms in SN outflows. To this end,

sensitive mid-infrared surveys for thermal dust emission from recent core-collapse SNe

have been conducted with the Spitzer Space Telescope and mid-infrared detectors on the

Gemini telescopes, in order to seek evidence for dust formation and evolution in SN

ejecta. Of the 30 SNe observed, only five were robustly detected. These were comprised

of four Type II-P SNe: SN 2002hh, SN 2003gd, SN 2004dj and SN 2004et; and the Type

IIn SN 1999bw. The mid-infrared data of SN 2004et were incorporated with optical and

near-infrared data to provide a comprehensive study of this SN from days 64 to 2151 post

explosion. Radiative transfer models predict up to 1.5×10−3 M� of dust had condensed in

the ejecta of SN 2004et by day 690. Upper limits to mid-infrared fluxes are presented for

25 supernova and used to obtain upper limits to their dust masses in the mid-infrared.

The results from this research add to the weight of observational evidence which suggests

the ejecta of core-collapse SNe do not produce sufficient dust, at least during the first 3

or 4 years after outburst, to explain the masses of dust derived for some galaxies in the

early Universe.
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Chapter 1

Introduction

1.1 The role of interstellar dust in astrophysics

Interstellar dust is pervasive, existing in a wide variety of astrophysical environments.

These submicron-sized grains, predominantly of carbonaceous and siliceous composition,

are found in the interplanetary medium of our solar system; the circumstellar media of

evolved stars; the interstellar medium (ISM) of normal galaxies like the Milky Way; in

star formation regions of nearby and distant (extremely luminous) galaxies; as well as

in circumnuclear tori around active galactic nuclei; and in proto-planetary disks around

massive young stellar objects (Li 2009).

By scattering, absorbing and re-emitting light to longer wavelengths, these grains

affect our view of the Universe. It was via the obscuration of starlight that the existence of

interstellar dust was first inferred (Trumpler 1930) and, for the same reason, was histor-

ically considered as somewhat of an astrophysical nuisance that needed to be corrected

to interpret the observations. However, this view changed radically in the following

decades, particularly with the advent of infrared and submillimetre telescopes, and the

study of dust is now arguably among the most important fields of modern astronomy.

Although dust constitutes only about 1 % of the interstellar mass (e.g., Whittet 2003), it

is the dominant opacity source and thus plays a key role in regulating the energy balance

of the ISM. It makes a significant contribution both as a heating agent for the interstellar

gas via the emission of photoelectrons where ultra-violet (UV) fields are present, and as

18
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a coolant in dense regions via infrared emission (Draine 2003). Interstellar dust also has

a crucial impact on the chemistry of the ISM, acting as a sink of heavy elements, and

as an effective catalyst for the formation of molecular hydrogen and other molecules, as

well as acting as a shield from photodissociating UV photons in dense clouds (Li 2009).

The same dust provides the basic building blocks for the formation of planetesimals in

protoplanetary disks around main-sequence stars, and is potentially important in the

synthesis of organic molecules which lead to life (Boulanger et al. 2000).

Interstellar dust can clearly have a far-reaching impact upon many aspects of as-

trophysics. Yet the origin of these grains and how efficiently they are produced and

destroyed is still uncertain.

1.2 The life cycle of interstellar dust

Since dust is formed from heavy elements in the gas phase, it follows that the life cycle of

dust is intimately associated with the evolution of the stars in whose interiors chemical

elements are synthesised via nuclear burning processes, and then ejected during the last

stages of their lives. The dust cycle begins with the nucleation and growth of condensates

in the envelopes of these evolved stars, which are rapidly mixed with other gas and dust

in the ISM (Whittet 2003; Tielens et al. 2005). In the ISM, dust is subjected to cycles of

destruction and reformation. Dust is swept up and processed by the strong expand-

ing shocks of supernova explosions, subjecting them to various destructive processes,

including thermal sputtering, vaporisation, and shattering of large grains into smaller

fragments via collisions (Barlow 1978; Dwek 1998). In the denser regions of molecular

clouds (nH ≥ 103 cm−3) grain growth can occur through ice mantle formation and coag-

ulation. Cloud collapse and star formation incorporates some of this dust into young

stars, and a further fraction will be included in the surrounding planet-forming disk.

The complete cycle, from injection by a star until formation of a new star or associated

planets, is estimated to typically take ∼ 2 × 109 years, by Tielens et al. (2005), who have

summarised current estimates for the gas and dust inputs to the ISM of our galaxy from

various classes of evolved stars. Their review highlights the large uncertainties in dust

mass injection rates for some of these stellar types.
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Figure 1.1: The classification scheme of supernovae (SNe) (from Turatto
2003). Type I and II SNe are defined by the absence or presence of hydrogen
lines in their spectra, respectively. Sub-classifications are based on further
spectral features and light curve information as described in Section 1.3.1.

1.3 Dust production by supernovae

Supernovae (SNe) occupy a pivotal position in modern astrophysics, not only because of

their importance as cosmic distance indicators but due to the prime role that they play in

determining the overall energetics, mass recycling rate and heavy-element enrichment of

galaxies.

1.3.1 Supernova types

Supernovae are primarily classified by the appearance of their optical spectra, usually

near the time of maximum light. Filippenko (1997) provides a thorough review of the

SN types and the criteria used to classify them, and further reviews and updates on the

subject were given by Turatto (2003) and Smartt (2009). The two main classes of SNe are

Types I and II which are respectively defined by the absence or presence of hydrogen lines

in their spectra. Sub-classifications are based on further spectral features and light curve

information. Figure 1.1 illustrates the current classification scheme (taken from Turatto

2003).
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The location of SNe within their host galaxies indicates distinct explosion mechanisms.

Type Ia SNe are found to occur in all galaxies types, including ellipticals, with no particular

concentration in the star formation regions of spiral arms, implying that they do not have

massive star progenitors (Branch et al. 1995). Instead it is assumed that they result from the

thermonuclear explosion of low mass carbon-oxygen white dwarf stars when they reach

a critical mass (the Chandrasekhar limit) after accreting matter from a binary companion

(e.g., Woosley & Weaver 1986). This is in contrast with the other Type I SNe (Ib/c) and

the Type II SNe which are not seen in early type galaxies but are strongly associated

with the star formation regions of spiral and irregular galaxies, implying that these SNe

result from the core collapse of massive (M& 8 M�) stars (Filippenko 1997; Turatto 2003,

and references therein). The observed kinetic energies of these core-collapse supernovae

(hereafter, CCSNe) are ∼ 1051 erg, with integrated luminosities usually between 1–10 % of

this value (Smartt 2009).

CCSNe, the subject of this thesis, are typically categorised into five major types based

on their spectral features and light curve information (Leonard 2010):

1. II-P (plateau) are defined by the presence of strong hydrogen lines in their spectra.

Their luminosity stops declining shortly after peak brightness forming a plateau

phase for 2–3 months as the recombination wave recedes through the massive

(∼ 10 M�) hydrogen envelope releasing the energy deposited by the shock;

2. II-L (linear) show hydrogen in their spectra and a smooth, linear decline in lumi-

nosity after maximum, most likely due to a lower mass envelope;

3. IIn (narrow) have spectra dominated by strong emission lines, particularly hydro-

gen, often with complex multi-component profiles but always including a strong

narrow component and lacking the broad absorption components typical in other

Type II SNe. The spectral and photometric evidence suggests interaction between

the SN ejecta and a dense circumstellar medium (CSM);

4. IIb have early time spectra showing hydrogen similar to Type II SNe but, at later

times, evolve hydrogen-deficient spectra similar to Type Ib/c SNe;

5. Ib/c show no evidence for hydrogen in their spectra at any time. Whilst Type Ib

SNe are generally defined by unambiguous helium features in their spectra and

Type Ic SNe are helium poor, it can often be difficult to distinguish between them
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and they are sometimes grouped to refer to Ibc or Ib/c. A few percent of all Type

Ic SNe are associated with long gamma-ray bursts (Hartmann 2010). They show

much broader spectral lines than typical Type Ic SNe, due to high-velocity (v/c∼ 0.1)

outflows interpreted as resulting from extremely energetic explosions (> 1052 erg),

hence they are sometimes referred to as “hypernova”.

The ordering of the above SN types is thought to reflect an increasing degree of mass-

loss, or envelope stripping, of the progenitor star prior to explosion, from the least affected

massive hydrogen envelopes of Type II-P to the most stripped, hydrogen-deficient Type

Ib/c.

Current estimates of the proportion of each sub-type in a volume-limited sample

(Smartt 2009) show that Type II-P are the most common of the CCSNe (∼ 60 %), followed

by Type Ib/c (∼ 30 %), and the remaining rarer Type II-L, IIn and IIb SNe (∼ 10 %). Of

course, there are often variations on these major sub-categories, for example SN 1987A

(discussed in Section 1.3.4) is usually referred to as a Type II-P but was clearly peculiar.

1.3.2 Evidence for dust formation in SNe

Theoretical studies

It has long been hypothesised that supernovae (SNe) are a major source of dust in the

Universe. Cernuschi et al. (1967) first proposed that the expansion phase after the SN

explosion could provide the right conditions for dust condensation of carbon grains in

the cooling ejecta. Subsequent early theoretical studies suggesting SNe as significant

producers of interstellar dust included Hoyle & Wickramasinghe (1970), Clayton (1979),

and Dwek & Scalo (1980).

More recent SN dust formation models based on classical nucleation theory, such as

those of Kozasa et al. (1991); Clayton et al. (2001); Todini & Ferrara (2001) and Nozawa

et al. (2003), predicted that ∼ 0.1–1 M� of dust should condense in the ejecta a few years

after explosion, for stellar progenitor masses in the range of CCSNe (12–40 M�). These

dust mass predictions correspond to condensation efficiencies for the available refractory

elements of 0.1–0.3.
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Dust in high-redshift galaxies

The assumption that CCSNe should constitute a significant source of dust in the universe,

gained support with the discovery that many of the earliest-formed galaxies known

are extremely dusty and IR-luminous, as evidenced by the efficient detection of their

red-shifted thermal dust emission at submillimetre wavelengths (e.g., Ivison et al. 2000;

Bertoldi et al. 2003). The inferred far-IR luminosities (& 1013 L�) of samples of z & 6

quasars are consistent with emission from warm dust (T < 100 K), with dust masses in

excess of 108 M�(Bertoldi et al. 2003; Robson et al. 2004; Beelen et al. 2006; Dwek et al.

2007). Some of these high-z galaxies formed less than ∼ 1 Gyr after the Big Bang, strongly

suggesting that the dust must have condensed around relatively high-mass stars, e.g.,

core-collapse SNe which inject their nucleosynthetic products and newly condensed dust

into the ISM relatively promptly after their formation. Massive-star SNe, of Type II, Ib/c,

arising from the starbursts that power these galaxies, are plausible sources of this dust.

Starburst durations are estimated at about 108 years, so low-mass star Type Ia SNe are

unlikely to be responsible for the dust seen.

Although it is generally accepted that a significant Galactic contribution comes from

dust condensation in the stellar winds of AGB stars, SNe must be considered as a potential

major source of dust injection into the ISM.

Meteorite inclusions

Supporting evidence for dust formation by at least some supernovae comes from precise

isotopic abundance ratio studies of grain inclusions found in meteorites. Many of these

inclusions exhibit isotopic distributions that differ significantly from those found in the

Sun and Earth, and have consequently been labelled as “presolar” grains, or “stardust”

(e.g., Nittler et al. 1996; Clayton et al. 1997; Travaglio et al. 1999). Whilst many of these

grains have isotopic distributions consistent with the slow-neutron capture processes (the

s-process) inside AGB stars, some have distributions characteristic of the rapid-neutron

captures (r-process) inside SNe, responsible for the synthesis of heavier elements during

such an event. A further example, is the presence of 44Ti, which is only produced in SNe,

in some presolar grains at the time of their formation, inferred from the large excesses of

its daughter isotope 44Ca.
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Figure 1.2: Onion-shell structure of a pre-supernova massive star1.

Presolar dust grains identified as supernovae condensates have been mainly car-

bonaceous. Silicon carbide (SiC) grains of type X (X stands for "eXotic") have isotopic

compositions distinct from the bulk of SiC grains; ∼ 1 % of all presolar SiC grains found

in primitive meteorites are of type X, and they are thought to come from Type II SNe

(Amari et al. 1992; Lodders & Amari 2005; Hoppe et al. 2010). Silicon nitride (Si3N4)

and low-density graphite have similar isotopic compositions to the SiC-type X grains

and have also been related to SNe. SNe are also likely to have contributed to meteoritic

nanodiamonds (Lodders & Amari 2005). Surprisingly few oxide presolar grains of SN

origin have been identified, despite the fact that 16O is the third most abundant isotope

ejected from SNe and that, overall, SN ejecta have C/O<1 which implies there should be

many more SN oxide than carbonaceous grains (Amari & Lodders 2007, and references

therein). Lodders & Amari (2005) suggest that this could be because SN oxide grains are

too small (<< 0.1µm) to be recovered from meteorites by current presolar grain separation

procedures.

Just prior to its explosion as a supernova, a massive star has an onion-shell structure,

consisting of different layers that contain the products of nuclear burning at increasing

temperatures from the surface to the core. Figure 1.2 schematically illustrates the pre-

supernova structure of a massive star, with each layer indicated by the most abundant

elements1. However, presolar grains provide evidence for turbulent mixing in the ejecta

1Figure obtained from the Washington University in St. Louis ‘Presolar Grain Research’ pages at
http://presolar.wustl.edu/work/grains.html
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during the explosion: 44Ti and 28Si, which are both synthesised deep in the interior

of Type II SNe, are present in graphite grains that must have formed in a carbon-rich

environment, such as the outer helium-rich layers of a massive progenitor star, where

C>O is a necessary condition for such grains to form (e.g., Travaglio et al. 1999).

1.3.3 Early infrared observations

Early near-infrared (NIR) observations of some SNe were obtained. The Type II-L

SN 1979C (Merrill 1980), the Type II-L SN 1980K (Telesco et al. 1981), the untyped SN 1982E

(Graham et al. 1983; Graham & Meikle 1986), the Type II SN 1982L, the Type Ib SN 1982R

(Graham & Meikle 1986), and the Type II-L SN 1985L (Elias et al. 1986) all revealed excess

IR emission that was attributed as thermal emission due to dust, the origin of which was

less certain. Whilst emission from dust freshly synthesised in the SN ejecta was proposed

for SN 1980K (Dwek et al. 1983) and SN 1985L (Elias et al. 1986), the most common ex-

planation was that the IR emission originated from pre-existing circumstellar dust heated

by the initial SN flash (an IR “echo”, Bode & Evans 1980; Dwek 1983; Graham & Meikle

1986). These first IR observations of SNe were fragmentary, and showed that early and

consistent monitoring of SNe during the expected epochs of dust formation and beyond

was critical for understanding the nature and origin of the emission.

1.3.4 SN 1987A

Such an opportunity fortuitously presented itself with the explosion of SN 1987A in the

Large Magellanic Cloud (LMC), which at a distance of ∼ 50 kpc was the closest supernova

in almost 400 years. Its discovery on 24 February 1987, by Ian Shelton and Oscar Duhalde

at Las Campanas, Chile (Kunkel et al. 1987), initiated the immediate response of frequent

and intense multi-wavelength observations over the coming years, providing a wealth of

observational data and discoveries. Observational ‘firsts’ included the detection of neu-

trinos, confirming predictions of the hydrodynamic core-collapse explosion mechanism;

the observation of the progenitor star from archival images; signatures of a non-spherical

explosion and mixing in the ejecta; the direct observation of explosive nucleosynthesis,

including the accurate mass determination of 56Ni and other radioactive isotopes; as well

as the birth of the supernova remnant in real time, following the subsequent interaction

of the supernova shock with the circumstellar material (Fransson et al. 2007). Figure 1.3
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Figure 1.3: SN 1987A in the LMC at a distance of ∼ 50 kpc. The close-up
view clearly shows the circumstellar rings around SN 1987A, with the ejecta
from the supernova explosion at the centre of the inner (equatorial) ring
(image obtained from the SN 1987A Wikipedia pages2 showing a composite
of two public domain NASA images taken with the Hubble Space Telescope).

shows a composite HST image2 of SN 1987A in the LMC, clearly showing the inner

equatorial and outer circumstellar rings. The presence of hydrogen lines in the spectra

of SN 1987A and the detection of neutrinos confirmed it was a Type II event, but it was

unusual compared to other Type II SNe in that it was several magnitudes dimmer at

visual maximum, and it exhibited a very rapid spectral evolution, seemingly consistent

with the much higher than expected expansion velocities from studies of the hydrogen

absorption profiles in the early spectra. These unexpected characteristics indicated that

its atmosphere was more compact than the red supergiants that give rise to normal Type

II SNe, and tied in with the compact nature of the progenitor star which was identified

as a blue supergiant, Sk –69◦202 (Hillebrandt et al. 1987). Extensive reviews of SN 1987A

are given by Arnett et al. (1989) and McCray (1993).

With its remarkable proximity, SN 1987A provided a unique in situ test bed for the

early SN dust models. Even before such observations had revealed evidence of any dust

production, Gehrz & Ney (1987) predicted that dust would begin to form in the ejecta

of SN 1987A ∼ 250–330 days after explosion, based on comparisons with dust formation

in classical novae. Dwek (1988) developed this idea further by discussing conditions for

dust formation in the ejecta in two zones: the outer hydrogen envelope and the inner

metal-rich layers (mantle). He found that the onset of dust formation could occur as early

2Figure obtained from http://en.wikipedia.org/wiki/SN_1987A
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as 140–340 days after explosion in the hydrogen envelope, and ≥ 400 days in the higher

density region of the inner mantle.

Lending initial support to the predictions, molecules, which are believed to be an

inevitable precursor to dust, were detected in the spectra of SN 1987A. IR molecular

bands of CO (the fundamental emission band at 4.6µm and first overtone at 2.3µm)

and SiO (the fundamental band at 7.9µm) were present from as early as 112 days after

explosion, before any direct detection of dust, and stayed until > day 615 (CO) and < day

578 (SiO) (e.g., Spyromilio et al. 1988; Roche et al. 1991; Wooden et al. 1993).

IR spectroscopic studies of SN 1987A also demonstrated the presence of an IR excess.

From ∼ 350 days Meikle et al. (1993) found an increase in the 4µm continuum, which

became prominent by ∼ 550 days (Roche et al. 1993). From their three-component fits to

the 2–100µm continuum emission of SN 1987A, Wooden et al. (1993) found an IR excess

(compared to a hot blackbody component and contributions from free-bound and free-

free radiation), approximated by a graybody, from as early as day 60 (Td ∼ 1600 K) that

began to dominate the shape of the observed continuum by day 615 (Td ∼ 400 K). They

determined that the contribution of this thermal IR component to the total bolometric

luminosity increased from 2–3 % at days 60, 260 and 415 to 45 % by day 615. Figure 1.4

shows the spectral energy distributions of SN 1987A from Wooden et al. (1993) at days

260 and 615, with the IR excess, peaking at ∼ 8µm, clearly visible by day 615.

Whilst there was initial speculation as to the possible origins of the IR excess (Roche

et al. 1989 suggested that the source was an IR echo due to circumstellar matter illuminated

by the optical-UV flash of the supernova), evidence soon followed that proved the majority

of the IR continuum emission came from the SN ejecta.

At∼ 530 days, asymmetries were seen in the profiles of several optical emission lines of

SN 1987A, with the peak velocities blue-shifting by∼ 500–700 km s−1 (Danziger et al. 1989;

Lucy et al. 1989, 1991). It was recognised that similar profiles would be expected if dust

condensed within the ejecta so that emission from the far (receding) side of the expanding

material suffered more internal extinction (absorption/scattering) than that from the near

side. Lucy et al. (1989) modelled these observations and found that reasonable fits to the

profiles were obtained with dust uniformly distributed within the ejecta out to a velocity

of ∼ 2000 km s−1, i.e., within the inner metal-rich zone.

These results were supported by studies of the temporal evolution of the bolometric

light curve embracing the assumed epoch of dust formation. The decline of the late-
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Figure 1.4: Optical and KAO IR spectrophotometry of SN 1987A by Wooden
et al. (1993). A three-component continuum model is shown for hot gas
(long-dashed lines), free-free and bound-free emission (dotted lines), and
warm dust (solid lines). Dust emission first appears at day 260, was unam-
biguous by day 615 and began fading rapidly about 400 days later.

time bolometric light curve of a SN (the ‘radioactive tail’) is expected to be powered by

γ-ray deposition due to the radioactive decay of 56Co (with half-life, τ1/2 = 77.3 days; a

product of the explosively synthesised 56Ni, τ1/2 = 5.9 days) → 56Fe (Colgate & McKee

1969; Woosley et al. 1989). After ∼ 520 days, the optical light curves of SN 1987A began to

decline more steeply than before, but the addition of the increased IR emission at this time

accurately accounted for the optical deficit such that the bolometric light curve continued

to follow the decay of 56Co (Whitelock et al. 1989; Suntzeff & Bouchet 1990).

The contemporaneous phenomena of (i) a dominant mid-IR continuum excess with

(ii) an observed drop in the optical light curve indicating increased internal extinction,

but an overall bolometric luminosity that satisfied the energy budget of the SN emission

as due to the radioactive decay of 56Co, and (iii) the asymmetric blue-shifted line profiles,

unequivocally demonstrated the formation of dust in the ejecta SN 1987A between 500

and 600 days after explosion, and possibly from as early as 350 days (Wooden 1997).

The presence of clumped dust was inferred from the wavelength-independent circum-

stellar extinction observed in SN 1987A (Lucy et al. 1991) and by the theoretical expectation

that Rayleigh-Taylor instabilities should form in the post-shock ejecta (Chevalier & Klein

1978; Herant & Woosley 1994). Wooden et al. (1993) used a simple analytic clumped

dust model with graphite grains to estimate an ejecta dust mass of a (3–5)×10−4 M� for
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SN 1987A at days 615 and 775. Ercolano et al. (2007) revisited the dust modelling of

SN 1987A at these epochs with a Monte Carlo three-dimensional radiative transfer code

(MOCASSIN; Ercolano et al. 2003, 2005). Results for their best-fit clumpy graphite models

yielded dust masses between (6.5–7.5)×10−4 M�, and up to ∼ 1 × 10−3 M� for a variety

of mixed (by mass) astronomical silicate and graphite grain compositions, although they

concluded that mainly carbon-based grains provided the best fits to the observed spectral

energy distributions.

1.3.5 Dust in other massive-star supernovae

SN 1990I

SN 1990I was discovered on 27 April 1990 in NGC 4650A (D ∼ 46.4 Mpc 3) by Pizarro et al.

(1990). It was originally classified as a Type Ia SN but subsequent early spectra led to its

re-classification as a core-collapse event of Type Ib. Optical photometry and spectroscopy

from around maximum light to ∼ 400 days post-explosion were analysed by Elmhamdi

et al. (2004). They noted that after day 240 the optical light curve began to decline more

steeply than would be expected from the radioactive decay of 56Co combined with the

decreasing deposition of γ-rays (expected as the ejecta expand), and more steeply than

that of the Type IIb SN 1993J. They also reported a significant blue shifting (∼ 600 km s−1)

of the [O ] 6300 Å emission line between days 237 and 258. The contemporaneous nature

of the apparent increase in optical extinction observed from the light curves, with the

blue-shifted emission line profiles led the authors to conclude that dust had formed

within the ejecta of SN 1990I ∼ 250 days after explosion. This was considerably earlier

than observed for SN 1987A and Elmhamdi et al. (2004) suggested that this might be a

phenomenon of Type Ib SNe due to rapid cooling in the relatively low-mass ejecta of

these SNe. Unfortunately, no IR data exist for this SN.

SN 1998S

SN 1998S was discovered on 2 March 1998 in NGC 3877 (D ∼ 15.5 Mpc 3) by the Beijing

Astronomical Observatory (BAO) Supernova Survey (Li et al. 1998). Its classification as

a Type IIn SN by Filippenko & Moran (1998) implied that the ejecta was interacting with

the CSM at early times. Optical and NIR photometric and spectroscopic studies were

3Source: NASA/IPAC Extragalactic Database at http://nedwww.ipac.caltech.edu/
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carried out by Fassia et al. (2000), Gerardy et al. (2000) and Pozzo et al. (2004), from soon

after explosion for over 3 years.

Gerardy et al. (2000) reported the detection of the first overtone of CO emission near

2.3µm at days 95 and 225, which appeared to have faded away by day 355. It was the

third detection of its kind in Type II SNe, suggesting that the CO molecule was fairly

common in these SNe. The fading of the red wing of the complex (multi-component)

Hα and He  profiles between days 260 and 355 (Gerardy et al. 2000) and from post-day

300 to almost 2 years (Pozzo et al. 2004) was interpreted as likely being due to dust

formation in the ejecta. Figure 1.5 shows the Hα profile evolution between days 81 and

463, with the red wing clearly diminished at late times. A late rise was observed in the

NIR continuum emission towards longer wavelengths after day 225, and the SED at this

epoch was well-matched by a ∼ 1200 K blackbody (Gerardy et al. 2000). The SED at ∼ 1

year was similarly defined by Pozzo et al. (2004), the temperature of which declined over

later epochs. Gerardy et al. (2000) concluded that whilst there was strong evidence for

dust formation in the ejecta, it was not clear whether the observed NIR emission was

from the ejecta or from pre-existing CSM dust. Pozzo et al. (2004) on the other hand ruled

out an origin from freshly condensed ejecta dust as the observed IR emission exceeded

the radioactive luminosity by a substantial factor. They argued that the emission was

likely to be from newly-formed dust in a cool dense shell (CDS) produced by the ejecta

shock/CSM interaction, with an estimated dust mass of ≥ 10−3 M� forming about a year

after explosion, although they could not rule out an IR echo. An earlier NIR excess at day

130 was attributed to an IR echo driven by the UV-optical flash heating pre-existing CS

grains (Fassia et al. 2000; Pozzo et al. 2004).

SN 1999em

The Type II-P SN 1999em was discovered on 29 October 1999 in NGC 1637 (D ∼ 11 Mpc 3)

at an unfiltered magnitude of 13.5 by the Lick Observatory Supernova Search (LOSS)

(Li 1999b). No infrared data was available for this SN but optical photometry and spec-

troscopy, taken from several days after explosion to day 642, were analysed by Elmhamdi

et al. (2003b). The evolution of the late-time spectra demonstrated a blueshifting of the

[O ] 6300 Å and Hα line profiles between days 465 and 510 which, together with an in-

crease in the expected decline of the optical light curves at day 510 compared to the

linear decay trend of previous epochs, led the authors to interpret these as signatures of
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Figure 1.5: Evolution of Hα line profiles in SN 1998S, showing the prefer-
ential extinction of redshifted emission at late times, presumably caused by
dust condensing in the ejecta.

dust condensation during this period. Subsequent photometry by Leonard et al. (2003)

demonstrated that the fall-off in the V-band light curve was similar to that of SN 1987A.

However, Elmhamdi et al. (2003b) noted that the epoch of dust formation and the distri-

bution of the dust, indicated by fits to the blue-shifted line profiles, differed from those

of the peculiar Type II SN 1987A. For SN 1999em, the blue-shifted line profiles had been

observed by day 510, whereas this phenomenon emerged only after day 526 for SN 1987A

(Lucy et al. 1989). The models required to fit the flat-topped [O ] 6300 Å doublet pro-

files of SN 1999em required dust optical depths � 10 and constrained the dusty zone

to the inner-most metal-rich regions of the ejecta bounded by expansion velocities of

∼ 800 km s−1. The day 600 line profile fits for SN 1987A by Lucy et al. (1989) implied a

dust optical depth ≈ 1, and a dusty zone with a boundary velocity ∼ 2 times larger than

that modelled for SN 1999em. Based on those models, Elmhamdi et al. (2003b) estimated

that a moderate dust mass of 10−4 M� had formed in the ejecta of SN 1999em.

1.3.6 Supernova remnants

Young, ejecta-dominated supernova remnants (SNRs) offer an alternative in which to

observe dust that has formed in the SN ejecta, before it is dispersed and mixed into the
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general ISM. Thermal IR emission is expected from dust that is collisionally-heated in the

post-shocked gas. Evidence for emission from dust has been found in a few young SNRs.

Cassiopeia A (Cas A) has been identified as the product of a hydrogen-deficient Type

IIb CCSNe (Krause et al. 2008a) and is the youngest known core-collapse SNR in the

Milky Way at ∼ 335 years old. It has been extensively studied in the IR and exhibits clear

evidence for dust formation in its ejecta (Lagage et al. 1996), although the amount of dust

has been controversial. Estimates of the dust mass have ranged from ∼ 10−3 M� for dust

temperatures of 90–350 K (Arendt et al. 1999; Douvion et al. 2001b), to ∼ 0.02–0.05 M�

for 65–265 K dust emitting from 5 to 70µm, particularly in a bright ring coincident with

the reverse shock (Rho et al. 2008). Arendt et al. (1999) estimated a significant cold dust

(52 K) component of ∼ 0.4 M� in the remnant from fits to IRAS 60- and 100-µm fluxes.

Much greater masses (2–4 M�) of cold (15–20 K) dust were inferred from 450- and 850-µm

SCUBA observations by Dunne et al. (2003), however Krause et al. (2004) argued that

most of the excess sub-mm emission was due to dust in foreground molecular clouds and

derived an upper limit of 0.2 M� of cold dust within the remnant. Dunne et al. (2009)

reported that the 850-µm emission from Cas A was polarised at a significantly higher

level than its radio synchrotron emission and attributed this to ∼ 1 M� of cold dust or a

significantly smaller quantity of iron needles (Dwek 2004). Recent imaging with Herschel

PACS and SPIRE instruments (70–500µm), confirmed and resolved for the first time a

cool (∼ 35 K) dust component emitting at 70–160µm, interior to the reverse shock, with

an estimated mass of 0.075 M� (Barlow et al. 2010), consistent with the BLAST results of

Sibthorpe et al. (2010). These results were also consistent with the models of Nozawa

et al. (2010) who found that the observed IR SED of Cas A was reproduced by 0.008 M� of

shock-heated warm dust and 0.072 M� of unshocked cool dust (∼ 40 K) in the remnant’s

interior. Barlow et al. found no direct evidence for significant quantities of cold (< 25 K)

dust, although the cause of the 850-µm excess emission is still unresolved.

Kepler is a young Galactic SNR (∼ 400 years) which possibly originated from a Type

Ia SN with a significant surrounding CSM/ISM (Blair et al. 2007, and references therein),

although there are arguments for a Type Ib CCSNe origin (Morgan et al. 2003). Douvion

et al. (2001a) estimated a dust mass of∼ 10−4 M�with an astronomical silicates grain model

of temperature 107 K from fits to ISOCAM spectra (6.5–16µm) and previously published

IRAS photometry (12–100µm). Blair et al. (2007) modelled dust emission from Spitzer

IRAC and MIPS observations (3.6–160µm) with a power-law grain size distribution,
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including grain heating and sputtering by X-ray-emitting gas. They estimated a total dust

mass of 5.4 × 10−4 M� (2.4 × 10−3 M� before sputtering), and concluded this was mainly

swept up CSM/ISM grains heated in the primary blast wave with no evidence for ejecta-

condensed dust. From the lack of emission at 160µm, Blair et al. ruled out the presence

of large quantities of cold dust. This latter conclusion was in contrast with the results of

Morgan et al. (2003), who found evidence for a large cold dust (17 K) component from

450- and 850-µm SCUBA observations of the remnant. They estimated a total dust mass

for Kepler in the range of 0.3–3 M� (the range being dependent on the adopted value of

the dust mass absorption coefficient, κ), although after a more accurate subtraction of the

synchrotron component (and investigation of a negligible contribution from foreground

molecular clouds), this was revised down slightly by Gomez et al. (2009) to 0.1–1.2 M�.

Whether the dust originated from CS material or the SN ejecta was uncertain.

The Tycho SNR is thought to be the ∼ 440 year old remnant of a Type Ia SN (Krause

et al. 2008b). Douvion et al. (2001a) used a two-component temperature model, with

astronomical silicate grains, to fit the ISO and IRAS data of Tycho, estimating ∼ 10−4 M�

of warm (∼ 107 K) dust and 3 × 10−3 M� of cool (∼ 55 K) dust. Whilst they determined

that the warm IR emission originated from collisional heating of dust around the shock

front, they suggested that the cool dust was probably not directly associated with the

remnant. From 9–160µm imaging with AKARI, compared with X-ray and CO images,

Ishihara et al. (2010) found results for warm dust consistent with those of Douvion et al.

(2001a) in each of two bright spots located in the north east (NE) and north west (NW)

of the remnant, with the origin of the dust from the NE boundary likely due to ambient

clouds interacting with the shock front. The source of the NW warm dust was unclear

due to the absence of prominent interstellar clouds and they could not rule out that this

region contained dust mostly of SN ejecta origin. They found that the 140- and 160-µm

bands were dominated by cold dust emission (22 K) from the surrounding ISM near the

NE boundary, with an estimated dust mass of 0.3 M�.

1.3.7 The three signatures of ejecta-condensed dust

The production of dust in supernovae results in three distinct observable signatures that

can be used to estimate the total amount of dust that condensed in their ejecta:

1. the appearance of excess thermal IR emission. However, this signature alone can be
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compromised by pre-existing nearby dust (e.g., circumstellar dust), which can be

heated by the SN UV-optical light flash.

2. a contemporaneous decrease in the UV-optical light curve of the SN due to an

increase in the extinction by the newly formed dust. Pre-existing dust cannot

produce an observable dip in the SN light curve.

3. the appearance of asymmetric blue-shifted emission lines, caused by the ejecta dust

preferentially obscuring the emission from the receding (red-shifted) part of the

ejecta.

Method (1) is normally required if dust masses are to be derived, but it must be

supported by one or both of (2) and (3) for conclusive evidence of an origin of dust

formed in the SN ejecta.

1.4 Thesis outline and the SEEDS collaboration

The aim of this thesis is to help elucidate the potential contribution of core-collapse

supernovae to the dust-enrichment of galaxies. To this end, sensitive mid-infrared surveys

for thermal dust emission from recent supernovae have been conducted with the Spitzer

Space Telescope and with the Gemini telescopes, in order to seek evidence for dust formation

and evolution in supernova ejecta.

The research presented in this thesis represents my contribution within a larger in-

ternational collaboration, known as SEEDS – the Survey for the Evolution of Emission

from Dust in Supernovae. The SEEDS team is comprised of 11 core members. Other

than myself, they are: Prof. Michael J Barlow (University College London – UCL), Dr.

Roger Wesson (UCL), Dr. Barbara Ercolano (University Observatory Munich), Dr. Ben

K Sugerman (Goucher College), Dr. Geoffrey C. Clayton (Louisiana State University –

LSU), Dr. Jennifer Andrews (LSU), Dr. Joseph Gallagher (Raymond Walters College),

Dr. Margaret Meixner (Space Telescope Science Institute – STScI), Dr. Masaaki Otsuka

(STScI), and Dr. Doug Welch (McMaster University). The group has been addressing the

role CCSNe and their progenitors play in the dust budget of galaxies using Spitzer, HST

and Gemini since 2004.

My role, from inception of the collaboration, has centred on the processing and analysis

of the mid-IR data of the initial sample of 30 SNe presented herein, including: deriving



1.4. Thesis outline and the SEEDS collaboration 35

upper limits to the flux densities for non-detected SNe; leading the multi-epoch, multi-

wavelength study of SN 2004et (the role of other SEEDS members in this work has been

clearly identified in the relevant chapter); measurement and preliminary analysis of the

Type II SN 1999bw; and involvement in the measurement and analysis of SN 2002hh

and SN 2003gd, where the research was led by other SEEDS members. The following

paragraph outlines the structure of the thesis.

Chapter 2 begins by introducing the SEEDS sample of SNe observed. I then present

the observations of 21 CCSNe obtained with the Gemini telescopes, the focus of the

chapter, which includes an overview of the telescopes and instruments used, details

of the observations, and a description of the data processing and photometric analysis

techniques applied to these data. Mid-IR flux densities, and robust upper limits to the

flux densities for non-detections, from the Gemini data are presented and discussed.

Chapter 3 presents the mid-IR observations of 18 CCSNe obtained with the Spitzer Space

Telescope, and similarly includes an overview of the telescope and instruments used,

details of the observations, a brief description of the Spitzer pipelines and additional steps

for processing the data, as well as parameters for the photometric analysis techniques

presented in Chapter 2 specific to the Spitzer data. Flux densities, and robust upper limits

to the flux densities for non-detections, from the Spitzer data are presented and discussed.

Chapter 4 discusses in greater detail the mid-IR evolution of three SNe detected and

monitored during the survey, those of the Type II SNe: SN 1999bw, SN 2002hh and

SN 2003gd, including a summary of the published SEEDS results for SN 2002hh and

SN 2003gd. Chapter 5 presents an analysis of the multi-epoch observations of the Type

II-P SN 2004et, including interpretation of new optical and NIR SEEDS data. Multi-

wavelength light curves are used to construct optical–IR spectral energy distributions

(SEDs) for multiple epochs. The SEDs are fitted with multiple blackbody components

in order to investigate the luminosity evolution of the SN, providing constraints on the

time-dependent evolution of the dust properties. Preliminary results from Monte Carlo

radiative transfer modelling to estimate the dust mass best representing the observed

SEDs are discussed and compared with results from other studies of this object. Finally,

Chapter 6 summarises the results of the work presented in this thesis and draws some

preliminary conclusions as to the likely contribution of Type II core-collapse supernovae

to the dust enrichment of galaxies. It also provides a discussion of potential future work.



Chapter 2

Gemini Observations of Supernovae

2.1 Introduction

Mid-infrared (mid-IR) observations of supernovae (SNe) have been obtained with instru-

ments on the Gemini telescopes and the Spitzer Space Telescope over the years 2001 – 2008.

This chapter starts by describing the complete sample of observations with both tele-

scopes, and then focuses solely on the Gemini data. The Spitzer data are discussed

separately in Chapter 3. The current chapter includes a discussion of ground-based mid-

IR astronomy and a brief description of the Gemini Observatory and the instruments

used. It describes the Gemini observations, the data reduction and flux calibration pro-

cesses, and the flux measurement techniques. Mid-IR flux densities, and upper limits for

non-detections, of the Gemini SNe sample are also presented and discussed.

2.2 The sample definition and selection

The sample presented in this thesis consists of 30 core-collapse SNe from massive stars, 21

of which were observed between 2001 and 2008 with the ground-based Gemini North and

South telescopes (hereafter, Gemini-N and -S), and 18 of which were observed between

2004 and 2008 with the Spitzer Space Telescope (hereafter, Spitzer).

For the initial observing programmes, the Padova-Asiago online Supernova Catalogue

was used to select accessible and nearby massive star SNe of Types II, Ib and Ic, aged

36
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between 1 and 5 years, since these encompass the optimum ages for detection in the

mid-IR as predicted by both nucleation theory (e.g., Todini & Ferrara 2001 as discussed in

Section 1.3) and the observed behaviour of SN 1987A (Danziger et al. 1989; Lucy et al. 1989;

Suntzeff & Bouchet 1990; Lucy et al. 1991; Wooden et al. 1993). Variations in the targets

between the different programmes were made due to visibility constraints, sensitivities

of the telescopes/instruments used, and to maximise the sample size.

For the early Gemini observations, SNe were chosen to have Vmax < 17 mag and radial

velocities . 3000 km s−1. Prior to these observations only SN 1987A had been detected at

mid-IR wavelengths and since SN 1987A had often been considered to be a peculiar Type

II supernova there were no prior guidelines as to how bright a ‘normal’ dust forming

supernova might be in the mid-IR. For the later programmes, including the Spitzer obser-

vations, stricter distance constraints of the targets were applied based on the sensitivity

limits of the telescopes/instruments for each observing programme, the brightness of the

only well-studied supernova in the mid-IR, SN 1987A, and the upper limits observed for

earlier targets in our programme. Those for the first Spitzer observations were limited to

radial velocities not greater than 1720 km s−1 (or ∼24 Mpc, for H0 = 73 km s−1 Mpc−1).

The complete sample of SNe that forms part of the current SEEDS program is presented

in Table 2.1, in order of ascending R.A. Its columns contain the following data:

1. Supernova name.

2. and 3. Equatorial coordinates (J2000.0) from optical photometry as reported in the

literature, generally from the IAU Circulars.

4. SN type.—taken from the Padova-Asiago online Supernovae Catalogue1, and cross-

referenced with David Bishop’s online supernovae pages2 which primarily sources

information from the IAU and CBET circulars.

5. Date of discovery of the SN.—from the Padova-Asiago Supernovae Catalogue and

David Bishop’s supernova web pages (as referenced above).

6. SN host galaxy name.

1The Padova-Asiago supernova catalogue is at http://web.pd.astro.it/supern/snean.txt
2David Bishop’s supernovae website can be found at http://www.supernovae.net/snimages/, currently hosted
by the International Supernova Network, and the Astronomy Section of the Rochester Academy of Sciences,
and supported by Tenagra Observatory.
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7. Classification of galaxy type.—as listed in the NASA/IPAC Extragalactic Database

(NED).3

8. Vh.—Heliocentric radial velocity in kilometres per second, from the NED.

9. Coordinate offset, to the nearest arcsecond, of the SN from the centre of its host

galaxy.

10. D.—Distance to the host galaxy in Mpc. Unless otherwise indicated, these are

derived using Hubble’s Law, V = H0D, where V (equivalent to Vh in the ta-

ble) is the observed heliocentric recessional velocity of the galaxy in km s−1 as

taken from the NED and H0 is the Hubble constant, H0 = 73 km s−1 Mpc−1

(Spergel et al. 2006). References for redshift-independent distances are: a Hendry

et al. (2005),b Karachentsev et al. (2004),c average distance from NED from 3 ref-

erences using the Tully-Fisher relationship,d Freedman et al. (2001),e Shanks et al.

(1992), f Feldmeier et al. (1997),g Karachentsev et al. (2000),h from NED using the

Tully-Fisher relationship.

11. List of observations for each SN for which the data are presented in this thesis. The

Gemini observing year is split into semesters ‘A’ and ‘B’ which refer to the periods

February 1 – July 31 and August 1 – January 31. Spitzer Cycles 1, 2, 3 and 4 refer to

the periods July 1 2004 – May 31 2005, June 1 2005 – May 31 2006, June 1 2006 – June

30 2007, and July 1 2007 – June 30 2008 respectively. Unless otherwise indicated, all

observing programs have Principal Investigator (PI) Barlow.

—Gem:01a – An early pilot program, GN-2001A-C-10, with OSCIR on Gemini-N in

semester 2001A;

—Gem:04a – Program GS-2004A-Q-1 with T-ReCS on Gemini-S in semester 2004A

with roll-over into semester 2004B;

—Gem:04b – Director’s Discretionary Time (DDT) program, GN-2004B-DD-4, with

Michelle on Gemini-N for follow-up observations of SN 2002hh in semester 2004B;

—Gem:05a/05b/06a – Long-term status project GN-2005A-Q-20 with Michelle on

Gemini-N, with observations spanning semesters 2005A, 2005B and 2006A;

—Gem:06b – Program GN-2006B-Q-1 with Michelle on Gemini-N in semester 2006B;

—Gem:07a – Program GN-2007A-Q-5 with Michelle on Gemini-N in semester

3http://nedwww.ipac.caltech.edu
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2007A;

—Gem:07b – Program GN-2007B-Q-4 with Michelle on Gemini-N in semester 2007B;

—SST:SINGS – Cycle 1 of the Spitzer Space Telescope SINGS Legacy project, program

00159 (PI: Kennicutt);

—SST:P03333 – Spitzer General Observer (GO) program 03333 in Cycle 1;

—SST:P00230 – Spitzer DDT program 00230 for follow-up observations of SN 2002hh

in Cycle 1;

—SST:P20320 – Spitzer Cycle 2 GO program 20320 (PI: Sugerman);

—SST:P30494 – Spitzer Cycle 3 GO program 30494 (PI: Sugerman);

—SST:P40010 – Spitzer Cycle 4 GO program 40010 (PI: Meixner);

—SST:P60071 – Spitzer Cycle 6 GO program 60071 (PI: Andrews).

In the overall sample of 30 supernovae, there are 23 SNe of Type II and their subsets

(see Section 1.3.1 for a review of these), four Type Ib/c SNe, two ambiguous classifications

straddling Types IIb and Ib/c, and one peculiar Type Ia.

2.3 Ground-based mid-IR astronomy and the Gemini Observa-

tory

The Gemini Observatory is a multi-national partnership consisting of twin 8.1-m opti-

cal/infrared telescopes: Gemini North, located on the summit of Mauna Kea in Hawaii at

an altitude of 4213 m (∼13,800 ft); and Gemini South, located on Cerro Pachón in Chile,

at an elevation of 2722 m (∼9000 ft). Positioned on dry and stable sites, the telescopes are

able to take advantage of some of the best atmospheric conditions and provide complete

coverage of the Northern and Southern skies.

The observational capabilities of 8-m class telescopes, such as those of the Gemini Ob-

servatory, in the mid-IR are much greater than those of previous ground-based telescopes.

Mid-IR photometric systems on 4-m class telescopes lacked the necessary sensitivity and

angular resolution to detect, for example, dust emission from other extragalactic SNe

at the same intrinsic levels as the much closer SN 1987A. The comparatively large en-

hancement in the point-source flux sensitivity of mid-IR instruments on Gemini over the

previous class of telescopes/instruments is due to the combination of: increased instru-

ment sensitivity, the four times larger telescope collecting area and much lower emissivity
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of the telescopes compared to 4-m telescopes, and a fully sampled 8-m telescope diffrac-

tion limit at 10 µm (FWHM 0.′′3) which is matched, for the first time, to the seeing at that

wavelength. This makes Gemini mid-IR imaging much better suited to the detection of

extragalactic SNe.

All ground-based infrared astronomy is limited to a greater or lesser extent by the

Earth’s atmosphere. Infrared astronomy in general also depends greatly on the contami-

nation from sources other than those one wishes to study. The atmospheric transmission

at mid-IR wavelengths is discussed in Section 2.3.1. The current techniques employed

to minimise confusion from background thermal radiation are discussed in Section 2.3.2,

together with the associated overheads incurred as a result of these techniques, which

were considerable with the Gemini telescopes at the time of the observations presented

herein.

Section 2.3.3 describes each of the Gemini instruments used for the SNe observations.

A considerable amount of time was spent setting up the Gemini queue mode observations,

and a summary of the steps used to define the observations with the Gemini Observing

Tool (OT) is provided in Appendix A.

2.3.1 Atmospheric transmission

The terrestrial atmosphere is largely opaque at most infrared wavelengths longer than

1 µm due to absorption by various atmospheric gases, in particular, water vapour, carbon

dioxide, ozone and methane. Fortunately, there are a series of wavelength ranges, or

transmission “windows”, over which the atmosphere is mostly transparent, thus enabling

ground-based infrared astronomy.

Gemini’s mid-IR instruments, Michelle and T-ReCS, make use of the atmospheric

transmission windows at approximately 7.5 – 14 and 17 – 25µm for imaging, spectroscopy

and (for Michelle only) imaging polarimetry. Figure 2.1 shows theoretical spectra of the

atmospheric transmission over Mauna Kea, Hawaii for this mid-IR wavelength region4

and the transmission curves of the filters used for the mid-IR observations presented in

this thesis5. As is evident from panel (a) of Figure 2.1, the atmospheric transmission

profile in the 7.5 – 14 µm window is characterised by absorption mainly due to carbon

dioxide and ozone, whereas the increased atmospheric absorption in the 17 – 25 µm
4Raw data files to produce this plot were obtained via:
http://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/transmission-spectra

5http://www.gemini.edu/sciops/instruments/michelle/imaging/filters
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Figure 2.1: (a) Theoretical spectra of the atmospheric transmission above Mauna Kea (6–28 µm) as
shown by the curves for 1.0 (grey) and 3.0 mm (black) of H2O at airmass = 1.5. Data to produce
this plot were obtained from the Gemini Observatory and were generated using the ATRAN
modelling software (Lord 1992); (b) Transmission curves of the N′ (11.2 µm), Si-2 (8.8 µm), Si-4
(10.3 µm), Si-5 (11.6 µm), Si-6 (12.5 µm), and (c) Qa (18.1 µm) filters, plotted with the atmospheric
transmission for 1.0 mm of H2O at an airmass of 1.5 (grey curves) over the relevant wavelength
regions.
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window is dominated by water vapour. As can be seen from the 1.0 and 3.0 mm H2O

curves, an increase in water vapour column above the site reduces the transmission, and

results in an increase in the sky background.

The transmissions of the various Michelle and T-ReCS filters are affected differently

by the various atmospheric components. The “cleanest” filters in the window centred

at 10 µm are the medium-band N′ filter and the narrow silicate-band filters Si-2 and

Si-5. Since the Si-4 filter is affected strongly by ozone (but only slightly by water vapour)

observations should be made as close to the meridian as possible. Figure 2.1 (b) shows

the transmission curves of the N′(11.2 µm), Si-2 (8.8 µm), Si-4 (10.3 µm), Si-5 (11.6 µm)

and Si-6 (12.5 µm) filters, plotted with the atmospheric transmission for 1.0 mm of H2O at

an airmass of 1.5 over the 7.5 – 14 µm wavelength region. The medium-band Qa filter is

the cleanest in the 20 µm window, although it is not comparable to any of the better 10 µm

filters. Observations with all of the Q filters are highly dependent on water vapour, and

their transmittances are not very high even at the zenith and when the water column is

low. Figure 2.1 (c) shows the transmission curve of the Qa (18.1 µm) filter, plotted with the

atmospheric transmission for 1.0 mm of H2O at an airmass of 1.5 over the 16.5 – 19.5 µm

wavelength region.

2.3.2 Chopping and nodding and observing overheads

Ground-based observing in the mid-IR (∼ 3 – 25 µm) is different to observing in the

optical or near-IR due to the very high thermal background flux. Contributing to this

is the thermal radiation from the sky, which in the best parts of the N band window

(near 11.5 µm) is about 240 Jy per square arcsecond and even brighter still in the Q band

(17 – 25 µm).

The thermal background is also contributed to by the telescope itself. The Gemini

mirrors have a silver coating to reduce their total thermal emission, and hence that

of the telescope. Yet even with such infrared-optimisation, the background is large

compared to the flux of most astronomical sources. Therefore, when observing with mid-

IR instruments such as T-ReCS and Michelle, “chopping” and “nodding” techniques are

needed to provide accurate removal of the high sky and telescope background.

Sky noise is suppressed by chopping – a technique where the secondary mirror is

oscillated in a square wave pattern at a frequency of typically 3 Hz, observing two fields,

or “beams”. At the start of an integration sequence, Beam A is used to refer to the
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“on source” position containing the science target, and Beam B refers to the nearby “off

source” position on the sky. The pair of images from Beams A and B are then subtracted.

However, background removal is not exact since the optical path differs for the two chop

positions, so the background level is also slightly different. To remove (most of) this

offset the entire telescope is moved or nodded at a typical rate of about twice per minute,

so that the target and reference positions are switched, i.e., the on-source position is

now in Beam B. T-ReCS has an ABAB nodding pattern, whereas Michelle uses an ABBA

sequence which is more time efficient and cancels the linear component of any temporal

background variations. In the usual method of beam-switching, the nod is set to be

parallel to and the same amplitude as the chop. Subtracting a pair of beam-switched

chop-nod observations results in a final frame containing three separate images of the

target: a guided positive central image, corresponding to half of the integration time, and

two displaced, unguided negative images of the target, each corresponding to a quarter

of the integration time. If the chop and nod are set large enough the negative images fall

off the array and are not seen. The maximum chop throw at Gemini is 15 arcseconds. The

default chop-nod method of beam-switching was adopted for the mid-IR observations

discussed in Section 2.4.

Mid-IR observing overheads can be significant, so it is important to take these into

account when applying for time on any of Gemini’s mid-IR instruments.

Each new imaging target incurred a configuration overhead of 15 minutes with T-

ReCS or 10 minutes with Michelle. This included slewing, centring and setting the PWFS

for tip-tilt AO correction on a guide star.

The time spent actually integrating on the source for a typical chop-nod observation is

about 30% (T-ReCS) or 25% (Michelle) of the elapsed time. Thus, an on-source integration

of 30 minutes takes about 1.9 hours (including set-up) with T-ReCS and about 2.2 hours

with Michelle. The observing efficiency of Michelle in the Qa band (18.2µm) is even lower,

at about 21%. However, in semester 2007A a new observing mode (longer frame time

and fewer read-resets) was implemented for the Qa filter which increased the observing

efficiency in this filter by about 40%. The large overheads are due to the motion and

settling of the chopping secondary mirror, re-acquiring guiding after each chop cycle,

and reading out the array.

A larger chop throw than the maximum of 15 arcseconds (i.e., to take the chop off

the detector) was planned by Gemini but has not been implemented, and Gemini does
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not currently guide on the “off” nod position. Since this “off” position often falls on the

detector, the implementation of guiding on it would have increased the mid-IR observing

efficiency by a factor of two in imaging.

2.3.3 The Gemini instruments

The Gemini instruments OSCIR, T-ReCS and Michelle were used to carry out mid-IR

imaging of 21 core-collapse SNe during the years 2001-2007. Table 2.2 provides details of

the instruments and filters used for all observations.

OSCIR - Instrument description

OSCIR – the Observatory Spectrometer and Camera for the InfraRed – consisted of a mid-

IR imager optimised for the wavelength range 8 – 25 µm and a low/medium-resolution

(R = 100 − 1000) spectrograph, and was built by the University of Florida and NASA

Marshall Space Flight Center6. It was on loan to Gemini-N and -S during 2000 and 2001,

but was superseded by the facility mid-IR instruments, T-ReCS and Michelle. There was,

however, a gap of nearly 3 years when no mid-IR instrument was available on either

telescope. Details of OSCIR’s detector size, plate scale and field of view in its imaging

mode are provided in Table 2.2. Only the broad N-band filter was used for program

GN-2001A-C-10.

T-ReCS - Instrument description

T-ReCS – the Thermal-Region Camera Spectrograph – is a mid-IR imager and long-

slit spectrograph optimised for the 8 – 26 µm wavelength region (for low-resolution

– R ∼ 100 near 10 µm and R ∼ 80 near 20 µm for long-slit spectroscopy), built by

the University of Florida for Gemini South (Telesco et al. 1998). Medium-resolution

(R ∼ 1000 near 10 µm) spectroscopy is also available with a wavelength coverage of

8 – 13 µm. Figure 2.27 shows the T-ReCS optical path from the entrance window to the

focal-plane array. Combined with Gemini’s fast tip-tilt compensating secondary mirror,

T-ReCS yields nearly diffraction-limited 10 µm images (FWHM . 0.′′4) under most seeing

conditions.
6http://www.gemini.edu/sciops/instruments/oscir/oscirIndex.html
7Obtained from the Gemini T-ReCS web pages at:
http://www.gemini.edu/sciops/instruments/t-recs/references/optomechanical-layout
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Table 2.2: Details of Gemini Observatory instruments and filters in their imaging configu-
ration for the SNe programmes. “GN” and “GS” refer to the instruments’ host telescope,
either Gemini-N or Gemini-S. All detectors are Raytheon arsenic-doped silicon impurity
band conductor (Si:As IBC) arrays. Information was obtained from the Gemini website1.

