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1 Introduction

Electron molecule scattering processes are important in all cold plasmas such as
those found in planetary ionospheres, astrophysics, at the edge of fusion reactors
and in chemical processing, as well as discharges such as those that drive lasers.
Radiation damage in living systems arise primarily from the interaction of low energy
secondary electrons through dissociative interactions with components of DNA or
the water around them [1]. R-matrix calculations have been performed to aid the
understanding of most of these processes.

Most astronomical plasmas, such as those found in the interstellar medium, are
both cold and diffuse. This means that for molecules possessing a permanent dipole
moment, collisional excitation is usually followed by radiative emission back to the
ground state. Knowledge of the collisional excitation rates is therefore essential to
interpret any observed emissions. Molecular ions have very large electron impact
excitation cross sections and electrons are thought to be the primary collision partner
for ions such as CH", CO* and HCO™' whose emission spectra are well known from
regions such as planetary nebulae.

The processes that occur in the scattering of electrons by molecules are consid-
erably more challenging than those that arise in electron scattering by atoms and
atomic ions because of the possibility of exciting degrees of freedom associated with
the motion of the nuclei. Thus as well as electronic excitation and ionization, which
also occur in electron atom scattering, additional processes that now take place in-
clude rotational and vibrational excitation, dissociation and dissociative attachment
or recombination.

In this paper we present an overview of R-matrix theory of electron molecule
scattering which enables these processes to be accurately calculated. We commence
in Section 2 by considering the fixed-nuclei approximation where the electronic de-
grees of freedom of the molecule are first calculated in the molecular or body-fixed
frame of reference in which the nuclei are held fixed in space. The molecular ro-
tational, vibrational and dissociative motion is then included in a second stage of
the calculation which we will discuss in Sections 3 and 4. This procedure owes
its validity to the large ratio of the nuclear mass to the electronic mass which is
the basis of the Born-Oppenheimer separation of the electronic and nuclear motion
made in molecular structure calculations. Finally, in Section 5 we present a selection
of some illustrative results from recent calculations for molecules of importance in
applications.

2 Fixed-Nuclei Approximation

The fixed-nuclei approximation was first used to describe low-energy electron scat-
tering by diatomic molecules by Stier [2], Fisk [3] and Massey and Ridley [4]. In
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recent years it has been widely used as the basis of ab initio computational meth-
ods that are yielding the most accurate cross sections for electron scattering by
diatomic and polyatomic molecules. These methods include the complex Kohn vari-
ational method [5], the Schwinger variational method [6] and the R-matrix method
[7, 8] which we consider in this paper.

The R-matrix method,first used to describe low-energy electron atom scattering
by Burke et al [9], was extended to treat electron scattering by diatomic molecules
by Schneider [10], [11], Schneider and Hay [12] and Burke et al [13]. In order to
formulate the electron molecule scattering process in the fixed-nuclei approximation
we adopt a frame of reference which is rigidly attached to the molecule, where the
centre of gravity of the molecule is chosen as the origin of coordinates. In the case
of diatomic molecules, which we will use as an examplar of the general case in the
following discussion, we introduce a molecular frame of reference where the z-axis
is convenently chosen to lie along the internuclear axis, as illustrated in Figure 1.
Also in this figure G is the centre of gravity of the two nuclei labelled A and B,
R = R4 + Rp is the distance between the nuclei and the vector distances between

ith electron

Figure 1: Molecular frame for electron diatomic molecule scattering

A, B and G and the ith electron are ry;, rp; and r; respectively. We consider first
the scattering process represented by the equation

e”+ AB; - AB; + ¢~ (1)

where AB; and AB; are the initial and final electronic bound states of the target,
which we assume has N electrons, and where the nuclear charge numbers corre-
sponding to A and B are Z4 and Zg. Also as discussed above, we assume that A
and B are fixed in space. We reserve a discussion of the rotational and vibrational
degrees of freedom to Sections 3 and 4.



We assume that the target nuclei are light so that relativistic effects can be
neglected for low-energy electron scattering. The scattering process is then described
by the time-independent Schrédinger equation

HN-{—l\II = E\Ila (2)

where Hy 1 is the non-relativistic Hamiltonian defined in atomic units by

N+l Zs g NtL 1 ZuZp
Hy. = ——Vi_=_ —> — . 3
=3 (-5V: )t Xty (3)

In order to solve eq. (2) using R-matrix theory we proceed by partitioning configu-
ration space into an internal region, an external region and an asymptotic region as
illustrated in Figure 2.

