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1. Preparatory 
 

HyperText Markup Language or HTML is the original language of the World Wide 

Web - the language web documents are written in. It is a subset of SGML (Standard 

Generalised Markup Language) which is used to describe the general structure of 

various different sorts of documents. This workbook is about XHTML (eXtensible 

HyperText Markup Language) which is a version of HTML which is compliant with 

the rules of XML (eXtensible Markup Language – sorry for all these acronyms!) 

which makes for better futureproofing and portability of web pages. The workbook is 

concerned with familiarising you with the things XHTML can do and guiding you to 

create your own infant web pages! 

 

As its parenthood implies, (X)HTML was originally designed to deal with the 

structure of documents. It is impossible to create a document with XHTML which you 

can guarantee will appear in exactly the same format to everyone who looks at it. This 

is because web browsers vary and can be configured by the user to interpret XHTML 

in different ways on the screen. In other words, XHTML is not really a page 

description language (like Postscript, for example). Although you can use stylesheets 

(see chapter 12) to give instructions to achieve the look you want on your screen, it 

may appear differently (or even be non-functional) on another person’s system with a 

different browser and system settings. When using XHTML therefore, try to think of 

describing parts of your document in a structured way, rather than simply trying to lay 

them out in a pleasing fashion. 

 

All XHTML files are simply composed of plain text, and can be composed on any 

simple text editor or word processor. If you use a word processor to create XHTML 

files, you must be sure to save them as plain text (ASCII or similar – you may specify 

the character encoding you have used in the webpage, see chapter 2)  or they will not 

be recognisable. A number of XHTML editors and converters are also available. 

 

This workbook will provide you with all the information you need to compose simple 

web pages, and comes complete with a select list of tags and their attributes as an 

appendix. If you are thinking “Why are we using XHTML rather than HTML or 

XML?” good for you, but you don’t have to worry. XHTML is actually 95% the same 

as HTML, it’s simply written in slightly more strict term to comply with the rules of 

XML and thus improve predictability and portability – XHTML is an XML 

“application”, i.e. a tag scheme for a specific purpose written to comply with the rules 

of XML.  

 

It’s a good idea to also take a look at other examples of XHTML to see how people 

achieve the effects you see on the screen. If you see something you like and you want 

to know how to do it, use the View Source option to take a look at the XHTML 

behind the page and see how it’s done. This can sometimes be a bit confusing as 

nowadays many people include a lot of complex code like Javascript (q.v.) or use 

tools to build their sites which create messy, impenetrable code, but well-designed 

pages can often give you good ideas. You can also go to the W3C website to get 

further information on any particular tags and requirements (see resources section at 

end) which are not included in the appendix, which are only two dozen pages of the 



most common and useful elements, when the full XHTML spec is much bigger! There 

are also lots of useful guides, and validation tools at the W3C site, so do visit it. 

 

The first thing to do before starting to compose any XHTML document is to think 

about the context and structure in which it will be found. Few web pages exist in 

isolation; most are part of a number of linked pages, referred to either as a web 

document (although some use the term document as an alternative to page) or a web 

presentation. In this workbook, we will use the term page to indicate a single 

XHTML file and the term document to indicate a collection of related pages.  

 

In following this workbook you will be able to create a document consisting of a 

number of pages. Before you start to create your first page, however, it is vitally 

important to think about the structure of the document it will be part of. What you do 

initially will probably form only a very simple document, and you may feel a detailed 

consideration of the structure to be unnecessary; however it is good practice of a very 

important discipline. Any document of more than two or three pages will benefit from 

this sort of analysis. 

 

 

 

Exercise 
You have already been asked to think about the document you are going to create 

today. Before you start to write any XHTML, draw a structure map, organisation chart 

or storyboard for your pages, and identify which should link to which. Think about 

your topic, your users and what they will expect from the document, and which basic 

method of organisation is best for you: Linear, Hierarchical, Hybrid or Web. 

 



2. Fundamental elements 
 

In XHTML all code must be in lower case as XHTML is case sensitive, unlike 

HTML where tags can be in lower or upper case. All tags in XHTML are enclosed in 

angle brackets, and generally come in pairs; the first of the pair identifies the position 

at which the particular element handling starts, and the latter showing where it 

finishes. The closing tag is distinguished from the opening tag by the addition of a 

slash, e.g.: 

 

 <html> .............. </html> 

 

XHTML requires that all tags are closed, again unlike HTML, where some tags do not 

require a closing tag. This of course gives rise to the need for an alternative method of 

closure for certain tags which are not normally applied around blocks of text, for 

instance the horizontal rule tag, and in these cases the tag is “closed” by including the 

forward slash at the end of the tag, e.g. 

 

 <hr /> 

 

Tags like this are also referred to (somewhat confusingly) as “empty” tags.  

 

Tags can be nested, i.e. pairs of tags can be contained within other pairs. When this 

happens, care must be taken as the effects can sometimes be surprising!. There are 

examples of this later in the workbook, so don’t worry about the details just yet - but 

do remember that pairs of tags should never overlap each other, but always be nested, 

otherwise they may not work properly (this is also a requirement for XHTML 

compatibility). There are also some logical rules which constrain which tags can 

appear within which other tags – for instance, you can’t put a paragraph tag inside a 

heading tag – but don’t worry too much about these for now. 

 

Each page should always contain a number of standard elements. Sometimes browsers 

may read pages without some of these elements quite successfully, but it is good 

practice to include them all, as it promotes compatibility and consistency. 

 

Every page should  contain a pair of HTML tags (not XHTML, slightly confusingly… 

but see more below!), which identify where the main code begins and ends. Within 

these tags there should be two other pairs of basic structural tags, HEAD and BODY. 

These delineate the administrative and additional information associated with the file 

(the HEAD) from the data which represents the page to be displayed on the screen 

(the BODY). Thus, every page you create should have a basic structure like this: 

 

 <html> 

 <head> 

 </head> 

 

 <body> 

 </body> 

 </html> 

 



Of course, a lot more will go in the page in due course! The most common data 

element in the HEAD is the TITLE data. This information is used in a number of 

ways, most obviously as the document title display in the window title bar of any 

Windows browser, such as Firefox or Explorer. Note that this data doesn’t appear on 

the page itself: the onscreen “title” must be in the BODY, and is typically designated 

with a Heading tag of some sort (more on headings in a moment). 

 

When composing a title for your page, make sure you choose a meaningful and 

descriptive one. It should make clear what the page is independent of context, and not 

be too long in case the browser can’t display it all. The title of the home page of your 

document might be the same as the “title” you put on the screen; sub-pages may well 

not be. The best test is to think to yourself “if I saw this title in isolation, would it give 

me an accurate idea of what this page was about and where it came from?”. Never use 

titles such as “part 2” or “example” as they are totally dependent on context. 

 

So, your document should now look something like this: 

 

<html> 

<head> 

<title>Andy Dawson’s test document for a Web Course</title> 

</head> 

 

<body> 

Hello! Here’s a little text to try out your first web page... 

</body> 

</html> 

 

There are some other tags and attributes which can be used in the head section of a 

web page: please see the appendix for further details of these. But most importantly, 

we need something in addition to tell the system that our document is  XHTML, not 

plain HTML, and we do this by providing a DOCTYPE DECLARATION, which 

needs to come before the HTML tag.  So the first line in your code should be a 

<!DOCTYPE> tag along the lines of  

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

 

(or similar – q.v. W3C, but for now just copy this one) which will tell modern 

browsers what version of XHTML you have written the page in. Don’t worry about 

what the details mean for now, just make sure you include it exactly as above! 

