
 1 

 

 

 

 

 

 

Screening of Streptococcus pneumoniae ABC transporters for 

their role in virulence and investigation of their lipoprotein 

components as vaccine candidates 

 

 

Shilpa Basavanna 

University College London 

Thesis for doctoral degree (PhD), 2011 

 

 

 

 

 

 

 

 

 



 2 

 

    

     

Declaration 

 

I, Shilpa Basavanna confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been indicated 

in the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

Abstract 

Streptococcus pneumoniae causes life-threatening invasive diseases in children and 

older adults. Although effective at reducing the incidence of disease, the two currently 

available vaccines against S. pneumoniae have significant limitations that a vaccine 

based on protein antigens may overcome. For this thesis I have investigated the role of 

S. pneumoniae ABC transporters during infection, and have assessed as potential 

vaccine candidates the lipoprotein components of two ABC transporters. 

Eleven ABC transporters were chosen for investigation of their role during 

infection, and disruption mutant strains were successfully constructed for 9 of these. 

Two mutant strains disrupting the Sp0148-52 and Sp0749-53 ABC transporters, which 

BLAST searches suggest have methionine and branched chain amino acids (BCAAs) as 

substrates respectively, were markedly attenuated in systemic and pulmonary mice 

models of virulence. Western blotting and PCR confirmed that the lipoprotein 

components of these ABC transporters, Sp0149 and Sp0749, are present in all the S. 

pneumoniae strains investigated and are membrane-localised. Radioactive and 

fluorescence ligand binding experiments showed the Sp0749 lipoprotein specifically 

bound to BCAAs, confirming Sp0749-53 encodes a BCAA ABC transporter.  

Vaccination of mice with His6-Sp0149 and His6-Sp0749 induced specific IgG 

which was able to increase complement activity against and phagocytosis of S. 

pneumoniae. Intranasal immunisation of mice with His6-Sp0749 and His6-PiaA, 

affected the immune response to subsequent intranasal challenge with S. pneumoniae 

and increased lung inflammation upon subsequent S. pneumoniae intranasal challenge. 

However, both intraperitoneal and intranasal immunisation of mice with His6-Sp0149 

and His6-Sp0749 resulted in only minor degrees of protection against S. pneumoniae 

septicaemia and pneumonia respectively. These results demonstrate that the S. 
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pneumoniae BCAA ABC transporter is required for the full virulence, and its 

lipoprotein component can elicit immune responses against invasive S. pneumoniae that 

although weakly protective could contribute towards a multivalent vaccine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