. External Region Asymptotic Region
Internal Region
scattered electron only scattered electron
N + 1 electrons 1
multi- single-centre expansion only
t single-centre
centre Sub- Sub- Sub. ‘
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Radial coordinate of scattered electron

Figure 2: Partitioning of configuration space in R-matrix theory of electron molecule scattering.

In the internal region 0 < r < ag, where 7 is the radial coordinate of the scattered
electron relative to the centre of gravity G of the target nuclei, electron exchange
and electron-electron correlation effects between the scattered electron and the N
electrons of the target are important and the (N + 1)-electron collision complex
behaves in a similar way to a bound state. Consequently a configuration interaction
expansion of this complex similar to that used for molecular bound state calculations
is used. Recent work has produced both a diatomic molecule code, based on Slater
Type Orbitals (STOs), and a polyatomic molecule code, based on Gaussian Type
Orbitals (GTOs) [7, 8]. In each case these functions are centred on the nuclei and
are combined with a continuum basis centred on the centre of gravity.

The solution of eq. (2) in the internal region takes the following form

v = Z¢kAEka (4)
k



where the 1, are energy-independent basis functions which are expanded as an
antisymmetrised summation as follows

n Nec

_A N _
1/JJCA(XN+1a R) = AZ Z ®; (X rN+10N+1)7’N£LlU?j(TN+1)a$k

i=1j=1

+ZXZA(XN+1)bzAk’ k= 17"'ant7 (5)
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for each fixed internuclear separation R, where n; = nn.+m is the number of linearly
independent basis functions and Xy, = X1, X, ..., Xxy41 With x; = r;0;, represents
the space and spin coordinates of the NV + 1 electrons. The channel functions @A,
the continuum orbitals u?j and the quadratically integrable functions x5 depend
parametrically on R. Also A represents the conserved quantum numbers which
correspond to the irreducible representation of the symmetry group of the molecule
under consideration.

The channel functions @A, which are formed by coupling the target physical
states and possibly pseudo-states to the angular and spin functions of the scattered
electron, and the quadratically integrable functions 2 are constructed from STOs
or GTOs centred on the nuclei. The radius ag is chosen so that these orbitals
vanish by the boundary of the internal region. On the other hand the continuum
basis orbitals u?j, which represent the scattered electron, are non-vanishing on this
boundary and are used to construct the R-matrix linking the internal and external
regions. These continuum orbitals can be formed from STOs for the diatomic code.
However difficulties have been experienced at higher incident electron energies due
to linear dependence of these orbitals [14]. Hence they are more usually generated
numerically as solutions of a zero-order second-order differential equation [15] for the
diatomic code and are based on expansions of GTOs for the polyatomic code[16, 17].
Finally, the coefficients aiAjk and b5 in eq. (5) are obtained by diagonalizing the
operator Hy.1+ Ly for fixed R in the basis 1/1,6A over the internal region as follows

(Vi | Hy+1 + Lo | Y dine = B, kK =1,...,ny, (6)

where Ly is the Bloch operator [20]

Ntlq d by—1
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where b, is an arbitrary constant. We can then show that Hyy1 + Lyy1 is hermi-
tian in the basis of quadratically integrable functions satisfying arbitrary boundary
conditions at r = 9. The Hamiltonian matrix elements in eq. (6) can be calculated
using standard molecular structure packages, modified to carry out the radial inte-
grals over a finite range and to treat continuum orbitals as well as STOs or GTOs.



However it is possible to exploit the structure of the wavefunction given by eq. (5)
to greatly enhance the efficiency of the calculation.[18]

Eq. (2) is solved in the internal region for each fixed internuclear separation R
and for each set of conserved quantum numbers denoted by A, by rewriting it as
follows

(Hni1+ Lysr — E) U2 = Ly 02, (8)
which has the formal solution

\I’A = (HN+1 + £N+1 - E)_l EN_H\I’A. (9)

We expand the inverse operator in this equation in terms of the basis defined by egs.
(5) and (6), project the equation onto the channel functions @A (Xn;Tn410N+1), and
evaluate it on the boundary of the internal region ry,; = ay. We then obtain

n dFA
= A E :1 PR 1
j:ZIRz]( ) ( dT )r:ao ’ 1 ) ;n, ( 0)

where the R-matrix R (E) is defined by

1 n¢ wAwA
RS(E gk =1, 11
(E) = 240 2 BR — B i,j=1,...,n (11)

where the sum runs over the solutions of the Hamiltonian. Recent developments have
shown how this sum can be drastically reduced without significantly compromising
the accuracy of the calculation [19].

