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We present the results of a search in pp collisions at /s = 1.8 TeV for anomalous production of
events containing a photon and a lepton (e or w), both with large transverse energy, using 86 pb~! of
data collected with the Collider Detector at Fermilab during the 1994-1995 collider run at the Fermilab
Tevatron. The presence of large missing transverse energy (¥7), additional photons, or additional leptons
in these events is also analyzed. The results are consistent with standard model expectations, with the
possible exception of photon-lepton events with large Fr, for which the observed total is 16 events and

the expected mean total is 7.6 = 0.7 events.

DOI: 10.1103/PhysRevLett.89.041802

An important test of the standard model (SM) of particle
physics [1] is to measure and understand the properties of
the highest-energy particle collisions. The observation of
an anomalous production rate of any combination of the
fundamental particles of the SM would be a clear indica-
tion of a new physical process. This Letter summarizes an
analysis of the inclusive production of a photon and a lep-
ton (e or u + vy + X), including searches for additional
photons, leptons, and large missing transverse energy, us-
ing 86 pb~! of data from proton-antiproton collisions col-
lected with the Collider Detector at Fermilab (CDF) during
the 1994-1995 run of the Fermilab Tevatron [2].

Production of these particular combinations of particles
is of interest for several reasons. Events with photons and
leptons are potentially related to the puzzling “eeyyEr”
event recorded by CDF [3]. A supersymmetric model [4]
designed to explain the eeyyHr event predicts the pro-
duction of photons from the radiative decay of the 524
neutralino, and leptons through the decay of charginos,
indicating €y F7 events as a signal for the production of a
chargino-neutralino pair. Other hypothetical, massive par-
ticles could subsequently decay to SM electroweak gauge
bosons, one of which could be a photon and the other a W
or Z° boson that decays leptonically. In addition, photon-
lepton studies complement similarly motivated inclusive
searches for new physics in diphoton [3,5], photon-jet [6],
and photon-b-quark events [7].

The CDF detector [8] is a cylindrically symmetric spec-
trometer designed to study pp collisions at the Fermilab
Tevatron. A superconducting solenoid of length 4.8 m and
radius 1.5 m generates a magnetic field of 1.4 T and con-
tains tracking chambers used to measure the momenta of
charged particles. A set of vertex time projection chambers
is used to find the z position [9] of the p p interaction. The
3.5-m-long central tracking chamber (CTC) is a wire drift
chamber which provides up to 84 measurements between
the radii of 31.0 and 132.5 cm in the region |n| < 1.0.
Sampling calorimeters, used to measure the electromag-
netic and hadronic energy deposited by electrons, photons,
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PACS numbers: 13.85.Rm, 12.60.Jv, 13.85.Qk, 14.80.Ly

and jets of hadrons, surround the solenoid. Each tower of
the central (|| < 1.1) electromagnetic calorimeter (CEM)
has an embedded strip chamber for the measurement of the
2D transverse profile of electromagnetic showers. Muons
are detected with three systems of muon chambers, each
consisting of four layers of drift chambers. The central
muon (CMU) system is located directly outside the central
hadronic calorimeter, and covers || < 0.6. Outside of the
CMU is 0.6 m of steel shielding, followed by the central
muon upgrade system. The central muon extension system
provides muon detection for 0.6 < || < 1.0.

Events with a high-transverse momentum ( pr) [10] pho-
ton or lepton are selected by a three-level trigger [2], which
requires an event to have either a high-E; photon or a
high-pr lepton (e or w) within the central region, |n| <
1.0. Photon and electron candidates are chosen from clus-
ters of energy in adjacent CEM towers; electrons are then
further separated from photons by requiring the presence
of a CTC track pointing at the cluster. Muons are identified
by requiring CTC tracks to extrapolate to a reconstructed
track segment in the muon drift chambers.

To reduce background from the decays of hadrons pro-
duced in jets, both the photon and the lepton in each event
are required to be “isolated.” The E7 deposited in the
calorimeters in a cone in n — ¢ space of radius R = 0.4
around the photon or lepton position is summed, and the
E7 due to the photon or lepton is subtracted. The remain-
ing Er in the cone, E . is required to be less than 2 GeV
for a photon, or less than 10% of the lepton transverse mo-
mentum. In addition, for photons the sum of the pr of all
tracks in the cone must be less than 5 GeV.

