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Structure of Blue Phase III of Cholesteric Liquid Crystals
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We report large scale simulations of the blue phases of cholesteric liquid crystals. Our results suggest a
structure for blue phase III, the blue fog, which has been the subject of a long debate in liquid crystal
physics. We propose that blue phase III is an amorphous network of disclination lines, which is
thermodynamically and kinetically stabilized over crystalline blue phases at intermediate chiralities.
This amorphous network becomes ordered under an applied electric field, as seen in experiments.
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Liquid crystals (LCs) offer prime examples of systems
with spontaneously broken symmetry that support topo-
logical defects of various types [1]. Alongside their tech-
nological utility in various optical devices, LCs offer
testing grounds for fundamental theories whose counter-
parts in other fields (such as cosmology, particle physics,
and more recently exotic superconductivity [2]) are less
directly testable. While many aspects of LC physics are by
now understood, some, such as the character of the so-
called “blue fog” (blue phase III) have remained unre-
solved despite efforts spanning several decades.

The simplest liquid crystalline phase is the nematic, in
which molecules have a preferred orientational axis (the
director) but no translational order. Introduction of mo-
lecular chirality causes the director to precess in space. In
the simplest resulting phase (the cholesteric) it does so
about a single helical axis, thereby creating a 1D periodic
structure whose wavelength is the helical pitch. Locally,
however, the ordering remains nematic and the cholesteric
therefore supports topological line defects, known as dis-
clinations, in which the director executes a rotation of 7
under a full 27 rotation around the defect line. Within the
cholesteric ground state, these excitations are absent.

In many chiral liquid crystals the transition between the
cholesteric and isotropic phases occurs through a cascade
of weakly first-order transitions to intermediate structures,
known as ‘“blue phases” (BPs) and consisting of self-
assembled disclination networks [1,3]. At high enough
chirality, a simple helical structure is less stable locally
than a so-called double-twist cylinder (DTC), in which the
director field rotates simultaneously in two directions per-
pendicular to a cylinder axis. However, DTCs cannot be
smoothly patched together to fill the whole of space; dis-
clination lines are required at the interstices between the
cylinders. If an external field is used to align the DTCs,
the disclinations can form a simple linear array [4], but
more generally they meet at junctions forming a multiply
connected network. The resulting structure is highly col-
ored (“blue’’) since the spacing between defects lies in the
optical range. BPs are stable when the free energy gained
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by creating DTCs instead of a simple helix is enough to
compensate the free energy loss due to defect formation.
They therefore occur at high chirality (where DTCs are
favored) and for T close to but below Tjc (the transition
temperature to the isotropic phase) where defect energies
are low. Long viewed by many as little more than a
curiosity [1], BPs have recently emerged as promising
materials for photonics and display devices following their
stabilisation over a much larger temperature range than
previously possible (about ~60 K compared to <1 K) [5].
Three BPs have been observed experimentally (at zero
electric field). Two, BPI and BPII, are highly ordered: their
disclination networks form a regular cubic lattice, and their
physics is well understood. (Another ordered phase, Os, is
predicted by theory at high chirality, but not found experi-
mentally.) The last one is known as BPIII, and its structure
is one of the unsolved puzzles of liquid crystal physics.
Theorists have proposed that BPIII may either be a quasi-
crystal [6], a spaghettilike tangle of double-twist cylinders
[71, an amorphous state formed by BPII domains [8], or a
metastable phase [9]. Experiments on the thermodynamics,
scattering and electric field response [10-12] remain in-
conclusive, although electron micrographs appear to favor
an amorphous structure and rule out the quasicrystal [3].
In this work we show that computer simulations can help
settle this important physical question. Via large scale
(supra-unit-cell) simulations, which enable accurate com-
parison of free energies for both ordered and amorphous
structures, we provide strong evidence that BPIII is indeed
an amorphous network of disclinations. We show that,
within a certain window of chirality and with a standard
choice of free energy functional (see below), individual
aperiodic structures exist that are more stable than either
BPI, BPIIL, or Os. This narrow window lies within the
observed range of BPIII, and can only become wider, in
line with experiments, if one allows for configurational
entropy. (Such entropy arises when there exist multiple
aperiodic structures of the same free energy, as seems likely
here.) Furthermore, we show that an applied electric field
orders our aperiodic BPIII candidate into a different, much
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more ordered blue phase. This concurs with longstanding
experiments [11,12] which showed evidence of a field-
induced transition to a new phase, BPE, whose structure
was not previously identified.

