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Abstract

We develop a set of microscopic rate equations describing the growth and decay of molec-

ular clusters adsorbed onto a seed particle. Such Becker-Döring equations are fundamental

to descriptions of homogeneous nucleation, but do not appear to have been developed for

the rather more complicated case of heterogeneous nucleation. We show that the familiar

Fletcher theory of heterogeneous nucleation emerges from such a Becker-Döring description,

but only if the concentration of adsorbed single molecules on the surface is estimated in a

rather rudimentary manner. For small seed particles, this approach fails and one needs a

proper Becker-Döring approach to provide a better estimate. The change in predicted nu-

cleation rate can be several orders of magnitude for nanometre-size seed particles. We go on

to include into the Becker-Döring treatment the processes of growth and decay of clusters

by monomer surface di�usion on the seed. We use recent high quality experimental data to

show that the latter process can make only a small contribution to the nucleation current for

nanoparticle seeds. We also use the data to demonstrate that the traditional Fletcher theory

fails to account for critical sizes and nucleation currents correctly, and that a modi�cation

to the implied underlying cluster properties is necessary.

Keywords: heterogeneous nucleation, Becker-Döring equations, Fletcher theory

1 Introduction

The theory of heterogeneous nucleation of droplets on suspended seed particles has for many years
been neglected in favour of the `simpler' process, that of homogeneous nucleation in the absence
of seeds. One reason is the complication of including a third phase into the system, and the
crucial surface properties of the seed particle might be di�cult to characterise. A second reason
is the absence, until recently, of high quality experimental data for the heterogeneous process. A
third reason might be a natural reluctance to address the more complex heterogeneous nucleation
problem before a complete understanding of the homogeneous process is achieved. These reasons
perhaps explain why it is hard to �nd treatments in the literature that go beyond the very
rudimentary Fletcher theory of heterogeneous nucleation (and its derivatives). These treatments
follow the classical theory of homogeneous nucleation in ignoring the microscopic nature of the
seed and the droplet, instead employing ideas based on continuum physics, scaled down to the
nanometre size range. The model is based on an estimate of the probability of a thermodynamic
�uctuation that would generate a new particle by taking the system over a thermodynamic barrier.

But even though it has been neglected as research problem, heterogeneous nucleation is a
much more typical process in the Earth's atmosphere than homogeneous nucleation. The latter
process, where seeds are not present, requires vapour pressures that are several times higher than
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the saturated vapour pressure in order to drive the formation of new droplets. Such conditions of
high supersaturation are not normally found in the atmosphere, and virtually never for water, the
most common condensable vapour. Instead, water condensation typically takes place on aerosol
particles of previously nucleated or mechanically generated organic or inorganic materials. Such
a nucleation mechanism requires a vapour pressure only slightly higher than saturation. Indeed
the character of the process as a nucleation phenomenon, in which a thermodynamic barrier is
overcome by thermal �uctuation, is often not apparent and the process is sometimes referred to
as activation at a supersaturation threshold, and considered to be deterministic. Atmospheric
clouds, both liquid and ice in phase, typically form by a process of heterogeneous nucleation on
such seeds.

The aim of this paper is twofold. The �rst is to establish a set of equations describing
cluster population dynamics analogous to the familiar Becker-Döring equations of homogeneous
nucleation. These equations describe the addition and loss of monomers from clusters as a series
of binary reactions. It comes as a surprise to us to �nd no reference in the literature to such
a model. The outcome di�ers from the usual equations through the need to determine the
monomer concentration adsorbed on the surface at �xed vapour supersaturation. The Becker-
Döring equations for heterogeneous nucleation are non-linear and one cannot impose a linear
approximation that simpli�es the treatment of homogeneous nucleation. However, writing them
down is straightforward, and so is their numerical solution. Having established their structure
then allows further development.

The second aim of this paper is to develop equations that include both the direct vapour
molecule attachment to an adsorbed cluster, and the attachment of a molecule previously adsorbed
on the surface. Again, both mechanisms are well-known in principle, and have been alluded to
within the Fletcher theory (Vehkamäki, 2006), but we have not found in previous studies a
microscopic description based on appropriate Becker-Döring equations.

The models developed in this paper are only a limited advance beyond the simpli�ed Fletcher
theory. We can easily write down Becker-Döring equations, but the rate coe�cients are unknown
in general. We therefore choose to employ the capillarity approximation and the same geometric
assumptions inherent in Fletcher theory. This is done largely to investigate how well the Becker-
Döring equations perform as a microscopic equivalent of the Fletcher theory. But we �nd two
major drawbacks to Fletcher theory: �rst, that it rests on an assumed adsorbed monomer con-
centration that seriously underestimates the correct concentration for small seed particles, and
secondly that it cannot incorporate surface di�usion in a reasonable way. Noting the �rst of these
drawbacks is perhaps the central point made in this article.