Instrument Detector Plate scale Field of view Filter λe f f ∆λ Sensitivity2

size [pix2] [arcsec/pix] [arsecond2] [µm] [µm] [mJy]

OSCIR, GN 128 × 128 0.084 11 × 11 N (broad) 10.75 8.1 – 13.4 0.63

T-ReCS, GS 320 × 240 0.09 28.8 × 21.6 N (broad) 10.36 7.7 – 13.0 1.4

Michelle, GN 320 × 240 0.1005 32 × 24



N′ 11.2 10.1 – 12.5 1.1
Qa 18.1 17.1 – 19.1 12
Si-2 8.8 8.4 – 9.3 2.9
Si-4 10.3 9.8 – 10.8 2.5
Si-5 11.6 11.2 – 12.3 2.1
Si-6 12.5 11.9 – 13.1 2.9

1 Source of information in this table: http://www.gemini.edu.
2 Filter sensitivities are for a point source, assuming a S/N of 5 with 30 mins on-source integration time.
3 OSCIR broad N-band filter sensitivity is a preliminary value from the first OSCIR

engineering run, and makes some unverified assumptions about the telescope performance
(Source: http://www.gemini.edu/sciops/instruments/oscir/oscirSensitivity.html).

Figure 2.2: The optical path of the Thermal-Region Camera Spectrograph (T-ReCS)
on Gemini-S, from the entrance window to the focal-plane array.
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Figure 2.3: The optical path of Michelle on Gemini-N, from the entrance window to
the detector array.

Details of T-ReCS’s detector size, plate scale and field of view in its imaging mode are

provided in Table 2.2. The Si:As IBC Raytheon detector has a switchable-capacitance i.e.,

there is a deep-well mode for high background imaging and a medium-well mode for

general imaging and spectroscopy.

The instrument’s imaging capabilities include broad-band filters (N, Q) and 15 narrow-

band filters in the optimised wavelength range. A further 3 filters are available in the

range ∼ 1 – 5 µm, although these are limited by low detector quantum efficiency at short

wavelengths and are mainly useful for target acquisition of bright sources.

As discussed in Section 2.3.2, the most accurate removal of the mid-IR sky and tele-

scope background is achieved by the technique of chopping and nodding. At the time

of the observations the maximum chop throw allowed on Gemini was 15 arcseconds,

smaller than the T-ReCS field of view of 28.8 × 21.6 square arcseconds.

Michelle - Instrument description

The Michelle (Mid-IR eChelle) spectrograph and imager was built by the Astronomy

Technology Centre (ATC) at the Royal Observatory of Edinburgh for shared use by both

Gemini-N and the United Kingdom Infrared Telescope (UKIRT) (Glasse et al. 1997). Its

first light was on UKIRT in August 2001, and its first usage on Gemini-N was in the first
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half of 2002, becoming a permanent instrument on Gemini-N in 2004. Figure 2.38 shows

Michelle’s optical path layout from the entrance window to the detector array.

In its imaging mode, Michelle is optimised for the 7 – 26 µm wavelength region.

Further details such as detector size, plate scale and field of view for Michelle in its

imaging configuration can be found in Table 2.2. The instrument’s imaging capabilities

include semi-broad filters (N′, Qa) and 6 narrow-band silicate filters in the optimised

wavelength range. Whilst broad-band filters (N, Q and Q′) exist for Michelle, imaging is

not usually available with these due to array saturation problems. Michelle uses the same

type of detector as T-ReCS: a Si:As IBC Raytheon detector with a switchable-capacitance.

The 0.′′10 × 0.′′10 detector pixels critically sample the diffraction limited mid-IR Gemini

PSF (FWHM∼ 1.22λ/D∼ 0.′′31 at 10 µm,∼ 0.′′63 at 20 µm). The default technique of beam-

switch chopping and nodding was employed for the observations, using the maximum

chop throw of 15′′, smaller than the Michelle field of view of 32′′×24′′.

2.4 The Gemini observations

The following section describes each of the Gemini SNe programs carried out during the

years 2001 to 2008, with the mid-IR instruments OSCIR, T-ReCS and Michelle. The tables

for each program provide details of the targets and observations, including measured

flux densities, and upper limits for non-detections. Listed are: SN type; age in days

since explosion/discovery at the date of observation; host galaxy and radial velocity, Vh,

in km s−1; adopted distance, D, in Mpc (references for the distances are provided in the

notes to Table 2.1); UT date and start time of observation; on-source integration time;

mean airmass (interpolated linearly to midway through the observations); measured flux

density, Fν, in mJy, and upper limits for non-detections in the same units. The final column

of each table gives the flux density/upper limit scaled to the distance of SN 1987A at 50 kpc

(see discussion in Section 2.7). A description of the data reduction and flux measurement

techniques follows in Sections 2.5 and 2.6. The results are discussed in Section 2.7.

2.4.1 Gemini-North/OSCIR program GN-2001A-C-10, May 2001

Two classical nights of OSCIR time on Gemini-N were allocated to this programme on

4 and 5 May 2001 (Project ID [PID]: GN-2001A-C-10, PI: Barlow). Unfortunately, two-

8Private communication from Dr Alistair Glasse, October 17 2006.
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thirds of the time was lost due to telescope acquisition and guiding problems. Observing

commenced a third of the way into the second night (6 May 2001 UT), allowing N-band

imaging observations to be made of five recent SNe. Conditions were clear and dry,

with humidity less than 20 percent. Table 2.3 lists details of the targets and observations,

including measured flux densities and upper limits for non-detections. These measurements

of the OSCIR data were made by Scott Fisher at Gemini, an early collaborator on the SNe project,

before my own work commenced on the project from 2004. The early 2001 sample has not been

presented elsewhere, and has been included in this work for completeness.

µUMa and α CrB were used as flux standard stars (Cohen et al. 1999), with each

observed for an on-source time of 43 seconds. 3-σ upper limits to the flux densities were

determined from background statistics and scaled to a diffraction-limited size aperture

with a radius of ∼ 4 OSCIR pixels (equivalent to an area of ∼50 pixels2) at 10.75 µm, as

described in Section 2.6.3. For airmasses ≤ 1.4, the N-band 3-σ sensitivity limits for 903 s

on-source integration time were between 1.1 and 1.2 mJy.

2.4.2 Gemini-South/T-ReCS program GS-2004A-Q-1, March – December 2004

After the OSCIR observations in May 2001, no mid-IR instruments were available on

either of the Gemini telescopes until 2004. 15 hours of Michelle queue time observations

were awarded for June/July 2003 (PID: GN-2003A-Q-60, PI: Barlow) but all Michelle 03A

programmes were subsequently cancelled by Gemini due to the instrument’s unavail-

ability.

Semester 2004A therefore represented the first opportunity to resume the programme

since 2001A. Michelle was unavailable during 2004A on Gemini-N, but 30 hours of T-

ReCS queue time on Gemini-S were awarded, with roll-over into semester 2004B (PID:

GS-2004A-Q-1, PI: Barlow). A list of accessible nearby SNe with Vmax < 17 mag and host

galaxy radial velocities< 3000 km s−1, discovered between February 2000 and August 2002

(since these were expected to have the optimum ages for 10-µm detection in mid-2004),

was compiled using the Padova-Asiago online Supernovae Catalogue.

T-ReCS was used in queue mode to image 10 SNe with its broad N-band filter

(10.36 µm) over semesters 2004A and 2004B. Table 2.4 provides observation details and

flux density limits for the SN observations executed between March 4 and December 4

2004. The number of consecutive observations of a SN (on the same night) are indicated

by the multiplier in the ninth column of Table 2.4. Where there were such multiple obser-
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vations, the UT start time is that for the first of the sequence and the upper flux limit is

that for the final averaged-combined image. The total time on-source is the total time in sec-

onds spent integrating on the target field for each observation. Each observation had an

effective on-source frame time of 3.6 seconds, equivalent to the on-source time per saveset

(pair of coadded frames from each chop position). This is a consequence of the raw data

structure and of the averaging of these raw frames during the data reduction process (dis-

cussed in more detail in Appendix B, Section B.2). Mean (i.e., mid-observation) airmasses

were in the range 1.02 – 1.50, with an average mid-observation airmass for the sample of

1.20. Where there are consecutive observations of the same SN, mean airmasses for the

individual observations are listed. The maximum chop throw of 15 arcseconds was used

for each observation and, where appropriate, the orientation of the detector was varied

to avoid potential contamination from bright neighbours. Since the SNe were too faint to

see on the detector array, reasonable pointing accuracy (within 0.′′5 radius of the nominal

position) was ensured using the User1 astrometry method described in Appendix A.

With the ratio of time awarded to SNe observed being greater for the T-ReCS programme

than for the previous OSCIR program, it was possible to allow longer exposure times per

target. For on-source integration times greater than 900 s, it was recommended that repeat,

or multiple step, observations were used to achieve the desired total time. This added

negligible time to overheads but limited any data lost in the case of a problem during

observations and allowed pausing of the sequence if weather conditions deteriorated.

Each target had a minimum of three exposures with individual on-source integration

times ranging from 608 – 652 s (see Table 2.4 for a breakdown of these). The majority

of SNe were observed in the N-band for a total time of 1824 s on-source, yielding 3-σ

detection limits ranging between 0.49 mJy and 1.01 mJy (a mean of 0.74 mJy). Standard

‘baseline calibration’ observations obtained by Gemini staff were used to calibrate all data

for this programme, using the flux standard stars α CMa, αHya, α TrA, HD 32887, 35536,

123139, 133774 and 196171 from Cohen et al. (1999). Total on-source exposure times for

the standard stars ranged from 36 – 65 seconds, each having the same on-source frame

time as the SN observations of 3.6 seconds. Upper limits to the flux densities are 3-σ upper

limits in a diffraction-limited aperture with a radius of ∼3.6 T-ReCS pixels (equivalent to

an area of ∼40 pixels2) at 10.36 µm.
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2.4.3 Gemini-North/Michelle Director’s Discretionary program

GN-2004B-DD-4, September – October 2004

Our first use of Michelle on Gemini-N was for Director’s Discretionary Time (DDT)

observations of SN 2002hh awarded in semester 2004B (published by Barlow et al. 2005).

A small percentage of the total observing time on Gemini-N/S is available for such DDT

proposals.

SN 2002hh was our first positive detection of a SN in the mid-IR using publicly

available Spitzer SINGS Legacy data taken in 2004 (see Chapter 3). Second-epoch ob-

servations were therefore important to constrain the evolution of the dust temperature

and the emitting radius and mass of dust. The field immediately around the SN was

extremely crowded, so Gemini observations – having ten times higher angular resolu-

tion than Spitzer – allowed much more precise separation of the emitting sources in the

complex region around the SN.

To gauge necessary integration times, a blackbody was fit to the first epoch of Spitzer

data to enable predictions of fluxes at 10 and 20 µm. The Michelle Integration Time Cal-

culator (ITC) was then used to estimate the on-source time required to yield a reasonable

signal-to-noise ratio. 900 s on-source was requested in both the N′ (11.2 µm) and Qa

(18.1 µm) filters. Details of the DDT observations and flux densities of SN 2002hh are

presented in Table 2.5. Central wavelengths and bandwidths of each filter used have

already been defined in Table 2.2. For Michelle, the effective on-source frame time (given

in the eleventh column of Table 2.5) is equivalent to the on-source time per nod position.

This is a consequence of the structure of the raw data and the method of averaging the

raw data frames during the reduction process (discussed in more detail in Appendix B,

Section B.2). The stars HD 10380 and 192781 (Cohen et al. 1999) were used as flux stan-

dards, with each observed for a total on-source time of 47 seconds in the N′and Qa filters.

Respective on-source frame times of 11.76 seconds and 6.8 seconds in N′and Qa are the

same as those for the SN observations.

2.4.4 Gemini-North/Michelle program, February 2005 – July 2008

In 2005, a total of 41 hours of queue time observations were awarded for a long-term

status project with Michelle on Gemini-N, spanning semesters 2005A (allocation: 25

hours), 2005B (8 hours) and 2006A (8 hours). Long-term project status was requested
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in order to obtain high-angular mid-IR imaging of a new sample of SN, synchronised

with complementary Spitzer observations, and to monitor the time evolution of the dust

emission of any Spitzer/Gemini detections by way of follow-up observations. The overall

programme ID was GN-2005A-Q-20, although semesters 2005B and 2006A were assigned

separate queue program references of GN-2005B-Q-2 and GN-2006A-Q-1 respectively. A

further four semesters of Michelle queue time were awarded from 2006 to 2008: programs

GN-2006B-Q-1, GN-2007A-Q-5, GN-2007B-Q-4 and GN-2008B-Q-44.

Details of the SN observations and measured flux densities/upper limits for each

program are provided in Table 2.6. The number of sequential observations of a SN in one

night is indicated by the multiplier in the tenth column of Table 2.6. Where there were

multiple observations, flux densities and upper limits are for the final averaged-combined

images. Mean (i.e., mid-observation) airmasses were in the range 1.02 – 1.74, with an

average mid-observation airmass for the sample of 1.36. The telescope and instrument

were set-up similarly as for the previous T-ReCS observations, with a maximum chop

throw of 15 arcseconds, and the orientation of the detector set so as to avoid contamination

from bright neighbours. The User1 astrometry method (described in Appendix A) was

used to centre the SNe on the array. Total on-source exposure times for the flux standard

stars were of order 47 – 94 s in N′ 54 – 82 s in Qa and 50 s for the four narrow band

silicate filters. On-source frame times in the relevant filters are the same as those for the

SN observations, as detailed in Table 2.6. Upper limits to the flux densities are 3-σ upper

limits in a diffraction-limited aperture with a radius of ∼3.5 Michelle pixels (equivalent to

an area of ∼38 pixels2) at 11.2 µm, and a radius of ∼5.6 Michelle pixels (equivalent to an

area of ∼98 pixels2) at 18.1 µm. Further information regarding each program is discussed

below.

GN-2005A-Q-20 observations, February – July 2005

The initial sample observed during the first semester of 2005 were five massive star SNe

accessible from Gemini-N, with ages ranging from a few hundred to 1278 days, in galaxies

with radial velocities from 48 km s−1 to 657 km s−1 and distances ranging from 6 to 12 Mpc.

All five targets were observed in the medium N′-band filter (11.2 µm), with three

out of five SN observed twice, and individual on-source exposure times of order 1000 s.

Following its detection with the Spitzer Space Telescope and consequent Gemini Director’s

Discretionary Time with Michelle in semester 2004B, SN 2002hh was also observed in
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the medium Qa-band filter (18.1 µm). To get a better constraint on the spectral energy

distribution (SED) of this SN, additional narrow-band observations were taken with

silicate filters Si-2 (8.8 µm), Si-4 (10.3 µm), Si-5 (11.6 µm) and Si-6 (12.5 µm). Table 2.6

provides details of the SN observations for this program, carried out between February 28

and July 31 2005, and the flux densities measured. The stars HD 8388, 73108 and 198149

(Cohen et al. 1999) were used as flux standards.

GN-2005B-Q-2 observations, August 2005

Three SNe imaged previously with Michelle were observed during the 8 hours allocated

for semester 2005B: SN 2003gd and SN 2002ap were observed in Michelle’s N′ filter,

and there was continued monitoring of SN 2002hh in bands N′ and Qa. Total on-source

integration times were 1082 and 1250 s for the N′ and Qa filters respectively. Table 2.6

provides details of the SN observations carried out in August 2005 and the flux densities

measured. The stars HD 8388 and 198149 (Cohen et al. 1999) were used as flux standards.

GN-2006A-Q-1 observations, April – June 2006

In the final semester (2006A) of this long-term project, four SNe were observed in

Michelle’s N′ filter. This included further follow-up observations of SN 2002hh and

SN 2004et in NGC 6946, and new observations of two recent SNe, 2004dj and 2005cs, with

typical total on-source times of c.1300 s. Table 2.6 provides details of the SN observations

carried out between April 6 and June 20 2006, and the flux densities measured. The stars

HD 73108, 128902 and 192781 (Cohen et al. 1999) were used as flux standards.

GN-2006B-Q-1 observations, September/October 2006 and March 2007

A further 8 hours were allocated in semester 2006B for more Michelle SN observations.

Continued N′ and Qa band monitoring of SN 2002hh was carried out in September and

October 2006. The total on-source integration time in the N′ filter was c.1400 s. For

the Qa observations, 4 × 400 s on-source exposures were planned. The first of these was

attempted on September 21 2006 but was aborted by the observer as the precipitable water

vapour content had increased to greater than 2.0 mm. The second 400 s Qa exposure was

taken the following night. Ideally all observations in one filter should be taken in one

night, but deteriorating conditions often prevent this. The final two Qa observations were
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executed on October 14 2006. Planned observations of two other SNe, 2004dj and 2004et,

were not possible that semester due to time lost through a combination of unfortunate

factors: failure of the OT’s automatic time accounting and loss of the use of Michelle

for a month due to an earthquake early in the semester. However, the N′ and Qa band

observations of SN 2004dj were carried out in March 2007, with total on-source integration

times of c.2260 s and 1300 s in N′ and Qa respectively. Details of the science observations

and flux densities for this program are provided in Table 2.6. The stars HD 73108 and

192781 (Cohen et al. 1999) were used as flux standards.

GN-2007A-Q-5 observations, March – April 2007

In semester 2007A, 16 hours were awarded for Michelle follow-up imaging of four super-

novae: SN 2002hh, SN 2004dj, SN 2004et and SN 2005cs. N′-band observations of all four

SNe are presented here. Total on-source integration times range from c.1700 s to 2260 s.

SN 2002hh and SN 2004dj were also been observed in the Qa filter, with total on-source

integration times of c.970 s and c.1300 s respectively. Details of the science observations

and flux densities are provided in Table 2.6. The stars HD 73108, 128902, 192781 and

198149 (Cohen et al. 1999) were used as flux standards.

GN-2007B-Q-4 and GN-2008B-Q-44 observations, June - July 2008

In semester 2007B, 13.4 hours were awarded to continue monitoring late-time Michelle

mid-IR photometry of the four supernovae observed in the previous semester: SN 2002hh,

SN 2004dj, SN 2004et and SN 2005cs. The N′-band observations of SN 2004et are

presented in this thesis. Scheduling issues meant that the target was actually observed

in semester 2008A. Faults with the telescope interrupted the observations of SN 2004et

resulting in 7/8 of the requested data being obtained, amounting to a total on-source

integration time of c.1950 s. A further 11.9 hours were awarded in semester 2008B for

continued monitoring of SN 2004et with Michelle, and for late-time optical imaging with

GMOS-N. Similar observations were also allocated for the Type IIn supernova, SN 2008S,

which had recently been discovered (February 2008) in the same galaxy. The Michelle

N′-band and GMOS-N observations of SN 2004et are presented in this thesis – see this

chapter for Michelle results, but also refer to Chapter 5 for a thorough analysis of all

mid-IR data (Gemini and Spitzer) for SN 2004et, including a discussion of the optical
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photometry.

Details of the mid-IR science observations and the flux measurements for SN 2004et

from these programs are provided in Table 2.6. The stars HD 192781 and 198149 (Cohen

et al. 1999) were used as flux standards.



2.4. The Gemini observations 59

Ta
bl

e
2.

6:
O

bs
er

va
ti

on
de

ta
ils

an
d

flu
x

de
ns

it
ie

s/
3-
σ

up
pe

r
lim

it
s

fo
r

G
em

in
i-

N
/M

ic
he

lle
pr

og
ra

m
s

G
N

-2
00

5A
-Q

-2
0,

G
N

-2
00

5B
-Q

-2
,

G
N

-
20

06
A

-Q
-1

,
G

N
-2

00
6B

-Q
-1

,
G

N
-2

00
7A

-Q
-5

,
G

N
-2

00
7B

-Q
-4

an
d

G
N

-2
00

8B
-Q

-4
4

be
tw

ee
n

Fe
br

ua
ry

20
05

an
d

Ju
ly

20
08

.
Ba

nd
w

id
th

s
an

d
eff

ec
ti

ve
w

av
el

en
gt

hs
of

th
e

fil
te

rs
ar

e
pr

ov
id

ed
in

Ta
bl

e
2.

2.

Ta
rg

et
SN

A
ge

H
os

t
V

h
D

U
T

da
te

Fi
lt

er
U

T
st

ar
t

O
n-

so
ur

ce
ti

m
e

M
ea

n
F ν

/
3-
σ

50
kp

c
flu

x/
ty

pe
[d

ay
s]

ga
la

xy
[k

m
s−

1 ]
[M

pc
]

To
ta

l
Fr

am
e

ai
rm

as
s

up
pe

r
lim

it
3-
σ

up
pe

r
[s

]
[s

]
[m

Jy
]

lim
it

[J
y]

G
N

-2
00

5A
-Q

-2
0

SN
20

01
gd

II
b

11
92

N
G

C
50

33
87

7
12

.0
20

05
-0

2-
28

N
′

10
:2

3:
37

.7
2
×

10
81

.9
11

.7
6

1.
18

,1
.0

7
≤

0.
26

≤
15

.0

SN
20

02
hh

II
-P

93
0

N
G

C
69

46
48

5.
9

20
05

-0
5-

18
N
′

13
:0

7:
43

.5
1
×

56
4.

5
23

.5
2

1.
40

8.
6
±

0.
4

12
0
±

5.
6

q
q

q
94

5
q

q
q

q
20

05
-0

6-
02

Si
-2

11
:5

5:
45

.3
2
×

46
6.

6
12

.9
6

1.
43

,1
.3

8
11

.5
±

1.
8

16
0
±

25
q

q
q

94
6

q
q

q
q

20
05

-0
6-

03
Si

-4
12

:0
2:

46
.3

1
×

52
9.

9
11

.0
4

1.
40

7.
6
±

1.
2

10
6
±

17
q

q
q

q
q

q
q

q
20

05
-0

6-
03

Si
-5

12
:4

0:
19

.8
1
×

62
2.

1
12

.9
6

1.
35

6.
0
±

0.
6

84
±

8.
4

q
q

q
q
q

q
q

q
20

05
-0

6-
03

Si
-6

13
:1

7:
48

.8
1
×

56
4.

5
11

.7
6

1.
32

5.
7
±

0.
9

79
±

13

SN
20

04
et

II
-P

31
1

q
q

q
q

20
05

-0
7-

30
N
′

08
:5

9:
39

.1
1
×

10
81

.9
11

.7
6

1.
33

1.
7
±

0.
2

24
±

2.
8

SN
20

02
ap

Ib
/c

pe
c

12
78

N
G

C
62

8
65

7
9.

3
20

05
-0

7-
30

N
′

13
:5

2:
42

.7
1
×

10
81

.9
11

.7
6

1.
04

≤
0.

38
≤

13
.1

SN
20

03
gd

II
-P

78
1

q
q

q
q

20
05

-0
7-

31
N
′

12
:0

7:
41

.3
2
×

10
81

.9
11

.7
6

1.
28

,1
.0

8
≤

0.
30

≤
10

.4

G
N

-2
00

5B
-Q

-2
SN

20
02

hh
II

-P
10

07
N

G
C

69
46

48
5.

9
20

05
-0

8-
03

N
′

08
:0

5:
26

.5
1
×

10
81

.9
11

.7
6

1.
37

8.
3
±

0.
3

11
6
±

4.
2

q
q

q
q
q

q
q

q
20

05
-0

8-
03

Q
a

09
:1

7:
04

.0
2
×

62
5.

6
6.

80
1.

32
,1

.3
4

24
.0
±

6.
4

33
4
±

89

SN
20

03
gd

II
-P

78
4

N
G

C
62

8
65

7
9.

3
20

05
-0

8-
03

N
′

14
:0

2:
04

.5
1
×

10
81

.9
11

.7
6

1.
02

≤
0.

53
≤

18
.3

SN
20

02
ap

Ib
/c

pe
c

13
01

q
q

q
q

20
05

-0
8-

22
N
′

13
:5

1:
11

.2
1
×

10
81

.9
11

.7
6

1.
02

≤
0.

50
≤

17
.3

G
N

-2
00

6A
-Q

-1
SN

20
04

dj
II

-P
61

4
N

G
C

24
03

13
0

3.
3

20
06

-0
4-

06
N
′

06
:3

2:
36

.8
1
×

13
17

.1
11

.7
6

1.
58

1.
9
±

0.
3

8.
3
±

1.
3

SN
20

05
cs

II
-P

28
4

M
51

60
0

8.
4

20
06

-0
4-

07
N
′

11
:1

9:
06

.2
1
×

13
17

.1
11

.7
6

1.
17

≤
0.

36
≤

10
.2

co
nt

.o
n

ne
xt

pa
ge



2.4. The Gemini observations 60

Ta
bl

e
2.

6
co

nt
.

Ta
rg

et
SN

A
ge

H
os

t
V

h
D

U
T

da
te

Fi
lt

er
U

T
st

ar
t

O
n-

so
ur

ce
ti

m
e

M
ea

n
F ν

/
3-
σ

50
kp

c
flu

x/
ty

pe
[d

ay
s]

ga
la

xy
[k

m
s−

1 ]
[M

pc
]

To
ta

l
Eff

ec
ti

ve
ai

rm
as

s
up

pe
r

lim
it

3-
σ

up
pe

r
[s

]
[s

]
[m

Jy
]

lim
it

[J
y]

SN
20

04
et

II
-P

59
7

N
G

C
69

46
48

5.
9

20
06

-0
5-

12
N
′

14
:3

2:
07

.9
1
×

81
1.

4
11

.7
6

1.
32

≤
0.

51
≤

7.
1

q
q

q
59

9
q

q
q

q
20

06
-0

5-
14

N
′

13
:5

5:
22

.4
1
×

37
6.

3
11

.7
6

1.
36

≤
0.

79
≤

11
.0

SN
20

02
hh

II
-P

12
97

q
q

q
q

20
06

-0
5-

20
N
′

13
:0

1:
34

.4
1
×

13
17

.1
11

.7
6

1.
37

6.
7
±

0.
4

93
±

5.
6

q
q

q
13

28
q

q
q

q
20

06
-0

6-
20

N
′

13
:4

0:
42

.2
1
×

70
5.

6
11

.7
6

1.
34

7.
6
±

0.
5

10
6
±

7.
0

G
N

-2
00

6B
-Q

-1
SN

20
02

hh
II

-P
14

21
N

G
C

69
46

48
5.

9
20

06
-0

9-
21

N
′

06
:1

8:
35

.2
2
×

70
5.

6
11

.7
6

1.
31

,1
.3

2
5.

8
±

0.
2

81
±

2.
8

q
q

q
14

22
q

q
q

q
20

06
-0

9-
22

Q
a

07
:0

0:
04

.7
1
×

40
8.

0
6.

80
1.

32
≤

14
.3

≤
19

9
q

q
q

14
44

q
q

q
q

20
06

-1
0-

14
Q

a
06

:4
0:

45
.1

2
×

40
8.

0
6.

80
1.

39
,1

.4
9

≤
12

.1
≤

16
9

SN
20

04
dj

II
-P

96
5

N
G

C
24

03
13

0
3.

3
20

07
-0

3-
23

Q
a

05
:1

9:
36

.0
4
×

32
4.

5
10

.1
4

1.
43

–1
.4

6
≤

4.
40

≤
19

.2
q

q
96

7
q

q
q

q
20

07
-0

3-
25

N
′

05
:1

8:
28

.0
4
×

56
4.

5
11

.7
6

1.
43

–1
.5

6
1.

6
±

0.
3

7.
0
±

1.
3

G
N

-2
00

7A
-Q

-5
SN

20
05

cs
II

-P
62

8
M

51
60

0
8.

4
20

07
-0

3-
17

N
′

12
:4

8:
55

.3
4
×

56
4.

5
11

.7
6

1.
15

–1
.3

7
≤

0.
38

≤
10

.7

SN
20

04
dj

II
-P

98
4

N
G

C
24

03
13

0
3.

3
20

07
-0

4-
11

N
′

05
:4

2:
23

.8
3
×

56
4.

5
11

.7
6

1.
48

–1
.7

4
≤

0.
45

≤
2.

0
q

q
q

98
7

q
q

q
q

20
07

-0
4-

14
Q

a
05

:3
0:

07
.9

4
×

32
4.

5
10

.1
4

1.
47

–1
.6

0
≤

8.
42

≤
37

SN
20

04
et

II
-P

10
20

N
G

C
69

46
48

5.
9

20
07

-0
7-

09
N
′

11
:4

1:
49

.6
3
×

56
4.

5
11

.7
6

1.
31

–1
.3

8
≤

0.
40

≤
5.

6

SN
20

02
hh

II
-P

17
22

q
q

q
q

20
07

-0
7-

19
N
′

09
:2

1:
55

.0
3
×

56
4.

5
11

.7
6

1.
31

–1
.3

7
7.

2
±

0.
2

10
0
±

2.
8

q
q

q
q
q

q
q

q
q

Q
a

11
:5

5:
59

.0
3
×

32
4.

5
10

.1
4

1.
34

–1
.3

7
≤

8.
60

≤
12

0

G
N

-2
00

7B
-Q

-4
an

d
G

N
-2

00
8B

-Q
-4

4
SN

20
04

et
II

-P
13

68
N

G
C

69
46

48
5.

9
20

08
-0

6-
21

N
′

13
:0

3:
26

.1
3.

4×
56

4.
5

11
.7

6
1.

32
–1

.4
5

1.
04
±

0.
21

14
.4
±

3.
0

q
q

q
13

86
q

q
q

q
20

08
-0

7-
09

N
′

12
:2

0:
30

.7
4
×

56
4.

5
11

.7
6

1.
33

–1
.5

5
1.

02
±

0.
22

14
.1
±

3.
1



2.5. Gemini mid-IR data reduction 61

2.5 Gemini mid-IR data reduction

This section provides a brief outline of the software and steps used to reduce the mid-IR

Gemini data presented in this chapter. A more detailed description of the software used

and techniques employed can be found in Appendix B.

The data reduction software used for Gemini mid-IR observations is an external

package layered upon IRAF9, known as the Gemini IRAF package. The package contains

suites of tasks for processing data from the various Gemini instruments.

2.5.1 OSCIR data reduction

The following tasks in the oscir suite of the Gemini IRAF package were used to process

the Gemini-N/OSCIR SN data presented in Section 2.4.1: ohead, oview, obackground

and oreduce. A typical data reduction sequence with a brief description of each task is

listed below:

1. ohead and oview were used to respectively check the FITS file header information

and inspect raw data frames.

2. obackground was used to analyse the background levels in the reference frames

and identify any bad nodsets or savesets to be omitted in the final data coaddition.

3. oreduce was used to derive the chop and nod differences and average these to get

a 2-dimensional image. Bad nodsets or savesets, identified with the obackground

task, are input here for exclusion from the final averaged-combined frame.

A more detailed description of the OSCIR data format and each of the Gemini IRAF

tasks is provided in Appendix B, Section B.1.

2.5.2 T-ReCS and Michelle data reduction

Raw science and calibration data files from the early queue-mode SN observations were

distributed to PIs by Gemini on a compact disc, but by mid-2005 became available (to-

gether with ancillary files such as observation logs and weather images) much more

efficiently and quickly via the Gemini Science Archive (GSA), hosted by the Canadian

9IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association
of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science
Foundation.
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Table 2.7: Gemini IRAF  tasks for T-ReCS/Michelle data reduction

Task name Instrument/Description Used

T-ReCS, Gemini-S
 (Interactively) inspects each frame in a raw T-ReCS file yes
 Performs statistics on frames in a raw T-ReCS file yes
 Checks the structure of a raw T-ReCS file no
 Prepares T-ReCS data for reduction with the  tasks yes

Michelle, Gemini-N
 (Interactively) inspects each frame in a Michelle raw file yes
 Makes Michelle headers GSA-compatible yes
 Prepares Michelle data for reduction with the  tasks yes

Both
 Views data frames that have been /’d yes
 Derives flat fields for images no
 Coadds (“averages” or “sums”) nod images within a given data file yes
 Registers and coadds nod images within a given data file no
 Reduces T-ReCS/Michelle images by calling the other tasks yes

Astronomy Data Centre (CADC)10. Proprietary data is accessed with a registered CADC

username and password and directly downloaded from the online database.

The Gemini IRAF midir suite contains tasks for processing the mid-IR imaging data

from the Michelle and T-ReCS instruments. There are tasks specific to each instrument,

and tasks which are common to both. Table 2.7 provides a brief description of the tasks

available in the midir package and indicates which of the these were used for reducing

the Gemini data discussed in this chapter. The reduction process was automated for batch

processing of the T-ReCS or Michelle raw input files using one call to the mireduce task.

This task in turn calls the relevant tasks described in Table 2.7 to produce the final

averaged-combined images.

A more detailed description of the T-ReCS and Michelle data formats and of each of

the midir tasks can be found in Appendix B, Section B.2.

10http://www2.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/gsa/
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Figure 2.4: Example of an N′-band Michelle image of a standard star (a) before and (b) after
cleaning. Panel (a) shows the vertical and horizontal striping often seen in reduced Gemini
mid-IR images. The “hammer effect” seen here as the depressed response in every channel of
the array at the same row as the bright source, is not so easily removed.

2.5.3 Final image manipulation: cleaning and combining

In many cases, the reduced mid-IR images showed similar broad horizontal and/or vertical

striping, an example of which is shown in Figure 2.4 (a). Two custom IDL routines (not

part of any Gemini supported software package) used to clean the data were obtained

from our Gemini Contact Scientist11: ‘noise_maskh.pro’ which removes the horizontal

banding, and ‘noise_maskv.pro’ which removes the vertical striping, including any

channel to channel noise. A more detailed description of the IDL routines is given in

Appendix B, Section B.3. Figure 2.4 (b) shows an example of a cleaned image.

The cleaning had little effect on the fluxes measured for the standards and the fainter

SNe detections, however, the photometric uncertainties introduced as a result of the

image cleaning techniques are included within the general uncertainties discussed in

Section 2.6.4.

Multiple same-filter images of a science target taken during one night were coadded

with the IRAF task imcombine using the default option of averaging the frames. For

images with SN detections, a Gaussian filter was first applied to smooth the images to be

coadded, which were then blinked in the image display application to check for relative

positional offsets of the source on the array. The Gaussian-smoothed data could be used

to help determine accurate offsets in image coordinates X and Y, which were then applied

11IDL routines (written by James M. De Buizer, Gemini Observatory, Southern Operations Center, October
2003 and modified by Marshall Perrin, UC Berkeley, June 2005) obtained via private communication with
Scott Fisher at Gemini, February 6 2006.
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with the IRAF task imshift to align the un-smoothed images before final coaddition.

2.5.4 Flux calibration

As discussed in Section 2.4, flux standard stars for each of the Gemini programs were

observed on the same night as the science targets, in the appropriate filters and at closely-

matched airmasses to the science observations, as part of the Gemini baseline calibration

set.

To flux calibrate the T-ReCS and Michelle Gemini science data, it was necessary to

determine the fluxes of the relevant observed standard stars at the effective wavelengths

of the filters used. This was done by convolving the adopted SED of the standard (in

F(λ) units) with the appropriate T-ReCS/Michelle filter and atmospheric profiles, using

the Starlink package DIPSO as described in the bullet points below. Template model

spectra of the standard stars (Cohen et al. 1999) were obtained from the Gemini website12.

The filter and atmospheric transmission data were also obtained from the Gemini web

pages13.

• ASCII format data of the template model spectra of the standard stars and the

relevant filter and atmospheric transmission profiles were read into DIPSO, using

the alasrd command.

• The filter and transmission profiles were convolved using the amult command,

which multiplies the Y values in a specified stack entry by the values in the current

arrays. The data in the current arrays are mapped onto the X grid of the specified

stack data, so the stack entry with coarsest X grid of data, was mapped onto the

finer X grid of data “popped” into the current array.

• The convolved filter and transmission data were integrated with the DIPSO com-

mand integrate which estimates the area under the current arrays using simple

trapezoidal integration.

• The template model spectrum of the standard star was then convolved with the filter

and transmission profiles, using the amult command as previously described. The
12Now obtainable from this link:

http://www.iop.org/EJ/article/1538-3881/117/4/1864/template21.tar.gz.
13T-ReCS and Michelle filter transmission data were obtained from:

http://www.gemini.edu/sciops/instruments/t-recs/imaging/filters (T-ReCS) and
http://www.gemini.edu/sciops/instruments/michelle/imaging/filters (Michelle).
Atmospheric transmission data was obtained from:
http://www.gemini.edu/sciops/ObsProcess/obsConstraints/atm-models/mktrans_nq_10_15.dat.
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result was integrated with the integrate command, to give the total in-band flux

through the atmosphere and filter.

• The ‘mean’ flux of the standard star over the filter and atmospheric transmission

profiles was calculated by dividing the total in-band flux of the stellar spectrum by

the integrated atmosphere and filter transmissions.

• The wavelength at which the monochromatic flux of the template stellar spectrum

was equal to the ‘mean’ flux derived above was adopted as the effective wavelength.

A list of the standard stars used to flux calibrate the Gemini data obtained between

2004 and 2008, together with their measured in-band flux and the mean flux (in Fλ and

Fν units) at the measured effective wavelength (λe f f ) of the filters used are presented in

Table 2.8. The seventh column lists the Gemini programs in which those standards stars

were observed. The Gemini webpages now have a tool available to calculate in-band

brightness values for mid-IR standard stars14. This was used to double-check the values

measured from the template spectra in the method described above, and the measured

brightnesses are within 5% of those determined from the online tool. The N-band fluxes

of the standard stars for the OSCIR program in 2001 were approximated by the 10.1 µm

magnitudes from Tokunaga (1984), giving 90.92 Jy for µUMa and 4.69 Jy for α CrB.

Finally, to complete the science image calibration, aperture photometry was performed

on the standard stars to calculate the flux conversion factor in mJy/count. Multi-aperture

photometry was carried out using IRAF’s phot task to determine which aperture size

contained most of the flux of the standard star by inspecting plots of counts versus aperture

radius and noting the radius at which the counts levelled off. Overplotting apertures on

the image of the standard star with the IRAF tvmark task, and adjusting the contrast,

helped to visually confirm the optimal aperture size for encompassing the complete flux

of the star, and the corresponding counts were noted. Airmass corrections were applied

to the counts of the standard star, normalising to an airmass of 1.00, using the median

extinctions through the relevant broad and narrow band filters for Mauna Kea as given

in Table 2.915. The airmass-corrected flux conversion factor was then simply calculated

by converting the units of the mean flux of the star at the effective wavelength (Fν at λe f f

14The Gemini mid-IR standard star in-band flux calculator can be found on the Michelle Mid-IR Resources
page at: http://www.gemini.edu/sciops/instruments/michelle/mid-ir-resources.

15Adapted from Table 1 of Krisciunas et al. (1987) and reproduced on the Gemini website at:
http://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/extinction#MK%20thermal-
infrared%20extinction.
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Table 2.8: Standard stars for all Gemini programs, 2004 – 2008.

Target Filter In-band flux Fλ at λe f f λe f f Fν at λe f f Programs
[W cm−2 ] [W cm−2 µm−1 ] [µm] [Jy] observed in*

α CMa N 1.59E-15 4.14E-16 9.92 135.7 04A
α Hya N 1.47E-15 3.84E-16 10.11 131.0 04A
α TrA N 1.51E-15 3.93E-16 10.05 132.2 04A
HD 8388 N′ 3.74E-17 1.83E-17 11.23 7.7 05A,05B
HD 10380 N′ 5.30E-17 2.59E-17 11.18 10.8 04B
HD 12929 Qa 2.35E-17 2.38E-17 17.85 25.3 04B
HD 32887 N 6.09E-16 1.59E-16 9.98 52.8 04A
HD 35536 N 8.19E-17 2.13E-17 9.98 7.1 04A
HD 73108 N′ 3.07E-17 1.50E-17 11.23 6.3 05A,06A,06B,07A
q q Qa 2.26E-18 2.29E-18 18.05 2.5 06B,07A
HD 123139 N 6.46E-16 1.69E-16 9.97 55.9 04A
HD 128902 N′ 2.44E-17 1.19E-17 11.22 5.0 06A,07A
HD 133774 N 1.33E-16 3.47E-17 9.98 11.5 04A
HD 192781 N′ 2.06E-17 1.00E-17 11.22 4.2 06A,06B,07A,07B,08B
q q Qa 1.62E-18 1.64E-18 17.62 1.7 04B,06B,07A
HD 196171 N 2.33E-16 6.08E-17 9.98 20.2 04A
HD 198149 N′ 5.19E-17 2.53E-17 11.22 10.6 05A,05B
q q Qa 3.65E-18 3.70E-18 18.23 4.1 05A,05B
q q Si-2 4.14E-17 6.54E-17 8.75 16.7 05A
q q Si-4 2.48E-17 3.52E-17 10.30 12.5 05A
q q Si-5 1.80E-17 2.17E-17 11.64 9.8 05A
q q Si-6 1.21E-17 1.67E-17 12.43 8.6 05A

* Gemini program abbreviations key:
04A: GS-2004A-Q-1, 04B: GN-2004B-DD-4, 05A: GN-2005A-Q-20, 05B: GN-2005B-Q-2, 06A: GN-2006A-Q-1,
06B: GN-2006B-Q-1, 07A: GN-2007A-Q-5, 07B: GN-2007B-Q-4, 08B: GN-2008B-Q-44.

in Table 2.8) from Jy to mJy and then dividing this by the number of airmass-corrected

counts measured from the aperture photometry.

2.6 Flux density measurements: detections and upper limits

Both aperture photometry and PSF-fitting techniques were used throughout this thesis

to measure the flux densities of the mid-IR SN detections. For the Gemini data, the

few SN detected were isolated sources on a relatively uniform background for which

aperture photometry was appropriate. However, for the Spitzer data, the relatively low

spatial resolution of the space telescope often resulted in crowded fields with varying

backgrounds, making aperture photometry difficult and imprecise. For these data, PSF-

fitting was empirically found to be a more robust flux measurement technique.

For consistency of approach, PSF-fitted photometry was adopted as the main method

for measuring the SN brightness for all data and the results presented in this and subse-

quent chapters were obtained using PSF-fitting techniques.
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Table 2.9: Median extinctions through
broad-band filters for Mauna Kea (Krisci-
unas et al. 1987), adopted for airmass cor-
rections of Gemini data.

Wavelength Filter bandwidth Extinction
[µm] [mag/airmass]

8.7 narrow 0.12
10.0 (N) broad 0.15
10.3 narrow 0.07
11.6 narrow 0.08
12.5 narrow 0.13
20.0 (Q) broad 0.42

However, aperture photometry was also performed in a number of cases to com-

pare with the fluxes measured from PSF-fitting, providing a sanity check on the results.

Consequently, the techniques and software used for both methods are described in the

following sections.

2.6.1 Aperture photometry with IRAF phot

Aperture photometry of the SN detections was carried out with the IRAF phot task.

phot computes and outputs accurate centres (image x and y coordinates), sky values,

magnitudes and equivalent counts for one or more objects in the specified image, whose

input coordinates are read from a text file, or from the image display cursor in interactive

mode. Various parameters can be set to control the photometry. For the phot task,

the image data characteristics are specified in datapars; the centring and sky-fitting

algorithms are defined by setting the parameters in centerpars and fitskypars; and

the photometry parameters are defined in photpars.

The input image coordinates of the objects for the phot task were measured inter-

actively from the image display in the graphics window with the IRAF imexamine

command. Roughly centring the cursor on the object and hitting the ‘x’ key returned

the cursor (x,y) position to the IRAF terminal, which was then copied into a text file for

reading into the phot task.

The aperture radius size (parameter: aperture), in pixels, was chosen to be approxi-

mately equal to, or just greater than, the object’s FWHM, which was investigated using

the radial profile function (keystroke ‘r’) of the imexamine task. For example, this was



2.6. Flux density measurements: detections and upper limits 68

found to be between 3 and 5 pixels for the Michelle N′ filter at 11.2µm, corresponding to

an angular sizes of 0.′′3–0.′′5 for the image pixel size of 0.′′1×0.′′1. A mode sky-fitting algo-

rithm (salgorithm) was used and the sky annuli parameters, of starting radius (annulus)

and width (dannulus) in pixels, were set such that the sky annulus was positioned a few

pixels in radius beyond the object aperture and at least 10 pixels in width. A centroid

algorithm (calgorithm) within a box-size (cbox) of dimension 5 × 5 pixels was used for

computing the object centres. The effective gain (epadu) and array readout noise (read-

noise) were also set as part of the datapars parameters to achieve accurate background

statistics for the noise model. For a stacked image that is an average of N frames, these

parameters are defined as follows:

effective gain = N × gain

effective readnoise =
√

N × readnoise.

The Gemini detectors have a readnoise of about 3500 electrons, and the gain (in general,

about 500 electrons/ADU) was obtained from the FITS image header information.

A typical call to the phot task for carrying out photometry of a SN detection is as

follows:

ecl> phot image=gemini_sn_image.fits coords=gemini_sn_image.coo \\

»> output=default readnoise=24250 epadu=24000 itime=11.76 \\

»> calgorithm=centroid cbox=5 salgorithm=mode annulus=10 dannulus=10 \\

»> aperture=4 interactive- verify-

The counts output from the phot task were airmass-corrected in the same way as

for the standard stars, by normalising to an airmass of 1.00 using the median extinctions

through the relevant broad and narrow band filters for Mauna Kea as given in Table 2.9.

The airmass-corrected counts were then converted to Fν units by multiplying with the flux

conversion factor, as derived from the standard stars described previously in Section 2.5.4.

As is generally the case for aperture photometry of point sources, aperture sizes used

to measure the SN detections were smaller than those used to measure the brighter stan-

dards. A larger aperture obviously contains more stellar flux, but this can be inappropriate

for fainter sources since noise can tend to dominate and result in imprecise fluxes. For

such fainter sources, the maximum signal-to-noise is usually found at some intermediate
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aperture radius which does not necessarily contain all of the stellar flux. As previously

described, this optimal aperture size for the detections was estimated as being close to

the FWHM of the stellar profile (usually up to one or two pixels larger).

Approximate aperture corrections (Stetson 1990) were used to rectify the problem of

the ‘missing flux’ which results from using a smaller aperture. These were estimated from

aperture photometry of the standard stars by taking the ratio of the number of counts

in the large aperture (used to determine the flux conversion factor) to the number of

counts in the smaller aperture (used to do photometry on the SN). The airmass-corrected

flux densities of the SN detections were then scaled by this aperture-correction factor to

provide the final flux densities.

2.6.2 PSF-fitted photometry with IRAF daophot

Fluxes of the SN detections were measured using PSF-fitted photometry as implemented

in IRAF daophot, which uses the task structure and algorithms of the DAOPHOT II

software package (Stetson 1992, 1987) within the IRAF data reduction and analysis en-

vironment. The process uses a non-linear least squares algorithm to simultaneously fit

the sky and flux of a point source using either a user-supplied PSF or one created from

isolated, bright sources in the science data to be measured. A detailed discussion of how

to use the IRAF daophot package for carrying out photometry in crowded fields can be

found in Davis (1994), but an overview of the general PSF-fitting method, with details of

the sub-tasks and parameters used for the data in this thesis, is given in Appendix C.

In the case of the Gemini data, the only star available to create the PSF model was

the standard star used for flux calibration of the SN data, since there were no other

appropriate sources in the field of view of the science observations.

The standard star calibration observations were taken immediately before or after

the science observations of the SN, and variations in the airmass for each observation

were accounted for by applying airmass corrections to the science (SN) and calibration

(standard star) data before construction of the PSF model and the PSF-fitting. The airmass

corrections were calculated in the same way as for the aperture photometry by normalising

to an airmass of 1.00 using the median extinctions through the relevant broad and narrow

band filters for Mauna Kea (given in Table 2.9). For the Michelle N′ detections, airmass

corrections ranged from 4–9 %. For the single broad Qa band detection of SN 2002hh on

3 August 2005, an airmass correction of ∼ 14 % was applied, whereas corrections for the
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narrow silicate filter observations of SN 2002hh in June 2005 were around 4 %.

After applying the airmass corrections to the data, the PSF model was constructed

from the standard star using the IRAF daopsf task written by SEEDS collaborator Dr B.

E. K. Sugerman, as described in Appendix C. The aperture radius for the photometry

used to set the magnitude of the PSF model within the daopsf task was chosen to be the

same size as the PSF radius, i.e., the PSF should measure 100 % of the flux.

For PSF-fitting of the SN detections, the size of the fitting radius was chosen to be

approximately equivalent to the FWHM of the stellar profile, but was occasionally varied

by 1 or 2 pixels to optimise the fits. The sky background was modelled during the PSF-

fitting process, using sky annuli at appropriate distances around the SN, avoiding any

contaminating sources. In most cases, the allstar task used to do the actual PSF-fitting

was successful in centring on the SN profile via its centroiding algorithm. However,

if the SN was quite faint, this algorithm was turned off such that the PSF-fitting was

centred directly on the input coordinates corresponding to the SN position. The final

PSF-fitted and subtracted images were inspected alongside the un-subtracted images to

check the goodness of the fits. The airmass-corrected counts were converted to Fν units by

multiplying with the flux conversion factor derived previously (Section 2.5.4) to provide

the final flux densities.

Flux densities estimated from aperture photometry were within 20 % of those deter-

mined from PSF-fitting, and on average were consistent to within 10 %. The final flux

densities presented in Tables 2.3–2.6 are those measured from PSF-fitting.

2.6.3 Non-detections – upper limits to flux densities

The flux density upper limits presented in this chapter were determined from noise

statistics of the final reduced, combined and flux calibrated images using the following

method:

• For each of the Gemini images with non-detections, noise statistics were investigated

with the IRAF imstat task which, amongst other values, returns the standard

deviation of the pixel distribution. This gave an estimate of the average noise per

pixel (σpix, in units of mJy/pixel). A comparison of the standard deviation for the

entire image frame was compared with the average of the standard deviations of

four smaller, separate regions within the image to check the consistency of the noise
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around the frame.

• From σpix, a 1-sigma limit was calculated by measuring how many pixels would be

in a diffraction-limited aperture of radius = 1.22(λ/D) at the effective wavelength

of the filter used (λ) for the diameter of the Gemini telescopes (D = 8.1 m), and then

multiplying the value of noise per pixel (σpix) by the square root of the number of

pixels (Npix).

• The result was then multiplied by 3 to obtain a 3-sigma upper limit (3σlim) to the

flux. Hence: 3σlim = 3 × (σpix) ×
√

Npix

2.6.4 Error analysis

The flux density errors provided in Tables 2.3–2.6 are statistical errors (σstat) output from

the IRAF PSF-fitting task daophot. However, they do not take into account system-

atic photometric uncertainties introduced by the calibration and flux measurement tech-

niques.

Calibration errors (σcal) arise from a number of sources, including: the accuracy of the

fluxes derived from the standard star template spectra provided by Cohen et al. (1999); the

image “cleaning” with the IDL routine (see Section 2.5.3); the choice of aperture size used

to measure the counts corresponding to the total flux of the standard star; the size and

position of the sky annuli for background subtraction during the aperture photometry;

and any differences in flux conversion factors derived on nights where more than one

standard was available. Uncertainties are also likely to be introduced from airmass and

aperture corrections to the counts of the standard stars. For those parameters it was

possible to vary, the change in flux of the SN detection was investigated in a few cases

and the standard deviation from the average flux was found to be within 15%.

Photometric uncertainties introduced during the flux measurement process (σ f lux)

arise from the image cleaning; the choice of aperture size and sky annuli for the aperture

photometry; the accuracy of the PSF model and the fits in the case of PSF-fitting; and the

choice of appropriate airmass and aperture corrections. By investigating the impact of

changing these parameters in a few cases, σ f lux was estimated to be within 20%.

The final overall uncertainty in the flux density measurement can be estimated by

summing the statistical and systematic errors in quadrature as follows (the individual

errors are assumed to be equally weighted):
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σtot =
√
σ2

stat + σ2
cal + σ2

f lux

With regard to the upper limits measured, calibration errors are a source of uncertainty

and a σcal of 15% also applies. An alternative method of estimating the upper limits was

tried in a number of cases, whereby PSFs of unit flux were created with the daopsf task in

IRAF, scaled to a sensible faint flux starting from 1 or 2 sigma above the background, and

added in random locations to a Gemini image frame of a non-detection (which basically

just includes background noise). The confidence level at which the various fake stars

could be detected by eye and recovered with PSF-fitting techniques was recorded for the

various fluxes tried, and at the 95% confidence level this was interpreted as a 5-sigma

flux from which a 3-sigma upper limit could be estimated. This was quite a laborious

method, which was impractical to perform for every image, but perhaps provides a more

realistic handle on the upper limits. Differences between the upper limits derived from

the techniques described here and in Section 2.6.3 are of the order of 20%.

2.7 Discussion of results

Mid-IR photometry of 21 SNe was obtained with three different instruments on the Gemini

telescopes from 2001 to 2008. Of the whole sample, only three SNe (SN 2002hh, SN 2004dj

and SN 2004et) were robustly detected, and consequently monitored, with Michelle

on Gemini-N. There was also one apparent marginal (∼ 3-σ) detection of SN 1999D in

NGC 3690, with OSCIR on Gemini-N. At an estimated Hubble distance of 42 Mpc (Vh =

3033 km s−1, NED), and as the most distant SN in the whole mid-IR sample, this is a very

surprising result and its plausibility is discussed briefly below. The remaining four SNe

observed with OSCIR (between 1.4 to 2.2 years after explosion, and at distances between

13 and 40 Mpc) were non-detections. Of the 10 SNe observed with the T-ReCS broad

N-band filter on Gemini-S in 2004, none were detected. Their epochs varied between 5

months and almost 5 years post explosion and their distances ranged from ∼ 10–40 Mpc.

Based on the lack of success in the earlier programs, a closer sample of SNe (3–12 Mpc)

were chosen for the Gemini-N Michelle observations during 2005–2008. As already noted,

this yielded 3 detections, all of which were the most common CCSNe of Type II-P, and rep-

resented the closest of the sample: SN 2002hh and SN 2004et both occurred in the face-on

spiral galaxy NGC 6946 at a distance of 5.9 Mpc (Karachentsev et al. 2000), and SN 2004dj



2.7. Discussion of results 73

occurred in the spiral galaxy NGC 2403 at a distance of ∼ 3.3 Mpc (Karachentsev et al.

2004). Monitoring of these SNe with Michelle continued throughout the programme,

spanning epochs from 300 to 1700 days post explosion. The four remaining SNe observed

with Michelle (the Type IIb SN 2001gd, the peculiar Type Ib/c 2002ap, and the Type II-P

SNe 2003gd and 2005cs) were not detected, although the mid-IR detection of SN 2003gd

in NGC 628 (D = 9.3 Mpc; Hendry et al. 2005) with Spitzer has been the subject of analysis

by the SEEDS team, and is discussed in Chapters 3 and 4 (Section 4.4).