To construct eq. (11) it is necessary to define the reduced radial wave functions
FA(r) which is given by

FA(rvsn) = (@ rya[028) i=1,..,m, (12)

and the surface amplitudes w% are given by

szk:<_z N+1|wk>rN+1 ao_zu aO z]ka i=1,...,n,k:1,...,nt. (13)

The primes on the Dirac brackets in eqs. (12) and (13) mean that the integrations
are carried out over all N + 1 electronic space and spin coordinates in the internal
region except the radial coordinates ry.1 of the scattered electron. These are the
basic equations which describe the scattering of electrons by molecules in the internal
region for fixed internuclear separation.

In the external region, defined in Figure 2, a is chosen so that electron ex-
change and electron-electron correlation effects between the scattered electron and



the target electrons vanish. The total wave function can then be expanded in the
form .
A(Xny1) = Z XN;IA'N+10N+1)7'X/}|_1FZ'A(TN+1): TN+1 2 Qo. (14)
i=1
In this expansion the multicentre channel functions @A are the same as those re-
tained in the internal region expansion (5). However we now no longer include the
antisymmetrization operator, since the scattered electron and the target electrons
occupy different regions of space. Also the multicentre quadratically integrable func-
tions x2 vanish in the external region and the scattered electron is represented by
the single-centre reduced radial functions F/>(r).

Substituting eq. (14) into the Schrédinger equation (2) and projecting onto the
channel functions @A then yields the following set of coupled second-order differen-
tial equations satisfied by the reduced radial functions

( L6+ 1) N 2(Za+Zg— N) N k2>

dr? r? r
2:1, n, r > ay. (15)
In these equations
k?=2E—-FE), i=1,...,n, (16)
where the energy FE; defined by
—A N _ —A . _ .
E; = (@; (Xn;tnvpone)ryi [HN[®; (X tviioni)ryy), i=1,...,m, (17)

Hy being the target molecule Hamiltonian. Also the potential matrix Vz-f in egs.
(15) is defined by

N Za Zg

Z — —

k—1 TkN+1  TAN+1  TBN+1

—A “ -
V;']A(TN-H) = (@ (Xn; T 108 11)ryi

Za+2Zg— N|=a . _ ..
+A—B‘q)j (XN;I‘N+10N+1)7"N£L1>'a 1L,j=1,...,n, (18)

'N+1

which can be written as a summation over inverse powers of r as follows
o
A A A1 o
T): E aij)\r ) la]:]-a"'ana 7"2@0, (19)

where the long-range potential coefficients a%,\ can be determined by carrying out
the multicentre integrals in eq. (18).

The solution of egs. (15) can be obtained, using a standard method for solving
a set of linear coupled second-order differential equations enabling the R-matrix at
r = a, in Figure 2 to be expressed in terms of the R-matrix at r = ay.
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In the asymptotic region, defined in Figure 2, an asymptotic solution of egs. (15)
is determined and the solution satisfying the asymptotic boundary conditions

FA(r) r_\;ook’% (sin @ + cos OK2), (20)

r

is obtained where @ is a diagonal matrix with elements

1
gi = kﬂ“ - 56171- — T In kar + 0y, (21)
with 7 7 N
n = _A++, (22)
and
og, = arg ['(6; + 1+ in;). (23)

In this way the n, x n, dimensional K-matrix K* is determined in terms of the
n x n dimensional R-matrix at r = a,, where n, is the number of open channels
at the incident electron energy under consideration. The corresponding S-matrix is
then defined by

~ I4+iK2
- I-iKA
The cross section in the molecular fixed frame can then be expressed in terms of the
S-matrix.

sS4 (24)

3 Inclusion of Nuclear Motion

In this and the following section we review how processes involving the nuclear
motion such as rotational and vibrational excitation, as well as dissociative processes
can be represented in the theory.

