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Abstract

In recent years green chemistry has been increasingly applied to industrial syntheses. One
key area of growth is the use of biocatalysts to perform reactions selectively in non-organic
media. However, there is currently no set development process for the discovery and evo-
lution of enzymes to be applied in these reactions. A process has been suggested by Hailes
et al, part of which is the development of chemical reactions that work in combination with
the biocatalysts.! The interface between traditional chemistry and biocatalysis has yet to
be fully explored, particularly in relation to the potential degree of interaction between the

two synthetic techniques.

The development of a chemical reaction that can be used in one-pot with a biotransfor-
mation is explored within this thesis. The synthesis of a standard to calibrate an assay of
the transketolase selectivity was performed first. This allowed the stereochemistry of the

starting material of the reductive amination being developed to be determined.

Next a reductive amination reaction that proceeded in water and in the presence of
transketolase was discovered and then optimized using cyclohexanone as a test substrate.
This reaction was developed so that it could offer an alternative to a similar transformation
performed by a transaminase enzyme, specifically with respect to substrate and stereo-

selectivity.

This optimized reaction was then applied to an intermediate (1,3-dihydroxy-pentan-2-
one), synthesized both using standard organocatalytic techniques and a biotransformation

using transketolase, to produce 2-benzylamino-pentane-1,3-diol. The reaction was seen to
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be diastereoselective and an alternative transfer hydrogenation reaction that displayed the
opposite selectivity was also investigated. This complimentary pair of reactions meant that
all four diastereoisomers of 2-benzylamino-pentane-1,3-diol could potentially be synthe-

sized.

This work illustrated that the development of chemical reactions towards one-pot cas-

cade reactions with biocatalysts is possible.
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Introduction

1.1 General introduction

The environmental impact of chemistry, and in particular of large scale chemical processes,
is of increasing global concern and the field of green chemistry has been developed to re-
spond to this. The strategies employed in green chemistry are based upon the principle of
reducing the risk involved in performing chemical reactions, by reducing their inherent haz-
ardousness.!? This is contrary to the traditional view of chemists and chemical engineers,
that the risk should be reduced by reducing people’s exposure to the hazards of individual
chemicals. This traditional approach works to reduce the risks involved, but means that
hazardous chemicals are still used and will need to be handled at some point in the life
cycle of the reaction.? It also means that human error can have serious consequences, and if
an accident were to occur, then it might have a large impact on the environment. The idea
of reducing the inherent risks in chemistry by reducing the potential hazards is summed up

in the most widely accepted definition of green chemistry:
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“the design, development and implementation of chemical processes and prod-
ucts to reduce or eliminate substances hazardous to human health and the en-

vironment’”?

Anastas and Warner subsequently expanded this statement to highlight 12 ways this can

be achieved (Figure 1.1 on page 3).>*

At a later date Anastas and Zimmermann developed the 12 principles of green engineer-
ing, which allow process engineers to evaluate the environmental impact of their work and
provide guidance on improving it.> These principles make it possible to examine the green
credentials of processes, based upon their own merits and not just on the reactions being
undertaken. Both sets of green principles are best summed up in the mnemonic created by

Poliakoff et al which is shown in Table 1.1.0

Industry is implementing as many changes as possible, based on these principles, and
there are two main impetuses for this. The first and most powerful driving force is eco-
nomics, with the financial benefits of applying the green chemical principles mainly brought
about by minimizing the energy and chemicals used in a process, as well as reducing the
waste stream.® This is important because the profit margins in chemical manufacture are
often small, mostly due to the escalating cost of developing new drugs, the highly competi-
tive nature of the business and limited patent lives.”® However, these economic arguments
will not cause the overnight transformation of the chemical industry to a more environmen-
tally friendly practice. Synthetic routes to molecules in most parts of the chemical industry

are highly regulated, needing to be proved safe, as well as giving a consistent quality of
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Prevention
[tis better to prevent waste than to treat or clean up waste afterit has been created