Figure 2.5 shows the 10-µm flux densities and upper limits of the Gemini SEEDS SNe

sample, scaled to a distance of 50 kpc (measured as part of this work and presented in

Tables 2.3–2.6), and plotted as a function of time (days) since explosion. The distance-

scaling allows for a comparison with the 10-µm flux densities of SN 1987A at similar

epochs, which are also shown in the figure. The data for SN 1987A were taken from

Bouchet et al. (1989), Bouchet & Danziger (1993) and Wooden et al. (1993). The figure

caption provides a further explanation of the symbols and labelling. (A similar figure is

provided for the 8-µm SNe data obtained with the Spitzer Space Telescope in the discussion

section of Chapter 3 – Figure 3.7).

It should be noted that whilst reference is made to “10-µm” fluxes for the values

plotted in Figure 2.5, the different Gemini instrument filters had slightly different effec-

tive wavelengths (λe f f ) and bandwidths (∆λ). These were given in Table 2.2 for each

instrument/filter used for the Gemini observations, but are summarised for Figure 2.5

as follows: the broad N-band filters used with OSCIR and T-ReCS had λe f f = 10.75µm

(∆λ: 8.13–13.36µm) and λe f f = 10.36µm (∆λ: 7.70–12.97µm), respectively, whilst the

slightly narrower Michelle N′ filter has λe f f = 11.2µm (∆λ 10.1–12.5µm). The Bouchet

et al. (1989) and Bouchet & Danziger (1993) data for SN 1987A from days 14–1030 were

taken with the narrow-band N2 filter, λe f f = 9.69µm (∆λ: 1.65µm FWHM), and for days

1031–1493 (when the SN was very faint) with the broad N-band filter, λe f f = 10.36µm

(∆λ: 5.2µm FWHM), on the IR photometer attached to the 1-, 2.2- and 3.6-m telescopes at

the European Southern Observatory (ESO) in La Silla, Chile. The 10µm data of SN 1987A

from Wooden et al. (1993) were measured directly from the IR continuum distributions

plotted in fig. 2 of their paper.

The brightest detection was that of the Type II SN 1999D in NGC 3690. A single

observation of this supernova was taken with Gemini-OSCIR in May 2001, when the SN

was ∼ 850 days past maximum. Although it was measured as a 3.4-σ detection, with a 50-
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Figure 2.5: 10-µm flux densities and upper limits of the Gemini SEEDS SNe, scaled to a distance of
50 kpc, as a function of time (days) since explosion. The distance-scaling allows for a comparison
with the 10-µm flux densities of SN 1987A at similar epochs. The data for SN 1987A are indicated
by the small blue, filled circles (Bouchet et al. 1989; Bouchet & Danziger 1993) and the unfilled
squares (Wooden et al. 1993). Detections for the SEEDS sample are shown as filled coloured circles
identified in the key above. For non-detections, the upper limits to the flux densities are shown
as downward-pointing arrows and are labelled with the SN name, abbreviated to the last two
digits of the year and the letter suffix, e.g., SN 2003gd is labelled “03gd”. The upper limits are also
colour-coded by SN type (see key for a broad split into 3 categories, and Table 2.1 for a list of the
individual SN types).
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kpc flux density of almost 900 Jy it is approximately 1000 times brighter than SN 1987A at

similar epochs and about 16 times brighter than SN 1987A’s peak 10µm emission (at∼ 150

days). It is also a factor of 6 brighter than the second brightest detection in the Gemini

sample (SN 2002hh). The source was clearly very faint and about 1.′′2 from the centre of

the array, although this was likely to be within the pointing errors of Gemini-North at

the time. From a pre-explosion HST-WFPC2 image on 17 September 1994, Van Dyk et al.

(1999) reported that there were two unresolved star clusters (F606W ∼ 20.2 and 19.8 mag)

within a 2′′ error circle around the SN’s position. The edge of a large extended source is

also seen towards the north-east side of the Gemini-OSCIR image. From a comparison

with the archival HST-WFPC2 F606W image taken in September 1994, it seems likely that

the extended source seen at the edge of the OSCIR image is a bright emission region,

possibly an HII or starburst region, at the outer east edge of NGC 3690. The galaxy is part

of a interacting system (also known as Arp 299), that has produced a number of starburst

regions and 6 detected SNe, including SN 1999D. However, there were no other sources

visible in the OSCIR mid-IR image so it is difficult to compare with the better resolved

HST optical image of the region. Archival Spitzer IRAC images from December 2003 (PI:

Fazio, program ID: 32), ∼ 1800 days after explosion, show there is no source coincident

with the SN position in any waveband from 3.6–8.0µm. Given the difficulty in confirming

the SN position from the Gemini-OSCIR image, and the brightness implied by the large

distance to the SN compared to SN 1987A and the rest of the Gemini detections (discussed

below), it would be very surprising that the SN had been detected.

SN 2002hh is the second brightest detection at 10µm and is unusual in that it stayed

at a similar flux level for ∼ 1000 days, with only a slight decline (by a factor of ∼ 1.5)

in the broad N′ light curve from days 696 to 1722. At the first of these epochs, day

696, the SN was a factor of ∼ 40 brighter than SN 1987A at the same epoch, and by day

1000 was ∼ 380× as bright. SN 2002hh was also monitored with Spitzer as part of the

SEEDS programme, confirming a similarly bright and slow mid-IR evolution (Chapter 3).

That a light echo from nearby (circumstellar or interstellar) material is the most likely

explanation for the optical and infrared observations of SN 2002hh was concluded from

SEEDS analyses of the mid-IR (Barlow et al. 2005) and optical data (Welch et al. 2007) (see

also Pozzo et al. 2006; Meikle et al. 2006). A summary of the SEEDS analyses can be found

in Chapter 4, Section 4.3.

SN 2004dj is the only SN of the sample detected at approximately the same 10µm
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brightness level as SN 1987A at an equivalent epoch during their evolution. Interestingly,

this occurred at about day 615, the epoch by which SN 1987A had a clear mid-IR excess

that was attributed to dust formation in the SN ejecta (e.g., Wooden et al. 1993, and

Section 1.3.4). However, by the second epoch of Gemini-Michelle observations almost

a year later (day 967), the 10-µm flux of SN 2004dj had only faded by a factor of 1.2,

compared to the much steeper fading of SN 1987A, by a factor ∼ 35 from days 600–900.

The roughly linear 10-µm decline of SN 1987A between days 600 and 900 was shown by

Suntzeff et al. (1991) to approximately follow the radioactive decay of 56Co, providing

strong support for evidence that the thermal emission of SN 1987A was associated with

ejecta dust heated by the energy source of the nebular. Although the 10-µm light curve

of SN 2004dj is not well-sampled, a more plausible source for the comparatively strong

late-time mid-IR emission (see also Chapter 3) could be an IR echo from the initial SN

UV-optical flash, re-radiated by pre-existing circumstellar dust.

It should be noted that SN 2004dj appeared to have faded beyond detection by the third

epoch of Michelle N′ observations at day 984, only 17 days after the previous N′ detection.

However, the (distance-scaled) day 984 3-σ flux upper limit of 2 Jy at 10µm is inconsistent

with the distance-scaled 8-µm flux detection of SN 2004dj with Spitzer of 6 Jy at day 996,

and the SN continued to be detected at 8µm until day 1372 (with a distance-scaled flux of

∼ 4 Jy; Chapter 3, Figure 3.7). The target coordinates for the Michelle observations on day

984 were correct, and assuming correct pointing information in the headers, the position

of the SN was expected to appear slightly off-centre on the array, but no source is evident

anywhere on the image. I also created a fake star at the derived 10-µm flux upper limit of

0.45 mJy (≈ to the distance-scaled upper limit of 2 Jy) and added this in a random position

to the image. The fake source was clearly detected. The reason for the non-detection with

Michelle at day 984 remains unclear.

SN 2004et was similar in brightness to SN 1987A at early times (at day 311, SN 2004et

was about 2.5 × brighter) but at days 1368 and 1386 was still very bright (only a factor

of ∼ 1.7 fainter than at day 300) and about 350 times brighter than SN 1987A at the same

epoch. However, the SN was not detected by two Michelle observations close to day

600 and by a later observation at day 1020, indicating that the SN may have faded after

day 300 and risen again by day 1395. More frequent observations with Spitzer confirmed

this result (Chapter 3), with the increased sensitivity of Spitzer and difference imaging

techniques allowing the detection of the SN to fainter levels: the 50-kpc 10-µm upper
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limits of 7 and 11 Jy at days 597 and 599 respectively, are consistent with the measured

Spitzer IRAC 8-µm brightness of ∼ 5 Jy at day 690. At day 1014, the SN was marginally

detected at 8µm with a 50-kpc flux of 1.6 ± 1.1 Jy, compared to the 10-µm upper flux limit

of 5.6 Jy at day 1020 (fluxes and upper limits quoted are those distance-scaled to 50 kpc).

A thorough discussion of the mid-IR evolution of SN 2004et is presented in Chapter 5,

together with an analysis of complimentary SEEDS optical and NIR data.

Also of note from Figure 2.5 are the flux upper limits which are close to the measured

10-µm flux densities of SN 1987A at similar epochs, such as those of the Type Ibc SN 2003jg

at day 139, and the Type II-P SN 2005cs at days 284 and 628. The latter epoch for SN 2005cs

is especially interesting as this was around the epoch of dust formation for SN 1987A,

and suggests that this SN did not produce as much (if any) dust as SN 1987A at similar

epochs.

2.8 Summary

In this chapter the complete sample of supernovae forming part of this thesis was intro-

duced, providing an overview of the mid-IR observations carried out with the Gemini

telescopes – whose data were the focus of the remainder of the chapter – and those with

the Spitzer Space Telescope – discussed in detail in Chapter 3.

The description of the Gemini data which followed included a discussion of the

Gemini telescopes and the instruments used, allowing for a comparison of these ground-

based mid-IR observations with the space-based mid-IR observations of the Spitzer Space

Telescope, discussed in the following chapter.

A breakdown of the observations over numerous semesters from the years 2001 to

2008 showed a progression and refinement of the Gemini SN sample, lowering the dis-

tance limits and monitoring the flux evolution of those detected, as well as occasionally

including suitable new SNe in the sample as and when they were discovered optically.

The data reduction and analysis techniques used to achieve the tabulated Gemini flux

densities or upper limits were described, along with the flux measurement methods used

e.g., aperture photometry or PSF-fitting, which are also applicable to the Spitzer data in

Chapter 3.

Of the 21 SNe observed with the Gemini telescopes only three SNe were robustly

detected, and consequently monitored: the Type II-P supernovae SN 2002hh, SN 2004dj
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and SN 2004et, all of which were the closest SNe in the sample, at distances between 3.3

and 5.9 Mpc. The mid-IR evolution of these objects are further summarised in the general

discussion of the Spitzer observations in Chapter 3 (Section 3.6), with a thorough analysis

of the optical and infrared evolution of SN 2004et provided in Chapter 5, and an overview

of the results for SN 2002hh presented in Chapter 4. It has not been possible to confirm

the 10-µm detection of SN 1999D in NGC 3690, but at a distance of ∼ 42 Mpc, it would be

unusually bright at any epoch.

The remaining 17 SNe not detected with Gemini ranged from distances of 8.4 Mpc

(SN 2005cs) to ∼ 40 Mpc, with an average distance of about 20 Mpc, for a range of epochs

spanning ∼ 140–1400 days post explosion.



Chapter 3

Spitzer Observations of Supernovae

3.1 Introduction

Mid-IR observations of 18 core-collapse SNe have been obtained with instruments on the

Spitzer Space Telescope over the years 2004 – 2008. This chapter describes the observations,

including a description of the telescope and instruments used, and a summary of the data

processing and analysis. Mid-IR flux densities, and upper limits for non-detections, of

the Spitzer sample are also presented and discussed.

3.2 Space-based mid-IR astronomy & the Spitzer Space Telescope

The Spitzer Space Telescope (“Spitzer”) – the fourth and final of NASA’s Great Observatories

– was launched into an Earth-trailing heliocentric orbit on 25 August 2003 (Werner et al.

2004). With an 85-centimetre diameter primary mirror, it was capable of imaging and

spectroscopy in the 3.6 to 160µm wavelength range, until the exhaustion of liquid helium

on 15 May 2009, after which it commenced its ‘warm mission’ using the IRAC 3.6 and

4.5µm channels only.

Unlike ground-based observations, space-based mid-IR astronomy has the advantage

of being above the turbulence, absorption, and high thermal background radiation caused

by the Earth’s atmosphere. Thermal radiation from the telescope structure itself is still

a problem for mid-IR observations from space. However, Spitzer’s cryogenic telescope

assembly (CTA) was capable of minimising this effect to obtain higher sensitivities than

those achievable from the ground (by two or more orders of magnitude). The CTA

79



3.2. Space-based mid-IR astronomy & the Spitzer Space Telescope 80

consists of the telescope assembly, the cryogenic portions of the three science instruments,

a superfluid helium Dewar, and various thermal shields. A telescope temperature as low

as ∼6 K is required to reduce the telescope thermal background enough for observing

at the longest wavelengths. Spitzer’s Earth-trailing solar orbit also contributes to the

efficiency of the cryothermal design, with the main advantage being that it is away from

the heat of the Earth which, in turn, enabled the novel “warm-launch” architecture and

extensive use of radiative cooling. The “warm launch” design allowed for a smaller total

observatory mass than the more conventional “cold launch” design employed in previous

infrared space missions such as the Infrared Astronomical Satellite (IRAS) and Infrared Space

Observatory (ISO). This is because most of the mass of the CTA is external to the cryostat

vacuum shell, allowing for a much smaller vacuum pressure vessel. The majority of the

CTA is launched at ambient temperature and only begins to cool when in-orbit (hence the

term “warm launch”).

A disadvantage for space-based observatories is that the launch rocket pay-loads re-

strict the aperture size, limiting the spatial resolution compared to larger ground-based

observatories. In a real sense, space and ground-based facilities are therefore comple-

mentary with the former, such as Spitzer, delivering huge advantages in sensitivity and

the latter, such as the Gemini Observatory, offering higher spatial resolution.

The Spitzer cryogenic lifetime requirement of 2.5 years of normal operations passed

on 26 April 2006. The mission had a cryogenic lifetime of over 5.5 years. The extended

mission, operating the telescope for imaging at the shortest wavelengths of 3.6 and 4.5µm

only, started on 15 May 2009 and is expected to last up to an additional 5 years.

3.2.1 The Spitzer instruments

The three science instruments for imaging and spectroscopy are the Infrared Array Cam-

era (IRAC), the Multiband Imaging Photometer for Spitzer (MIPS) and the InfraRed

Spectrograph (IRS). A schematic view of the Spitzer focal plane in Figure 3.1 (taken from

Chapter 2 of the Spitzer Observer’s Manual - Version 7.1 issued by the Spitzer Science

Center December 8 2006; hereafter referred to as the “SOM”) shows how the science instru-

ment apertures are projected onto the sky. A summary of the instrument characteristics

is given in Table 3.1.

The instruments, all three of which were used for the data presented in this thesis, are

described in the following sections.
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Table 3.1: Summary of Spitzer instrumentation, adapted from Table 2.2 of the SOM.

Wavelength Mode (IRAC, MIPS)/ Array Type Resolving Field of Pixel Sensitivitya [µJy]
[µm] Module (IRS) Power View Size (5 σ in 500 s

[′′] incl. confusion)

IRAC: InfraRed Array Camera

3.6 Ch1 - Imaging InSb 4.7 5.′21×5.′21 1.221 1.6 (3.4)b

4.5 Ch2 - Imaging InSb 4.4 5.′18×5.′18 1.213 3.1 (4.3)
5.8 Ch3 - Imaging Si:As (IBC) 4.0 5.′21×5.′21 1.222 20.8 (21)
8.0 Ch4 - Imaging Si:As (IBC) 2.8 5.′21×5.′21 1.220 26.9 (27)

MIPS: Multiband Imaging Photometer for Spitzer

24 Ch1 - Imaging Si:As (IBC) 5 5.′4×5.′4 2.55 110c

70 Ch2 - Wide FOV Ge:Ga 4 5.′2×2.′6 9.98 7.2 mJyd

Ch2 - Narrow FOV/ Ge:Ga 4 2.′7×1.′4 5.20 14.4 mJy
Super Res

55 – 95e Ch2 - SED Ge:Ga 15-25 0.′32×3.′8 10.1 82/201/447 mJy
(at 60/75/90 µm)

160 Ch3 - Imaging Ge:Ga (stressed) 5 0.′53×5.′3 16×18 29 (40) mJyf

IRS: Infrared Spectrograph

5.2 – 14.5 Short-Low Si:As (IBC) 60 – 127 3.′′7×57.′′0 1.8 250g

13.5 – 18.7 Peak-up Blue
{

Si:As (IBC)h
∼3 1.′0×1.′2 1.8 116

18.5 – 26.0 Peak-up Red 80
9.9 – 19.6 Short-High Si:As (IBC) ∼600 4.′′7×11.′′3 2.3 1.2 ×10−18 W m−2

14.0 – 38.0 Long-Low Si:Sb (IBC) 57 – 126 10.′′6×168.′′0 5.1 1500
18.7 – 37.2 Long-High Si:Sb (IBC) ∼600 11.′′1×22.′′3 4.5 2 ×10−18 W m−2

aSensitivities are for point sources, and are only representative. See Chapters 6–8 of the SOM for
more detail.

bIRAC sensitivity is given for intermediate background. The first number in each case is without
confusion, and the second number (in parentheses) includes confusion. See also IRAC Chapter 6
of the SOM.

cMIPS sensitivity is given for low background.
d70 µm can be confusion limited; see the MIPS Chapter 8 of the SOM for more details.
eBecause of a bad readout at one end of the slit, the spectral coverage for 4 columns of the array is
reduced to about 65–90 µm.

f160 µm is often confusion limited; the first number is without confusion, and the second number
(in parentheses) includes confusion.

gIRS sensitivity is given for low background at high ecliptic latitude. Note that for IRS, sensitivity
is a strong function of wavelength.

hFor recommended flux density range for peak-up target, see IRS Chapter 7 of the SOM.
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Figure 3.1: Schematic diagram of the Spitzer focal plane showing the nominal
field-of-view locations of the science instruments projected onto the sky. Taken
from Chapter 2 of the SOM).

The Infrared Array Camera - IRAC

The Infrared Array Camera (IRAC) is a four-channel camera that provides simultaneous

5.′2× 5.′2 broadband images at 3.6, 4.5, 5.8, and 8µm (Fazio et al. 2004). Two adjacent fields

of view are imaged in pairs (3.6 and 5.8µm; 4.5 and 8.0µm) using dichroic beamsplitters.

The diffraction limited angular resolution of Spitzer in the four IRAC channels is 1.′′07 at

3.6µm, 1.′′33 at 4.5µm, 1.′′72 at 5.8µm and 2.′′37 at 8.0µm. All four detector arrays in the

camera have dimensions of 256 pixels × 256 pixels, with a pixel size of ∼1.′′2× 1.′′2. The

two short wavelength channels use indium antimonide (InSb) detector arrays and the two

longer wavelength channels use arsenic-doped silicon (Si:As) impurity band conduction

(IBC) detectors.

Figure 3.2 shows the IRAC cryogenic assembly. The Focal Plane Assemblies include

the detector arrays and associated components. The IRAC optical layout is shown in
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Figure 3.2: The IRAC cryogenic assembly model, with the top cover removed to show the inner
components. Taken from IRAC Chapter 6 of the SOM.

Figures 3.3 and 3.4. Channels 1 and 3 view the same telescope field (within a few pixels),

and Channels 2 and 4 view a different field simultaneously (see Figure 3.1 of the Spitzer

field of view).

The Multiband Imaging Photometer for Spitzer - MIPS

The Multiband Imaging Photometer for Spitzer (MIPS) provides simultaneous broadband

imaging at wavelengths of 24, 70, and 160µm, and low-resolution spectroscopy in the 55

and 95µm wavelength region (Rieke et al. 2004).

The instrument contains 3 separate detector arrays each of which resolves the telescope

Airy disk with pixel sizes ≤ λ/2D. All three arrays view the sky simultaneously, with

multiband imaging at a given point provided via telescope motions. The 24µm camera

provides a 5.′4 × 5.′4 field of view. The 70µm camera was designed to have a ∼5.′0 × 5.′0

field of view, but a cabling problem compromising the outputs of half the array results

in a field of view of 5.′2 × 2.′6. The 70µm array also has a narrow field of view/higher

magnification mode, and addionally can be used in a spectroscopic mode. The 160µm

array projects to the equivalent of a 0.′5 × 5.′3 field of view. The diffraction limited angular

resolution of Spitzer in the three MIPS channels is 7.′′11 at 24µm, 20.′′72 at 70µm and 47.′′37

at 160µm. Corresponding pixel sizes on the detectors are 2.′′55 at 24µm, 9.′′98 at 70µm

for the 5.′2 × 2.′6 field of view, and 16′′ × 18′′ at 160µm.
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Figure 3.3: The IRAC optical layout, top view. The layout is similar for both pairs of channels;
the light enters the doublet and the long wavelength passes through the beamsplitter to the
Si:As detector (Channels 3 and 4), with the short wavelength light reflected to the InSb detector
(Channels 1 and 2). Taken from IRAC Chapter 6 of the SOM.

Figure 3.4: The IRAC optical layout, side view. The Si:As detectors are shown at the far right of
the figure, the InSb arrays are behind the beamsplitters. Taken from IRAC Chapter 6 of the SOM.
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Figure 3.5: Schematic diagram of the optical layout within the MIPS cold assembly: detectors
(Focal Plane Arrays), and optical elements and paths. Two mirror facets are attached to the
Cryogenic Scan Mirror Mechanism (CSMM): one mirror feeds the 70µm optical train (normal
field-of-view, narrow field-of-view and spectrometer/SED), while the second mirror feeds both
the 24µm and 160µm optical trains. Spitzer’s central axis and the telescope focal plane are to the
right in this view. Taken from MIPS Chapter 8 of the SOM.

At 24µm, Si:As IBC detectors are used, whereas for the two longer-wavelength chan-

nels, gallium-doped germanium (Ge:Ga) photoconductors are the only detectors that can

operate at the temperature available in the Spitzer cryostat.

The MIPS cryogenic scan mirror mechanism (CSMM) is intrinsic to all observational

operations, enabling image motion compensation during scanned imaging and one di-

mensional dithering for all 3 arrays, as well as selection of band and observing mode.

Figure 3.5 provides a schematic illustration of the physical layout of the major optical

elements within the MIPS cold assembly: The 24µm Si:As, 70µm Ge:Ga, and 160µm

stressed Ge:Ga Focal Plane Arrays (FPAs), movable scan mirror, and fixed mirrors and

grating. Two mirrors in the telescope focal plane deflect light into the instrument where

it is reflected back by two mirrors to form pupils at the two facets of the CSMM. The

CSMM deflects the light into the desired optical train: light is simultaneously sent into
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Figure 3.6: Schematic representation of the IRS slits and peak-up apertures. Note that the IRS slits
are not parallel in the Spitzer focal plane - Figure 3.1 shows the relative positions and angles of the
slits/apertures. Taken from IRS Chapter 7 of the SOM.

the 3 widefield optical trains, or into the 70µm narrow field-of-view train, or into the

55µm SED optical train.

MIPS had four operating modes: Photometry, Scan Mapping, Spectral Energy Dis-

tribution (SED), and Total Power Measurement. See Section 3.2.2 for a summary of the

Spitzer observing modes. The majority of the MIPS 24µm observations presented in

this thesis were obtained in photometry mode, although the SINGS Legacy observations

(described in Section 3.3.1) with MIPS were obtained in Scan Mapping mode.

The Infrared Spectrograph - IRS

The Infrared Spectrograph (IRS) contains the primary spectroscopic functions for Spitzer,

with four modules capable of low and moderate resolution spectroscopy in the 5.2 to

38.0µm wavelength range (Houck et al. 2004). There are also two small imaging sub-

arrays (“peak-up arrays”) which allow for accurate positioning of sources in any of the IRS

slits, and can provide science-quality images for photometric or structural information –

known as IRS Peak-Up Imaging (PUI). Both a red (18.5–26.0µm; λe f f = 22.3µm) and a

blue (13.3–18.7µm; λe f f = 15.8µm) filter are available, the latter of which was designed to

fill the wavelength gap between IRAC and MIPS (for ease of reference, the blue PUI filter

is referred to as the 16µm filter throughout this thesis). Parallel red and blue peak-up

images are obtained simultaneously, with a field-of-view seen by each filter of∼55′′ × 81′′,
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separated by a 33′′-wide vignetted zone (see Figure 3.6). The images are 30 × 45 pixels in

size and have a native plate scale of ∼1.′′8 per pixel.

For the data presented here, the IRS has been mainly used for its imaging capabilities,

i.e., PUI mode, with the blue peak-up array at 16µm during Spitzer Cycles 3 and 4. The

diffraction limited angular resolution of Spitzer is 4.′′74 at 16µm.

Table 3.1 provides details of the instrument characteristics for the spectroscopic and

imaging modes of the IRS. Figure 3.6 provides a schematic representation of the various

IRS modules.

3.2.2 Observing with the Spitzer Space Telescope

Observing time with Spitzer was split into four main categories, outlined below. The

observations reported here were obtained in categories 1–2 only:

1. General Observations (GOs) – Open to all investigators worldwide on a competi-

tive basis, the GO Program comprises the majority of community observing time

on Spitzer, allowing scientists to conduct independent research programs with new

observations. Most of the observing time available during Spitzer’s science mission,

typically more than 5000 hours annually, is devoted to peer-reviewed GO investiga-

tions. The SEEDS consortium was allocated 9.4 hours in Cycle 1, 6.4 hours in Cycle

2, 11.7 hours in Cycle 3 and 16.1 hours in Cycle 4.

Targets of opportunity (ToOs) are special cases of GO programs, designed for ob-

servations of transient or other time-limited phenomena. They account for a small

percentage of the available observing time. For example, time was set aside for up

to 10 ToOs in Spitzer Cycle 3.

2. Legacy Science Programs – The Legacy Programs are major observing projects

that are required to deliver large and coherent data sets (often including ancillary

data from other telescopes), without proprietary periods, to the community. The

motivation for such programs was the desire to create an early substantial and

enduring database of archived observations to be utilised by subsequent Spitzer

researchers. The six original Legacy programs were selected for Spitzer Cycle 1

in November 2000 and comprised 3160 hours of observing time. Five additional

Legacy projects were selected for Cycle 2 and a further eight for Cycle 3. We
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made extensive use of serendipitous observations of recent SNe acquired during

the SINGS Legacy Survey of nearby galaxies.

3. Director’s Discretionary Time (DDT) – Five percent of the total Spitzer observing

time is allocated by the SSC Director for DDT programs. Such time is intended to

facilitate proposals that address emerging scientific topics or areas missed in the

proposal review process (not used for data presented in this thesis).

4. Guaranteed Time Observations (GTOs) – These refer to the proportion of observing

time (15–20%) reserved for the Principal Investigators (PIs) of the three science

instrument teams and members of the Spitzer science team (not used for data presented

in this thesis).

Spitzer observing schedules are developed and defined during the proposal phase,

such that full details of targets, instrument set-up and exposure times are ready for

submission to the SSC as part of the application for telescope time. The majority of infor-

mation required for planning observations with the Spitzer Space Telescope is provided by

the Spitzer Science Center (SSC), which is accessed online at http://ssc.spitzer.caltech.edu.

For successful proposals, the schedules are uploaded to the SSC servers for transmission

to the spacecraft. The Spitzer Planning Observations Tool (SPOT) is the software used for

defining and submitting observations at the proposal stage. An overview of the functions

of SPOT and, more specifically, the parameters used to set up the Spitzer observations

described in this thesis are described in Appendix D.

The IRAC, IRS Peak-Up Imaging (PUI) and MIPS observing modes, or Astronomical

Observation Templates (AOTs), used for the Spitzer observations presented in this thesis

are outlined in Table 3.2. For each AOT, an Astronomical Observation Request (AOR) is

defined within SPOT to provide the complete target, telescope and instrument parameters

required to carry out the desired observations. A more thorough description of each

observing mode is provided in Appendix D.
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Table 3.2: The four Spitzer observing modes used for GO and SINGS Legacy data presented in
this thesis.

Spitzer observing mode Description

IRAC Mapping/Photometry Simultaneous imaging at wavelengths of 3.6, 4.5, 5.8 and 8.0 µm,
over the two 5.′2 × 5.′2 fields of view.

MIPS Photometry and
Super-Resolution Imaging Imaging photometry and high-resolution imaging at 24, 70 and

160 µm.

MIPS Scan Mapping For large field maps at 24, 70 and 160 µm. Maps are constructed
from 5′-wide (2.5′-wide for full coverage at 70 µm) strips between
0.5◦ and 6◦ in length. The slow telescope scanning is combined
with motion compensation using a cryogenic scan mirror.

IRS Peak-Up Imaging Peak-up array imaging only, in two filters over wavelengths 13.5 –
18.5 µm and 18.5 – 26 µm and a field of view of ∼ 1 arcmin2.

3.3 The Spitzer observations

3.3.1 The SINGS Legacy program: 00159

The Spitzer Infrared Nearby Galaxies Survey (SINGS; previously the SIRTF Nearby Galax-

ies Survey; PI: Kennicutt) was one of the six original Cycle 1 Spitzer Legacy Science Pro-

grams. Specifically, SINGS was a comprehensive infrared imaging and spectroscopic

survey of 75 nearby galaxies (D < 30 Mpc), the primary aim of which was to charac-

terise the large-scale infrared emission of nearby galaxies across a broad range of galaxy

properties and star formation environments (see Kennicutt et al. 2003 for a more detailed

description).

The first stage of the SINGS program carried out in Cycle 1 was to fully image

each of the 75 galaxies with IRAC and MIPS and to provide partial, low-resolution

spectral mapping with IRS and MIPS, in order to characterise global-infrared and star-

forming properties. Archival SINGS IRAC and MIPS 24µm photometric data of 7 galaxies

containing 11 supernovae from the Cycle 1 stage are presented in this thesis.

The SINGS observations

Observations of the 11 supernovae were taken between 1 May 2004 and 12 May 2005.

Table 3.3 provides details of the observations together with the flux densities, or flux-
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density upper limits, measured. IRAC observations were carried out in accordance with

the SINGS IRAC observing strategy (Kennicutt et al. 2003). For galaxies larger than the

5.′2 size of the IRAC detectors, observations were taken in a mosaic pattern, offsetting

the field of view by ∼50% each time. This process was repeated twice, with observations

separated by at least 24 hours to best correct for asteroids and detector artifacts. Points

in the central mosaic regions were imaged eight times and the outermost regions four

times. Observations were taken with IRAC in its High Dynamic Range mode, with a 30 s

frame time and an additional one second exposure taken at each pointing to provide data

in cases where the main observation was saturated.

The SINGS MIPS observations were obtained using the Scan Mapping mode in two

separate visits to the galaxy. Separate visits allowed asteroids to be recognized and

provided observations at orientations up to a few degrees apart to ease removal of detector

artifacts. As a result of redundancy inherent in the scan mapping mode, each pixel in

the core map area was effectively observed 40, 20, and 4 times at 24, 70, and 160µm,

respectively, resulting in integration times per pixel of ∼ 160 s, 80 s, and 16 s, respectively.

See Appendix D for further details of the observation set-up.

The IRAC and MIPS 24µm flux densities and upper limits listed in Table 3.3 are those

measured from the SINGS final image mosaics of the galaxies, which result from the

combined images taken over two separate nights from each detector – see Section 3.4.3

for discussion of the SINGS enhanced pipeline used to produce these mosaics. The IRAC

images of NGC 6946 are an exception, since a fault with the telescope meant that the two

IRAC observations were separated by more than 6 months. In this case, the standard SSC

pipeline mosaic images – of SN 2002hh and SN 2004et in NGC 6946 – from the individual

nights were analysed.

3.3.2 Cycle 1 General Observations (GO) program: 03333

Targets suitable for our first Spitzer GO program were selected based on the fluxes of

SN 1987A – usually termed an atypical Type II supernova – since little was known about

the mid-infrared emission of Type II SNe and SN 1987A was the best-studied example at

that time. Late-time mid-IR fluxes of the SN (7.5 Jy at 8.0µm and 10.6 Jy at 24µm on day 615

after explosion; Wooden et al. 1993) and Spitzer sensitivity estimates using the “EX-PET”

Extragalactic Performance Estimation Tool1 indicated that SN 1987A could have been

1Found online at http://ssc.spitzer.caltech.edu/tools/expet/index.html
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detected fairly straightforwardly out to distances of ∼ 24 Mpc by IRAC and ∼ 15 Mpc by

MIPS at 24µm. A number of the originally proposed target list at closer distances were

consequently discovered to be included in the SINGS observations of nearby galaxies

and were dropped from the program, since cross-program duplicate observations of

targets were not permitted by the Spitzer science team at that time (despite the temporal-

variation expected in mid-IR observations of core-collapse SNe). In any event, the Legacy

data would be publicly available from the archive for analysis.

Seven core-collapse SNe were observed with IRAC and MIPS as part of our first Spitzer

GO program in Cycle 1. All, except one, of the IRAC and MIPS observations were taken

between 29 October 2004 and 20 July 2005 (a delayed MIPS observation of SN 2002ao was

obtained later than half-way through Cycle 2, on 18 February 2006). Table 3.4 provides

details of the complete set of observations and fluxes measured.

For the IRAC Photometry/Mapping AORs (described in Section 3.2.2), the Full Array

readout mode was used with frame times of 100 s for each observation, equivalent to an

effective exposure time per frame of 96.8 s. Both mapping and dithering techniques were

used. A 2-row-by-1-column map grid in array coordinates was defined, with offsets of

∼ 400′′ (equivalent to the array size + the gap size between the two IRAC fields of view), which

results in equal coverage of the array size of ∼ 5′ in both the 4.5/8.0µm and 3.6/5.8µm

IRAC fields of view. A small cycling dither pattern with 6 offset positions was executed

in each field of view, yielding total effective exposure times of 580.8 s per target per filter.

Total AOR durations (i.e., the total time required to execute the observation, including

time on source and the various overheads) were on the order of 1530 s per target.

MIPS imaging was carried out in the 24µm band only, and raster mapping was not

necessary. For the MIPS Photometry/Super-resolution AORs (described in Section 3.2.2),

the large field size was used with 10 cycles of 14× 10 second exposures per target, and a

sky offset of 10.0 arcseconds. Total on-source exposure times were approximately 1400 s

per target and AOR durations were on the order of 2620 s per target.

3.3.3 Cycle 2 GO program: 20320

The observing strategy for Cycle 2 was revised in light of the mid-IR non-detections of

all SNe at distances greater than about 14 Mpc for the Gemini observations in 2001 and

2004, and those from Spitzer Cycle 1 GO program 03333. The relative success of the

SINGS observations, with detections of 5 (at distances ∼ 3.3–13.7 Mpc) out of 11 SNe (the
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remainder at ∼ 9–17.4 Mpc), indicated observations should be limited to SNe at distances

of less than about 15 Mpc and preferably within 10 Mpc. With a lack of suitable new

targets falling within this criteria, the Cycle 2 program was used solely for follow-up

observations of three SNe detected in the previous SINGS observations.

6.4 hours were awarded in Cycle 2 for multiple epoch imaging of SN 1999bw, SN 2002hh

and SN 2004et with IRAC and MIPS. The observations were carried out between 19 July

2005 and 4 May 2006. Table 3.5 provides details of the observations and fluxes measured.

Only the IRAC data for SN 2002hh is presented here.

Full Array readout mode was used for the IRAC photometry. An image to encompass

both SN 2002hh and SN 2004et in the same galaxy, NGC 6946, was constructed with the

celestial mapping mode. A 2-row-by-1-column map grid was defined, with a step size

of 311′′ and a position angle of 88 degrees. Sensitivities based on the 2004 flux levels for

both objects were calculated with EX-PET using medium backgrounds. Frame times of

2 s (equivalent to an effective exposure time of 1.2 s per frame) with a 12-point Reuleaux

dither pattern were sufficient to achieve signal-to-noise (S/N) ratios greater than 5 in each

IRAC channel. Total effective exposure times were 14.4 s per target per filter. SN 2002hh

and SN 2004et were observed three times during Cycle 2, with a separation between

epochs of 2–3 months. AOR durations for each visit were on the order of 800 s. For

SN 1999bw, S/N ratios in excess of 20 were predicted by the EX-PET for frame times of

30 s with a 12-point dither sequence, allowing considerable margin for the SN to fade and

still be detected. Mapping was not necessary in this case. An effective exposure time

per frame of 26.8 s yielded a total effective exposure time of 321.6 s. There were two such

IRAC visits to SN 1999bw in Cycle 2, each separated by about 5 months and with AOR

durations of approximately 1180 s.

MIPS 24µm photometry was obtained in Cycle 2, with three epochs of observations

for SN 2004et, and two for SN 1999bw. The complimentary MIPS and IRAC observations

were never separated by more than two weeks, and were generally taken within a few

days of each other. Each SN was imaged separately and raster mapping was not necessary.

The small field size was used for all observations, with a sky offset of 300.0 arcseconds.

Exposure times were 10 s for SN 2004et, with just one cycle (of the standard 14 frames)

resulting in respective total on-source exposure times of 140 s per epoch and total AOR

durations on the order of 690 s per epoch. The MIPS 24µm flux of SN 1999bw was

uncertain in the SINGS Cycle 1 data from December 2004, so the deeper 30 s frame time,
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which is sensitive to 0.1 mJy sources with S/N of 3 was used. With 2 cycles of the 14

frames, this resulted in a total on-source exposure time of approximately 840 s per epoch

and a total AOR duration of about 1230 s per epoch.

3.3.4 Cycle 3 GO program: 30494

11.7 hours were awarded in Cycle 3 for mid-IR monitoring of six Type II SNe. Due to

time constraints, data from three of those SNe are presented in this thesis and details

of the IRAC, IRS Peak-Up Imaging (PUI) and MIPS observations are listed in Table 3.6,

together with the measured fluxes. All SNe were observed with Spitzer IRAC and MIPS

in previous cycles. The IRS-PUI observing mode became available in Cycle 2 and its blue

filter (16µm) provided useful coverage in the wavelength gap between the IRAC and

MIPS 24µm data.

Three epochs of observations with IRAC, PUI at 16µm and MIPS at 24µm were taken

to continue monitoring the mid-IR evolution of SN 2004et and SN 2004dj, although the

third epoch of observations for SN 2004dj was scheduled late, overlapping with further

observations awarded in Cycle 4 and are consequently not presented here. Multiple

observations of a single target from a given instrument were separated by approximately

4–7 months, and observations from the different instruments were requested to be as close

in time as possible (within 30 days of each other) to provide a temporally homogeneous

data set, i.e., a single spectral energy distribution, for each of the 3 epochs. Just one

observation in each band was required for SN 2003gd since it was relatively faint when

detected in Cycle 1 (∼ 0.2 mJy at 8µm on day 495) and the trend from Cycle 2 archival

observations indicated fading of the mid-IR emission, meaning detection of the SN at

these late times (1200–1600 days after explosion) was uncertain. Exposure times were

chosen based on the brightness from previous observations and/or the distance-scaled

flux of SN 1987A entered into the EX-PET, to provide a minimum S/N of 10 in each

imager.

IRAC was used in Full Array mode with a medium size 12-point Reuleaux dither

pattern. Frames times of 2, 12, 30 and 100 s were chosen based on calculations with the EX-

PET, with exposure times generally increased for each subsequent epoch of observations

to account for fading of the source with time. Total AOR durations ranged from ∼ 500 s

for the shortest observations of SN 2004dj and SN 2004et, to ∼ 2870 s for the longest

observation of SN 2003gd.
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PUI observations were carried out in the blue array (16µm) only, with ramp (exposure)

durations of 6, 14 or 30 s and a small scale 9-position random dither pattern. Total on-

source integration times ranged from 54 to 270 s with equivalent AOR durations of ∼ 460

to 690 s. MIPS 24µm photometry used the small field size with a sky offset of 300′′ for

all observations. Exposure times of 10 and 30 s, with one cycle of the standard 14-frame

dither pattern, resulted in total on-source exposure times of 140 s and 420 s, respectively.

3.3.5 Cycle 4 GO program: 40010

16.1 hours were awarded in Cycle 4 for photometry of ten Type II SNe. Multi-epoch data

for four of the SNe, all previously observed with Spitzer, are presented in this thesis and

details of the IRAC, IRS-PUI at 16µm and MIPS 24µm observations are listed in Table 3.7.

As for Cycle 3, exposure times were chosen based on the previous Spitzer observations

or the distance-scaled flux of SN 1987A at the relevant epoch entered into the EX-PET, to

achieve a minimum S/N of 10 in each waveband.

Multi-epoch observations of SN 2003gd (×2), SN 2004dj (×2) and SN 2004et (×3) taken

with each imager, were separated by 4–7 months per target. Observations expected to be

equivalent to a single epoch (usually one from each of the 3 instruments) were carried out

within 30 days. Only one observation in each imager was taken of the oldest supernova

in the sample, SN 1999bw, which would be 3000–3300 days post-explosion (≥ 8 years

old) during Cycle 4 and whose brightness was not expected to change substantially over

the course of the year at this stage of its evolution. Whilst 2 epochs of observations with

each instrument were taken for SN 2003gd, only the first epoch is presented in Table 3.7.

The second set of observations (IRAC on 26 January 2008, equivalent to 1776 days post-

explosion; PUI on 21 January 2008, day 1771; and MIPS on 14 February 2008, day 1795)

were used by SEEDS collaborator Dr B. E. K. Sugerman as the reference frames for PSF-

matched difference imaging of the data from previous epochs, since the SN had clearly

faded beyond detection by this time.

IRAC observations used the Full Array readout mode with a medium scale 12-point

Reuleaux dither pattern, except for SN 1999bw where the medium size 36-point Reuleaux

dither sequence was effectively used to provide longer exposure times. A frame time

of 30 s was used for all observations. Total on-source integration times were 321.6 s for

SN 2003gd, SN 2004dj and SN 2004et, with an equivalent AOR duration of ∼ 1160 s. For

SN 1999bw the total on-source time of 964.8 s resulted in an AOR duration of ∼ 3000 s.
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PUI observations were carried out in the blue array (16µm) only, with a small scale

9-position random dither pattern and a ramp duration of 30 s, resulting in total on-source

integration times of 270 s and AOR durations of ∼ 690 s per target. For SN 1999bw,

mapping was used to repeat the dither pattern, effectively doubling the exposure time

for this object.

MIPS 24µm photometry used the small field size with a sky offset of 300′′ for all

observations. Exposure times of 30 s, with one cycle of the standard 14-frame dither

pattern for all targets, except SN 1999bw, resulted in total on-source exposure times of

420 s, equivalent to total AOR durations of ∼ 780 s per target. SN 1999bw was observed

with 4 cycles of the 30 s × 14 dither pattern, yielding a total integration time of ∼ 1680 s.

3.4 Spitzer data reduction

3.4.1 Data retrieval

The SSC provides basic (pipeline) science data processing and quality assessment, and

maintains a data archive that has been publicly accessible since May 2004. Pipeline-

processed science data, as well as raw data and calibration files, are obtained via the

Leopard software tool, which acts as the Spitzer Science Center Data Archive interface

(now superseded by the Spitzer Heritage Archive2). Leopard was used to access proprietary

data via a personal login to the archive, as well as public datasets, such as the Legacy

Programs and other non-proprietary data (which do not require login to the archive).

Most Spitzer data were downloaded via Leopard as and when they became available in

the archive, typically within two to three weeks of being observed.

The SINGS Legacy team process their own data to produce enhanced data products

and these data were downloaded from the Legacy Programs section of the SSC website3,

where all Legacy are staged. There have been various releases of the SINGS Enhanced

Data Products since the program began in 2004, but most of the SINGS data presented

in this thesis are the fifth and final version, delivered on 10 April 2007. Occasionally,

the Spitzer pipeline version of the SINGS data was used in preference to the enhanced

products and was retrieved using Leopard in the conventional way. The reason for this

is discussed when such data is presented.

2http://sha.ipac.caltech.edu/applications/Spitzer/SHA/
3http://irsa.ipac.caltech.edu/data/SPITZER/docs/spitzermission/observingprograms/legacy/
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3.4.2 The SSC data reduction pipelines and flux calibration

As previously mentioned, the SSC has its own pipelines for processing IRAC, IRS and

MIPS data. For each instrument, the main processing of the raw science data takes place

in the appropriate “Basic Calibrated Data (BCD) pipeline”, which consists of a set of

modules that work with inputs from calibration and pointing servers. One BCD image

is generated by the pipeline for each science frame, or Data Collection Event (DCE),

of an Astronomical Observation Request (AOR). An AOR is the fundamental unit of

a Spitzer observation which can be specified by the user (also see Appendix D). The

extended pipeline, known as the “post-BCD pipeline”, combines the calibrated images

(BCDs) from a full AOR , following pointing refinement and outlier rejection, to create a

final coadded image, or mosaic. For Spitzer data presented in this thesis, this final stage

was generally carried out manually with the SSC MOPEX (MOsaicker and Point source

EXtractor) software (Makovoz et al. 2006) in order to improve the spatial sampling of the

final mosaics over those of the standard Spitzer post-BCD pipeline. A summary of the

processing steps with MOPEX are discussed in Section 3.4.4.

A brief outline of the basic processing steps and flux calibration for IRAC, IRS Peak-up

Imaging and MIPS 24µm data are described below. For a more detailed explanation of

the SSC data reduction algorithms and flux calibration used to generate the BCD and

post-BCD data products, please see the references given in the relevant sections.

The IRAC data pipelines

IRAC BCD pipeline The IRAC BCD pipeline performs standard imaging data reduction

steps, such as bias and dark current subtraction using a laboratory dark, dark sky sub-

traction using in-flight calibration images of dark sky regions, linearisation to correct

the response function of each pixel, flat fielding using calibration images of bright sky

regions, and finally conversion from engineering to scientific image units.

Additional processing steps during the pipeline include initial validation of the data

to ensure it is not corrupted, updating of image headers, corrections for pixel latency

artifacts caused by electronic bandwidth limitations, subtraction of a timing-dependent

bias offset (the “first-frame effect”), a correction for multiplexer-bleeding where the InSb

arrays exhibit a similar effect to the electronic bandwidth artifact, subtraction of internal

scattered light patterns, and image transposition for channels 1 and 2, such that they are
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flipped to the same orientation as channels 3 and 4 (the dichroic beamsplitters used to

redirect the incoming light for a given field of view through each of the two filters, e.g.

channels 1 and 3, results in one detector seeing a mirror image of the other).

A full description of the IRAC BCD pipeline algorithms is provided in the IRAC

Pipeline Description Document (version 1.0; Reach et al. 2005b).

IRAC flux calibration Flux calibration of IRAC data uses a system of primary and sec-

ondary standard stars, which are used to monitor the long- and short-term variations in

the photometry respectively. A complete description of the absolute calibration (for IRAC

pipeline versions S13 and greater) is provided in Reach et al. (2005a).

In brief, the absolute calibration was performed by comparing the observed to pre-

dicted brightness for a set of A-type main-sequence stars (Cohen et al. 2003). Fluxes of the

standard stars were measured using aperture photometry, with an aperture radius of 10

native IRAC pixels (12 arcseconds) and a sky annulus over a 12 to 20 pixel radius centred

on the source, chosen for optimised photometry of isolated, bright sources (Reach et al.

2005a). Consequently, measurements of IRAC data with other aperture sizes or sky annuli

require appropriate aperture corrections (see Section 3.5 for details). The IRAC data are

calibrated in units of MJy sr−1, which was achieved during the BCD pipeline by multi-

plying the image by the appropriate flux conversion factor in units of [MJy/sr][DN/s]−1,

as determined by Reach et al. (2005a). The conversion factor is stored in the (P)BCD fits

header keyword FLUXCONV.

Further information on the SSC IRAC pipelines can be found in the IRAC Data Handbook

(version 3.0; Reach et al. 2006) and the SOM (version 8.0; 2007) – both now superseded by

the IRAC Instrument Handbook, version 1.0, February 20104.

The IRS Peak-Up Imaging (PUI) data pipelines

PUI BCD pipeline Most of the basic data processing steps for the IRS-PUI data are the

same as those for spectroscopy on the short-low detector. These include: updates to

the image header, masking saturated pixels, gain corrections due to channel-dependent

array readout differences, cosmic ray detection/flagging, droop corrections to rectify the

signal on the arrays for the coupling of signal between pixels, dark current subtraction,

4http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/iracinstrumenthandbook/
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linearisation of the signal ramps, and flat-fielding. Imaging-specific calibration files are

used for the flat fields (generated from observations of high zodiacal background regions)

and dark current subtraction (which includes removal of the detector bias voltage and

some sky emission, in addition to the small amount of dark current during an exposure).

After applying the flat field, PUI data are cropped into separate red and blue BCD frames

(each 35× 45 pixels), WCS information is updated in the header, and final flux calibration

is performed. A detailed description of the IRS science pipeline modules can be found in

the IRS S11 Pipeline Handbook (version 1.0; 2005).

PUI flux calibration Several different versions of the pipeline have to been used to the

process the PUI data presented in this thesis and the flux calibration for the red and blue

filters has changed over the course of the pipeline history. For pipeline versions S15-S16,

the calibration is based on PUI observations of five standard stars, for which a few IRS

spectra were also obtained to cross-calibrate the fluxes (instead of models). Aperture

photometry of the standard stars was performed using aperture sizes of 12 PUI native

pixels (21.6 arcseconds) for blue filter observations (sky annulus radii typically spanning

12-17 pixels) and 13 pixels for red (sky annuli at 13-18 pixels). The flux calibration factors

of 0.0124± 5% MJy/sr/e−/s for blue and 0.0136± 5% MJy/sr/e−/s for red were tied to these

fixed apertures, such that aperture corrections were required for measurements with other

size apertures. Aperture corrections for PUI observations are discussed in Section 3.5.1.

For pipeline version S17, the flux calibration was revised to reduce the uncertainties

(Ardila 2008). It differs from the previous calibration in using observations of three A

type stars with a larger number of spectroscopic observations, and includes the use of

stellar models. The new calibration was based on an infinitely large aperture, derived

using TinyTim V2.0, such that the flux calibration values, of 0.0117± 0.00020 MJy/sr/e−/s

for blue and 0.0118± 0.00018 MJy/sr/e−/s for red, provide the true pixel surface brightness,

and no aperture correction is necessary for the calibration of uniform extended sources.

Detailed descriptions of the data processing steps summarised here can be found in the

IRS Data Handbook (version 3.2; Ardila et al. 2008) and the IRS section of the SOM (version

8.0; 2007) – both now superseded by the IRS Instrument Handbook, version 1.0, February 20095.

5http://irsa.ipac.caltech.edu/data/SPITZER/docs/irs/irsinstrumenthandbook/



3.4. Spitzer data reduction 105

The MIPS 24µm data pipelines

MIPS 24µm BCD pipeline The standard imaging data reduction steps of the MIPS 24µm

BCD pipeline are: subtraction of the (small: 0–3 DN/sec) dark current using an average

dark generated with the scan-mirror in the dark position, correction for electronic non-

linearity, flat-fielding using mirror position-dependent flat fields, image flux calibration

and single outlier detection. Additional processing steps during the pipeline include:

detection and replacement of saturated pixels, the “read-2” correction (an offset in the

second read of the 24µm array results in a gradient across the array that depends on the

array position and background level; correction is� 1 %), slope desaturation and droop

corrections (that remove an excess signal in each pixel that is proportional to the signal

in the entire array). A full description of the MIPS 24µm BCD pipeline algorithms is

provided in Masci et al. (2005) and Gordon et al. (2005).

MIPS 24µm flux calibration In summary, the flux calibration for the MIPS 24µm data was

based on the observed to predicted brightness for a sample of 22 A-type stars adopted from

Rieke et al. (2008) that had already been carefully vetted to exclude sources that would

bias the calibration, such as those exhibiting an infrared excess (e.g., debris disk systems).

24µm flux densities were derived by Engelbracht et al. (2007) using extinction-corrected

K magnitudes for the sample from Rieke et al. (2008), a K − [24] colour difference of 0

mag, and the 24µm zero-point, derived by Rieke et al. (2008), of 7.17 Jy. Kurucz models

were extrapolated from 10.6µm to predict the 24µm zero-point for A stars. Engelbracht

et al. (2007) performed aperture photometry on the observations of the sample using an

aperture of radius 35′′, with a background annulus from 40′′ to 50′′ in radius. Aperture

corrections were derived from a MIPS 24µm point-response function computed from a

10,000 K PSF for a blackbody (generated using the Spitzer TinyTim software) such that the

absolute flux calibration was effectively scaled to the flux density in an infinite aperture.

The final calibration factor was the weighted average of the ratio of the 24µm predictions

to the observed count rate. Its units are [MJy/sr][DN/s]−1 and the value is stored in the

(P)BCD fits header keyword FLUXCONV. A complete description of the flux calibration

for the MIPS 24µm data is provided in Engelbracht et al. (2007), with further information

provided in Rieke et al. (2008).

Detailed descriptions of the data processing steps summarised here can be found in the
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MIPS Data Handbook (version 3.3.1; MIPS Instrument Support Team (SSC) et al. 2007)

and the MIPS section of the SOM (version 8.0; 2007) – both now superseded by the MIPS

Instrument Handbook, version 1.0, February 20106.

3.4.3 The SINGS data pipelines

For the 11 SNe in galaxies observed as part of the SINGS Legacy program (Kennicutt

et al. 2003), the IRAC and MIPS 24µm images analysed in this thesis are generally the

enhanced data products processed and delivered by the SINGS team in their fifth and

final data delivery. These combine observations from two epochs, separated by ∼ 1–2

days, to best correct for transients and detector artifacts.

The fundamental data used to create the SINGS IRAC mosaics were the BCD images

produced by the standard SSC pipeline (summarised in Section 3.4.2, the IRAC BCD

pipeline). Additional processing by the SINGS team included correction for frame geo-

metric distortion and rotation, residual flat fielding, cosmic ray rejection, frame alignment

and bias drift correction. The individual images from both epochs were combined us-

ing a drizzle algorithm to produce a final mosaic of the galaxy in each IRAC channel,

maximising the spatial resolution from the individual sub-sampled images. The final

mosaics had a pixel scale of 0.′′75 (compared to 1.′′2/pixel for the standard SSC pipeline

data), and were rotated to the conventional orientation of north up, east left. In addition,

a constant background level for each mosaic was determined from the peak of a Gaussian

fit to a histogram of the pixel levels in a region outside of the galaxy. The constant value

subtracted from the mosaic was stored in the fits header keyword BACKGRND.