The organisation of this paper is as follows. We �rst of all review Fletcher theory, and then
an equivalent Becker-Döring kinetic treatment, but including only gain and loss of molecules di-
rect from the vapour phase. We expose the central point that the usual Becker-Döring approach
employs an assumed monomer concentration, which could be much too high. A comparison be-
tween so-called kinetic and a dynamical treatments of the equations demonstrates the di�erence.
We employ the models to describe recent heterogeneous nucleation experiments of n-propanol
on nanometre size tungsten oxide seed particles. We show that whilst the Fletcher theory does
reasonably well in explaining the onset saturations, the predicted critical sizes (in number of
molecules), corresponding to the size of cluster that is equally likely to grow or to decay, are very
poorly accounted for, as are the nucleation rates. We therefore modify the capillarity approxima-
tion to produce a model that is slightly more successful in accounting for the data, and note that
more detailed microscopic information is needed. Finally, we incorporate the surface di�usion
mechanism and show how the dynamical model predictions are a�ected by this inclusion. For the
experimental data under consideration, it turns out that the surface di�usion process does not
make a large contribution to the nucleation current, largely because the seeds are so small and
there is little room on the surface for more than one adsorbed cluster or monomer.

2



Figure 1: Illustration of a cluster with radius ri on the surface of a spherically symmetric seed
particle with radius Rseed and contact angle θ according to Fletcher theory.

2 Heterogeneous nucleation theory � direct vapour deposi-

tion mechanism

2.1 Fletcher theory

In classical heterogeneous nucleation theory a critical cluster is imagined to form by thermal
�uctuation on a pre-existing surface (Fletcher, 1958). The seed particle is assumed to be spherical
and the critical cluster is assumed to be a cap-shaped part of a sphere � see Figure 1. The radius
of the critical cluster is equal to that of a homogeneous critical cluster under the same conditions
(Vehkamäki, 2006). In the Fletcher theory, the free energy of formation of a critical cluster is
used to determine the probability of a thermal �uctuation that would lead to nucleation, and
a model for this will be reviewed in the next section. A key area of uncertainty, however, is
the proportionality factor that converts this probability into a rate per unit time. This can be
provided by the Becker-Döring approach.

There are several drawbacks to this model, among them the assumed constant contact angle,
that is the angle between the tangents to the solid surface (seed particle) and the liquid surface
(cluster), and the assumed constant surface tensions between the contact interfaces. The physical
properties of a microscopic entity are taken to be the same as for a bulk liquid (the capillarity
approximation). The assumption of a continuum model of the geometry is a poor approximation
especially for small cluster sizes, and should be revised. Nevertheless, we can use it to explore
the kinetics of heterogeneous nucleation through establishing the equivalent Becker-Döring rate
equations (Becker & Döring, 1935) and (Volmer, 1939).

2.2 Becker-Döring theory with direct vapour deposition mechanism

In Becker-Döring theory for heterogeneous nucleation (Vehkamäki, 2006) we can distinguish be-
tween two di�erent growth and decay processes. In the direct vapour deposition model gas
molecules can attach themselves to an existing cluster on the surface of the seed particle and can
be evaporated from the cluster back into the gas phase. In the surface di�usion model clusters
grow when monomers that are adsorbed onto the surface of the seed di�use over the particle sur-
face and eventually collide with the cluster. In the same fashion, monomers can be released from
clusters to di�use on the surface of the seed. The concentrations of clusters of a given size are
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assumed to evolve according to these processes of gain and loss of monomers from the cluster as
chemical reactions without memory. In the �rst part of this paper we concentrate on the direct
vapour deposition mechansim. The corresponding Becker-Döring rate equations for the mean
concentrations Ci(t) [m−2] of clusters of order i for the direct vapour deposition mechanism read

d

dt
C1(t) = j − λC1(t) + γdv2 C2(t)− βdv1 C1(t),

d

dt
Ci(t) = βdvi−1Ci−1(t)− γdvi Ci(t)− βdvi Ci(t) + γdvi+1Ci+1(t), (1)

where γdvimax+1 = 0 and the index i ∈ [2, ..., imax]. The maximum size of clusters, imax, and
hence the maximum number of equations, has to be chosen to be large enough to exceed the
order of the critical cluster i∗ comfortably. Since growth is more probable than decay for clusters
above the critical size, the choice of a cluster sink boundary condition at imax � i∗ is physically
acceptable. Superscripts �dv � indicate processes taking place according to the direct vapour
deposition mechanism.