The local order in the BPs can be described by a trace-
less, symmetric, second rank tensor, Q whose equilibrium
thermodynamics is governed by the Landau—de Gennes
free energy functional F, whose form, within the one-
elastic constant approximation (discussed later) is stan-
dard, and specified in [13]. Within that approximation,
the phase behavior of BPs depends on just three dimen-
sionless parameters, a reduced temperature 7, a reduced
chirality « and a reduced field strength &£ [14]. Expressions
for these in terms of K (the elastic constant), g, (the
cholesteric wave vector) and other parameters in F are
given in [13]. Good agreement between theoretical [15]
and experimental [16] phase boundaries is obtained by
taking 7 o (T — Tyc) and « linear in the mole-fraction of
a chiral component (with respective proportionality con-
stants =~ 2 K~! and = 2 for one specific mixture [15]).

We employ a 3D hybrid lattice Boltzmann (LB) algo-
rithm [15,17-19] to solve the Beris-Edwards equations.
The evolution of the Q tensor [20] is

DQ = r(% + %Tr(%)l). (1)

Here, I' is a collective rotational diffusion constant and D, is
a material derivative for rodlike molecules [20]. The term in
brackets is the molecular field, H, which ensures that Q
evolves towards a minimum of the free energy. The fluid
velocity field obeys the continuity equation and a Navier-
Stokes equation with a stress tensor generalised to describe
liquid crystal hydrodynamics, and discussed elsewhere [17].

Though these equations represent the true dynamics, we
use them here simply to find free energy minima. Thus, as
in previous work we additionally allow a so-called ‘“‘red-
shift” in which the parameters in F are dynamically
updated at fixed 7, k, £ [13]. This exploits a scaling among
those parameters to ensure that the system is not frustrated
by periodic boundaries: in particular, for any cubic BP, a
lattice parameter emerges that truly minimizes F. The
accuracies of their computed free energies F = min(F)
are (at least for £ = 0) thus limited only by discretization.
This is chosen to fully resolve the defects [13], whose core
energy is finite, and set by F itself.

In computing the free energy of periodic structures (BPI,
BPII and Os) we apply a perturbation of the appropriate
symmetry to a uniform state and then evolve dynamically
[13]. This delivers an accurate F’ value in each such phase,
of which the lowest can be chosen, but (in common with all
other methods for computing free energies of ordered
phases) we cannot rule out others of still lower F.
To address BPIII, we also need to generate aperiodic can-
didates. Here our strategy is similar: we start from various
different aperiodic initial conditions, evolve each
dynamically, and choose that of lowest F [13]. As shown

below, this beats all three periodic structures within a
certain parameter window. Because we cannot exhaust all
possible initial conditions, our free energy is an upper
bound on aperiodic states; further exploration can thus
only widen that stability window. In practice, all the aperi-
odic candidates we generated look similar. Our conclusions
about the character of BPIII are thus likely robust.

To minimize finite size effects, we simulate very large
systems (in contrast to [15]). Typically, we used 1283
lattices, which accommodates 8 half pitches in each direc-
tion. Selected simulations with 2563 lattices confirm the
results which we report below. As shown in [19], it is easy
to generate aperiodic structures by placing a localized
nucleus of BPI or II in a cholesteric or isotropic matrix.
However, the lowest F values we have so far found are
instead achieved by initialising the system in the choles-
teric phase in the presence of a low density (typically about
1-2% in volume) of randomly placed doubly twisted drop-
lets. Once initialized, the system is relaxed dynamically
until it reaches a quiescent end-state.