For the MIPS 24µm data, the multiple images obtained from the 2 epochs of scan map

observations were fully processed with the MIPS Data Analysis Tool (MIPS DAT, Gordon

et al. 2005) version 3.06, along with additional customised processing software. The

main processing steps included droop correction, non-linearity correction, dark current

subtraction, flat fielding, latent image removal and correction for the “jailbar” pattern

(caused by bright sources). Constant backgrounds were subtracted for each image and

the subtracted value stored in the fits header keyword BACKGRND. This was achieved

by finding background levels as a function of time for each scan leg in regions off-galaxy,

avoiding bright sources and fitting a third order polynomial to these values. The function

was then used to calculate the background for each frame, which was then subtracted.

6http://irsa.ipac.caltech.edu/data/SPITZER/docs/mips/mipsinstrumenthandbook/
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Low-level scan mirror position-dependent scattered light was also subtracted from each

image. Preliminary mosaicking of the individual frames for each of the two epochs, and

the difference images of these, effectively filtered cosmic rays and other transients before

final mosaics are drizzled together from the frames of both epochs. The final MIPS 24µm

mosaics had a pixel scale of 1.′′5 (compared to 2.′′45/pixel for the standard SSC pipeline

data), chosen to adequately sample the PSF and at the same time be an approximate integer

multiple of the IRAC mosaics’ pixel scale. The mosaics were rotated to the conventional

orientation of north up, east left. Finally, calibration factors were applied to convert the

image units to MJy/sr (stored in the image header keyword JANSCALE).

For a more detailed description of the SINGS processing, see the SINGS: The Spitzer

Infrared Nearby Galaxies Survey Fifth Data Delivery April 2007 User’s Guide7.

3.4.4 MOPEX

For Spitzer data presented in this thesis (generally excluding the SINGS Legacy data

described previously), the final image processing stage was carried out manually with the

SSC MOPEX software (Makovoz et al. 2006). This was primarily in order to improve the

spatial sampling of the final mosaics over those of the standard Spitzer post-BCD pipelines

and to have consistency with the SINGS enhanced data where initial SN detections were

followed-up with observations from our own Spitzer GO programs.

MOPEX (MOsaicker and Point source EXtractor) is an astronomical image processing

package developed at the Spitzer Science Centre for the automatic pipeline to process

Spitzer data, although it can be applied to data from other telescopes. The package is

implemented as a set of perl scripts each running a separate task, with each script running

a number of individual modules written in C/C++. The software can be downloaded

from the SSC website8. MOPEX version 16.2.5 was used to process the Spitzer data in this

thesis. The perl scripts were run from the command line, with configuration files (known

as “namelists”) also supplied on the command line, although a graphical user interface

for MOPEX is also available. The namelists were used to select the individual modules

run by the script, provide the location of the input data (BCD images and mask files)

and set the output directories. They were also used to set parameters for the individual

modules.
7http://irsa.ipac.caltech.edu/data/SPITZER/SINGS/doc/sings_fifth_delivery_v2.pdf
8http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/mopex/mopexdownload/



3.5. Flux density measurement: detections and upper limits 108

The major tasks used in MOPEX for the post-BCD processing of the Spitzer data in

this thesis were 1) background matching between overlapping frames, achieved with

the overlap task, which applies an additive correction calculated for each image in the

input stack in order to bring them to a common background level, 2) mosaicking with

outlier detection of the individual BCD frames with the mosaic task, which performs

interpolation and co-addition of the BCD images with a choice of outlier rejection modules

to remove cosmic rays and bad pixels.

The default interpolation scheme was adopted to project the input images onto a 2D

plane defined by the fiducial image frame (FIF) table that specifies a unified coordinate

system for the output mosaic, with an output pixel size defined by the user. With the

default interpolation, each output pixel is a linear weighted sum of input pixels with

weights equal to the area overlap with the output pixel. The output pixel sizes adopted

were generally the same as those used by the SINGS team for the enhanced processing of

their Legacy data, i.e., 0.′′75/pixel for the IRAC mosaics and 1.′′5/pixel for the MIPS 24µm

mosaics. For comparison, the pixel scale of the final mosaics produced by the standard

SSC pipeline was 1.′′2/pixel for IRAC (for pipeline versions prior to S18.14) and 2.′′45/pixel

for MIPS 24µm data. For the final IRS-PUI mosaics, a pixel scale of 1.′′2 was used, which

compares with 1.′′8/pixel for the standard IRS-PUI pipeline data. Dual outlier rejection

was adopted which uses both spatial and temporal filtering and is best suited for low-

to-medium coverage data, such as the SNe data presented here. Finally, the interpolated

images were averaged to combine them in a single mosaic.

For a thorough description of the MOPEX software and the modules associated with

the tasks described here, please refer to the MOPEX User’s Guide9.

3.5 Flux density measurement: detections and upper limits

3.5.1 Detections – PSF-fitting (and aperture photometry)

Flux densities of the Spitzer SNe sample detections were generally measured by way of

PSF-fitting with the daophot and allstar tasks in IRAF, the general procedure for

which has been referred to previously in Section 2.6.2 of Chapter 2 and described in

Appendix C.

9http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/mopex/mopexusersguide/
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Due to the lack of suitable isolated, bright stars in the Spitzer images, semi-empirical

over-sampled PSF images were downloaded from the SSC archive for each of the four

IRAC channels, the MIPS 24 µm channel and the blue (16µm) IRS-PUI channel. In

each case, the PSFs were produced by the SSC with Spitzer’s version of Tiny Tim, which

combines empirical observations with theoretical optics to generate 4-times oversampled

point spread functions for each detector and channel. The resultant PSFs have negligible

noise in the wings and are pre-normalised to unit flux. To produce the PSF model for

use with IRAF daophot, these PSF images were first geometrically transformed to the

appropriate pixel scale for each image using standard scaling with bicubic interpolation

as implemented by the geotran task within IRAF. For the SINGS images that had

been rotated from their observed orientation to a north-up, east-left orientation during

the processing stage, the PSF images were similarly rotated with the geotran task by

taking into account the average position angle of the observations. Once transformed,

the PSF images were processed for use within IRAF daophot by using the daopsf task

(written by B. E. K. Sugerman), as described in Appendix C. The aperture radius for

the photometry used to set the magnitude of the PSF model within the daopsf task was

chosen to be the same size as the PSF radius, i.e., the PSF should measure 100 % of the flux.

A PSF radius of 13.5′′ was typically used for the IRAC PSF models. This differs from the

12′′ radius used for the absolute calibration of the IRAC bands, but aperture photometry

of the PSFs with a 12′′ aperture radius differed by as little as 1–2 % in all IRAC channels,

which is well within the calibration errors described below (Section 3.5.3).

For PSF-fitting of the SN detections, the size of the fitting radius was chosen to be

approximately equivalent to the FWHM of the stellar profile, but was occasionally varied

by 1 or 2 pixels to optimise the fits. For example, for IRAC images this was found to be

between 3 and 5 pixels, corresponding to angular sizes of 2.′′25–3.′′75 for mosaics with a

pixel size of 0.′′75×0.′′75. The sky background was modelled during the PSF-fitting process,

using sky annuli at appropriate distances around the SN, avoiding any contaminating

sources. In most cases, the allstar task used to do the actual PSF-fitting was successful

in centring on the SN profile via its centroiding algorithm. However, if the SN was quite

faint, this algorithm was turned off such that the PSF-fitting was centred directly on the

input coordinates corresponding to the SN position. The final PSF-fitted and subtracted

images were inspected alongside the un-subtracted images to check the goodness of the

fits. PSF-fitted flux densities for SN detections are detailed in Tables 3.3–3.7.
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Aperture photometry was carried out in some cases where the source was isolated

enough for comparison with the results from the PSF-fitting, using the IRAF phot task

described in Section 2.6.1 of Chapter 2. For example, both techniques were used to

measure SN 2004et, as described in Chapter 5. Aperture corrections were applied to the

flux densities measured with phot. For IRAC data, aperture corrections for photometry

using a variety of aperture sizes are given in Table 5.7 of the IRAC Data Handbook (version

3.0; Reach et al. 2006). Where different aperture sizes were needed to measure the SN data,

aperture corrections were derived from measurement of a sample of IRAC calibration

stars (Reach et al. 2005a), using the procedure described for SN 2004et in Section 5.5.2.

The PUI 16µm and MIPS 24µm aperture corrections were derived by measuring the

semi-empirical PSF images, as more fully described in Section 5.5.2. Whilst flux densities

measured from aperture photometry are not listed, they were generally found to be

consistent with results from PSF-fitting to within 15 %.

3.5.2 Non-detections – Upper limits to flux densities

For SNe not detected in the Spitzer data, upper limits to the flux densities were determined

in a variety of ways depending on the nature of the background at the expected position

of each source. Where there was clearly no source detected in the frames at the position

of the SN (as reported in the literature from optical measurements, i.e., those listed in

Table 2.1 of Chapter 2), the first approach was that adopted for the Gemini data, based

on the background statistics in the region of the SN – see Section 2.6.3 of the previous

chapter for a description of the method used to determine a 3-σ upper limit. However,

the Spitzer data differs considerably from the Gemini data in that the background is much

more complex with rapidly varying levels due to the location of the SNe, which often lie

on the densely populated spiral arms of their host galaxies. To test the upper limits as

determined from the background statistics in the immediate vicinity of the SN, a fake point

source was constructed from the PSF images for each instrument/filter with a brightness

set to the 3-σ limit previously determined. These were then added to the Spitzer images at

the SN position to see if they could be confirmed as a robust detection by eye. For a few

cases the fake stars were detected and the upper limits were considered to be reasonable,

but for the majority of SNe the 3-σ upper limits were clearly not sufficient due to the

confused background. For these SNe, the brightness of the fake PSF was increased until

a clear detection was confirmed, and these were used as the final robust upper limits.
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3.5.3 Error analysis

The flux density errors provided in Tables 3.3–3.7 are statistical errors computed by the

PSF-fitting task daophot. The daophot error model includes readout noise from the

detector; Poisson noise from the star and background; a photometric error term; and a

profile error term that corrects for pixelization of a function. The photometric and profile

errors were left as the the task’s default values of 0.75 % and 5 % respectively, although

in reality the photometric term should be considered to be much higher than this. A

more realistic, but conservative photometric error is estimated to be 20 % which takes into

account calibration errors, such as colour corrections for all instruments (which should

be a maximum of ∼ 6 %) and further calibration corrections for IRAC described in Reach

et al. (2005a), as well as accounting for differences between flux densities measured from

PSF-fitting and aperture photometry.

Since the Spitzer images were calibrated in surface brightness units and converted to

flux densities (µJy), the effective readout noise and gain of the detectors, required for an

accurate noise model, were set as follows:

effective gain = N × (GAIN ∗ EXPTIME)/(FlUXCONV ∗ FAC)

effective readnoise =
√

N × READNOISE

where the following were keywords from the image headers: GAIN, in electrons/data

number (DN); EXPTIME, the effective integration time in seconds; FLUXCONV, the Spitzer

flux calibration factor in units of (MJy/sr)/(DN/s); and READNOISE, the detector readout

noise in electrons. FAC was the conversion factor used to change flux units from MJy/sr

to µJy and N was the number of frames (BCDs) on-source that were averaged to produce

the final mosaic image.
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3.6 Discussion of results

Mid-IR photometry of 18 SNe has been obtained with three different instruments on the

Spitzer Space Telescope from 2004 to 2009. Five of the sample were detected from SINGS

Legacy data in Cycle 1, and consequently monitored: SN 1999bw, SN 2002hh, SN 2003gd,

SN 2004dj and SN 2004et.

Figure 3.7 shows the 8-µm flux densities and upper limits of the Spitzer SEEDS SNe

sample, scaled to a distance of 50 kpc (measured as part of this work and presented in

Tables 3.3–3.7), and plotted as a function of time (days) since explosion. The 8-µm data

were obtained with IRAC channel 4 (λe f f = 7.87µm, ∆λ: 2.91µm). The distance-scaling

allows for a comparison with the 8-µm flux densities of SN 1987A at similar epochs, which

are also shown in the figure. The Bouchet et al. (1989) and Bouchet & Danziger (1993)

data for SN 1987A, from days 14–1031, were taken with the narrow-band N1 filter (λe f f

= 8.36µm, ∆λ: 0.85µm FWHM), on the IR photometer attached to the 1-, 2.2- and 3.6-m

ESO telescopes in La Silla, Chile. The figure caption provides a further explanation of

the symbols and labelling. (A similar figure was shown for the 11-µm SNe data obtained

with the Gemini telescopes, in the discussion section of Chapter 2 – Figure 2.5). Panel

(a) of Figure 3.7 shows the complete Spitzer sample for SN ages of 64 to 3316 days after

explosion, including the exceptionally high 8-µm upper limit to the flux density derived

for SN 2004C. The upper limit for SN 2004C was particularly high (about 3 orders of

magnitude greater than the average upper limits for the sample), because the SN position

was embedded in a bright unresolved emission region close to the centre of its host galaxy

NGC 3683 at a Hubble distance, D, of ∼23.5 Mpc. In this case, the upper limit provides

an indication of how bright the SN would need to be for detection in the unresolved

Spitzer images. Similarly, the high upper limits for the Type Ib/c supernovae SN 2003jg

and SN 2002ji were due to their positions at the edge of the nucleus of their respective

host galaxies NGC 2997 (D ∼ 15 Mpc) and NGC 3655 (D ∼ 20 Mpc). No conclusions can

be drawn about the significance of their non-detections, as any thermal emission from

dust in the vicinity of these SNe would clearly be swamped by the unresolved mid-

IR emission from their host galaxies. For clarity, panel (b) of Figure 3.7 displays the

same information for SN ages limited to 2000 days after explosion (the last 3 epochs of

SN 1999bw are therefore excluded from this plot), and for scaled flux densities limited to

1000 Jy (therefore excluding the upper limit for SN 2004C previously discussed).
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Figure 3.7: 8-µm flux densities and upper limits of the Spitzer SEEDS SNe, scaled to a distance of
50 kpc, as a function of time (days) since explosion. The distance-scaling allows for a comparison
with the 8-µm flux of SN 1987A at similar epochs, indicated by the small blue, filled circles
(Bouchet et al. 1989; Bouchet & Danziger 1993). Detections for the SEEDS sample are shown as
filled coloured circles identified by the key in panel (a). For non-detections, the upper limits to
the flux densities are shown as downward-pointing arrows and are labelled with the SN name,
abbreviated to the last two digits of the year and the letter suffix. The upper limits are also
colour-coded by SN type (see key, and Table 2.1 for a list of the individual SN types). Panel (a)
shows the complete Spitzer sample, and panel (b) shows a slightly zoomed-in view for clarity.
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The first Spitzer detections of the tentatively classified Type IIn SN 1999bw were made

from SINGS Legacy observations of NGC 3198 (D = 13.7 Mpc; Freedman et al. 2001), at

1842 days (∼ 5 years) after the SN had exploded. With a 50-kpc 8-µm flux density of 16 Jy

at this time, its bright, late-time mid-IR detection was surprising, and is comparable to

the much earlier 8-µm flux of SN 1987A at day 350. It was the only SN detected with

Spitzer that was not also observed with Gemini. The SN clearly fades in all IRAC bands

over the next three years, to day 3316, by a factor of ∼ 4.5 at 8µm, as shown in panel (a) of

Figure 3.7. A summary of the Spitzer observations, including blackbody fits to the mid-IR

spectral energy distribution over the four epochs, is presented in Chapter 4, Section 4.2,

and includes a discussion of an IR echo as the likely source of emission and the possibility

that the source was not a true supernova.

SN 2002hh is the brightest of the Spitzer detections at 8µm. As found from the Gemini

10-µm observations, its mid-IR evolution was very slow, with the 8-µm flux declining

by a factor of only ∼ 1.5 between days 590–1158. At day 590, the SN was about 20 times

brighter than SN 1987A at the same epoch, and by day 1000 was ∼ 1200× as bright.

As mentioned in Section 2.7, the mid-IR (and optical) evolution of SN 2002hh is most

easily explained in terms of an IR echo from nearby pre-existing dust, although it has

been argued that most of the strong mid-IR emission is actually from a cool, obscured

star-formation region or molecular cloud along the line of sight (Meikle et al. 2006). The

SN, clearly resolved in the Gemini images, occurred in a complex field and was confused

with nearby sources in the Spitzer data, due to the comparatively lower spatial resolution

of the 0.85-m space telescope. A comparison of the Spitzer and Gemini fields of view is

shown in Figure 4.6 of Section 4.3, where a summary of the SEEDS analyses (Barlow et al.

2005; Welch et al. 2007) is presented.

The Type II-P SN 2003gd was detected with Spitzer IRAC and MIPS (24µm) at day

499, with the distance-scaled 8-µm flux of 5.6 Jy a factor of only ∼ 2 fainter than the coeval

8-µm flux of SN 1987A. Subsequent Spitzer observations at days 1245 and 1613 showed

that the SN had faded beyond detection. The SN was observed at 10µm with Gemini at

days 781 and 784 but was not detected (to a 50-kpc 3-σ upper limit of 10–20 Jy). Archival

Spitzer IRAC observations (GO program: 3248, PI: Meikle) on day 670 were also examined

by the SEEDS team and showed the SN was still detected in the 8µm channel only, at

a 50-kpc flux of 2 Jy (not shown in Figure 3.7). Models to the SEDs of SN 2003gd by

the SEEDS team indicated that the SN had formed up to 0.02 M� in its ejecta by day 678
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(Sugerman et al. 2006) implying that CCSNe could be efficient dust producers, however

this was disputed by Meikle et al. (2007). A summary of the SEEDS analysis of SN 2003gd

is presented in Chapter 4 (Section 4.4).

SN 2004dj is another of the Spitzer SNe that was also observed with Gemini. Whilst

its earliest Gemini 10µm flux, at around day 600, was at similar levels to the coeval 10µm

flux of SN 1987A, the 8-µm flux of SN 2004dj at day 94 was a factor of 4.3 fainter than that

from SN 1987A at similar times. During days 94–1372, the 8-µm light curve of SN 2004dj

declined by a factor of 4.5, confirming the relatively slow mid-IR evolution implied by the

Gemini observations at days 615 and 967, especially when compared to SN 1987A and

SN 2004et (see discussion below). The 8-µm flux at day 850 was ∼ 30 times brighter than

SN 1987A and ∼ 5 times brighter than SN 2004et for the same epoch. An IR echo from

pre-existing grains is a likely cause of the relatively strong late-time mid-IR emission.

SN 2004et was the most-intensively observed SN of the sample, with one early SINGS

IRAC observation on day 64 (plus a serendipitous SINGS pre-explosion IRAC image at

day -75) and nine SEEDS IRAC observations from from days 300–1395. There was a

comparable 10 epochs of MIPS 24-µm observations and five epochs of IRS-PUI 16-µm

photometry. Difference imaging, using the pre-explosion SINGS images as the reference

frames, was used to isolate the varying emission component attributed to the SN in the

IRAC and MIPS images. Figure 3.7 shows that SN 2004et is the only SN of the sample

whose 8-µm evolution closely resembles that of SN 1987A until almost 700 days. However,

after this time their evolution is markedly different. Whilst SN 1987A continued to fade

rather steeply from this time until at least 1000 days, the 8-µm light curve of SN 2004et

appears to flatten after day 800 until day 1054, but after this time rises sharply to a

distance-scaled 50-kpc flux of 8 Jy by day 1395. The large flux uncertainties for days

828–1054 occurred when the SN was very faint. The Spitzer observations also confirmed

the Gemini 10-µm results that the SN had faded after day 300 and risen again by day 1395

(Section 2.7). The observations suggest that, similar to SN 1987A, SN 2004et also formed

dust in its ejecta, possibly from as early as day 400 to around day 700 (Chapter 5). The

late-time rise in the mid-IR has been attributed to thermal emission from dust formed in a

cool dense shell behind the reverse SN shock, due to ejecta/CSM interaction (Kotak et al.

2009), although the SEEDS team are investigating the possibility that the mid-IR emission

after ∼day 1000 is caused by an IR echo from circumstellar dust. A thorough discussion

of the mid-IR evolution of SN 2004et is presented in Chapter 5, together with analysis of
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complementary SEEDS (and archival) optical and NIR data.

Also of note from Figure 3.7 is the flux upper limit for the peculiar Type IIc SN 2003bg

which is reasonably close to the intrinsic 8-µm fluxes of SN 1987A and SN 2004et at

∼day 690. This was during the epoch of dust formation in both SNe, suggesting that

SN 2003bg did not produce larger amounts of dust at similar epochs. It is significant

that the majority of the non-detections (9 SNe, not including SN 2004C, SN 2003jg and

SN 2002ji mentioned towards the beginning of this section), lie at similar intrinsic levels

to, or below, the detections of SN 2004dj, SN 2004et and SN 1999bw, implying that they

do not have larger amounts of ejecta-dust or pre-existing circumstellar dust present.

It is also interesting that whilst SN 2004dj in NGC 2403, at the closest distance of the

sample, was detected, the Type IIn SN 2002kg was not detected in the same host galaxy

to a particularly low 50-kpc 8-µm flux upper limit of 0.33 Jy. However, the nature of

SN 2002kg is ambiguous – it is also known as the luminous blue variable (LBV) V37 (Weis

& Bomans 2005).

3.7 Summary

This chapter has presented mid-IR observations of 18 CCSNe obtained with the Spitzer

Space Telescope during the years 2004 to 2008. The description of the Spitzer data included a

discussion of the space telescope and the instruments used, providing a contrast with the

ground-based mid-IR observations with the Gemini telescopes presented in Chapter 2.

The Spitzer reduction pipelines and flux calibration for the IRAC, IRS Peak-up Imaging

module and MIPS instruments were described, including details of the SINGS Legacy

team’s own enhanced data pipeline. For the SEEDS data, further processing of the basic

calibrated Spitzer pipeline data to higher spatial resolution with the MOPEX software was

also carried out.

The methods for flux measurement of the SN detections via PSF-fitting were described

in the previous chapter for the Gemini observations, but the parameters adopted for

measuring the Spitzer data were provided in this chapter, together with a description of

how the flux upper limits for non-detections were derived. The flux densities, and upper

limits for non-detections, were then presented and discussed.

Five SNe were detected, and subsequently monitored, with Spitzer. The initial detec-

tions of all five of these Type II SNe, at distances ranging from 3.3–13.7 Mpc, were made
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from SINGS Legacy data (programme ID: 159, PI: Kennicutt) obtained in the first cycle

of Spitzer observations. This was not surprising as the SINGS project was a survey of 75

nearby galaxies (D < 30 Mpc), and included many of the host galaxies for SNe that had

been on the original list of SEEDS targets for Spitzer observations. Four of the detected

SNe (SN 2003gd, SN 2002hh, SN 2004dj and SN 2004et; all Type II-P) were also observed

with Gemini, three of which were detected at 10-µm(the non-detection of SN 2003gd from

Gemini observations occurred after the SNe had faded beyond detection with Spitzer).

The unexpected fifth Spitzer detection was of SN 1999bw in NGC 3198, at the furthest

distance of 13.7 Mpc, starting five years after explosion. SN 1999bw was classified as a

Type IIn, although ambiguity surrounds the nature of this SN (which is discussed further

in Chapter 4).

Our own SEEDS Cycle 1 program, yielded no detections from 7 SNe at distances of

10.3 to 23.5 Mpc. Observations in subsequent cycles were generally used for monitoring

previous detections, although a few additional CCSNe observed during the SEEDS Spitzer

programme have not been included in this work.

Five SNe observed with both Spitzer and Gemini were not detected with either tele-

scope. An additional 8 SNe were not detected with Spitzer and another 12 SNe not

detected with Gemini.

Despite the small sample, it is significant that the majority of the non-detections (9

SNe out of the total Spitzer sample of 18, not including SN 2004C, SN 2003jg and SN 2002ji

whose host galaxy emission would swamp any thermal dust emission from the region of

the SN), lie at similar intrinsic levels to, or below, those SNe that were detected, implying

that there were not significant amounts of ejecta-dust or pre-existing circumstellar dust

present for these 9 SNe.

Since the only detections with Gemini were also detected with Spitzer and lay at the

closest distances of 3.3–5.9 Mpc, it is concluded that for likely detection with Gemini, SN

targets should be limited to distances of about 10 Mpc, and for Spitzer to about 15 Mpc.



Chapter 4

Dust emission detected from Type II

SNe in the SEEDS sample

4.1 Introduction

This chapter summarises the results from initial analysis of three supernovae detected

and monitored in the mid-IR, mainly with the Spitzer Space Telescope, as part of the SEEDS

program. These are: the unusual Type IIn SN 1999bw observed at four epochs with Spitzer

from 5–9 years after outburst; and two Type II-P SNe whose Gemini and Spitzer mid-IR

fluxes have been presented in Chapters 2 and 3, namely SN 2002hh and SN 2003gd.

These last two SNe have been the subject of papers by the SEEDS team documenting

initial results from our mid-IR observations: Barlow et al. (2005) for SN 2002hh and

Sugerman et al. (2006) for SN 2003gd. Although I did not conduct the majority of the

analysis for these two SNe, as co-author of both papers I was involved in the work, and

it is instructive, at this point, to summarise the published results.

4.2 SN 1999bw in NGC 3198

The discovery of SN 1999bw at a magnitude of ∼ 17.8 was reported by Li (1999a) from

unfiltered CCD images taken on 20 April 1999 with the 0.8-m Katzman Automatic Imaging

Telescope (KAIT) as part of the Lick Observatory Supernova Search (LOSS). Li (1999a)

118
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confirmed that KAIT images revealed the presence of this object as early as 15 and 19 April

1999 (∼ 18.4 and 18.0 mag respectively), but that it was not seen in earlier observations on

3 April, or the 24 and 29 March 1999. For the purposes of this work, the earliest detection

of this object from the LOSS images, on the 15 April 1999, is adopted as the explosion

or outburst date to which all epochs are referenced. The reported position was 85.′′8 east

and 83.′′8 south of the nucleus of its host galaxy, NGC 3198.

Ambiguity has surrounded the exact nature of SN 1999bw since its discovery. Filip-

penko et al. (1999b) noted that its absolute V magnitude at discovery (MV ≈ -12.9 mag

for an assumed distance to NGC 3198 of 13.7 Mpc; Freedman et al. 2001) was particularly

subluminous for a Type II supernova, which have typical MV . -18 mag (Van Dyk et al.

2000). Optical spectra obtained by Garnavich et al. (1999) and Filippenko et al. (1999b,a),

6–9 days after the SN was first detected in the 15 April LOSS images, were dominated by

narrow hydrogen Balmer emission lines (full width at zero intensity (FWZI) ∼ 600 km s−1)

sitting on top of a broader component (FWZI ∼ 3000 km s−1). Filippenko et al. (1999a)

likened the spectra to that of the Type IIn SN 1997bs in NGC 3627, which was similarly

underluminous (MV ≈ -13.8 mag; Van Dyk et al. 2000).

4.2.1 Evolution of the mid-IR emission

The region around SN 1999bw was first imaged in the mid-IR almost 5 years after dis-

covery, via Spitzer SINGS Legacy IRAC and MIPS observations of NGC 3198 (program

00159, PI: Kennicutt). Following its detection in the IRAC images (Figure 4.1) (reported

by members of our SEEDS team; Sugerman, Meixner, Fabbri & Barlow 2004), further

time was awarded in Spitzer Cycles 2 and 4 (programs 20320, PI: Sugerman; and 40010,

PI: Meixner) for continued monitoring of this object. Photometric observations spanned

4 years from May 2004 to May 2008, corresponding to 1843–3331 days after discovery,

and included 4 epochs of IRAC and MIPS 24µm observations, and one IRS-PUI 16µm

observation in Cycle 4. Dates and exposure times of the observations are detailed in

Table 4.1. Full details of the SINGS and SEEDS observations can be found in Chapter 3

(Section 3.3). The SEEDS IRAC, PUI and MIPS BCD data from the Spitzer pipeline were

further processed with MOPEX (Section 3.4.4) to create the final images with improved

pixel scales (compared to the standard pipeline PBCD products) of 0.′′75/pixel, 1.′′2/pixel

and 1.′′5/pixel, respectively. The IRAC and MIPS pixel sizes were the same as those of the

SINGS enhanced data, processed by the SINGS team.
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Figure 4.1: The position of SN 1999bw in Spitzer SINGS Legacy images of NGC 3198 observed
in May 2004 (IRAC) and December 2004 (MIPS). Panels (a) and (b) show the whole galaxy in
the IRAC 3.6µm and 5.8µm channels respectively. The ∼ 20′′×20′′ square is centred on the SN
coordinates. Panels (c), (d) and (e) zoom in on the square region of the SN field at 4.5, 8.0 and
24µm respectively, with the crosshairs indicating the SN position. The SN was detected in all four
IRAC filters of the SINGS images which, although taken ∼ 5 years after discovery, were the first
mid-IR observations of this object. The bright source to the south-west of the SN, “S2”, dominates
the SN position at 24µm.

Table 4.1 summarises the Spitzer mid-IR flux densities and associated uncertainties of

SN 1999bw, as well as the upper limits to the flux densities, from 1843–3331 days after

discovery (previously presented in Chapter 3). A source coincident with the SN position

was detected in most of the IRAC images at all epochs. Emission was also detected

from a point source at the SN position in the IRS-PUI 16-µm image from the most recent

Cycle 4 data at day 3331, the only observations at that wavelength. At 24µm, a bright

neighbouring source (∼ 4′′ to the south-west of the SN position, and also seen in the IRAC

images), dominated the field at this wavelength (panel e of Figure 4.1) and emission at

the SN position was uncertain.
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Table 4.1: Spitzer mid-IR fluxes of SN 1999bw from PSF-fitted photometry.

UT date Age Exp. time Flux density / upper limits [µJy]
[days] [s]

IRAC IRS-PUI MIPS1

3.6 µm 4.5 µm 5.8 µm 8.0 µm 16 µm 24 µm

2004-05-01 1843 214.4 11 ± 1 39 ± 2 121 ± 6 213 ± 12 · · · · · ·

2004-12-07 2063 168.8 · · · · · · · · · · · · · · · ≤ 650
2005-11-29 2420 321.6 2.6 ± 0.3 14 ± 1 53 ± 4 105 ± 8 · · · · · ·

2005-12-01 2422 840.0 · · · · · · · · · · · · · · · ≤ 650
2006-05-03 2575 321.6 ≤ 10 6.9 ± 0.6 43 ± 3 87 ± 6 · · · · · ·

2006-05-04 2576 840.0 · · · · · · · · · · · · · · · ≤ 650
2008-05-13 3316 964.8 ≤ 10 4.0 ± 0.5 21 ± 3 46 ± 8 · · · · · ·

2008-05-17 3320 1650 · · · · · · · · · · · · · · · ≤ 650
2008-05-28 3331 534.8 · · · · · · · · · · · · 93 ± 16 · · ·

1 The upper limits for the MIPS 24µm data were estimated by measuring the flux density of the faint point
source seen ∼ 6′′ to the east of the SN position. This was found to have an average brightness of 657µJy
with a standard deviation of 2.5 % over the four epochs, and this approximate value was used as a robust
upper limit for the SN brightness at each epoch. See text for further details.

Figure 4.2: Mid-infrared light curves of SN 1999bw in the IRAC wavebands at 3.6,
4.5, 5.8 and 8.0µm. Upper limits to the 3.6-µm flux densities are indicated by the
downward-pointing arrows.
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Figure 4.3: The position of SN 1999bw in Spitzer IRAC 3.6, 5.8 and 8.0µm images, revealing
the mid-IR evolution over the four epochs from days 1843–3316. The point source visible
at the SN coordinates (centre of the frame, indicated by the cross-hairs) from day 1843 in
all IRAC channels, clearly fades during the 4 years of observations. The 20′′ by 20′′ region
around the SN, corresponds to an area of ∼ 1.3 sq. kpc for the adopted distance of 13.7 Mpc
to SN 1999bw.
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The fluxes were measured by way of PSF-fitting, as described in Section 3.5.1. Flux

upper limits for the non-detections by days 2575 and 3316 at 3.6µm were derived by

adding a fake star of known brightness to the image at the expected position of the SN

and increasing the flux until the point source was clearly detected by eye. The flux

upper limits for the MIPS 24-µm data were estimated by measuring the flux density of

the faintest point source in the region of the SN (∼ 6′′ east of the SN position). The faint

point source was found to have an average 24-µm flux density of 657µJy with a standard

deviation of 2.5 % over the four epochs, and this approximate value was used as an upper

limit to the SN flux at each epoch. A fake star of this brightness was added to the image

at the SN coordinates, confirming the presence of an additional source blended with the

bright neighbouring star. Although the ability of PSF-fitting and subtraction to detect

fake stars of lower brightness was not investigated, the values reported should provide

robust upper limits to the 24-µm flux.

Figure 4.2 depicts the slow decline of the IRAC 3.6–8.0-µm light curves over the four

epochs from days 1843–3316, equivalent to ∼ 4–9 years after outburst. The emission at 3.6

and 4.5µm appears to evolve more quickly than that at the longer wavelengths, fading

by factors of ∼ 4 and 3 respectively during the first 1.5 years, compared to the factor of ∼ 2

decline observed at 5.8 and 8.0µm. The 3.6-µm source had faded completely by the third

epoch of observations (day 2575 ≈ 7 years). The 4.5-µm emission continued to decline at

a faster rate than the longer wavelength emission, by a factor of almost 10 over the course

of the four years, compared to the decline in the 5.8- and 8.0-µm bands by factors of ∼ 6

and 4.5, respectively. The mid-IR evolution is also depicted in Figure 4.3, which shows

a 20′′ × 20′′ field of view centred on the SN position (indicated by the cross-hairs) in the

3.6, 4.5 and 8.0µm IRAC images for the four epochs.

4.2.2 SED analysis: Blackbody fitting

Blackbodies were fit to the mid-IR SEDs of SN 1999bw to investigate the limits of the

physical properties of the SN at the various epochs. The blackbody fitting was carried

out using the STARLINK software package DIPSO (Howarth et al. 2004). The grid

and bbody commands were used to generate the blackbody curves at the required tem-

peratures and the atnorm command was used to normalise the curves to the observed

photometric flux densities.

Preliminary blackbody fits to the mid-IR energy distributions, generally normalised to
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the 8-µm flux, are presented in Figure 4.4. The amount of reddening towards SN 1999bw

is not known, so the fluxes were de-reddened using the Galactic foreground colour excess

toward NGC 3627 of E(B – V) = 0.013 mag (Schlegel et al. 1998), with the extinction law

of Cardelli et al. (1989) and RV = 3.1. The IRAC 3.6-, 4.5- and 8.0-µm fluxes at days

1843 and 2420 were consistent with blackbodies cooling from 410 K to 370 K (solid lines),

although these underestimated the 5.8-µm flux at both epochs. The alternative BB fits

with marginally cooler temperatures (dotted lines) highlight that to match the 5.8-µm

flux would be at the expense of over-estimating the shorter wavelength fluxes. A similar

5.8-µm excess is seen for the later epochs compared to blackbodies that provide a good

match to the other fluxes. However, there is little data available to constrain the day 2575

SED, since there were no 3.6-µm detections from this time onwards. More realistic dust

particles have λ−α emissivities in the IR, with α typically between 1 and 2. Alternative

fits shown for day 2575 show examples of these, but they do not manage to explain the

5.8-µm excess. The day 3316 SED is better constrained at longer wavelengths with the

PUI 16-µm datum, although the PUI observations were obtained 15 days after the IRAC

data.

The corresponding blackbody parameters (those for the solid curves only) are given

in Table 4.2 and were calculated as follows. The blackbody luminosity, L, was calculated

from the standard equation:

L = 4πD2F (4.1)

where 4πD2 is the area of the spherical surface being illuminated at a distance D of

the observer from the source, and F is the frequency-integrated flux of the source being

approximated by the blackbody. F was obtained by integrating under the blackbody

curve of the best-fit SED using the DIPSO command integrate, which uses simple

trapezoidal integration. A distance (D) of 13.7 Mpc to the SN host galaxy NGC 3198

(Freedman et al. 2001) was adopted. The minimum emitting radius, R, indicated by the

blackbody fit was calculated from L = 4πR2σT4, where the luminosity, L, was calculated

previously, σ is the Stefan-Boltzmann constant (5.67×10−8Wm−2K−4), and T is the effective

temperature of the blackbody representing the SN emission, i.e.:

R =

√
L

4πσT4
(4.2)
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Figure 4.4: Blackbody fits to the mid-IR SEDs of SN 1999bw at IRAC epochs of 1843, 2420, 2575 and
3316 days. Upper flux limits to the 3.6- and 24-µm flux densities are indicated by the downward-
pointing arrows. Where error bars are not shown, uncertainties are smaller than the symbol size.
All fluxes were de-reddened using a foreground E(B – V) = 0.013 mag (Schlegel et al. 1998) and
the extinction law of Cardelli et al. (1989) with RV = 3.1.

Finally, the minimum ejecta velocity, v, implied by the emitting radius, R, was calcu-

lated simply from:

v =
R
t

(4.3)

where t corresponds to the age of the SN when observed, i.e., the time since explosion,

adopted to be 15 April 1999 for SN 1999bw.

The luminosity evolution of SN 1999bw determined from blackbody fitting to the mid-

IR SEDs is depicted in Figure 4.5. The luminosities for SN 1999bw (black circles) have

been scaled to the distance of SN 2004et at 5.9 Mpc for days 1843–3316, and compared

with the mid-IR luminosity evolution of SN 2004et from days 1000–1400 (red triangles)

(see Chapter 5).



4.2. SN 1999bw in NGC 3198 126

Table 4.2: Blackbody-fit parameters to the mid-IR energy distributions of SN 1999bw.

Epoch T F R v L
[days] [K] [10−17 W m−2] [1015 cm] [km s−1] [105 L�]

1843 410 11.1 11.1 698 6.5
2420 370 5.8 9.9 473 3.4
2575 330 5.6 12.2 546 3.3
3316 335 3.0 8.6 301 1.7

Figure 4.5: Luminosity evolution of SN 1999bw from blackbody fitting to the
mid-IR SEDs scaled to the distance of SN 2004et at 5.9 Mpc for days 1843–3316,
and compared with the mid-IR luminosity evolution of SN 2004et from days
∼ 1000–1400 (see Chapter 5).
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4.2.3 An unusual supernova or SN imposter?

Filippenko et al. (1999a) likened the early spectra of SN 1999bw to that of the Type IIn

SN 1997bs. In the case of SN 1997bs, a progenitor star was associated with the SN by

Van Dyk et al. (1999) from archival pre-discovery HST WFPC2 images of the host galaxy

(F606W magnitude ∼ 22.9). The detection of the SN from similar HST WFPC2 images

approximately 9 months (January 1998) after discovery at about 0.5 mag fainter than the

progenitor, together with an apparent flattening of the V-band light curve from about

8 months post-discovery, led the authors to suggest the progenitor of SN 1997bs might

have survived a “superoutburst” of an LBV star, analogous to ηCarinae (Van Dyk et al.

2000). However, further HST WFPC2 observations by Li et al. (2002) in their “Snapshot

Survey of Nearby Supernovae” seemed to provide evidence against the superoutburst

interpretation for SN 1997bs, showing the SN continued to decline in the V and I bands

after early 1998, inconsistent with the suggestion that the SN progenitor survived the

explosion. Dust formation was ruled out by Li et al. (2002) as an explanation for the

optical light curve decline of SN 1997bs based on its colour evolution, which became

progressively bluer from early 1998 to early 2001. The nature of SN 1997bs, and by

comparison that of SN 1999bw, remains unclear.

SN 1999bw was also imaged by Li et al. (2002) in their HST snapshot survey ∼ 635

days after discovery. Using pointing information from the image header and the reported

discovery position of the SN (Li 1999a), they found a single source within a 0.′′5 radius

error circle which they concluded to be the supernova. Li et al. measured the WFPC2

F555W magnitude (≈ V) to be 24.08 ± 0.06 which, from comparison with several early-

time (previously unpublished) KAIT observations, they showed had declined by 5.6 mag

in the almost 2 years since maximum. In the same work, they estimated SN 1997bs

had declined by about 7 mag in an equivalent period, concluding that the photometric

evolution of these two objects seem to differ to some extent, despite their similar spectra

and low peak luminosity.

SN 1999bw has also been compared (Thompson et al. 2009) to the luminous transients

SN 2008S, NGC 300 and a similar object in M85. The discovery that SN 2008S (Prieto

et al. 2008) and NGC 300 (Prieto 2008) had dust-enshrouded progenitors led Thompson

et al. (2009) to propose a new classification of transient, formed when stars located near

the upper mass limit for AGB evolution go through a self-obscured phase shortly before
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exploding as electron capture SNe. These transients have progenitors with relatively

low luminosities (∼ 5 × 104 L�) and low mid-IR variabilities, as well as being deeply dust

embedded. The transients themselves have low luminosity (for SN 2008S and NGC 300,

MV ≈ −14 ± 1 mag, ∼ 2-3 mag fainter than normal CCSNe; Richardson et al. 2002),

and spectra showing narrow Balmer lines (similar to low-luminosity Type IIn SNe and

LBV-like SN imposters) with [Ca ] emission, as well as rapidly decaying light curves

compared to Type II-P SNe.

With the luminosity and spectral features for SN 1999bw described previously, and its

luminous mid-IR detection with Spitzer approximately 5 years after discovery (Sugerman

et al. 2004; work presented herein), Thompson et al. (2009) likened SN 1999bw, and a

similar transient in M85, to SN 2008S and NGC 300. However, because there was no

progenitor information for these objects, no definite conclusions could be drawn.

The mid-IR observations pre- and post-outburst of NGC 300 and SN 2008S (Prieto 2008;

Prieto et al. 2008; Botticella et al. 2009; Wesson et al. 2010) revealed the dusty environment

of this type of transient and its progenitor, providing a potentially alternative source for

the dust enrichment of galaxies.

SEEDS members Wesson et al. (2010) utilised pre- and post-outburst Spitzer images to

investigate the optical and mid-IR SEDs of SN 2008S, the ninth supernova to be discovered

in the spiral galaxy NGC 6946. Radiative transfer models constructed for the object

before outburst and at two epochs post-outburst (∼ 17 days and 6 months) provided a

self-consistent fit to the SEDs with the same r−2 density distribution in a spherical shell of

pre-existing amorphous carbon grains for all epochs, taking light time travel effects into

account. The derived dust-mass-loss rate of 5.2×10−7M� yr−1 implied an overall mass-

loss rate from the progenitor star of 0.5–1.0×10−4M� yr−1 (for gas-to-dust mass ratios in

the outflow of 100-200), consistent with mass-loss rates determined from a high-fraction of

carbon-rich stars found amongst the most luminous AGB stars in the LMC (Matsuura et al.

2009). Their results indicated that super-AGB stars, of which the progenitor of SN 2008S

appears to be an example, are only likely to contribute about 1.6 % of the 2 × 108 M� of

dust observed in the z = 6.4 galaxy J114816.64+5251 (Dwek et al. 2007), potentially ruling

out these objects as significant sources of dust in such galaxies.
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Figure 4.6: The complex field around SN 2002hh in NGC 6946: (a) Spitzer-IRAC
4.5µm and (b) MIPS 24µm images of NGC 6946 from SINGS Legacy observations,
with the location of SN 2002hh marked inside the red box. (c) A 5.8µm image of
SN 2002hh (marked “1”), showing it is crowded with at least three other sources.
Spitzer images taken at days 590 (IRAC) and 619 (MIPS). (d) Gemini N′-band im-
age, confirming Star 4 is extended. (e) HST/ACS F606W observations resolving the
crowded field.

4.3 SN 2002hh in NGC 6946

Early in the Spitzer mission, dust emission from the Type II-P SN 2002hh was detected

in SINGS IRAC images of NGC 6946 (Barlow, Fabbri, Meixner & Sugerman 2004) and

confirmed by higher angular resolution Gemini Michelle imaging (Barlow et al. 2005).

Panels (a)-(c) of Figure 4.6 show the complex field around SN 2002hh in the SINGS IRAC

(4.5 and 8µm, day 590) and MIPS (24µm, day 619) images. The region close to the SN is

dominated by a bright adjacent field star (marked “2” in panel c). The Gemini-Michelle

N′-band image and HST-ACS F606W image (∼R-band) resolve the crowded field.
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Figure 4.7: The measured day-600 Spitzer 3.6–24µm fluxes for SN 2002hh are shown as
open triangles. The solid black line is a 290 K blackbody normalised to the 8-µm flux
density. The dashed, dotted, and dash-dotted lines correspond to radiative transfer dust
models of differing input parameters, discussed in Barlow et al. (2005)

Barlow et al. (2005) found that the day 600 5.8–24µm flux distribution could be fitted by

a 290 K blackbody (Figure 4.7), yielding a minimum emitting radius of Rmin ∼ 1017 cm and a

luminosity of L = 1.6×107 L�. A more realisticλ−1 grain emissivity gave Rmin = 5×1017 cm,

far too large for the emitting dust to have formed in the main ejecta (it would have taken

> 10 years for material in the ejecta to reach this radius). It was therefore inferred that the

emitting dust must have been pre-existing.

Using radiative transfer models (MOCASSIN, Ercolano et al. 2003, 2005; and 2-Dust,

Ueta & Meixner 2003) with realistic dust grain parameters, fits to the observed day 600

5.8–24µm flux distribution (Figure 4.7) yielded total emitting dust masses in the range

0.10–0.15 M�. SN 2002hh is a Type II-P (plateau) supernova, whose very extended optical

light curve (Welch et al. 2007) appears explicable in terms of a just-resolved light echo that

has been revealed from HST ACS/HRC images. Preliminary analysis indicated that the

visible light echo occurred from a thick dust distribution that is located about 2–8 light

years (2–8 ×1018 cm) in front of the supernova.
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From an analysis of similar Spitzer-IRAC photometry from days 590–994, Meikle et al.

(2006) concluded that most of the strong mid-IR emission was likely to have originated

in a cool, obscured star-formation region or molecular cloud along the line of sight. Their

work did reveal a declining component of the flux that was consistent with an IR echo

due to circumstellar material illuminated by the SN flash, for which they estimated a dust

mass of ∼ 0.04 M� using analytic models. Small contributions from newly-condensed

ejecta dust and/or an ejecta-CSM interaction could not be ruled out, nor could the case

that the IR echo could actually be due to the surrounding dense, dusty IS, rather than CS,

material.

The observations of SN 2002hh presented in Chapter 3 showed that the emission at the

position of the SN continued a slow decline until at least day 1158 (the 8-µm flux faded by

a factor of ∼ 1.5 between days 590–1158 - Section 3.6). Additional observations obtained

in Spitzer cycles 3 and 4 (days 1383–2100; not presented here) show that emission at the

SN position is still detected. Careful difference imaging is clearly required to isolate the

declining component due to the SN within the complex field, to compare with the results

of Meikle et al. (2006). The contribution of an IR echo to the declining emission can then

be investigated, for example, with the 3D radiative transfer code, MOCASSIN, which has

been updated since the work of Barlow et al. (2005) to only sum up the emission from

an ellipsoidal region of the grid corresponding to the light travel time, as is necessary to

model light echoes.

The minimum dust mass of 0.04 M� estimated from the analytic IR echo model of

Meikle et al. (2006) to explain the declining component of the mid-IR emission for

SN 2002hh, is considerably larger than the ∼ 10−3 M� of directly observed ejecta dust

inferred from studies of SN 1987A, SN 1998S and SN 1999em. If the 0.04 M� of dust

corresponds to circumstellar dust that was formed in outflows of the CCSN progenitor

in a previous mass-loss phase, then the massive-star progenitors of some CCSNe could

make a significant contribution to the dust content of galaxies.
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Figure 4.8: A Spitzer SINGS multi-band IRAC image of NGC 628, showing
data from the 3.6-µm (blue), 4.5-µm (green), and 8-µm (red) channels. There
was a clear detection of SN 2003gd on day 499 (upper inset; SN position
indicated by the white arrow) relative to day 670 (lower inset). Image credit:
NASA/JPL-Caltech/B.E.K. Sugerman, STScI.

4.4 SN 2003gd in NGC 628

Sugerman et al. (2006) detected the onset of dust emission from SN 2003gd in NGC

628 (Messier 74; Figure 4.8), utilising Spitzer SINGS and archival mid-IR data, together

with SEEDS GMOS-N spectra, and archival optical photometry and spectroscopy. Unlike

SN 2002hh, the emitting dust was inferred to have formed inside the supernova ejecta

by the occurrence of three relatively contemporaneous phenomena: (1) an increase in

optical extinction after day 500, as evidenced by the dip in its light curve from that date

(Figure 4.9); (2) an IR excess, clearly evident from the Spitzer SINGS mid-IR data compared

to the optical photometry at days 499 and 678 in Figure 4.10; and (3) asymmetric blue-

shifted emission lines, attributed to dust forming in the ejecta preferentially extinguishing

emission from receding (red-shifted) gas. Between days 157 and 521 the Hα feature in

optical spectra of SN 2003gd developed an asymmetric profile, with a reduction in flux

on the red side. All three phenomena had previously only been unambiguously observed

in SN 1987A (Section 1.3.4 and references therein).
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Figure 4.9: Optical BVR light curves of SN 2003gd (Hendry et al. 2005; Sugerman
2005), showing the increase of extinction with time. For comparison, the correspond-
ing light curves of SN 1987A (Suntzeff & Bouchet 1990) are also shown as thick grey
lines, and the R-band light curve of SN 1990E is shown as filled stars. Also plotted in
black are the light curves expected from the energy deposition due to the radioactive
decay of 56Co with (dashed) and without (dotted) increased opacity to γ-rays. The
dashed grey line shows a linear fit to SN 1987A from days 450 to 525 used by Lucy
et al. (1991) (Sugerman et al. 2006).

Figure 4.10: Optical–IR spectral energy distributions of SN 2003gd at ∼ 499 and 678
days after explosion. The curves are MOCASSIN radiative-transfer model fits to the
data at day 499 (solid lines) and 678 (dashed lines) based on smoothly distributed
(black) and clumpy (grey) dust (Sugerman et al. 2006).
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Both smooth and clumpy ejecta-dust model fits to the SN 2003gd observations were

presented by Sugerman et al. (2006), using the 3D Monte Carlo radiative transfer code

MOCASSIN (Ercolano et al. 2003, 2005; see Chapter 5, Section 5.9 for a brief overview of

MOCASSIN and the dust model parameters in the context of those adopted for SN 2004et).

The radiative-transfer models were constructed under the initial assumption that the

dust and source luminosity were mixed within a spherical, expanding shell with inner

radius, Rin and outer radius Rout = YRin. Initial values for the shell size, source luminosity,

and temperature were guided by blackbody fits to the mid-IR data and by models of SN

1987A at similar epochs. A standard MRN a−3.5 grain size distribution (Mathis et al. 1977)

was adopted with amin=0.005µm and amax=0.05µm, and the adopted dust composition

was 15 % amorphous carbon and 85 % silicates.

The smooth models adopted a dust distribution following an r−2 density profile,

whereas the clumpy models had dense clumps existing in a less-dense interclump medium

(ICM), where the ICM followed a smooth r−2 density distribution, with the local heating

source located only in the ICM. The clumps had radius δ × Rout, a volume filling fac-

tor f , and density contrast α = ρc/ρ, embedded in the ICM of dust density, ρ (defined

above). Sugerman et al. (2006) explored the limiting case where all the dust was in clumps

(α → ∞) to provide an upper limit to the dust mass, with the smooth models providing

lower mass limits. As suggested from hydrodynamic simulations, they fixed δ = 0.025.

To match both the optical–IR SEDs and the derived R-band extinction estimates for

the SN ejecta, their day 499 data could be fitted with smoothly distributed dust having a

dust mass of 2× 10−4 M�, whereas up to 2× 10−3 M� of dust could be accommodated by a

clumped dust model. For day 678, their best-fit smooth dust model required 3 × 10−3 M�

of dust, while up to to 0.02 M� could be accommodated by a clumpy model, the latter

implying heavy element condensation efficiency of about 10 %.

Meikle et al. (2007) also studied the mid-IR evolution of SN 2003gd from Spitzer

observations, reanalysing the SINGS data from days 499 (IRAC) and 678 (MIPS 24µm)

studied by Sugerman et al. (2006), together with additional IRAC data from day 670 (PID:

3248, PI: Meikle) and MIPS data from day 1264 (PID: 30494, PI: Sugerman). From their

analytic models, the authors concluded that by day 499 the mid-IR flux was consistent

with emission from at least 4 × 10−5 M� of newly condensed dust in the ejecta. They also

reported that the 24-µm emission at day 678 (with a flux∼ 4× larger than that measured by

Sugerman et al. 2006) had faded beyond detection by day 1264. From consideration of the



4.4. SN 2003gd in NGC 628 135

SN ejecta velocities (implied by the size of the emitting region from a blackbody fit to the

data) and the energy budget (the total bolometric luminosity of the SN compared to that

expected from the radioactive decay deposition), Meikle et al. ruled out ejecta-condensed

dust as the main source of the emission at days 670–678, concluding that the mid-IR

observations of SN 2003gd did not support the presence of 0.02 M� of ejecta-condensed

dust.

SEEDS analysis of the SN 2003gd data has continued, with two additional epochs of

Spitzer observations (IRAC, PUI and MIPS) in Cycle 4. Collaborator B. E. K. Sugerman,

has conducted precise difference imaging with the latest data (from which the SN had

clearly faded beyond detection in all bands) confirming the results of Meikle et al. (2007)

who concluded that the day 678 24-µm source had faded significantly by day 1264 and

that the source was still detected by day 670 in IRAC 8-µm images. By day 1245, the

8-µm flux had also faded beyond detection. The most recent flux measurements, by B.

Sugerman, for SN 2003gd were averaged results from difference images using the three

most recent epochs of IRAC and MIPS data from cycles 3 and 4, and these, together with

upper limits for the non-detections, were presented in Chapter 3 for epochs spanning

499–1632 days. The flux densities were consistent with my own measurements of the SN

at days 499 and 670/678 from previous difference images (which used the IRAC and MIPS

Cycle 3 data at days 1245–1264 as the reference frames) to within 5 %, and are reasonably

consistent with the IRAC fluxes reported by Sugerman et al. (2006) and Meikle et al. (2007)

for day 499 (to within 15 %), and with the 8-µm flux at day 670 (to within ∼ 20 %). Whilst

investigating the discrepancy of the day 678 24-µm fluxes measured by both authors, a

problem was discovered with the calibration of the enhanced SINGS data which showed

incorrect exposure times in the FITS image headers. The MIPS BCD data was consequently

downloaded from the Spitzer archive and reprocessed with MOPEX, by B. Sugerman. The

average flux measurement from the three difference images was 543µJy with an r.m.s.

scatter of ∼ 4 %, much smaller than the 16 % calibration and statistical uncertainty quoted

in Table 3.3. The new 24µm flux at day 678, is a factor of 5 higher than that reported by

Sugerman et al. (2006) and a factor of 1.4 higher than the value reported by Meikle et al.

