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[1] Quantifying temperature trends across multiple decades in Alaska is an essential
component for informing policy on climate change in the region. However, Alaska’s
climate is governed by a complex set of drivers operating at various spatial and temporal
scales, which we posit should result in a sensitivity of trend estimates to the selection of
reference start and end dates as well as the choice of statistical methods employed for
quantifying temperature change. As such, this study attempts to address three questions:
(1) How sensitive are temperature trend estimates in Alaska to reference start dates?
(2) To what degree do methods vary with respect to estimating temperature change in
Alaska? and (3) How do different reference start dates and statistical methods respond to
climatic events that impact Alaska’s temperature? To answer these questions, we examine
the use of five methods for quantifying temperature trends at 10 weather stations in
Alaska and compare multiple reference start dates from 1958 to 1993 while using a single
reference end date of 2003. The results from this analysis demonstrate that, with some
methods, the discrepancy in temperature trend estimates between consecutive start dates
can be larger than the overall temperature change reported for the second half of the
20th century. Second, different methods capture different climatic patterns, thus
influencing temperature trend estimates. Third, temperature trend estimation varies more
significantly when a reference start date is defined by an extreme temperature. These
findings emphasize that sensitivity analyses should be an essential component in
estimating multidecadal temperature trends and that comparing estimates derived from
different methods should be performed with caution. Furthermore, the ability to describe
temperature change using current methods may be compromised given the increase in

temperature extremes in contemporary climate change.
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1. Introduction

[2] Estimating temperature trends has become an integral
component in the development of government policies due
to the need to mitigate and adapt to the purported environ-
mental and social impacts of climate change. In Alaska, for
example, observed warming trends over the 20th century
have led to the degradation of freshwater resources and
infrastructure due to changes in permafrost regimes in spe-
cific areas of the state [ White et al., 2007]. This has resulted
in the formation of state-level committees in Alaska that are
responsible for utilizing temperature trend estimations in
policy decision making [44AG, 2010]. Among several chal-
lenges within this process is determining suitable means of
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detecting and quantifying multidecadal temperature trends
in Alaska.

[3] The climate in Alaska is driven by multiple factors,
including a highly variable topography, proximity to oceans,
the presence of multiple pressure systems, and the impacts
of cyclical climatic events [Benson et al., 1983; Stafford et
al., 2000; Polyakov et al., 2003]. The Siberian high and
the Arctic high-pressure systems impact daily temperatures
in the north and the interior, while the Aleutian low influ-
ences daily temperatures in the south and west [Martyn,
1992; Overland et al., 1999]. At longer time scales the El
Nifio—Southern Oscillation (ENSO) and the Pacific Decadal
Oscillation (PDO) can have significant implications for
temperature across the state [Bond and Harrison, 2006;
Masuda et al., 2006; Combes and Di Lorenzo, 2007].
ENSO, a tropical Pacific atmosphere-ocean phenomenon
with global climatic impacts, is responsible for the 1-2 year
El Nifio and La Nifia events that lead to, broadly speaking,
changes in heat transfer from tropical to higher latitudes in
both hemispheres [McLean et al., 2009]. During El Nifio
winters a more persistent flow exists from the North Pacific
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into Alaska, resulting in warmer winters across most of the
state [Graham, 1994; Renwick and Wallace, 1996]. At even
longer time scales the PDO represents a 20—30 year cycle
between warm and cool sea surface temperatures (SSTs) in
the North Pacific [Papineau, 2001]. The change between
warm and cool SSTs can occur over relatively short time
periods and lead to dramatic change in temperatures
[Mantua et al., 1997; Chavez et al., 2003].

[4] The existence of both short- and long-term climatic
cycles and patterns, and the interplay between them, requires
that specific attention be paid to the way in which tempera-
ture trends are identified and described. This includes the
choice of appropriate dates of reference from which to start
and end temperature trend estimations as well as the type of
statistical method that is employed. The choice of reference
dates can lead to biases in temperature trend estimations, as
climatic events or temperature anomalies can skew statistical
means or cause a disproportionate influence when estimating
trend lines. For example, estimating multidecadal tempera-
ture trends in Alaska with a linear best-fit model was shown
to be heavily biased by the reference dates owing to the
presence of the PDO. Hartman and Wendler [2005] dem-
onstrate that observed increases in temperature across Alaska
between 1951 and 2001 can also be observed as temperature
declines when taking the 1976 PDO event into consideration
by estimating, instead, trends within the period 1951-1975
and within the period 1977-2001.