The particular form of the rate coe�cients we use stems from Fletcher theory. The rate
coe�cient j is called the source rate and gives the monomer �ux per unit area and per unit time.
It takes the form

j =
pS√

2πmkT
[s−1m−2], (2)

where p is the pressure (Nm−2), S > 1 stands for the vapour phase saturation ratio (dimensionless)
de�ned as the vapour pressure divided by the saturated vapour pressure, m is the molecular mass
of a gas molecule (kg), k the Boltzmann constant (m2kgs−2K−1) and T the temperature (K). The
evaporation rate λ characterises the process of evaporation of molecules from the seed surface
back into the vapour phase and is given by

λ = ν exp (− L

kT
) [s−1], (3)

where ν is the adsorbed monomer vibration frequency (s−1) and L the latent heat of evaporation
per monomer (J). The symbol βdvi denotes the growth rate by the direct vapour deposition
mechanism (s−1) for a cluster of size i, and the symbol γdvi+1 the decay rate by emission of a
monomer direct to the vapour (s−1) for a cluster of size i+ 1. It holds that

βdvi < γdvi for i < i∗, (4)

βdvi ≥ γdvi for i ≥ i∗, (5)

which can be interpreted in the following way: up until the critical cluster size i∗ is reached the
probability per unit time of a cluster to decay is greater than the probability to grow. After the
critical cluster size is reached it is more probable for a cluster to grow.

The radius ri of a cluster of size i is derived from the assumption that the volume of the
cap-shaped liquid phase Vcap is equal to the total volume of all molecules in the cluster combined,

Vcap :=
π

3
r3
i (2− 3 cos Ψ(ri, Rseed, θ) + cos3 Ψ(ri, Rseed, θ))

− π

3
R3

seed(2− 3 cos Φ(ri, Rseed, θ) + cos3 Φ(ri, Rseed, θ)) = iv, (6)

where v is the volume of a molecule in the liquid phase (m3), i is the number of molecules in the
cluster, θ is the contact angle, that is the angle between the tangent of the seed surface and the
tangent of the surface of the condensing liquid, and Rseed is the radius of the seed (m). The two
cosines are de�ned as

cos Ψ(ri, Rseed, θ) :=
Rseed cos θ − ri√

r2
i +R2

seed − 2riRseed cos θ
,

cos Φ(ri, Rseed, θ) :=
Rseed − ri cos θ√

r2
i +R2

seed − 2riRseed cos θ
. (7)
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There is, of course, an error that arises from the packaging problem, namely the over-estimation
of the volume of the cluster, but in Fletcher theory this is neglected.

We calculate the growth rate in the direct vapour approach in the following way

βdvi = jA
(v,l)
i [s−1], (8)

where the cap area at the vapour-liquid interface is given by

A
(v,l)
i = 2πr2

i

(
1− cos Ψ(ri, Rseed, θ)

)
[m2]. (9)

The loss rate in the direct vapour deposition approach is determined via the expression

γdvi+1 =

[
βdvi exp

(
∆Gi+1 −∆Gi

kT

)]∣∣∣∣
S=1

[s−1], (10)

where the formation free energy of a cluster of size i takes the form

∆Gi = σ(A
(v,l)
i −A(l,s)

i cos θ)− ikT lnS [Nm], (11)

with the cap area at the liquid-solid interface given by

A
(l,s)
i = 2πR2

seed

(
1− cos Φ(ri, Rseed, θ)

)
[m2], (12)

and where σ is the surface tension of the vapour-liquid interface (Nm−1). We base equation (11)
on a requirement of detailed balance in the saturated equilibrium between vapour and liquid
phase, that is when the saturation ratio is taken to be equal to one.

3 Review of Experimental data

We will illustrate our theoretical investigations by comparing the calculations in the Fletcher and
Becker-Döring frameworks with experimental data obtained by Winkler et al (2008). In that
particular experiment, organic vapour, namely n-propanol, was condensed on molecular ions as
well as on charged and uncharged inorganic nanoparticles, namely tungsten oxide particles. The
activation of the pre-existing seed particles was triggered by heterogeneous nucleation. Vapour
supersaturation was achieved by adiabatic expansion in a thermostated expansion chamber of a
Size Analyzing Nuclei Counter (SANC). Droplet growth was observed by the Contact Angle Mie
Scattering detection method (CAMS).

For each vapour saturation ratio S the fraction of activated particles relative to the total
number concentration was determined, and used to create a nucleation-activation probability
curve depending on the vapour supersaturation ratio for seed diameters ranging from 0.9 nm
to 4 nm. The smaller the size of the seed the higher was the vapour supersaturation needed
for the activation of the particles. Each nucleation-activation probability curve can be used to
extract the corresponding onset saturation ratio, which is the vapour saturation ratio where 50%
of particles of a speci�c size are activated. Accordingly, one can plot the onset saturation ratio
as a function of the seed particle mobility diameter and compare the experimental data to the
theoretical prediction within the Fletcher framework.

