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Disorder and the Quantum Hall Ferromagnet.

A. G. Green
Department of Physics, Princeton University, New Jersey NJ 08544

The distinguishing feature of the quantum Hall ferromagnet is the identity between electrical and
topological charge densities of a spin distortion. In addition to the wealth of physics associated with
Skyrmionic excitations of the quantum Hall ferromagnet, this identification permits a rather curious
coupling of spinwaves to the disorder potential. A wavepacket of spinwaves has an associated,
oscillating dipole charge distribution, due to the non-linear form of the topological density. We
investigate the way in which this coupling modifies the conductivity and temperature dependence
of magnetization of the quantum Hall ferromagnet.

The distinguishing feature of the quantum Hall ferro-
magnet (QHF) is the identity between the topological
density of a spin distortion and the associated electrical
charge density. This identification permits a chemical po-
tential to stabilize topologically non-trivial groundstate
spin configurations, known as Skyrmions1. The theoret-
ical prediction of these states has received substantial
experimental support2 and prompted a good deal of the-
oretical speculation. The link between topological and
electrical charge densities also produces a curious cou-
pling of spinwaves to the disorder potential. Although a
planewave spin distortion carries no charge, a wavepacket
of spinwaves has an oscillating dipole charge distribution
associated with it, due to the non-linear form of the topo-
logical density. Spinwaves couple to the disorder poten-
tial through this charge distribution. In this work, we
investigate the way in which this coupling modifies the
conductivity and temperature dependence of magnetiza-
tion of the quantum Hall state.

The low energy effective action for the QHF at filling
fractions ν = 1 and the Laughlin filling fractions is given
by1,3

S =

∫

dtd2x
[ ρ̄

2
∂tn.A[n] − ρs

2
|∂µn|2 + ρ̄gB.n

]

−
∫

dtd2xJ0(x)U(x) −
∫

dtV [J0(x)]

+ν

∫

dtd2xd2yJ0(x)ǫij
xi − yi

|x − y|2 Jj(y), (1)

where

Jµ = − eν

8π
ǫµνλn.(∂νn× ∂λn). (2)

n(x) is an O(3)-vector order parameter of unit length,
describing the local polarization of the quantum Hall sys-
tem. The first line of Eq.(1) is the usual low energy effec-
tive action for a ferromagnet. A[n] is the vector potential
of a unit monopole in spin space, ρ̄ is the electron density
(ρ̄ = ν/2πl2, where l is the magnetic length), ρs is the
spin stiffness and g is the Zeeman coupling, into which we
have absorbed the electron spin and the Bohr magneton
for ease of notation. The second line of Eq.(1) contains
terms arising due to the identity of charge and topolog-
ical charge (which is embodied in Eq.(2)). The first of

these terms is an interaction with the disorder potential,
U(x), and the second, V [J0(x)], is the Coulomb energy
of the charge distribution, J0(x). Eq.(1) describes both
the low energy spin and charge dynamics of the quan-
tum Hall system. The quantization of Hall conductivity
follows from the final term, the Hopf term4.

Here, we are concerned with the effect of the dis-
order potential upon small fluctuations, l = (l1, l2, 0),
about the ferromagnetic groundstate, n̄ = (0, 0, 1); n =

(l1, l2,
√

1 − |l|2). The effective action and current, ex-
panded to lowest order in these fluctuations, are

S =

∫

d2xdt
1

2
l̄
( ρ̄

2
∂t − ρs∇2 − ρ̄gB

)

l

−
∫

d2xdtJ0(x)U(x),

Jµ = i
eν

8π
ǫµνλ∂ν l̄∂λl. (3)

We use the complex notation, l = l1 + il2, l̄ = l1 − il2.
Both the Coulomb and statistical interactions have been
neglected in writing down Eq.(3). Although important
in determining the size and shape of the Skyrmion ex-
citations, the former is less relevant than the remaining
terms in its effect upon spinwaves5. We will show later
that the quantization of Hall conductivity, produced by
the Hopf term, is unaffected by weak disorder. The cal-
culations presented in this work concern the perturbative
effects of weak disorder. It is worth noting that the ef-
fective action, Eq.(3), is very similar to that of electrons
in a random potential, aside from the unusual form of
the current density and the bosonic nature of the fields.
This similarity is suggestive of the possibility of weak
localization effects. These are not considered here.