Atom economy
Synthetic methods should be designed to maximize the incorporation of all materials used inthe
processinto the final product

Less hazardous chemical syntheses
Wherever practicable, synthetic methods should be designed to use and generate substances
that possess little or no toxicity to human health and the environment

Designing safer chemicals
Chermical products should be designed to effecttheir desired function while minimizing their
toxicity

Safer solvents and auxiliaries
Theuse of auxiliary substances (e.g. solvents, separation agents, etc.) should be made
unnecessarywherever possible and innocuous when used

Designfor energy efficiency

Energy requirements of chemical processes should be recognized fortheir environmental and
economicimpacts and should be minimized. If possible, synthetic methods should be
conducted at ambienttermperature and pressure

Use of renewable feedstocks
Araw material orfeedstock should be renewable ratherthan depleting whenever technically
and economically practicable

Reduce derivatives

Unnecessary derivatization (use of blocking groups, protection/ deprotection, temparary
modification of physical/chemical processes) should be minimized or avoided if possible,
because such steps require additional reagents and can generate waste

Catalysis
Catalyticreagents (as selective as possible) are superiorto stoichiometricreagents

Design for degradation
Chemical products should be designed so that at the end of their function they break down into
innocuous degradation products and do not persistin the environment

Real-time analysis for pollution prevention
Analytical methodologies need to be further developed to allow for real-time, in-process
monitoring and control priorto the formation of hazardous substances

Inherently safer chemistry for accident prevention
Substances and the form of a substance used in a chemical process should be chosento
minimizethe potential for chemical accidents, including releases, explosions, andfires

Figure 1.1: The 12 principles of green chemistry®
Anastas PT, Warner JC. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998,
p-30. By permission of Oxford University Press
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12 Principles of Green Chemistry 12 Principles of Green Engineering

Prevent wastes Inherently non-hazardous and safe
Renewable materials Minimize material diversity

Omit derivatization steps Prevention instead of treatment

Degradable chemical products Renewable material and energy inputs

Use safe synthetic methods Output-led design

Catalytic reagents Very simple

Temperature, pressure ambient Efficient use of mass, energy, space and time
In-process monitoring Meet the need

Very few auxiliary substances Easy to separate by design

E-factor, maximize feed in product Networks for exchange of local mass and energy
Low toxicity of chemical products  Test the life cycle of the design
Yes its safe Sustainability throughout product life cycle

Table 1.1: Mnemonic for the 12 principles of green chemistry and the 12 principles of green
engineering’

Tang S, Bourne R, Smith R, Poliakoff M. Green Chemistry 2008; 10: 268-269. By permission of the Royal
Society of Chemistry

product. This is particularly the case with the pharmaceutical industry where the molecules
synthesized are to be used in medicines, and so each batch needs to be identical in order
to provide identical therapeutic outcomes. The complex nature of some of the molecules,
which often need to be made as a single enantiomer, means that the pharmaceutical industry
has the highest, and therefore worst, ratio of mass of chemical feedstock required to syn-
thesize each kilogram of product.®> Therefore, where the effect of applying green chemical
principles would cause the greatest benefit, the application is stifled. This regulation does
not encourage changes within the industry unless there is a large enough economic incen-
tive, which will more than cover the costs incurred in changing the process. Furthermore
current government policy does not reward companies for improving their practices, but
rather punishes those who pollute and break the law.? The level of pollution at which com-

panies are punished is defined in national and international environmental regulations and

these do not encourage companies to improve processes far beyond these levels.? The stan-
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dards are increased incrementally but the chemical industry tends to oppose these changes,
as they could find themselves liable for fines and punishments once a regulatory limit has

been changed, as well as having to potentially shut down profitable plants.?

