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Using Zvy candidate events collected by the CDF detector at the Tevatron Collider, we search for
potential anomalous (non-standard-model) couplings between the Z boson and the photon. Zy couplings
vanish at tree level and are heavily suppressed at higher orders; hence any evidence of couplings indicates
new physics. Measurements are performed using data corresponding to an integrated luminosity of
4.9 fb~! in the Z — v decay channel and 5.1 fb~! in the Z— [*]~ (I = u, e) decay channels. The
combination of these measurements provides the most stringent limits to date on Zvy trilinear gauge
couplings. Using an energy scale of A = 1.5 TeV to allow for a direct comparison with previous
measurements, we find limits on the CP-conserving parameters that describe Zy couplings to be Ihg’zl <
0.022 and IhZ‘ZI < 0.0009. These results are consistent with standard model predictions.

DOI: 10.1103/PhysRevLett.107.051802

Studies of trilinear couplings between the gauge bosons
(W, Z, y) test the standard model (SM) description of
gauge sector interactions and provide sensitivity to physics
beyond the SM through examination of production rates
and kinematics [1-6]. In the case of neutral couplings, ZZy
and Zvyy vertex interactions vanish at tree level and, while
allowed via internal particle loops, are highly suppressed in
the SM. However, these trilinear gauge couplings can be

PACS numbers: 12.15.Ji, 12.60.—1, 13.85.Qk, 14.70.Hp

non-negligible if loop contributions occur via non-SM
particles. Models such as those incorporating composite-
ness or supersymmetry can alter the predicted cross section
and production kinematics of Zy events [7-10].

In the SM, given the suppression of ZZy and Zyy
couplings, the production of Zvy events is dominated by
production of a Z boson along with the radiation of a
photon off either an incoming parton or a Z decay product.
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These production mechanisms are interesting in their own
right, serving as an important background to searches for
new physics (e.g., in gauge-mediated supersymmetry
breaking models [11]) and Higgs boson searches. In this
Letter, the production properties of Zy events are com-
pared to SM predictions, and limits are set on anomalous
trilinear gauge couplings.

The measurements of Zy couplings are performed with
pp collision data at /s = 1.96 TeV from the Tevatron
Collider using the Collider Detector at Fermilab (CDF).
We seek two types of Z7y events: those where the Z decays
to charged leptons (by identifying lepton candidate pairs
and a prompt photon [12] with large transverse energy Er
[13]), and those where the Z decays to neutrinos (by
identifying an event with only a solitary, prompt, high-E7
photon). In the former case, data corresponding to an
integrated luminosity of 5.1 fb~! are used; in the latter,
4.9 fb~!. These measurements use over twice as much data
as the previous published CDF result [1] and incorporate
looser muon selection requirements. As no significant dis-
agreement is found between the SM prediction and the
data, we set limits that are not only far more restrictive than
those measured in [1], but are approximately half the
magnitude of the previous best published limits [4].

In beyond-the-SM scenarios with enhanced Zy cou-
plings, not only does the Z7y production cross section
increase, but also the photon E; spectrum is modified
due to an enhancement in the production of high-Er
photons [10]. We take advantage of this enhancement by
comparing the photon E; distribution in data to both SM
and beyond-the-SM predictions. Binned maximum like-
lihood measurements of the coupling parameters that de-
scribe Z7y interactions in the Lagrangian are performed.
We calculate separate likelihoods for the Z — [*]~ and
Z — vy samples and combine the likelihoods to produce
the final result.

The CDF detector is covered in detail elsewhere [14,15].
The transverse momenta (py) of charged particles are
measured by an eight-layer silicon strip detector [16] and
a 96-layer drift chamber (COT) [17] inside a 1.4 T mag-
netic field. The COT provides tracking coverage with
high efficiency for the pseudorapidity range |n| <1 [13].
Electromagnetic and hadronic calorimeters surround the
tracking system. They are segmented in a projective tower
geometry and measure the energies of charged and neutral
particles in the central (|| <1.1) and forward (1.1 <
|| < 3.6) regions. Each calorimeter has an electromag-
netic shower profile detector positioned at the shower
maximum [18]. The calorimeters are surrounded by drift
chambers that detect muons.