We represent the bare, momentum space propagators,
〈l̄(q, ω̃)l(−q,−ω̃)〉 and 〈∂µl̄(q, ω̃)∂ν l(−q,−ω̃)〉, by the
diagrams

〈l̄(q, ω̃)l(−q,−ω̃)〉 = =
1

iρ̄ω̃/2 − E(q)

〈∂µl̄(q, ω̃)∂ν l(−q,−ω̃)〉 = =
qµqν

iρ̄ω̃/2 − E(q)

where E(q) = ρs|q|2 + ρ̄gB is the spin energy density.
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The disorder interaction is given by

Si =

∫

dω̃
d2q1

(2π)2
d2q2

(2π)2
i
( eν

8π

)

ǫij







1
q

2

q
1

q

2

i j
)-U(

, ω , ωq






,

where the frequency integral,
∫

dω̃, is a shorthand no-
tation for the bosonic Matsubara frequency summation
1
T

∑∞
n=−∞ ...|ω̃=2πn/T . Notice that the scattering off the

impurity potential is entirely elastic i.e. the energy labels
on the propagators are conserved.

In GaAs heterostructures, the disorder potential felt
by the electrons in the 2DEG is due mainly to Coulomb
interaction with ionized donor impurities in the n-type
region6. This region is separated from the 2DEG by an
insulating spacer layer of width d. One may obtain an
expression for the correlations in the disorder potential
by modeling this situation with the potential due to a
random planar distribution of charge at a distance d from
the 2DEG. The correlations in the disorder potential in
this model are given by

〈〈UqUq′〉〉 = (2π)2δ(q + q′)

(

e
√

nd

2ǫ

)2
e−2|q|d

|q|2

= (2π)2δ(q + q′)
(

q
)

, (4)

where nd is the area density of donor impurities. This
simple model of disorder somewhat overestimates the po-
tential felt by the 2DEG. Due to Coulomb interactions
between the donors, the size of the fluctuations in the
disorder potential is usually much less than would be ex-
pected for a totally uncorrelated distribution of charge in
the disorder plane. We follow Fogler et al.

7 and assume
that this effect may be taken into account by interpreting
nd in Eq.(4) as a density of ‘uncorrelated’ donors, which
is much less than the actual density of donors.

The lowest order contribution of disorder to the self-
energy is

Σ(iω̃,p) =

= Kρ2
s

∫

d2q

(2π)2
(p × q)2

iρ̄ω̃/2 − E(q + p)

e−2d|q|

|q|2 , (5)

where

K =
1

ρ2
s

( eν

8π

)2
(

e
√

nd

2ǫ

)2

(6)

is a dimensionless measure of the disorder strength. The
retarded self-energy is obtained by analytic continuation
to real frequencies with the substitution iω̃ → ω+iδ. The
real and imaginary parts of the self-energy so obtained
are

ReΣ(ω,p) = Kρ2
s

∫

d2q

(2π)2
(p × q)2

ρ̄ω/2 − E(q + p)

e−2d|q|

|q|2 , (7)

ImΣ(ω,p) = Kρ2
s

∫

d2q

(2π)2
(p × q)2

e−2d|q|

|q|2
×πδ(ρ̄ω/2 − E(q + p)). (8)

The real part of the self-energy can be approximated from
Eq.(7) in the limit ρs|p|2, ρ̄|ω − 2gB|/2 ≪ ρs/d2. The
leading order contribution is proportional to |p|2 and
provides a correction to the spinwave stiffness, ∆ρs =
ReΣ/|p|2. For ρs|p|2 > ρ̄|ω−2gB|/2, there is a crossover
to |p|2 ln |p|2 dependence. We find

ReΣ(ω,p) ≃ Kρs

8π
|p|2 ln

[

4|ρ̄gB − ρ̄ω/2|d2

ρs

]

for ρs|p|2 < ρ̄|ω − 2gB|/2,

≃ Kρs

8π
|p|2 ln

[

4|p|2d2
]

for ρs|p|2 > ρ̄|ω − 2gB|/2. (9)

The first of these expressions has been calculated by ex-
panding Eq.(7) to lowest order in |p|2 and by replacing
the exponential factor, e−2d|q|, with an ultra-violet cut-
off, 1/2d. The second expression is calculated exactly
from Eq.(7), setting ω = 2gB.