The second major driving force for change to greener chemistry within the chemical
industry is that while it has helped deliver a much higher standard of living, for example
developing and providing many modern materials and life saving medicines, its practice
is often viewed with suspicion and hostility.” This is not helped by the growing call for
environmentally friendly products and lower reliance on oil, one of the major feedstocks
for the chemical industry. This encourages people to demand ’'natural’ products and so
synthetic materials are considered less environmentally friendly, often without proof. The
impact of this is that the chemical industry has only a 26% approval rating amongst young
adults, similar to both the nuclear energy and tobacco industries.!? This suspicion means
that people do not take claims by the chemical industry seriously, in particular that it is
working for the greater good.!! In order to combat this, detailed and verifiable examples
need to be given that dispel any negative ideas.!! One way of doing this is to display a drive
towards green chemical principles, which demonstrate a positive commitment to efficiency

and environmental stewardship.

H Cu catalyst NN
+ 2NaOH ———~ » NaO,C N COsNa + 4H
Ho/\/N\/\OH 2 H 2 2
H,0, A
2 1

Scheme 1.1: The modified synthesis of disodium iminodiacetate (1) for which Monsanto
won a Presidential Green Challenge Award in 1996
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An example of how this is being done is the Presidential Green Chemistry Challenge
Awards: companies receive awards for green developments, allowing them to give a clear
example of how they are making their processes more environmentally friendly.'> One of
these awards was given to Monsanto in 1996 for modifying the synthesis of disodium imin-
odiacetate (DSIDA, 1) from a stoichiometric synthesis to a catalytic dehydrogenation of di-
ethanolamine (2, Scheme 1.1).!? This change in the synthesis produced both less waste and
a higher yield, as well as removing several hazardous chemicals from the original industrial
synthesis (Scheme 1.2).!>7!% In the original Strecker synthesis of DSIDA (1), formaldehyde
(3) and hydrogen cyanide (4) were reacted with ammonia (5) to form 6, which was then
converted to DSIDA (1) using sodium hydroxide.'> The new synthetic route meant that
DSIDA could be produced without using either formaldehyde or hydrogen cyanide, both of
which are very hazardous, making the process much safer. This also has the added benefit
that the product requires very little purification; the catalyst is removed from the mixture
by filtration, and the by-product is gaseous and so does not need to be physically removed
in a separate purification step. As diethanolamine is a key intermediate in the synthesis
of Roundup®, a herbicide produced on a very large scale, these changes had a very large,

positive environmental impact.'3

o)
/\/\
NH3+2)]\ + 2N=—H = NC N CN
H
H™ "H
5 3 4 6

— NaOZC/\H/\COZNa + NHs
1

Scheme 1.2: The original synthesis of disodium iminodiacetate by Monsanto'?
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However, there are concerns that many green methods reported in the chemical litera-
ture will have no useful application in industry.!> This is because the chemical industry is
primarily motivated by economic factors and corporate image, and the easiest way to make
a process greener is to use atom economy.'” In fact the need to make reactions cleaner, safer
and more atom economic are already factored into most process decisions due to these mon-
etary concerns.” Atom economy makes the process cheaper as fewer raw materials need to
be purchased, and also means that the waste stream will be smaller and potentially con-
tain fewer hazardous chemicals making it both cheaper and easier to dispose of. Clark
performed an interesting analysis of the cost of waste from the chemical industry, and a
modified version showing only the direct economic impacts upon industry is shown in Fig-
ure 1.2.'6 This figure does not include the indirect economic impacts of waste generation,
which come from increased raw material costs due to depletion of natural resources, and
increased costs as a result of additional legislation, which would include the increased costs
of developing new technologies to allow the company to stay in business.'® Indeed environ-
mental laws, which strictly limit emission levels for many of the more harmful substances
used, are one of the main motivations for industry to make itself greener.'® These laws mean
that the chemical industry has to contain and safely dispose of these regulated substances
if they are used. This can be very costly, as these chemicals have to be fully contained dur-

ing use, and stripped from the waste stream for safe disposal once the process is complete.'®

The need to make chemical reactions inherently safer is one of the key motivators in
both green chemistry and the chemical industry. In industry this is evident from its highly
regulated nature, which makes companies prove that each new process is safe, as well as
abiding by a strict health and safety code. All of this means that the chemical industry can

already be considered to be embracing key ideas from green chemistry.
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Figure 1.2: Sources of waste that have an economic impact on the chemical industry'® Clark
JH. Green Chemistry 1999; 1: 1-8. By permission of the Royal Society of Chemistry