For low chirality («x < 1.5), the initial defects are
washed out to leave a cholesteric phase. However, for a
large regime of intermediate chiralities (1.75 = k = 3),
our simulations show an intriguing dynamics, through
which the dilute doubly twisted regions grow and rearrange
dramatically to form a whole network of disclinations,
which very slowly creeps to an amorphous end-state
(Fig. 1, top). Its amorphous character is confirmed by the
structure factor C(k) (Fig. 1, bottom). The ring in C(k) is
set by the average distance between the branch-points in
the defect network, whereas the small residual peaks
(which break spherical symmetry) are likely due to

FIG. 1 (color online). Top: End-state disclination network
at 7= —0.25, k= 2.5: The picture shows the isosurface
q(r) = 0.12, with ¢ the largest eigenvalue of Q. Inside each
tube is a disclination line (on which ¢ takes a minimum value).
Bottom: Structure factor C(k) = l¢(k)[?, on cuts along k, = 0
(left) and k, =0 (right) with wave vectors k./qq, k./qo €
[—4,4] and k,/qqo, k./qo € [—4, 4], respectively.
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residual finite size or periodic boundary effects. The amor-
phous network approaches equilibrium through very slow
local rearrangements of the disclination junctions; the end-
state in Fig. 1 is very close to kinetic arrest, in at least a
local minimum of F. Notably, four disclination lines meet
at most junctions, so that, as suggested by experiment [10],
the structure is locally closer to that of BPII than BPIL.

Remarkably, for larger values of the chirality (x> 3)
our simulations attain a much more regular state, closely
resembling Os which (see below) minimizes our chosen F
at very high k. (In Os itself, whose free energy we have
computed precisely, eight disclination lines merge at each
junction [13].) Therefore, our methodology is capable in
principle of finding a periodic disclination lattice, if kineti-
cally accessible. We believe that the kinetic propensity to
form a disordered disclination network for intermediate
chiralities indeed reflects a real physical property, although
our limited simulation times (= 1 ms [13]) may well ex-
aggerate the stability window of amorphous structures in
the (k, 7) plane.

A crucial question is whether our BPIII candidate struc-
ture is only kinetically, or also thermodynamically stable.
To answer this, we have carefully compared F(x, 7) for
BPIII with those of BPII and Os, for a range of chiralities «
at selected values of 7. (BPI is not competitive in the
range of interest here.) As an example, curves for
F(k, —0.25) are shown in Fig. 2. We see that there is a
small but finite chirality window in which the BPIII-
network is the thermodynamic equilibrium phase. We find
it remarkable that any single aperiodic structure can out
compete such periodic ones when minimizing the relatively
simple Landau-de Gennes free energy. In particular, this
minimization takes no account of order-parameter fluctua-
tions about the local minimum, which might help stabilize
BPIII [21], nor the configurational entropy associated with
having many such minima. (These neglected contributions
should be small—of order k3T per unit cell while the free
energy differences in Fig. 2 are typically of order 100-1000
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FIG. 2 (color online). Free energy densities (V is the volume)
vs chirality k at 7 = —0.25 for BPII, our candidate for BPIII,
and Os. The inset shows a blowup of the region where our BPIII
is the equilibrium phase. Our free energy densities are expressed
in units of K q% (see [13] for the mapping between simulation and
real units).

times larger [13].) However, the thermodynamic stability
window in BPIII is smaller than the kinetic one—agreeing
with the idea that amorphous structures should form more
easily dynamically than highly ordered counterparts, which
require long and complicated process to annihilate any
dislocations and overcome relatively high energy barriers.
The window of thermodynamic stability might also be
broadened by relaxing the one-elastic constant approxima-
tion, particularly if this raises the free energy of Os relative
to the other states. This certainly merits further study, given
the experimental absence of that phase.