We will concentrate on the data representing the neutral tungsten oxide seed particles. In
Table 1 we give the values of the parameters used in the calculations according to the experimental
set-up. The small contact angle indicates that the seed particle was totally wettable to the vapour
phase � see Figure 2. It has been claimed (Winkler et al, 2008) that Fletcher theory predicts the
observed onset activations for neutral particles exceedingly well � see Table 2. We would like to
reconsider this statement by giving attention to the nucleation current, that is the rate at which
critical clusters are formed on the surface of the seed particles.

This proposed reconsideration is driven by the observation that standard Fletcher theory leads
to disparities between the value of the critical cluster size obtained from theoretical considera-
tions compared to an experimental estimation. The First Heterogeneous Nucleation Theorem
(Vehkamäki et al, 2007) together with the nucleation-activation probability curve provides the
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constants R∗seed = 1 nm R∗seed = 2 nm

θ∗ [rad] 5.24e-3
p∗ [Pa] 535.96

S |∗P=0.5 [1] 2.62 1.67
m∗ [kg] 1e-25
T ∗ [K] 275
ν† [s−1] 8.85e11
L∗ [J] 8.29e-20
δ† [m] 1e-10
E† [J] 8.29e-21

σ∗ [Nm−1] 0.025
j∗ [s−1m−2] 2.87e25 1.83e25
λ∗ [s−1] 290.57
k [JK−1] 1.38e-23

Table 1: List of values for physical parameters as implied by the experimental set-up (indicated
with ∗) (Winkler et al, 2008) and theoretical estimates (indicated with †) (Määttänen et al, 2007)
and (Seki & Hasegawa, 1983).

means to determine the number of molecules in the critical cluster. Since the First Heterogeneous
Nucleation Theorem is derived from general statistical mechanical considerations this calculation
is independent of the model used to describe the cluster. However, one has to be careful con-
cerning the monodispersity of the particles. The number of molecules in the critical cluster as
obtained in this fashion will be referred to as the experimental critical cluster size. In the par-
ticular study the experimental critical cluster size i∗exp was between twenty and twenty-�ve � see
Winkler et al (2008). Yet, if one calculates the critical cluster size as predicted by Fletcher theory
one �nds higher values than the experimental data imply � see Table 2. This disparity is explored
in the next section.

4 The heterogeneous nucleation current for the direct vapour

deposition mechanism

We want to compare experimental data for the nucleation current with a Fletcher theory of het-
erogeneous nucleation driven by the direct vapour deposition mechanism, and with the equivalent
Becker-Döring model.

4.1 Experimental nucleation current

The experimental nucleation current (Lazaridis et al, 1992), expressed per unit seed particle
surface area and unit time, is given by

Jexp = − ln (1− P )

4πR2
seedtexp

[m−2s−1], (13)

where Rseed is the radius of the seed particle, texp the activation time and P is the nucleation
probability over that time interval. We employ an activation time of texp = 1 ms (Winkler, 2008).
We take P = 1/2 and consider Jexp to be characterised by the supersaturation Sexp corresponding
to this condition.

4.2 Fletcher nucleation current

The nucleation current as given in Fletcher theory (Fletcher, 1958) reads

JFletcher = K∗ exp (−4G
∗

kT
), (14)
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where the symbol 4G∗ denotes the formation free energy of the critical cluster. The factor K∗

is a kinetic prefactor and is given by

K∗ = Z∗β∗dvCads, (15)

where Z∗ is the Zeldovich factor for heterogeneous nucleation processes:

Z∗ := Z∗homf(r∗Fletcher, Rseed, θ),

Z∗hom :=
v
√
σ

2πr∗2Fletcher

√
kT

,

f(r∗Fletcher, Rseed, θ) :=
√

4

(
2 +

(1−X cos θ)(2− 4X cos θ − (cos2 θ − 3)X2))

(1− 2X cos θ +X2)
3
2

)− 1
2

(16)

with X := Rseed/r
∗
Fletcher. The Fletcher critical cluster radius is given by

r∗Fletcher :=
2vσ

kT lnS
. (17)

The growth rate of the critical cluster β∗dv in Fletcher theory is

β∗dv = j2πr∗2Fletcher(1− cos Ψ(r∗Fletcher, Rseed, θ)). (18)

The concentration of the adsorbed monomers is estimated via

Cads =
j

λ
. (19)