Table of contents 

Chapter 1 

Introduction to Streptococcus pneumoniae  

1. 1 GENERAL, 32 

1.2 CLINICAL CONSIDERATIONS, 33 

 1.2.1 Nasopharyngeal carriage, 33 

 
 1.2.2 Diseases caused by S. pneumoniae, 35 

 (a) Acute otitis media, 35 

 (b) Septicaemia, 37 

 (c) Pneumonia , 37 

 (d) Meningitis, 38 

1.3 VACCINES AGAINST S. PNEUMONIAE, 39 

             (a) S. pneumoniae serotype distribution, 39 

 (b) S. pneumoniae capsular polysaccharide vaccines, 40 

 (c) S. pneumoniae conjugate vaccines, 41 

 (d) S. pneumoniae protein vaccines and lipoproteins as vaccines, 42 

 (e) Live, killed and DNA vaccines, 44 

1.4 VIRULENCE FACTORS INVOLVED IN THE PATHOGENESIS OF S. PNEUMONIAE  

         INFECTIONS, 45 

 1.4.1 Adhesion, 48 

 (a) Capsule, 50 

 (b) IgA1 protease, 50 

 (c) Phosphorylcholine (PC), 51 

 (d) Neuraminidases (NanA, NanB, NanC), 53 



 6 

 (e) Exogylcosidases, 54 

 (f) Pneumococcal surface adhesion (PsaA), 55 

 (g) Pneumococcal surface protein C / Choline binding proteinA (PspC /  

                CbpA), 55 

 (h) Pneumococcal adhesion and virulence factor A (PavA), 57 

 (i) Streptococcal lipoprotein rotamase (SlrA), 57 

 (j) Pili, 58 

 (k) Phase variation, 59 

 1.4.2 Invasion of tissues, 60 

 (a) Hyaluronidase, 61 

 (b) Plasminogen (PLG) binding proteins, 61 

 (c) PC, 62 

 (d) Pav A, 63 

 (e) Pneumolysin (Ply), 63 

 1.4.3 Evasion of host immunity, 64 

 (a) Polysaccharide capsule and cell wall, 65 

 (b) Pneumococcal surface protein A (PspA), 66 

 (c) Pneumolysin, 67 

 (d) CbpA, 68 

 (e) Endonuclease A, 69 

 1.4.4 Inflammation, tissue damage and the induction of septic shock, 69 

 (a) Pneumolysin, 70 

 (b) Cell wall and cell wall polysaccharides and Autolysin (LytA), 71 

 (c) Pyruvate oxidase (Spx), 72 

 1.4.5 Replication and growth in vivo, 73 



 7 

 1.4.6 Regulation of S. pneumoniae virulence, 74 

1.5 ATP BINDING CASSETTE TRANSPORTERS (ABC TRANSPORTERS), 76 

 1.5.1 Structure of ABC transporter, 79 

 1.5.2 Processing of lipoproteins, 79 

 1.5.3 Roles of ABC transporters in S. pneumoniae and other bacterial       

                     pathogens, 81 

 1.5.4 Role of components bacterial ABC transporters as vaccine  

                    candidates, 84 

 1.5.5 Lipoprotein components of ABC transporters investigated as vaccine 

                     candidates in S. pneumoniae, 85 

 1.5.6 Conclusion, 87 

1.6 HYPOTHESIS AND AIMS, 88 

Chapter 2 

Materials and methods 

2.1 BACTERIAL STRAINS, 89 

2.2 MEDIA AND GROWTH CONDITIONS, 89 

2.3 DNA METHODS, 90 

 2.3.1 Extraction of plasmid DNA from E. coli, 90 

 2.3.2 Extraction of genomic DNA from S. pneumoniae, 90 

 2.3.3 Gel extraction and purification of DNA, 90 

 2.3.4 PCR, 91 

 2.3.5 Restriction digestion, 91 

 2.3.6 Ligation, 92 

 2.3.7 Overlap extension PCR (OEP), 92 

 (a) Initial PCR, 93 



 8 

 (b) Fusion of the initial PCR products without primers, 93 

 (c) Amplification of fused PCR products, 93 

 2.3.8 Transformation of E. coli, 94 

 2.3.9 Transformation of S. pneumoniae, 94 

 2.3.10 Nucleotide sequencing, 95 

2.4 RNA METHODS, 95 

 2.4.1 RNA extraction from S. pneumoniae, 95 

 2.4.2 RNA extraction from S. pneumoniae by acid-phenol method, 95 

 2.4.3 RT-PCR, 96 

2.5 PROTEIN METHODS, 97 

 2.5.1 Induction of positive clones for protein expression, 97 

 2.5.2 Purification of 6xHis-tagged lipoproteins by Ni-NTA affinity 

                     chromatography under native conditions, 98 

 2.5.3 Preparation of dialysis tubing, 99 

 2.5.4 Dialysis of purified lipoproteins, 99 

 2.5.5 Protein concentration determination by Bicinchonic acid (BCA)  

                      method (Pierce), 99 