The imaginary part of the self energy may be calcu-
lated exactly when d = 0, with the result

ImΣ(ω,p) = −K

8
ρ̄(ω/2 − gB)θ (ω/2 − gB)

for ρs|p|2 > ρ̄|ω − 2gB|/2,

= −K

8
ρs|p|2

for ρs|p|2 < ρ̄|ω − 2gB|/2. (10)

The integral for finite d is much trickier and cannot be
carried out analytically. For large d it is exponentially
suppressed by a factor e−2d|p|.

Taken at face value, Eq.(9) implies a threshold disor-
der strength at which the renormalized spin-stiffness is
zero at zero frequency. We interpret this as indicative
of a depolarization transition to a paramagnetic state.
A similar suggestion has been made by Fogler et al.

7 in
order to explain the breakdown of spin splitting in high
Landau levels. Strictly, the calculations presented here
apply only for weak disorder and small ∆ρs. That the
threshold behaviour suggested here does indeed occur,
may be seen in a number of ways. The most elegant
of these is through a Bogomolny bound type argument8.
The present treatment enables one to investigate the ap-
proach to this threshold.

Optical conductivity. The longitudinal and trans-
verse conductivities are given by the Kubo formula9:

σij(ω) =
i

ω
〈Ji(0, ω̃)Jj(0,−ω̃)〉

∣

∣

∣

∣

iω̃→ω+iδ

(11)

In order to determine the longitudinal conductivity, we
must evaluate the following diagram:
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〈J(0, ω̃).J(0,−ω̃)〉

= −
( eν

8π

)2

ǫiαβǫiγδ

Ω,q

Ω,q ω + δ

���
���
���
���

����������
��
��
��

����������

��
��
��
��

����

α

β

γ

= −
( eν

8π

)2

ǫiαβǫiγδ

∫

d2q

(2π)2
dΩ̃ qµq̃νqγ q̃δ

×Γαβ,µν(q, iΩ̃, iΩ̃ + iω̃)G(q, iΩ̃ + iω̃)G(q, iΩ̃), (12)

where qµ = (iΩ̃,q), q̃µ = (iΩ̃ + iω̃,q) and G(q, iΩ̃) is
the full thermodynamic Green’s function. The vertex
function, Γαβ,µν , is given by the summation

Γαβ,µν(q, iΩ̃, iΩ̃ + iω̃)

= δαµδβν +
( eν

8π

)2

ǫα′µǫβ′ν

α

νβ

α

β

µ

+... + ... + ... (13)

In fact, all contributions to the vertex function contain a
factor of qαq̃β and there is considerable simplification in

defining a new, scalar vertex function, γ(q, iΩ̃, iΩ̃ + iω̃);

qαq̃βγ(q, iΩ̃, iΩ̃ + iω̃) = Γαβ,µν(q, iΩ̃, iΩ̃ + iω̃)qµq̃ν .

This definition of the vertex function is then substituted
into Eqs.(11,12) to find the conductivity. After perform-
ing the summation over bosonic Matsubara frequencies
and a few other standard manipulations9, the real part of
the longitudinal conductivity is given by the expression

σ(ω) = ω
( eν

8π

)2
∫

d2q

(2π)2
|q|2

∫ ∞

−∞

dǫ

4π
[nB(ǫ + ω) − nB(ǫ)]

×ℜe
[

GA(q, ǫ)GR(q, ǫ + ω)γ(q, ǫ − iδ, ǫ + ω + iδ)

−GR(q, ǫ)GR(q, ǫ + ω)γ(q, ǫ + iδ, ǫ + ω + iδ)
]

,

(14)

where nB(x) is the Bose occupation number. The con-
tribution to the Hall conductivity is zero, on symmetry
grounds, since the current-current correlator 〈J×J〉 gives
rise to a factor of q×q in the integrand. Compared with
the analogous result for electronic conductivity9, Eq.(14)
contains an additional factor of ω2, which ensures that
the d.c. conductivity is zero. This is due to the fact that
the charge fluctuations in the QHF are dipolar.