All the above arguments support our assignment of the
amorphous network seen in Fig. 1 as the theoretically
elusive BPIII, stable at larger « than BPII, but locally
similar to it [3]. Experiments on BPIII in electric fields
also point to a field-induced transition between BPIII and
another structure which has been named BPE [11,12]. BPE
was found to give rise to a sharper peak in the scattering
data consistent with an enhanced ordering (unfortunately
Refs. [11,12] do not provide further experimental data on
the structure of BPE). It is therefore interesting to ask what
happens when our amorphous structure is subjected to an
electric field. In our simulations we can follow the evolu-
tion of the Q tensor and of the disclination network in an
external field &, and also compute C(k); if a crystalline
phase emerges, it will exhibit Bragg peaks.

By stepwise increasing £ from 0 to 0.65, we found that
the disclination network in Fig. 1 melts away leaving a
nematic state. (This holds for positive dielectric anisotropy
[13].) We then performed a long simulation at £ = (.55,
close to but below the threshold beyond which the system
becomes nematic. The time evolution of our BPIII, stable
at zero field, is shown in Fig. 3. This shows an interesting
rearrangement of the defect texture, through which the
junction points rotate and finally reconstruct to yield a
topologically distinct phase, with helical disclinations
lying along layers stacked perpendicular to the electric
field (which is vertical). The disclination lines in two
consecutive layers are turned by 90°, so that they show a
square arrangement when viewed along the field direction.
As in experiments, we find that our amorphous BPIII
candidate undergoes a field-induced transition to an or-
dered disclination network which we provisionally identify
as BPE. It would be interesting to perform additional
experiments to test such an identification. Our candidate
BPE appears related to, but distinct from, other field- or
confinement-induced BPs previously reported [4,22], with
strong crystalline order (albeit with some defects remain-
ing) as confirmed by its structure factor.

In conclusion, we have presented large scale simulations
of the cholesteric blue phases. We have given strong evi-
dence that in a region of the temperature-chirality plane,
instead of a periodic BP, an aperiodic one is selected
kinetically. Moreover, and strikingly, within the (one-
elastic constant) Landau—de Gennes free energy [13], we
have found a finite window of chirality in which this
amorphous network is thermodynamically more stable
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FIG. 3 (color online). Isosurfaces of g = 0.12 at 7= 0.2,
k=20, £=0.55: The sequence shows the transition from
the amorphous BPIII-network to a field-induced BPE. The field
direction, z, is vertical. Times shown are 7 =~ 0.15, 0.3, 0.6 and
1.4 ms (taking one time step = 1 ns). Bottow row: Structure
factor C(k) at the end of the run. The pictures show a cut through
the 3D data at k, = O (in the (k,, k,) plane, left) and k, = 0
[in the (k,, ky) plane, right], with scales as in Fig. 1.

than the competing crystalline blue phases, BPI, BPII and
Os. These facts suggest that our kinetically and
thermodynamically stable network is none other than the
blue fog, BPIIL. This view is strengthened by the study of
the field response of this structure, which reconstructs into
an ordered phase at intermediate values of the electric field,
slightly smaller than those at which the disclination net-
work melts to give a field-oriented nematic phase.

We believe our simulations shed important light on the
structure of BPIII, which we propose is an amorphous
disclination network which is locally close to BPIL
Several open questions remain or are stimulated by our
results. First, one should characterize statistically the phase
transition from the blue phase to the isotropic phase: this
may be possible by adding thermal noise to simulations
like the ones reported here. Second, use of more accurate
scattering and visualization techniques should allow tests
of our candidate structure for BPE (see Fig. 3). Finally, if
the large energy scales that separate the various BP top-
ologies (of order 100-1000kgT per unit cell [13]) also
control reconstruction of the defect network within BPIII
itself, one may expect that in some materials, even when

thermal noise is allowed for, such reconstruction cannot be
achieved on any reasonable time scale. If so, BPIII will
represent another elusive entity: an “‘equilibrium glass.”
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