One of the most widely used approaches for including the nuclear motion is
the adiabatic-nuclei approximation which was introduced by Drozdov [21, 22] and
Chase [23] for problems involving vibration and rotation, and has been extended
to also treat dissociation [24]. In the case of diatomic molecules in a Y state the
scattering amplitude for a transition between electronic, vibrational and rotational
states defined by the quantum numbers ivjm; and ¢'v'j'm;: is given by

Fitwrjtmy wjm; (6.8) = (o (B)Yrmyy (R)| firs (kB3 R) o (R) Yiim, (R)). - (25)

where fy;(k.t;R) is the fixed-nuclei scattering amplitude, which depends paramet-
ricaly on the inter-nuclear coordinate R, and x;, and Y}, are the molecular vi-
brational and rotational eigenfunctions respectively. This approximation is valid



provided that the collision time is short compared with the vibration and rotation
times. Hence it can be accurately applied in non-resonant regions.

The adiabatic-nuclei approximation breaks down in the neighbourhood of narrow
resonances or close to thresholds. This is because the scattered electron then spends
an appreciable time in the neighbourhood of the molecule allowing it to transfer
energy to the nuclear motion with high probability. One procedure for overcoming
these difficulties is to carry out the calculation in the laboratory frame of reference
including the nuclear motion explicitly. The time-independent Schrodinger equation
(2) is then replaced by

(Hy41 + Tr)¥(Xn41; R) = E¥(Xyy15 R), (26)

where Tg is the kinetic energy operator of nuclear motion which includes both
rotational and vibrational terms and where R represents the coordinates of the

nuclei. The corresponding expansion of the total wave function which replaces egs.
(5) and (14) is then

n —A . B
U2 Xy R) =AY @ (Xyiinvr10n+1; R)ryi R (rve)
=1

+ Z XiA(XN-H; R)bjAv (27)

j=1

where the summations over ¢ and j now go over the rotational and vibrational states
as well as the electronic states of the molecule and A again represents the conserved
quantum numbers.

We obtain coupled integro-differential equations for the reduced radial wave func-
tions F representing the scattered electron, by substituting eq. (27) into eq. (26)
and projecting on to the channel functions @A and on to the square integrable
functions x. After eliminating the bjA coefficients, these equations take the form

d2 n
(— + kf) FA(r) =23 (VR + WS+ X5)FR(r), i=1,...n, (28)
j=1

where V5, W3 and X7 are local, non-local exchange and non-local correlation
potentials and where we have included the diagonal angular momentum and nuclear
Coulomb terms in V;§* for notational simplicity.

Coupled equations of this type have been studied by many workers. For example,
Arthurs and Dalgarno [25] first obtained coupled equations describing the scattering
of an electron by a rigid rotator which have been widely applied. Also Chandra
and Temkin [26, 27] used a hybrid theory, in a study of electron scattering by Ny
molecules in the neighbourhood of the 2II, resonance, which included a summation

over vibrational states in eq. (27), but treated the rotational motion adiabatically.
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However, in general the number of channels that have to be included in the expansion
using this approach becomes prohibitively large for polyatomic molecules when ro-
vibrational transitions are treated non-adiabatically.

Finally in discussing the need for laboratory-frame calculations, we mention the
frame-transformation theory of Chang and Fano [28] which has been influential in
electron atom as well as in electron molecule scattering. Chang and Fano pointed
out that the interaction between the electron and the molecule exhibits qualitatively
different features when their distance coordinate lies in different regions as illustrated
in Figure 3. In the core region electron exchange and correlation effects are dominant

Region A Region B
A J
Region Aa Region Ab
Core Region Potential field Region
multicentre single-centre expansion
expansion
a b c

Radial coordinate of scattered electron
Figure 3: Partitioning of configuration space in frame-transformation theory.

and the molecular frame of reference is appropriate. In the potential field region
exchange can be neglected but only in region A can the molecular frame still be used.
At large distances, in region B, the coupling of the electron angular momentum
to the molecular axis is no longer strong and the laboratory frame of reference
is appropriate. Finally if vibrational motion is being considered, region A must
be partitioned. In region Aa, a Born-Oppenheimer separation of the nuclear and
electronic motion is appropriate and the problem can be solved as a function of the
internuclear separation. On the other hand in region Ab, the vibrational motion
must be included non-adiabatically in the description of the collision.