(2007), lending further weight to the energy budget argument of Meikle et al. that the

24-µm flux is unlikely to originate from ejecta-condensed dust. Circumstellar material

causing the optical light echo detected around the SN (Sugerman 2005) was considered

by Sugerman et al. (2006) to be an unlikely origin for the rapidly varying mid-IR fluxes,
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however, this is now being revisited. With the revised fluxes, IR echo models are being

investigated by the SEEDS team to quantify the possible contribution of a thermal IR

echo from pre-existing CS material to the mid-IR emission detected at the earliest Spitzer

epochs. It is emphasised that the day 499 observations of SN 2003gd are still consistent

with the energy budget of the SN and with being due to ejecta dust.

It is concluded from the data presented by Sugerman et al. (2006) that there is strong

evidence for dust formation in the ejecta of SN 2003gd by day 500, with dust mass

estimates ranging up to 2× 10−3 M� (Sugerman et al. 2006), although a contribution from

an IR echo might reduce these estimates. This is similar to dust masses estimated for

other CCSNe and suggests that Type II SNe are not significant producers of dust.



Chapter 5

SN 2004et in NGC 6946

5.1 Introduction

This chapter presents the analysis of multi-epoch observations of the Type II-P super-

nova SN 2004et. Mid-infrared imaging, with Michelle on Gemini-North and all three

instruments of the Spitzer Space Telescope, was carried out over the years 2004 to 2008,

supplemented by archival Spitzer data. The supernova’s mid-IR detection was reported

by Fabbri et al. (2005). The observations span 104 days prior to the supernova explosion

to 1395 days post-explosion, providing a comprehensive picture of the evolution of this

SN at these wavelengths. Further Spitzer photometry was obtained in IRAC channels

at 3.6 and 4.5µm in August 2009, January 2010 and August 2010 (days 1779, 1931 and

2151) during the observatory’s ‘warm’ mission, and has been included for completeness.

Section 5.2 provides a brief review of the literature to-date regarding this SN. Section 5.3

describes the Hα and [O ] 6300 Å line profiles obtained from a sequence of optical spectra

for SN 2004et. Section 5.4 describes the mid-IR observations and data processing, and

Section 5.5 details the photometric analysis techniques used. The resulting mid-IR fluxes

are presented in Section 5.6, together with a discussion of the mid-IR light curve evolution.

Complementary photometric data, obtained by collaborators at optical and near-

infrared (NIR) wavelengths using the HST and Gemini North telescopes, are presented

in Section 5.7. The spectral energy distributions (SEDs) of SN 2004et at 12 epochs from

days 64 to 1395 are discussed in Section 5.8, including blackbody fitting to the observed

137
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Figure 5.1: Discovery image of SN 2004et in NGC 6946 on 27
September 2004 by Stefano Moretti, taken with an unfiltered CCD
on the 0.4-m ARAR telescope in Ravenna, Italy (adapted from
http://www.supernovae.net/sn2004/n6946s1.jpg). The SN is seen south-
west of the galaxy nucleus, marked by the cross-hairs.

SEDs, allowing limits to be placed on the physical properties of the SN at the various

epochs. Section 5.9 describes the Monte Carlo radiative transfer models used to estimate

how much new dust condensed in the ejecta between days 300 and 690. Finally, the

results from the multi-epoch analysis of SN 2004et are summarised in Section 5.10. The

implications for dust production by Type II SNe are also discussed. This work is the

subject of a recently submitted paper (Fabbri et al. 2011).

5.2 Previous studies of SN 2004et

SN 2004et was the eighth supernova to be discovered in the nearby spiral galaxy NGC 6946

in the past century, and the second brightest (unfiltered magnitude 12.8) supernova

detected in the year 2004.
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5.2.1 Discovery and explosion date

The SN was discovered on 27 September 2004 by S. Morreti with a 0.4-m telescope (Zwitter

et al. 2004). The reported position of α = 20 h35 m25 .s33 and δ = +60 h07 m17 .s7 (J2000.0) is

247.′′1 east and 115.′′4 south of the nucleus of its host galaxy. Figure 5.1 shows Moretti’s

discovery image of the supernova. Frequent survey imaging around this time by the

robotic TAROT telescope at l’Observatoire de Haute Provence by Klotz and collaborators

(Yamaoka et al. 2004) allowed the explosion date of SN 2004et to be well-constrained to

within one day. Following Li et al. (2005b), an explosion date of 22.0 September 2004

(JD 2,453,270.5) is adopted as the day 0 epoch to which the observation dates herein are

referenced.

5.2.2 Optical observations and SN type

High-resolution optical spectroscopy, taken with the echelle spectrograph on the 1.82-m

telescope in Asiago on 28 September 2004, showed a relatively featureless spectrum with

very broad, low-contrast Hα emission, suggesting SN 2004et to be a Type II event (Zwitter

et al. 2004). This was subsequently confirmed by a low-resolution spectrum taken with

the Shane 3-m telescope at the Lick Observatory on 1 October 2004 (Filippenko et al.

2004). The spectrum showed the P-Cygni profile of Hα to be dominated by the emission

component, but the other hydrogen Balmer lines to have more typical P-Cygni profiles.

The continuum was quite blue but dropped off dramatically shortwards of 4000 Å.

Further observations of the supernova were made in the Johnson-Cousins UBVRI

system with the 0.76-m Katzman Automatic Imaging Telescope (KAIT) at the Lick Obser-

vatory, from day 8 after explosion to around day 25 (Li et al. 2005b). The V, R and I-band

light curves showed SN 2004et to be a Type II-P (plateau) supernova, but it did exhibit

some differences when compared with the typical Type II-P SN 1999em. Evolution was

slower in the U and B bands, consistent with the (U – B) and (B – V) colour evolution,

leading Li et al. (2005b) to conclude that SN 2004et seemed to evolve more slowly than

SN 1999em, especially in the violet part of the spectrum.

Extensive photometric and spectroscopic monitoring in the optical was carried out by

Sahu et al. (2006) from days 8 to 541 after explosion, with the 2-m Himalayan Chandra

Telescope (HCT) of the Indian Astronomical Observatory. They confirmed the supernova

to be of Type II-P based on the plateau observed in the VRI bands which lasted for ∼ 110
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days after the explosion. From their light curve analysis, they determined that the SN

was caught at a very early stage soon after the shock breakout, reaching a maximum

B-band magnitude ∼ 10 days after explosion. They noted that SN 2004et was among the

brighter Type II-P SNe based on the luminosity at maximum. They also confirmed the

slower colour evolution of SN 2004et compared with other Type II-P SNe, particularly

of the (U – B) and (B – V) colours, with the trend lasting until ∼ 150 days after explosion,

and the (R – I) colour appearing bluer than that of SN 1999em even after day 200. They

found that the decline rate of the light curve during the early nebular phase (∼ 180–310

days) was similar to the radioactive decay rate of 56Co, indicating that γ-ray trapping

was efficient during this time (see Section 5.2.4). A steepening of the decline rate from

around day 320 was interpreted by Sahu et al. (2006) as due to dust formation in the SN

ejecta, after analysis of the emission lines at a similar epoch – see Section 5.2.8 for further

discussion. Misra et al. (2007) also presented optical data from days ∼ 14 to 470, with light

curves and colour evolution similar to those presented in earlier studies (Li et al. 2005b;

Sahu et al. 2006).

5.2.3 Distance and reddening

There are many estimates in the literature for the distance to the host galaxy NGC 6946.

Sahu et al. (2006) summarised a few of these and included the result from their own

analysis of SN 2004et using the standard candle method of Nugent et al. (2006) for

Type II-P supernovae, deriving an average distance of 5.6 Mpc. Herrmann et al. (2008)

estimated a distance of 6.1 ± 0.6 Mpc to NGC 6946 using the planetary nebula luminosity

function. For consistency with previous studies of SN 2002hh (Barlow et al. 2005; Welch

et al. 2007) and SN 2008S (Wesson et al. 2010) by the SEEDS collaboration, a distance of

5.9 Mpc to NGC 6946 is adopted for the analysis of SN 2004et in this thesis, as estimated

by Karachentsev et al. (2000) from the brightest stars method.

From Schlegel et al. (1998), the foreground Galactic reddening towards SN 2004et is

estimated to be E(B – V) = 0.34 mag. Zwitter et al. (2004) used the equivalent width of Na 

D 2 lines from their high-resolution echelle spectra to estimate a total reddening (Galactic

+ host) towards the SN of E(B – V) = 0.41 mag. Sahu et al. (2006) used similar analysis

with their lower-resolution spectra to obtain a comparable value of E(B – V) = 0.43 mag.

A total reddening of E(B – V) = 0.41 mag is adopted for the analysis of SN 2004et in this

thesis.
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5.2.4 Ejected nickel mass

Three methods have been used in previous studies to estimate the amount of 56Ni ejected

during the explosion of SN 2004et, with generally consistent results: the tail phase

bolometric luminosity method of Hamuy (2003), the steepness parameter method of

Elmhamdi, Chugai & Danziger (2003a), and a comparison of the bolometric luminosity

with that of SN 1987A.

From the first method, the 56Ni mass can be estimated using the assumption that the

early (150–300 days post-explosion) tail luminosity of Type II-P SNe is dominated by the

radioactive decay of 56Ni to 56Co (Hamuy 2003). Using a bolometric correction of Hamuy

et al. (2001) of 0.26 ± 0.06 mag and the V magnitudes during the nebular phase (250–315

days), Sahu et al. (2006) estimated that 0.06 ± 0.02 M� of 56Ni was synthesised during

the explosion of SN 2004et. In a similar way, Misra et al. (2007) estimated an ejected 56Ni

mass of 0.06 ± 0.03 M� for SN 2004et from two different points in the radioactive tail of

the light curve. In recent work by Maguire et al. (2010), application of the same method

with their own derived bolometric correction of 0.33 ± 0.06 mag, yielded a nickel mass of

0.06 ± 0.02 M�, in good agreement with the previous studies.

For the second method, Elmhamdi et al. (2003a) showed a correlation between the

rate of decline from the plateau to tail phase of the V-band light curve and the nickel

mass, such that the smaller the mass of 56Ni, the steeper the transition from plateau to tail.

Despite the lack of good V-band data coverage at this light curve transition region for

SN 2004et, Sahu et al. (2006) use this method to estimate a 56Ni mass of 0.062 ± 0.02 M�,

compared to 0.056 ± 0.016 M� from Misra et al. (2007) and 0.057 ± 0.02 M� from Maguire

et al. (2010).

Finally, Sahu et al. (2006) compared the bolometric light curve of SN 2004et with that

of SN 1987A, assuming that the γ-ray deposition for both SNe was the same. They found

the tail bolometric luminosity of SN 2004et between days ∼ 250–300 to be ∼ 1.6 times

fainter than that of SN 1987A, implying a 56Ni mass of 0.048 ± 0.01 M� for SN 2004et,

for a nickel mass of SN 1987A of 0.075 ± 0.005 M� (Arnett 1996). However, they note

that this should be a lower limit since their bolometric light curve did not include a

NIR contribution. Maguire et al. (2010) adopted a similar method, comparing bolometric

luminosities between days ∼ 120–250, which included NIR data, to estimate a 56Ni mass

of 0.057 ± 0.03 M�.
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5.2.5 Radio observations: ejecta asymmetry and interaction with CSM

SN 2004et was detected at radio frequencies (22.46 and 8.46 GHz) with the Very Large

Array by Stockdale et al. (2004) on 5.128 October 2004 (day 13). The radio position

of α = 20 h35 m25 .s36 and δ = +60 h07 m17 .s7 (J2000.0, ± 0.′′1 in each coordinate) was in

very close agreement with the reported optical position. Radio monitoring (at 4.99 and

6.04 GHz) was carried out from days 8 to 130 with the Multi-Element Radio Linked

Interferometer Network (MERLIN) (Beswick et al. 2004; Argo et al. 2005).

Very-long-baseline-interferometric imaging (the first VLBI observations of a Type II-P

supernova) at 8.4 GHz on 20 February 2005 (day 151) showed a clear asymmetry of the

radio emitting structure, implying interaction with circumstellar material (Martí-Vidal

et al. 2007). The preferred emission model was one of an underlying expanding shell

with two hot spots, attributed to anisotropies of the circumstellar density distribution

and/or anisotropies in the magnetic field.

Chevalier et al. (2006) modelled the radio light curve, comparing synchrotron and

Compton cooling models with observations. They estimated a mass-loss rate of Ṁ−6/vw1 =

(9−10)T3/4
cs5 , where Ṁ−6 is the mass-loss rate in units of 10−6 M� yr−1, vw1 is the wind veloc-

ity in units of 10 km s−1, and Tcs5 is the circumstellar temperature in units of 105 K. Misra

et al. (2007) reported one epoch of radio observations on day 102 (1.4 GHz) which had a

flux in reasonable agreement with the models of Chevalier et al. (2006).

5.2.6 X-ray observations

Rho et al. (2007b) reported the X-ray detection of SN 2004et at days 30, 45 and 72 af-

ter explosion from archival Chandra X-Ray Observatory data. Rho et al. (2007a) mod-

elled the emission in terms of the interaction of the supernova ejecta with a progenitor

wind, arising from the reverse-shock region, with a pre-supernova mass-loss rate of (2–

2.5)× 10−6 M� yr−1 for a wind velocity of 10 km s−1. This is consistent with the mass-loss

rate expected for a progenitor star of mass (15–20) M� (Chevalier et al. 2006). The same

Chandra observations were also presented by Misra et al. (2007) who noted that the X-ray

spectrum softens with time and demonstrated that its luminosity is well characterised

by LX ∝ t−0.4. Similarly to Rho et al. (2007a), they concluded that the majority of the

detected X-ray emission was due to the reverse shock. They found that the hard (2–8 keV)

X-ray band luminosity approximately followed the expected evolution of free-free emis-
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sion from the reverse shock, but that the soft (0.5–2 keV) X-ray band luminosity stayed

roughly constant. From the observed hard band X-ray luminosity they estimated a pro-

genitor mass-loss rate of ∼ 2× 10−6 M� yr−1 for an assumed wind velocity of 10 km s−1, in

agreement with Rho et al. (2007a).

5.2.7 Properties of the progenitor star

Sahu et al. (2006) found that the [O ] 6300, 6363 Å luminosity before dust formation was

comparable to that of SN 1987A at similar epochs, implying a progenitor mass of ∼ 20 M�.

Chevalier et al. (2006) also estimated a progenitor mass of ∼ 20 M� from their comparison

of the radio light curve to Compton- and synchrotron-dominated cooling models.

Based on the plateau luminosity and duration, and the mid-plateau expansion velocity,

Sahu et al. (2006), Misra et al. (2007) and Maguire et al. (2010) have estimated explosion

energies for SN 2004et in the range (0.88–1.2)×1051 erg. From these calculations of the

explosion parameters, using the hydrodynamic models of Litvinova & Nadezhin (1985),

Misra et al. (2007) also estimate a progenitor mass of ∼ 20 M�, consistent with previous

estimates.

A candidate progenitor star for SN 2004et was reported by Li et al. (2005a,b) from

pre-explosion optical images with the Canada-France-Hawaii Telescope. Through com-

parison with stellar evolutionary models, Li et al. (2005b) identified the source as a yellow

supergiant star with a zero-age main-sequence mass of 15+5
−2 M�. This was unusual as

progenitors of normal Type II-P were expected to be red, not yellow, supergiants. How-

ever, Crockett et al. (2009) found that the same candidate progenitor star was still visible

∼ 3 years after explosion. Their late time high-resolution NIR imaging with Gemini-North

adaptive optics, together with archival HST-WFPC2 and NICMOS data, revealed that the

candidate progenitor star was comprised of at least 3 distinct sources. Crockett et al.

(2009) reported the discovery of the unresolved progenitor as an excess of flux in a deep

pre-explosion i′-band image of NGC 6946 with the Isaac Newton Telescope Wide Field

Camera. After accounting for the late-time contribution of the SN using published opti-

cal spectra, they determined the progenitor was most likely to be a late K to late M-type

supergiant with an initial mass of 8+5
−1 M�, much lower than the previous mass estimates

from hydrodynamical modelling.
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5.2.8 Evidence for dust production

From their spectroscopic observations, Sahu et al. (2006) showed the temporal evolution

of the oxygen doublet [O ] 6300, 6363 Å and Hα line profiles from days 277 to 465,

highlighting a blueshift in the emission peak of both, and a flattening of the Hα emission

peak, beyond day 300. This, together with a steepening of the light curve after day ∼ 320,

they interpreted as indications of early dust formation in the ejecta of SN 2004et. Misra

et al. (2007) also found that rate of decline in the optical light curves had accelerated

between ∼ 320–386 days.

Fabbri, Sugerman & Barlow (2005) reported the day 64 detection of SN 2004et in all

four Spitzer IRAC bands, from 3.6 to 8.0µm, in SINGS Legacy program archival images

of NGC 6946 (see Section 5.4).

At the time of completing the mid-IR studies of SN 2004et discussed in the following

sections of this thesis, similar work was presented by Kotak et al. (2009). They presented

their own and archival Spitzer mid-IR observations of SN 2004et obtained between days

64 and 1406, together with late-time optical spectra. They concluded that:

• For days 300–795, the spectral energy distribution was comprised of three com-

ponents – hot, warm and cold – each respectively due to emission from: optically

thick gas; newly-formed, ejecta-condensed dust; and an IR echo from the interstellar

medium of the host galaxy.

• The mass of dust formed in the ejecta grew to a few times 10−4 M�, located in

co-moving clumps of fixed size. From their Spitzer IRS spectra, they reported the

first spectroscopic evidence of silicate dust formed in the ejecta of a supernova,

supported by the detection of strong but declining molecular SiO emission in the

8µm region.

• After about 2 years post-explosion, the appearance of broad, box-shaped optical

emission line profiles was due to the impact of the ejecta on the circumstellar

medium of the progenitor star, resulting in the formation of a cool, dense shell to

which they attributed responsibility for a later rise in the mid-IR emission from

SN 2004et.

The work of Kotak et al. (2009) is compared to our own as appropriate throughout this

chapter.
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Maguire et al. (2010) reported optical and NIR photometric and spectroscopic ob-

servations of SN 2004et carried out from just after explosion to +500 days. Their NIR

spectrum at day 306 showed a clear detection of the first overtone band of CO at ∼ 2.3µm,

which they interpreted as being a signature of dust formation. By analysing the optical

light curves in the early nebular phase, they found that the BVR decline rates between

days ∼ 136 and 296 were consistent with those expected from light curves powered by

the radioactive decay of 56Co (assuming complete γ-ray trapping). However, between

days ∼ 296 and 414 they found that these decline rates had steepened. They also noted a

significant blueshift in the peak of the Hα emission line from days ∼ 300 to 464, in agree-

ment with the results of Sahu et al. (2006). These results were interpreted as signatures

of dust formation occurring post 300 days. Their presentation of very late time (> 1000

days) photometry showed a flattening of the optical and NIR light curves, which they

mainly attributed to the interaction of the SN ejecta with the circumstellar medium (CSM),

following the work of Kotak et al. (2009).

5.3 Optical spectroscopy of SN 2004et

In addition to the photometric data of SN 2004et presented in this chapter, optical spec-

troscopy was also obtained as part of the SEEDS program. The observations, data process-

ing and measurements were carried out by SEEDS collaborator, J. Gallagher (University

of Cincinnati), but interpretation of these data is my own work for this thesis. For clarity,

my interpretation is noted as “THIS WORK” in the following section.

The Gemini Multi-Object Spectrograph on Gemini-North (GMOS-N) was used to

observe SN 2004et as part of program GN-2005B-Q-54 (PI: G. Clayton), on 5 August and

31 October 2005, corresponding to 317 and 404 days after explosion. A log of these and

the other Hα-region observations analysed here can be found in Table 5.1. The GMOS-N

observations used a 0.′′75 slit width and the B600-G5303 grating in long-slit mode with

a position angle of 296◦. Three spectra were obtained during each epoch with identical

exposure times of 900 s. The central wavelength of the images were 5950, 5970, and 5990 Å,

respectively, to allow for gap removal of the combined spectra. A 2×2 binning of the CCD

pixels in the low gain setting was employed. All spectra were taken with adjacent GMOS

baseline calibration flat exposures to correct for sensitivity gradients across the CCD, and

CuAr spectra were utilised for the initial calibration of the dispersion solution.
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Table 5.1: Log of optical spectroscopic observations of SN 2004et from the SEEDS collaboration
(GMOS-N, PI: Clayton), from the authors Sahu et al. (2006) and from online archives (TNG and
Subaru).

Date Age Telescope/ Wavelength Exp. Program ID Principal
[days] instrument range [Å] time Investigator

2005-06-07 259 HCT HFOSCa 3500–7000; 5200–9200 1×900 s – S06
2005-08-01 314 HCT HFOSCa 3500–7000; 5200–9200 1×900 s – S06
2005-08-05 317 Gemini GMOS-N 3500–10000 3×900 s GN-2005B-Q-54 G. Clayton
2005-08-29 336 TNG LRSb 3890-8000 1×1800 s AOT12 CAT-G109 E. de la Rosa
2005-10-17 391 HCT HFOSCa 3500–7000; 5200–9200 1×900 s – S06
2005-10-31 404 Gemini GMOS-N 3500–10000 3×900 s GN-2005B-Q-54 G. Clayton
2005-11-23 428 HCT HFOSCa 3500–7000; 5200–9200 1×900 s – S06
2006-06-30 646 Subaru FOCUSc 4670-8970 2×900 s S06A-152 K. Kawabata

a Raw data, including calibration frames and flux standards, provided by the authors of Sahu et al. (2006, S06).
b Raw and calibration data were downloaded from the online TNG archive at http://ia2.oats.inaf.it/.
c Raw and calibration data downloaded from the online Subaru Mitaka Okayama Kiso Archive (SMOKA) at

http://smoka.nao.ac.jp/index.jsp.

The GMOS-N spectra were reduced using the Gemini IRAF package. Pipeline pro-

cessed calibration images were obtained from the Gemini Science Archive. The spectra

were trimmed and then overscan, bias and flat-field corrected using the task gsreduce.

Wavelength calibration solutions were determined from the CuAr lamp spectra using

gswavelength, and the solution was applied to the SN 2004et spectra viagstransform.

Object spectra were extracted using gsextract. The observations were not flux cali-

brated since the primary goal was to monitor the evolution of the line profiles.

Sahu et al. (2006) [hereafter S06] presented photometric and spectroscopic data for

SN 2004et from approximately 8 to 541 days after the explosion. Their results showed

a shift to the blue of the central peak of both Hα and [OI] 6300,6364 Å at late times.

They concluded that this was indicative of new dust formed in the ejecta of SN 2004et.

However, comparisons between the Hα profiles in our GMOS-N spectra and those at

similar epochs in the archived calibrated spectra of S06, obtained from the Online Su-

pernova Spectrum Archive (SUSPECT)1, showed some inconsistencies, with their spectra

showing clear blueshifting of the Hα emission line profile between days 314 and 391,

while our own spectra showed little change between days 317 to 404. In order to rectify

this discrepancy, the S06 authors generously provided their raw data for SN 2004et for

several of the epochs presented in their paper. This allowed us to reduce the respective

sets of data in the same way, with the exception that the standard routines within IRAF

1http://bruford.nhn.ou.edu/∼suspect
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(ccdproc, apall, identify, dispcor) were used rather than counterparts in the

gmos package. The S06 data was obtained with the Himalaya Faint Object Spectrograph

Camera (HFOSC) on the 2-m Himalayan Chandra Telescope (HCT) of the Indian Astro-

nomical Observatory, Hanle, India. A description of the observational setup used by S06

can be found in their paper. We also obtained two archival spectroscopic observations of

SN 2004et taken on days 336 and 646. The earlier epoch corresponds to an observation

on 29 August 2005 taken with the DELORES (Device Optimized for the LOw RESolution;

LRS for short) spectrograph on the 3.58-m Telecopio Nazionale Galileo (TNG) at Roque de

Los Muchachos Astronomical Observatory in La Palma. The latter epoch corresponded

to an observation on 30 June 2006 with the Faint Object Camera and Spectrograph (FO-

CUS) on the 8.2-m Subaru telescope on Mauna Kea in Hawaii. The reduction procedure

matched that carried out by us for the GMOS-N and S06 spectra.

Since our goal was to self-consistently align a number of spectra taken with four

different instrument/telescope setups, we did not rely solely on the initial wavelength cal-

ibrations. During the extraction of each SN spectrum, a sky spectrum was also extracted

that was ultimately subtracted from the SN spectrum. Since the sky and SN spectra pos-

sessed identical wavelength calibrations, we derived corrections to the initial wavelength

calibrations of each of the SN spectra using the strong and narrow [O ] 5577 Å and 6300 Å

sky emission lines.

THIS WORK: The temporal evolution of the Hα profile between days 259 and 646, fol-

lowing the re-analysis of the combined set of spectra, is depicted in the left-hand panel

of Figure 5.2. The spectra are displayed in velocity space, with the continua subtracted

and the peaks of the emission line normalised to approximately unity. The dashed line

at 0 km s−1 corresponds to the rest wavelength of Hα at 6562.8 Å (the radial velocity of

the host galaxy NGC 6946 is +40 km s−1, Epinat et al. 2008). The inset shows a close-up

view of the earliest and latest Hα profiles, obtained just over a year apart at days 259 and

646, to highlight the overall blueshifting of the profile during this time. The dashed lines

in the inset indicate the line peak centres measured (by SEEDS collaborator J. Gallagher) on

days 259 and 646, with the blueshifting of the latter profile providing strong evidence for

the formation of dust in the ejecta during the intervening period, as described by Lucy

et al. (1989) for SN 1987A.
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Figure 5.2: The Hα and [O ] profile evolution. The left-hand panel shows the Hα spectra from days
259–646, with the normalised continua subtracted to a zero-level and the peaks of the emission line
normalised to unity. The dashed vertical line in the main plot corresponds to the rest wavelength
of Hα (NGC 6946 has a radial velocity of +40 km s−1). The inset shows a comparison of the earliest
and latest Hα spectra, obtained just over a year apart, to highlight the blueshifting (∼ 600 km s−1)
during this interval. The dashed lines in the inset plot indicate the measured line centres. The
right-hand panel shows the evolution of the [O ] 6300 Å profile from days 259 to 428. The dashed
line in the main plot indicates the rest velocity of the 6300 Å line. The emission feature in the red
wing corresponds to the [O ] 6363 Å line. The spectra from days 259, 314, 391 and 428 are from S06
(raw data kindly provided by the authors and calibrated by us). The spectra from days 317 and
404 are SEEDS GMOS-N observations, and those from days 336 and 646 are archival TNG-LRS
and Subaru-FOCUS spectra respectively. The earliest spectra have higher signal-to-noise and a
lack of intrinsic structure, particularly compared to the Subaru-FOCUS spectra at day 646.

The Hα line profiles presented by Sahu et al. (2006) showed a significant blueshifting

with time of the emission peak, amounting to a few hundred km s−1 with the largest shift

appearing to occur between days 277 and 314. Sahu et al. (2006) did not quantify the

shifts in their Hα profiles, beyond stating that a blueshift in the emission peak was clearly

seen beyond day 300 in their day 277–465 Hα (and [O ] 6300,6364 Å) profiles. Kotak et al.

(2009) confirmed this from their own analysis of the Sahu et al. (2006) spectra, reporting a

shift of −400 km s−1 in the whole Hα profile between days 301 and 314, but little sign of a

progressive blueshift in the subsequent day 314–465 period. Using the Sahu et al. (2006)

spectra, along with additional spectra, Maguire et al. (2010) found that the peak of the

Hα emission line was at +280 ± 50 km s−1 between days 163 and 300, but from days 314

to 464 showed a constant blueshift to −137 km s−1.

The recalibrated spectral dataset was used to measure the wavelength of peak Hα

emission in each of the profiles plotted in panel (a) of Figure 5.2. The evolution of the

peak wavelength is shown in Figure 5.3. The Hα line peaks show an overall blueshifting

between days 259 and 646 of ∼ 13.2 Å, corresponding to a velocity shift of ∼ −600 km s−1.
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Between days 259 and 314 we measured an initial blueshift of ∼ 3 Å (≈ 140 km s−1), not

as large as the 400 km s−1 shift between days 301 and 314 measured by Kotak et al. (2009)

from the Sahu et al. (2006) spectra in the SUSPECT archive. While we find little change

between days 314/317 and day 391 in the measured emission line peaks in the recalibrated

spectral dataset (Figure 5.3), between days 404 and 428 we measured a blueshifting of

the emission peak by ∼ 4 Å (185 km s−1), followed by a further blueshifting of ∼ 4.5 Å

(205 km s−1) between the spectra obtained at days 428 and 646. We therefore find that the

majority of the blueshifting occurred after day 391.

Figure 5.3: The evolution with time of the measured wavelength
of the Hα emission peak of SN 2004et.

Whilst there is no strong evidence for a developing line asymmetry in the earlier

epoch Hα profiles (Figure 5.2), a diminution of the red wing can be discerned by days

428 and 646. By day 646 a significant blueshifting (∼ 4.5 Å) of the whole profile since day

428 is evident, with multiple peaks evident at the centre of the profile, although there are

earlier inflections in the blue wing of the Hα profiles. Two broad features either side of

the main emission line (at ∼+7000 and −6000 km s−1) have appeared by day 646. Kotak

et al. (2009) presented three later optical spectra of SN 2004et, obtained with the Keck

telescopes on days 823, 933 and 1146, which show similarities to, and a development of,

the Subaru day 646 Hα profile. They described the Hα profile from the late-time Keck

spectra as having a steep-sided, box-like component, with a half width at zero intensity

(HWZI) of 8500 km s−1 and noted that the characteristic ejecta profile of Hα seen in the

S06 spectra may still be present at days 823 and 933, with a HWZI of ∼ 2000 km s−1, but

that its presence at day 1146 is less certain.
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The 6300 and 6363 Å lines of [O ] can be seen in emission on the blue side of the Hα

profiles plotted in Figure 5.2. The right-hand panel of Figure 5.2 displays the [O ] 6300 Å

velocity profiles for days 259–428 (the day 646 profiles had too low a signal to noise). The

inset compares the day 259 and day 428 [O ] profiles, showing a clear diminution of the

red wing of the day 428 profile relative to day 259.

5.4 Mid-infrared observations and data processing

5.4.1 Gemini-Michelle and Spitzer photometry

NGC 6946, the host galaxy of SN 2004et, was observed with the Spitzer Space Telescope

by the SINGS Legacy program (Kennicutt et al. 2003) between June and November 2004,

such that the region of the SN was serendipitously imaged pre- and post-explosion.

As explained in Chapter 3, Section 3.3.1, the SINGS Legacy program usually took two

IRAC and MIPS images of each galaxy, separated by a minimum of 24 hours, in order to

best correct for image artifacts. In the case of the IRAC observations of NGC 6946, the

first of the two images was taken on 10 June 2004 (104 days prior to the SN explosion)

but later that same day unforeseen problems caused the telescope to enter safe mode,

ending observations scheduled for the rest of the week. These observations were re-

scheduled and took place over 6 months later, with the second of the SINGS IRAC

images of NGC 6946 being taken on 25 November 2004, 64 days after the explosion of the

SN 2004et. Figure 5.4 shows the position of the SN in relation to its host galaxy NGC 6946

in the pre- and post-explosion SINGS IRAC images, together with a closer view of the

SN region in the different IRAC wavebands. The first MIPS images of the galaxy were

acquired by the SINGS program on 9 July 2004, 75 days before the SN exploded.

SN 2004et was clearly detected in the SINGS IRAC image at day 64 and was subse-

quently monitored with IRAC, MIPS and the IRS Peak-Up Imaging (PUI) module via our

Spitzer GO programs during Cycles 2, 3, 4, 6 and 7. Cycle 6 was the beginning of the

Spitzer ‘warm’ mission whereby, after cryogen depletion, the observatory operates using

only the 3.6 and 4.5µm IRAC channels. The sensitivity with these detectors was expected

to remain unchanged from performance in the cryogenic mission. No other IRAC chan-

nels or Spitzer instruments were available for use in Cycles 6 or 7. Archival Spitzer data

of the SN from Cycles 2 and 3 were also downloaded to provide a more complete time-

sample of the SN’s mid-IR evolution. In summary, post-explosion mid-IR observations
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Figure 5.4: The position of SN 2004et in SINGS Legacy IRAC images of NGC 6946. Panels (a) and
(b) show the whole galaxy at 3.6µm pre- (day -104) and post-explosion (day 64) respectively. The
square is centred on the SN coordinates, with the SN clearly evident at day 64. Panels (c), (d) and
(e) zoom in on the square region of the SN field at 4.5, 5.8 and 8.0µm respectively at day 64.

of SN 2004et were taken between November 2004 and August 2010, corresponding to

an age range of 64 to 2151 days. With the Spitzer Space Telescope, there are 12 epochs of

observations in each of the four IRAC wavebands, with a further three epochs of IRAC

observations during the ‘warm’ mission in just the 3.6 and 4.5µm channels. There are 8

epochs of IRS PUI observations at 16µm, and 9 epochs of MIPS 24µm observations. Of

the 33 individual Spitzer observations listed in Table 5.2, the first 3 were obtained by the

SINGS Legacy program, 5 were obtained by programs led by PIs Meikle and Kotak, and

25 were obtained by our SEEDS program.

In addition to the Spitzer mid-IR observations, complementary broad-band N′ pho-

tometry at 11.2µm was obtained with Michelle on Gemini-North during 2005, 2006, 2007

and 2008, consisting of 6 observations and corresponding to 4 epochs. A time-ordered list

of all the Spitzer and Michelle mid-IR observations of SN 2004et is provided in Table 5.2.
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Table 5.2: Summary of observations - Mid-infrared imaging of SN 2004et with the Spitzer Space
Telescope and Gemini-North.

UT date Age Detector λe f f FoV Pixel scale Exp. time Ref.
[days] [µm] [′ × ′] [′′/pixel] [s]

2004-06-10 -104 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 1.2 107.2 [1]
2004-07-09 -75 MIPS 24.0 5.4× 5.4 1.5 161.5 [1]
2004-11-25 64 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 1.2 107.2 [1]
2005-07-13 294 IRS-PUI 16.0 1.0× 1.2 1.2 629.2 [2]
2005-07-19 300 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 14.4 [3]
2005-07-30 311 Michelle 11.2 (N′) 0.5× 0.4 0.1 1081.9 [4]
2005-08-03 315 MIPS 24.0 5.4× 5.4 0.75 140.0 [3]
2005-09-17 360 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 14.4 [3]
2005-09-24 367 MIPS 24.0 5.4× 5.4 0.75 140.0 [3]
2005-11-02 406 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 536.0 [2]
2005-12-22 456 IRS-PUI 16.0 1.0× 1.2 1.2 629.2 [2]
2005-12-30 464 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 14.4 [3]
2006-01-11 476 MIPS 24.0 5.4× 5.4 0.75 140.0 [3]
2006-05-12 597 Michelle 11.2 (N′) 0.5× 0.4 0.1 811.4 [5]
2006-05-14 599 Michelle 11.2 (N′) 0.5× 0.4 0.1 376.3 [5]
2006-08-04 681 IRS-PUI 16.0 1.0× 1.2 1.2 629.2 [6]
2006-08-13 690 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 14.4 [7]
2006-09-01 709 MIPS 24.0 5.4× 5.4 0.75 140.0 [7]
2006-09-10 718 IRS-PUI 16.0 1.0× 1.2 1.2 56.6 [7]
2006-12-29 828 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 124.8 [7]
2007-01-21 851 MIPS 24.0 5.4× 5.4 0.75 420.0 [7]
2007-01-27 857 IRS-PUI 16.0 1.0× 1.2 1.2 132.1 [7]
2007-06-26 1007 IRS-PUI 16.0 1.0× 1.2 1.2 283.1 [7]
2007-07-03 1015 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 321.6 [7]
2007-07-09 1020 Michelle 11.2 (N′) 0.5× 0.4 0.1 1999.2 [8]
2007-07-10 1021 MIPS 24.0 5.4× 5.4 0.75 420.0 [7]
2007-08-02 1044 IRS-PUI 16.0 1.0× 1.2 1.2 283.1 [9]
2007-08-12 1054 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 321.6 [9]
2007-08-27 1069 MIPS 24.0 5.4× 5.4 0.75 420.0 [9]
2007-12-09 1173 IRS-PUI 16.0 1.0× 1.2 1.2 283.1 [9]
2007-12-27 1191 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 321.6 [9]
2008-01-07 1202 MIPS 24.0 5.4× 5.4 0.75 420.0 [9]
2008-01-17 1212 IRS-PUI 16.0 1.0× 1.2 1.2 1258.4 [10]
2008-06-21 1368 Michelle 11.2 (N′) 0.5× 0.4 0.1 1928.6 [11]
2008-07-09 1386 Michelle 11.2 (N′) 0.5× 0.4 0.1 2257.9 [12]
2008-07-18 1395 IRAC 3.6/4.5/5.8/8.0 5.2× 5.2 0.75 321.6 [9]
2008-07-29 1406 MIPS 24.0 5.4× 5.4 0.75 420.0 [9]
2009-08-06 1779 IRAC 3.6/4.5 5.2× 5.2 0.75 1161.6 [13]
2010-01-05 1931 IRAC 3.6/4.5 5.2× 5.2 0.75 1161.6 [13]
2010-08-13 2151 IRAC 3.6/4.5 5.2× 5.2 0.75 1161.6 [14]

[1] Spitzer Cycle 1 SINGS Legacy program 00159, PI: Kennicutt.
[2] Archival data, Spitzer Cycle 2 GO program 20256, PI: Meikle
[3] This thesis, Spitzer Cycle 2 GO program 20320, PI: Sugerman.
[4] This thesis, Gemini semester 05A program GN-2005A-Q-20, PI: Barlow.
[5] This thesis, Gemini semester 06A program GN-2006A-Q-1, PI: Barlow.
[6] Archival data, Spitzer Cycle 3 GO program 30292, PI: Meikle.
[7] This thesis, Spitzer Cycle 3 GO program 30494, PI: Sugerman.
[8] This thesis, Gemini semester 07A program GN-2007A-Q-5, PI: Barlow.
[9] This thesis, Spitzer Cycle 4 GO program 40010, PI: Meixner.
[10] Archival data, Spitzer Cycle 4 GO program 40619, PI: Kotak.
[11] This thesis, Gemini semester 07B program GN-2007B-Q-4, PI: Barlow.
[12] This thesis, Gemini semester 08B program GN-2008B-Q-44, PI: Barlow.
[13] This thesis, Spitzer Cycle 6 GO program 60071, PI: Andrews. Cycle 6 took place during the Spitzer ‘warm’

mission following completion of the cryogenic mission. Only IRAC 3.6 and 4.5µm channels were available, with
expected sensitivity unchanged from performance in the cryogenic mission.

[14] This thesis, Spitzer Cycle 7 GO program 70008, PI: Andrews, Spitzer ‘warm’ mission.
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The exposure time listed in the table is the total time spent observing on-source. The

final column provides a key to the list of observing programs from which these data were

obtained; the program number and principal investigator are detailed in a footnote to the

table. Complimentary data retrieved from the archive are marked as such.

5.4.2 Data processing

The earliest Spitzer data of SN 2004et were those from the SINGS Legacy program. As

described in Chapter 3, Section 3.4.2, the SINGS Legacy team produced enhanced data

products which could be downloaded from the SINGS Legacy Data Deliveries section2

of the SSC website.

The MIPS 24µm mosaic of NGC 6946 (providing the pre-explosion image of SN 2004et

at day -75) were downloaded from the SINGS fifth and final data delivery in this way. The

mosaic was created from multiple Spitzer images obtained in scan-mapping mode over

two days (75 and 73 days prior to the explosion of SN 2004et), and processed with the

MIPS Data Analysis Tool version 3.06 (Gordon et al. 2005), along with additional custom

processing by the SINGS team. An outline of the processing steps they carried out is

given in Chapter 3, Section 3.4.3.

However, the enhanced SINGS IRAC data were not used due to the unusually long

time span between the two observations of NGC 6946 (∼ six months, compared to the

usual one or two days) which were combined by the SINGS team to construct the final

enhanced mosaic. Instead, the standard BCD pipeline data for each day (corresponding

to the pre-explosion image at day -104 and the first mid-IR post-explosion image at day

64) were downloaded from the Spitzer archive and further processed with the rest of the

Spitzer observations as described below.

The SEEDS and archival Spitzer data for the remaining epochs were downloaded from

the SSC archive using the Leopard software as and when they became available. Various

pipeline versions of the data have been looked at since inception of this work, but for the

results presented in this chapter the Spitzer pipeline versions S14.0.0 to S18.0.2 (IRAC),

S16.0.1 to S18.0.1 (MIPS) and S15.3.0 to S17.0.4 (PUI) have been used. An outline of the

processing steps of the pipelines for the three instruments can be found in Chapter 3,

Section 3.4.2.

2http://ssc.spitzer.caltech.edu/legacy/singshistory.html
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The basic calibrated data (BCD) from the Spitzer pipeline were combined into final

mosaic images using the Spitzer MOPEX software package (Makovoz et al. 2006), which

includes outlying-pixel rejection, background matching, and mosaicking with drizzling

to increase the sampling of the point-spread function (PSF), as described in Chapter 3,

Section 3.4.2. The IRAC and MIPS data were re-drizzled to plate scales of 0.′′75/pixel

and 1.′′5/pixel, respectively (compared to the standard Spitzer pipeline products with a

spatial sampling of 1.′′2/pixel for IRAC and 2.′′45/pixel for MIPS), following the pixel sizes

adopted by the SINGS team for producing their enhanced data products. The PUI data

were re-drizzled to a plate scale of 1.′′2/pixel (compared to the standard pipeline data with

a spatial sampling of 1.′′8/pixel). The final mosaic images for all three Spitzer instruments

were calibrated in surface brightness units of MJy sr−1 during the BCD pipeline stage.

For the IRAC and MIPS 24µm data PSF-matched difference images were produced,

which use the pre-explosion SINGS mosaics as the reference images. A collaborator in

the SEEDS project, Dr. B. E. K. Sugerman, provided the difference images which he pro-

duced in the following way. The final mosaics produced by MOPEX were geometrically

registered to a common reference frame using matching point sources identified within

the fields of view, with a 2nd-order general fit within the IRAF geotran task. In all cases,

registration residuals were less than 0.1 pixels RMS in both the x and y dimensions. Once

registered, the data were PSF-matched and differenced using the DIFIMPHOT package

(Tomaney & Crotts 1996) as implemented and modified by Sugerman et al. (2005). Two

approaches were taken to PSF-matching. In the first, an empirical PSF was built for each

image using bright, isolated point sources combined using the daophot PSF-building

tasks (Stetson 1987). In the second, these same tasks were run on a single theoretical PSF

available for each Spitzer IRAC and MIPS 24µm image from the archive, after that model

had been rotated and scaled according to the data’s particular plate scale and position

angle. Images were PSF-matched separately using the empirical and theoretical PSFs,

photometrically scaled by the median brightness of a number of matching point sources,

and then subtracted to yield the final difference images. In general, the difference images

made using the theoretical PSFs were of higher quality (i.e., smaller subtraction residuals

and less background noise) since the shape of Spitzer’s PSFs have varied quite little during

its mission. In practice, these techniques allow the reliable detection and measurement

of changes in point sources that would be considered significant below the 1-σ level in

direct, undifferenced images (Sugerman et al. 2002). Examples of IRAC direct images
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are shown in Figure 5.6 for four epochs, while the corresponding difference images are

shown in Figure 5.7. Figure 5.8 shows PUI 16µm and MIPS 24µm direct images for three

and four example epochs respectively, together with the corresponding MIPS difference

images.

The Gemini Michelle data were downloaded from the Gemini Science Archive and

processed with the Gemini IRAF midir tasks and further cleaning procedures as de-

scribed in Chapter 2, Section 2.5.2 and Appendix B, Section B.2. The flux densities, or

upper flux limits, in counts measured from the final average-combined images were con-

verted to F(ν) units by multiplying with the flux conversion factor derived by aperture

photometry of standard stars as described in Chapter 2, Section 2.5.4.

5.5 Photometric analysis techniques

Flux densities of SN 2004et from the original Gemini and Spitzer PUI 16µm images and

from the Spitzer IRAC and MIPS difference images (where pre-explosion images were

subtracted from each epoch of post-explosion data) were measured by way of PSF-fitting

with the daophot and allstar tasks in IRAF. Aperture photometry was also carried

out on most of the images to compare with the results from PSF-fitting.

The techniques and software used for the photometry are described more throughly

in previous chapters (cross-referenced where relevant below) and are briefly discussed in

this section together with analysis procedures specific to the mid-IR data of SN 2004et.

5.5.1 PSF-fitted photometry

PSF-fitted photometry was carried out using the daophot package (Stetson 1987) within

IRAF as described more fully in Chapter 3, Section 3.5.1; and Appendix C.

Due to the lack of suitable isolated, bright stars in the Spitzer and Gemini images,

alternative methods were used to obtain input images for building the PSF models. For

the Spitzer IRAC, MIPS and IRS-PUI data, semi-empirical PSF images (with no noise in the

wings and pre-normalised to unit flux) were obtained from the SSC archive and processed

to the appropriate platescale for each SN image using the IRAF geotran task. The PSF

models for the Gemini-Michelle observations were generated from the bright standard

stars used to calibrate the data, after applying airmass corrections to the SN and standard

star images as described in Chapter 2, Section 2.5.4. The final PSF models for each
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Table 5.3: PSF-fitting parameters for fluxes presented in Table 5.6.

Instrument Image pixel PSF model PSF radiusa Fitting radiusb Sky annulic

scale (′′/pixel) created from (pixels) (pixels) (pixels)

SST-IRAC 3.6–8.0µm 0.75


Semi-empirical 18 5 1,18
SST-PUI blue 16µm 1.5 PSFs from 20 3 3,12
SST-MIPS 24µm 1.5 SSC website. 20 2 1,20
Gemini-Michelle 11.2µm 0.09 Standard stars 15–40 4 1,11

a The PSF radius is also known as the daophot psfrad parameter. As defined in Appendix C, this should contain
nearly all of the light of the brightest star used to construct the PSF model, and is equivalent to the radius of the
aperture used to set the magnitude of the PSF model.

b The fitting radius, also known as the daophot/allstar fitrad parameter, defines the extent of the PSF used for
fitting a point source).

c The sky fitting region is defined by the starting radius (sannulus) and width (wannulus) of the sky annuli.

instrument/waveband were constructed using these input images and the PSF-building

tasks within IRAF daophot. The magnitude of the PSF models was set by performing

aperture photometry on the semi-empirical profiles for the Spitzer data and the standard

stars for the Gemini data, with an aperture size set to contain approximately all of the

stellar flux, as determined from growth-curve analysis via multi-aperture photometry.

For the PSF-fitting, the size of the fitting radius was chosen to be approximately

equivalent to the FWHM of the stellar profile, with the sky background modelled during

the PSF-fitting process using appropriate sky annuli. In most cases, the allstar task,

used to do the actual PSF-fitting, was successful in centring on the SN profile via its

centroiding algorithm. However, at some epochs when the SN was quite faint, this

algorithm was turned off such that the PSF-fitting was centred directly on the input

coordinates corresponding to the SN position in the optical reported by Zwitter et al.

(2004). The final PSF-fitted and subtracted images were inspected alongside the un-

subtracted images to check the goodness of the fits. Table 5.3 lists the main parameters

used to obtain the final PSF-fitted flux densities presented in Table 5.6.

5.5.2 Aperture photometry

Aperture photometry of the SN in Spitzer and Gemini images was carried out for com-

parison with the results from PSF-fitting using the IRAF phot task, as described more

generally in Chapter 2, Section 2.6.1. A circular aperture of radius 5′′ was used for all of

the Spitzer photometry, corresponding to a linear size of ∼ 143 pc at the adopted distance

of 5.9 Mpc to SN 2004et. The theoretical diffraction limited angular resolution of Spitzer
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at the longest wavelength data presented here of 24µm is 7.′′1. Based on the variability of

the background in both the original and difference images, a smaller aperture might have

been preferable for when the SN had faded substantially at later epochs, but the 5′′ radius

aperture was chosen as a compromise for maintaining consistency of the photometry and

to minimise the size of the aperture correction required to determine the final flux. Sky

background levels in the original images were measured and subtracted using a concen-

tric sky annulus of inner and outer radii at 7.′′5 and 10′′ respectively, with a centroid sky

algorithm. The centroid sky algorithm is recommended in phot as reasonably robust

in rapidly varying and crowded regions. For the IRAC and MIPS difference images, the

residual background was subtracted using the same size sky annulus, with a 2σ-clipped

mean sky algorithm. At the earliest and latest epochs, when the SN was relatively bright

in the mid-IR, the phot task was centred on the SN for the photometry via a centroiding

routine. At epochs between days 690 and 1191, when the SN was quite faint, the aper-

ture was manually centred using the image World Coordinate System (WCS) coordinates

corresponding to the optical position of the SN as given by Zwitter et al. (2004).

The SN was quite faint where detected in the Gemini Michelle 11.2µm data, so these

were measured with the phot task using a relatively small aperture size. The aperture

radius was of the order of 0.′′4, corresponding to a linear size of ∼ 11.4 pc at the adopted

distance of 5.9 Mpc to SN 2004et. The sky background was determined from sky annuli

with radii between 0.′′5 and 2′′ using a mean sky algorithm, since the background was

relatively smooth. Airmass corrections were applied as detailed in Section 2.5.4.

Aperture corrections to the flux densities output from phot were derived as follows:

IRAC: As mentioned in Chapter 3, Section 3.4.2, IRAC data are calibrated using aperture

photometry on a set of stars with a calibration aperture radius of 10 native pixels (12′′)

in all 4 channels, such that photometry of science targets in smaller or larger apertures

than the calibration size requires an aperture correction (Reach et al. 2005a). Since a

smaller aperture was used for the photometry of SN 2004et it was necessary to correct the

measured flux densities to match the absolute calibration. Aperture corrections for pho-

tometry using different aperture sizes are given in Table 5.7 of the IRAC Data Handbook

(version 3.0; Reach et al. 2006), however, the table did not include the specific aperture

size and sky annulus used for measuring SN 2004et, so the corrections had to be derived.

As advised by the Spitzer Help Desk, aperture corrections for the IRAC data were

derived by measuring a sample of IRAC calibration stars used for the formal IRAC
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Table 5.4: IRAC primary calibration stars (Reach et al. 2005a) used for deriving aperture
corrections.

Stara Type R.A. Decl. 8µm flux UT date of observations Exp. timeb

(J2000.0) (J2000.0) density [mJy] [s]

NPM1p67.0536 K2 III 17 58 54.5 +67 47 37.4 185 ± 7 2004-04-05 2004-07-18 2005-03-31 0.2 × 5 = 1.0
KF09T1 K0 III 17 59 23.0 +66 02 56.0 38.8 ± 1.0 2004-06-28 2004-10-27 2005-05-06 1.2 × 10 = 12
HD165459 A1 V 18 02 30.7 +58 37 38.1 148 ± 4 2004-06-09 2004-12-21 2005-03-24 0.2 × 5 = 1.0
NPM1p64.0581 A0 V 19 12 47.2 +64 10 37.3 14.4 ± 0.3 2004-07-28 2004-10-12 2005-01-22 1.2 × 10 = 12

a The star names in this table are not the formal designations but those used by Reach et al. (2005a).
b Exposure times take the form a× b = c, where a is equivalent to the effective on-source frame time, b is the number

of frame repeats and c is the total on-source exposure time. The same exposure times were used for each epoch of
observations.

calibration described by Reach et al. (2005a). Four of the eleven primary calibration stars

were identified from the Reach et al. (2005a) paper and three randomly selected epochs of

IRAC BCD data of each star were downloaded from the SSC archive. Table 5.4 provides

details of the stars and observations used.

The multi-frame BCD data for each star were processed and combined into single

mosaic images per epoch and filter with the Spitzer MOPEX software, in the same way as

for the science data of SN 2004et (as described in Section 5.4.2). Images were converted

from surface brightness units to flux density units of µJy/pixel by taking into account the

pixel size in steradians. Aperture photometry of the calibration stars was then carried out

with IRAF phot using the aperture size and sky background region used by Reach et al.

(2005a) for the IRAC calibration (radius 12′′ with a concentric sky annulus with inner

and outer radii at 14.4′′ and 24′′ respectively), and also with the apertures used for the

photometry of SN 2004et (radius 5′′ with a concentric sky annulus with inner and outer

radii at 7.5′′ and 10′′ respectively). The ratio of the flux measured in the large aperture

(used for the IRAC flux calibration) to the flux measured in the smaller aperture (used for

the measuring the SN) was calculated for each calibration star for each epoch. The average

of these ratios was used as the aperture correction for each filter. A list of the aperture

corrections applied to the IRAC aperture photometry is given in Table 5.5. Standard

deviations from the average were less than 1% and the values derived are consistent with

interpolation between those listed in Table 5.7 of the IRAC Data Handbook.

PUI and MIPS: The PUI 16µm and MIPS 24µm aperture corrections were derived using

semi-empirical PSFs from the SSC website (these were used as the PSF stars for the PSF-

fitted photometry). The PSF images were of unit flux with effectively zero background.
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Table 5.5: Spitzer IRAC, PUI and MIPS aperture corrections de-
rived for photometry of SN 2004et, using an aperture of radius 5′′

with a concentric sky annulus of inner and outer radii 7.5′′ and
10′′ respectively.

Instrument λe f f Ap. corr.
[µm]

IRAC 3.6 1.08
IRAC 4.5 1.10
IRAC 5.8 1.09
IRAC 8.0 1.11
PUI 16 1.50

MIPS 24 2.16

Aperture photometry was used to measure the fractional flux of the PSF images in an

aperture of radius 5′′, the same size aperture as that used for the science photometry of

SN 2004et. The ratios of the total unit flux to the fractional flux in the science aperture

were used for the final aperture corrections, the values of which are listed in Table 5.5.

The absolute calibration of the PUI 16µm data processed with Spitzer pipeline version

S15.3.0 was tied to a finite aperture of 12 PUI native pixels (equivalent to 21.′′6) explained

in the PUI flux calibration description of Section 3.4.2. A separate aperture correction

factor of 1.51 was derived for this, but is not listed in Table 5.5, since it differs from the

infinite-aperture calibration value by less than 1%.

For each Spitzer instrument/filter, the SN flux densities measured from the science

data with IRAF phot were multiplied by the values given in Table 5.5 to obtain the final

aperture-corrected flux densities. Errors introduced due to uncertainties in the aperture

corrections are of the order of 5–10%.