Atom economy can often be implemented by the chemical industry without the need

to build major new infrastructure, which makes it preferential to the development and use

of new methods, technologies and techniques that are unproven at scale.!” In addition, as

some of the green processes currently in development rely on new technology that has not

been used on a process scale before, any new infrastructure that is built will be unlikely to

work at optimal efficiency, as well as requiring the development of new designs for both
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the equipment being used and the overall plan, as well as the development of new health
and safety procedures. All of these factors make the building of new green chemical plants
more expensive. One example of the development of new technology at a process scale
is the multi-purpose plant built in collaboration between Thomas Swan and Co. Ltd and
the chemistry department of the University of Nottingham.!® This plant was built to ex-
plore the possible use of supercritical carbon dioxide as a solvent in chemical manufacture,
at the scale of a thousand tonnes per year.!® The plant started production of trimethyl-
cyclohexanone (7) in 2002, producing the product by the hydrogenation of isophorone (8,
Scheme 1.3) as a continuous flow process, but it is currently not in use as the method proved
to be too costly when compared with the existing method of manufacture, even though the

product was significantly purer.'8

Pd/Deloxan® support,

% H,, supercritical CO, f i Q

minor side products

Scheme 1.3: The industrial synthesis of trimethylcyclohexanone in supercritical carbon
dioxide!'®

Finally, it is important that any benefits from the application of green chemistry should
not be gained at the expense of synthetic efficiency. This is because even a small decrease
in yield, catalyst turnover or reaction selectivity can lead to substantial increases in both
cost and waste generation.'® This is of particular importance in the pharmaceutical industry
where the waste generated during the production of pharmaceuticals can be greater than
100 kg/kg product.?® This large ratio of product to waste generation has led to an increased

urgency in creating greener and more economically competitive processes.>
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1.2 Chemocatalysis versus biocatalysis

One of the most important ways of reducing the amount of waste generated by a chemical
process is the use of catalysis, using both chemical and bio-catalysts. Biocatalysts have
proven to be very effective as they are environmentally benign, as well as highly efficient.
In the year 2000 there were over 300 procedures involving biocatalysis being used by in-
dustry, as well as 130 biocatalytic processes being sold commercially.?'~>* For example the
hydrolysis of nicotinonitrile (9) to nicotinamide (10) using Rhodococcus rhodochrous, is
carried out commercially on a scale of 4000 tonnes/year (Scheme 1.4).2>° Nicotinamide
is the less toxic form of niacin (Vitamin B3) and is what niacin is converted to in vivo. One

of its many uses is in the treatment of skin conditions, for example acne.**

@]
Rhodococcus
| N CN | N NH,
_ rhodochrous P
N N
9 10

Scheme 1.4: The industrial synthesis of nicotinamide, which is prepared on a scale of 4000
tonnes/year>*

The typical rate of acceleration provided by a biocatalyst in a chemical process is 10%—
10'°, with some reactions having up to 10'-fold rate acceleration, which is much greater
than that provided by chemical catalysts.>*3° Another benefit is that while a chemical
catalyst will typically be used at a concentration of 0.1-1.0 mol%, a biocatalyst will gen-

erally be used at 10°-10"* mol% in order to carry out a reaction at a reasonable rate.

10
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Biocatalysts are more environmentally benign than chemical catalysts: they come from a
sustainable source; are fully biodegradable; and can act under mild conditions, typically
pH 5-8 and 2040 °C. This has the additional advantage that substrates that might not be
compatible with traditional methods, can be stable under these milder conditions and not
undergo undesired side reactions, such as decomposition, isomerization, racemization and
rearrangements. One example where chemocatalysis fails but biocatalysis succeeds is the

hydrolysis of haloalkanes by haloalkane dehydrogenase (Scheme 1.5).3":32

H,0 HCI

Clhg — O~
Xanthobacter
autotrophicus

Scheme 1.5: Hydrolysis of 1,2-dichloroethane by Xanthobacter autotrophicus*?