In comparing the frame-transformation picture given by Figure 3 with the R-
matrix picture given by Figure 2 we see that the core region in frame-transformation
theory corresponds to the internal R-matrix region. However in the neighbourhood
of narrow resonances or close to thresholds the radius a of region Aa may be less than
the radius b of the core region. That is the Born-Oppenheimer separation of vibra-
tional and electronic motion is only applicable in the outer part of the internal region
in Figure 2. Since representing electron exchange by the usual antisymmetrization
operator requires that the whole of the internal region is treated uniformly, then the
vibrational motion must be included explicitly in the whole of the internal region as
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discussed in Section 4 below.

4 R-matrix Theory of Nuclear Motion

In this section we describe a non-adiabatic R-matrix theory developed by Schneider
et al [29] which enables vibrational excitation as well as dissociative attachment and
dissociative ionization to be calculated. The theory enables the following processes
to be studied:

ABjy + e~ vibronic excitation
S
e +AB, — A;+ Bj dissociative attachment/recombination (29)
N\

Aj+ Bj +e~ dissociation

where 4, i', 7 and j' label the electronic states and v and v’ label the vibrational
states. We now have to solve the following time-independent Schrodinger equation

(Hyy1 +Tr)¥(Xyy1; R) = EV(Xn415 R), (30)

where we consider as an example electron scattering by a diatomic molecule, illus-
trated in Figure 1. In eq. (30), ¥(Xpy41; R) is the total wave function describing
the processes defined by eq. (29) Hy 4 is the fixed-nuclei Hamiltonian defined by
eq. (3) and T is the nuclear kinetic energy operator

1 d?

R = _ﬂ@:

(31)
where y is the reduced mass of the two nuclei and R is the internuclear distance.
Also the z-axis is chosen to lie along the internuclear axis where we assume that the
molecule does not rotate appreciably during the collision and hence the rotational
motion can be treated adiabatically.

In Figure 4 we illustrate the partitioning of configuration space used to solve
eq. (30). The internal region is taken to be a rectangle defined by 0 < r < gy and
A; < R < Ay where ag is defined in the same way as in the fixed-nuclei theory given
in Section 2, A; is chosen to exclude the nuclear Coulomb repulsion singularity at
R = 0, where the wave function describing the nuclear motion is negligible, and
Ap is chosen so that the target vibrational states of interest in the calculation have
negligible amplitude for R > Ay. For r > a( the molecule separates into an electron
plus residual molecule which may be vibrationally and electronically excited, as
discussed in the fixed-nuclei theory given in Section 2. For R > A, the molecule
separates into an atom plus a negative ion or into two atoms corresponding to
dissociative attachment or dissociation.
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Figure 4: Partitioning of configuration space in non-adiabatic R-matrix theory.

In order to solve eq. (30) in the internal region, for each set of conserved quantum
numbers A, we write it in the following form.

(Hyi1+Tr+ Lyt1 + Lr— E)U® = (Lygr + L) T2, (32)

where the Bloch operators Ly,; and Lg are introduced so that Hy 1 +Tr+Ly11+
Lg is hermitian in the basis of quadratically integrable functions defined over the
internal region in Figure 4 and satisfying arbitrary boundary conditions on the
boundary of this region. We have already defined Ly 1 by eq. (7) such that Hy 1 +
L1 is hermitian for fixed internuclear separation R. The Bloch operator Lz, which
is defined by

Ln= % [5(3 ) (% - %) _5(R— 4) (% - %)] @)

where By and B; are arbitrary constants, is such that Tk + Lg is hermitian over
the range A; < R < Ay. It follows that Hyy1 + Tr + Ly41 + Lg is hermitian as
required. We can then rewrite eq. (32) as

\I]A = (HN+1+TR+£N+1+£R_E)_1(£N—|—1 +£R)\I!Aa (34)

which is a formal solution of eq. (30) in the internal region. In order to provide a
representation for the inverse operator in eq. (34) we introduce the following basis
in the internal region