Gemini-Michelle: The aperture corrections to the Michelle 11.2µm flux densities were

estimated in a similar way to the Spitzer PUI and MIPS corrections described above, using

aperture photometry of the standard stars by taking the ratio of the number of counts in

the large aperture (used for the flux calibration) to the number of counts in the smaller

science aperture (used to do photometry on the SN). For an aperture of radius 4 pixels

(= 0.′′4), a multiplicative correction factor of ∼ 1.4 was applied. The airmass-corrected

flux densities of the SN detections were then scaled by this aperture-correction factor to

provide the final flux densities.
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5.5.3 Pre-explosion images

The pre-explosion SINGS images of SN 2004et with IRAC and MIPS revealed the presence

of spatially extended emission at and around the position of the supernova. Difference

imaging techniques were used to subtract this emission from post-explosion observations,

revealing a clearer evolution of the supernova’s brightness with time. The emission at the

location of the SN from the pre-explosion IRAC and MIPS images was measured using

aperture photometry with the same size apertures and sky annuli as described above.

Whilst similar pre-explosion emission would be expected at IRS-PUI wavelengths,

no such observations were available. Initially, the pre-explosion flux level at 16µm was

estimated by blackbody interpolation between the IRAC and MIPS pre-explosion flux

densities. The best fit with a 410 K blackbody to the longest wavelengths (8 and 24µm)

gave a 16µm pre-explosion flux estimate of∼ 520µJy, which was subtracted from the post-

explosion 16µm fluxes. However, blackbody fitting to the supernova SEDs (described in

Section 5.8) indicated a significant over-estimation of the net 16µm flux, especially at the

later epochs, suggesting that the pre-explosion background estimate was too large. Since

the nature of the spatially extended emission seen in the IRAC and MIPS pre-explosion

images is unknown, possibly including unresolved stars and/or H  regions, it is unlikely

that a simple blackbody would be representative of the emission. In fact, the 410 K

blackbody could not fit the IRAC fluxes from 3.6–5.8µm. An alternative method was

adopted to estimate a pre-explosion 16µm background flux, whereby blackbodies were

fit to the day 1015 SED, where the 16µm flux was particularly discrepant, with the 16µm

flux omitted. The flux at 16µm was then obtained from the fit. Knowing the measured

flux at this epoch and the flux indicated by the best blackbody fit, a pre-explosion 16µm

flux was estimated by subtracting the latter from the former, yielding a flux that was

∼ 40% of that estimated by blackbody fitting to the pre-explosion fluxes. All PUI data

were corrected for this estimated pre-existing flux level. The results from the two methods

obviously differ most when the SN is at its faintest levels (days 828–1054), with the flux

at this time being as much as a factor of 12 brighter with the adopted ‘boot-strap’ method

than that obtained from the blackbody interpolation of the pre-explosion IRAC and MIPS

data. Consequently, there are larger uncertainties associated with the 16µm flux densities

from days 828–1054, in addition to the statistical errors presented in Table 5.6.
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5.5.4 PSF-fitted photometry vs. aperture photometry

The PSF-fitting and aperture photometry of the SN in the original Spitzer IRAC images

was generally consistent to within 5–15 %, with a larger discrepancy at epochs where

the SN was very faint between days 690–1054. The two methods were slightly more

consistent when working on the difference images, generally between 2 and 10 %, but

again with larger discrepancies at the same epochs when the SN was faint.

The 16µm PUI flux densities were measured from the original images only, since there

were no pre-explosion 16µm images and, therefore, no difference images. The results

from both methods were consistent to within 8 %, except at day 718, when PSF-fitting

resulted in a 30 % higher flux than that from aperture photometry.

The PSF-fitting and aperture photometry from the original and difference Spitzer MIPS

24µm images were generally consistent to within 2–10 %, with a larger discrepancy at

days 851 and 1069, when the SN was at its faintest levels.

5.5.5 Flux density uncertainty analysis and upper limits

The final flux densities presented in the following section (5.6) were measured via PSF-

fitted photometry as described above (although see previous discussion of PSF-fitting vs.

aperture photometry). Statistical uncertainties associated with the mid-IR flux densities

were estimated using the noise models of the daophot-allstar routine within IRAF

used for the PSF fitting. The allstar error model includes readout noise from the de-

tector; Poisson uncertainty in the source and background flux; an extra photometric error

term which was estimated to account for uncertainty in flat-fielding, bias-subtraction,

photometric scaling and calibration; and a profile error term that corrects for pixelization

of a function. The photometric error was estimated to be at the 10 % level and the profile

error used the task’s default value of 5 %.

For the photometry from the IRAC and MIPS difference images, uncertainties were

measured with a custom implementation of an optimal photometry code written for the

original version of DIFIMPHOT (Tomaney & Crotts 1996; used to produce the difference

images as described in Section 5.4.2), which includes the full noise model of allstar

described above as well as correct noise contributions from both input and reference im-

ages and the original sky values in each image prior to pipeline calibration.
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For the IRAC data, during days 690 to 1054, when the SN is faint, the formal flux

uncertainties obtained by this method are relatively large and, in some cases, larger than

the measured flux density itself (see Table 5.6 in the following section for a list of the

measured flux densities and their associated errors). As demonstrated in Sugerman et al.

(2002), difference imaging can reliably detect point sources at less than the 1-σ formal

uncertainty in direct, un-differenced images (which is what the uncertainties described

above seek to represent), most simply because the position of the object is known ahead

of time. The detection is unambiguous, but the flux measurement is not. The formal error

is large due to the background pixel variations which, as explained previously, include

noise contributions from the input and reference images. Without including these latter

contributions, the errors output from the allstar task alone are much smaller, since

the contribution of the background noise is relatively low (by definition, for a difference

image). Therefore the flux densities appear much better than 3-σ detections using the

allstar error model alone. In light of this, and because a negative flux is unrealistic

for those cases where the formal error was larger than the measured flux, we decided to

reduce the formal errors for the IRAC data, during days 690 to 1054, when the SN is faint,

such that the fluxes are considered to be 3-σ detections. This is a compromise between

both the allstar error model alone and the formal error described above, and these

reduced errors have been used for the mid-IR light curves and SED analysis presented in

the following sections.

Since the Spitzer images were calibrated in surface brightness units and converted to

flux densities (µJy), the effective readout noise and gain of the detectors, required for an

accurate noise model, were set as follows:

effective gain = N × (GAIN ∗ EXPTIME)/(FlUXCONV ∗ FAC)

effective readnoise =
√

N × READNOISE

where the following were keywords from the image headers: GAIN, in electrons/data

number (DN); EXPTIME, the effective integration time in seconds; FLUXCONV, the

Spitzer flux calibration factor in units of (MJy/sr)/(DN/s); and READNOISE, the detec-

tor readout noise in electrons. FAC was the conversion factor used to change flux units

from MJy/sr to µJy and N was the number of on-source frames (BCDs) that were averaged

to produce the final mosaic image.
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For non-detections of the SN in the IRAC difference images, the formal uncertainty

described above (that including the noise contributions from the input and reference im-

ages) was reported as the upper limit to the flux density for that epoch. It was empirically

found that a point source with this flux density was marginally detectable, while a source

with three-times this flux density was reliably detected; i.e., the upper limits should be

considered significant at only the 1-σ level.

The upper limits for the non-detections in the Gemini data at days 598 and 1020 are 3-σ

values based on the uncertainty of the background in the region of the SN position scaled

to a diffraction-limited size aperture, as described more fully in Chapter 2, Section 2.6.3.

5.6 Evolution of the mid-IR emission

Table 5.6 lists the complete set of Spitzer and Gemini mid-infrared flux densities and

associated uncertainties/upper-limits of SN 2004et from days 64 to 2151 as determined

from the PSF-fitting techniques described in Section 5.5. Spitzer IRAC, MIPS and IRS-PUI

data have had pre-explosion flux levels subtracted as discussed in Section 5.5.3. Measured

(IRAC and MIPS) and estimated (PUI) pre-explosion flux densities at the position of the

SN are summarised in the last row of the table.

The Spitzer IRAC, PUI 16µm and MIPS 24µm mid-IR light curves (with pre-explosion

levels subtracted) are shown in Figure 5.5. For clarity, the 4.5µm, 5.8µm, 8.0µm, 16µm

and 24µm light curves have been arbitrarily shifted by the factors shown. Upper limits to

the flux densities at 3.6µm and 5.8µm are indicated by the downward pointing arrows.

Each waveband demonstrates the decline in brightness from the earliest epochs to around

day 800 when the SN has faded or is fading to its faintest levels. At 3.6µm and 5.8µm,

the upper limits measured from the difference images indicate that the SN faded to below

background levels for ∼ 200 days. The distinctive rise in brightness after this time (> 1000

days) is also evident in all wavebands. The latest Spitzer data at days 1779, 1931 and 2151

were obtained during the post-cryogenic phase of the mission, where only the shortest

wavelength IRAC channels at 3.6 and 4.5µm were available. They show that sometime

between days 1395 and 1779, the mid-IR brightness of the SN at 3.6 and 4.5µm began to

decline again, continuing with a slower decline to day 2151. The 3.6µm flux at day 2151

is about 9 % higher than the pre-explosion level, whilst the 4.5µm flux at the latest epoch

is a factor of 2.7 brighter than the pre-explosion level.
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Table 5.6: Mid-infrared photometry of SN 2004et. The shaded rows indicate those fluxes across
different wavebands to be considered as the same epoch.

UT date Age Flux density1/ upper limits2 [µJy]
[days]

IRAC3 Michelle N′ IRS-PUI3 MIPS3

3.6 µm 4.5 µm 5.8 µm 8.0 µm 11.2 µm 16 µm 24 µm
2004-06-10 -104 83.8 ± 10.2 45.4 ± 8.3 178 ± 25 412 ± 51 · · · · · · · · ·

2004-07-09 -75 · · · · · · · · · · · · · · · · · · 376 ± 25
2004-11-25 64 17490 ± 532 13038 ± 745 10046 ± 179 6020 ± 91 · · · · · · · · ·

2005-07-13 294 · · · · · · · · · · · · · · · 930 ± 33 · · ·

2005-07-19 300 726 ± 61 3151 ± 97 1291 ± 218 2162 ± 154 · · · · · · · · ·

2005-07-30 311 · · · · · · · · · · · · 1700 ± 200 · · · · · ·

2005-08-03 315 · · · · · · · · · · · · · · · · · · 832 ± 75
2005-09-17 360 430 ± 71 1728 ± 88 935 ± 285 1731 ± 156 · · · · · · · · ·

2005-09-24 367 · · · · · · · · · · · · · · · 735 ± 74
2005-11-02 406 315 ± 21 1045 ± 21 707 ± 79 1500 ± 77 · · · · · · · · ·

2005-12-22 456 · · · · · · · · · · · · · · · 890 ± 32 · · ·

2005-12-30 464 174 ± 67 656 ± 77 606 ± 293 952 ± 162 · · · · · · · · ·

2006-01-11 476 · · · · · · · · · · · · · · · · · · 686 ± 89
2006-05-12/14 597/599 · · · · · · · · · · · · ≤ 650 · · · · · ·

2006-08-04 681 · · · · · · · · · · · · · · · 670 ± 34 · · ·

2006-08-13 690 ≤ 49 45.9 ± 53.0 115 ± 220 342 ± 132 · · · · · · · · ·

2006-09-01 709 · · · · · · · · · · · · · · · · · · 663 ± 77
2006-09-10 718 · · · · · · · · · · · · · · · 562 ± 30 · · ·

2006-12-29 828 ≤ 45 29.4 ± 12.4 ≤ 87 145 ± 82 · · · · · · · · ·

2007-01-21 851 · · · · · · · · · · · · · · · · · · 513 ± 54
2007-01-27 857 · · · · · · · · · · · · · · · 446 ± 31 · · ·

2007-06-26 1007 · · · · · · · · · · · · · · · 324 ± 29 · · ·

2007-07-03 1015 ≤ 23 14.1 ± 17.5 ≤ 83 113 ± 76 · · · · · · · · ·

2007-07-09 1020 · · · · · · · · · · · · ≤ 400 · · · · · ·

2007-07-10 1021 · · · · · · · · · · · · · · · · · · 644 ± 48
2007-08-02 1044 · · · · · · · · · · · · · · · 366 ± 35 · · ·

2007-08-12 1054 ≤ 34 15.1 ± 14.0 ≤ 78 115 ± 67 · · · · · · · · ·

2007-08-27 1069 · · · · · · · · · · · · · · · · · · 610 ± 49
2007-12-09 1173 · · · · · · · · · · · · · · · 1023 ± 33 · · ·

2007-12-27 1191 52.5 ± 38.6 189 ± 10 345 ± 75 458 ± 73 · · · · · · · · ·

2008-01-07 1202 · · · · · · · · · · · · · · · · · · 1276 ± 42
2008-01-17 1212 · · · · · · · · · · · · · · · 1055 ± 31 · · ·

2008-06-21 1368 · · · · · · · · · · · · 1036 ± 212 · · · · · ·

2008-07-09 1386 · · · · · · · · · · · · 1016 ± 224 · · · · · ·

2008-07-18 1395 76.3 ± 22.6 258 ± 11 465 ± 49 578 ± 82 · · · · · · · · ·

2008-07-29 1406 · · · · · · · · · · · · · · · · · · 1563 ± 54
2009-08-064 1779 17.3 ± 7.6 113 ± 8 · · · · · · · · · · · · · · ·

2010-01-054 1931 14.4 ± 6.9 90.3 ± 16.8 · · · · · · · · · · · · · · ·

2010-08-134 2151 7.2 ± 3.0 76.7 ± 5.3 · · · · · · · · · · · · · · ·

Pre-explosion 83.8 ± 10.2 45.4 ± 8.3 178 ± 25 412 ± 51 · · · 221 ± 22 376 ± 25

1 All post-explosion flux densities were measured with PSF-fitted photometry (using IRAF daophot). Pre-explosion
IRAC and MIPS fluxes were measured in an aperture of radius 5′′ with sky annuli at inner radius 7.′′5 and outer radius
10′′ respectively, using a 2-σ clipped-mean sky algorithm (using IRAF phot).

2 Upper flux limits for the non-detections in the Gemini-Michelle data are 3-σ values based on the standard deviation
of the background in the region of the SN position scaled to a diffraction-limited size aperture. For the Spitzer IRAC
data, upper limits were estimated from the adopted error model described in Section 5.5.5.

3 Spitzer IRAC, MIPS and IRS-PUI data have had pre-explosion flux levels subtracted: IRAC and MIPS by use of
difference imaging techniques to subtract pre-explosion SINGS images, and IRS-PUI by estimating the pre-explosion
level from blackbody fits to the SED at day 1015 (see text). Measured (IRAC and MIPS) and estimated (IRS-PUI)
pre-explosion fluxes at the position of the SN are summarised in the last row of the table.

4 Observations at days 1779, 1931 and 2151 were obtained during the Spitzer ’warm’ mission, where only IRAC 3.6 and
4.5µm channels were available.
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Figure 5.5: Spitzer mid-infrared light curves of SN 2004et: 3.6, 4.5, 5.8 and 8.0µm (IRAC), 16µm
(IRS Peak-Up Imaging) and 24µm (MIPS). The IRAC and MIPS flux densities are from PSF-fitted
photometry carried out on difference images which use the pre-explosion image (day -104 for
IRAC and day -75 for MIPS) as the reference image. The 16µm flux densities are from PSF-fitted
photometry of the original images from which an estimated pre-explosion flux was subtracted
(see text for details). For non-detections, upper limits to the flux densities are indicated by the
downward-pointing arrows. See Section 5.5.5 for a discussion of the IRAC flux uncertainties for
days 690–1054 when the SN was faint. For clarity the light curves have been shifted vertically by
the factors indicated.
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Whilst the 3.6µm flux densities at days 1779 to 2151 are lower than the upper limits

between days 690 and 1015, the on-source integration times for the latter observations

were between factors of 3 and 80 longer than those for the earlier observations. The

corresponding increase in signal-to-noise for the IRAC ‘warm’ images, together with

difference imaging techniques, allowed the SN to be reliably detected at deeper levels

than for previous observations with shorter exposure times when the SN was also faint.

A selection of pre- and post-explosion IRAC images at 4.5µm, 5.8µm and 8.0µm are

shown in Figure 5.6, depicting the mid-infrared evolution of SN 2004et. The supernova

position is shown in the pre-explosion SINGS images at day -104 revealing evidence of

extended emission in this region. The first mid-IR images of the SN, obtained 64 days

after explosion (second row of figure) by the SINGS Legacy survey, showed the SN to be

very bright. This was during the photospheric plateau phase which characterises Type

II-P supernovae, where hot blackbody emission dominates the optical emission and its

Rayleigh-Jeans tail extends into the infrared. By day 1015 (third row), it can be seen that

the SN has faded to almost pre-explosion levels, but a late rise in brightness is clearly

evident by day 1395. Comparable difference images depicting the net mid-IR emission

at the SN position for the same epochs are shown in Figure 5.7. The first row again

shows the pre-explosion images at day -104, which were used as the reference images for

subtraction from the post-explosion images, to yield the difference images shown in the

remaining panels. At day 1015 when the SN has faded to its faintest levels, a detection

at 4.5µm can just be discerned. For the same epoch at 5.8µm, whilst there is positive

emission coincident with the position of the SN, this is at a similar level to the average

noise levels in the residual background of the difference image and is therefore considered

to be a non-detection for which an upper limit to the flux is derived. The SN is much

more clearly detected in the 8.0µm difference image at day 1015, although the irregular

residual background, seen as diagonal bands across all of the difference images at this

wavelength, creates relatively large uncertainties in the final measured flux.

Figure 5.8 shows similar example IRS-PUI 16µm and MIPS 24µm images, with the

same field of view as for the IRAC images in Figures 5.6 and 5.7. The first column

shows the 16µm data, while the second and third columns show the respective direct and

difference 24µm images. The first image in the second column shows the pre-explosion

SINGS image of the SN position at 24µm observed 75 days before the SN exploded.

This was the reference image used to create the MIPS difference images shown in the
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third column. The post explosion data are shown in rows 2–4. In the second row, the

images show the first observations with PUI and MIPS taken ∼ 10 months after the SN

had exploded, during the nebular phase when the SN was still quite bright. The third

row shows the observations almost 2 years later when the SN had faded substantially.

The last row shows the final epoch observations at 16 and 24µm, between 3 and 4 years

after explosion, from which it is evident that the SN had increased in brightness again,

mirroring the mid-IR evolution seen in the IRAC wavebands.

For the 16µm Spitzer-PUI data, the pre-explosion flux estimated by Kotak et al. (2009)

was ∼ 56 % higher than that from this work and, as expected, my results yield generally

higher post-explosion fluxes than those presented by Kotak et al. (2009). The factor by

which the post-explosion fluxes exceed those of Kotak et al. (2009) varies from ∼ 1.1 to

3.3. The largest differences in the photometry occur for days 1007–1044 when the SN

was close to its faintest levels in this waveband. During the final epochs observed (days

1212–1173), when the rebrightening was strongest, the fluxes agree to within 10 %.

For the 24µm Spitzer-MIPS data, Kotak et al. (2009) measured the flux in the two SINGS

pre-explosion images observed at days -75 and -73, as processed with the standard Spitzer

pipeline. They found the flux at day -75 to be a factor of almost 1.3 higher than that at day

-73. From these they measured an average pre-explosion flux which is almost 40 % lower

than the pre-explosion flux measured in this work. As discussed in Section 5.4.2, the pre-

explosion MIPS image used here for the analysis of SN 2004et was the SINGS enhanced

mosaic from their 5th data delivery, which combined data from both days. Investigating

the two separate images, I found a flux consistent with that of Kotak et al. (2009) at day

-73 but at day -75 I found the flux to be about a factor of 1.7 higher. I also measured

the fluxes of a number of nearby isolated point sources that were present in both images.

No systematic offset was found, with the photometry differing by no more than 1–10 %.

Large and small scale differences in the background were noticeable between the images,

likely in part due to artifacts resulting from the scan mapping mode employed by the

SINGS team to image the whole galaxy. Differences in the photometry of the isolated

point sources in these two separate images are most likely due to the varying background

levels. The SINGS enhanced 24µm mosaic used in this work was processed by the SINGS

team with steps that go beyond the standard pipeline to improve data quality. The flux

measured at the position of the SN in this pre-explosion image which combines the data

from both days is consistent with the flux of the pre-explosion standard pipeline image
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Figure 5.6: The SN position in Spitzer images at select epochs, revealing the mid-IR evolution
in IRAC bands 4.5, 5.8 and 8.0µm. The first row shows the SN field in the pre-explosion
SINGS images at day -104. The first mid-IR detections were obtained 64 days after explosion
when the SN was still very bright (second row). The third row shows that the SN had faded
to almost pre-explosion levels by day 1015, yet by day 1395 the SN has brightened again
(fourth row). Equivalent difference images (i.e., at the same wavelengths and epochs as
those in this figure), whereby the pre-explosion data is registered to and subtracted from the
post-explosion data, are shown Figure 5.7.



5.6. Evolution of the mid-IR emission 169

Figure 5.7: Example difference images in Spitzer IRAC bands 4.5, 5.8 and 8.0µm at equivalent
epochs to those images shown in Figure 5.6. The pre-explosion images at day -104 (first row)
have been registered to, and subtracted from, the post-explosion images using PSF-matched
difference imaging techniques (see Section 5.4.2). Note the strong, uneven background
residuals at 8.0µm.
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Figure 5.8: Example Spitzer PUI 16µm and MIPS 24µm images showing similar evolution
to that observed with IRAC. Three epochs of post-explosion data are shown in the direct
images for each instrument. These are comprised of the first observations with PUI and
MIPS ∼ 10 months after the SN had exploded, when the SN was still quite bright; followed
by observations almost 2 years later when the SN had faded substantially; to the final epoch
observations for each, between 3 and 4 years after explosion, showing the late-time rise in
brightness of SN 2004et. The first image in column 2 shows the pre-explosion SINGS MIPS
24µm image of the SN position observed 75 days before the SN exploded. The third column
shows the 24µm difference images at the corresponding epochs to those in column 2, which
use the day -75 SINGS image as the reference.
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at day -75 to within ∼ 2 %. Further investigation of the differences between the standard

pipeline data and the combined enhanced data is beyond the scope of this work.

Despite measuring a higher pre-explosion flux than Kotak et al. (2009) at 24µm, we

find that photometry from our difference images yields generally higher post-explosion

fluxes than theirs. There are a number of different methods employed in our respective

analyses that might result in the differences seen in the photometry at 24µm, and those at

other wavelengths. In the case of the 24µm data, it is unclear which of the two (standard

pipeline) pre-explosion images Kotak et al. (2009) used as a reference for their difference

imaging, whereas this work uses the data from both nights as combined in the final mosaic

delivered by the SINGS team. Differences between the background levels in all three of

these images have just been discussed. More generally, different techniques/software

were used to produce the final difference images, which is likely to result in different

background residuals affecting the photometry. In addition, Kotak et al. (2009) used

aperture photometry to measure their fluxes, whereas this work uses results from PSF-

fitting. Any differences in the photometry itself would be compounded by the possibly

different techniques used to interpolate the 16 and 24µm data to the IRAC epochs.

5.7 Optical and near-infrared photometry

This section summarises and discusses the optical and NIR (NIR) data of SN 2004et

obtained by the SEEDS project in order to help constrain, together with the mid-IR data

discussed in the previous section, the evolution of the spectral energy distribution of the

supernova (Sections 5.8 and 5.9). In general, the observations, data processing and flux

measurements were carried out by SEEDS collaborators, but collation and interpretation

of these data is my own work for this thesis with their permission. For clarity, where

analysis of the optical and NIR data is my own work, it is noted as “THIS WORK” in the

following paragraphs.

5.7.1 The observations

Optical and NIR photometric observations of SN 2004et were obtained as part of the

SEEDS program over the years 2004 to 2009, spanning 79–1803 days after explosion.

Table 5.7 provides a complete log of the optical and NIR photometric observations of

SN 2004et taken as part of the SEEDS project.
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Table 5.7: Log of optical and near-infrared photometric observations of SN 2004et from the
SEEDS collaboration.

Date Age Telescope/ Filters Exp. time Program ID Principal
[days] instrument Investigator

2004-12-10 79 Tenagra II 32” VRI 9×100 s – D. Welch
2004-12-20 89 Tenagra II 32” VRI 9×100 s – D. Welch
2005-06-17 268 Bok 2.3-m 256×256 IR cam JHK 20×30 s – K. Gordon
2005-08-05 317 Gemini GMOS-N g′r′ i′ 1×60 s GN-2005B-Q-54 G. Clayton
2005-08-05 317 Gemini NIRI JHK 22×30 s GN-2005B-Q-54 G. Clayton
2005-10-17 390 Gemini NIRI JHK 10×30 s GN-2005B-Q-54 G. Clayton
2005-10-31 404 Gemini GMOS-N g′r′ i′ 1×60 s GN-2005B-Q-54 G. Clayton
2006-07-06 652 Gemini NIRI JHK 22×30 s GN-2006A-Q-52 G. Clayton
2006-07-18 664 Gemini GMOS-N g′r′ i′ 1×60 s GN-2006A-Q-52 G. Clayton
2007-07-08 1019 HST WFPC2 F606W,F814W 4×400 s GO11229 M. Meixner
2007-07-08 1019 HST NICMOS2 F110W,F205W 5×128 s GO11229 M. Meixner
2007-07-08 1019 HST NICMOS2 F160W 4×128 s GO11229 M. Meixner
2008-01-20 1215 HST WFPC2 F606W,F814W 4×400 s GO11229 M. Meixner
2008-01-20 1215 HST NICMOS2 F110W,F205W 5×128 s GO11229 M. Meixner
2008-01-20 1215 HST NICMOS2 F160W 4×128 s GO11229 M. Meixner
2008-08-04 1412 Gemini GMOS-N g′r′ i′ 2×600 s GN-2008B-Q-44 M. Barlow
2009-08-30 1803 WIYN WHIRC H 4×180 s 2009B-0516 M. Otsuka

The first two epochs of optical photometry were obtained during the plateau phase

of the SN at days 79 and 89 with the 32” Tenagra II telescope in Arizona. A further three

epochs of optical photometry were obtained during the nebular phase between days

317 and 664 with the Gemini Multi-Object Spectrograph on Gemini-North (GMOS-N)

in Hawaii. In addition, an archival flux-calibrated Subaru spectrum was used to obtain

optical photometry at day 646 by integrating over the BVRI filter transmission curves.

Two epochs of late-time, high resolution observations of the SN field were obtained with

the HST Wide Field Planetary Camera 2 (WFPC2) around three years after explosion at

days 1054 and 1215. A final epoch of optical photometry, almost 4 years after explosion,

was obtained with GMOS-N at day 1412.

The first epoch of NIR photometry was obtained at day 268 with the 2.3-m Bok

telescope, part of the Steward Observatory at Kitt Peak, Arizona. This was followed by

three epochs of data from the Near InfraRed Imager (NIRI) on Gemini-North at dates close

in time to the optical images taken with GMOS-N during the nebular phase. Late-time,

high-resolution data was obtained with the HST Near Infrared Camera and Multi-Object

Spectrometer 2 (NICMOS2), at epochs corresponding to those of the optical WFPC2 data.

A final H-band image was taken approximately 5 years (day 1803) after explosion with

the WIYN High-resolution InfraRed Camera (WHIRC; Meixner et al. 2010), on the WIYN

3.5-m telescope at Kitt Peak, Arizona.
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5.7.2 Data processing

In the following paragraphs I briefly describe the processing steps carried out by SEEDS

collaborators for the data presented in this section.

Gemini/GMOS-N On days 317, 404, and 664, 60 s images were taken with GMOS-N in the

g′, r′, and i′ broad-band filters. Longer exposures of 2× 600 s in the same filters were taken

at day 1412 when the SN was expected to have faded. The images were reduced using

the Gemini IRAF package. Pipeline processed bias and flat field images were obtained

from the Gemini Science Archive. Object images were trimmed, corrected for overscan

and bias, and flat-fielded using the gsreduce task. Finally, gmosaicwas used to mosaic

the three GMOS CCDs into a single image. PSF-fitted photometry was performed on

the SN and a sample of standard stars from the photometric V, R, and I sequence of

Pozzo et al. (2006) to establish the nightly zeropoint. The GMOS Sloan Digital Sky Survey

(SDSS) magnitudes were transformed into Johnson V, R, and I magnitudes using the

transformation equations given by Welch et al. (2007). These linear transformations were

derived from the photometric V, R, and I sequence presented by Pozzo et al. (2006).

Gemini/NIRI In order to ensure a consistent sky background between exposures, indi-

vidual exposures of 30 s in each of the broad-band JHK filters were taken, with the total

number being dictated by the anticipated decline of the SN NIR light. A 5 ′′ dither pattern

was employed to ensure efficient removal of point sources while making sky images.

Data reduction for each night was performed using the standard NIRI routines within

the Gemini IRAF package. nprepare and niflat were used to derive the normalized

flat field and the bad pixel mask while nisky was used to create the final sky image.

nireduce was used to subtract this sky image from and apply the flat field correction

to the processed object images. Finally, the individual images in each filter were coad-

ded using the GEMTOOLS routine imcoadd. PSF-fitted photometry was performed on

SN 2004et and three standard stars present within the field. The JHK magnitudes of the

standard stars are contained within the 2MASS all-sky catalogue and were used to derive

the nightly zeropoint in each filter. The photometric uncertainty is dominated by the

standard deviation of the zeropoint derived from the three standard stars.
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Tenagra and Steward/Bok These early optical and NIR data were reduced, calibrated and

measured in a similar manner to the GMOS-N and NIRI observations described above

using standard routines within IRAF. The data were bias and dark subtracted, flat-fielded,

and the multiple exposures were combined to form the final image.

HST WFPC2 and NICMOS2 For the WFPC2 observations, imaging with the broadband

F606W and F814W filters was used to measure the V- and I-band flux densities. For the

NICMOS2 observations, imaging was carried out with the F110W, F160W, and F205W

filters, most closely representing the standard JHK-bands. Small-scale dithering was

employed for both instruments to improve S/N, remove cosmic rays and to improve the

pixel-scale of the final images by drizzle techniques. The WFPC2 observations used a

4-point dither × 400 s exposure for each band. The NICMOS2 observations used a 5-point

dither × 128 s in the F110W and F205W filters and a 4-point dither × 128 s for F160W.

The data were reduced and calibrated using the IRAF external package stsdas (ver-

sion 3.8) and included the removal of cosmic rays and other artifacts, as well as linearity

corrections. High-resolution images were created using the stsdas/drizzle package

and additional distortion correction and alignment was performed using background

stars. The point spread functions of these reference background stars were fit by Gaus-

sian profiles to obtain accurate positions, and then instrumental distortions were cor-

rected with the IRAF tasks xyxymatch, geomap, and geotran. The resultant pixel scale

is ∼0.02′′ pixel−1 in the WFPC2 images and ∼0.04′′ pixel−1 in the NICMOS2 images. The

FWHM of the PSFs was ∼3 pixels. Flux measurements were performed using the IRAF

daophot tasks.

For the WFPC2 data, HST magnitudes were converted to the Johnson-Cousins system

using the transforms of Dolphin (2000, 2009), which include charge transfer efficiency

(CTE) corrections.

THIS WORK: Whilst the broad band NICMOS filters, F110W, F160W and F205W, are

roughly equivalent to the J, H and K filters respectively, colour transformations are

not well constrained for late-time SN spectra at NIR wavelengths, and consequently

magnitudes were not converted to the standard JHK photometric system. The late-time

HST-NICMOS magnitudes listed in Table 5.9 are for the HST filters in the Vegamag system,

which uses an estimate of the flux density of Vega, from synthetic spectra integrated over
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the NICMOS bandpasses, as a photometric zeropoint. For each filter and epoch, the

measured count rate (CR, in units of DN s−1) at the position of the SN was converted to

flux by multiplication with the PHOTFNU (Jy s DN−1) conversion factor given in the fits

header, where PHOTFNU is the bandpass-averaged flux density for a source that would

produce a count rate of 1 DN−1. An approximate Vega-normalised magnitude was then

calculated from the following equation (NICMOS data handbook; Thatte et al. 2009):

m = ZP(Vega) − 2.5 log10(PHOTFNU × CR × 〈Fν(Vega)〉−1)

where 〈Fν(Vega)〉 is the bandpass averaged flux density (in Jy) for the NICMOS filters

using a model reference spectrum of Vega3 (Bohlin 2007) and ZP(Vega) is the magnitude

of Vega, which is defined to be 0.00 mag under the California Institute of Technology

(CIT) infrared photometry scale.

WIYN/WHIRC The WHIRC (Meixner et al. 2010) has a 2048×2048 HgCdTe VIRGO de-

tector with a pixel scale of ∼ 0.′′1 pixel−1. Sky conditions during the observation were fair,

with a seeing of ∼ 0.′′8. To minimise the effects of high background levels and pixel-to-

pixel variations on the array, dithering techniques were employed whereby the source

was offset in each frame of a series of exposures. The offset images were used for sky

level corrections. Data reduction was carried out using standard IRAF tasks. The array

linearity correction was performed using the WHIRC task wprep and a distortion correc-

tion was applied using files downloaded from the WIYN-WHIRC web page4. A selection

of 2MASS stars close to SN 2004et were used for final flux calibration. The WIYN H-band

observation of SN 2004et on day 1803 was the last of our NIR observations of the SN, some

5 years after explosion. The SN was not clearly detected due to the contribution from

neighbouring stars that were resolved in the high-resolution HST-NICMOS observations

(on days 1019 and 1215; see the following section). Consequently, an upper limit to the

magnitude was derived. The magnitude in an aperture of radius 0.′′6 (∼ 17 pc, for the

adopted distance of 5.9 Mpc) was measured using the IRAF daophot tasks. Estimated

contributions from 3 neighbour stars resolved in the high-resolution NICMOS F160W

filter (' H band) were measured from the NICMOS data and subtracted from the WIYN

magnitude to provide the final upper limit presented in Table 5.9.

3Taken from the NIC2 table of Photometric Keywords and Vegamag Zeropoints at
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Figure 5.9: Late-time high-resolution HST images reveal a complex field compared with Spitzer
IRAC data. Panel (a) shows the WFPC2 F606W image at day 1019 with a 5′′×5′′FOV centred on
the SN position. A source assumed to be the SN is located at the centre of the image (indicated
by the cross-hairs), with a close companion to the east (“star 2”) which is detected in both WFPC2
filters. Panel (b) shows the equivalent field in the NICMOS F110W filter at the same epoch. Star 2
is detected in all 3 NICMOS filters together with an additional red object just south of the SN
position. For comparison, panel (c) shows the Spitzer IRAC 3.6µm image at day 1054.

5.7.3 Late-time high resolution HST images

The late-time high resolution HST images reveal that the single point source seen at the SN

position in the Spitzer images is actually a complex field comprised of at least 3 sources.

Figure 5.9 shows example HST WFPC2 F606W (≈ V) and NICMOS F110W (≈ J) images

from July 2007 (day 1019) compared to the Spitzer IRAC 3.6µm image from August 2007

(day 1054). Each field of view is centred on the position of the SN and a source is located

at this position indicated by the cross-hairs. The star to the east (“star 2”) was detected in

both WFPC2 filters and all three NICMOS filters at days 1019 and 1215. The third star to

the south of the SN position (“star 3”) was detected in all three NICMOS bands but was

not detected in the WFPC2 filters at either epoch. The magnitude of star 2 was measured

from the WFPC2 images and transformed to V and Ic band magnitudes as described

previously for the SN.

THIS WORK: The V and Ic magnitudes of star 2 were de-reddened using E(B – V) = 0.41

mag (Zwitter et al. 2004) and adopting the extinction law of Cardelli et al. (1989) with

RV = 3.1, corresponding to AV = 1.27 ± 0.22 mag. The intrinsic (V − I)c colour was then

used to estimate an Rc band magnitude using a table of intrinsic colours as a function of

http://www.stsci.edu/hst/nicmos/performance/photometry/postncs_keywords.html
4http://www.noao.edu/wiyn/
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spectral type compiled by the Space Telescope Science Institute (STScI)5 based on the work

of Fitzgerald (1970) and Ducati et al. (2001). The derived colour index of (V − I)c = 0.8

indicated star 2 was a K1.0 star with an intrinsic Rc magnitude of ∼22.5. The equivalent

reddened Rc magnitude of 23.53 ± 0.50 was in reasonable agreement (within the errors)

with a magnitude estimated from fitting two PSFs to the blended ‘SN plus star 2’ in the

Rc-band GMOS-N image at day 1412. This PSF-fitted measurement (made by collaborator

Ben Sugerman) gave an Rc-band magnitude for star 2 of 23.63± 0.19. A B-band magnitude

for star 2 of 25.46 ± 0.50 was estimated in the same way.

The estimated reddened B and Rc magnitudes of star 2, together with the measured V

and Ic magnitudes, were subtracted from the optical magnitudes of SN 2004et obtained

from the Subaru-FOCUS and GMOS-N observations from day 646 onwards. During this

time the SN had faded substantially such that the neighbouring star 2 made a significant

contribution to the brightness measured at those epochs. At day 646, the estimated

contribution from star 2 was ∼ 8 % in the V band and ∼ 10 % in the Ic band, whilst by day

1412, the contribution was almost half that of the total flux in both bands. For epochs

earlier than day 500, the brightness contribution from star 2 was ≤ 1 %.

The late-time Gemini-NIRI JHK photometry at day 652 have not been corrected for

contamination by stars 2 and 3. As previously explained, the NICMOS magnitudes

are listed in the HST Vegamag system, and were not converted to the standard JHK

photometric system since colour transformations are not well constrained for late-time

SN spectra at NIR wavelengths. It is possible that these neighbouring stars made a small

but significant (∼ 10 %) contribution to the brightness measured in the NIRI observations

at day 652, so the uncertainties on the day 690 interpolated flux densities in Table 5.9 have

been increased to reflect this, by adding a further 10 % error in quadrature to the original

flux uncertainty.

5.7.4 Photometry and light curve evolution

THIS WORK: The final optical VRI magnitudes for SN 2004et are presented in Table 5.8,

including those of neighbouring star 2 discussed previously. The magnitudes for epochs

from day 646 onwards have been corrected for the contribution from star 2, but this

was not necessary for earlier epochs when the SN brightness dominated. The B-band

magnitude at day 646, corrected for the contribution from star 2, is detailed in the notes

5http://www.stsci.edu/ inr/intrins.html
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Table 5.8: Optical photometry of SN 2004et.

UT date Age Magnitudes Source
[days] V Rc Ic

2004-12-10 79 13.09 ± 0.04 12.38 ± 0.03 11.93 ± 0.03 Tenagra II
2004-12-20 89 13.21 ± 0.03 12.45 ± 0.03 11.98 ± 0.03 Tenagra II
2005-08-05 317 17.35 ± 0.02 16.52 ± 0.03 15.91 ± 0.04 Gemini GMOS-N
2005-10-31 404 18.28 ± 0.04 17.69 ± 0.03 16.87 ± 0.04 Gemini GMOS-N
2006-06-30 646∗ 21.59 ± 0.55† 21.00 ± 0.55† 20.63 ± 0.56† Subaru FOCAS
2006-07-18 664 22.13 ± 0.06† 21.56 ± 0.09† 21.37 ± 0.11† Gemini GMOS-N
2007-07-08 1019 23.20 ± 0.20‡ · · · 22.70 ± 0.20‡ HST WFPC2
2008-01-20 1215 23.40 ± 0.30‡ · · · 23.00 ± 0.30‡ HST WFPC2
2008-08-04 1412 23.80 ± 0.40† 22.87 ± 0.28† 22.80 ± 0.70† Gemini GMOS-N
Star 2 24.2 ± 0.3 23.5 ± 0.5 22.9 ± 0.4 HST WFPC2
Zero-magnitude flux [Jy] 3670.3 2972.3 2402.1 Evans (1993); Glass (1999)
λe f f [µm] 0.55 0.64 0.80
∗ Optical photometry at day 646 was estimated from an archival Subaru-FOCAS spectrum by integrating over the

BVRI filter transmission curves. The B band magnitude of SN 2004et at this time was 22.47 ± 0.22, corrected for an
estimated B-band contribution from star 2 of 25.46 ± 0.50 (see text).

† The SN magnitudes at these late epochs have been corrected for contamination by star 2 (whose magnitudes measured
from the high-resolution HST data are listed in the final table entry).

‡ Since the SN and star 2 were resolved in the day 1019 and day 1215 HST images, the magnitudes given for these
epochs are for the SN alone.

to the table. The NIR JHK magnitudes of the supernova are given in Table 5.9, although

the magnitudes measured from the NICMOS images at days 1019 and 1215 are HST

Vegamags (as previously explained). The optical and NIR light curves are presented in

Figures 5.10 and 5.11 respectively.

Figure 5.10 combines the BVRI data of Sahu et al. (2006) with the SEEDS data described

above to provide optical light curves (open symbols) from a few days after the explosion

to almost 4 years later. The light-curves are well-sampled until at least day 400, but

less-so beyond this time. This is generally found to be the case for Type II SNe, since very

few have been observed beyond ∼ 500 days. However, SN 1987A, the closest supernova

to have occurred in the past century, has been well-studied for over 2 decades and

provides detailed light curves for comparison. The broad-band BVRI light curves of

SN 1987A (Hamuy & Suntzeff 1990; Walker & Suntzeff 1991)6 are plotted as solid curves

in Figure 5.10, normalised to the data of SN 2004et at around 200 days. The light curve

evolution of both supernovae is quite similar from the early nebular phase (∼ 160 days)

to around day 650, although beyond this time, their evolution is markedly different. The

brightness of SN 2004et clearly levels off from around day 1000 in the VRI bands (the last

B-band measurement was at day 646), while SN 1987A continued to fade. Interestingly,

6Hamuy & Suntzeff (1990) data downloaded from the NOAO FTP archive: ftp://ftp.noao.edu/sn1987a/ubvri.txt
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Figure 5.10: BVRI light curves of SN 2004et. For clarity, the plots have been vertically shifted
by the amounts shown in the legend. The black dashed lines are the expected light curve based
on the decay of 56Co and other isotopes (Woosley et al. 1989) normalised to the V and R band
magnitudes of SN 2004et during the early nebular phase (between∼160–260 days). The solid lines
are the corresponding light curves of SN 1987A (Hamuy & Suntzeff 1990; Walker & Suntzeff 1991)
normalised to those of SN 2004et at ∼ 200 days. Dotted lines are only to guide the eye along the
horizontal or “flat” parts of the light curve. These curves are typical for SNe that show a light
echo, in that the light curve levels off or “flattens” once the SN flux drops below that of the echo.

the slope of the radioactive decay curves resemble those of SN 1987A between days ∼ 720

and 800, around the time when dust production for SN 1987A was assumed to have ended

(day 775; Wooden et al. 1993).

For the first few years during the nebular phase, the light curve of Type II SNe is

predominantly powered by γ-rays from the radioactive decay of 56Co to 56Fe, at a rate

corresponding to the e-folding time of the 56Co decay (τ56 = 111.3 days). For example,

the R-band photometry of the Type II SN 1990E (Benetti et al. 1994) closely follows

this evolution through to ∼ 540 days post-explosion, suggesting that simple 56Co decay

provides a good estimate of the unextinguished R-band light curve for at least that long.

The expected decay rate is γ (mag per 100 days) = 0.98 for complete γ-ray trapping (Patat

et al. 1994). For SN 2004et, Sahu et al. (2006) found that the decay of the broad band BVRI

light curves in the early nebular phase (180–310 days) was linear, with decay rates of γB

∼ 0.64, γV ∼ 1.04, γR ∼ 1.01 and γI ∼ 1.07. Maguire et al. (2010) found similar results from

their own data (∼ 136–300 days), with γB = 0.64 ± 0.02, γV = 1.02 ± 0.01, γR = 0.92 ± 0.01

and γI = 1.09 ± 0.01. With the exception of the B band, the decay rates were close to that

of 56Co decay, suggesting that γ-ray trapping was efficient during this phase.
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However, both authors found that the optical decay rates of SN 2004et steepened

beyond ∼ 300 days, suggesting that either the supernova had become transparent to γ-

rays and hence γ-rays as a source of energy were escaping, or that dust was forming

within the ejecta and causing localised optical extinction, or possibly was due to both

phenomena.

To investigate this further we can look again at the radioactive deposition. As pre-

viously mentioned, as the ejecta expand, their opacity to γ-rays is expected to decrease,

which results in a modified light curve of the form (Woosley et al. 1989):

Lγ56(t) ∝ e−t/τ56 [1 − e−κ56 φ0 (t0/t)2
], (5.1)

where the term in the brackets is the deposition function, i.e., the fraction of γ-rays

deposited in the envelope; κ56,γ = 0.033 cm2 g−1 is the average opacity to 56Co-decay

γ-rays, and φ0 = 7×104 g cm−2 is the column depth at the fiducial time t0 = 11.6 days

chosen to match the bolometric light curve of SN 1987A.

After this first source of decay energy has become sufficiently weak, other energy

sources which could become important in powering the very late time light curves are γ-

rays, positrons and electrons from the radioactive decay of 57Co, 44Ti and 22Na. The equa-

tions that describe the energies from all these isotopes, including 56Co, are summarised

by Li et al. (1993), following the work of Woosley et al. (1989), to describe the deposition

behaviour of SN 1987A. Adopting the same deposition behaviour for SN 2004et, the ra-

dioactive decay curve attributable to the energy sources from these isotopes, including

a term to account for the decrease in opacity to γ-rays as the ejecta expands, has been

plotted in Figure 5.10 (dashed line) over both the V and R band magnitudes of SN 2004et,

normalising to the early nebular phase data (∼160–260 days). As expected, with the ex-

ception of the B band, the decay rates during the early nebular phase closely follow those

of the radioactive decay deposition. However, from about 400 days the R band light curve

has clearly begun to decline more rapidly than the expected light curve from radioactive

decay deposition. The I band follows a similar trend, whereas the steepening of the

decline rate appears to occur slightly later in the V band, having clearly begun sometime

between 460 and 540 days. In comparison with the expected radioactive decay deposition

behaviour of SN 1987A, as modelled by Li et al. (1993), there is evidence for a steepening

decline of the light curves, indicative of dust formation in the ejecta of SN 2004et from
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around 400 days, and possibly earlier (Sahu et al. 2006; Maguire et al. 2010). From the

V-band light curve (Figure 5.10), the difference between the observed and predicted light

curves was estimated to be 0.8 mag by day 690, if allowance is made for the effective

opacity term for 56Co γ-rays, or 1.5 mag if the term is neglected.

It is clear that the elevated brightness of SN 2004et after 1000 days cannot be explained

by the inclusion of isotope decays, such as 57Co and 44Ti, which could be important at

these late times. The plateauing of the optical light curves above the expected radioactive

decay suggests an additional energy source has come into play by at least day 1000 and is

consistent with the late rise observed in the mid-IR observations after this time. Similar

phenomena observed in other SNe have been attributed to light echoes (e.g., SN 2007od;

Andrews et al. 2010) and this scenario is investigated for SN 2004et by Sugerman et al.

(in preparation).

Figure 5.11 presents the late-time NIR light curves (open symbols) of SN 2004et based

on the SEEDS data described previously. The JHK light curves of SN 1987A (solid lines;

Bouchet & Danziger 1993) have been arbitrarily scaled to the early nebular phase data

of SN 2004et for comparison. The NIR light curves of SN 2004et are not well-sampled

but clearly deviate from those of SN 1987A by day 646, after which time SN 2004et is

systematically higher. The NIR light curve evolution reflects that of the optical, with a

relative plateau in brightness occurring from around 1000 days, consistent with a light

echo hypothesis. However, by day 1803 (see inset in Figure 5.11), the H-band brightness

has faded to beyond a clear detection with the WHIRC detector on the 3.5-m WIYN tele-

scope. The derived upper limit of 22.6 mag accounts for contamination by neighbouring

stars (as described in Section 5.7.2). It is possible that the SN has faded sometime after

day 1215, which would be contemporaneous with the fading of the SN seen in the mid-IR

with the Spitzer-IRAC 3.6 and 4.5µm observations between days 1395 and 2151, where

the steepest decline occurred between days 1395 and 1779.

For an assumed light echo scenario to explain to the post-1000 day data, it is plausible

that the fading which possibly occurs sometime after day 1215 in the NIR and after day

1395 in the mid-IR, is a consequence of an echo moving into the furthest regions of the CS

material, where a much smaller volume of material would be illuminated. These latest

data are useful for constraining the geometry of any proposed echoing material. See

Section 5.10 for a summary of initial results for light echo models to explain the post-1000

day optical, NIR and mid-IR data for SN 2004et (Sugerman et al., in preparation).
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Table 5.9: Near-infrared photometry of SN 2004et.

UT date Age Magnitudes Source
[days] J H K

2005-06-17 268 15.14 ± 0.05 15.15 ± 0.03 · · ·
a Steward/Bok IR Camera

2005-08-05 317 16.01 ± 0.03 15.84 ± 0.03 15.18 ± 0.04 Gemini NIRI
2005-10-17 390 16.96 ± 0.03 16.62 ± 0.03 16.23 ± 0.04 Gemini NIRI
2006-07-06 652 20.09 ± 0.05 19.52 ± 0.06 19.19 ± 0.07 Gemini NIRI
2007-07-08 1019 22.25 ± 0.13b 22.61 ± 0.36b 21.91 ± 0.28b HST NICMOS
2008-01-20 1215 22.55 ± 0.14b 22.69 ± 0.43b 21.44 ± 0.18b HST NICMOS
2009-08-30 1803 · · · ≤ 22.6 · · · WIYN WHIRC
Zero-magnitude flux [Jy] 1656.3 1070.9 672.8 Glass (1999)
λe f f [µm] 1.25 1.65 2.20

a There is no K band magnitude at day 268 as unusual image artifacts compromised the photometry.
b HST Vegamags in NICMOS2 filters F110W (' J band), F160W (' H band) and F205W (' K band) for days

1019 and 1215. For each filter and epoch, the measured count rate (CR, in units of DN s−1) at the position of
the SN was converted to flux by multiplication with the PHOTFNU (Jy s DN−1) conversion factor given in the
fits header, where PHOTFNU is the bandpass-averaged flux density for a source that would produce a count
rate of 1 DN−1. PHOTFNU = 1.21 × 10−6, 1.50 × 10−6 and 9.69 × 10−7 Jy s DN−1 for F110W, F160W and F205W
respectively.

Figure 5.11: Late-time NIR light curves of SN 2004et, based on the SEEDS photometry listed
in Table 5.9. For clarity, the plots have been vertically shifted by the amounts shown in the
legend. The solid lines are the corresponding light curves of SN 1987A (Bouchet & Danziger 1993)
normalised to the light curves of SN 2004et at day 317, during the early nebular phase. Dotted
lines are only to guide the eye along the horizontal or “flat” parts of the light curve. The inset
shows the H-band light curve only for the extended period to day 1803, the final SEEDS NIR
observation, taken with the WIYN-WHIRC in August 2009. Contamination from neighbouring
sources observed in the high-resolution NICMOS images at days 1019 and 1215 resulted in an
ambiguous detection of the SN with the WHIRC at day 1803, for which an upper limit (downward
pointing arrow) has been derived.
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5.8 Optical–IR SED analysis via blackbody fitting: Days 64-1395

The mid-infrared photometry listed in Table 5.6, along with the optical and NIR photom-

etry listed in Tables 5.8 and 5.9 and the optical photometry of Sahu et al. (2006), have been

used to construct the spectral energy distributions (SEDs) of SN 2004et at each of the 12

IRAC observation epochs from days 64 to 1395.

To investigate the physical processes that determine the observed optical and infrared

continuum emission and their evolution, blackbodies were matched to each of the SEDs.

Where necessary, the light curves of the optical, NIR, PUI 16µm and MIPS 24µm data were

used to interpolate their measured flux densities to the epochs of the IRAC data. It should

be noted that to extrapolate the last B magnitude obtained on day 646 to the closest IRAC

epoch at day 690, the better-sampled V-band decline rate during this period was adopted

in order to account for the gradual flattening of the light curve. A simple extrapolation

from previous epochs of B-band observations with earlier steeper decline rates would

likely result in under-estimated fluxes at this epoch. Similarly, the JHK magnitudes from

day 652 were extrapolated to the closest IRAC epoch of day 690 assuming the decline

rate observed in the Ic-band during this period. Gemini Michelle flux densities at 11.2µm

were not interpolated due to insufficient data, but where available they are compared

with the closest IRAC epoch.

The interpolated optical data were converted from the standard Johnson-Cousins

BVRcIc magnitudes to flux densities using the zero-magnitude flux densities given in

Evans (1993) and Glass (1999) (see Table 5.8). The interpolated Steward and Gemini NIR

data were converted from standard JHK magnitudes to flux densities using the zero-

magnitude flux densities from Glass (1999) based on the work of Bessell et al. (1998) (see

Table 5.9). The late-time HST-NICMOS flux densities were obtained by multiplying the

count rate measured for the SN by the PHOTFLAM (erg cm−2 Å−1 DN−1) conversion factor

from the fits image headers, where PHOTFLAM is the bandpass-averaged flux density in

Fλ for a source that would produce a count rate of 1 DN s−1.

All flux densities were de-reddened using E(B – V) = 0.41 mag (Zwitter et al. 2004)

and assuming the extinction law of Cardelli et al. (1989) with RV = 3.1, corresponding

to AV = 1.27 ± 0.22 mag. Note that Kotak et al. (2009) found it was impossible to obtain

a match to their dereddened optical continua without significantly overproducing the

mid-IR flux, and so adopted AV = 1.0 mag with the same extinction law and RV = 3.1.
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Blackbody fitting was carried out using the STARLINK software package DIPSO

(Howarth et al. 2004). The grid and bbody commands were used to generate the

blackbody curves at the required temperatures and the atnorm command was used

to normalise the curves to the photometric flux densities. Blackbody parameters were

calculated as discussed in Section 4.2.2.

A more detailed explanation of the fitting procedures and comments on individual

epochs follow below. Interpretation of the results are discussed in Section 5.8.4.

5.8.1 Day 64

Figure 5.12: Two alternative blackbody fits to the SED of SN 2004et as defined by the optical and
mid-IR observations at day 64 (wavelength range plotted: 0.3–30µm). In panel (a) the solid line
represents the fit from a blackbody of 6500 K at wavelengths greater than 5500 Å, combined with a
spline curve fit to the UBV photometry extrapolated to shorter wavelengths. In panel (b) the solid
line represents the fit from a blackbody of 5400 K at wavelengths greater than 4400 Å combined
with a spline curve fit to the UB photometry extrapolated to shorter wavelengths. Flux densities
have been de-reddened using E(B – V) = 0.41 mag (Zwitter et al. 2004) and the extinction law of
Cardelli et al. (1989) with RV = 3.1. Statistical flux uncertainties are smaller than the symbol size.