Vertex corrections. In the ladder approximation,
the vertex function is given by the following Dyson’s
equation:

Γαβ,µν(q, iΩ̃, iω̃ + iΩ̃) = δαµδβν

−
( eν

8π

)2
(

e2nd

2ǫ

)2 ∫
d2k

(2π)2
ǫbνǫdµkakbkckd

e−2d|q−k|

|q− k|2
×G(k, iΩ̃ + iω̃)G(k, iΩ̃)Γαβ,ac(k, iΩ̃, iω̃ + iΩ̃),

or diagrammatically,

��
��
��
��

�������
���
���
���

��
��
��
��

����

�
�
�
�

��
��
��
��α

q ω +

= +

ν

µ

,

Ω

β

,

Ω

q

ν
���
���
���
���

���
���
���
���

��
��
��
��

�
�
�
�
�
�
�
�

���
���
���
���

ω +

q , Ω

q , Ω

µ

�
�
�
�β

α
����

ν

µ
�
�
�
�

.

This Dyson’s equation may be recast in terms of the
scalar vertex function, γ(q, iΩ̃, iω̃ + iΩ̃):

γ(q, iΩ̃, iω̃ + iΩ̃) = 1 +

∫

d2k

(2π)2
(q.k)2

|q|4 Wqk

×G(k, iΩ̃ + iω̃)G(k, iΩ̃)γ(k, iΩ̃, iω̃ + iΩ̃), (15)

where

Wqk = −
( eν

8π

)2
(

e2nd

2ǫ

)2

(q× k)2
e−2d|q−k|

|q − k|2 .

In order to obtain Eq.(15), we have used the relation

Γab,cd(k, iΩ̃, iω̃ + iΩ̃)qaqbkckd = γ(k, iΩ̃, iω̃ + iΩ̃) (k.q)
2
,

which follows from the definition of γ and the symmetry
of the disorder interaction; since the disorder potential
couples only to the charge density and not to any other
components of the current density, Γαβ,µν = δαµδβν if
either or both of µ or ν are time-like.

In order to calculate the real part of the optical con-
ductivity we require γ(q, ǫ − iδ, ǫ + ω + iδ). Evaluating
this is a very difficult task. However, several simplifying
assumptions may be made. Firstly, we assume that the
frequency dependence of the optical conductivity is dom-
inated by terms in Eq.(14) other that the vertex function.
Secondly, the terms GAGR in Eq.(14) are strongly peaked
within ω of ǫ = 2E(q)/ρ̄. Therefore, we have only to cal-
culate γ(q, 2E(q)/ρ̄) = γ(q, 2E(q)/ρ̄− iδ, 2E(q)/ρ̄− iδ).
Using Eq.(15), we find

γ(q, 2E(q)/ρ̄)

= 1 +

∫

d2k

(2π)2
(q.k)

2

|q|4 WqkGR(k, ǫ)GA(k, ǫ)γ(k, ǫ)

∣

∣

∣

∣

∣

ǫ=2E(q)/ρ̄

= 1 +

∫

d2k

(2π)2
(q.k)

2

|q|4 Wqk

A(k, ǫ)

2∆(k, ǫ)
, γ(k, ǫ)

∣

∣

∣

∣

∣

ǫ=2E(q)/ρ̄

, (16)

where ∆(k, ǫ) = −ImΣ(k, ǫ) and A(k, ǫ) =
−2ImGR(k, ǫ) is the spectral function. In the limit of
very weak disorder, A(k, ǫ) ≈ 2πδ(ρ̄ǫ/2 − E(k)). The
delta function imposes the constraint |k| = |q| and, since
γ(q, 2E(q)/ρ̄) ≡ γ(|q|), Eq.(16) reduces to an algebraic
equation. The solution is

γ(q, 2E(q)/ρ̄) =
∆(k, 2E(q)/ρ̄)

∆T (k, 2E(q)/ρ̄)
(17)
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∆(k, 2E(q)/ρ̄) =

∫

d2k

(2π)2
Wqkδ(E(q) − E(k)) (18)

∆T (k, 2E(q)/ρ̄) =

∫

d2k

(2π)2
Wqkδ(E(q) − E(k))

×
(

1 − (q.k)2

|q|4

)

(19)

Eq.(18) is simply a re-writing of Eq.(8) for the imaginary
part of the spinwave self-energy. The final term in the
integrand of Eq.(19) is an angular weighting, sin2 θ, for
scattering events, where θ is the angle between incoming
and outgoing spinwave states. This should be compared
with the electronic case, where the angular weighting is
1 − cos θ.