 

You should also include a <meta> tag  in the head of the document which gives 

information about the character encoding that is used for the page, which should look 

something like  

 

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> 

 

(again, copy this one unless you have a specific reason to do otherwise). This goes 

somewhere in the HEAD of the document, ideally right at the top of that section.  



 

Lastly, although these are not required, it’s best to also include an XML declaration 

(which needs to come immediately before the Doctype declaration – think about 

why!) and we should also include namespace information as an attribute of the 

opening HTML tag (we will talk more about attributes later).   

 

The XML declaration looks like this: 

 

<?xml version="1.0" encoding="iso-8859-1"?>  

 

and the revised version of the opening HTML tag with a namespace attribute like this: 

 

<html xmlns="http://www.w3.org/1999/xhtml">  

 

So to sum up: putting all the above together, every page we create can be based on a 

standard bare template,  which should look like this: 

 

 

<?xml version="1.0" encoding="iso-8859-1"?>  

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

 

<html xmlns="http://www.w3.org/1999/xhtml"> 

 

<head> 

 <title>A basic XHTML 1.0 Transitional template</title> 

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> 

</head> 

 

<body> 

     <p>… Your HTML content goes here …</p> 

</body> 

 

</html> 

 

 

It’s not absolutely vital to include all these elements but it’s potentially very useful, 

especially if you later want to validate your pages with tools like those at W3C which 

require this information before they can process your page automatically. 

 

Exercise 
Create an initial web page along the above lines by typing the data in by hand (you can 

use Notepad or any text editor). Save the file as filename.htm (do not use filenames 

with spaces, and stick to lowercase), and look at it in your browser by using the File, 

Open option. Then try adding some more text in the body. Also try including tabs, 

blank lines,  new lines and extra spaces. What happens? 



3. Headings and basic layout 
 

As you will have seen from the preceding exercise, text in XHTML isn’t handled in 

quite the same way as you might expect! All ASCII characters which affect the 

physical layout of the data, such as tabs, carriage returns and spaces, are all treated in 

the same way by XHTML. Any number of such characters in any order or 

combination is treated as a single space character when displayed by an XHTML 

browser. If you want text to break or be otherwise manipulated, you must use specific 

XHTML tags to achieve the effect you want. 

 

This is not to say that you shouldn’t use tabs, new lines and spaces in your XHTML 

documents! Indeed, the use of “normal” page layout, especially indentation and white 

space, makes an enormous difference to the readability of XHTML source code, and is 

strongly recommended. The point is that you should use such “normal” layout for 

exactly that purpose, to enhance source readability, but you must use XHTML tags to 

create those effects on screen. 

 

The two most basic tags for text separation are the Paragraph and Break tags. 

Paragraphs must be closed (with a </p> at the end of the paragraph in the normal 

fashion), but break tags are an example of an “empty” tag and therefore occur singly, 

with a slash at the end.  The insertion of a Break tag  

 

 <br /> 

 

causes a carriage return and newline action, and a Paragraph tag 

 

 <p>   …. </p> 

 

causes the same action but also adds an additional blank line (and also applies any 

other defined formatting to the paragraph – see stylesheets chapter 12). These two tags 

should be used for the simplest organisation of your body text. Until the browser 

encounters one of these tags it will treat all text as a single, contiguous block. 

 

The other basic tags for the discrimination of text are the Header tags. There are six of 

these tags, from <h1> to <h6>. Each is applied in pairs with a closing tag </h1> to 

</h6>, and each gives a specific emphasis and size to the text it is applied to. Heading 

tags also add a blank line and carriage return by default, to make them stand on their 

own. 

 

IMPORTANT! Do not use the Header tags simply as an easy method of giving visual 

emphasis to a particular piece of text in a block. Remember what we said about 

XHTML being a structural language, and about what you see being dependent on the 

configuration of your browser? If you do use the headers in this fashion, it is possible 

some viewers of your page may see something rather different from what you 

intended. Lynx, for instance, is a perfect example of this, being a non-graphical 

browser. It interprets different headings not by using large type etc., but by changing 

the starting position of the text on the page, indenting or centering it. This would still 

make sense if you were using the tags in a structured way, but not if you’re just using 



them for emphasis. If you want to adapt the look of a piece of text which is not 

actually a heading, there are different ways to achieve this (see later).  

 

A good tip is to lay out the heading structure of your page as if you were using an 

outliner, in a hierarchical fashion, e.g. 

 

 

<h1>Building a house</h1> 

 <h2>Clear the site</h2> 

 <h2>Lay the foundations</h2> 

  <h3>Mark out</h3> 

  <h3>Dig the trenches</h3> 

   <h4>Check for services</h4> 

   <h4>Cut trench</h4> 

  <h3>Pour the concrete</h3> 

   <h4>Place formwork</h4> 

   <h4>Mix concrete</h4> 

   <h4>Pour</h4> 

   <h4>Agitate</h4> 

   <h4>Cover and cure</h4> 

 <h2>Build the walls</h2> 

   

 (etc.....) 

 

Then fill in your body text under the headings. Of course, simply laying out your 

headings in this indented way in your source won’t directly affect the appearance on 

the screen, as we’ve said, but it will help you to think about the correct structure for 

the page and the correct use of headings to describe it. 

 

 

Exercise 
Try creating a structured document using Headings, Paragraphs and Breaks. Start with 

a template document like the one described in the previous chapter. Enter some 

headings and some body text, marking it up appropriately.  It is probably easiest to do 

a dummy document based on the material you hope to use in your real web pages, but 

don’t force it if it doesn’t suit. Feel free to use the example for structure if you’re 

stuck, and add some body text. See how the different Headings appear on your 

browser, and the effects of the Paragraph and Break tags. What happens if you nest 

tags within tags? 

 

Do also please use plenty of white space inside your source code - as you have seen, it 

doesn’t affect the end product, and it makes the source much easier to read and edit.



4. Stylistic and other basic tags 
 

So far so good, but although we’ve learnt to do quite a lot in terms of structuring our 

document and making headings stand out, we haven’t done anything about 

manipulating parts of the body text. We’ve been emphasising taking a structural view, 

and you shouldn’t compromise that approach. Nevertheless, there are times when 

physical format or layout is important, or when we need to stress parts of the text. The 

best way to achieve this is by using stylesheets (q.v.), but there are also a few style 

tags and one or two other useful elements we should mention here. 

 

There are two basic kinds of style tag: physical style tags and logical style tags. A full 

list of these is given in the pages at the back of the workbook. The most commonly 

used of these tags are : 

 

Physical: 

 

 <b> ...... </b>    Boldface 

 <i> ....... </i>    Italic 

 

Logical: 

 

 <em> ......  </em>   The Emphasis tag 

 <strong> ...... </strong> The Strong emphasis tag 

 

 

These tags can be used anywhere within the body text of a page. Most character tags 

may be nested, so for instance 

 

 <b><i>Really stressed text!</i></b> 

 

would appear in bold italic.  

 

Purists would suggest that given the structural nature of XHTML, you should use 

<em> and <strong> rather than <b> and <i>, but in almost every case in practice, they 

are interpreted in exactly the same way, i.e. <em> is implemented as bold type and 

<strong> as italic, so feel free to use <b> and <i> as they are more intuitive. 