Inclusive photon-lepton events are selected by requir-
ing an isolated central photon with E; > 25 GeV and
an isolated central lepton (e or u) with E; > 25 GeV.
The technical criteria used to identify leptons and pho-
tons are very similar to those of Refs. [3,7,11], and are
described in detail in Ref. [2,12]. A total of 77 events pass
this selection: 29 photon-muon and 48 photon-electron
candidates.
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The production of pairs of new heavy states that decay
via cascade decays can lead to final states with multiple
photons or leptons; in contrast, the dominant SM back-
ground processes lead to signatures with only one photon
and one lepton observed in the detector, as discussed in
detail below. The inclusive sample is consequently ana-
lyzed as two subsamples: a “two-body inclusive photon-
lepton sample” typical of a two-particle final state, and
a “multibody inclusive photon-lepton sample” typical of
three or more particles in the final state. The two-body
sample selection requires exactly one photon and exactly
one lepton, with an azimuthal separation A¢¢, > 150°,
but excludes those events for which the invariant mass of
the photon and electron, M., is within 5 GeV of the mass
of the Z boson, M, (these events are used as a control
sample, as described below). The multibody sample is
composed of the remaining inclusive photon-lepton events.
The multibody sample is then further analyzed for the pres-
ence of large Fr, and additional isolated leptons and pho-
tons. The F7 threshold of 25 GeV was determined a priori
in previous analyses [13] as a significant indicator of a neu-
trino arising from leptonic decays of the W boson. Fig-
ure 1 shows the breakdown of the inclusive sample into
the final categories.

The dominant source of photon-lepton events at the
Tevatron is electroweak diboson production, in which a
W or Z° boson decays leptonically (€» or €€) and a pho-
ton is radiated from either an initial-state quark, a W, or
a charged final-state lepton. The number of such events is
estimated using leading-order matrix element calculations
[14] for which the computational code [15] was then em-

Photon-Lepton Sample
>1 Lepton, E1 > 25 GeV
>1 Photon, E1 > 25 GeV

77 Events

=1 Lepton, E1 > 25 GeV
=1 Photon, E1 > 25 GeV
AD(1y) > 150°

Inclusive Multibody Photon-Lepton Events
(All Other Photon-Lepton Events)

50 Events 27 Events

'

Z-Like ey =1 Lepton
86 GeV < M(e,y) < 96 GeV =1 Photon
(Background Calibration) K< 25 GeV

17 Events 7 Events

Multibody Subsets
\/ (20 Events Total)

/
Multiphoton
(>1 Photon)

Two-Body Photon-Lepton Events Multilepton

33 Events (>1 Lepton)

Hy>25GeV

FIG. 1. The subsets of inclusive photon-lepton events. The
multibody photon-lepton subcategories of €y Er, multilepton,
and multiphoton events are not mutually exclusive.
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bedded into the general-purpose event generator program
PYTHIA [16], followed by a full simulation of the detector.
The uncertainty in this number has roughly equal contribu-
tions from higher-order processes, simulation systematics,
luminosity, proton structure, and generator statistics.

A jet can contain mesons such as the 7% or 7 that decay
to photons, which then may satisfy the photon selection cri-
teria. The number of lepton-plus-misidentified-jet events
is determined by counting the number of jets in a sample
of events with a lepton and then multiplying by the proba-
bility of a jet being misidentified as a photon, P}ft. The
factor P{ft is determined from samples of jets and photons
in events with a lepton trigger, using the distribution in
Ei% . By fitting to a sum of the expected distribution for
prompt photons and that measured for jets, the misidentifi-
cation rate is found to be P%f“‘t = (3.8 +0.7) X 107*[2].

The dominant source of misidentified photon-electron
events is Z° — eTe” production, where one of the
electrons undergoes hard photon bremsstrahlung or a track
fails to be reconstructed. We assume that photon-electron
events consistent with Z° production are not a significant
source of new physics, and use them to estimate the proba-
bility P7, that an electron is reconstructed as a photon.
The number of misidentified photon-electron events in
the control sample divided by the number of electron-
electron events with the same kinematics gives Pj =
(1.28 = 0.35)%. For any other subset of central electron
pairs, the contribution to the corresponding photon-
electron sample is the product of PJ and the number of
central electron pairs.

Other, smaller, backgrounds are due to hadrons faking
muons and to leptons from the decay of bottom and charm
quarks. Charged hadrons may penetrate the calorimeters
into the muon chambers, or may decay to a muon before
reaching the calorimeters. These contributions are deter-
mined by identifying isolated, high-momentum tracks in
the inclusive photon sample, applying the probability of
each track being misidentified as a muon, and summing
this probability over all tracks in the sample [2]. The con-
tribution to photon-lepton candidates from heavy-flavor
produced in association with a prompt photon is estimated
using Monte Carlo event generation [16] and detector
simulation, and found to be negligible.

New physics in small samples of events would most
likely manifest itself as an excess of observed events over
expected events. The significance of an observed excess
is computed from the likelihood of obtaining at least the
observed number of events, Ny, assuming that the null hy-
pothesis (the SM) is correct. The “observation likelihood,”
P(N = Ny | wsm), is defined as the fraction of the Poisson
distribution for the number of expected events from SM
sources, with a mean gy, that yields outcomes N = Ny
[17]. The likelihood P(N = N | mswm) is computed from a
large ensemble of calculations in which each quantity used
to compute photon-lepton event sources varies randomly
as a Gaussian distribution, and the resulting mean event
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total is used to randomly generate a Poisson-distributed
outcome N. The fraction of calculations in the ensemble
with outcomes N = Ny gives P(N = Ny | usm).

The predicted and observed totals for two-body photon-
lepton events are compared in Table I. Half of the pre-
dicted total originates from Z°y production, where one of
the charged leptons has escaped identification; the other
half originates from roughly equal contributions of Wy
production, misidentified jets, misidentified electrons, and
misidentified charged hadrons. The likelihood of the ob-
served total is 9.3%.