 2.5.6 Whole cell lysate preparation from S. pneumoniae, 100 

 2.5.7 Extraction of S. pneumoniae membrane proteins by Triton X-114, 100 

 2.5.8 SDS-PAGE, 101 

 2.5.9 Western blotting, 101 

 2.5.10 Tryptophan fluorescence spectroscopy, 102 

 2.5.11 Radioactive substrate binding assay, 102 

 2.5.12 Streptonigrin assay, 103 

 2.5.13 Radioactive substrate uptake assays, 103 



 9 

2.8 IN VIVO METHODS, 104 

 2.8.1 In vivo studies of S. pneumoniae in mouse models, 104 

 2.8.2 IP vaccination schedule and challenge experiment, 105 

 2.8.3 IN vaccination schedule and challenge experiment, 106 

 2.8.4 Immune cell surface marker staining recovered from target  

 organs, 107 

 2.8.5 Cytological analysis of BALF, 108 

 2.8.6 Histological analysis of lung sectioning, 108 

2.9 IMMUNE ASSAYS, 109 

 2.9.1 Enzyme Linked Immunosorbant assay (ELISA), 109 

 2.9.2 C3 deposition and IgG binding assay, 110 

 2.9.3 Opsonophagocytosis, 110 

 (a) FAMSE labelling of S. pneumoniae for opsonophagocytosis, 111 

 (b) Tissue culture of HL60 for opsonophagocytosis, 111 

 (c) Opsonophagocytosis, 112 

2.10 FLUORESCENCE-ACTIVATED CELL SORTING (FACS) ANALYSIS, 112 

2.11 COMPUTER ANALYSIS, 113 

2.12 STATISTICAL ANALYSIS, 113 

Chapter 3 

Screening of S. pneumoniae ABC transporters 

3.1  IDENTIFICATION AND SELECTION OF ABC TRANSPORTER GENES, 121 

3.2  AMINO ACID HOMOLOGY OF TIGR4 ABC TRANSPORTER GENES WITH  

                OTHER BACTERIAL SPECIES, 122 

3.3  CONSTRUCTION OF THE DISRUPTION MUTANTS OF S. PNEUMONIAE BY  

                 INSERTIONAL DUPLICATION MUTAGENESIS, 122 



 10 

3.4          STABILITY OF THE MUTATION, 128 

3.5       GROWTH CURVES IN THY, 131 

3.6  PHENOTYPE ANALYSIS BY COMPETITIVE INDEX, 131 

3.7  ANALYSIS OF THE GENETIC ORGANISATION OF THE ABC TRANSPORTER 

OPERONS BY RT-PCR, 136 

 (a) Sp0090-0092, 137 

 (b) Sp0148-0152, 137 

 (c) Sp0607-10, 138 

 (d) Sp0749-53, 138 

 (e) Sp0846-48, 138 

 (f) Sp1686-90, 138 

 (g) Sp1796-98, 145 

 (h) Sp1824-26, 145 

 (i) Sp2108-10, 145 

3.8 SUMMARY, 145 

Chapter 4 

Detailed phenotype analysis of the effects of mutation 

of Sp0149 and Sp0750-53 

4.1  GENE EXPRESSION OF SP0149 AND SP0749 BY SEMI-QUANTITATIVE RT-PCR, 147 

4.2  CONSTRUCTION OF SP0149 AND SP0750-53 DELETION MUTANT STRAINS IN S. 

 PNEUMONIAE, 152 

4.3  LOCALISATION STUDIES OF SP0149 AND SP0749 LIPOPROTEINS, 157 

4.4  IN VITRO PHENOTYPE ANALYSIS OF THE S. PNEUMONIAE ΔSP0149 AND 

 ΔSP0750-53 DELETION MUTANTS, 160 



 11 

 4.4.1  Growth curve of ΔSp0149 and ΔSp0750-53 mutants in THY, 160 

 4.4.2  Growth curve of ΔSp0149 and ΔSp0750-53 mutants in cation  

                       depleted media, 161 

 4.4.3  Streptonigrin sensitivity test, 164 

 4.4.4  Growth curve of ΔSp0149 and ΔSp0750-53 mutants in chemically  

                        defined medium (Cden), 166 

 4.4.5  Azaleucine toxicity test, 166 

 4.4.6  Uptake assays, 168 

 4.4.7  Analysis of substrate specificity by tryptophan fluorescence  

  spectroscopy, 170 

 4.4.8  Radioactive substrate binding assay, 175 

4.5  IN VIVO PHENOTYPE ANALYSIS OF THE S. PNEUMONIAE ΔSP0149 AND ΔSP0750-

 53 DELETION MUTANTS, 176 

 4.5.1  Competitive index, 176 

 4.5.2  Survival curves, 180 

4.6 SUMMARY, 180 

Chapter 5 

Investigation of Sp0149 and Sp0749 vaccine potential 

against systemic S. pneumoniae disease 

5.1  EXPRESSION AND PURIFICATION OF SP0149 AND SP0749 LIPOPROTEINS, 182 

5.2  CONSERVATION OF SP0149 AND SP0749 GENES IN S. PNEUMONIAE STRAINS, 189 

5.3  ELISAS, 191 

5.4  C3 DEPOSITION, 193 

5.5  OPSONOPHAGOCYTOSIS, 196 



 12 

5.6  ACTIVE IMMUNIZATION STUDIES, 198 

5.7  SUMMARY, 203 

Chapter 6 

Investigation of Sp0749 vaccine potential against S. 