The measurements of anomalous trilinear gauge cou-
pling parameters in the Z— ["]” and Z— vv decay
channels differ both in event selection and background
estimation. For the Zy — ["]"y decay channel we
identify events containing Z— u*u~ and Z— ete”

candidates along with prompt photon candidates with
EY > 50 GeV. According to experiments performed on
simulated events, this choice of E7 requirement maximizes
the ability of the analysis to exclude anomalous couplings
assuming SM physics, although a serious loss in sensitivity
only occurs if the E7 requirement is placed at 100 GeV or
higher. The previous CDF analysis used a much less re-
strictive requirement of E; >7 GeV, as the Zy cross
section was being measured in addition to trilinear gauge
coupling parameters [1]; additionally, placing the cut at
50 GeV allows for a control region to be based off of
lower-E7 photons. Event selection starts with inclusive
muon (electron) triggers that require muon p; >
18 GeV/c (electron E; > 18 GeV). For electrons, a track
must be reconstructed in the COT or in the silicon detector;
additionally, the energy deposited by the candidate in the
calorimeter must be isolated. For muons, a track must be
reconstructed in the COT; additionally, no more than a few
GeV of energy may be deposited in the calorimeters so that
the candidate is compatible with a minimum ionizing
particle. The two lepton candidates must correspond to
the same flavor, with a requirement of p; > 20 GeV/c
(E; >20 GeV) on one muon (electron) candidate and
pr>10 GeV/c (Er > 10 GeV) on the other; further-
more, if the charges of both leptons are well measured,
the signs of these charges must be opposite. Studies of the
invariant mass distributions of the two lepton candidates
indicate that we retain a very high purity of Z bosons (over
99%) despite the loose selection requirements.

Once we have selected events with Z— ["]”
candidates, we look for isolated photons that pass
standard CDF requirements [19] in the central region
(Iml <1.1) with E >50 GeV and are well separated

from the Z decay leptons [AR., >0.7, with AR =

‘/(¢, - ¢,)? + (9, — m,)*]. Additionally, we require
that the two lepton candidates and the photon candidate
form a three-body invariant mass greater than 100 GeV/c?
in order to discriminate against events where the photon is
radiated from one of the leptons from the Z boson decay.
The estimated contribution of SM Zvy events is derived
from Monte Carlo (MC) simulations that use the Baur-
Berger package at the generator level [10] and PYTHIA [20]
for particle showering. This method yields a prediction of
87.2 = 7.8Z+ events that pass our selection requirements,
where the uncertainty is dominated by the uncertainty on
the luminosity and the predicted cross section. The non-Zy
events that pass these selection requirements result from
hadronic jets being reconstructed as prompt photons and
leptons (more commonly electrons). This background is
estimated by calculating separate probabilities for a jet to
mimic a photon or lepton as a function of jet E;, and
applying them to jets in events to which all our require-
ments have been applied except those pertaining to the
mimicked particle. For photons and electrons, these

051802-4



PRL 107, 051802 (2011)

PHYSICAL REVIEW LETTERS

week ending
29 JULY 2011

probabilities are calculated by taking the ratio of the num-
ber of individual photon or electron candidates to the
number of jets in a sample of data events where only the
presence of at least one jet is required. The number of
photon and electron candidates is corrected for the ex-
pected contribution of true photons or electrons in this
sample. We estimate the probability for a false muon
candidate from the number of dimuon Z decay candidates
in which both muon candidates have the same charge.
Overall, the non-Zy background contribution is very
low: of the 91 events that pass our requirements, less
than one event involving a mimicked photon or lepton is
expected.

In order to identify Zvy candidate events in the Z — v
decay channel, we require solitary high-E; photons and a
transverse energy imbalance [21] in the detector. These
events must pass a trigger requirement of an electromag-
netic cluster with E; > 25 GeV and |n| < 1.1 as well as
missing transverse energy in excess of 25 GeV. For our
signal region we require E}. > 100 GeV, a threshold opti-
mized in the same manner as the Z— [T~ case. To
account for the neutrinos we require a transverse energy
imbalance of at least 50 GeV. In order to discriminate
against W boson contamination in our sample, we reject
events containing any tracks with py > 10 GeV, any elec-
tron candidates with E7 > 15 GeV, or any muon candi-
dates with p; > 10 GeV/c. Additionally, we reject events
that have any jets with E; > 15 GeV in order to reduce the
mismeasurement of missing transverse energy. The pri-
mary SM source for photons passing these requirements
is Z7y events in which the Z has decayed to a pair of
neutrinos, as shown in Table I. The method of estimating
the expected number of Zy events is the same as that used
for the Z — [*1~ candidate sample.