Note that
r∗Fletcher = ri∗Fletcher

, (20)

where ri is determined from equation (6) and the heterogeneous critical cluster size in Fletcher
theory i∗Fletcher is inserted according to

i∗Fletcher = i∗Fletcher;homg(r∗Fletcher, Rseed, θ),

i∗Fletcher;hom :=
4πr∗3Fletcher

3v
,

g(r∗Fletcher, Rseed, θ) :=

1

4

(
2 + 3

1−X cos θ√
1 +X2 − 2X cos θ

−
( 1−X cos θ√

1 +X2 − 2X cos θ

)3)
−1

4

(
X3
(
2− 3

X − cos θ√
1 +X2 − 2X cos θ

+
( X − cos θ√

1 +X2 − 2X cos θ

)3))
. (21)

4.3 Becker-Döring nucleation currents

Assuming that clusters of order imax + 1 do not decay, an expression for the nucleation current
according to the Becker-Döring equations in the steady state (Becker & Döring, 1935):

0 = j − λC1(t) + γdv2 C2(t)− βdv1 C1(t),

0 = βdvi−1Ci−1(t)− γdvi Ci(t)− βdvi Ci(t) + γdvi+1Ci+1(t),

where γdvimax+1 = 0 and i ∈ [2, ..., imax], is well known to be

JBD,kin(Ckin
1 ) =

βdv1 Ckin
1

1 +
∑imax

i=2

∏i
j=2

γdv
j

βdv
j

, (22)

where the mean monomer concentration can again be estimated via

Ckin
1 ≈ j

λ
. (23)
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We explicitly note that JBD,kin is a function of a speci�ed monomer concentration. The above
expression (22) may be referred to as the kinetic Becker-Döring nucleation current.

The full Becker-Döring equations are in fact non-linear equations for the cluster concentra-
tions, and the steady state solution referred to above is obtained in terms of a given monomer
concentration. In a system undergoing heterogeneous nucleation, the monomers are in fact a par-
ticipating species with a freely variable population. Therefore Ckin

1 will in general di�er from j/λ.
To allow for this, we could solve the equations iteratively, using the steady state Becker-Döring
solution, or alternatively, simply perform a numerical solution of the time-dependent non-linear
di�erential equations, and identify a steady state solution at late times. The largest cluster size
under consideration must satisfy imax > i∗, and one therefore has to solve imax equations for the
unknown i-mer concentrations Ci(t). Having done this, we obtain a dynamical Becker-Döring

nucleation current, de�ned in simplest form as

JBD,dyn(t∞) = βdvimax
Cimax(t∞), (24)

where t∞ indicates late times corresponding to a steady state solution. Notice that the di�er-
ence between JBD,dyn and JBD,kin corresponds to the di�erence between a self-consistent, and
an estimated monomer concentration, respectively. One should expect, however, to �nd that
JBD,kin(C1(t∞)) = JBD,dyn(t∞).

4.4 Comparison of models with data

The Fletcher critical size and onset supersaturation (20) are calculated for two particular seed
particle sizes in Table 2 and compared with experimental data. The radius of the experimental
critical cluster ri∗exp is obtained using the experimental critical cluster size i∗exp. The disparity
between model and experimental critical sizes is obvious, even though the onset supersaturations
are in reasonable agreement.

Calculations of the nucleation current according to the Fletcher and kinetic Becker-Döring
models can be found in Table 3. For a seed radius of value Rseed = 1 nm we choose the largest
cluster size to be imax = 135 and for a seed radius of value Rseed = 2 nm we assume imax = 820.
The choice of imax can be regarded as relatively low given the value of the critical cluster size
i∗Fletcher. However, one expects the estimate of the nucleation current to decrease with increasing
value of imax. Therefore, the calculated values of the nucleation currents as given in Table 3 can
be understood as an upper limit which is already signi�cantly below the experimental value.

We observe that the agreement between the experimental nucleation current Jexp and the
Fletcher nucleation current JFletcher is better for a smaller seed radius than for the bigger seed
particle. The Fletcher nucleation current JFletcher and the kinetic Becker-Döring nucleation rate
in the steady state JBD,kin(Ckin

1 ) are of the same order of magnitude. Clearly, neither is an
acceptable description of the data for both seed radii. We shall now attempt to address this by
modifying the capillarity approximation.

5 The heterogeneous nucleation current for the modi�ed di-

rect vapour deposition mechanism

In order to remove the disparity between the experimental and theoretical critical cluster size
we modify parameters such that the critical cluster size as predicted by Fletcher theory, i∗Fletcher,
coincides with the experimental critical cluster size i∗exp:

i∗Fletcher = i∗exp = 25. (25)

The simplest way to arrange this is to replace the bulk surface tension between the vapour phase
and the droplet with what we will call the e�ective surface tension σeff and which is given in
Table 4. As a consequence of forcing i∗Fletcher = i∗exp we have ri∗exp = ri∗Fletcher

= r∗Fletcher. All other
physical and experimental parameters are unchanged. We recalculate the nucleation currents for
the various models used in the last subsection with the assumed value imax = 30 and summarise
the results in Table 5. The Becker-Döring equations are evolved from zero population initial
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Figure 2: Illustration of a seed particle with radius Rseed totally wettable to the vapour phase,
and ri the radius of the cluster.