 

None of this helps us out with the physical layout on the page however, which as we 

said could not be readily addressed by XHTML as it was not a page layout language 

but a structural one. We can center text with the <center> tag: however, and there are 

times when physical layout is critical, for instance in aligning tables or columns of 

figures. We can use tables (see chapter 8) to deal with this, and this is usually the best 

way to do it, or we can try to do some things with stylesheets (chapter 12). It is also 

possible in a limited way to control character positioning through the use of the 

Preformatted (<pre>) tag, at the expense of having to use a monospaced font for 

display. This is very widely supported, but “deprecated” in favour of other methods 

(i.e. it’s preferred that they are not used), so we will not discuss them further here. 



Another tag which is frequently used is the Address tag. It is good practice to always 

put an address block at the bottom of each of your pages. You can use the Address tag 

to identify that element, e.g. 

 

<address> 

Andy Dawson<br /> 

UCL SLAIS, Gower Street<br /> 

London WC1E 6BT 

</address> 

 

It is also usual to include phone/fax numbers, and email addresses, in such a block, 

and you can modify how it looks with stylesheets (q.v.). 

 

A further device you can use to “break up” your pages into logical elements is the 

Horizontal rule tag, <hr/>. As you would expect, this tag draws a horizontal line 

across the screen, and is very useful for visually emphasising breaks between sections 

etc. The Horizontal rule tag does not need a closing partner tag, simply insert the 

single tag where you want the rule to be inserted. Many people put a Horizontal rule 

above their Address to help make it stand out. 

 

One other note here: you can also place comments in your source code which will only 

appear there, and not be printed on the screen. This can be useful if, for instance, you 

want to put information in the code about the page structure, or reminders about 

developments you want to make, etc. Comment tags take the following form: 

 

 <!-- Here is a comment --> 

 

i.e. the comment tag is a single tag, inside which you place the comment you want to 

make. NB the tag boundaries include the exclamation mark at the beginning and the 

dashes, you must include them in every comment tag you make. 

 

There are also further tags and attributes which can control the size and type of font in 

use (e.g. attributes of the BODY tag, and the FONT tag), but again these are 

deprecated and the best way to achieve such effects is to use stylesheets which are 

addressed in chapter 12. 

 

Exercise 
Expand the body text in your last page, add an address and experiment with some of 

the above features. Try the Preformatted tag: how does such text look? What happens 

when you include other tags inside the preformatted block?  

 

By now there should be quite a bit of data on your page. Take the opportunity to tidy it 

up as source code by adding white space and using comment lines.



5. Lists 
 

Often, data in a web page comes as, or is best displayed as, some form of list. Menus, 

directories, subdivisions, categories, hierarchies, all have inherent relationships which 

can be brought out by formatting, and XHTML provides us with several kinds of list 

tags to help us make the best presentation of such data. 

 

The most commonly used list types are Ordered lists, Unordered lists, and Definition 

lists. You may also hear them referred to as numbered, unnumbered and glossary lists 

respectively. 

 

Lists begin and end with a pair of opening and closing tags which define the type of 

list enclosed within. These tags are: 

 

 <ol> ...... </ol> Ordered list 

 <ul> ...... </ul> Unordered list 

 <dl> ...... <dl> Definition list 

 

Within the boundaries of these tags, individual list elements are delineated by 

secondary, unpaired tags: 

 

 <li> ..…</li> For elements in an Ordered or Unordered list 

  

 <dt> ….. </dt> For the terms in a definition list 

 <dd> ….. </dd> For the definitions of the terms in a definition list 

 
Let’s see how these different lists actually work. For an Ordered list, the XHTML 

might look something like this: 

 

<ol> 

     <li> The first list element </li> 

     <li> The second list element </li> 

     <li> The third list element </li> 

</ol> 

 

An Unordered list would look the same, except that the outside tags would be <ul> 

instead of <ol>. The effect of this code in most browsers is twofold: firstly, the output 

list elements are numbered (in an ordered list) in order of appearance, and secondly, 

they are indented. Each new <li> tag indicates the next line, so <br /> or similar tags 

are unnecessary at the end of each piece of data. Each <li> tag also causes the next 

number to be applied. You do not have to specify the numbering explicitly; the 

browser adds the numbers starting at one by default. If you subsequently add extra 

items within the list, it is renumbered automatically. 

 

With an Unordered list, the effects are the same except that instead of sequentially 

numbering each element in the list, they are bullet-pointed instead. 

 



The actions within a Definition list are slightly different. As its name suggest, this was 

intended for two-part items such as list entries where there is a term and an associated 

definition for that term. They can be used wherever a list with associated elements is 

needed. The format of a Definition list might look like this: 

 

<dl> 

 

     <dt>Telnet </dt> 

 <dd>The Internet’s remote login protocol. </dd> 

 

     <dt>Gopher </dt> 

 <dd>A menu-based Internet browsing system </dd> 

 

     <dt>World Wide Web </dt> 

 <dd>A wonderful thing which uses XHTML!!! </dd> 

 

</dl> 

 

 

Each <dt> has a <dd> associated with it, and all are enclosed within the <dl> tags. 

 

Lists may be listed within other lists, of the same or different types. Different 

browsers interpret nested lists differently, sometimes e.g. using different bulleting 

symbols or “numbering” sections with letters (a, b, c, ....) by default. It is possible to 

identify preferences for such things by using styles or attributes in later versions of 

XHTML,.  

 

If you place <li> tags outside pairs of list tags you will still typically see an indenting 

effect. However, this should not be done for the same reasons of interpretation and 

structure vs layout that we have mentioned before – it is not only unreliable, but 

creates technically invalid XHTML. 

 

There are some further, advanced attributes you can use with lists: see the appendix 

for further details. 

 

 

Exercise 
Create a new page which incorporates at least one list. Ideally, this should be a page 

which fits in with your general document plan, but if that isn’t convenient, just make 

one up. Ideas you could use would be a contents page, a glossary, a parts list, or a set 

of instructions for doing something. Don’t forget to include the standard elements 

we’ve already discussed! 

 

Make a second level within one part of your list (a list within a list) if you haven’t 

already done so. Experiment with the way the browser handles different combinations. 

If it doesn’t do what you want/expect, can you arrange things differently to get the 

structure you want? What attributes allow you further control (check the appendix)? 

 

Try adding other tags within lists and see what happens. 



6. Links 
 

We’ve now learnt how to do most types of manipulation of text on a web page. The 

next step is to learn how to do what web pages are all about - making links to other 

web pages! 

 

Links to other resources in XHTML are accomplished by the use of yet another tag, 

the slightly confusingly-named Anchor tag. Anchor tags are a bit more complicated 

than the ones we’ve been using so far, and they make constant use of something we 

haven’t much mentioned yet, tag attributes. Fundamentally though, anchor tags act 

like any other tags, and come in pairs: 

 

 <a> ...... </a> 

 

Anchor tags are basically used for doing two things: making links to other places, and 

identifying places to which links can be made! As we said, Anchor tags come with a 

number of attributes, parameters if you like, which define things like where a link 

points to, and whether an Anchor is a “go to” link or a “come here” point. 

 

The most basic form of anchor is a simple link to another web page, and might look 

like this: 

 

     <a href=“http://www.ucl.ac.uk/~uczcw11/home.htm”> Andy’s home page </a> 

 

Look closely at this anchor. It might not look like a normal pair of tags, but it is. It’s 

easy to see the closing tag </a>, but the opening tag is very different from what we’ve 

seen so far. You can see the first angle bracket and the A, but then there’s this funny 

HREF bit. Look down the line, and you will see the end of the opening tag after the 

closing quote. The opening tag is not just the angle brackets and the A, it also includes 

the HREF. HREF (Hyperlink REFerence) is an attribute of the Anchor tag. It allows 

us to state where the link points to by giving the URL (Uniform Resource Locator - 

like an extended sort of pathname) or location of another resource. 