[5] The choice of statistical method also contributes to
biases in trend estimation due to the window of values used
in estimation and how these values are treated. Some
methods, such as a running mean that is implemented for
smoothing data, are considered local statistics that estimate
average temperatures by sampling relatively few sequential
observations. It is argued that smoothing time series data are
inherently subjected to boundary conditions (i.e., the start
and end of the trend), which has prompted the emergence of
methods for handling such constraints [Folland et al., 2001;
Mann, 2004]. However, such methods have been deemed
subjective and should be avoided in order to communicate
accurate information regarding temperature trends [Soon
et al., 2004]. Furthermore, the selection of a window size
(i.e., the numbers of values incorporated in estimating a
running mean) can also impact trend estimations, as too
small a window can be overinfluenced by anomalies, while
too large a window can negate the ability to detect natural
cyclical variation in the data. Alternatively, global statistics
can be employed for utilizing all values in a time series.
The linear-fit model based on least-square regression, for
example, is employed for estimating temperature trends in
Alaska [Hartmann and Wendler, 2005; Wendler and Shulski,
2009]. While such methods avoid the issue of selecting
window size, the use of a linear best-fit line can overlook
local variation that is captured by more localized methods.

[6] In reporting temperature trends in Alaska it is there-
fore imperative to understand how the selection of reference
dates and statistical methods influence the overall trend
estimation. This study proposes to address the following
questions in the context of temperature change in Alaska:
(1) How sensitive are temperature trend estimates to refer-
ence start dates (RSDs)? (2) To what degree do methods
vary with respect to estimating temperature change? and
(3) How do different RSDs and statistical methods respond
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to climatic events that impact Alaska’s temperature? In
doing so we intend to lend insight into how the decisions
surrounding methods for understanding temperature trends
can impact broader policies on climate change.

2. Data and Methodology

[7] Temperature recordings from 10 climate stations
across Alaska were used to address the questions of this
study. The specific climate stations were selected to ensure
that each climate region in Alaska, as defined by Hartmann
and Wendler [2005], is represented. The location of each
station is shown in Figure 1. Average annual temperatures at
each station are shown for the time period between 1958 and
2003 in Figure 2. The data were collected from the Alaska
Climate Research Center at the University of Alaska Fair-
banks (Climatological data—Monthly time series; available
at http://climate.gi.alaska.edu).

[8] Five statistical methods were employed to describe
temperature change: (1) a 5-year running average, (2) a 10-
year running average, (3) a 5-year Hamming filter, (4) a 10-
year Hamming filter, and (5) a linear best-fit model. The
Hamming filter method, employed by /PCC [2003] for
estimating global temperature trends, uses a neighborhood
function that weights observations based on their location
within the window. It is similar to a running average in that
a set of observations is used to estimate the average tem-
perature at a specific date, but observations farther from the
date being estimated have less influence. A weight, w, for
each data point, 7, is calculated by

w(i) = 0.54 — 0.46 cos[2mi(n — 1)], (1)

where 7 is the length of the window. The selection of these
five methods was based on the need to compare local and
global methods, to determine the influence of different
window sizes for smoothing data sets, to evaluate how fil-
ters impact smoothing procedures, and to use accepted
methods in estimating temperature change.

[9] The five methods were employed using different
RSDs, ranging between 1958 and 1993, and a single end
date of 2003. These dates were selected based on method-
ological requirements and data availability; owing to the
intent of this study to investigate the sensitivity of various
methods, it is important that the data set be composed of
complete temperature records (i.e., a temperature record
exists for each month) for all 10 climate stations and that no
additional modifications to the estimates, such as padding
[see Soon et al., 2004], be performed. The complete data
record for 10 stations at the time of this study existed for the
period between 1953 and 2008. However, because this study
employed a 10 year running mean and 10 year Hamming
filter, the actual period evaluated has shortened by 5 years at
the beginning and at the end, resulting in an analysis period
between 1958 and 2003.