The primary source of non-Z+y events in the final Zy —
vv7y candidate sample is cosmic ray interactions. High-E,
photons from cosmic rays leave large transverse energy
imbalances in our detector, mimicking the presence of
neutrinos. Therefore, additional event requirements are

TABLE I. SM expected contributions to the Zy — vy can-
didate sample. Uncertainties shown are systematic only and thus
exclude the statistical uncertainties.

Process Events
Zy — vy 52.8 = 4.6
Cosmics 149+t 14
W — ev 3.9 0.8
W — u/tvy 1.6 £ 0.3
Wy — evy 1.1 £1.1
Wy — pvy 1.8 1.3
Wy — vy 45+ 1.3
% 53*+19
SM total 85.9 £ 5.6
Data 85

applied to reduce the contributions from cosmic ray
events. First, we require that the energy deposited in the
electromagnetic calorimeter appear within a timing win-
dow centered on the pp interaction. Second, we use a
relevance vector machine (RVM) multivariate discrimina-
tor [22] to distinguish whether a photon came from a
collision or a noncollision source; the three inputs used
for the RVM discriminator are the ¢ angle between the
photon candidate and the closest muon candidate (if any),
the ratio of energies from the photon candidate in the
electromagnetic and hadronic calorimeters, and the ratio
of energies from the electromagnetic shower profile detec-
tor and the electromagnetic calorimeter. We use photons
outside the timing window to train the RVM for noncolli-
sion sources, and photons recoiling against jets to train for
collision sources. The RVM discriminator reduces the
contribution from cosmic ray events by an additional
90%. Finally, we require the event to have a reconstructed
vertex of at least three tracks from a pp interaction. After
applying these selection requirements, we have 85 candi-
date events in our sample. Despite the anticosmic ray
requirements, cosmic ray events remain the second largest
contributor to our sample, after Zy events.

We model two other major categories of non-Z7y events:
one in which a charged lepton from W — ev, W — uv, or
W — v decay is reconstructed as a photon, and the other
in which a true photon is produced but another object (e.g.,
a lepton) is lost or only partially reconstructed, creating a
large transverse energy imbalance. For the former case, the
rate at which electrons are reconstructed as photons in the
detector has been calculated using events with an electron
and photon pair candidate that has an invariant mass near
the mass of the Z, i.e., events in which the photon candi-
dates are almost entirely electrons in actuality. The rate at
which u’s and 7’s are reconstructed as photons is taken
from MC. For the latter case, which encompasses Wy —
lvy events in which a lepton is lost and y7y events in which
a photon is lost, a two-step process is used to calculate the
expected number of events. First, events in data are se-
lected such that we obtain a very pure sample of one of the
aforementioned event types in which there is no lost object.
Then, we calculate the fraction of the corresponding events
in MC in which an object is not detected, and this fraction
is used to scale the photon E; distribution of the data
events so as to provide an estimate of this background’s
photon E7 distribution in the signal sample. An exception
to this method is the case in which a 7 is lost; due to the
difficulty of reliably identifying 7 candidates, this back-
ground is estimated purely from MC simulations. Further
details on these methods of background prediction can be
found in [23], a CDF analysis which used very similar
event requirements. We see excellent agreement between
the SM predictions and the data in the control regions of
15<E} <40 GeV (Z—I"l" case) and 70<E} <
100 GeV (Z — vv case).
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Assuming gauge and Lorentz invariance, eight parame-
ters are needed to describe Zvy couplings, denoted by h}g
where V is either a Z or a vy and the index i runs from 1 to 4;
these parameters are all zero at tree level [10]. Interaction
amplitudes are linear in these parameters. Indices 1 and 2
represent CP-violating terms while indices 3 and 4 repre-
sent CP-conserving terms. We assume CP conservation in
these interactions by setting &}, = h}, = 0 and we inves-
tigate the possibility of nonzero values for hY, and hj,
corresponding to electric dipole and magnetic quadrupole
transition moments [24]. In order to preserve unitarity at
large incoming parton center-of-mass energy V3, an
S-dependent form factor is used to suppress the coupling,

(H?%, where n = i for hY, and
hYy [10]. The parameter A describes the predicted energy
scale of the new physics that creates anomalous Zvy
couplings.