02 (X413 R) = Y v (X413 R)G(R)cicyi- (35)
kj
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The 93 in this equation are the fixed-nuclei R-matrix electronic basis functions de-
fined by eqs. (5) and (6) which are solved for a mesh of fixed internuclear values of R
spanning the range A; < R < Ay, and the (;(R) are basis functions representing the
nuclear motion, which are orthonormal over this range. In practise shifted Legendre
polynomials are often used for the (;. The coefficients ckAjZ- are obtained by diago-
nalizing the operator Hy,1 + Tr + Ln41 + Lg in this basis. In this diagonalization
we assume, in accordance with the Born-Oppenheimer (BO) approximation, that
the contributions from the nuclear kinetic energy operator T acting on the elec-
tronic basis functions 15 is small and can usually be neglected. This assumption
can be understood, following the discussion by Schneider [30], by noting that while
the adiabatic nuclei theory breaks down for low-energy electron collisions, which
led to the “hybrid” theory of Chandra and Temkin [26, 27] discussed in Section 3,
this does not mean that the electronic and vibrational degrees of freedom cannot
be separated as in the BO approximation. The appropriate expansion of the total
wave function for the BO approximation to be valid is in terms of electronic states of
the compound (N + 1)-electron system. In R-matrix theory these compound states
are the fixed-nuclei (N + 1)-electronic basis functions 1% in expansion (35). Hence,
using the BO approximation we can write

<@iA‘HN+1 +Tr+ Ly + ER‘@ié int
=Y > (WGl Hnr1 + Tr + L1 + Lrltg CrhintCryiCh e
kj K'j'
= <§1§|TR + EkA(R) + £R|£1$V>int5kk’
= €10k O (36)

where we have used eq. (6), remembering that the energy ES is a function of R. Also
in eq. (36) we have introduced the vibrational functions £ representing the nuclear
motion in the kth electronic state 12, which are determined by diagonalizing the
operator Ty + Ef*(R) + Lg for each k in the zero-order basis (;. Hence we have
written

&a(R) =3 G(R)ciys, (37)

where the subscript [ goes over the range 1 to n, for each k, where n, is the number
of zero-order basis functions (; retained in expansion (35). Hence [ can be defined
in terms of ¢+ and k£ by the equation

l=1i—(k—1)n,. (38)
It follows that the inverse operator in eq. (34) can be written as

A¢A A¢A
(Hy41+Tp+ Ly +Lr—E)7' =) ¥k fkl><w£} fkl|. (39)
Kl kt —
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Also we introduce the channel functions 6 corresponding to electron molecule scat-
tering and the channel functions gbf corresponding to dissociation. These are defined
by
~ =A o
O (X En 10w 415 R) = @ (X Eviaon 1) (R), (40)

and
¢ (Xwv11) = 104 (Xa) ® ¥5;(Xp)]5 - (41)

In eq. (40), @A are the fixed-nuclei channel functions introduced in eq. (5), which
depend on R, and n;, are the vibrational wave functions for the molecule in the ith
electronic state. In eq. 41), 14; and v¥p; are the wave function of the dissociating
atoms, with electronic space and spin coordinates denoted by X4 and Xp respec-
tively, which are coupled to give eigenstates labelled j belonging to the conserved
quantum numbers A.

We then determine the R-matrix on the boundaries of the internal region by
substituting the representation for (Hy 1 +Tr + Lny1 + Lr — E)~! given by eq.
(39) into eq. (34), projecting onto the channel functions 6 and ¢3* and evaluating
the projected equations at r = ag and R = Ay. We obtain

Zszv < dd;_v’ _bOFA )

dG%
+ Z szg ( dé - BOGJA> , (42)

R=Aq

r=ag

and

]w d’f‘ v a

R>(E dGA — B GA 4
+> Rj(E) (A dR 0 , (43)
j,

R=Ag

where the second term in the Bloch operator L5 defined by eq. (33) does not con-
tribute since A; is chosen so that the wave function describing the vibrational motion
of the nuclei and their derivatives vanish for R < A;.

The radial wave functions Fj and GjA describing the motion of the scattered
electron and the dissociating atoms in eqs. (42) and (43) are defined by projecting
the total wave function U2 onto the channel functions as follows

Fiy(rve) = (05 (Xni Bvaon s Ry [0 (X R))Y, (44)

and
G5 (R) = (95 (Xn41) ¥4 (X w15 R))" (45)
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The primes on the Dirac brackets mean that the integrations are carried out over all
coordinates except ryy1 in eq. (44) and except R in eq. (45). Also the R-matrices
in egs. (42) and (43) are defined by

1 A wh,
Riwo(B) = 33 S (46)
RA(E) = QMZO%:Uéiu_w%’ (47)
R(E) = 3 Uit (9
RA(E) = Wik (49)

2/,1,A0 Kl €pl — E
Finally, the surface amplitudes in egs. (46) to (49) are defined by

Wi = On(Xvs Bnva1on41); R)r | (Xvaas R)E(R)) ey, 1=apr  (50)
wiy = (65 K1) K15 R)Eki(R))pe ao- (51)

Substituting the expressions for the R-matrices given by eqgs. (46) to (49) into egs.
(42) and (43) provides the boundary conditions satisfied by the solution of eq. (30)
in the external region considered below.