3. Results
3.1. How Sensitive Are Temperature Trend Estimates
to Reference Dates?

[10] The estimated temperature between the RSDs and
2003 for all statistical methods are displayed in Figure 3. All
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Figure 1. Location of the 10 climate stations in Alaska.

weather stations, regardless of the method employed, dem-
onstrate a trend of increasing temperatures between 1958
and 2003. This is consistent with global temperature trends
[IPCC, 2007] and trends reported for Alaska [44G, 2010].
However, the graphs in Figure 3 also demonstrate that es-
timates are highly dependent on the RSD that is used, as, for
some methods, temperature trend estimations can vary as
much as 4°C when using different RSDs. This is particularly
evident when observing the 5 year Hamming filter estima-
tions for Anchorage, Barrow, Fairbanks, King Salmon,
Kotzebue, McGrath, Nome, and Yakutat. The significant
discrepancy in estimates is dependent on the method em-
ployed, but even the most conservative variation between
estimates for any site is 1.71°C (see the 10 year running
mean for St. Paul). Discrepancies in estimates are expected
over decades in Alaska owing to the observed warming
temperatures; however, such discrepancies should then
exhibit a pattern of gradually declining temperature change
estimates. That is, temperature change estimates should be
higher when using 1958 for an RSD, then gradually decline
until the RSD of 1993. The Barrow weather station is the
only station that appears to consistently show declining
temperature trend estimates with the exception of minor
variations. This may result from the fact that Barrow’s
location in the Arctic, as opposed to the subarctic location of
the other stations, puts it at a greater distance from the
Pacific Ocean, with intervening topography and prevailing
winds that potentially make it less susceptible to climate
systems originating in the Pacific Ocean.

[11] The most notable distinction in the RSDs is the
change from positive to negative temperature trends in the
mid-1970s. With the exception of Barrow and McGrath, all
weather stations exhibit a shift from estimates that use an
RSD between 1958 and 1973 to a decrease when using an

RSD from the mid-1970s. This shift from positive to neg-
ative trends coincides with the 1976 Pacific Climate Shift as
described by Hartman and Wendler [2005]. This shift led to
higher-than-average temperatures for most stations starting
in 1976, which continued for a varying number of years
depending on the weather station’s location. As a result, the
temperatures in the remaining part of the time series are
lower than the temperatures during the shift, which man-
ifests in a negative temperature trend.

[12] The filled circles in Figure 3 indicate the year in
which the difference from the previous year in temperature
trend estimation is most significant; that is, which consec-
utive years demonstrate the greatest variation in estimating
temperature change. Figure 3 demonstrates that the differ-
ence between some consecutive RSDs is greater than the
overall temperature change estimation. Examples of this
finding include Yakutat, where the temperature change
estimate between 1958 and 2003 using the 5 year running
mean is 0.53°C, and the 5-year Hamming filter estimate is
0.15°C. These estimates can be compared to the year-to-
year discrepancies in the respective graphs that are high-
lighted by the filled circles. Thus, the combination of certain
RSDs and methods can lead to a variation in temperature
trend estimates that is greater from one year to the next than
is the estimated temperature change over the entire second
half of the 20th century.

3.2. To What Degree Do Methods Vary with Respect
to Estimating Temperature Change in Alaska?

[13] The five statistical methods display notable differ-
ences in their estimations of temperature trends. The bar
graphs in Figure 3 reveal a discrepancy between the local
and the global methods regarding the relative RSD for
which temperature change is most significant. The linear
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Figure 2. Annual average temperatures from 1958 to 2003 for each weather station. Note that the scale
on the y-axis differs for each graph.
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Figure 3. (continued)

best fit typically estimates the greatest temperature change
occurring when employing RSDs from early in the time
series, particularly for Anchorage, Fairbanks, King Salmon,
Kotzebue, McGrath, Nome, and Yakutat. For the local
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methods the highest estimates of temperature change typi-
cally occur when using RSDs in the few years preceding the
PDO shift: years that exhibit cooler than average tempera-
tures. These cool temperatures lead to lower-than-average
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Figure 3. (continued)

temperature estimates and, hence, greater temperature
change from the RSD to 2003. The linear best-fit method is
not as sensitive to these cool temperatures because it takes
all observations in the time series into account, thus the
relatively cool and warm temperatures occurring immedi-

ately before and after the PDO shift, respectively, are
averaged to produce a moderate amount of temperature
change. The one exception to this observation is St. Paul,
which is located farther west than the other climate stations
and has the closest proximity to the Pacific Ocean. As a
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Figure 3. (continued)

result, the impacts of the PDO on temperatures may have
been more significant in this location such that both local
and global methods are sensitive to this event.