For a given set of anomalous coupling parameter values,
we compute a likelihood for the E7. distribution. Hence, we

have l'lﬁ-’:l L(x;|h}), where x; represents the number of

entries in the jth of N bins in our E} distribution and /!
denotes the coupling parameter being measured (the other
three being held fixed at zero). The bin-by-bin likelihood L
is simply the Poisson probability of the number of ob-
served entries given the expected number of entries for
the value of /). This limit method requires a predicted E
distribution for each combination of the four coupling
parameters. To create these distributions, we produce Zvy
MC events at the generator level using the Baur-Berger
package [10]. Modeling the particle showering process
and detector response in MC separately for every parame-
ter value is computationally impractical. To mimic
fully simulated MC events we first determine the efficiency
for a generated event to pass all of the event requirements
as a function of generator-level EY. and |n”[; these func-
tions are derived from a SM MC sample which has used the
full simulation of the detector. Because of the correlation
between E7 and the Z kinematics, we create and combine
separate templates for the cases of central-central, central-
forward, and forward-forward lepton pairs, ‘“central”
denoting 0 <|n| < 1.1 and “forward” denoting 1.1 <
|n| <2.8. We then apply this efficiency function to
generator-level MC samples to get the expected E}. distri-
butions. The final prediction is the sum of this Zvy predic-
tion with the predictions of the non-Z+vy backgrounds.

In Fig. 1, for both the Z — [*]~ and Z — v cases, the
EY. distributions in data are compared to the SM prediction
and beyond-the-SM predictions; it can be seen that the
production of high-E; photons is far more likely in
the beyond-the-SM cases compared to the SM case. The
uncertainty bands shown for the SM predictions illustrate
the systematic uncertainties on those predictions. These
uncertainties are dominated by the 7% uncertainty on the
theoretical Zy cross section [25] and the 6% uncertainty on
the luminosity [26]; the other sources are the reconstructed
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FIG. 1 (color online). Comparison of the measured EJ distri-
bution with the predicted distributions from both the SM and
beyond-the-SM scenarios for Z— [*1~ (top) and Z— vp
(bottom) candidate samples, at A = 1.5 TeV. The beyond-the-
SM scenarios chosen here can be excluded at 95% Bayesian
credibility level in each sample. Note the greatest difference in
the SM and beyond-the-SM cases is found off scale at E} >
200 GeV; the lack of data events in this region indicates good
agreement with the SM.

photon’s energy scale and efficiency, as well as uncertain-
ties on the number of non-Zy background events. The
effect of these systematic uncertainties on the limits is
negligible—of the order of a couple of percent of the limit
values.

With the likelihood distribution for a given k), taking a
flat Bayesian prior in 4! allows us to set Bayesian credi-
bility limits on the parameter. These limits are defined as
the values of i) which demarcate the central 95% of the
integral of the likelihood distribution. The resulting al-
lowed ranges for the strength of anomalous couplings
are shown in Table II. The values A = 1.2 TeV and
A = 1.5 TeV have been chosen to allow direct compari-
sons with earlier CDF [1] and DO [4] results, respectively.
We see no evidence for anomalous couplings.

In conclusion, we find that the E7. distribution of photons
produced in association with Z bosons in both the Z — vv
and Z — [~ decay channels in a data sample correspond-
ing to an integrated luminosity of approximately 5 fb™! is
consistent with SM couplings. We place 95% Bayesian
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TABLE II. Allowed ranges (95% Bayesian credibility limits)
of anomalous Zy couplings for A = 1.2 and 1.5 TeV using
notation from Ref. [10]. Each parameter’s limits are set assum-
ing the other three parameters have values fixed at 0.

Parameter (A = 1.2 TeV) (A = 1.5TeV)
h% —0.024, 0.027 —0.020, 0.021
h% —0.0013, 0.0013 —0.0009, 0.0009
hY —0.026, 0.026 —0.022, 0.020
h} —0.0012, 0.0013 —0.0008, 0.0008

credibility limits of [2*] < 0.027 and |h}*| < 0.0013 on
the CP-conserving Zvy couplings at A = 1.2 TeV and
Ih;y’zl < 0.022 and |hZ’Z| < 0.0009 at A = 1.5 TeV; these
are significantly tighter constraints on beyond-the-SM con-
tributions than those provided by previously measured
limits.
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