One strain of Xanthobacter autotrophicus has been shown to be able to use halogenated
short-chain hydrocarbons and halogenated carboxylic acids as its sole source of carbon for
growth. The organism produces two different dehalogenases which enable it to perform
this extraordinary feat, one specific for halogenated alkanes and the other for halogenated
carboxylic acids. The metabolic pathway within the bacteria uses the two different enzymes
in order to convert haloalkanes into compounds that can participate in its central metabolic

pathways (Scheme 1.6).3

Enzymes that can be used to catalyse the same reaction can be found in many organ-
isms, often acting under a range of conditions. This means that there will often be a variety
of enzymes to choose from for each reaction that one might want to carry out, allowing

enzymes that act under similar sets of conditions to be identified, possibly in several dif-

11
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haloalkane alcohol
Cl dehalogenase dehydrogenase
H,O HCI X XH,
haloalkane
aldehyde OH  dehalogenase

dehydrogenase

Coxg cl vgo 7T»

H,0.Y YH, H,O HCI

OH — » central metabolic
HO o pathways

Scheme 1.6: Incorporation of 1,2-dichloroethane into the central metabolic pathways by
Xanthobacter autotrophicus™
X and Y are not defined in the paper

ferent organisms, and used together. Multi-step, sequential or parallel reactions are there-
fore feasible using multi-enzyme systems to simplify the reaction processes or allow cas-
cades of reactions to be carried out in the same flask. Ideally these syntheses would mimic
pre-existing biosynthetic pathways (e.g. the Leloir pathway which converts galactose to
glucose, Scheme 1.7) as this would mean that a pre-existing set of reactions from nature
could be exploited.?*3*3 In these cascades of reactions, unstable intermediates need not
be isolated, unfavourable equilibria can be shifted towards the desired product and the final

product extracted continually.

Both traditional organic synthesis and biocatalysis have limitations which influence
their use. For example, the sometimes harsh conditions used in organic synthesis can
damage other functionality within the molecule, which can necessitate the use of multi-

ple protection-deprotection strategies. These are not very atom efficient and on occasion

12
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HO O._ .OH
HO "'OH
OH
galactose
ATP

galactokinase,

Y/

ADP
(?H
O \O_P:O
HO a !
OH
HO "'OH
OH
galactose-1-phosphate
QR OH
HO .\\O—ﬁ—O—ﬁ—O—urldme
O O
HO OH UDP-glucose
galactose-1-p UDP-galactose-
-uridylyltransferase 4-epimerase
CIJH CIJH
O. ..O-P-0O-P-0O-uridine
HO : 1 I
HO OH UDP-galactose

OH

glucose-1-phosphate

Scheme 1.7: The conversion of galactose to glucose (The Leloir pathway)?* 3433

ATP=adenosine triphosphate; ADP=adenosine diphosphate; UDP=uridine diphosphate
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can lead to dead ends where protecting groups cannot be cleaved. However, if biocatalysis
is to be used then the required biocatalytic toolbox and method may not be readily avail-
able. Nevertheless, their use can remove the need for multiple protection and deprotection
steps. An example of this is the commercial enzymatic synthesis of the S-lactam antibiotic
cephalexin (11) by Chemferm. This enzymatic synthesis reduced the total number of steps
involved from 10 to six by removing the need for several protection/deprotection steps.>¢
In the final step a selective coupling reaction is performed biocatalytically using Penicillin
acylase in the presence of a number of similarly reactive groups (Scheme 1.8), thus remov-

ing the need for protection strategies.*®

HND H g H NH,  Penicilin

acylase ®/H§N§\H
s T 052
o o pH 6.5 O ~g

Scheme 1.8: The final highly selective biocatalytic step in the Chemferm synthesis of
cephalexin (11)%