Figure 5.12 shows two alternative fits to the SED at day 64, during the photospheric

plateau phase of SN 2004et. As seen in panel (a), a single hot blackbody of temperature

6500 K, normalised to the IRAC flux at 3.6µm, was found to be a good approximation to

the optical VRI and mid-IR photometry. Panel (b) shows an alternative fit with a cooler

blackbody of 5400 K, normalised to the IRAC 5.8-µm flux, which was found to better fit

the longest mid-IR wavelengths and the B-band flux, but under-estimated the V- and



5.8. Optical–IR SED analysis via blackbody fitting: Days 64-1395 185

R-band fluxes. Whilst the 6500 K blackbody appears to provide a better match to the

V–I band fluxes, there is likely to be a significant contribution from emission lines in the

5400–7000 Å wavelength region (Sahu et al. 2006; Kotak et al. 2009), which could explain

the elevated V and R band fluxes compared to the 5400 K blackbody, since the blackbodies

should mainly represent the continuum emission from the source.

Both blackbodies clearly over-estimate the flux at the shortest wavelengths (3400–

4400 Å). A similar blue flux deficit relative to a blackbody fitted at longer wavelengths

was seen at around this time for SN 1987A (Danziger et al. 1987; Wooden et al. 1993) and

the phenomenon is briefly discussed below. A spline curve fitted to the UB(V) photometry

was therefore used to estimate the effect of this blue deficit to the total flux. For the 6500 K

blackbody, the spline curve extrapolated from the UBV fluxes was combined with the

hot blackbody truncated at wavelengths ≤ V (5500 Å), yielding a total integrated flux of

5.8×10−13 W m−2 (with a corresponding luminosity of 6.4×108 L�) that was about 77% of

the total integrated flux/luminosity from the hot blackbody alone. At wavelengths ≤ V,

the total flux corresponding to the spline fit constituted about 44% of that from the hot

blackbody. For the 5400 K blackbody, the spline curve extrapolated from the UB fluxes

was combined with the hot blackbody truncated at wavelengths ≤ B (4400 Å), yielding a

total integrated flux of 4.5×10−13 W m−2 (with a corresponding luminosity of 4.9×108 L�)

that was about 93% of the total integrated flux/luminosity from the hot blackbody alone.

At wavelengths ≤ B, the total flux corresponding to the spline fit constituted about 49%

of that from the 5400 K blackbody fit.

In Figure 5.12, the solid lines in each plot represent the combined spline and truncated

blackbody fit, whilst Table 5.10 lists the parameters for the single blackbodies only (see

notes to the table for reference to the combined spline and truncated blackbody fits).

It is well known that all Type I SNe show a pronounced early-time deficit at ultraviolet

(UV) wavelengths relative to a blackbody fitted at longer wavelengths (e.g., Panagia

2003). This has been explained as being due to strong line blanketing by the many low

excitation lines of Fe II and other resonance lines shortwards of ∼ 4000 Å (e.g., Branch &

Venkatakrishna 1986). The situation for Type II SNe seems to be less clear. In his review

of optical spectra of supernovae, Filippenko (1997) summarised that most Type II SNe

do not show this feature, with the early-time spectra approximating a single-temperature

Planck function from UV through to IR wavelengths, and occasionally even showing

a slight UV excess. However, Fransson et al. (1987), from their studies of the peculiar



5.8. Optical–IR SED analysis via blackbody fitting: Days 64-1395 186

Type II SN 1987A, concluded that supernova atmospheres with a normal (solar) chemical

composition can give rise to line blanketing effects, such as those seen in the UV spectra of

SN 1987A. They proposed that the differences in UV spectra of supernovae may instead

be due to differences in the density of the CSM. The earliest IUE (1150–3200 Å) spectra of

SN 1987A (∼ 6 days after explosion) showed a strong UV deficit in the wavelength range

∼ 1250–3200 Å, relative to the 6000 K blackbody curve defined at optical and infrared

wavelengths (Danziger et al. 1987). This was still present at day 60, and possibly as late

as day 260, as shown by the best-fit SEDs of Wooden et al. (1993).

The apparent UV drop-off relative to the blackbody fit to the photometric SED of

SN 2004et at days 64 and 300 (the only IRAC epochs for which U band data was available)

suggests that a similar effect is present in this Type II-P SN. Li et al. (2005b) noted from a

spectrum of SN 2004et at day 9 that “there is a peculiar decline blueward of 4000 Å not

commonly observed in the spectra of normal SNe II-P”.

5.8.2 Days 300-828

The blackbody fits to the SEDs at days 300 to 828 are shown in Figure 5.13. The correspond-

ing blackbody parameters are listed in Table 5.10. For the fluxes which were interpolated

to the IRAC epochs (open circles), the uncertainties plotted are taken to be the largest of

the uncertainties of the fluxes that were interpolated between, or extrapolated from, and

do not include an estimate of the uncertainty associated with the interpolation itself.

For blackbody fits to the epochs from day 300 to day 828, more than one component

was required to obtain a reasonable fit to the optical, NIR and mid-IR photometry. These

were comprised of (i) a hot blackbody, with temperatures during the period 300–828 days

ranging from 7100–10000 K, representing the optical and NIR continuum emission from

the optically thick hot gas of the ejecta, (ii) a warm blackbody (420–650 K) representing

the emission at mid-infrared wavelengths, and (iii) from day 464 onwards, a cooler (200–

250 K) blackbody to account for emission at the longest mid-IR wavelengths (typically

16–24µm). Excess emission is also present on days 300–406, but at a relatively constant

level (see Figure 5.13 and discussion below).
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Fits to the optical and NIR data with a hot component were made first, adjusting the

fit by-eye to best match the fluxes within the errors. The NIR fluxes were found to be

important in constraining the fits and the blackbodies were often normalised to the J,

H or K fluxes. The contribution of the hot blackbody to the mid-IR emission was then

accounted for by subtracting the normalised hot component from the observed fluxes.

The residual IR fluxes were then fit with a second warm component in a similar manner,

normalising where possible to the longer wavelength fluxes (5.8-8.0µm), which are more

sensitive to the warm dust emission, although see comments below regarding SiO band

emission at 8µm. Finally, where necessary, a cooler component was used to fit the excess

at the longest mid-IR wavelengths, after subtracting the contribution from the warm

blackbody component.

As was found for day 64, the U and B band fluxes at day 300 were significantly

over-estimated by the hot blackbody that best matched the SED at longer wavelengths.

The effect of this UV deficit was estimated by extrapolating a spline curve to the UBV

data and combining this with the hot blackbody truncated at wavelengths ≤ V (5500 Å).

The ‘spline + truncated-hot blackbody + warm blackbody’ yielded an integrated flux of

11.7×10−15 W m−2 (with a corresponding luminosity of 12.8×106 L�) that was about 73%

of the integrated flux/luminosity from the hot + warm blackbodies alone. The total flux

corresponding to the spline fit constituted about 40% of that from the hot blackbody at

wavelengths≤ V. In panel (a) of Figure 5.13, the solid line represents the combined spline,

truncated hot blackbody and warm blackbody fit, whilst Table 5.10 lists the parameters

for the two-component blackbody fit only (although see notes to the table for reference to

the combined spline and truncated blackbody fit).

During days 300 to 464, the optical RI fluxes were found to be in excess of the hot

blackbody that best matched the BV and JHK fluxes. This is consistent with the results of

Kotak et al. (2009) who demonstrated using the spectra of Sahu et al. (2006) that whilst the

emission in the BV region was dominated by the continuum, strong emission lines in the

RI region could account for their elevated photometric fluxes. After day 464, the excess

in the optical R and I bands was no longer apparent and the hot blackbody components

were a reasonable match to the interpolated optical and NIR data at days 690 and to

the interpolated optical data at day 828. It should be noted that the optical light curves

were not very well-sampled during this time and as a result the interpolated fluxes and

corresponding blackbody parameters are subject to greater uncertainty.
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From days 300 to 464, the mid-IR emission demonstrated a clear excess at 4.5µm, as

noted by Kotak et al. (2009). A similar feature has been seen in mid-IR photometry of

other Type II SNe, such as the Type II-P SN 2003gd at day 499 (Sugerman et al. 2006),

and SN 2007it at day 340 (Andrews et al. 2010). This can be attributed to emission from

the carbon monoxide (CO) fundamental band at 4.65µm which was directly observed in

the infrared spectra of the Type IIpec SN 1987A from as early as 100 days after explosion

(Suntzeff & Bouchet 1990) and stayed visible until at least day 615 (Wooden et al. 1993).

The red wing of the same emission line was detected in the Spitzer-IRS spectra of the Type

II-P SN 2004dj at days 109 and 129 (Kotak et al. 2005). Together with the detection of the

first overtone of CO at ∼ 2.3µm from NIR spectra of SN 2004et by Maguire et al. (2010)

and in the NIR spectra of several other Type II SNe (Gerardy et al. 2002 and references

therein), these observations indicate that strong CO emission is common in Type II SNe.

Kotak et al. (2009) also noted an excess at 8.0µm compared to blackbodies matched

to the mid-IR continuum emission from days 300 to 690. They found this to be consistent

with a broad emission feature between 8–14µm seen clearly in Spitzer-IRS spectra until

at least days 450–481 and attributed this to silicate emission, with a contribution from

the silicon oxide (SiO) fundamental band in the 7.7–9.5µm region. SiO has previously

been detected in other Type II SNe (e.g., in the spectra of SN 1987A at days 260 and 415,

disappearing by day 615, Wooden et al. 1993; and in the Spitzer-IRS spectra of SN 2005af

at day 214, Kotak et al. 2006). Kotak et al. (2009) noted that whilst the IRS spectra closest

in time (day 823) to the IRAC epoch at day 690 showed little evidence for strong SiO

emission, the 8.0µm flux at day 690 was still under-predicted by the blackbody that best

matched the continuum emission, indicating that the SiO emission, whilst diminishing,

was still quite prominent at that time. These observations were used to help guide the

fitting presented here during these epochs, such that the warm blackbody component

was normalised to the 3.6 or 5.8µm fluxes that best represented the continuum emission

during these times. For the best-fit SED at day 300 (panel (a) in Figure 5.13), the Gemini

11.2µm flux from day 311 is also under-estimated by the warm blackbody component.

This excess could be attributable to the broad silicate emission feature seen at its strongest

in the IRS spectra at days 294 and 349 presented by Kotak et al. (2009). The 8.0µm excess

is no longer evident after day 690, consistent with the IRS spectrum at day 823 presented

by Kotak et al. (2009). Panel (f) of Figure 5.13 shows that by day 828 the observed 8.0µm

flux is well-matched by the blackbody fits.
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As previously mentioned, a cooler blackbody component was only included for SED

fits at epochs from days 464 onwards. However, from Figure 5.13 it can be seen there is a

slight excess in the photometry at the longest wavelength of 24µm between days 300 and

406. Model fits to the optical-IR SEDs of SN 1987A by Wooden et al. (1993) during a similar

period (comparable epochs for SN 1987A are at days 260 and 415) included free-bound

and free-free H  continuum emission components. It can be seen from their work that the

predicted free-free continuum emission dominated the total flux at wavelengths & 30µm

during this period. After this time, the contribution from free-free radiation declined

significantly relative to the dust emission, which dominated the observed IR continuum

of SN 1987A from days 615 to 775 at wavelengths longwards of 3µm. A similar free-free

emission component might explain the 24µm excess seen for SN 2004et between days

300 and 406. However, Kotak et al. (2009) estimated that free-free emission could account

for only ∼ 20% of their total 24µm flux at day 301, with the contribution declining to less

than 1% by day 796. Instead they fitted a cold blackbody component to their fluxes at all

epochs from day 300 onwards.

By day 464 the 16µm flux was also in excess of the warm blackbody fit to the IRAC

mid-IR fluxes and a cooler blackbody component was clearly required to fit the longest

wavelength (16–24µm) fluxes (Figure 5.13).

5.8.3 Days 1015–1395

Best fits to the SEDs at epochs of days 1015, 1054, 1191 and 1395 are shown in Figure 5.14

and the corresponding blackbody parameters are listed in Table 5.10. Hot (10000 K),

warm (350–520 K) and cool (120–170 K) blackbody components were matched to the

optical, NIR and mid-IR photometry. For days 1015 and 1191, the adopted NIR fluxes

were those measured in the F110W, F160W and F205W NICMOS2 filters at the reasonably

contemporary epochs of days 1019 and 1215.
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Figure 5.13: Blackbody fits to the day 300 to 828 SEDs of SN 2004et as defined by the optical-IR
observations (wavelength range plotted: 0.3–30µm). Filled circles indicate fluxes observed at the
epoch of the IRAC observations. Open circles indicate optical, NIR and mid-IR photometry which
has been interpolated or extrapolated to the epochs of the IRAC observations. Filled triangles
indicate the closest epoch Gemini-Michelle N′-band photometry, which has not been interpolated
(see Table 5.2 for epochs of the Michelle observations). Upper flux limits for non-detections are
indicated by the downward-pointing arrows. Where error bars are not shown, uncertainties are
smaller than the symbol size. All flux densities were de-reddened using E(B – V) = 0.41 mag
(Zwitter et al. 2004) and the extinction law of Cardelli et al. (1989) with RV = 3.1.
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Figure 5.14: Blackbody fits to the day 1015 to 1395 SEDs of SN 2004et as defined by the optical-IR
observations (wavelength range plotted: 0.3–30µm). Filled circles indicate fluxes observed at the
epoch of the IRAC observations. Open circles indicate optical, NIR and mid-IR photometry which
has been interpolated or extrapolated to the epochs of the IRAC observations. Filled squares
indicate the closest epoch (i.e., not interpolated) HST-NICMOS photometry and filled triangles
indicate the closest epoch Gemini-Michelle N′-band photometry (see Table 5.2 for epochs of the
Michelle and NICMOS observations). Upper flux limits for non-detections are indicated by the
downward-pointing arrows. Where error bars are not shown, uncertainties are smaller than the
symbol size. All flux densities were de-reddened using E(B – V) = 0.41 mag (Zwitter et al. 2004)
and the extinction law of Cardelli et al. (1989) with RV = 3.1.
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Figure 5.15: Temperature evolution from multi-component blackbody fitting to the SEDs of
SN 2004et.

5.8.4 Discussion of results from blackbody fitting

The complete set of parameters from the blackbody fits to the photometry from days 64

to 1395 are listed in Table 5.10. The temperature evolution of the best fit multi-component

blackbodies is shown in Figure 5.15.

Figure 5.16 shows the evolution of the luminosities of each of the blackbody com-

ponents, and their sum, compared with the theoretical luminosity due to the radioac-

tive deposition of 56Co, 57Co, and other isotopes, adopting the deposition behaviour of

SN 1987A as modelled by Li et al. (1993) and Woosley et al. (1989). The radioactive decay

deposition curve for SN 1987A was scaled by a factor of 0.69 to normalise it to the total

luminosity of SN 2004et between days 300–464. It should be noted that the blackbody

fits to the photometry mainly trace the continuum emission of the SN (known optical

and mid-IR emission line features were deliberately not matched by the blackbodies as
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discussed in the previous sections). As a consequence, the luminosities listed in Table 5.10

slightly underestimate the total luminosities.

Evolution of the hot component

Two alternative blackbody temperatures were found to explain the SED of SN 2004et at

day 64. The first was a 6500 K blackbody which provided a good match to the V–I band

fluxes, but slightly under-estimated the mid-IR fluxes at the longest wavelengths. The

second was a cooler 5400 K blackbody which provided a good match the mid-IR fluxes

and the B- and I-band fluxes but under-estimated the V- and R-band fluxes. The lower

temperature blackbody can be considered a reasonable fit to the continuum emission of

the SN at this time, since the excess V and R band fluxes are likely to be due to the

significant emission-line contribution in the 5400–7000 Å wavelength region seen from

the spectra of Sahu et al. (2006).

The hot blackbody is consistent with the continuum emission from the optically-thick

gas of the ejecta photosphere during the plateau phase, with the Rayleigh-Jeans tail of

the corresponding blackbody extending into the infrared. As the ejected envelope adi-

abatically expands and cools, the hydrogen ionised by the initial SN shock approaches

the temperature for recombination (∼ 5000 K) and a recombination wave recedes through

the envelope. The recombination front defines the photosphere and as such the tempera-

ture of the photosphere is characterised by the recombination temperature of hydrogen.

Wooden et al. (1993) found that a hot component of 5000-5500 K was a good match to the

SED of SN 1987A from days 60 to 777, which they find to be in agreement with observa-

tions of other Type II supernovae by Kirshner et al. (1973). At a similar temperature, the

5400 K blackbody fit shown in panel (b) of Figure 5.12 appears to be most representative

of the photospheric continuum emission at this time. Additional support for the lower

temperature fit comes from the ejecta velocity of 3167 km s−1 implied by the emitting

radius of the 5400 K blackbody, which is in reasonable agreement with the velocity of

∼ 3500 km s−1 found by Sahu et al. (2006) for SN 2004et in the plateau phase, estimated

from the minimum of weak, unblended absorption lines of Fe  at 4924, 5018 and 5169 Å.

For these reasons, the 5400 K blackbody was adopted as the most representative fit to the

SED at day 64 for this work. In comparison, Kotak et al. (2009) obtained a reasonable fit to

the day 64 SED of SN 2004et with a single blackbody of temperature 5300 K, concluding

there was little sign of thermal emission from dust.
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As expected, the corresponding luminosity at day 64 exceeds that from radioactive

decay deposition, which only begins to dominate the light curve during the nebular phase

from∼ 130 days (Maguire et al. 2010) following the sharp decline from the plateau at∼ 110

days (Sahu et al. 2006). For the 5400 K blackbody fit the day 64 luminosity exceeds that

from radioactive deposition by a factor of 4.9, or by a factor of 4.5 if considering the spline

plus truncated blackbody fit which is a better match to the U band data. This compares

to the factor of 3.8 found by Kotak et al. (2009).

By day 300, the estimated temperature of the hot blackbody component had increased

to 7250 K and then remained relatively constant (±∼ 150 K) until day 464 (Figure 5.15),

whilst its luminosity faded quite rapidly (by a factor of ∼ 7) during this time (Figure 5.16).

Note that at day 300, the blackbody fit significantly over-estimates the fluxes at the shortest

wavelengths in the U and B bands, as also seen at day 64 (see discussion in Section 5.8.1).

By day 690 the temperature had increased again to 8500 K and to 10,000 K by day 828,

whilst the luminosity continued to decrease (by a factor of ∼ 15). For epochs beyond 1000

days, the temperature of the hot component appears to remain constant. The luminosity

of the hot component during these latest epochs appears to decrease much more slowly,

possibly levelling off, and reflects the evolution of the optical and NIR light curves seen

in Figures 5.10 and 5.11.

Evolution of the warm component

The warm component cooled monotonically from 650–420 K between days 300 and 690

(Figure 5.15). This is consistent with the fading of SN 2004et observed in the mid-IR

during this time. The sum of the luminosities of the hot and warm components is less

than or comparable to the radioactive deposition until at least day 690. On day 828

however, the sum of the hot and warm component luminosities is a factor of 1.7 higher

than the predicted radioactive deposition luminosity. It should be noted that by this

epoch the supernova had faded at shorter wavelengths such that it was not detected at

3.6 and 5.8µm, resulting in a greater uncertainty in the blackbody fitting.

The presence of a mid-IR excess from day 300, demonstrated by the requirement of

a warm component to match the SEDs from this time, and the evolution of this warm

component from 300 to 828 days, are consistent with emission from dust freshly synthe-

sised in the supernova ejecta, and agrees with the results of Kotak et al. (2009) from their

interpretation of similar data.
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Figure 5.16: Luminosity evolution from multi-component blackbody fitting to the SEDs of
SN 2004et compared to the luminosity due to radioactive deposition as scaled from the mod-
els of Li et al. (1993) for SN 1987A (see text for details).

It also supports the conclusions of Sahu et al. (2006) and Maguire et al. (2010) that

dust formation occurred in the ejecta of SN 2004et after ∼ 300 days based on their analysis

of optical data, which showed signatures of dust formation such as a blueshift in the

emission line profiles of Hα and [O ], as well as a steepening of the light curve around

this time. Our independent analysis of these two optical signatures, discussed in sections

5.7.4 and 5.3, is consistent with the onset of dust condensation in the ejecta of SN 2004et

between 300–500 days after explosion.

After 1000 days, the temperature of the warm component initially decreased (to

∼ 360 K at days 1015 and 1054), followed by a clear rise again in temperature, to 500 K and

520 K at days 1191 and 1395 respectively, corresponding to the late rise in the mid-IR fluxes

observed at this time. The approximately constant luminosity of the warm component

between days 828 and 1054 corresponded to the lowest reached, since at day 1191 the
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warm component luminosity had increased by a factor of 4.3. From day 1015 the warm

component luminosity clearly exceeds that of the radioactive deposition (by a factor of

∼ 8) and at day 1191 by a factor of over 100. The evolution of the warm component be-

yond 1000 days requires an additional energy source to explain the late rise in luminosity.

Kotak et al. (2009) found similar results and from further modelling interpreted the late

rise in the mid-IR flux as due to ejecta-CSM interaction, resulting in and the subsequent

formation of a cool, dense shell of dust behind the reverse shock of the supernova. An

alternative explanation of a light echo from pre-existing CSM dust has been investigated

by Sugerman et al. (in preparation).

If the anomalously low day 828 value is omitted, then the radius of the warm blackbody

component given by the fits to the 11 other epochs between days 300 and 1395 appears

constant, with a value of (5.0±0.3)×1015 cm.

Evolution of the cool component

The cool dust component, required to the fit the mid-IR fluxes longwards of 16µm from

day 464 onwards, showed a monotonic decline in temperature from 250 K at day 464 to

∼ 120 K at day 1015, but then increased slightly and remained around 160 K between days

1054 and 1395. Its luminosity stayed roughly constant from days 464 to 1054, but had

increased by a factor of ∼ 2 by days 1191–1395. The velocities implied by the minimum

emitting radii of these cooler blackbodies ranged from ∼ 2500–6000 km s−1, consistent

with an origin in the SN ejecta.

Kotak et al. (2009), on the other hand, found that the temperature of the cold com-

ponent remained approximately constant at 120± 10 K for all epochs from day 300–1395,

with minimum blackbody radii corresponding to velocities as large as 12000 km s−1, so

they ruled out ejecta-condensed dust as a source of the emission.

The differences between our results for the cool component with those of Kotak et al.

(2009) are most likely due to differences in the mid-IR data at the longest wavelengths,

16 and 24µm, discussed in Section 5.6. Our 16 and 24µm fluxes required generally

higher temperature blackbodies to fit them than those of Kotak et al. (2009). Since our

luminosities for the cool component are generally consistent with those of Kotak et al.,

the higher temperatures that we obtain resulted in lower minimum radii and therefore

lower minimum outflow velocities.
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5.9 Radiative transfer modelling: Days 300–690

The modelling described in this section was carried out in conjunction with SEEDS collaborators

Dr Masaaki Otsuka (STScI) and Dr Roger Wesson (UCL).

In agreement with previous investigators (Sahu et al. 2006; Kotak et al. 2009), our black-

body fits to the optical and IR photometric data strongly support the inference that dust

formed within the ejecta of SN 2004et from about 300 days after explosion. However,

the total luminosity from the observed SED exceeds the estimated radioactive deposition

luminosity, Ldep, by a factor of 4 on day 828 (Figure 5.16), indicating that an additional

component dominates by that date. Consequently, epochs later than day 690, when the

thermal IR emission can no longer be solely attributed to newly-formed dust in the ejecta,

will not be discussed further.

To further investigate the time evolution of dust formation from the outflow in

SN 2004et and to estimate the mass of dust present, a number of dust shell models were

built to match the observed SEDs at the epochs between days 300 and 690 (Table 5.12).

The models were calculated using the three-dimensional Monte Carlo radiative transfer

(RT) code MOCASSIN (Ercolano et al. 2003, 2005) which accounts for the primary and

secondary components of the radiation field in a fully self-consistent manner through

absorption, re-emission and scattering of photons. The photon paths are followed from a

specified source through a given composition, grain-size distribution, density and geom-

etry of dust. The particular choices of these parameters are either constrained a priori or

are varied until the model emission and extinction match the observations.

For the day 300–690 models we assumed that the observed IR emission originated from

dust formed in the SN ejecta. Heating is due to γ-rays from the decay of 56Co, which are

reprocessed to optical and UV wavelengths through interaction with the gas. It is assumed

that this leads to a local radiation field whose strength is proportional to the local ejecta

density. Based on these assumptions, and following the previous modelling of SN 2003gd

by Sugerman et al. (2006) and of SN 1987A by Ercolano et al. (2007), the RT models were

constructed such that the dust and source luminosity were mixed within a spherical

expanding shell of inner radius Rin and outer radius Rout = YRin. For the dust density

distribution, two cases were considered: (i) a smooth model with a dust distribution

following an r−2 density profile, and (ii) a clumpy model where dense clumps exist in
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Table 5.11: The contribution from line emission to the VRI-bands.

Epoch V R I
(days) (%) (%) (%)

336 21 75 68
417 20 58 60
454 26 58 57
649 26 60 27

a less-dense interclump medium (ICM), where the ICM follows a smooth r−2 density

distribution, with the local heating source located only in the ICM. For each case, the

observed SEDs were compared with those reproduced by the models to determine which

gave the best fit to the observations.

Before running the models, the contribution from line emission to the VRI-bands was

estimated using day 417 and day 454 optical spectra downloaded from the SUSPECT

archive, plus day 336 TNG and day 646 Subaru spectra, along with the Subaru/FOCAS

VRI-band filter transmission curves7 because these have similar band centres and widths

to the standard Johnson filters. The percentage line contributions in each band are listed

in Table 5.11. When evaluating the fitting accuracy of the SED modelling, the R and I

bands on days 300, 360, 406, and 464 were excluded because both bands were dominated

by line emission at those epochs. The IRAC 4.5-µm data-points were also omitted from

the fitting, due to the potentially very large CO line emission contributions in that band

(Kotak et al. 2009). Although our modelling took into account potential emission from

the broad silicate 10-µm band, the SiO fundamental vibrational band can also contribute

to the IRAC 8-µm band – from Spitzer IRS spectra its contribution was deduced by Kotak

et al. (2009) to be significant on days 300-464.

5.9.1 Smooth dust distribution models

Both amorphous carbon (AC) and silicate dust grains were considered. Optical constants

were taken from Zubko et al. (1996) for amorphous carbon (their ACH2), and from Draine

& Lee (1984) for the silicates. To investigate the dust composition, models were run

with amorphous carbon:silicate mixtures of (100-x):x %, for x=0,20,40,60,80,100. It was

found that the case of 20 % amorphous carbon and 80 % silicate (by mass) best matched

the observed SEDs at all epochs, and this composition was adopted for all subsequent

models.
7See http://www.naoj.org/Observing/Instruments/FOCAS/camera/filters.html
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A standard MRN a−3.5 distribution (Mathis et al. 1977) with amin=0.005 µm and

amax=0.25 µm could not reproduce the steepness of the observed SED in the JHK-bands

before day 690, nor the 16- and 24-µm flux densities. An improved fit was found using an

MRN distribution with amin=0.1 µm and amax=1.0 µm and this was subsequently adopted

for all epochs.

The density distribution in SN ejecta can range from approximately flat, to very steep in

the layers that had formed the photosphere of the progenitor. Here, a r−2 law was adopted.

It was found that distributions steeper than r−3 led to too much emission in the 1.6-3.6-µm

spectral region at the earlier epochs, as a result of the high densities and high heating rates

at the inner edge of the ejecta. As a first guess, initial values for Rin were adopted from

the blackbody fitting (Section 5.8), and then varied to match the observations. Models

were calculated with shell size scaling parameters Y = Rout/Rin = 3.0, 3.2, 3.5, 4.0, 4.5. The

adopted heating luminosities were the total luminosities measured from the blackbody

fitting at each epoch, as listed in the final column of Table 5.10.

Table 5.12 lists the parameters of the best-fitting models for each epoch, including

derived dust masses, Md, and visual optical depths τ0.55. The variation in derived dust

masses when parameters such as Rin, Y, L and T are varied from their best-fitting value

allows us to estimate that the uncertainty in the derived dust mass is ≤50%. Figure 5.17

plots the emergent SEDs (red solid lines) and the observations, where the plotted flux

densities have been corrected for foreground extinction.

The observed SEDs were best fitted using diffuse field radiation temperatures of 7000-

8000 K, a little higher than the best-fitting hot blackbody temperatures listed in Table 5.10.

This might be attributable to the effects of internal dust extinction on the emergent optical

energy distribution in the radiative transfer models. The best-fitting models for the

different epochs were not homologous, in that the Rin and Rout values did not increase

linearly with time (Table 5.12). Since the derived dust masses increased by a factor of

four between days 300 and 464, indicating ongoing dust formation, the dominant dust-

emitting regions could in principal change with time. However, homologous models

were also investigated for the different epochs, taking the day 300 value of Y = 4.0 from

Table 5.12 and keeping it the same for subsequent epochs, adjusting only the total dust

mass to obtain a best fit. These models are plotted as the blue solid lines in Figure 5.17.

They produced slightly improved fits to the day 406 and 464 24-µm data-points, although

they failed to match the observed SED on day 690 (Figure 5.17).
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Table 5.12 shows that the smooth model dust masses increased from 0.4×10−4 M� on

day 300 to 1.1×10−4 M� on day 464 and 4.4×10−4 M� on day 690. The inner and outer radii

of the day 300 dust model correspond to expansion velocities of 2700 and 10,800 km s−1,

respectively, while those for the day 406 and 464 models correspond to expansion veloc-

ities of 2000 and 8000 km s−1 respectively. The above inner radii velocities are consistent

with line absorption minimum velocities measured in optical spectra obtained at these

epochs, e.g. Sahu et al. (2006) measured Fe  absorption minimum expansion velocities

of ∼ 2000 km s−1 after day 150. Since absorption line optical depths scale as
∫

ndr, where

n is the density, then for n ∝ r−2 or steeper density distributions, line optical depths

are strongly weighted to the inner radii, where velocities are lowest, as are emission

lines, whose emissivities typically scale as
∫

4πr2n2dr. At the earliest epochs however,

when ejecta densities are much higher, line optical depths of unity do not penetrate very

deep into the outermost layers of the ejecta, where expansion velocities are much higher,

e.g. the day 25 spectrum of Sahu et al. (2006) showed Hα and Hβ absorption minima

at expansion velocities of ∼8000 km s−1 (their Fig. 9), consistent with the outer radius

expansion velocities of our dust models, while Hα absorption was even detectable out to

−14,500 km s−1 on day 25.

5.9.2 Clumpy dust distribution models

For the Type II SN 2003gd, Sugerman et al. (2006) demonstrated that smooth dust models

could underestimate the dust mass by an order of magnitude or more compared to models

that allow for clumping. Ercolano et al. (2007) showed that both smooth and clumpy dust

models could fit the observed SEDs of SN 1987A at late epochs, with clumpy models

able to accommodate significantly larger dust masses. Clumpy models were constructed

for SN 2004et, employing a similar modelling strategy to that used for SN 1987A and

SN 2003gd.

For the clumpy models, it is assumed that dense homogeneous clumps are embedded

in a less-dense interclump medium (ICM) with an r−2 density distribution. The clumps

have radius δ×Rout and a volume filling factor, f . The same δ = 1/30 and f = 0.01 were

adopted for all epochs. The density contrast between the clumps and the smooth ICM is

defined by α = Nclump(Rin)/Nsmooth(Rin), where Nclump(Rin) and Nsmooth(Rin) are the densities

of the clumps and the smooth ICM at the inner radius, respectively. α = 55 was set for

all epochs. For the other parameters, the adopted source luminosity, temperature, dust
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Table 5.12: Parameters for radiative transfer dust shell models.

diffuse source smooth clumpy

Epoch Rin Rout/Rin L T AmC:Sil amin–amax n(a)∝a−p τ0.55 Md τ0.55 Md

(day) (1015 cm) (106 L�) (K) (%) (µm) p= (10−5 M�) (10−5 M�)

300 7.0 4.0 12.8 8000 20:80 0.1–1.0 3.5 0.11 3.8 0.07 7.6
360 6.0 4.5 6.19 7000 20:80 0.1–1.0 3.5 0.20 5.6 0.12 10.0
406 7.0 4.0 4.18 8000 20:80 0.1–1.0 3.5 0.18 6.5 0.24 22.4
464 8.0 4.0 2.13 8000 20:80 0.1–1.0 3.5 0.38 11.1 0.39 50.0
690 6.0 3.5 0.40 8000 20:80 0.1–1.0 3.5 1.30 43.9 1.31 150

composition and size distribution were the same as those used for the smooth dust models.

Similar SEDs to those from the smooth dust models were obtained for the clumpy models

(red dashed curves in Figure 5.17). Compared to the variable-Y smooth dust models, the

counterpart clumpy models produced an improved fit to the 3.6-µm photometry on days

300–360 and to the 24-µm photometry on days 300–406.

Compared to the smooth dust distribution models, the clumped dust models were able

to accommodate two to five times larger dust masses without increasing the effective dust

optical depths in the visible region of the spectrum. The smooth and clumpy dust models

for day 690 both predict an effective optical depth of 1.3 in the V band, consistent with

our estimate from the observed light curve of 0.8–1.5 magnitudes of internal extinction at

this epoch (Section 5.7.4). The clumped dust model for day 690 listed in Table 5.12 had a

total dust mass of 1.5×10−3 M�, but it was found that up to 4×10−3 M� of dust could be

accommodated in clumps at that epoch without seriously reducing the goodness of fit to

the observed SED.

5.10 Discussion

A range of new and archival optical and infrared data have been used to investigate the

formation of dust in the ejecta of the Type II-P SN 2004et, focusing in particular on the mid-

IR observations, obtained with the Spitzer Space Telescope and Gemini-North telescope.

New NIR and optical data obtained by SEEDS collaborators were incorporated, enabling

a comprehensive photometric study of this core-collapse SN from the mid-plateau phase

(day 64) to almost 4 years post explosion.
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Figure 5.17: Monte Carlo radiative transfer dust model fits to the optical–IR (0.3–30µm) SEDs of
SN 2004et between days 300 and 690. Filled circles indicate fluxes observed at the epoch of the
IRAC observations, whereas open circles indicate optical, NIR and mid-IR photometry which has
been interpolated/extrapolated to the epochs of the IRAC observations. The filled triangles indicate
the Gemini-Michelle N′-band observations, and upper limits to the flux densities are shown as
downward-pointing arrows. Spitzer IRS spectra at epochs close to the IRAC observations (on days
294, 348 and 480, respectively: green solid line) are in good agreement with the mid-IR photometry.
Model fits to the data are indicated by the blue solid curves (smooth dust distribution, fixed Y =
4.0), red solid curves (smooth dust distribution, varying Y) and the red dashed curves (clumpy
dust distribution, varying Y). All models adopt a composition of 20:80 per cent amorphous
carbon:silicates by mass. See text for further details.
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As discussed in Chapter 1, Section 1.3.7, there are three distinct signatures of dust

formation in the ejecta of core-collapse SNe. These are (1) the appearance of asymmetric

blue-shifted emission lines caused by dust preferentially extinguishing emission from the

receding (redshifted) gas; (2) a drop in visual brightness due to increased extinction by

the newly formed dust; accompanied by (3) a mid-IR excess due to thermal dust emission.

Previously all three signatures had been found in only two cases, that of the unusual Type

II(-P) SN 1987A (Lucy et al. 1989) and the Type II-P SN 2003gd (Sugerman et al. 2006, also

see Section 4.4). SN 2004et is the third Type II supernova that has shown evidence for all

three of these phenomena, as demonstrated in this chapter (summarised below), and as

found by previous studies (Sahu et al. 2006; Kotak et al. 2009; Maguire et al. 2010).

From an analysis of new and recalibrated spectra, we showed that between days 259

and 646 the peak of the Hα emission line shifted to the blue by 600 km s−1 (Figure 5.3). The

optical light curve of SN 2004et declined more rapidly than that expected from radioactive

deposition, with the onset of ejecta dust formation estimated to have occurred ∼ 300–400

days after explosion (Figure 5.10). The same light curves allowed us to estimate that by day

690 the additional extinction in the V band, attributable to newly formed ejecta dust, was

between 0.8 and 1.5 magnitudes. From day 300 onwards the SN 2004et SEDs exhibit clear

excess mid-IR emission relative to blackbodies extrapolated from the optical. The day 300,

360 and 406 SEDs could each be fitted by two blackbody components: (i) a hot component

attributed to emission from optically thick gas, and (ii) a warm component attributed to

dust freshly synthesised and radioactively heated in the SN ejecta (Figure 5.13). While

these two-component fits provided adequate matches to the observed SEDs out to 16µm,

they did underpredict the 24-µm fluxes, which remained relatively constant between days

315 and 709 (Figure 5.5). The day 294, 348 and 480 Spitzer IRS spectra (Figure 5.17) also

confirm the presence of relatively steady excess emission longwards of 20µm at these

epochs. By day 464 a cool third component was definitely required to fit an increasing

excess seen in the 16-µm photometry.

Kotak et al. (2009) attributed the coolest component of their own SED fits to an IR echo

from ISM dust in the host galaxy. With the requirement that the ISM gas density should

not exceed 1 cm−3, and an assumed dust/gas mass ratio of ∼ 0.006, their model match

implied a dust-free cavity of radius 8–16 pc, which they suggested as possibly caused by

winds from the SN progenitor and other nearby stars. With a single echo model they

were able to account for the longest-wavelength fluxes (λ > 20µm) from days 300–1395.
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In support of the hypothesis that the day 300–690 mid-IR emission was due entirely

to dust synthesised in the ejecta, our ejecta dust radiative transfer modelling was able to

match the observed day 300–690 SEDs out to 20µm (Figure 5.17), longwards of which

the relatively invariant excess emission discussed above was present. The observed rise

in mid-IR fluxes after 1000 days coincided with a flattening of the optical and NIR light

curves at around this time. This, coupled with the fact that the minimum luminosities

estimated from blackbody fitting exceeded those expected from radioactive decay from

c. day 690 onwards, implies that an additional emission source is required after that date.

One possibility, discussed by Kotak et al. (2009), is that this emission source was due to

the formation of a cool dense shell of dust as a result of ejecta-CSM interaction. Another,

discussed by Sugerman et al. (in preparation) is that this emission was due to a light echo

from pre-existing CSM dust.

The silicate dust masses derived from our smooth dust models (Table 5.12) match

those derived by Kotak et al. (2009) for days 300, 360 and 406, but our dust masses

increase faster than their values from day 464 onwards and are a factor of 5 larger by

day 690. The clumped dust models of Kotak et al. (2009) had similar masses to their

unclumped dust models, while our clumped models have dust masses that are factors of

2–4 larger than for our smooth dust models (Table 5.12). The dust mass derived from our

day 464 clumped model was 5×10−4 M�, increasing to 1.5×10−3 M� by day 690. This mass

of newly formed dust is similar to, or larger than, values derived for a number of other

recent Type IIP SNe at similar epochs, e.g. SN 1987A (Wooden et al. 1993; Ercolano et al.

2007), SN 2003gd (Sugerman et al. 2006; Meikle et al. 2007), SN 2004dj (Szalai et al. 2011;

Meikle et al. 2011), SN2007it (Andrews et al. 2011) and SN2007od (Andrews et al. 2010).

It is also a factor of 100 or more smaller than the ejecta dust masses per CCSN needed to

account for the large quantities of dust observed in some high redshift galaxies (Kozasa

et al. 1989; Todini & Ferrara 2001; Nozawa et al. 2003; Bianchi & Schneider 2007; Dwek

et al. 2007; Dwek & Cherchneff 2011).

5.10.1 Evolution after day 1000 - IR echoes

As discussed in Section 5.6, the most recent Spitzer observations of SN 2004et at 3.6–

24µm showed a mid-IR brightening starting after day 1000. Combined with a strong

excess of unresolved optical flux found in HST imaging from around the same epoch,

this suggests we are recording echoes of the SN pulse through pre-existing circumstellar
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material. The latest Spitzer ‘warm’ data, from days 1779–2151, shows that the 3.6- and

4.5-µm emission has begun to fade again, which may be consistent with an echo moving

into the furthest regions of the CS material, where a much smaller volume of material

would be illuminated. Preliminary results from light echo models are summarised below

and will be presented in a forthcoming paper, Sugerman et al. (in preparation).

A thermal IR echo from heated, pre-existing CS material will be dominated by the short

(2.3 days) early UV pulse from the SN shock breakout. Using an analytic approximation

for the UV pulse (Chevalier & Fransson 2008), and the time-integrated observed optical

spectra from the SN, a wide variety of circumstellar geometries and dust compositions to

match the observed optical and mid-IR fluxes from day 1000 onwards have been explored.

It has been found that the IR-to-optical flux ratios are best explained by small dust grains

with sizes ∼0.035µm, while the shapes of the day 1015–1395 SEDs (for which we have

3.6–24µm data) suggest that the dust can be, at most, 50 % silicate. Reasonable fits to all

epoch SEDs from day 1000 have been obtained with models of a wind-compressed disk

(Bjorkman & Cassinelli 1993) with uniform density, extending from 3–7 light years, with

an opening angle of ∼ 13◦, and an inclination to the line of sight of ∼ 8◦.

5.11 Summary

A comprehensive optical–IR photometric study of the Type II-P SN 2004et has been pre-

sented, demonstrating clear evidence for dust production in the SN ejecta. A remarkable

late rise in its mid-IR emission indicate that an additional luminosity component is re-

quired after day 1000, possibly attributable to an IR echo from pre-existing circumstellar

grains (Sugerman et al., in preparation), or alternatively, from dust forming in a cool

dense shell behind the reverse shock following ejecta-CSM interaction (Kotak et al. 2009).

The largest dust mass estimated to have condensed in the ejecta of SN 2004et, of

1.5×10−3 M� by day 690 (this work, and Fabbri et al. 2011; submitted), is similar to, or

larger than, values derived for other Type II-P SNe at similar epochs, and falls far short

of the 0.1–1 M� of dust required to explain the dust abundance seen in high-z galaxies.

The current data and models imply that SNe of this type cannot make a significant

contribution to the dust enrichment of galaxies, unless their dust masses continue to

grow at later epochs than have typically been observed in the mid-IR.



Chapter 6

Conclusions and Future Work

The aim of this thesis was to help clarify the potential contribution of core-collapse

supernovae to the dust-enrichment of galaxies via sensitive mid-infrared surveys with

the Spitzer Space Telescope and Gemini telescopes. The motivation for this work stemmed

from dust formation models (Kozasa et al. 1991; Clayton et al. 2001; Todini & Ferrara 2001;

Nozawa et al. 2003) that predicted that CCSNe should be a major source (0.1–1 M�/SN)

of dust in galaxies; coupled with the discovery of very dusty (Md ∼ 108 M�), IR luminous

galaxies at high-redshifts (z & 6) (e.g., Bertoldi et al. 2003), which suggested massive-

star SNe, arising from the starbursts that power these galaxies, were a plausible source

for the prompt dust enrichment necessary to explain the observations, if CCSNe had

similar condensation efficiencies to those implied by the previous models (e.g., Morgan

& Edmunds 2003; Dwek et al. 2007), and produced at least 0.1 M� of dust per event.

Despite the assumption that SNe should synthesise dust, there had been surprisingly

little observational evidence to support this. The most relevant evidence came from

intensive multi-wavelength studies of SN 1987A, which in the LMC at a distance of

∼ 50 kpc was the closest Type II SN to have been observed in the past 400 years. Optical–

infrared photometry and spectroscopy from explosion to beyond 800 days post-outburst,

revealed three clear signatures of dust formation within the ejecta of SN 1987A from at

least day 530, models of which implied that a few ×10−4 M� of clumpy dust had been

produced by day 615 (Wooden et al. 1993; Ercolano et al. 2007). Whilst clearly not in the

range to explain the dust observed in high-z galaxies, SN 1987A was an unusual Type II

207
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SN with a rare blue supergiant progenitor, and so was felt to not rule out a more significant

contribution from other Type II SNe.

The availability of 8-m class ground-based telescopes, such as Gemini, followed by

the launch of the Spitzer provided the opportunity to search for mid-IR signatures of dust

in a larger sample of these extragalactic SNe with greater sensitivities than previously

possible, in order to seek evidence for dust formation and evolution in supernova ejecta.

Work began on this project with OSCIR on Gemini-North in 2001, and continued in 2004

with both Gemini and Spitzer. The SEEDS (Survey for the Evolution of Emission from

Dust in Supernovae) collaboration was formed and my involvement has been from the

inception of the main programme in 2004.

The mid-IR observations with Gemini and Spitzer of 30 core-collapse SNe have been

presented and discussed in this thesis. The conclusions drawn are summarised in the

following paragraphs.

6.1 Detected supernovae

Of the 30 SNe observed, only five were robustly detected. These were comprised of four

of Type II-P: SN 2002hh, SN 2003gd, SN 2004dj and SN 2004et, which at distances of

3.3–9.3 Mpc were among the closest of the sample. Three of these were detected and

monitored with both Gemini and Spitzer. The fifth detection was of SN 1999bw, at a

distance of 13.7 Mpc. SN 1999bw was classified as a Type IIn supernova, but the nature

of this object is ambiguous, having been compared to LBV-like outbursts (Van Dyk et al.

2000) and the transient objects NGC 300 and SN 2008S, which were proposed to be a new

class of electron capture SNe (Thompson et al. 2009).

6.1.1 Conclusive evidence for ejecta dust formation: SN 2003gd and SN 2004et

Of the detected SNe, only SN 2003gd (Section 4.4) and SN 2004et (Chapter 5) have

provided unambiguous confirmation of dust production in their ejecta, by exhibiting all

three of the following signatures: (1) the appearance of asymmetric blue-shifted emission

lines caused by dust preferentially extinguishing emission from the receding (redshifted)

gas; (2) a drop in visual brightness due to increased extinction by the newly formed dust,

accompanied by (3) a mid-IR excess due to thermal dust emission (Sugerman et al. 2006;

Kotak et al. 2009; Fabbri et al. 2011, submitted). Previously all three signatures had only
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Table 6.1: Ejecta dust yields of core-collapse supernovae – a review.

Name Type D Mprog Age Md Refs†

(Mpc) (M�) (days) (M�)

SN 1987A II(-P) 0.05 16–22 615–775 (3–5)×10−4 1
SN 1987A II(-P) 0.05 16–22 615–775 . 1.3 × 10−3 2
SN 1999em II-P ∼ 11 ≤ 15 510 ∼ 10−4 3
SN 2003gd II-P 9.3 6–12 499 ≤ 1.7 × 10−3 4
SN 2003gd II-P 9.3 6–12 499 ≥ 4 × 10−5 5
SN 2004dj II-P 3.3 12–20 ∼ 270–1000 ∼ 8 × 10−4 6
SN 2004et II-P 5.9 13–20 300–795 1.5 × 10−4 7
SN 2004et II-P 5.9 13–20 300–690 4 × 10−5–1.5 × 10−3 8
SN 2005ip IIn ∼ 30 unknown ∼ 940 ∼ 5 × 10−4 9
SN 2006bc II-L 20.3 unknown ∼ 550 In prep. 10
SN 2006jc Ib/c pec ∼ 26 LBV/WR? ∼ 200 ∼ 3 × 10−4 11
SN 2006jc Ib/c pec ∼ 26 LBV/WR? ∼ 200 ∼ 7 × 10−5 12
SN 2007it II-P 11.7 20–27 350–560 ∼ 10−4 13
SN 2007od II-P 24.5 unknown 120–230 4 × 10−4 14

† References for dust masses: 1. Wooden et al. (1993); 2. Ercolano et al. (2007);
3. Elmhamdi et al. (2003b); 4. Sugerman et al. (2006); 5. Meikle et al. (2007); 6. Szalai
et al. (2011); 7. Kotak et al. (2009); 8. Fabbri et al. (submitted) – the lower and upper
limits of the dust mass range for this reference correspond to the day 300 smooth
and day 690 clumpy dust distribution models respectively (Section 5.9).; 9. Fox
et al. (2010); 10. Gallagher et al.(in prep.); 11. Mattila et al. (2008); 12. Sakon et al.
(2009); 13. Andrews et al. (2011); 14. Andrews et al. (2010).

been observed for SN 1987A (Lucy et al. 1989). The current estimates imply that less than

2 × 10−3 M� of dust condensed in the ejecta of these SNe (Table 6.1).

6.1.2 Ejecta and ‘cool dense shell’ dust in SN 2004dj

A detailed analysis of the mid-IR evolution of SN 2004dj was not conducted for this thesis,

but most of the Spitzer data available for this SN has been the subject of a recent study by

Szalai et al. (2011). From their analysis of available Spitzer photometric and spectroscopic

data from days 98 to 1381 after outburst, and archival HST polarimetry data, Szalai et al.

found evidence of dust formation in the SN ejecta in the form of a significant brightening

of the mid-IR light curves from & 400 days, and detection of ∼ 0.5 % polarisation from

the SN ejecta in the optical at 425 days. Their best-fit analytic and 3D radiative-transfer

models to the observed mid-IR SEDs yielded dust masses in the range 1.4 – 7.6× 10−4 M�,

although only smooth dust density distributions were considered. They estimated that

the dust mass could be an order of magnitude higher (∼ 10−3 M�) with clumpy dust

models following the work of Sugerman et al. (2006) and Ercolano et al. (2007).

The Spitzer fluxes for SN 2004dj that have been measured and presented in this thesis
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are generally in good agreement with those of Szalai et al. (2011) and the same trend of

a brightening of the mid-IR light curves from ∼ 400 days was observed. However, the

relatively slow decline of the 8- and 10-µm light curves compared to those of SN 1987A

and SN 2004et led to my suggestion (in the conclusions of Chapters 2 and 3) that perhaps

a more plausible source for the strong late-time mid-IR emission of SN 2004dj was an IR

echo caused by thermal radiation from pre-existing circumstellar (CS) or interstellar (IS)

dust that was re-heated by the initial UV-optical SN flash.

The ejecta dust models of Szalai et al. (2011) were able to explain the Spitzer IRAC mid-

IR emission but it is worth noting the following limitations of their analysis. Late-time

optical photometry of SN 2004dj was dominated by the flux from the host cluster Sandage-

96, so were not included in the SED analysis by Szalai et al. (2011). Consequently, further

signatures of ejecta dust production, such as increased optical extinction and blue-shifting

asymmetric emission line profiles, could not be confirmed. (A strong early blueshift of

the Hα line profile of SN 2004dj observed during days 127–359 was interpreted by Chugai

et al. (2005) as the result of an asymmetric 56Ni ejection in an otherwise spherically

symmetric envelope.)

Gamma rays from the radioactive decay of 56Ni and its daughter products are known

to power the light curve during the nebular phase of SNe (this “radioactive tail” typically

occurs after ∼ 100 days in Type II-P SNe when the plateau phase has ended), where

such gamma rays are downscattered, absorbed, and eventually reprocessed into optical

emission. This provides a simple but useful energy budget test for ejecta dust during this

time, since dust condensed within the SN ejecta merely reprocesses the optical photons

to longer wavelengths and must satisfy the overall bolometric luminosity determined by

radioactive decays, which are dominated by 56Co. Such an analysis nicely supported the

considerable other evidence for dust formation in the ejecta of SN 1987A (Whitelock et al.

1989; Suntzeff & Bouchet 1990) and was used in the analysis of SN 2004et to disentangle

ejecta dust from late-time emission due to alternative dust sources (Chapter 5; Kotak

et al. 2009). Szalai et al. (2011) found that the luminosity of the warm dust component

of SN 2004dj significantly exceeded the luminosity due to radioactive 56Co-decay from

∼ 850 days onwards, although the source of the additional energy from this time was not

discussed by them. SED model fits to the IRAC and IRS Peak-up 16-µm fluxes of SN 2004dj

at epochs of (477–510) days and (631–662) days would have been useful to investigate

its energy budget for ejecta dust prior to 800 days. At late times (& 800 days) other
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potential sources of energy could include contributions from a “freeze-out” phase where

energy is released by nebulous matter ionised during the original explosion recombining

on timescales longer than the expansion time (Fransson & Kozma 1993); radioactive

deposition from other longer-lived isotopes, such as 57Co with a half-life of 270 days

(see Section 5.7.4); light echoes from pre-exisiting CS or IS dust (e.g., for SN 2004et see

Section 5.10.1, and for SN 2007od, Andrews et al. 2010); and, shock interactions between

the SN ejecta and any pre-existing circumstellar material.

Interestingly, Szalai et al. (2011) found that a “cold” dust component, required to

explain the persistent excess flux longward of 10µm for SN 2004dj, was located at v

∼ 6400 km s−1, close to the region between the forward and reverse shocks where a cool

dense shell (CDS) is expected to form during the interaction of the SN ejecta and a pre-

existing CSM. The CDS can provide a suitable environment for grain condensation, and

this was Szalai et al.’s preferred explanation for the late-time cold dust component.

CDS dust has also been invoked to explain the observations of a number of other

CCSNe, including SN 2004et (Kotak et al. 2009); SN 2005ip (Smith et al. 2009b); SN 2006jc

(Mattila et al. 2008; Smith et al. 2008); and SN 2007od (Andrews et al. 2010). In the case of

SN 2006jc and SN 2007od, the dust masses from the CDS models of Mattila et al. (2008)

and Andrews et al. (2010) respectively, are listed in Table 6.1 for comparison with the

ejecta dust masses of other CCSNe. It is shown that the amount of dust estimated to have

condensed in these CDS regions (a few ×10−4 M�) is comparable to current estimates for

dust freshly-synthesised in the expanding SN ejecta.

6.1.3 IR echoes: SN 1999bw and SN 2002hh

For the remaining two mid-IR detected SNe from this work (SN 1999bw and SN 2002hh)

it is likely that an IR echo was responsible for the mid-IR emission, caused by SN flash-

heating of pre-existing dust in the circumstellar or local interstellar medium, possibly

formed in the pre-explosion mass-loss phase of the progenitor star. However, since it has

been suggested that SN 1999bw was not a true core-collapse event (Van Dyk et al. 2000;

Thompson et al. 2009) its interpretation is difficult, especially due to the paucity of earlier

data for this object.

In the case of SN 2002hh, the echo hypothesis has been supported by optical observa-

tions (Pozzo et al. 2006; Welch et al. 2007). A large mass (0.1–0.15 M�) of CSM dust was

derived by Barlow et al. (2005) to explain the mid-IR SEDs, although difference imaging
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by Meikle et al. (2006) revealed that some of the strong mid-IR emission might be at-

tributable to nearby ISM material. A small declining component of the mid-IR emission

was considered likely to be due to an IR echo from the SN, and the minimum dust mass

of 0.04 M� estimated from models is considerably larger than the ∼ 10−3 M� of directly

observed ejecta dust inferred from studies of other SNe. If the 0.04 M� of dust corre-

sponds to circumstellar dust that was formed in outflows from the CCSN progenitor in a

previous mass-loss phase, then the massive-star progenitors of some CCSNe might still

make a significant contribution to the dust content of galaxies.

There is also evidence of late-time IR echoes from CS material around SN 2003gd and

SN 2004et (as discussed in Sections 4.4 and 5.10.1 respectively), and a number of other

CCSNe, including SN 2006bc (Gallagher et al., in prep.); SN 2006jc (Mattila et al. 2008);

SN 2007it (Andrews et al. 2011); and SN 2007od (Andrews et al. 2010), indicating that the

outflows of massive-star progenitors can potentially be a common source of dust.