pneumoniae pneumonia 

6.1  EXPRESSION AND PURIFICATION OF PIAA AND PIUA LIPOPROTEINS, 204 

6.2  ELISA, 206 

6.3  BACTERIAL CFU’S IN TARGET ORGANS, 207 

6.4  CYTOSPINS OF BALF, 210 

6.5  IMMUNE RESPONSE TO CT, HIS6-PIAA AND HIS6-PIAA PLUS HIS6-SP0749 IN 

 IMMUNISATION AND S. PNEUMONIAE CHALLENGE, 213 

6.6  HISTOLOGICAL ANALYSIS OF AFTER S. PNEUMONIAE CHALLENGE OF 

 INTRANASALLY VACCINATED MICE, 219 

6.7  SURVIVAL OF THE HIS6-SP0149 AND HIS6-SP0749 IMMUNISED MICE AFTER S. 

 PNEUMONIAE CHALLENGE, 221 

6.8  SUMMARY, 225 

Chapter 7 

Discussion 

7.1 SUMMARY, 250 

7.2 POTENTIAL FUTURE DIRECTIONS, 253 

References, 254 

Appendix, 276 



 13 

List of figures 

Figure 1.1 Diseases caused by S. pneumoniae, 36 

Figure 1.2 Schematic diagram of various virulence factors involved in S.  

  pneumoniae adherence to host cells, 49 

Figure 1.3 Schematic diagram of Gram positive ABC transporter, 80 

Figure 1.4 Processing of the lipoproteins in Gram positive bacteria, 83 

Fig 3.1  Genetic organisation of S. pneumoniae ABC transporters chosen for 

  the phenotype studies, 123 

Figure 3.2 Schematic diagram of pID701 plasmid used to construct S. pneumoniae

  mutant strains using insertional duplication mutagenesis, 129 

Fig 3.3  Diagram of insertional duplication mutagenesis, 130 

Fig 3.4, 3.5 Growth curves of S. pneumoniae wild-type and ABC transporter mutant 

  strains in THY, 133, 134 

Fig 3.6  Genetic organisation of Sp0148-0153 by RT-PCR, 139 

Fig 3.7  Genetic organisation of Sp0749-0753 by RT-PCR, 140 

Fig 3.8  Genetic organisation of Sp0846-0848 by RT-PCR, 141 

Fig 3.9  Genetic organisation of Sp2108-2110 by RT-PCR, 142 

Fig 4.1, 4.2 Semi-quantitative RT-PCR and densitometry analysis of 16S rRNA, 

  psaA, Sp0149, Sp0749 and Sp1386 in THY, human blood and mice 

  blood, 148, 150 

Fig 4.3  Schematic diagram of the deletion of Sp149 by overlap extension PCR 

  (OEP), 153 

Fig 4.4  Schematic diagram of the deletion of Sp750-53 by overlap extension 

  PCR (OEP), 154 

Fig 4.5  Generation of ΔSp0149 and ΔSp0750-53 deletion constructs, 155 



 14 

Fig 4.6  Schematic diagram showing the deletion of Sp0149 gene from the  

  Sp0148-53 operon and Sp0750-53 genes from Sp0749-53 operon, 156 

Fig 4.7  Subcellular localisation of Sp0149 and Sp0749, 158 

Fig 4.8  Growth curves of the wild-type, ΔSp0149 and ΔSp0750-53 deletion 

  mutant strains of S. pneumoniae (0100993) measured in THY medium, 

  162 

Fig 4.9  Growth curves of wild-type and ΔSp0149 S. pneumoniae strains in  

  Chelex-THY medium supplemented with and without individual cations 

  and streptonigrin assay, 163 

Fig 4.10 Growth of S. pneumoniae wild-type, ΔSp0149 and ΔSp750-53 strains in 

  Cden medium in the presence and absence of branched chain amino 

  acids, 165 

Fig 4.11 Growth of S. pneumoniae (0100993) wild-type and Sp0750
- IDM mutant 

  strains in THY medium at different concentrations of azaleucine, 167 

Fig 4.12  Radioactive leucine and maltose uptake using serotype 2 (D39) S.  