Rseed = 1 nm Rseed = 2 nm

Sexp 2.62 1.67
SFletcher 2.71 1.87
i∗exp 25 25

i∗Fletcher 130 814
ri∗exp [m] 1.2e-9 2.06e-9

ri∗Fletcher
[m] 1.69e-9 3.17e-9

Table 2: List of calculated quantities: the experimental onset saturation ratio Sexp taken from
(Winkler et al., 2008), the onset saturation ratio as obtained from Fletcher theory SFletcher, the
experimental critical cluster size i∗exp taken from (Winkler et al, 2008), the size of the critical
cluster as given by Fletcher theory i∗Fletcher, the radius of a cluster evaluated for the experimental
critical cluster size ri∗exp , the radius of a cluster evaluated for the size of the critical cluster as
given by Fletcher theory ri∗Fletcher

(equivalent to the Fletcher radius r∗Fletcher) for two particular
radii of the seed particle Rseed.

nucleation rate [m−2s−1] Rseed = 1 nm Rseed = 2 nm

Jexp 5.52e19 1.38e19
JFletcher 6.32e17 3.61e-8

JBD,kin(Ckin
1 ) 2.0e18 9.05e-8

Table 3: List of the calculated nucleation currents in the various models: the experimental nucle-
ation current Jexp, the Fletcher nucleation current JFletcher, the kinetic Becker-Döring nucleation
rate JBD,kin(Ckin

1 ) for two particular radii of the seed particle Rseed.
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Rseed = 1 nm Rseed = 2 nm

σexp [Nm−1] 2.51e-2 2.51e-2
σeff [Nm−1] 1.79e-2 1.63e-2
i∗exp = i∗Fletcher 25 25

ri∗exp = ri∗Fletcher
= r∗Fletcher [m] 1.2e-9 2.06e-9

Sexp 2.62 1.67
SFletcher 1.94 1.47

Table 4: List of calculated quantities in the modi�ed model: the experimental surface tension
σexp taken from (Winkler et al., 2008), the e�ective surface tension σeff ; the experimental critical
cluster size i∗exp taken from (Winkler et al., 2008), the size of the critical cluster as given by
Fletcher theory i∗Fletcher, the radius of a cluster evaluated for the experimental critical cluster size
ri∗exp , the radius of a cluster evaluated for the order of the critical cluster as given by Fletcher
theory ri∗Fletcher

, and the Fletcher radius r∗Fletcher for two particular radii of the seed particle Rseed;
the experimental onset saturation ratio Sexp taken from (Winkler et al., 2008), and the onset
saturation ratio as obtained from Fletcher theory SFletcher,

nucleation rate [m−2s−1] Rseed = 1 nm Rseed = 2 nm

Jexp 5.52e19 1.38e19
JFletcher 1.79e29 4.81e29

JBD,kin(Ckin
1 ) 3.32e29 1.62e30

JBD,dyn(t∞) 2.87e25 1.83e25
JBD,kin(C1(t∞)) 2.87e25 1.83e25

Table 5: List of the calculated nucleation currents in the various modi�ed models: the experimen-
tal nucleation current Jexp, the Fletcher nucleation current JFletcher, the kinetic Becker-Döring
nucleation rate JBD,kin(Ckin

1 ), the nucleation rate at late times as derived from the dynamical
Becker-Döring rate equations JBD,dyn(t∞), and the kinetic Becker-Döring nucleation current ob-
tained with the late time mean monomer concentration as calculated from the dynamical Becker-
Döring rate equations JBD,kin(C1(t∞)), for two particular radii of the seed particle Rseed.

conditions. Now the modi�ed Fletcher theory overpredicts the nucleation current � compare with
Table 3 � yet the result for the bigger seed particle is closer to the experimental nucleation current
than in the unmodi�ed theory.

The di�erence in the values of JBD,kin(Ckin
1 ) � see (22) � and JBD,dyn(t∞) � see (24) � as

given in Table 3 arises due to the estimation of the monomer concentration by the ratio j/λ (23)
in the kinetic model. This can be illustrated by considering the ratio

F (Rseed) :=
JBD,kin(Ckin

1 )

JBD,kin(C1(t∞))
=

Ckin
1

C1(t∞)
. (26)

We have F (Rseed = 1 nm) = 1.16e4 and F (Rseed = 2 nm) = 8.86e4. If one recalculates the
nucleation rate JBD,kin taking the late time value of the mean monomer concentration C1(t∞)
according to the solution of the dynamical Becker-Döring rate equations (1) instead of using the
estimation for the mean monomer concentration in the steady state (23), one �nds that