As briefly discussed in Section 4.2.3, IR echoes from a dusty CS shell around SN 2008S

were modelled self-consistently from pre- to post-outburst by Wesson et al. (2010). Their

results indicated that super-AGB stars, of which the progenitor of SN 2008S may be an

example, could provide a total dust injection into the interstellar medium of up to 0.01 M�

over the suggested duration of the self-obscured phase. Wesson et al. (2010) further

considered the potential contribution of objects like SN 2008S to the dust enrichment of

galaxies by considering the case of the dusty z = 6.4 galaxy J114816.64+5251. Accounting

for modest dust destruction (70 % grain survival), they found that super-AGB stars (initial

mass range of 6–10 M�) were likely to contribute only about 1.6 % of the total 2 × 108 M�

of dust observed in J114816.64+5251, compared to 2.1 % from CCSNe (progenitor initial

mass > 8 M�), and a further 2.3 % from AGB stars (initial mass 4–6 M�).

6.2 Upper limits to dust masses for non-detected SNe

The majority of SNe observed (25 out of the 30) were not detected with either Gemini or

Spitzer. Despite the small sample, it is significant that many of the non-detections (not

including SN 2004C, SN 2003jg and SN 2002ji whose host galaxy emission swamps any

thermal dust emission from the region of the SN), lie at similar intrinsic levels to, or below,

those SNe that were detected, implying that there were not large amounts of ejecta-dust

or pre-existing circumstellar dust present for at least 22 of the SNe.



6.2. Upper limits to dust masses for non-detected SNe 213

To investigate this further, dust-mass upper limits for 16 of the non-detected SNe

(those observed at typical dust-forming ages, ∼ 300–1000 days post explosion), were

approximated by calculating flux to ejecta dust mass ratios, R (Jy/10−3 M�), for several

Type II SNe for which ejecta dust masses had been derived – listed in Table 6.2. R values

were calculated for both 8- and 10-µm flux densities, in order to derive dust mass upper

limits for the non-detected Spitzer and Gemini SNe samples respectively. Measured 8-

and 10-µm flux densities of SN 1987A at days 615 and 775 were taken from Bouchet

& Danziger (1993) and dust masses were those derived from the smooth and clumpy

models of Ercolano et al. (2007), for which carbon-rich (amorphous carbon or graphite)

grains provided the best fits. The 8-µm data for SN 2003gd at day 499 were obtained from

Sugerman et al. (2006) and for SN 2004et at days 464 and 690 from Chapter 5 and Fabbri

et al. (2011; submitted), with the authors’ best-fitting models for these SNe requiring

oxygen-rich (silicate) grain compositions. The fraction of amorphous carbon (“AC”),

graphite (“Gr”) and silicate (“Sil”) grains for the adopted dust models are indicated as

a percentage by mass in Table 6.2. All measured fluxes were scaled to a SN 1987A-

equivalent distance of 50-kpc. Finally, the relevant 8- or 10-µm R value was divided

into the 50-kpc Spitzer 8-µm or Gemini 10-µm flux upper limit for the non-detected SNe

(Chapters 2 and 3), in order to estimate upper limits to their dust masses, as listed in

Table 6.3.

The R values shown in bold font in Table 6.2 for the clumpy dust distributions were

chosen as conservative values to provide the highest dust mass upper limits for the two

general cases of carbon-rich or oxygen-rich grain compositions listed in Table 6.3. The

8-µm R values for the case of silicate dust composition (derived from data for SN 2003gd

and SN 2004et) were also applied to the 10-µm sample, since no measured 10-µm data

was available for SN 2003gd and SN 2004et at the appropriate epochs. This is a reasonable

approximation since the 8- and 10-µm fluxes lie on a relatively flat region of the mid-IR

SEDs, around the peak of the warm dust emission. For each of the Spitzer and Gemini

samples, the dust mass upper limits were split into two groups, those observed before

day 650 and those observed at or after this time, using R values calculated from data at

appropriate epochs.

Due to the increased sensitivity of Spitzer over the Gemini telescopes and because

the distances of the Spitzer SNe sample were, on average, lower than those from the

Gemini sample, the intrinsic flux upper limits, and therefore the dust mass upper limits
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Table 6.2: Mid-IR flux to ejecta dust mass ratios, R, for deriving
dust mass upper limits for the sample of non-detected SNe.

Name Age Grain R (Jy/10−3 M�)
(days) composition Smooth Clumpy†

Spitzer 8-µm sample:
SN 1987A 615 100 % AC 43 40
SN 1987A 615 100 % Graphite 27 13
SN 1987A 615 15:85 % Sil:Gr · · · 6.7
SN 1987A 775 100 % AC 2.9 2.1
SN 1987A 775 100 % Graphite 1.9 1.2
SN 2003gd 499 15:85 % AC:Sil 30 3.5
SN 2004et 464 20:80 % AC:Sil 120 26
SN 2004et 690 20:80 % AC:Sil 11 3.1

Gemini 10-µm sample:
SN 1987A 615 100 % AC 37 33
SN 1987A 615 100 % Graphite 18 11
SN 1987A 615 15:85 % Sil:Gr · · · 5.7
SN 1987A 775 100 % AC 3.8 2.7
SN 1987A 775 100 % Graphite 2.5 1.5

† Entries in bold font for the clumpy dust distributions were
conservatively chosen to provide the highest range of dust
mass upper limits in Table 6.3 below (see text).

are correspondingly lower for the 8-µm sample.

SN 2002ji has the largest dust mass upper limit of ∼ 0.1 M� for the 8-µm sample,

although the approximations for this SN and SN 2003jg (Md . 0.04 M�) are merely

illustrative, as the location of these SN meant that the host galaxy mid-IR emission

dominated the region of both SNe leading to significantly larger upper limits. For the

10-µm sample, the largest dust mass upper limit of ∼ 0.5 M� corresponds to the most

distant supernova, SN 1999ac at almost 40 Mpc. The lowest dust mass upper limits are

∼ 10−4 M� for the 8-µm sample and ∼ 10−3 M� for the 10-µm sample, in line with dust

mass estimates for detected Type II SNe (Table 6.1).

It was not possible to confirm the ambiguous 10-µm detection of SN 1999D in

NGC 3690, but at a distance of ∼ 42 Mpc, it would be unusually bright at any epoch,

and is therefore considered as a non-detection.

Since the only detections with Gemini were also detected with Spitzer and lay at the

closest distances (3.3–5.9 Mpc), it is concluded that for detection with current Gemini

mid-IR instruments, most detectable SNe are likely to be limited to distances of less than

10 Mpc. For the Spitzer observations the distances for non-detections ranged from ∼ 3.3–
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Table 6.3: Dust mass upper limits for non-detected supernovae.

Name Type D Age 50-kpc flux Md (M�)
(Mpc) (days) (Jy) if C-rich if O-rich

Spitzer 8-µm sample:
SN 2001gd IIb 12.0 941 . 9.0 . 7.8 × 10−3 . 2.9 × 10−3

SN 2002ap Ib/c pec 9.3 908 . 2.6 . 2.2 × 10−3 . 8.3 × 10−4

SN 2002ji Ib/c 20.0 748 . 145 . 1.2 × 10−1 . 4.6 × 10−2

SN 2002kg IIn 3.3 713 . 0.33 . 2.8 × 10−4 . 1.0 × 10−4

SN 2003bg IIb 18.1 692 . 9.2 . 7.9 × 10−3 . 2.9 × 10−3

SN 2003jg Ib/c 10.3 419 . 288 . 4.3 × 10−2 . 8.3 × 10−2

SN 2003Z II 17.4 639 . 21.8 . 3.3 × 10−3 . 6.3 × 10−3

Gemini 10-µm sample:
SN 1999ac Ia pec 39.0 800 . 730 . 4.8 × 10−1 . 2.3 × 10−1

SN 1999an II 20.6 791 . 187 . 1.2 × 10−1 . 6.0 × 10−2

SN 1999el IIn 18.2 564 . 225 . 4.0 × 10−2 . 6.5 × 10−2

SN 1999gq II 13.0 500 . 115 . 2.0 × 10−2 . 3.3 × 10−2

SN 2002ao IIb/Ic 21.1 776 . 146 . 9.7 × 10−2 . 4.7 × 10−2

SN 2002ap Ib/c pec 9.3 980 . 20.4 . 1.4 × 10−2 . 6.5 × 10−3

SN 2002ds II 31.1 626 . 298 . 5.3 × 10−2 . 8.6 × 10−2

SN 2002ed II-P 38.9 647 . 454 . 8.0 × 10−2 . 1.3 × 10−1

SN 2003B II 17.4 304 . 136 . 2.4 × 10−2 . 3.9 × 10−2

SN 2005cs II 8.4 628 . 10.7 . 1.9 × 10−3 . 3.1 × 10−3

20 Mpc, while the detected SNe were mainly at distances < 12 Mpc, although SN 2007od

(Andrews et al. 2010) lies at a distance of 24.5 Mpc.

6.3 Overall conclusions

The derived dust masses for SN 2003gd, SN 2004dj and SN 2004et are in line with

estimates for other CCSNe from the literature, as summarised in Table 6.1, including

those determined by the SEEDS team for SN 2007it (Andrews et al. 2011) and SN 2007od

(Andrews et al. 2010). The upper range to the measured dust masses of a few×10−3 M�

for the SNe detected in the mid-IR suggests that Type II SNe are not major producers of

dust, where the dust mass upper limits in Table 6.3 are almost all below 0.1 M� per SN

(except for the most distant SN of the sample), and six are below 10−2 M�.

In conclusion, the set of observations presented here argue that the ejecta of core-

collapse supernovae do not produce sufficient dust to explain the masses of dust derived

for some galaxies in the early Universe. It remains possible that the progenitors of these

massive stars may form larger (∼by an order of magnitude) amounts of dust in their stellar

winds during a preceding mass-loss phase. However, the quantities of dust inferred may
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still not account for the dust seen at high redshifts, and it is not certain how much of

any dust produced would survive further processing by the SN shocks. Therefore, the

ultimate source of the dust in these distant dusty galaxies remains an open question.

It should however be noted that although Type II SNe are the most common type

of CCSN their progenitor initial masses are estimated to be less than 20 M� (Smartt

2009). More massive stars are believed to produce hydrogen-deficient Type Ib and Ic SNe

following a Wolf-Rayet phase. The dust formation properties of these SNe have still to

be characterised, very few having been observable by Spitzer. In addition, the young

supernova remnant Cas A – the product of a Type IIb SN (Krause et al. 2008a) – has been

found from Herschel far-IR and sub-mm observations to contain 0.075 M� of cool dust

(Barlow et al. 2010), interestingly close to the 0.1 M� minimum dust mass per SN required

by dust evolution models for high-z galaxies.

Recent work by Cherchneff & Dwek (2010) predicts that only ∼ 0.15 M� of dust is cre-

ated by a Population III 20 M� SN, which may be a typical yield for Population II SNe of

similar masses, and compares to the range of 0.1–1 M� previously predicted by classical

nucleation theory. From their modelling of the hyper-luminous quasar SDSS J1148+5251,

Dwek & Cherchneff (2011) suggest that AGB stars, already established as efficient pro-

ducers of dust in local galaxies, could produce the large quantities of dust inferred in the

galaxy at z = 6.4, but that the final mass of surviving dust depends on the galaxy’s star

formation history.

Alternative sources of dust at high-z that have been proposed include quasar winds.

Elvis, Marengo & Karovska (2002) suggested that the environment of these winds could

provide temperatures and pressures similar to those found around cool dust-forming stars

and that up to 107 M� of dust could be formed over a nominal 108-year lifetime. From

Spitzer IRS spectra of the z = 0.466 broad absorption line QSO PG 2112+059, Markwick-

Kemper et al. (2007) detected mid-IR emission features which they attributed to amor-

phous and crystalline silicates formed in the quasar wind. It is not yet clear whether all

dust-emitting high-z galaxies posses such AGN central engines.

6.4 Future work

The SEEDS team are in the process of creating a grid of SN dust shell models with MO-

CASSIN to enable a consistent modelling approach for the objects studied, and to provide
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a detailed exploration of the broad parameter space constrained by the observations.

Another area for future study is the role of massive stars in producing dust at late

stages of their evolution, which has been highlighted by the discovery of light echoes

around CCSNe and other mid-IR transient objects. Luminous late-type supergiants, or

‘hypergiants’ (> few ×105 L�) can have high mass loss rates (up to > 10−4 M� yr−1) and

are often self-obscured by their own circumstellar dust at optical wavelengths, such as

the red hypergiants VY CMA, VX Sgr and NML Cyg, (e.g., Smith et al. 2009a; Schuster

et al. 2009). Similarly high mass-loss rates are exhibited by some yellow hypergiants,

e.g., ρCas, IRC+10 420 and HR 8752 (Humphreys 2010). Such objects could potentially

make a significant contribution to the dust enrichment of galaxies but such estimates

are difficult whilst uncertainties remain about the duration of the yellow/red hypergiant

phase and the total population of such objects in our Galaxy. Better statistics from current

optical and near-IR surveys, together with distances from ESA’s Galactic Gaia survey and

more precise mass-loss rate determinations using improved wind modelling techniques,

should contribute to a greater understanding of the role of these objects in the dust and

gas evolution of galaxies.

The ejecta nebulae around luminous blue variables (LBVs) can also contain large

masses of dust, as in the cases of ηCar and AG Car, with the 1840’s outburst of ηCar

estimated to have produced 0.2 M�of dust (Morris et al. 1999). A rotating ‘pinwheel’

plume of dust emission has been discovered around several Wolf-Rayet star systems,

including that of WR104, which was explained by Tuthill et al. (2002) as being formed in

the compressed shock interaction region (hotspot) between the stellar winds of a WC9

primary and an OB secondary star in a binary system, whose relative motions create an

Archimedean spiral. The M 1-67 ejecta nebula around the WN8 Wolf-Rayet star WR124

also contains large quantities of dust and is thought to have originated from the outburst

of an LBV precursor (Grosdidier et al. 1998). The overall contribution of late WC-type

Wolf-Rayet stars to the dust enrichment of galaxies is currently extremely uncertain.

Future observations by ALMA can help to quantify their overall production rates, and

search for emission from the hot-spot shocked wind compression region.

For point source imaging, Spitzer’s IRAC is 135× more sensitive at 8µm than mid-

IR instruments of ground-based 8-m telescopes, such as Gemini, due to Spitzer’s vastly

lower thermal backgrounds. For point source imaging, the Mid-IR Instrument (MIRI)

on the James Webb Space Telescope (JWST), is expected to be ∼ 40× more sensitive at 8µm
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than IRAC 1. In addition to these sensitivity gains, the 8× higher angular resolution of

JWST-MIRI compared to Spitzer-IRAC will greatly reduce point source confusion effects

in dense starfields, such as encountered when observing galaxies. MIRI’s much greater

sensitivity and angular resolution should enable SNe out to nearly 200 Mpc to be detected

at mid-IR wavelengths, corresponding to a volume ∼ 1000 times larger than for Spitzer.

So MIRI will be able to quickly observe large numbers of new SNe of all classes, both

photometrically and spectroscopically, enabling the dust contribution by each class to be

accurately assessed, in particular the contribution from the Type Ib and Ic SNe produced

by very massive stars.

1http://www.stsci.edu/jwst/instruments/miri/sensitivity/



Appendix A

Defining queue-mode observations

with the Gemini Observing Tool

The Gemini Phase I process refers to the proposal preparation and submission stage

using the Phase I Tool (PIT). Both classical and queue mode observations can be applied

for, although queue mode observations are only offered with facility instruments. For

classical scheduling, programmes are assigned to specific nights on the telescope, whereas

in queue mode observing, observations are expressly defined by the investigators and

carried out on their behalf by Gemini scientific staff.

Since the majority of Gemini data described in this thesis were obtained in queue

mode, it is worth outlining the procedure of defining the observing schedules during the

Phase II stage with the Gemini Observing Tool (OT). The OT is the software used for

detailed planning and definition of observations from approved proposals. It also serves

as a high-level interface for on-site observers, capable of configuring and sequencing

the telescope and instrument motions, and integrating the processes of data taking and

pipeline reduction.

During the Phase II process, the OT is used to access a database at the Gemini Obser-

vatory and download an outline of the approved science program as defined in the Phase

I stage. From this skeleton program, observations are defined in detail. At a general

level, this involves refining target coordinates, selecting appropriate guide and calibra-

tion stars, defining telescope motion sequences and instrument configuration, including
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orientation, chop throw and angle, filters and exposure times.

Guide stars. Setting the wavefront sensors (WFS) forms an integral part of the guide star

definition. The design of the Gemini telescopes is such that their lightweight structures

are very sensitive even to light winds. It is therefore a requirement that all science data

be collected with at least one WFS locked onto a guide star to provide image motion

compensation and/or higher order correction. This is achieved by tip-tilt articulation of

the secondary mirror, active optic manipulation of the primary mirror, and/or adaptive

optics (AO). Neither OSCIR, T-ReCS or Michelle have on-board sensors and must therefore

use one of the telescopes’ two peripheral wavefront sensors, PWFS1 and PWFS2, which

form part of the Acquisition and Guidance system located within the instrument support

structure. Mounted on rotary stages, the PWFSs patrol an annulus of sky around the

science field of view. They are positioned upstream of the science instruments and will

vignette the science field unless positioned at sufficient distance.

The OT contains a display feature known as the Position Editor, providing a graphical

view of the observation, which can then be modified interactively. The Position Editor

was used to ensure the instrument field of view and the regions of PWFS vignetting did

not overlap. Figure A.1 shows a screenshot of the Position Editor in the OT indicating

the target position, the Michelle science field of view, and the PWFS field of view and

vignetting regions for one of our Gemini SN observations. PWFS stars were selected from

the brightest, true point-sources within the usable annulus, having R-band magnitudes of

typically 11 – 13 mag for PWFS1 and 13 – 15 mag for PWFS2. By displaying background

images of the field of view from online catalogues, the Position Editor was also used to

select the best orientation of the instrument detectors and chop angles in order to avoid

potential contamination from other sources.

“User1 astrometry”. For the SNe programmes, the targets were too faint to see immedi-

ately on the array (for example, during acquisition), so to ensure good pointing accuracy,

it was necessary to adopt a blind off-setting procedure referred to as “User1 astrometry”.

Briefly, this entails defining a short observation of a designated “astrometric” star on

which to centre the Michelle “hot-spot”. The astrometric star, found from the Hipparcos

Catalogue, is chosen to be bright enough in the N′ (11.2 µm)-band and within a few

degrees of the SN target. The telescope is then slewed to an offset (“User1”) star, visible

only with the acquisition camera. The offset star has accurate coordinates (e.g. from The

Second U.S. Naval Observatory CCD Astrograph Catalog [UCAC2] or The Guide Star
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Figure A.1: Screenshot of the Position Editor in the Gemini Observing Tool for one
of our Gemini observations of SN 2002hh in NGC 6946. The science target position
is indicated by the small yellow circle with a cross in it at the centre of the frame;
the Michelle science field of view and chop throw positions are indicated by the
blue box immediately around the science target; and the field of view of the PWFS2
probe is indicated by the large circle. The vignetting pattern of the PWFS arm is also
displayed and it is important that this does overlap with the science field of view.



222

Catalog Version 2.2.01 [GSC2.2] catalogues) and has the same guide star as the target SN,

so that offsetting directly from the User1 star to the SN is possible without opening up the

guide loops. This generally achieves a pointing accuracy within a 0.5 arcsecond radius of

the nominal position.

Standard stars. A set of “baseline” calibrations are taken for all queue observations,

which includes observations of standard stars for flux calibration of mid-IR images. Ad-

ditional calibration observations can be requested but, unlike baseline calibrations, are

charged to the program. All calibrations, baseline or additional, are defined with the OT

at the Phase II stage. Baseline calibration observations of flux standards were used for the

data presented herein. The main standard stars used for T-ReCS and Michelle observa-

tions are those presented in Cohen et al. (1999), and a library of these “Cohen” standards

can be fetched from the Gemini database via the OT. Over the course of the various

SNe observing programmes, the procedure for defining standard star observations was

refined by Gemini and is now explicitly described in their web pages1. Two photometric

standards were defined, one before and one after the science target observations, each

chosen to match the airmass of the target as closely as possible. The elevation plot facility

in the OT was used to check that the chosen standard stars were appropriately matched in

airmass to the SN. For observations taking longer than about two hours, both standards

should be observed. Photometric accuracy is limited to ∼10% by the uncertainty in the

airmass correction and in the fluxes of the standards themselves.

Liaison with Gemini staff ensures the schedules are complete and correct before re-

mote submission to the queue via the OT, whereupon the schedules are activated for

observation. Several combined factors dictate which observation is chosen for execution

at a given time but prime are the scientific ranking and closeness of match to the observing

conditions.

1The Baseline Calibrations section of http://www.gemini.edu/sciops/instruments/midir-resources
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Gemini mid-IR imaging data

reduction

B.1 OSCIR data reduction

The OSCIR data files, like those of other Gemini instruments, are Multi-Extension FITS

(MEF) files, which differ somewhat from “regular” FITS files. A regular, or single-

extension, FITS file has a one 2-dimensional image stored in it with all the header in-

formation, representing a single readout of the detector. By contrast a MEF file contains

a number of images each with some of its own header information, each of which is

analogous to a normal FITS file. This is basically a consequence of the telescope chopping

and nodding techniques discussed at the beginning of this chapter. In summary, since the

OSCIR detector is read out at several tens or hundreds of Hertz in synchronisation with

the chopping secondary, frames are coadded into two hardware buffers: one for each

chop position. The buffers are written to disk periodically (generally every few seconds),

forming a ‘saveset’. After several such savesets are recorded, data collection stops as the

telescope nods, then resumes. A cycle during which the telescope nods to a new position

and back is called a ‘nodset’. Consequently, the file format of the raw data products from

OSCIR is a 6-dimensional MEF file, consisting of the following dimensions:
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Dim. Name Size

1 X dimension of array 128

2 Y dimension of array 128

3 Chop position Number of chop positions (1 or 2)

4 Savesets Number of savesets per nod position

5 Nod position Number of nod positions (1 or 2)

6 Nodsets Number of nodsets

The following tasks in Gemini IRAF package were used to process the OSCIR SN data

presented in Chapter 2:

• 

Prints header information for OSCIR files.

• 

Allows quick inspection of the individual raw data frames. Interactive mode can

be set where an IRAF  session is started with each frame displayed and can

be used to determine frame statistics.

• 

Is specifically used to calculate and plot statistics of reference frames, in order to

analyse the background level and identify bad savesets or nodsets. It can identify

saveset and nodset values for any frames outside some sigma of the average mean

level (default sigma=4).

• 

This is the basic data reduction task which applies the usual method of differencing

the image chop pairs (compute [beam A - beam B] or [beam B - beam A] for each

saveset, depending on the nod position), then averages these differences to form

a final image. The input image is a raw OSCIR data file, the output image is a

2-dimensional image which is the average of the chop and nod differences.



B.2. T-ReCS and Michelle data format and reduction 225

B.2 T-ReCS and Michelle data format and reduction

B.2.1 Format of the T-ReCS and Michelle raw data files

The basic file format for the T-ReCS and Michelle raw data is a multi-extension FITS (MEF)

file with the primary header – containing information common to all the images - stored

in extension ‘0’, and one or more image extensions containing coadded data frames.

For the chop/nod observations detailed here, there is one image extension per nod

position. As well as the image itself, each image extension contains a small FITS header

with details specific to that individual image, such as the start and end UT times and the

airmass. Each image contained in an extension is usually comprised of multiple coadded

raw frames, each of which is a [320,240] array of data values of type long (T-ReCS) or

double (Michelle). The format of the images in the extensions depends on the mode of the

observation (stare, chop, chop/nod or nod) and on which instrument (T-ReCS or Michelle)

was used to obtain the data.

For Michelle data obtained in chop/nod mode, each image extension is three dimen-

sional: [320,240,3], where frames from each chop position are combined to form chop_A

and chop_B position images, and these are subtracted to form a difference frame. It is these

three images which are referenced in the third data dimension of each image extension.

In turn, the chop_A and chop_B images are each the result of stacking a number of frames

with typical exposure times of 25 milliseconds. This very short “frame time” is set to

avoid saturation of the array caused by the high level of mid-IR background radiation.

Michelle stacks these raw frames internally during the time at each nod position.

For T-ReCS data obtained in chop/nod mode, each image extension is four-dimensional:

[320,240,2,N], where frames from each chop position are combined to form chop_A and

chop_B position images. It is these two images where are referenced in the third data

dimension of each image extension. As with Michelle, the chop_A and chop_B images

are, in turn, each an accumulation of frames coadded in T-ReCS’s internal buffers, with

individual frame times of typically 25 milliseconds. A pair of coadded frames from each

chop position is called a saveset, and there are ‘N’ number of savesets in each image

extension for a single nod position (described in the fourth data dimension). At the end

of the specified saveset time (normally 10 seconds) the stacked images are written out to

the FITS extension.
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B.2.2 Data reduction with the Gemini IRAF package

The  suite contains tasks for processing the mid-IR imaging data from the Michelle

and T-ReCS instruments. There are tasks specific to each instrument, and tasks which are

common to both. Table 2.7 in Chapter 2 provides a brief description of the tasks available

in the  package and indicates which of the these were used for reducing the data

discussed in this chapter. A more detailed description of each task follows:

•  and  can be run on raw T-ReCS images to respectively view/ex-

amine, and determine background statistics for, each chop saveset. Bad savesets

can be flagged so that they are not coadded with the  task.

•  examines the structure of a T-ReCS raw data file to ensure that

it has the correct number of extensions and the correct image dimensions in the

extensions.

• , like , can be used to view and interactively examine (with IRAF’s

) each image of the Michelle raw data and flag any bad nods.

•  is a recent addition to the  package and is only useful for data

which has been aborted during execution. It is used to repair incomplete FITS

headers of Michelle raw data so that they can comply with the Gemini Science

Archive (GSA) standard at the Canadian Astronomical Data Center (CADC).

•  and  are used to collapse and reorganise the raw T-ReCS and

Michelle data respectively into the same data structure. For chop/nod observations,

the format of the “prepared” files follows the format of the Michelle raw data such

that the primary header information is contained in extension 0, and the remaining

extensions contain one image each per nod position in a three-dimensional format

of size [320,240,3]. As previously described for the raw Michelle data format, the

three “planes” correspond to the on-source coadded image in image section [*,*,1],

the off-source coadded image in image section [*,*,2,], and the difference image

[*,*,1] - [*,*,2] in image section [*,*,3]. Specifically for T-ReCS,  collapses the

raw data to the same format as the Michelle raw images by averaging the savesets

for each chop position of a given nod position, to give a mean on-source image and

mean off-source image which are differenced in the third data plane as described
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previously. The tasks endeavour to harmonise the T-ReCS and Michelle keywords

in the FITS headers.

•  can be used to view and examine the data from either instrument once it

has been processed with /. As with the / tasks, statistics can be

derived for each nod frame and frames can be flagged as bad for exclusion from the

final data coaddition.

•  combines two T-ReCS or Michelle stare mode images of the sky which have

been /’d into a flat field frame. However, the Gemini web pages state that

there is, so far, no satisfactory method of creating imaging flats without significantly

increasing the noise level in the data and that since the detector response appears to

be intrinsically fairly flat over the field of view, flat-fielding of T-ReCS and Michelle

images is not recommended. No flat field observations were taken for the any of

the T-ReCS/Michelle data presented herein.

•  and  collapse the nod sets of the chop/nod data into a single

[320,240] image. Both routines require that the input frames have been prepared

with either  or .

 averages (or sums, if the combine task parameter is changed to “sum” from

the default of “average”) each frame by coadding the signal from each nod position

and dividing by the number of frames (nods). was used for the processing

of the data herein with the default setting of averaging the images. In this case, the

effective exposure time remains the same as for a individual image in the raw data:

the on-source time per saveset for T-ReCS and the on-source time per nod position

for Michelle. The effective exposure time for the averaged frames is determined

from information in the primary FITS header. For T-ReCS it is the product of the

keywords: FRMCOADD, CHPCOADD and FRMTIME, i.e., the number of frames

coadded per chop position multiplied by the number of chop cycles per saveset,

multiplied by the exposure time per frame in milliseconds. For Michelle, it is the

product of the NUMEXPOS and EXPOSURE keywords, where NUMEXPOS is the

number of exposures per chop position per nod and EXPOSURE is the duration of

one exposure in seconds.
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 combines the nod frames using cross-correlation techniques with the

 task in IRAF to shift the frames before they are averaged (or summed if

combine is set to “sum”).

•  is a task which calls the main tasks from the aforementioned reduction

steps for each T-ReCS or Michelle raw data file. By default, the task identifies if

a file is from T-ReCS or Michelle, runs  or  as appropriate, and,

for chop/nod data, combines the nod positions using . The ‘fl-view’ and ‘fl-

background’ keywords can be set to interactively view and examine the images (with

//), or investigate background statistics (T-ReCS only, with ).

The ‘stackoption’ parameter can be changed from the default of “stack”, which uses

, to “register” which calls  to first register and then combine the

data. Multiple raw data files can be reduced, with or the individual tasks,

using a list format for the ‘inimages’ parameter, i.e., “@in.lis”, where in.lis is the

list of images to be reduced. The output filenames can be defined simply with an

output prefix added to the input file name, defined specifically for single images, or

be provided in a list format for multiple images (i.e., “@out.lis”).

B.3 Final image cleaning

As discussed in Chapter 2, Section 2.5.3, the reduced mid-IR images often showed broad

horizontal and/or vertical striping. The custom IDL routines used to clean the data —

‘_.’ which removes the horizontal banding, and ‘_.’ which

removes the vertical striping — are described here.

Essentially, both routines apply a standard IDL task . to determine the me-

dian background value, within defined threshhold limits, of single rows (_.)

or columns (_.) of data, each a pixel high/wide, for the entire height/width

of the array. The median value of each row (or column) is assigned as the value for each

pixel in that row (column) in order to build up a horizontal (or vertical) noise pattern for

the entire 320 × 240 array. The noise pattern is then subtracted from the original data to

return a cleaned image in one-dimension.

The threshhold limits are set as follows: The user supplies a threshhold value in the

call to the appropriate cleaning routine, signifying how many standard deviations above

or below the sky level to mask out before determining the noise pattern. The default is 2,
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unless set otherwise. The mode and standard deviation of the background on which to

apply the user-defined threshhold limit, are determined by calling another IDL routine,

., from within the main _. and _. programmes.

Values above the higher limit of the threshhold or below the lower limit of the threshhold

are effectively masked for the purposes of calculating the median by setting them to

‘NaN’s.

For the vertical cleaning with _., there is also an input option to “split”

the cleaning so that sections of the array above and below a bright source are cleaned

separately. This is really only desired when a very bright source in the field (for example,

a primary flux standard) causes a channel offset effect above and below the source, such

that the column containing the source becomes supressed in brightness in the top half of

the array, yet appears brighter in the bottom half of the array, referred to as the “hammer

effect”. When using this option, the threshhold should be increased from the conservative

default of 2 to a level that includes the “hammered” pixels, e.g.,threshhold= 50 or more.

The hammer effect can also result in a depressed response in every channel of the array

at the same row as the bright source (seen in Figure 2.4 in Chapter 2), although this is not

so easily removed from the images. Photometry radii used for standards displaying this

effect, were small enough such that the ghost images along the same row as the source

could be ignored.

The cleaning routines are designed for data where the majority of the field is sky

emission, which is the case for the Gemini T-ReCS and Michelle data presented herein.

The IDL scripts were run on both the science and calibration data using a wrapper

IDL script, written with the UNIX command , which does the following:

• Compiles the main routines _. and _..

• Uses standard IDL routine . to read the data FITS files with the header

information into the IDL arrays.

• Executes _. and _. routines for each array in that or-

der, where the input for the vertical cleaning is the output of the horizontal cleaning,

to produce an array cleaned in both dimensions.

• Uses standard IDL procedure. to write out the cleaned arrays and header

information into a simple FITS file format.
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A default threshhold of 2 was used as the mask for most of the science data and the

calibration data, except where the hammer effect was noticeable. In which case, the “split”

option of_.was used with a threshhold of 50. Figure 2.4 in Chapter 2 shows

before and after cleaning with the _. and _. routines.



Appendix C

PSF-fitted photometry with IRAF

daophot - summary of process

1. Identifying sources for PSF-fitted photometry. Whilst there is an in-built task (daofind)

to identify stars on the frame for PSF-fitting, for the SN data there were only a

few sources per frame at most requiring photometry. Consequently, it was sim-

pler to identify them manually using imexamine to obtain the image coordinates

(keystroke ‘a’ or ‘x’) and copy these to a text file for input to the remaining tasks. For

the Gemini data, coordinates were also acquired in the same way for the standard

stars since these were used to construct the semi-empirical PSF model.

2. Initial aperture photometry of sources. photwas used to perform aperture photometry

on the identified stars to compute sky backgrounds and initial magnitudes.

3. Defining the PSF. This is the most critical step of the method. The model is usu-

ally constructed in an iterative manner using a selection of suitable stars (usually

between three and five stars, which are ideally isolated, well-sampled and un-

saturated) from the image frame. Each of the PSF-stars is scaled according to its

magnitude (estimated from aperture photometry) and the weighted average is fit

with a suitable analytical function, with optional look-up table(s) of the residuals

computed. Advice for selecting good candidate PSF-stars and a detailed explana-

tion of the PSF-building process can be found in section 4.7 of “A User’s Guide to

231
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Stellar CCD Photometry with IRAF” by Massey & Davis (1992). However, creating

the PSF was far simpler in the case of the Gemini data, in that the standard star was

the only suitable star available.

A task called daopsf, written by Dr. B. E. K. Sugerman1, was used to simplify the

process of generating the PSF. daopsf first calls the phot task to determine sky

backgrounds and initial magnitudes of the candidate PSF-stars. The task then calls

existing daophot package tasks pstselect and psf, where pstselect is used

to select suitable candidate stars from the photometry output file for input to the

PSF modelling task psf. It also contains an option (gensee) to call the seepsf task

which creates an image of the final PSF model (at the pixel scale of the image from

which it was created). This can be examined to ensure that the final model looks

reasonable (i.e., that is not contaminated with faint neighbouring stars). Critical

parameters for the daopsf task include:

• aperture – This is the aperture radius, in pixels, used for the initial photometry

of the candidate PSF-stars with the phot task. The sky-fitting parameters,

salgorithm, annulus and dannulus, were defined within daopsf in the same

way as for the phot task as previously described in Section 2.6.1. As only

one star was available to create the PSF model, and this was a bright, isolated

standard star, the aperture size was set to be the same as the daorad parameter

described below.

• daorad – Equivalent to the psfrad parameter in the daophot package. This is the

radius, in pixels, of the PSF, which should contain “nearly all” of the light from

the brightest star of interest. This was investigated for the standard stars in

the same way as when choosing an aperture size from which to determine the

flux conversion factor for the aperture photometry, i.e., using multi-aperture

photometry to determine which aperture size contained most of the flux by

inspecting plots of counts versus aperture radius and noting the aperture size

at which the counts levelled off.

• fitrad – This is the radius, in pixels, that defines the size of the PSF used for

fitting a star. For suitable PSF stars, it is the data within this radius that is

1Private communication, 2005
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used in computing the analytic component of the PSF model specified by the

function parameter.

• function – There are several options for the form of the analytic function,

including a 2-D elliptical Gaussian, Moffat and Lorentz functions and higher-

order Gaussian/Lorentz combinations. But this option was generally set to

“auto”, whereby each of the six available functions were tried in turn and the

one with the smallest scatter in the fit was selected.

• varorder – This is the order of the empirical component of psf model. This

was set to zero, representing an empirical constant PSF model composed of

an analytic component and a single look-up table. In this case, it is assumed

that the PSF model has the same shape everywhere in the image frame.

A typical call to the daopsf task to create the semi-empirical PSF model is as

follows:

ecl> daopsf input=gemini_standard_image.fits \\

>>> psf=gemini_standard_image.coo nmin=1 gensee+ daorad=25 \\

>>> fitrad=4 salgorithm="mode" annulus=30 dannulus=10 \\

>>> aperture=25 function=auto varorder=0

4. PSF-fitting. allstar was used for simultaneous PSF-fitting of the relevant stel-

lar sources in the frame, and to produce a PSF-subtracted image from which the

goodness of the fit was examined by eye. The task uses a weighted, non-linear,

least-squares fitting procedure to shift and scale the PSF model to fit each stellar

source, using the centroid of the stellar source as the profile centre, and the sky

level as determined from aperture photometry. The scaling yields the magnitude

estimate. allstar also outputs a goodness of fit statistic, chi, given by the ratio of

the observed pixel-to-pixel scatter in the fitting residuals to the expected scatter.

Critical parameters of the allstar task include the name of the PSF model (psfim-

age) as created with the daopsf task; the fitting radius (fitrad) which, as previously

defined, is the pixel radius that limits the extent of the PSF used in fitting a stel-

lar source - this was generally set to be the same size as the aperture radius for

aperture photometry, i.e., the FWHM of the stellar profile + 1 or 2 pixels.; the effec-

tive readnoise and gain (epadu) were defined to ensure an appropriate estimation
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of the magnitude errors and PSF-fitting weights; the sky values were generally

re-computed at this stage by setting the fitsky parameter to “yes” and using the

annulus defined by the daopars parameters sannulus and wsannulus; finally, the

function and psfrad parameters were set to reflect the values defined in the daopsf

task for the PSF model.

A typical call to the allstar task for carrying out psf-fitted photometry of a SN

detection is as follows:

ecl> allstar image=gemini_sn_image.fits photfile=default \\

>>> psfimage=gemini_standard_image.psf allstarfile=default \\

>>> rejfile=default subimage=default readnoise=24250 epadu=24000 \\

>>> function=moffat25 psfrad=25 fitrad=4 \\

>>> fitsky=yes sannulus=5 wsannulus=10

As previously mentioned, the magnitudes output from allstar were scaled from

the PSF model, whose own magnitude was determined from aperture photometry of the

brightest PSF star. The zero-point of the magnitude scale for the aperture photometry was

set with the zmag parameter within the phot task. However, as only relative magnitudes

were required, zmag was left at the default, and arbitrary, value of 25 mag, corresponding

to a unit flux. The magnitudes of the SN detections as output by allstar were then

converted to image units (which for the Gemini data was in counts) using the standard

form of the flux-magnitude equation:

FSN = F0 × 100.4(m0−mSN),

where FSN is the flux in counts of the SN detection; F0 is the zero-point flux in counts,

equivalent to 1.0 count; mSN is the magnitude of the SN detection; and m0 is the zero-point

magnitude of 25 mag.
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Defining Spitzer observations

Defining AORS with the Spitzer Planning Observations Tool (SPOT)

This section provides an overview of the Spitzer Planning Observations Tool (SPOT)

and, more specifically, the parameters used to set up the Spitzer observations described in

this thesis. For a more detailed discussion of the capabilities and functions of SPOT see

the SPOT User’s Guide, Spitzer Planning Observations Tool v18.0 (June 18, 2008)1.

SPOT is a software tool used by potential and approved Spitzer observers for planning

and modifying observations, and is also used for electronic submission of observing

proposals. The multi-platform JAVA-based software uses a Graphical User Interface

(GUI), and is available to download from the Proposal Kit section of the SSC webpages2.

For each science target to be observed, an Astronomical Observation Template (AOT)

must be selected to define a distinct Spitzer observing mode. Table D.1 outlines the eight

AOTs which correspond to the eight possible observing modes available with the three

Spitzer science instruments.

SPOT is used to enter the target information and define observation details for a

selected AOT. The complete target and instrument information results in an Astronomical

Observation Request (AOR), which is the fundamental unit of a Spitzer observation.

An AOR contains three categories of information: the astronomical target, the AOT-

specific parameters (e.g., instrument configuration, exposure time etc) and the timing

1http://ssc.spitzer.caltech.edu/documents/SPOT /SPOT_UserGuide_v18.pdf
2http://ssc.spitzer.caltech.edu/propkit/spot/

235



236

Table D.1: The eight Astronomical Observation Templates (AOTs) corresponding to the eight
Spitzer observing modes.

AOT (Spitzer observing mode) Description

IRAC Mapping/Photometry Simultaneous imaging at wavelengths of 3.6, 4.5, 5.8 and 8.0µm,
over the two 5.′2 × 5.′2 fields of view.

MIPS Photometry and
Super-Resolution Imaging Imaging photometry and high-resolution imaging at 24, 70 and

160µm.

MIPS Scan Mapping For large field maps at 24, 70 and 160µm. Maps are constructed
from 5′-wide (2.5′-wide for full coverage at 70µm) strips between
0.5◦ and 6◦ in length. The slow telescope scanning is combined
with motion compensation using a cryogenic scan mirror.

MIPS Spectral Energy
Distribution (SED) Very low-res. (R = 15 – 25) spectroscopy in the wavelength range

55 –95µm using the 70µm Ge:Ga array.

MIPS Total-Power Measurement Provides zero-level-reference observations for absolute brightness
of extended sources.

IRS Staring-Mode Spectroscopy Low-res. long-slit spectroscopy (R = 60 – 120) from 5.3 to 40µm and
high-res. spectroscopy (R = 600) from 10 to 37µm. Also, peak-up
array imaging in two filters covering wavelengths of 13.5 – 18.5 and
18.5 – 26µm, over a field of view of ∼ 1 arcmin2. Raster mapping is
also supported in this mode.

IRS Spectral Mapping Slit scanning spectroscopy for fields up to a few arcminutes in
extent.

IRS Peak-Up Imaging Peak-up array imaging only, in two filters over wavelengths 13.5 –
18.5µm and 18.5 – 26µm and a field of view of ∼ 1 arcmin2.

and relational constraints (e.g., specify a window when an AOR should be executed, or

how one AOR relates to others in a group).

In addition to its main function of allowing the construction and editing of AORs,

SPOT also includes useful visualization tools for checking the position of proposed obser-

vations on the sky. SPOT can also be used to estimate the total observing time (including

telescope overheads) for each AOR in a proposed program, as well as provide target

visibility information, focal plane position angle for a selected observation date, and

estimates of the zodiacal and cosmic infrared background at the target position.

Potential observations can be planned and developed in an iterative manner un-

til AORs are ready for submission along with the observing proposal. For successful

proposals, the complete AORs are uploaded to the Spitzer database for expansion into
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activities and uplink sequences for transmission to the spacecraft.

The AOTs used for the Spitzer observations presented in this thesis were those for

IRAC Mapping/Photometry, MIPS Photometry/Super-Resolution, MIPS Scan Mapping,

and IRS Peak-Up Imaging. A brief description of each of the observing modes adopted

and the corresponding AOT parameters follows. However, where relevant, specific

parameter values selected for the observing programs/individual targets may also be

given in Chapter 3, Section 3.3.

IRAC Mapping/Photometry. This observing mode was used in the SINGS Legacy program

and all GO programs in Spitzer Cycles 1, 2, 3 and 4.

The IRAC AOT consists of imaging with an optional dither pattern superposed on an

optional rectangular-grid raster for mapping. Imaging was carried out in all four IRAC

channels by selecting both the 3.6/5.8µm and 4.5/8.0µm fields of view in the AOT.

Several imaging modes are available, including Full Array mode, High Dynamic

Range (HDR) mode, Subarray mode, and Stellar mode. The Full Array readout mode

was used for IRAC imaging of SNe with our Spitzer GO programs. Archival SINGS

Legacy data, used to supplement our Spitzer sample of SNe, uses IRAC in its HDR mode.

The Full Array and HDR imaging modes are discussed here.

In Full Array readout mode there are four exposure, or “frame”, times to select from:

2, 12, 30 and 100 seconds, which correspond to effective exposure times per frame of: 1.2,

9.86, 26.8 and 96.8 seconds. A 30 s frame time was used for each image of the SINGS

galaxies. For the first GO program a common frame time of 100 s was selected for all

sources, but thereafter frame times were chosen specifically for each target based on

desired sensitivities.

HDR mode is used where it is possible that bright sources will saturate the array in

the frame time required to achieve the desired sensitivity. Selecting the HDR option in the

IRAC AOT results in one or more short-duration frames being taken along with the longer-

duration frames, allowing high dynamic range through the recovery of photometry of

bright sources without loss in sensitivity. In HDR mode, frames are executed in order of

shortest to longest without repositioning of the telescope. With the dither option selected,

as was the case for the SINGS observations, the entire frame set in HDR mode is repeated

at each dither position.

There are also mapping options within the IRAC AOT. The SINGS IRAC observations
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required complete mapping of their sample galaxies. This was done in array coordinates

which centres the map on the position directly between the two IRAC fields of view and

images both fields simultaneously. Care must be taken with the AOT set-up to ensure the

map centre is imaged and that there is equal field coverage in all four arrays. Celestial

coordinate mapping is preferred for highly elongated regions and this mode was used in

one case for our Cycle 2 GO program, where two SNe present in one galaxy (SN 2002hh

and SN 2004et in NGC 6946) were separated by ∼ 5′ in an east-west direction. For a

celestial coordinates map, the AOT performs the map grid once with the 4.5/8.0µm field

of view centred on each map grid position, and then repeats the map grid steps with the

3.6/5.8µm field of view. For either map type, the map grid is specified within the AOT

by choosing the number of rows and columns and the map step size, and for celestial

coordinate mapping, the position angle. Mapping was not necessary for subsequent GO

programs. When “no mapping” is selected, the map grid consists of a single position at

the coordinates specified in the target section of the AOT, viewed first by the 4.5/8.0µm

field of view and then by the 3.6/5.8µm field of view.

Whilst there is an option in the IRAC AOT to set the number of in-place frame repeats

(successive frames taken at the same position), this observing method is not encouraged

by the SSC for a number of reasons (see section 6.2.4.1.1 of the SOM), and dithers are

recommended for providing higher quality data. Dithered observations involve small

shifts in pointing between multiple frames which provides a good way of removing

array-dependent and transient (e.g., cosmic rays) image artifacts and reduces noise from

the effects of pixel-to-pixel errors in the flat-field. The sub-pixel dithering that is available

can be used to recover some level of information which would otherwise be lost through

under-sampling of the array. Combined with the drizzle technique (Fruchter & Hook

2002) to reconstruct the images, sub-pixel dithering can improve the sampling to provide

spatially enhanced final IRAC image mosaics. See Chapter 3, Section 3.4.2 for a further

discussion of the processing used to achieve this result for the IRAC data presented here.

Single observations per pointing together with dithering techniques were employed for

all IRAC observations presented here.

At either the single position defined in the target section of the AOT or each of the

positions defined by the map grid, the telescope is pointed to a series of offset positions

that define the dither pattern. There are several dither patterns available to choose from.

In Full Array mode there are five fixed pattern types which are performed identically at
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Figure D.1: The 12-point Reuleaux and Cycling IRAC dither patterns for the “large” scale factor.
Axes are in pixels. Taken from IRAC Chapter 6 of the SOM.

each mapping position. Alternatively, the cycling pattern can be used, which is where a

different subset of dither positions is performed at each mapping position. Each of the

dither patterns is available in large, medium, and small scale sizes. Medium scale dither

patterns were used for pointed observations to better protect against image artifacts and

small-scale patterns were selected where mapping was carried out. Sub-pixel dithering

is maintained for all dither patterns at all scales.

The small scale cycling and the fixed medium scale 12-point Reuleaux dither patterns

were used for the IRAC observations presented in this thesis. Sub-pixel sampling to half

a pixel is achievable in these modes (compared with the quarter pixel sub-pixel sampling

limit, determined by the telescope pointing accuracy and IRAC image distortion). For the

cycling dither pattern, the number of dithers to perform at each map grid position and

the starting point in the cycling dither table were specified in the AOT. Figure D.1 shows

the IRAC large-scale 12-point Reuleaux and cycling dither patterns.

MIPS Photometry/Super-Resolution Imaging. The MIPS photometry mode is for multi-

band observations of reasonably compact sources. At 24µm super-resolution imaging

is automatically achieved from the standard dither sequence which provides thorough

sampling of the point spread function, allowing the final image to be processed to higher

angular resolution than the native detector pixel size. This observing mode at 24µm was

used for all programs in Spitzer Cycles 1, 2, 3 and 4.

For the 24µm data, a “small” or “large” field size is selected in the AOT. The large field
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size is generally used for larger (> 2′′) sources, but it was used for the Cycle 1 observations

since the original target list contained a couple of host galaxies which contained two SNe

and this way both SNe could be observed with one pointing. For the subsequent GO

programs, a small field size was used.

Dithering on the array is achieved by a combination of scan mirror motions and

spacecraft small offsets. For the small field size, one cycle of basic 24µm observations

equates to a 14-position dither sequence. The nominal pattern for these observations is

a column of 7 images on the left-hand side of the array dithered using the scan mirror,

followed by a 25.5 pixel offset to right-hand side of the array, where a further column of 7

images are obtained (see section 8.2.1.2.1 of the SOM for more details). For the large field

size, a 10-position dither sequence is comprised of a column of 5 images each separated

by 1.5 pixels, followed by a spacecraft offset across the array of 4.5 pixels and a repeat of

the column of 5 images. For the large field size, a sky image is obtained by slewing the

telescope to a sky offset position specified by the user and repeating the dither sequence

(see section 8.2.1.2.2 of the SOM for more details). The sky offset was set to be 10′′ for the

Cycle 1 observations.

The use of raster maps for coverage of a small area in photometry mode is an option

that can be set in the AOT, but this was not necessary for the Spitzer GO programs

presented in this chapter.

There are three exposure times to select from in the MIPS photometry AOT: 3, 10 and

30 seconds. For the first GO program a common exposure time of 10 s was selected for all

sources, but thereafter exposure times were chosen specifically for each target based on

desired sensitivities. The observer also specifies the number of observation cycles, which

is the number of times to execute the basic observing sequence or full map sequence. This

was set to 10 cycles for the GO Cycle 1 program and generally kept to one cycle for the

remaining programs, except in a few cases where deeper exposures were desired for the

older, and most probably fainter, SNe 1998S, 1999bw and 1999em.

MIPS Scan Mapping. The MIPS scan map mode provides efficient large-area coverage

of the sky at 24µm, 70µm and 160µm. This observing mode was used for the SINGS

Legacy MIPS observations of nearby galaxies in Spitzer Cycle 1.

Coverage is achieved by scanning the telescope at a constant rate across the sky,

whilst using a reverse sawtooth (ramp) motion of the scan mirror to effectively freeze the
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images on all three arrays for a set integration time, before jumping forward for the next

integration (Rieke et al. 2004). The ramp motion of the scan mirror avoids the need to

re-point and stabilise the telescope between exposures.

The three constant scan rates available in the AOT are slow (∼ 2.′′6/s), medium (∼ 6.′′5/s)

and fast (∼ 17′′/s). The medium scan rate was used for the SINGS Legacy observations

for all three MIPS arrays.

The map grid is specified in the AOT by the following parameters: the map centre

offset, the cross-scan step, the number of scan legs and the scan leg length.

The map centre offset is specified in the cross-scan and in-scan directions in arcseconds.

The map itself is comprised of essentially linear scans of the sky in the forward and reverse

directions, with each direction defined as a “scan leg”. The length of a scan leg can be

between 0.5◦ and 6◦ depending on the scan rate. The SINGS observations presented in

this thesis used a “scan leg length” of 0.5◦. The scan leg offsets in the cross-scan direction

(the “cross-scan step”) set how much overlap there is between scan legs. The SINGS

observations used a cross-scan step of 148′′ (approximately one-half the array width) in

both the forward and reverse directions, with a range of 3 to 11 scan legs for the data

presented in this thesis.

A single scan leg provides multiple redundancy at 24 and 70µm, but only single

redundancy at 160µm for slow and medium scan rates (and only half-coverage at the fast

scan rate). For a single-pass, or scan leg, the scan map integration time per pixel is ∼ 40 s

at 24µm and 70µm for the medium scan rate, since each point source is imaged around

10 times in a single scan leg with individual frame times of just under 4 s. At 160µm the

total single-pass scan map integration time per pixel is ∼ 4 s with the medium scan rate

since each source appears in just one frame.

The SINGS MIPS observations were obtained using the scan-mapping mode in two

separate visits to each galaxy. Due to the redundancy inherent in the scan-mapping

mode, each pixel in the final mosaic core map area was effectively observed 40, 20, and 4

times at 24, 70 and 160µm respectively, resulting in respective integration times per pixel

of ∼ 160 s, 80 s, and 16 s. For example, for the MIPS 24µm data, each point is imaged

approximately 10 times in a single scan leg, which is then doubled due to the half-array

width overlap with each scan direction. Since there are two visits to each galaxy, this

results in an effective coverage of around 40 observations for the final core mosaic, with

individual frames times of ∼ 4 s, resulting in a total integration time per pixel of ∼ 160 s.
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Figure D.2: The 9-point random IRS PUI dither pattern for the “small” scale
factor. Axes are in pixels. Taken from IRS Chapter 7 of the SOM.

IRS Peak-Up Imaging. The peak-up arrays in the short-low module of the IRS provide

science-quality imaging capabilities at 16 and 22µm. This observing mode was used for

the GO programs in Spitzer Cycles 3 and 4.

Within the IRS Peak-up imaging (PUI) AOT, observations can be selected in both the

blue (16µm) and red (22µm) arrays, or both. The PUI observations presented in this thesis

were carried out with just the blue peak-up array. The integration parameters selected in

the AOT are the ramp (exposure) time and number of cycles. There is an option of three

ramp times: 6, 14 and 30 seconds. The ramp times were chosen specifically for each SN

based on desired sensitivities. For the Cycle 4 data, this resulted in the longest exposure

time of 30 seconds for all sources except SN 2002hh, which was still bright enough to use

the shortest exposure of 6 seconds. Exposure time can be increased via multiple ramps by

selecting an appropriate number of cycles but this was not employed for the Cycle 3 and 4

GO observations. Instead, dithering was used to provide multi-pixel sampling of a given

sky position. As highlighted previously in the case of the IRAC observations, dithering-

techniques help to improve final image quality, and sub-pixel dithering can be used to

recover additional spatial information (though the improvement is not pronounced in the

critically-sampled blue peak-up array).

Random and cycling dither patterns are available. The small-scale, nine-position

random pattern was used for the PUI observations, as shown in Figure D.2. The small
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pattern has a minimum step size of 2 pixels (equivalent to the FWHM of point sources in

the blue peak-up array) and allows for an area of full-overlap in the final mosaic image

which is about twice that of the large patterns. With the 9-point patterns, sub-pixel

sampling to a third of a pixel is achieved with offsets in multiples of a third of a pixel.
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They will see us waving from such great heights,

"come down now", they’ll say

but everything looks perfect from far away,

"come down now", but we’ll stay...

– The Postal Service, Such Great Heights

(cover by Iron and Wine) 2003