  pneumoniae wild-type and ΔSp0750-53 strains, 169 

Fig 4.13, 4.14 and 4.15 Flourescence spectroscopy analysis of the purified His6-Sp0749 

   lipoprotein, 172, 173, 174 

Fig 4.16  Radioactive substrate binding assay, 177 

Fig 4.17  In vivo CIs using ΔSp0149 and ΔSp0750-53 deletion mutants, 178 

Fig 4.18  In vivo survival curves of ΔSp0149 and ΔSp0750-53, 179 

Fig 5.1  Cloning of Sp0149 and Sp0749 in pQE30UA and pQE30  

                         expression plasmid, 184 

Fig 5.2  Amplification of Sp0149 and Sp0749 lipoprotein genes and colony PCR,  

                        185 



 15 

Fig 5.3, 5.4 Amino acid sequence of His6-Sp0149 and His6-Sp0749, 186, 187 

Fig 5.5  Expression and purification of His6-Sp0149 and His6-Sp0749, 188 

Fig 5.6  Conservation of Sp0149 and Sp0749 in representative  

  S. pneumonaie capsular serotypes, 190 

Fig 5.7  IgG, IgG1a and IgG2a antibody titres measured by ELISA after IP  

  immunisations with the purified His6-Sp0149 and His6-Sp0749, 192 

Fig 5.8, 5.9 Flow cytometry analysis of in vitro C3 deposition by anti-Sp0149 and 

  anti-Sp0749 on the surface of S. pneumoniae, 194, 195 

Fig 5.10 Flow cytometry analysis of in vitro opsonophagocytosis by anti-Sp0149 

  and anti-Sp0749 on the surface of S. pneumoniae, 197 

Fig 5.11, 5.12 IP active immunisation of CD mice with purified His6-Sp0149, His6-

  Sp0749, PspA  and alum and S. pneumoniae challenge, 199, 200 

Fig 5.13  IP active immunisation of Balb/c mice with purified His6-Sp0149, His6-

  Sp0749, PsaA and alum and S. pneumoniae challenge in Balb/c mice,  

                        201 

Fig 6.1  IgG and IgA antibody titres measured by ELISA after IN immunisations 

  with the purified His6-PiaA and His6-Sp0749, 205 

Fig 6.2  Determination of S. pneumoniae cfu from the target fluids and organs of 

  IN immunised mice with His6-PiaA and His6-PiaA plus Sp0749, 208 

Fig 6.3  Differential cell counts of macrophages, lymphocytes and neutrophils 

  present in the BALF pre and post S. pneumoniae challenge, 212 

Fig 6.4  Flow cytometry analysis of activation of CD4 and CD8 positive cells in 

  the BALF of CBA/Ca mice upon immunisation and subsequent S.  

  pneumonaie challenge, 214 



 16 

Fig 6.5  Flow cytometry analysis of activation of CD4 and CD8 positive cells in 

  the lungs of CBA/Ca mice upon immunisation and subsequent S.  

  pneumonaie challenge, 215 

Fig 6.6  Flow cytometry analysis of activation of B220 positive cells in the BALF 

  and lungs of CBA/Ca mice upon immunisation and subsequent S.  

  pneumonaie challenge, 216 

Fig 6.7  Flow cytometry analysis of macrophage activation in the BALF and 

  lungs of CBA/Ca mice upon immunisation and subsequent S.  

  pneumonaie challenge, 217 

Fig 6.8, 6.9 IN immunisation with CT, PiaA, PiuA, Sp0749 and combinations of 

  PiaA with Sp0749 and S. pneumonaie challenge of CD1 mice, 222, 223 

Fig 6.10  IN immunisation with CT, PiaA, PiuA, Sp0749 and combinations of 

  PiaA with Sp0749 and S. pneumonaie challenge of CBA/Ca mice, 224 

Fig 7.1  Flow chart to summarise the novel results of Sp0149-52 and Sp0749-53 

  ABC transporters, 249 

 

 

 

 

 

 

 

 

 

 



 17 

List of tables 

Table 1.1 S. pneumoniae serotype distribution, 40 

Table 1.2 Different approaches of immunisation against S. pneumoniae, 46 

Table 1.3  Role of S. pneumoniae virulence factors in pathogenesis, 77 

Table 1.4  ABC transporters investigated before, 84 

Table 2.1 Mouse strains used for different in vivo experiments in this study, 106 