Ignoring vertex corrections (substituting γ = 1),
Eq.(14) reduces to

σ(ω) = ω
( eν

8π

)2
∫

d2q

(2π)2
|q|2

∫ ∞

−∞

dǫ

4π

× [nB(ǫ + ω) − nB(ǫ)] A(q, ǫ)A(q, ǫ + ω). (20)

A similar calculation of the finite wavevector conductiv-
ity, neglecting vertex corrections, gives

σ(ω,k) =
1

ω

( eν

8π

)2
∫

d2q

(2π)2

∫ ∞

−∞

dǫ

4π
|ωk − ǫq|2

× [nB(ǫ + ω) − nB(ǫ)] A(q, ǫ)A(q + k, ǫ + ω).

In contrast to the zero wavevector conductivity, σ(ω,k)
may be non-zero in the absence of disorder. Eq.(20) may
now be used, in conjuction with the spinwave self-energy,
Eqs.(9,10), in order to calculate the contribution of dis-
order scattered spinwaves to the optical conductivity. In
the absence of disorder, the spectral function has a single
delta-function peak, A(q, ǫ) = 2πδ(ρ̄ǫ/2−E(q)). The ef-
fect of disorder is to broaden and shift this peak. For T ≪
g, ω and weak disorder, the product A(q, ǫ)A(q, ǫ + ω),
derived from Eqs.(9,10), is strongly peaked at ρ̄ǫ/2 =
E(q) and ρ̄(ǫ + ω)/2 = E(q) and may be approximated
by

A(q, ǫ)A(q, ǫ + ω) ≈ 2πδ (ρ̄ǫ/2 − E(q)) A(q, ǫ + ω)

+ 2πδ (ρ̄(ǫ + ω)/2 − E(q)) A(q, ǫ).

The real part of the longitudinal optical conductivity,
calculated within this approximation, is

σ(ω) ≈ K

32πρ2
s

( eν

8π

)2

T 2(1 − e−ω/T )e−2gB/T . (21)

At very small frequency, ω ≪ KT , the product
A(q, ǫ)A(q, ǫ + ω) is no longer resolved into two peaks.
The dominant frequency dependence in Eq.(20) then
comes from the nB(ǫ) − nB(ǫ + ω) term. Then

A(q, ǫ)A(q, ǫ + ω) ≈ A2(q, ǫ) =
2πδ(ρ̄ǫ/2 − E(q))

ℑmΣ(q, ǫ)
.

The energy and momentum integrals in Eq.(20) may then
be carried out with the result

σ(ω) ≈ 1

πρ2
sK

( eν

8π

)2

ω2e−2gB/T for g ≫ T. (22)

For typical experimental systems at ν = 1, an upper esti-
mate for the disorder strength is K ∼ 0.1 (approximating
nd = ρ̄) and the spin stiffness ρs ∼ 4K. The conductiv-
ities predicted by Eqs.(21,22) are vanishingly small and
probably unmeasurable.

Magnetization The variation of magnetization with
temperature, in the absence of disorder, has been calcu-
lated by Read and Sachdev5, using a lowest order 1/N
expansion. We extend this calculation to include the ef-
fect of disorder. Firstly, a Hopf map (n = z̄ασαβzβ,
∑2

α=1 |zα|2 = 1) is used to recast the effective action,
Eq.(1), into CP1 form;

S =

∫

d2xdt
[

i
ρ̄

2
z̄∂tz + ρs|Diz|2 + ρ̄gBz̄σzz

]

−
∫

d2xdt
[

U(x)J0(x) + λ
(

|z|2 − 1
)]

,

Jν = − iνe

2π
ǫµνλ∂ν z̄α∂λzα (23)

where Di = ∂i + iθi. θi is an auxiliary field, introduced
in order to decouple quartic terms in the effective action.
λ is a Lagrange multiplier that imposes the constraint.
The indices on zα have been suppressed for clarity.