 

So, where you want to go is included as the HREF attribute inside the opening tag. 

What happens to the text between the tags? That text becomes the link on the page. If 

an HREF attribute is given, the text (here, “Andy’s home page”) will be highlighted 

within your page, and made clickable or selectable. Activating it will cause the 

browser to follow the link to the HREF given. 

 

There are quite a few attributes which can be used with Anchors (and several other 

tags also have attributes - see the list at the end of the workbook for more details) but 

we will limit ourselves to just the basic ones for now. Another attribute for an Anchor 

is the NAME attribute. The most basic form of link takes us to another web page, but 

we can be more specific than that. If we have a page with several elements in it, we 

might want to be able to jump directly to a part of it, like going to a chapter in a book. 

If we want to do this, we have to put a marker in the text to show where those 

“reference points” might be. We do this with the NAME attribute, like this: 

 

 <a name=“middle”>The middle of the text</a> 



 

This text will not be clickable, as there is no HREF attribute in the tag. However, 

imagine it was in the text of my home page, half way down; I could then have a link 

somewhere else to jump, not to the top of my home page, but to that particular point 

on it, like this: 

 

<a href=“http://www.ucl.ac.uk/~uczcw11/home.htm#middle”>The middle!</a> 

            ^^^^^^^ 

This Anchor has the same HREF as the previous example, except that it has been 

extended with a # and the name of the anchor we made above. This is what is known 

as an internal link – one to a point inside a given page.  

 

A common use of internal links is within single pages, where you might have a 

contents list at the top with links to points further down the page, like this: 

 

<h2>Contents of my home page:</h2> 

  

     <ul> 

 <li>Stuff about <a href=“#chocolate”>chocolate</a> </li> 

 <li>Stuff about <a href=“#work”>work</a> </li> 

 <li>Stuff about <a href=“#web”>the World Wide Web</a> </li> 

     </ul> 

 

and then, in appropriate places further down the page: 

 

 <a name=“chocolate”>Chocolate</a> is my favourite pastime... 

 

 <a name=“work”>I work as</a> a lecturer at UCL..... 

 

 Here are some sources for <a name=“web”>good XHTML editors</a>...  

 

Note that, within the same page, the HREF attributes simply need the # and the name 

of the Anchor; which brings us on to another important point, that of relative and 

absolute references. 

 

An absolute reference is one like our first example, where the location of the resource 

is spelt out in full using its URL, giving the type of resource (the “http” bit), the 

system it’s located on (“www.ucl.ac.uk”), where in that system (~uczcw11) and the 

name of the file (home.htm). As we said, this is rather like an extended version of a 

pathname, as you would find in DOS or UNIX.  

 

Those of you familiar with DOS or UNIX however, will know that you can use a 

relative pathname as a shorthand way of identifying the location of something. The 

concept works like this in XHTML: imagine you retrieve my home page. The system 

knows the path it had to follow to find my file (home.htm), and remembers it. If I 

want it to get something from the same place, I don’t have to repeat the full pathname; 

it’s already pointing to the right place. If I just give it a filename, the browser will 

assume it comes from the same place as the last item and know where to look. 

 



Likewise, if something isn’t exactly where the last thing was but is nearby, you can 

just specify that part of the path which is different, extending or backtracking from 

where you last were. For example, imagine you retrieved the file  

 

 http://www.ucl.ac.uk/~uczcw11/slais/slais.htm 

 

and that there was a directory below the slais directory called projects, in which there 

was a file called myproj.htm. You could have a link in the file slais.htm to retrieve 

myproj.htm which looked like this: 

 

 <a href=“projects/myproj.htm”>My project</a> 

 

Or you could link to the home.htm file we mentioned before, in the parent directory 

~uczcw11, by using a backward relative path: 

 

 <a href=“../home.htm”>My home page</a> from a different way! 

 

The “../” means “one directory level higher. “../../” would represent two levels, etc. 

 

You should always use relative links between pages in your own web document. The 

big plus of using this approach is that if you want to move all the pages in a document 

from one place to another, if you have used relative links, the internal references will 

still all work with no modification. If instead you used absolute links, you would have 

to go into every page and edit every link to the new location! Only use absolute links 

when you need to load a document from a different location from your own material 

(i.e. generally, if you want a link to someone else’s website) 

 

One last important tip about names and paths: Although a Microsoft environment (i.e. 

Windows) allows spaces in filenames and is case insensitive, many server 

environments using Unix don’t. Therefore it is good practice to keep all filenames 

(and subdirectory names, if you use them) in lower case only, and not to use spaces in 

them (use an underscore instead if you feel the need).  

 

Exercise 
Now it’s time to put the hyper in your text! You should have at least two pages 

completed by now. Make a link from one to the other and back again. These should be 

relative links as you’re working on a local disk here, not through a server (so don’t 

include a pathname, just the filename). Create a third page and incorporate links to 

that too. Browse around the net and put in a couple of links to external sources also - 

these will have to be absolute links. Don’t forget to test them and see if they work! 

Also, try creating a NAMEd Anchor inside one or more of your pages and linking to it 

from somewhere else within the page. See what happens when you activate the link. 

 

Think about the structure of your document, with particular regard to “return” and 

“escape” routes. Can you find a standardised way to do this which might help users 

navigate around your pages? Look at some other peoples’ pages to get some ideas, and 

try to implement them. Hint: you’ll almost always want a link back to your home 

page... 



7. Images 
 

OK, so we’ve got the text side pretty much wrapped up. What about images? 

Including images is fairly simple, but there are some key points to remember. Firstly, 

try to use GIF or JPG format images wherever possible - they are the most commonly 

readable and should be fine in any browser. Secondly, remember that pictures take up 

a lot of transmission time - don’t use them unnecessarily (but you can allow yourself 

free rein today - it’s practice!). Thirdly, remember that the browser of the user who 

views your pages may not have the same capability as yours to display colours or 

resolution - so keep your images simple and with a minimum number of colours (this 

will also help to keep the data size of the images down, making them download 

faster). 

 

To incorporate an image on your page, what is called an inline image, you simply use 

a single tag with some attributes, the <img> tag. The key attribute is the SRC 

attribute, which defines where the image is. Imagine you have a picture called rabbit. 

jpg in the same directory as your page; you would display it with the tag 

 

 <img src=“rabbit.jpg” /> 

 

which is a relative reference, just as we discussed before with links. You can point to 

a picture elsewhere in exactly the same way using an absolute reference instead.  

 

Simply getting the image to appear is easy - but getting it in the right place is more 

difficult. An image is treated just like text, in that it needs <br /> or <p> tags (or 

Headers, etc.) to separate text from it (assuming that is what you want to do).  Another 

attribute which affects the screen display of images is the ALIGN attribute, which has 

five possible values, TOP, MIDDLE, BOTTOM, LEFT and RIGHT. The first three 

dictate whether the image is aligned to any adjoining text by its top or bottom edge, or 

middle; the latter two place the picture in the left or right margin (respectively) and 

run the following text down the side of the image. 

 

Apart from just decorating the page, images can be used as links themselves; i.e. if 

you click on the picture, it activates a link. The format for such an “active image” is a 

combination of an ordinary Anchor tag with the Image tag: for example 

 

 <a href=“home.htm”><img src=“image.gif” /></a> 

 

The Image tag takes the place of what would normally be the highlighted text, inside 

the Anchor tags. The above is actually a bad example: it is always a good idea to 

include a text line adjacent to the linking image, and also another attribute ALT which 

contains text which is displayed instead of the image to users of non-graphic browsers 

or others who have turned images off. A better version would thus be something like: 

 

<a href=“home.htm”><img src=“image.gif” alt=“My picture” />My home page</a> 

 

You can make use of images as icons for choices, or coloured lines as alternatives to 

horizontal rules, or even as navigation icons.  