JBD,kin[C1(t∞)] = JBD,dyn(t∞). (27)

as expected. The Fletcher nucleation current JFletcher clearly overestimates the true nucleation
current in the same way as the kinetic Becker-Döring nucleation rate JBD,kin, and for the same
reason. Using JBD,dyn the disparity with respect to experimental data is reduced, and a better
dependence on a change in seed radius is obtained. Clearly, however, the fundamental limitations
of Fletcher theory prevent a more successful representation of the data.
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6 Becker-Döring framework with surface di�usion and direct

vapour deposition mechanisms

We continue our investigations employing the e�ective instead of the experimental surface tension.
We extend the calculations from the consideration of the direct vapour deposition mechanism only,
to the full framework, that is including surface di�usion processes as well as direct vapour depo-
sition processes into our model. The Becker-Döring rate equations for the mean concentrations
Ci(t) (m

−2) of clusters of size i in the surface di�usion and direct vapour deposition model read

d

dt
C1(t) = j − λC1(t) + γdv2 C2(t)− βdv1 C1(t)

− βsd1 C1(t) + γsd2 C2(t)−
imax∑
i=1

(
βsdi Ci(t)− γsdi+1Ci+1(t)

)
,

d

dt
Ci(t) =

(
βdvi−1 + βsdi−1

)
Ci−1(t)−

(
γdvi + γsdi

)
Ci(t)

−
(
βdvi + βsdi

)
Ci(t) +

(
γdvi+1 + γsdi+1

)
Ci+1(t), (28)

where γdvimax+1 = γsdimax+1 ≡ 0 and the index i ∈ [2, ..., imax]. Superscripts �dv� indicate processes
taking place according to the direct vapour deposition model, superscripts �sd� denote processes
in the surface di�usion model. The rate coe�cients βsdi (s−1) and γsdi+1 (s−1) characterise the
surface di�usion processes concerning the growth of a cluster of size i by an adsorbed monomer
and the loss of a monomer from a cluster of size i+ 1. The other rate coe�cients (j, λ, βdvi , γdvi )
are determined as before. The factor of two in the evolution equation for the mean monomer
concentration in the surface di�usion terms βsd1 C1(t) and γsd2 C2(t) arises from the fact that in
the surface di�usion mechanism two adsorbed monomers have to collide in order to form a dimer.
However, in the direct vapour deposition approach a molecule from the gas phase lands on top
of a monomer residing on the surface of the seed, hence the coe�cient of unity for the terms
βdv1 C1(t) and γdv2 C2(t).

The derivation of the rate coe�cients in the surface di�usion model follows that of the rate
coe�cients in the direct vapour deposition model except that the growth rate coe�cient in the
surface di�usion model depends on the unknown mean adsorbed monomer concentration, namely

βsdi := βsdi (t) = β′sdi C1(t) [s−1], (29)

where the constant factor β′sdi is determined by the number of molecules in a circular region
around the cluster, times the vibration frequency leading to jumps, times an exponential function
containing the activation energy for surface di�usion, or more precisely,

β′sdi = 2πRseedδ sin Φ(ri, Rseed, θ)ν exp

(
− E

kT

)
[m2s−1], (30)

where δ is the average jumping distance and E the energy of the surface di�usion process
(Vehkamäki, 2006). The values of the newly introduced physical parameters used in the fol-
lowing calculations are included in Table 1.

The decay rate in the surface di�usion approach can be obtained via

γsdi+1 =

[
β′sdi j

λ
exp

(∆Gi+1 −∆Gi
kT

)]∣∣∣∣
S=1

[s−1], (31)

which is again derived from a detailed balance argument � see Figure 3.
Due to the di�erence of several orders of magnitude between the constant rate coe�cients

β
′sd
i and γsdi problems in the numerical evaluation of the evolution equations (28) arise. In order

to avoid these numerical di�culties we employ an estimate of the mean monomer concentration
at late times to solve the Becker-Döring rate equations (28) iteratively in the following way. The
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iteration for the mean monomer concentration C1(t∞) at late times t∞ is performed according
to the scheme

[Cm+1
1 (t∞)]in =

(
[Cm1 (t∞)]out[C

m
1 (t∞)]in

) 1
2

, (32)

where [Cm1 (t∞)]in is the input value and [Cm1 (t∞)]out the output value for the m-th iteration
step. The above estimate for the mean monomer concentration at late times is inserted into the
expression for the rate coe�cients

βsdi = β
′sd
i [Cm1 (t∞)]in (33)

and the system of Becker-Döring rate equations (28) is solved. In the zeroth iteration step the
mean monomer concentration at late times is estimated to be

[C0
1 (t∞)]in =

j

λ
. (34)