Table 2.2 Primers used during this study, 115 

Table 2.3 Plasmids constructed during the study, 119 

Table 2.4 S. pneumoniae mutant strains constructed during the study, 120 

Table 3.1 Homology of TIGR4 genes encoding components of S. pneumoniae   

                       ABC transporter with other bacterial genomes using BLAST   

                        alignment, 125 

Table 3.2 List of mutants constructed with the Sp number, possible substrate  

  specificity and disruption site , 128 

Table 3.3 In vitro and in vivo phenotype analysis of S. pneumoniae ABC  

  transporter mutant strains by competitive index (CI), 135 

Table 3.4 RT-PCR table, 143 

Table 6.1 Median and interquartile range (IQR) of S. pneumoniae (D39) cfu  

  determined from BALF, lungs and blood after the IN immunisation, 209 

Table 6.2 Median and IQRs of the total cell counts pre and post S. pneumoniae 

  challenge in BALF and lungs of CBA/Ca mice after the IN  

                        immunisation, 211 

Table 6.3 Histological analysis of the level of inflammation in the lungs of  

  CBA/Ca mice after the IN immunisation and S. pneumoniae challenge,  

                        220 



 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

Abbreviations 

AOM   Acute otitis media 

ATP   Adenosine triphosphate 

ABC   ATP binding casette 

A549   Human alveolar epithelial cell line 

ahpD   Alkyl hydroxyl peroxidase D 

AMP   Adenosine monophosphate 

ARTEMIS  Primer designing software 

AliA   Oligopeptide A 

AmiACDEF  Oligopeptide ACDEF uptake ABC transporter 

AdcABC  Zinc ABC uptake ABC transporter 

AIB   amino isobutyric acid 

B220   B cell surface marker 

Balb/c   Inbred mouse strain 

BALF   Bronchoalveolar lavage fluid 

BgaA   β-galactosidase 

BMEC   human brain microvascular endothelial cells 

Blp   Bacteriocin-like peptide 

BSA   Bovine serum albumin 

BCA   Bicinchonic acid 

BALF   Bronchoalveolar lavage fluid 

BSA-T   Bovine serum albumin-Tween 

BLAST  Basic Local Alignment Search Tool 

BamHI   Restriction enzyme 

Bp   Base pairs 



 20 

BCAA   Branched chain amino acids 

CAP   Community acquired pneumonia 

CNS   Central nervous system 

CFU   Colony forming units 

CSF   Cerebrospinal fluid 

CRM197  7-valent vaccine conjugated to non-toxic mutant diphtheria  

   toxoid 

CbpA   Choline binding protein A 

CBA/N  Inbred mouse strain 

CBP   Choline binding proteins 

COS-7   Cell line derived from the kidney cells of African green  

   monkey 

C3   Complement component 3 

C3b   Component formed by cleavage of C3 

iC3b   Inactive product of C3b 

C1q   Multivalent complement complex 

CRASP1  Complement regulator acquiring surface protein 

CRP   C-reactive protein 

CtsR   Negative regulator of heat shock response 

Clp   Heat shock porteins 

CCR   Carbon catabolite repressor 

CcpA   Catabolite control protein A 

CSP   Competence stimulating peptide 

CO2   Carbon-di-oxide 

CaCl2   Calcium chloride 



 21 

CSP1   Competence stimulating peptide 1 

cDNA   complementary DNA 

CL   Cell lysates 

CD1   Outbred mice 

CI   Competetive index 

CT   Cholera toxin 

CD4   Cluster of differentiation 4 

CD8   Cluster of differentiation 8 

CD45RB  Cluster of differentiation 45 isoform 

CD80   Cluster of differentiation 80 

ComABCDE  Competence ABCDE  

Cat gene  Chloramphenicol resistance gene 

C   Complementation 

Cden medium  Chemically defined medium 

CDM   Chemically defined medium 

14C   Radiocarbon / radioactive isotope of carbon 

Co2+   Cobalt 

DNA   Deoxyribonucleic acid 

D562   Detroit cell line 

DOLOP  Database of bacterial lipoproteins 

dNTPs   Deoxynucleoside triphosphates 

DTT   Dithiothreitol 

DOC   Deoxycholic acid / deoxycholate 

dNP   dinitrophenol 

DMSO   Dimethyl sulfoxide 

http://en.wikipedia.org/wiki/Nucleoside
http://en.wikipedia.org/wiki/Dithiothreitol