Another common use of images is to have small versions (“thumbnails”) of pictures 

on your page which, when clicked on, load a full-sized version of the image. This is 

an excellent way of providing access to graphic resources, as it gives a good visual 

guideline to what’s available without having to transfer enormous volumes of graphic 

data which might be unwanted.  

 

If you look up the IMG tag in the appendix, you will see that amongst other attributes 

which allow you to control borders and positioning of images, you can resize images 

dynamically using the HEIGHT and WIDTH attributes. NB you should never do this 

to reduce a large image to a small size! If you do, you are simply downloading data 

which you are then throwing away, which is extremely inefficient and slows 

everything down. If you have a big picture and you need a small version (as for a 

thumbnail, above), use image processing software to create a shrunken version of the 

original and save (and access) it separately.  

 

 

 

Exercise 
Try adding some graphics to your existing pages, both as inline images and as links. 

There may already be some images available locally which you can use, but you can 

always download images from elsewhere to use too. However - remember copyright 

issues! Never use a downloaded image from the net without first asking permission 

(unless it comes from a copyright-cleared or copyright-free source - there are quite a 

lot of image libraries containing material like this which can be used freely). 

 

Experiment with the effects of the ALIGN attribute, and putting text either side of an 

image. How do <br>, <p> and Header tags affect the display of images?  

 

Forget the normal rules of keeping graphic content down for a while. Why not create a 

picture page? Play around and enjoy! 



8. Image maps 

 
Image maps (another popular aspect of web pages) were traditionally made available 

by server-side processing, but with V4 of  HTML tags were introduced to allow 

client-side processing of image maps, which can be prepared quite simply. It works by 

in effect “overlaying” an ordinary image with a transparent “map”, based on pixel co-

ordinates, which make parts of the image become clickable. In order to create an 

image map, therefore, you will need a pre-existing image (any format will do), and 

you will need to know the co-ordinates of the areas which you wish to make clickable 

on the picture. One way of working out the co-ordinates of parts of your picture would 

be to load it into an image processing program, which always has the ability to display 

the co-ordinates of the cursor position. Alternatively, if you have a simple image and 

you know its overall size, you may be able to calculate the co-ordinates for simple 

shapes in your head. 

 

Where you want the image to appear, include a normal image tag like the example 

below: 

 

<img src="image.gif" usemap="#mapname" width="120" height="300" /> 

 

The SRC attribute, as normal, identifies the image you wish to use. The WIDTH and 

HEIGHT attributes are optional, but can be useful to remind you where the limits of 

the picture are - when you set your clickable areas (see below), if you set one outside 

the visible area of the picture, it will be unusable! The key attribute for the imagemap 

is the USEMAP attribute, which points to a named block of code (a MAP block, 

called “mapname” in this example) elsewhere in the page which defines the clickable 

areas. 

 

So in this example, somewhere else in the file, there would be a MAP block 

something like this: 

 

<map name="mapname"> 

   <area shape="rect" coords="10,10, 100,100" href="file1.htm" alt="rectangle" /> 

   <area shape="poly" coords="10,110, 20,110, 20,200, 100,200, 20,200, 30,150, 

20,120" 

      href="file2.htm" alt="Rather unusual shape" /> 

   <area shape="circle" coords="50,250,25" href="file3.htm" alt="circle, radius 25" /> 

</map> 

 

Everything between the MAP tags are part of the definition, and the name of the 

definition (referred to in the IMG tag USEMAP attribute) is specified in the MAP tag 

by the NAME attribute.  



 

Within the block you can include a number of AREA tags which define the actual 

clickable areas. As can be seen in the above example, there are three different 

“shapes” which can be defined with the SHAPE attribute: RECT (for a rectangle), 

POLY (for a polygon), and CIRCLE (for a circle). Each is then followed by a set of 

values in a COORDS attribute. The values vary according to the shape: for a 

rectangle, two pairs of x-y co-ordinates are used, specifying the top left and bottom 

right of the rectangle; for a polygon, any number of pairs of x-y co-ordinates can be 

specified to define the shape, which results in a line being drawn from point to point 

in the order listed, with the final point being linked back to the first one; for a circle, 

three values  are required, first a pair of x-y co-ordinates which represent the location 

of the centre point of the circle, and then a single value representing the radius of the 

circle. 

 

Each AREA also includes an HREF attribute which, of course, contains the location 

of the file to be loaded if the user clicks within the specified area. 

 

A MAP block can contain any number of AREAs, in any combination of shapes. 

However, when constructing image maps, be careful to ensure three things: firstly, 

that all clickable areas can actually be shown on the image (i.e. don’t plot an area 

which falls outside the boundary of the image); secondly, that the areas do not overlap 

(otherwise which one will work?); and thirdly, make sure you provide elsewhere in 

your page an alternative route to the locations in your map which are text-based, for 

anyone who cannot see your image. 

 

 

Exercise 
Make a simple client-side imagemap to link to other pages in your site (or elsewhere). 

Remember to cater for people using older or non-graphic browsers... 

 



9. Tables 
 

Table tags are relatively simple in their basic form, however, even if somewhat 

longwinded to write. They take the form of an overall <table> tag , followed by <tr> 

(Table Row) tags to create the vertical divisions, and then <td> (Table Data) tags to 

delineate the individual cells on the row, into which you can enter the data you want 

to show. Unfortunately, this means that you need to create a pair of <td> tags for 

every cell in your table! That could be a lot of typing... (but there’s a hint below!)  

 

A simple 2x2 table is then prepared thus: 

 

<table> 

<tr> 

<td>Data 1,1</td> 

<td> Data 1,2</td> 

</tr> 

<tr> 

<td> Data 2,1</td> 

<td> Data 2,2</td> 

</tr> 

</table> 

 

The use of the BORDER attribute in the TABLE tag draws a border around the cells 

(e.g. <table border>), and you can specify a value (e.g. border=“5”) in pixels if you 

want to adjust the width. You can also incorporate heading cells with the <th> tag and 

adjust data alignment etc. with attributes: see the appendix for the full range of 

options. 

 

NB you may want to have cells which are simply blank, with no data in: if so, you 

must include a pair of <td> </td> tags with nothing in between. You mustn’t leave 

them out or you will make your table lopsided! You can otherwise format the data in 

table cells just as you would any other text in an XHTML page, including making it a 

link. 

 

One BIG practical hint when making tables in native XHTML: draw up your basic 

table structure empty, making copious use of copy and paste, then go back to fill in the 

data afterwards! This not only speeds up the process of table construction but helps to 

prevent errors of table structure. In anything but a small table, it’s also a good idea to 

put comment tags in to identify each row (or an ID attribute in the TR tags) and make 

it easier to see where you are in a mass of table structure. 

 

Quite a lot of control can be had over table appearance and layout: a more complex 

table example is given below, showing the use of various attributes, multiple column 

and row headings etc. (this html example is taken from Laura Lemay’s book, fig. 