[14] With regard to the amount of variation between RSDs
for each method, the 5-year Hamming filter produces the

greatest variation for all dates between 1958 and 1993, as
well as the most significant variation between consecutive
dates. This finding is due to the fact that the 5 year Ham-
ming filter provides the least amount of smoothing of the
four local methods, as it diminishes the influence of data
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Figure 3. (continued)

points that are closer to the window boundary. As such, the
trend estimation is more susceptible to variation in year-to-
year temperature observations, especially when involving
extreme values. The 5 year running mean also displays
notable variation among all estimations and between con-

secutive year estimations, but not as significant as the
Hamming filter, owing to the lack of declining weights. The
10 year running mean and 10 year Hamming filter demon-
strate a much less variable set of estimates owing to the
enhanced smoothing produced by the inclusion of additional
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Table 1. Coefficient of Correlation () Values for Comparing Similarity in Temperature Change Estimates Among the Five Methods

5 Year 10 Year 5 Year 10 Year
Running Running Hamming Hamming Linear Best
Mean Mean Filter Filter Fit
5 year running mean 1.00 0.79 0.93 0.95 0.68
10 year running mean 1.00 0.69 0.84 0.78
5 year Hamming filter 1.00 0.91 0.64
10 year Hamming filter 1.00 0.78
Linear best-fit 1.00

values in calculating the mean. However, the 10 year run-
ning mean may oversmooth the time series, as the temper-
ature change estimations are lower (in some cases
significantly lower) than for all other methods. The linear
best-fit model displays a relatively moderate amount of
variation between estimates. This method takes all ob-
servations into account, thus reducing the sensitivity of
year-to-year variation that causes significant variation
among the 5 year methods.

[15] Table 1 reports the coefficient of correlation values
for each pair of methods. The values in the table reveal that,
on the whole, the linear best fit is the least correlated with all
the methods, compared to the other four methods, which
should be expected given their distinction between local
and global methods. The method that appears least different
among all methods is the 10 year Hamming filter. This
method can thus be seen as one that produces moderate
estimates within the context of the tested methods owing to
the fact that it is able to capture some of the local variation
in the time series while not being overly sensitive to year-to-
year temperature differences. The 5 year running mean
shares the highest coefficient of correlation with thelO year

16 -
14 -

12

Standard Deviation and Range (°C)
o]

| —
e

=

Hamming filter, owing to the fact that, for the latter, the
temperature observations at the edges of the window receive
relatively little weight and are thus less instrumental in the
derived estimate. The 5 year Hamming filter, which is the
most sensitive to year-to-year variation, and the 10 year
running mean, which provides the highest degree of
smoothing, share the lowest coefficient of correlation value.

3.3. How Do Different Reference Start Dates and
Statistical Methods Respond to Climatic Events That
Impact Alaska’s Temperature?

[16] The range and standard deviation of the different
methods for each year are displayed in Figure 4. While the
standard deviation remains relatively constant, the range of
trend estimates varies significantly from year to year. These
results are shown in comparison to the Oceanic Nifio Index
(ONI), a measurement standard used by the National Oce-
anic and Atmospheric Association (NOAA) for identifying
El Nifio (warm) and La Nifia (cool) events based on 3 month
SST observations in a region in the tropical Pacific (i.e.,
5°N-5°8S, 120°-170°W). A warm event is considered to take
place at five consecutive months above 0.5°C (El Nifo),

Il Range

= Standard 25
Deviation

PDO

2.0

1.0

Oceanic Nino Index (Absolute Value)

]

o
p—
—

"’
1l

4 4

2 4 1
<
w
(o))
—

1962 |e——

1966 |mm———

1960 ===
1968
1974

1958

1978 [
=
L aae— ]
1986 |[———

1988 |e—

1982 EiSSS———

1976
1980
1984

Figure 4. Standard deviation (light gray bar) and range (dark gray bar) of the temperature change esti-
mates provided by the five methods for each RSD (left axis), and the Oceanic Pacific Index (right axis).
Timing of the Pacific Decadal Oscillation (PDO) shift is shown.
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while a cold event is defined by five consecutive months
below —0.5°C (La Nifia). Figure 4 displays absolute ONI
values to provide a comparison of the range and standard
deviation among the five statistical methods.

