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Comment on "Antiferromagnetic Potts Models"

Wang, Swendsen, and Kotecky (WSK) [1] have re-
cently proposed an elegant Monte Carlo algorithm for
simulating the antiferromagnetic q-state Potts model on a
finite graph G. It goes as follows: Choose at random two
distinct "colors" a, P 6 [I, . . . , q]; freeze all the spins
taking values &a,P, and allow the remaining spins to take
value either a or P. The induced model is then an anti-
ferromagnetic Ising model, which can be updated by any
legitimate algorithm (for example, the Swendsen-Wang
algorithm [2] or Wo[ff's single-cluster variant [3]).

At zero temperature the antifer rom agnetic q-state
Potts model reduces to the equal-weight distribution on
q-colorings of G, and the WSK algorithm becomes the
following: independently for each connected cluster of
a-P spins, either leave that cluster as is or else Hip it (in-
terchanging a and P).

WSK studied their algorithm numerically for (among
other cases) the q=3 model at T=O on square lattices of
linear size L =4,8, 16,32,64 with periodic boundary condi-
tions. They claimed that the autocorrelation time was
~wsK=7 independent of L, while the autocorrelation
time of a single-spin-Aip algorithm increased approxi-
mately as issF=0.32L .

If the (exponential) autocorrelation time of a Monte
Carlo algorithm is finite, then in particular that algo-
rithm must be ergodic. However, WSK did not give any
proof of the ergodicity of their algorithm at T=O. (The
ergodicity at T&0 is trivial. ) Here we show that in fact
the algorithm is not ergodic at T=O for q =3 on periodic
lattices of size 3mx3n where m, n are relatively prime.
For q ~ 4 and/or other lattice sizes or boundary condi-
tions, the ergodicity at T=O is an open question.

Consider the configurations shown in Fig. 1 for a 3X3
periodic lattice. For any choice of a,P, the sites colored
a-P form a single connected cluster, so the only possible
moves in the WSK algorithm are global permutations of
the colors. On the other hand, configurations (a) and (b)
are not related by a global permutation, since in (a) the
bands of constant color run northeast-southwest while in

(b) they run northwest-southeast. It follows that the
WSK algorithm is nonergodic.

Next consider the configurations of Fig. 1 repeated
periodically on a 3mx3n lattice. If m, n are relatively
prime, then the sites colored a-P form a single connected
band winding around the lattice, and the argument goes
through unchanged. If m, n are not relatively prime, then
the sites colored a-P form several disjoint connected
bands, and the ergodicity is an open problem.

We remark that these configurations are completely
frozen under any single-spin-update algorithm, because
each spin is surrounded by neighbors of both colors. So
any such algorithm is also nonergodic. The same holds
for q=4 on lattices 4mx4n, and for q=5 on lattices
5m&5n. For q ~ 6, the single-spin-update algorithm is
easily seen to be ergodic on any square lattice [4]; more
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FIG. 1. Configurations of the zero-temperature antiferro-

magnetic three-state Potts model on a 3x 3 lattice with periodic
boundary conditions.

generally, this holds on an arbitrary graph G for q~ maxdegG+2.
We also remark that the WSK algorithm for q =3 is

nonergodic on the planar graph of Ref. [5], Fig. 10.4.
To see these nonergodicities numerically requires some

care: (a) One must study the model not only at T=O,
but also at temperatures T approaching zero; then one
will see the autocorrelation time growing without limit.
(b) One must measure an observable that distinguishes
between the ergodic classes. Thus, in the above situation
one could use ~o(k)

~
at momenta k =(2tt/3, ~ 2tt/3). It

is not clear which observables might be sensitive to any
possible nonergodicities at other values of q and L.

It is an open question whether there exist efficient algo-
rithms for simulating the antiferromagnetic Potts model
at zero temperature for q=3, 4, 5 (more generally, for
q & maxdegG+2). Jerrum [4] has pointed out that it is
unlikely that such algorithms (with polynomially bounded
autocorrelation time measured in CPU units) can exist
for arbitrary graphs G and fixed q: indeed, the existence
of such an algorithm for q =5 would permit one to ascer-
tain with high probability the 3-colorability of an arbi-
trary degree-4 graph, which is impossible if 1VP&RP [6].
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