The predicted and observed totals for inclusive multi-
body photon-lepton events are also compared in Table I.
About half of the predicted total originates from Z%y pro-
duction, a quarter from Wy production, and the remaining
quarter from particles misidentified as photons or leptons.
The likelihood of the observed inclusive multibody total
is 10%. The predicted and observed kinematic distribu-
tions for these events are compared in Fig. 2. The dif-
ference between the observed and predicted totals can be
entirely attributed to events with £7 > 25 GeV. Figure 2
also shows the distribution in Hy, the scalar sum of the
E7 of all objects in the event plus the magnitude of Er,
a variable correlated with the production of massive par-
ticles [2].

The predicted and observed totals for multibody €7y Fr
events are also compared in Table I. For photon-electron
events, requiring Er > 25 GeV suppresses the con-
tributions from Z%y production and from electrons
misidentified as photons, which have no intrinsic Er,
while preserving the contribution from W+ production.
As a result, 57% of the predicted ey 7 total arises from
Wy production, 31% from jets misidentified as photons,
only 3% from Z°y production, and the remaining 9%
from other particles misidentified as photons. The ob-
served eyFr total agrees with the predicted total, with
a 25% probability that the predicted mean of 3.4 events
yields 5 observed events. One of these 5 is the eeyyFr
event [3].

TABLE L

For photon-muon events, requiring £r > 25 GeV does
not completely eliminate the contribution from Z°y, for
a second muon with || > 1.2 and pr > 25 GeV can
escape detection and induce the necessary amount of
Fr. The rate at which this occurs is modeled well by
the Z%y event simulation, however, since it is largely a
function of the CDF detector geometric acceptance. Of
the 4.6 multibody events predicted to originate from Z%y
production, 2.2 events are predicted to contain a second
visible muon, 1.0 events are predicted to have less than
25 GeV of Er, and only 1.0 events are predicted to pass
the 25 GeV Fr selection. One event is observed with a
second muon, in agreement with the Z%y prediction. The
predicted total for multibody uyfr events consists of
47% W<y production, 24% events with jets misidentified
as photons, 23% Z°y production, and the remaining 7%
from particles misidentified as muons.

The wyF7 event total is higher than predicted (11 ob-
served vs 4 expected), with an observation likelihood of
0.54%; the observation likelihood of the €yFr total is
only slightly higher at 0.72% [18]. The predicted and ob-
served distributions of the kinematic properties of multi-
body ¢y 7 events are compared in Fig. 2. The observed
photon Er, lepton Er, Fr, and Hr distributions are within
the range expected from the SM [19].

The predicted and observed totals of multilepton events
are compared in Table I. Nearly all of the predicted
total is expected from Z°y production. Approximately
6 events are expected; 5 events are observed, including
the eeyyFr event. No euy events were expected, and
none were observed.

The predicted number of multiphoton events is domi-
nated by Zvy production, for which only 0.01 events are
expected. The single event observed is the eeyy Fr event,
whose (un)likelihood is described in Ref. [3].

In conclusion, we have made an a priori search for
inclusive photon + lepton production. We find that sub-
samples of this data set agree well with their SM pre-
diction, with the possible exception of y{Fr. However,

The mean numbers usy of two-body and inclusive multibody events predicted by

the SM, the number N, observed, and the observation likelihood P(N = Ny | usm). Correlated

uncertainties have been taken into account.

Process Two-body Multibody
{yX {yX LyErX yX

W+ y 27 *03 5.0 £ 0.6 39 £ 0.5 .
Z+ vy 125 =12 9.6 £ 0.9 1.3 £02 55 £ 06
€ + jet, jet — y 33 £07 32 0.6 21 *04 03 £ 0.1
Z—ee,e—vy 41 = 1.1 1.7 £ 0.5 0.1 £0.1
Hadron + y 1.4 £0.7 05*03 0.2 £ 0.1
7/K Decay + y 0.8 0.9 03 *+03 0.1 = 0.1
b/c Decay + vy 0.1 = 0.1 <0.01 <0.01
Predicted usm 249 =24 202 = 1.7 7.6 £ 0.7 5.8 £ 0.6
Observed Ny 33 27 16 5
P(N = No| psm) 9.3% 10.0% 0.7% 68.0%
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FIG. 2. Upper panel: the lepton Er, photon Er, Er, and
Hp of inclusive multibody photon-lepton candidates (points)
compared to SM predictions (single-hatched histograms). The
cross-hatched histograms show the contribution from SM Wvy
and Zvy production. There is one event in the overflow bin
at 114 GeV in (a) and one at 193 GeV in (b). Lower panel:
the same distributions for the subset of these events that have
Er > 25 GeV.

an excess of events with 0.7% likelihood (equivalent to
2.7 standard deviations for a Gaussian distribution) in one
subsample among the five studied is an interesting result,
but is not a compelling observation of new physics. We
look forward to more data in the upcoming run of the Fer-
milab Tevatron.
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