The iteration procedure is terminated when

[Cm1 (t∞)]out
[Cm1 (t∞)]in

≈ 1 (35)

and in our calculation this point is reached when m = 4 at which [Cm1 (t∞)]out/[C
m
1 (t∞)]in =

1±O(1e− 4).
The nucleation current from the full Becker-Döring rate equations for both the surface di�usion

and the direct vapour deposition mechanisms can be obtained using the expression

JBD,dyn(t∞) =

(
βdvimax

+ β
′sd
imax

C1(t∞)

)
Cimax

(t∞), (36)

with imax > i∗, where one has to solve imax number of equations. In Table 6 we compare the
dynamical Becker-Döring nucleation current as computed for the direct vapour deposition model
according to equation (24) with the dynamical Becker-Döring nucleation current as computed
for both mechanisms according to equation (36). One observes that the nucleation current that
was calculated taking both the direct vapour deposition and the surface di�usion mechanism into
account is generally an order of magnitude less than the nucleation current that results from
the consideration of the direct vapour deposition mechanism only. This is a slightly unexpected
result but might be rationalised by considering that the inclusion of surface di�usion allows both
the additional growth, but also additional decay of adsorbed clusters. The additional decay can
potentially reduce the nucleation rate since the wider kinetic scheme reduces the concentration
of clusters on the surface.

It can be concluded from the relatively small change in the nucleation current that surface dif-
fusion processes do not play an essential role, at least for the heterogeneous nucleation conditions
studied in the experiments. A reason for this may be the observation that the linear dimension
of a single molecule is of the same order of magnitude as the radius of the seed particle in the
experiments, and that very quickly after a heterogeneous nucleus has started to grow, there is
little seed surface left upon which the additional adsorbed monomers can attach and di�use.

7 Conclusions

In this study we have developed rate equations describing the process of heterogeneous nucleation
of droplets on aerosol seed particles. These take the form of the familiar Becker-Döring equations.
It is recognised that these are non-linear instead of linear in the cluster populations. Nevertheless
the steady state solutions to the equations can be found relatively easily. It appears to us that
such a development has not been noted in the literature previously.

The approach demonstrates that the traditional Fletcher theory of heterogeneous nucleation
rests on a rather rough estimate of adsorbed monomer concentration, which could be seriously
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Figure 3: A schematic of nucleation kinetics according to Becker-Döring theory. Changes in mean
i-mer concentrations are brought about by the growth of clusters by monomers (βi) and by the
loss of monomers from clusters (γi). The superscripts distinguish the direct vapour deposition
model from the surface di�usion model. In addition, the mean monomer concentration is altered
by an incoming �ux of monomers (j) and by the loss of monomers to the gas phase (λ).

nucleation rate [m−2s−1] Rseed = 1 nm Rseed = 2 nm

JdvBD,dyn(t∞) 2.87e25 1.83e25

Jsd,dvBD,dyn((t∞) 1.52e24 1.16e24

Table 6: List of the calculated nucleation currents in the modi�ed models as derived from the
dynamical Becker-Döring rate equations in the direct vapour deposition model, JdvBD,dyn(t∞),

and Jsd,dvBD,dyn(t∞) as derived from the dynamical Becker-Döring rate equations for the combined
mechanism (direct vapour deposition and surface di�usion mechanism) for two particular radii of
the seed particle Rseed.
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in error for small seed particles. We have developed Becker-Döring models that demonstrate this
di�erence. We have also used the equations to include the additional processes of cluster growth
and decay through the surface di�usion mechanism, namely the addition of surface-adsorbed
monomers to the cluster, and the reverse process. In usual treatments, growth by direct attach-
ment of monomers from the vapour is normally assumed. We show that for nanometre size seed
particles, direct attachment makes a dominant contribution to the current, largely because space
on the seed particle for additional adsorbed monomers is rather limited. Inclusion of the surface
di�usion mechanism reduces the current slightly. For larger seed particles, the inclusion of the
surface di�usion mechanism should become more important.

We have studied recent experimental data and concluded that whilst the traditional Fletcher
theory might account reasonably well for the onset saturations for heterogeneous nucleation, it
fails in detail when considering critical sizes and nucleation currents, particularly with respect to
the dependence on seed particle size. We regard Fletcher theory with great caution. We have
pointed out that that amongst its many de�ciencies it can su�er from an incorrect estimate of
adsorbed monomer concentration. Furthermore, like other versions of the classical nucleation
theory, Fletcher theory is founded upon the rather dubious capillarity approximation, as well
as inappropriate geometric assumptions for microscopic molecular clusters. We conclude that
analysis of data and estimates of atmospheric behaviour should really be conducted using a truly
microscopic theory of heterogeneous nucleation.
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