[17] Figure 4 depicts a strong relationship between ONI
values and the range of temperature trend estimates for the
majority of years between 1958 and 1993. That is, tem-
perature change estimates exhibit the greatest variation
when using an RSD that is defined by a year in which
temperatures are abnormally warm or cool and exhibit the
greatest similarity during years when temperatures are more
moderate. This relationship becomes less significant after
the 1980s, suggesting that another climatic pattern may be
influencing the discrepancy between temperature trend esti-
mations. However, the signal is significant between 1958
and 1986, revealing that at least some methods are sensitive
to temperature extremes resulting from climatic events. This
is emphasized by the fact that the greatest range between
estimates occurs in 1975, right before the Pacific Climate
Shift as measured by the PDO (Figure 4).

[18] In addition, the locations of the filled circles in each
graph in Figure 3 display a notable trend when comparing
the different methods. For the four local methods 80% of the
circles lie on or close to the PDO shift in the mid-1970 s,
while for the linear best fit, 40% of the circles occur in 1993
and 30% of the circles occur between 1982 and 1983.
Assuming that the filled circles represent sensitivity toward
climatic events, this finding reveals that local and global
scales capture different types of climatic patterns and
anomalies, suggesting that caution is needed when com-
paring estimates from these different classes of methods.

4. Conclusion

[19] An investigation of the influence of reference dates
and statistical methods reveals the inherent sensitivities of
temperature trend estimates in Alaska. The selection of
reference dates that bound a time series can significantly
affect our understanding of temperature change. Depending
on the use of some methods, the estimate variation between
consecutive years is greater than the overall change in
temperature over the second half of the 20th century. Sen-
sitivity analysis thus becomes an important component of
the temperature trend estimate process because it can
highlight whether using specific reference dates lead to
biases. Instead of defining the boundaries of time series on
the availability of data, special attention should be given to
determining which reference dates in combination with
selected statistical procedures produce the least variation
from surrounding years. The information presented in
Figure 3 could be a potential starting point for a sensitivity
analysis, as it reveals the discrepancies in year-to-year
temperature change estimates as well as the variation within
the entire time series. Such information can be associated
with climatic events to determine which dates are more
representative of temperature observations from a given
time period and which dates are anomalies that can impose
significant bias in the temperature trend estimate.

[20] The selection of statistical method also requires much
consideration when estimating temperature change over any
given time period, owing to the fact that the choices between
local and global methods, of window size, and of filters used
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impact the ability of methods to detect temperature
anomalies versus natural cyclical patterns that govern
Alaska’s climate. It is important to identify whether poten-
tial methods can capture trends in the data set while not
being overly sensitive to variation. Furthermore, the varia-
tion among the methods investigated in this study highlights
the need for caution when comparing temperature trends
from different studies that use different methods.

[21] Finally, this study reveals that statistical methods
provide more variable temperature trend estimates when the
RSD is defined by a year that experienced a temperature
extreme. This finding, demonstrated by the relationship
between the range of estimates and the ONI, has significant
repercussions owing to observations of increasing temper-
ature extremes as a result of contemporary climate change
[Easterling et al., 2000; Meehl and Tebaldi, 2004; Schar
et al., 2004]. A more variable climate in Alaska will lead to
greater sensitivity of temperature trend estimates to RSDs
and, thus, greater discrepancy in reported temperature
change among different statistical methods. This has pro-
found implications for management practices that rely on
historical trend estimates or that need to anticipate temper-
ature trajectories. Thus, policies are more likely to be
effective if greater consideration is given to the ways in
which we estimate temperature change.
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Foundation (OPP Arctic System Science grants 0328686 and 0531148
and Experimental Program to Stimulate Competitive Research grants
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