The above procedure for calculating the R-matrices has proved to be satisfactory
in most applications. However, Gillan et al [31] pointed out that this procedure must
be modified in situations where there are strongly avoided crossings between the
eigenvalues E£ in eq. (6) as a function of R. In this situation the Born-Oppenheimer
separation of the electronic and nuclear motion is not valid in the neighbourhood
of these avoided crossings and as a result the effect of the nuclear kinetic energy
operator T acting on the electronic basis functions 5 in eq. (36) is no longer
negligible. In principle this effect, which couples the electronic states involved in
the avoided crossings, can be calculated. However, an alternative procedure, which is
straightforward to apply, was proposed by Gillan et al . They replaced the expansion
basis defined by eq. (35) by a modified expansion given by

O (Xn41; R) =Y i (Xnvg1; Ro)éi (R)vii (52)
kj

where the electronic basis functions 95 in this expansion are defined for a given fixed
internuclear separation Ry and are thus independent of R. The diagonalization of the
Hamiltonian Hy 1 +7Tr+ L1+ Ly is then more difficult to apply than that given by
eq. (36) since the electronic basis functions no longer diagonalize the electronic part
of the Hamiltonian except at R = Ry. However a practical procedure for treating
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this problem was described by Gillan et al which was used in a study of electron
scattering by nitrogen molecules. This work has been extended to molecular ions,
for which large numbers of resonances occur, and used to study both vibrational
excitation [32] and dissociative recombination [33].

In the external sub-region corresponding to electron molecule scattering in Figure
4, we expand the total wave function in terms of the channel functions, defined by
eq. (40) as follows

U2 (Xyii; R) = Y 05 (X Evion s R)ryha By (ras)- (53)

We substitute this expansion into the Schrédinger equation (30) and project it onto
the channel functions §5. This yields the following set of coupled second-order
differential equations satisfied by the reduced radial functions F2(r)

d>  L(l;+1) 2(Za+Zp— N)
— - = k2 =2
(dT2 7.2 + r + lelvlzl i’ v’ (7‘)’
i=1,...,nv=1,...,m, r>ay, (54)

where we assume that n electronic channels each with n, vibrational states have
been retained in expansion (53). Also in eq. (54)

ki, = 2(E — Ey), (55)

where E;, is the energy of the vth vibrational state in the ¢th electronic channel
which is defined by

Ei = 0iw(R)|E;(R)|niw(R)) i=1,....n,0=1,...,n. (56)

The energies F;(R) in this equation, which are defined by eq. (17) in the fixed-nuclei
approximation, are functions of R. Finally, the potential matrix in eq. (54) is defined

by
Vigw (1) = (i (R) Vi (7) [1rr (R)), (57)

which can be written as a summation over inverse powers of r as follows

A—1 .o . ! _
za’wzv’)\r ) Zal—L---ﬂ%U,U—1,---,7%,7“Za0a (58)

ZUZ 4

where V2 (r) is defined by eq. (18) in the fixed nuclei approximation.

In the external sub-region corresponding to dissociation in Figure 4, we expand
the total wave function in terms of the channel functions, defined by eq. (41) as
follows

U4 (X B) = 3 67 (Xv1) G5 (R)- (59)
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In order to derive coupled second-order differential equations satisfied by the reduced
radial functions G (R) we rewrite the Hamiltonian Hy 1 in eq. (30) in the following
alternative form

Hyiyy=Hpa+ Hp +Upgg, (60)

where H4 and Hp are the Hamiltonian operators corresponding to the dissociating
atoms A and B, which we assume contain N4 and Np electrons respectively, and
U p is the long-range Coulomb interaction between these atoms. We now substitute
expansion (59) into the Schrédinger equation (30) and project it onto the channel
functions qﬁjA. This yields the following set of coupled second-order differential equa-
tions satisfied by the reduced radial functions G5 (r)

d2 . QN(ZA - NA)(ZB — NB)
dR? R

4 k;) GHR)=2u) U5 (R)GH(R),
j'=1
j:l,...,m,RZAO, (61)

where we assume that m dissociation channels have been retained in expansion (59).
Also in eq. (61) we have defined

k} = 2u(E — E4;, — Ep,), (62)

where the energies E4;, and Ep, are the energies of the atomic states defined by

<¢Aj (XA)‘HA|¢A]' (XA)> = EAj’ (63)

and
(¢5;(XB)|HB|¢5;(XB)) = EB;. (64)