As both chemo- and biocatalytic methods become more widespread in chemical manu-
facture, there has been a gradual disappearance of traditional barriers between homogenous,
heterogenous and bio-catalysis. This has led many to desire the full integration of a number
of catalytic steps into a one-pot, multi-step catalytic cascade, mimicking the biosynthetic
pathways seen in nature.’’ For example metabolic pathways in living cells involve a se-
ries of biocatalytic steps carried out as part of a multi-enzyme cascade, without the need

for the separation of intermediates.’® One example of a multi-enzyme cascade in nature

14



Introduction 1.2. Chemocatalysis versus biocatalysis

is glycolysis (Scheme 1.9), during which D-glucose (12) is metabolised to pyruvate (13).
This cascade involves 10 different reactions catalysed by enzymes, that result in an over-
all release of energy. The free energy produced during this process is converted into high
energy compounds that can then be used in other pathways. It results in the production of
two molecules of adenosine triphosphate (ATP) and two molecules of nicotinamide adenine
dinucleotide hydride (NADH). The pyruvate product is then used in several different path-
ways within the cell, including conversion to acetyl coenzyme A when oxygen is present,
this can then participate in the Krebs (citric acid) cycle during which it is converted to ala-
nine. The pathway is regulated by several feedback mechanisms and is dependent upon the

amounts of ATP, NADH and the starting materials for the cycle already present in the cell.

Combining multi-step syntheses in a single cascade, in the manner pioneered by nature,
is the ultimate aim of many green chemical technologies.* This is because these intercon-
nected series of reactions involve fewer unit operations; less solvent and reactor volume;
shorter cycle times; higher volumetric and space yields; and less waste. This provides
substantial environmental and economic benefits, as well as the possibility of driving the
reaction equilibria throughout the entire series of reactions towards products, avoiding the

need for excess reagents.

Bio- and chemocatalysts often complement each other. Transition metal based catalysts
are very versatile for oxidations and reductions, which are often difficult to perform with
enzymes, as difficult cofactor regeneration makes the reactions very complicated. Mean-
while enzymes readily perform hydrolytic reactions and their reverse, which often produce
large amounts of waste when performed chemically.*’ One of the major challenges encoun-

tered during the development of these cascades is that the reagents and conditions for the
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Scheme 1.9: Glycolysis*®

ATP=adenosine triphosphate; ADP=adenosine diphosphate; NAD"=nicotinamide adenine dinucleotide;
NADH=nicotinamide adenine dinucleotide hydride; P;=phosphate group
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different modes of catalysis are often incompatible. Methods have already been developed
to overcome this incompatibility if it is present, one of which is reaction compartmentaliza-
tion. Reagents can be immobilized in a number of ways, including attachment to polymer
beads or surfaces within the reaction vessel.***> Immobilization is particularly success-
ful when used in flow reactors, where reactants are fixed in place and the substrate flows
through each reactor in sequence. Immobilization is particularly suited to organic chem-
istry as it traditionally has a compartmentalized philosophy. This is one of the reasons why
the development of cascades reactions is difficult, and where using biocatalysts provides
a distinct advantage. This is because biocatalysts, unlike chemical catalysts make use of
enzymes, this means that there is often a high degree of compatibility between the reac-
tions, as they often have to perform reactions at similar temperatures, pressures and pHs.*?
Therefore the development of a series of chemical reactions that all occur under similar
conditions to those used in biocatalysis would be advantageous and would allow for the
development of a toolbox of chemical reactions that could be combined in one pot. This
approach has been highlighted by Barry Sharpless and his Click chemistry approach.** By
choosing reaction conditions that are the same as those required by enzymes a high degree
of cross compatibility would be introduced and the possibility of a very flexible synthetic

system put in place .

The combination of chemical and biological methods in synthesis is growing in popu-
larity, but is still quite a limited field. One of the earliest reported examples of the use of
biocatalysis were Pasteur’s microbial resolution experiments using the fungus Penicillium
glaucum on racemic tartaric acid in 1858.4*#7 The first reported example of the use of
combined biocatalysis and organic synthesi