11.26 on p340, and viewable online at 

www.ucl.ac.uk/~uczcw11/bscb001/lltablexample.htm) 

 



 

<table border="5" bgcolor="#FFFFCC" bordercolor="#CC9900" cellspacing="0" 

cellpadding="5"> 

  <caption align=="left">Drive Belt Deflection</caption> 

  <tr align=="center"> 

    <th rowspan="2" colspan="2">&nbsp;</th> 

    <th colspan="2">Used Belt Deflection</th> 

    <th rowspan="2">Set<br> 

    deflection<br> 

    of new belt</th> 

  </tr> 

  <tr align==“center”> 

    <th>Limit</th> 

    <th>Adjust<br> 

    Deflection</th> 

  </tr> 

  <tr align==“center”> 

    <th rowspan="2" align==“left”>Alternator</th> 

    <td align==“left”>Models without AC</td> 

    <td>10mm</td> 

    <td>5-7mm</td> 

    <td rowspan="2">5-7mm</td> 

  </tr> 

  <tr align==“center”> 

    <td align==“left”>Models with AC</td> 

    <td>12mm</td> 

    <td>6-8mm</td> 

  </tr> 

  <tr align==“center”> 

    <th colspan="2" align==“left”>Power Steering Oil Pump</th> 

    <td>12.5mm</td> 

    <td>7.9mm</td> 

    <td>6-8mm</td> 

  </tr> 

</table> 

 

 

 

 

Exercise 
Create a simple 3x3 table using the tags described above. What happens if you miss 

out a pair of <td> tags?  

 

Create a table appropriate to your website. Experiment with the effects of various 

attributes. Review the tags and attributes in the appendix, and add some headers to 

your columns. Try creating some “nested tables” (tables within tables). 

 



10. Forms 
 

A further element in XHTML is the use of Forms. By using the Form tags and their 

many attributes, you can produce pages which contain fill-in, drop-down or all sorts of 

other fancy entry methods for users to enter data, including things like “radio 

buttons”. You can incorporate form layouts in your pages today, but you will be 

unable to process the data which is entered, which is usually the point: forms are 

normally used e.g. to get search queries, collect key data etc. which is then passed to a 

computer for something to be done with it, and usually, for some other information 

(e.g. the results of that search) to be passed back to the originator. See the final 

chapter for more information on how this is normally achieved. 

 

However, there is one additional element which can be used with forms to collect data 

in simple form without the use of complex processing, and which can also be used 

independently as a communication device. This is MAILTO, used in Anchors to call 

up a simple electronic mailer, or in forms to have entered data emailed somewhere. By 

using MAILTO, you can have links which allow people to immediately send email to 

you (or whoever you specify). An example of its freestanding use would be: 

 

 <a href=“mailto:andrew.dawson@ucl..ac.uk”>Mail me here!</a> 

 

In a form, you first have to define a form with a pair of FORM tags which will include 

attributes which tell the system what to do with the data. To mail the responses to 

yourself with MAILTO, you will need to set up your basic form using 

 

 <form method=post action=“mailto:andrew.dawson@ucl.ac.uk”> 

 .....(form elements here)..... 

 </form> 

 

There are many other things you can do with form data, but these are beyond the 

scope of a simple introduction to deal with. You can get some idea of the possibilities 

by looking at the FORM tag attributes listed in the appendix. 

 

As for collecting information in a form, there are a number of ways you can do it. 

Text you want to appear as prompts on your form is mostly entered normally: input 

data can be gathered in several different ways, but normally by the INPUT tag. 

 

In its basic form, INPUT takes two attributes, NAME and TYPE. NAME is the 

identifier for the piece of data when it is passed on: it is like a variable name in a 

programming language, a holder for the data. TYPE tells the system what kind of data 

element this is. There are several possibilities, the most common being “text” for text-

entry fields, “RADIO for ‘radio’ buttons, and “CHECK” for check boxes.” Thus a 

simple text-entry box can be generated using this tag (within the overall FORM tags): 

 

 Enter your name: <input type=“text” name=“namefield” />  



Normally, you may want also to restrict the size of the text entry box (usually referred 

to as a “widget”) and the amount of data which can be input. This can be done with 

SIZE ( to set the size of the box) and MAXLENGTH (to set the maximum length of 

input string) attributes. You can also draw a text box of multiple lines rather than have 

a one-line box using the <textarea> tag (see appendix for more details). 

 

Radio buttons (type=“radio”) normally used to allow a single choice from a list of 

items. To do this, mutually exclusive groups of buttons are indicated by using the 

same NAME  but different VALUEs; e.g. 

 

<ol> 

<li><input type=“radio” name=“Material” value=“Animal” />Animal</li> 

<li><input type=“radio” name=“Material” value=“Vegetable”/>Vegetable</li> 

<li><input type=“radio” name=“Material” value=“Mineral” />Mineral</li> 

</ol> 

 

would produce a list of three buttons labelled animal, vegetable and mineral, only one 

of which could be selected. The data in the VALUE field is sent attributed to the 

NAME given if the button is checked: because all buttons have the same NAME only 

one can be selected.  By default all buttons are off to start with. The text outside 

following the tag is simply displayed next to the button like a label. 

 

Check boxes are similar to radio buttons, but are typically not mutually exclusive (so 

more than one can be checked). To recreate the list above as checkboxes: 

 

<ol> 

<li><input type=“checkbox” name=“Animal”/>Animal</li> 

<li><input type=“checkbox” name=“Vegetable”/>Vegetable</li> 

<li><input type=“checkbox” name=“Mineral”/>Mineral</li> 

</ol> 

 

NB that now we have three different NAMES and no VALUES. Giving different 

NAMEs allows us to check more than one box simultaneously, and we don’t have to 

supply a separate VALUE if the NAME is unique – if the box is checked that item is 

there.  

 

There is actually nothing to stop us using radio buttons for non-exclusive choices and 

checkboxes for mutually exclusive ones – it’s all down to how we assign the NAMEs 

and VALUEs to the tags – but conventionally they are used in the illustrated ways.  

 

An alternative (and perhaps neater) way of dealing with selecting one item from a list 

is to have a drop-down menu: this is handled by using the <select> and <option> tags. 

E.g. to have a dropdown version of the above: 



<select name=“Material”> 

<option>Animal</option> 

<option>Mineral</option> 

<option>Vegetable</option> 

</select> 

 

The different OPTION entries are treated as the VALUEs in the previous examples. 

Notice also the similarity between the use of <select> and <option> and list tags n 

terms of structure. . 

 

Finally, you’ve got your data, how do you send it off? The simplest choice is to 

include a “submit” button, which is done with another INPUT statement using TYPE 

submit, like this: 

 

<input type=“submit” value=“Send it off!” /> 

 

The value here is the text which will appear on the button. Normally, all the data 

collected on a form is sent to a program or script (see chapter 11) which then 

processes it in some way, but unfortunately this kind of processing is beyond our 

abilities to provide during the practical session. 