To zeroth order in the 1/N expansion, the constraint
is imposed at the mean field level in order to self-
consistently determine the average value of the Lagrange
multiplier, λ̄10. The resulting gap equation is

〈〈z̄z〉〉 =
∑

σ=±

∫

d2p

(2π)2
dΩ̃Ḡ(iΩ̃,p2, σ, λ̄)

=
∑

σ=±

∫

d2p

(2π)2

∫ ∞

−∞

dǫ

2π
nB(ǫ)A(ǫ,p2, σ, λ̄), (24)

where Ḡ(iΩ̃,p2, σ, λ̄) indicates the disorder average
of the z̄z-Green’s function and A(ǫ,p2, σ, λ̄) =
−2ℑmḠret(ǫ,p

2, σ, λ̄) is the spectral function. We have
carried out the frequency summation in order to obtain
the final expression. The magnetization may also be cal-
culated to this order and is given by

〈〈z̄σzz〉〉 =
∑

σ=±

∫

d2p

(2π)2
dΩ̃σḠ(iΩ̃,p2, σ, λ̄)

=
∑

σ=±

σ

∫

d2p

(2π)2

∫ ∞

−∞

dǫ

2π
nB(ǫ)A(ǫ,p2, σ, λ̄). (25)

To O(1/N), Eq.(23), is identical to the sum of two
copies of the spinwave action, Eq.(3), with the Zee-
man term, ρ̄gB, replaced with σρ̄gB + λ̄. The expres-
sions for the self-energy derived above may be used di-
rectly with this replacement. In the absence of dis-
order, the spectral function has a single delta-function
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peak; A(ǫ,p2, σ, λ̄) = 2πδ(ρ̄ǫ/2 − E(p2, σ, λ̄)), where
E(p2, σ, λ̄) = ρsp

2 + σρ̄gB + λ̄. Substitution of this into
Eqs.(24,25), reproduces the result of [ 5]. The effect of
disorder is to broaden and shift this peak. The real part
of the self-energy produces a renormalization of the spin
stiffness, ρs → ρ̃s. Upon direct substitution of Eq.(10),
one finds that, to lowest order in K, the new position of
the peak is at ρ̄ǫ/2 = Ẽ − 4K2ρ̃sp

2 and so the shift due
to the imaginary part of the self-energy may be incorpo-
rated as a further renormalization of the spin-stiffness.
This is the dominant effect of weak disorder. The gap
equation and magnetization are given by the disorder
free expressions5 with appropriately renormalized spin-
stiffness11.

The calculation of Ref.[ 5] shows good agreement with
experiment12 aside from at high temperatures, where the
experimentally measured magnetization appears to fall
below even the theoretical ρs = 0 prediction. Recent
work13 has shown that this discrepancy cannot be ex-
plained by the inclusion of higher orders in the 1/N ex-
pansion. Here, we have shown that neither can it be
explained by the effects of weak disorder. In fact, to ex-
plain this observation would require spectral weight to
be transfered below the Zeeman gap. This appears to be
impossible so long as the groundstate remains ferromag-
netic. Two possible alternative explanations lie in the
effect of Skyrmions or the inclusion of the correct spin-
wave dispersion at high momenta. The latter approach
has provided a good explanation for the dramatic reduc-
tion in magnetization with increasing temperature found
at ν = 1/314. It is readily incorporated into the lowest
order 1/N expansion in the absence of disorder, by insert-
ing a spectral function with a delta-function peak at the
correct spinwave dispersion into Eq.(24,25) and solving
the resulting equations numerically.

In conclusion, we have considered the effect of weak
disorder upon the quantum Hall ferromagnet. The iden-
tification of charge and topological charge of spinwave
distortions allows a coupling of spins to the disorder po-
tential. The signature of this coupling in the temperature
dependence of magnetization is a reduction of the effec-
tive spin-stiffness. The effect upon conductivity is rather
more interesting, although unfortunately it is probably
unmeasurably small. We predict a spinwave contribution
to the longitudinal optical conductivity at finite temper-
ature.
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