Finally, the potential matrix U7, (R) in eq. (61) is defined in terms of the Coulomb
interaction term Uyp. On carrying out the integrals in this equation we find that
U (R) can be written as a summation over inverse powers of R as follows

US(R)= Y AS\R™Y ji'=1....m, R>A, (65)
A=1

As in the fixed-nuclei approximation, eqs. (54) and (61) can be integrated outwards
from r = ag to a, and from R = A, to A, respectively, enabling the R-matrix at
r =a, and R = A, to be expressed in terms of the R-matrix defined by eqs. (46)
to (49). The K-matrix and hence the S-matrix can then be determined in terms
of the asymptotic solution in the regions r > a, and R > A,. The cross sections
corresponding to the processes defined by eq. (29) can then be obtained.
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5 Results and Discussions

Electron collisions with water are important for many applications. However the
large dipole moment of this system makes even the elastic cross section hard to
determine experimentally, due to the very strong forward peak in the differential
cross section. Figure 5 compares a recent R-matrix calculation [35] with the dif-
ferential cross sections measured by Cho et al [34]. The R-matrix calculations are
rotationally summed elastic cross sections since the experiments do not have rota-
tional resolution. Cho et al used a novel technique which allowed them to determine
this cross section over a wide range of angles, even at 180°. Experiment and theory
agree well for the angles for which differential measurements have been performed.
Despite this there is not good agreement for the total cross section as it is not possi-
ble to estimate the magnitude of the forward scattering from the experimental data.
Conversely the momentum transfer cross section is insensitive to forward scattering
and there is very good agreement between the R-matrix calculations and Cho et al’s
determination for this quantity, see [35].

There are few laboratory measurements for electron impact rotational excitation
of any molecule and none for any molecular ions. This meant that observations rely
on theory which until recently performed using a dipole Coulomb-Born model. This
leads to the firm prediction that only J = 1 — 0 rotational transitions should be
observed in these diffuse environments.[36] R-matrix calculations have shown that,
particularly for molecular ions which do not have large dipole moments, higher
rotational states will be excited by electron collisions leading to emissions from
higher states of the molecule.[37] An interesting example is the important CHT
ion for which transitions as high as J = 6 — 5 have been observed [38], a result
rationalised by R-matrix calculations which explicitly considered the contribution
the short range interactions to the rotational excitation process.[39]

Electron collisions with atmospherically important species are important for de-
termining the ionisation balance in the Earth’s ionosphere as dissociative recombina-
tion of molecular ions is the dominant neutralisation process. A combined R-matrix
— MultiChannel Quantum Defect Theory (MCQDT) study of dissociative recombi-
nation of NOT [40] gave unprecedent agreement with experiment for this process.
Similarly a study of electron collisions with the atmospheric trace species OCIO
[41] gave excellent agreement with one of the few experiments to get absolute cross
sections for electron collisions with an open shell and unstable molecule [42].

These calculations laid the foundation for a series of studies on electron collisions
with CF,, x = 1,2,3, radicals.[43, 44, 45, 46] These fluorocarbon species are an
important constituent of many industrial plasmas used for etching. The calculations
on CF3 represent the largest system for which R-matrix electron collision calculations
have been performed. The difficulty with this system is not its physical size but the
fact that CF3 contains 25 electrons in n = 2 orbitals all of which might be considered
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to be active as far as the scattering process is concerned. In practice such calculations
could only be performed with 17 active electrons. An interesting and potentially
important result of these studies is that while CF and CF, both have low-lying
resonances, which can provide a route to dissociative electron attachment, CFj
does not. This suggests that the concentration of negative ions, particularly F~, in
fluorocarbon plasmas will depend on which radical is dominant. The concentration
of radicals can be controlled by choice of the feedstock gas: CoF, yields large CF,
while CF3l breaks up to give largely CF3 for example.
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Figure 5: Elastic (rotationally summed) cross sections for electron collisions with
water: upper figure differential cross section at 4 eV; lower figure: integral cross
section. Curve: R-matrix calculation of Faure et al [35]; circles: measurements of
Cho et al.
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