 

Here is a complete form using the above elements (based on Lemay’s “Surrealist 

Census”, viewable at www.ucl.ac.uk/~uczcw11/bscb001/llformexample.htm) 

 

 

<form method=“post” action="mailto:name@address.co.uk"> 

 

  <p><strong>Name: </strong><input type=“text” name="theName"></p> 

 

  <p><strong>Sex: </strong> 

   <input type="radio" name="theSex" value="male" />Male 

   <input type="radio" name="theSex" value="female" />Female 

   <input type="radio" name="theSex" value="null" />Null 

  </p> 

 

  <p><strong>Contains (Select all that Apply): </strong><br /> 

   <input type="checkbox" name="humor" />Vitreous Humor<br /> 

   <input type="checkbox" name="fish" />Fish<br /> 

   <input type="checkbox" name="glycol" />Propylene Glycol<br /> 

   <input type="checkbox" name="svga" />SVGA Support<br /> 

   <input type="checkbox" name="angst" />Angst<br /> 

   <input type="checkbox" name="catcon" />Catalytic Converter<br /> 

   <input type="checkbox" name="vitamin" />Ten Essential Vitamins and 

Nutrients<br /> 

  </p> 

 

 

 

  <p>Select a hair colour: 



   <select name="hcolor"> 

     <option>Black</option> 

     <option>Blonde</option> 

     <option>Brown</option> 

     <option>Red</option> 

     <option>Blue</option> 

   </select> 

  </p> 

 

  <p><input type=“submit” value="Submit Your Votes" /> 

   <input type=“reset” value="Clear Form" /> 

  </p> 

 

</form> 

 

 

 

Exercise 
Design a simple form appropriate to your website, set up with a “Mailto:” action (N.B. 

this may not work today as it requires the browser which uses the form to be 

configured with valid user information and email parameters – which will normally be 

the case for real users!). Note the differences in effect of the different input types. 

Which might be suitable for any data capture you might want to achieve? Check the 

appendix for some of the attributes which can be applied to certain elements to control 

e.g. size of text input boxes. 

 

 



11. Frames 
 

Frames are less popular on web pages today than they once were, and their use is 

deprecated. They can be problematic unless used with care, but are still sometimes 

useful. They are a way of breaking up your page into multiple mini-pages, rather like 

having a series of concurrently open windows in a graphical operating system 

environment, so that you can have different things going on in each one at the same 

time - or more precisely like having several versions of your browser on the go at 

once! 

 

One big problem with frames is that they can be impossible for users to bookmark 

effectively. The frames are also (obviously) smaller than a normal full page and 

therefore you can’t see so much in them. 

 

The author’s personal viewpoint on the use of frames is  - avoid using them in most 

circumstances! They seldom add much to a page that can’t be achieved by other 

means (like tables), and unless very carefully designed, can lead to all sorts of trouble 

for users. However, to allow you to experiment with them, a full listing of the relevant 

tags and attributes is given in the appendix. 

 

In essence, a framed page resides within a <frameset> definition, which can be broken 

into individual <frame>s or broken into columns and rows (and otherwise controlled) 

by attributes. You will also need to NAME your frames, and in all pages that are 

intended to be used within them, add TARGET attributes to all the <a>anchor tags 

within them to control where the data actually appears when clicked. If you are really 

keen to work with frames, the best thing is to consult the relevant chapters in a good 

XHTML guide. 

 

Here is an example simple frame definition: 

 

<frameset cols=“150,*”> 

 <frame src=“file1.htm” name=“framename1” /> 

 <frame src=“file2.htm” name=“framename2” /> 

</frameset> 

<noframes> 

 XHTML for frame-free version goes here - don’t forget it! 

</noframes> 

 

This defines a vertically split screen, with a fixed, 150 pixel column on the left, and a 

variable-width column occupying all the remaining available space on the right. The 

SRC attributes specify which XHTML files will be initially loaded into each frame: 

the NAME attributes specify a name for the frame which can be referred to by 

TARGET attributes in links within the XHTML files. NB do make sure you create the 

files you specify to go in the windows or nothing will happen! 

 

You should also always enter data between the NOFRAMES tags. This should be 

some standard XHTML (NB the page as a whole is a frameset, it doesn’t go within the 

normal XHTML set of tags, but replaces them - you should put a BODY inside the 

NOFRAMES element) which is for any user whose browser can’t use frames. 



 

To mix rows (ROWS) and columns (COLS) in a frameset definition, define a second 

frameset within a frame (i.e. replace one of the FRAME tags with a complete, new, 

nested FRAMESET, e.g. 

 

<frameset cols=“150,*”> 

 <frame src=“file1.htm” name=“framename1” /> 

 <frameset rows=“100,*”> 

   <frame src=“file2.htm” name=“framename2” /> 

   <frame src=“file2.htm” name=“framename3” /> 

 </frameset> 

</frameset> 

 

Definitions for the space allocated to rows or columns can be specified by absolute 

width in pixels (number), % of space (%) or available space (*). If multiple asterisks 

are entered as values, available space will be distributed equally between all elements 

so identified. 

 

It is crucial to note that, if you click on a link inside a given frame, the new file will 

load into the same frame by default (it’s just like a normal browser window). To load 

a file from a link in one window into another window you must specify a  TARGET 

attribute (target=“framename”, where framename is the name of the frame you want 

the data to appear in) in the link. 

 

 

Exercise 
Create a frameset that divides the browser window into three parts as follows: 

 Left section - a column the height of the browser window and one third of the 

width of the browser window, named “contents” 

 Right section(s) - divided into two rows, each half the height of the browser 

window, named “top” and “bottom” respectively 

Now create a page for use as a table of contents in the left frame: create two links on 

the page, one to load a page in the top window, one to load a page in the bottom 

window. 

 

Experiment with other frame layouts and pages suitable to your topic. 

 



12. Stylesheets 

 

 
Stylesheets are the best way of providing a broader and more flexible way of 

controlling the “look and feel” of the contents of (X)HTML pages. They are actually 

written in a language all of their own (indeed there are several varieties of 

stylesheeting language).  

 

Stylesheets are a complex subject, almost worthy of a course on their own! A 

cribsheet is provided separately which covers some common parameters of CSS1 (a 

common stylesheet language which we will be using), but for a full specification of 

both CSS1 and stylesheets you will need to visit W3C’s website - do NOT look for 

CSS or stylesheet tags in the appendix as they’re not there! There are very many 

things you can do with advanced stylesheeting, but we are going to limit ourselves to 

the basics of modifying how individual tags and blocks of text look.  

 

Before we proceed, we need to mention that colour is conventionally expressed in 

CSS as three bytes holding red, green and blue values, expressed in hexadecimal 

preceded by a hash (e.g. #ff0000 – red) and using the American spelling “color”. 

Links to tools which give the hex values for colours are given in the resource list on 

the last page of this workbook.,  

 

Here is an example of a very simple style sheet: 

 

<style type="text/css"> 

<!-- 

body {  background-color: #ccffff; font-family: Arial, Helvetica, sans-serif; color: 

#330066} 

   a:link {  color: #cc9900} 

   a:visited {  color: #660000} 

   a:hover {  color: #ffcc00} 

   a:active {  color: #ff0000} 

--> 

</style> 

 

This stylesheet simply sets up some standard settings for body text in an XHTML file: 

it is written using the CSS1 specification (Cascading Style Sheets 1) for stylesheet 

language, hence the TYPE attribute in the STYLE tag saying “text/css”. You will see 

that, within the STYLE tags, the whole of the actual style definition is enclosed in an 

XHTML comment tag: this is because, as we said, the actual style definition is not 

written in XHTML but in CSS1, and we don’t want it accidentally displaying on the 

page if the browser doesn’t understand styles.  You will see a close relationship 

between the attributes used, although the names are not exactly the same. 

 

If the above block were included in the head of a file of XHTML, the body within the 

file (and all the A tags) would be treated as shown above. However the real value of 

stylesheets are that they can be used independently of individual pages. A style 

definition can be saved separately from any XHTML files as a freestanding definition, 



and then referred to by other pages by including a special kind of link in the head of a 

document. For instance, if we had saved the above example (Just the CSS bits, minus 

the actual XHTML tags) as a separate file called “mystyle.css”, and we had an 

XHTML document we wished to have use that style, we would add a line 

 

 <link rel=“stylesheet” href=“mystyle.css” /> 

which would go in the HEAD section of the document. This would then enable the 

document to use the style specified in mystyle.css, just as if it had been written into 

the document itself. NB this example is using relative addressing, i.e. it assumes the 

“mystyle.css” file is in the same directory as the XHTML file, hence it is identified by 

name only. You may also use an absolute address here if you need to (a full URL). 

 

This is obviously a hugely useful facility, as it enables you to provide consistent “look 

and feel” across a range of documents, and to make any style changes to all of them at 

once (in effect) by simply changing the separately-held style definition. 

 

There are a range of other facilities relating to stylesheets which can also be useful, for 

instance the ability to define different classes of a tag, so that different special effects 

can be created: e.g. if you had defined a standard way of presenting an H1 tag, perhaps 

in red, you could create some variant classes H1.green and H1.blue so that (if you 

wanted to) you could have them display in other colours in specific places by adding 

an attribute class=”green” (or blue) to the tag in question. You can also apply style 

attributes directly to tagged data  within a document, know as  inline style, to apply a 

particular effect at a particular point as a one-off. A STYLE attribute can be applied to 

almost any tag, in the following form: 

 

 <p style=“color: red; font-weight: bold”>Red and bold! </p> 

 

This example is applied to a P tag, but the same principle applies to all other tags. The 

basic format of the style definition is the same as that applied in the separate style 

block at the beginning of this chapter: i.e. each style parameter is expressed (in CSS1) 

in the form of  

 

 parameter: value; parameter: value (,value, value) 

 

so, each parameter is followed by a colon and then its value, and if multiple values are 

given (a preference list) each subsequent value is separated from the last by a comma. 

Each parameter and its associated value(s) are separated from the next by a semicolon. 

 

But what if you want to apply some style to text which is not identified by tags, e.g. a 

single word in a paragraph, or to a block of materials containing other tags? Two 

additional tags exist for this purpose: <span> and <div> . If you wish to modify  text 

which does not contain other tags (e.g. again the words within the paragraph) use 

<span> with a  style attribute. If the block contains other tags (e.g. a heading plus 

some paragraphs) then use <div> similarly. Please note that <div> can also be used 

for more advanced purposes not covered here, such as creating floating menus – see 

the CSS specification for further information.  

 



The nature of Cascading Style Sheets (CSS) means that, within a document, inline 

styles take precedence over an internal style definition, which in turn takes precedence 

over an external style definition. Thus you can set a general scheme in an external 

style definition for a document which can be overridden, in whole or in part, either at 

the page level (by an internal style definition) or at the element level (by an inline 

style definition). 

 

Full and up-to-date definitions of CSS1, CSS2 and other stylesheeting languages can 

be obtained from the W3C online (see the resources section). 

 

Exercise 
Create or load some simple web pages and experiment with style rules. Create an 

external style sheet and apply it to a series of pages. Also try an embedded (internal) 

style sheet and some inline style definitions. Use an online color palette tool to 

identify the colour codes you need (see the resources section at the end of this 

workbook for where to find these). 



13. Other elements and considerations 
 

There are quite a few other tags, attributes and options available within and without 

XHTML which go beyond the scope of this workbook and today’s opportunities, 

which we should make some mention of. Do look through the list of tags at the end of 

this workbook, and (if you’re feeling keen) take a look at the full specifications for 

HTML 4.01 and XHTML, which you can find at the W3C website (www.w3c.org). 

 

The mechanism which performs server-side processing (for instance, enabling us to 

run a search on a database from a webpage) is normally something called a Common 

Gateway Interface (CGI) Script. or an Applications Programming Interface (API). It is 

like a computer program which has been written to expect data from a certain form, 

process it, and to create an (X)HTML-based reply page which incorporates the output 

data. Writing CGI or API scripts is not a simple matter for the uninitiated, and more 

importantly, requires appropriate software to run under, which is not available here 

today. Unless you have some background or experience in programming, and you are 

interested in this aspect, it is definitely recommended that you get some specialist help 

if you want to proceed with it. 

 

Similarly, some effects (rollovers for instance) on webpages are achieved with client-

side processing, by the inclusion of Javascript applets (mini-applications) embedded 

in web pages. Again, these are actual programs written in Javascript language, which 

also is well beyond the scope of this course element. If you are interested in learning 

how to use Javascript, you will really need to undertake a separate course on it. 

 

Do remember that you can view other people’s code by selecting the View Source 

option in your browser - this can help you to understand how certain effects are 

achieved.  

 

Exercise 
If you have not already been working on parts of your planned web pages, now is the 

time to start putting together a real first attempt at your intended product. Look 

through the lists of tags at the end of this workbook, and try incorporating any of the 

other tags and attributes you think might be appropriate. 

 

Don’t forget to look at other peoples’ ideas and code, and to draw on and learn from 

them.  

 

At the end of the day, make sure you copy your files to a floppy disk and take them 

with you, so that you can continue to work on them and use them later elsewhere! 

 

And lastly, if there are any things which you want some assistance with - please ask! 



Resource list 
 

Online resources: 
 

W3 consortium:  http://www.w3.org 

  HTML 4.01 spec: http://www.w3.org/TR/HTML4/ 

  XHTML 1.0 spec: http://www.w3.org/TR/xhtml1/ 

  CSS1 spec: http://www.w3.org/TR/REC-CSS1 

The W3C site has endless additional resource material, from style guides to links to 

editor and browser downloads, validators, and absolutely everything you will ever 

need!  It’s absolutely THE source for web materials and information.  

 

Colour mapping information and tools: 

http://www.klixxx.com/tools/html_colors.shtml  or http://websitetips.com/color/tools/ 

  

Special character codes 
 

Any special character can be specified using the form &#?;  where ? is the coded 

value  of the character. Many common special characters have “named” alternatives 

also.  Some of the latter are given in the list below. 

 

NB all character code values ultimately depend on  the character set encoding used, 

where it is specified in the html page: this may result in differences in rendering of 

special characters in display! 

  

&quot;   " double quotation mark   

&amp;    & ampersand               

&deg;    ° degree sign             

&lt;     < less than               

&gt;     > greater than           

&not;    ¬ not sign                

&plusmn; ± plus-or-minus sign           

&sup1;   ¹ superscript one  (etc)         

&nbsp;     nonbreaking space       

&shy;    ­ soft hyphen             

&acute;  ´ acute accent              

&cent;   ¢ cent sign               

&pound;  £ pound sign              

&cedil;   ̧cedilla                   

&uml;    ¨ umlaut/dieresis         

&brvbar; ¦ broken (vertical) bar   

&para;   ¶ pilcrow (paragraph sign)  

&sect;   § section sign            

&macr;   ¯ macron                  

&raquo;  » angle quote mark, right 

&laquo;  « angle quote mark, left  

&frac12; ½ fraction (etc)        

&copy;   © copyright sign          

&reg;    ® registered sign         

&times;  × multiply sign                  

&div;    ÷ division sign                 

 

    Á: A vowel with an acute accent, &[vowel]acute;, e.g. &Aacute;  

    â: A vowel with a circumflex accent, &[vowel]circ;, e.g. &acirc;  

    è: A vowel with a grave accent, &[vowel]grave;, e.g. &egrave;  

    ÿ: A vowel with a dieresis or umlaut mark over it, &[vowel]uml;, e.g. &yuml;  

    å: "a" with a ring, &aring;  

    ç: "c" with cedilla, &ccedil;  

    ø: "o" with a slash through it, &oslash;  

    ñ: A letter with a tilde over it, &[a or n or o]tilde;, e.g. &ntilde;  

    æ: ae diphthong (ligature), &aelig;  