 22 

Δ   Delta symbol represents deletion mutation 

ECM   Extracellular matrix 

Eno   Enolase 

End A   Endonuclease A 

EDTA   Ethylenediaminetetraacetic acid 

EB buffer  Elution buffer 

erm gene  erythromycin gene 

ECL   Enhanced chemiluminescence 

ELISA   Enzyme linked immunosorbent assay 

Fab fragment  Antigen binding fragment 

Fc fragment  Crystallizable fragment 

FimA   Fimbrial adhesion A 

Fbp54   Fibronectin binding protein 54 

FeoABC  Salmonella typhimurium iron uptake ABC transporter  

FT   Flow through 

FITC   Fluorescien isothiocyanate 

FAMSE  5,6-carboxyfluorescein-succinidyl ester 

FACS   Flourescence-activated cell sorting analysis 

Fe3+   Ferric iron 

F primer  Forward primer 

For   Forward primer 

GlcNAc  N-acetylglucosamine 

GalNAc  N-acetylgalactosamine 

GAPDH  Glyceraldehyde-3-phosphate dehydrogenase 

G+C   Guanine+Cytosine  



 23 

G+LLP  Gram positive lipoprotein recognition pattern 

Gln    Glutamime 

GF/F   Glass microfibre filters 

HIV   Human immunodeficiency virus 

hpIgR   Human polymeric immunoglobin receptor 

Hic   Factor H binding protein 

Hep cell-line  Human laryngeal epidermoid carcinoma cell line 

HUVEC  Human umbilical vein endothelial cells 

HK   Histidine kinase 

H2O2   Hydrogen peroxide 

HRP   Hrse raddish peroxidase 

HBSS   Hanks buffered salt solution 

HBSS+ Ca+Mg Hanks buffered salt solution + calcium + magnesium 

HL60   Human promyelocytic leukemia cells 

IL   Interleukin 

IPD   Invasive pneumococcal disease 

IgG   Immunoglobulin G 

IgA   Immunoglobulin A 

IgA1    Immunoglobulin A1 

IL1 β   Interleukin 1 beta 

IPTG   Isopropyl ß thiogalactosidase 

IP   Intraperitoneal 

IN   Intranasal 

I-A-I-E  Subregions of major histocompatibility complex II (MHC II) 

IQR   Interquartile range 



 24 

IDM   Insertional duplication mutagenesis 

Kb   Kilobases 

KDa   Kilodalton 

LytA   Autolysin  

LTA   Lipotechoic acid 

LraI   Lipoprotein receptor-associated antigen I 

Lgt   Prolipoprotein diacylglyceryl transferase 

Lsp   Prolipoprotein signal peptidase  

Lnt   Apolipoprotein N-acyltransferase 

LB   Luria Bertani 

LIV   Leucine Isoleucine valine 

MIP   Macrophage inflammatory protein 

MBL   Mannose binding lectin  

MSD   Membrane spanning domain 

Msm   Multiple sugar binding ABC transporter 

MtsABC  Iron uptake ABC transporter 

mM   milli moles 

μM   micro moles 

MgSO4  Magnesium sulfate 

mA   milli Ampere 

μCi   micro Curie 

μL   micro litre 

mL   milli litre 

MOI   Multiplicity of infection 

mRNA   messenger ribonucleic acid 



 25 

mg ml-1  milligrams per millilitre 

MLST   Multi-Locus Sequencing Typing 

MHC   Major Histocompatibility Complex 

Nan A,B,C  Neuraminidase A, B, C 

NETs   Neutrophil extracellular traps 

NFAT   Nuclear factor of activated T cells 

NO   Nitric oxide 

nM   nano moles 

nM   nano meters 

NAES   Sodium acetate + EDTA + SDS  

Ni-NTA  Nickel tagged-Nitrilotriacetic acid 

NaH2PO4  Sodium phosphate 

NCBI   National Center for Biotechnology Information 

NaCl   Sodium chloride 

N-terminal  Amino terminal of protein sequence 

OMPC   Meningococcal outer membrane compex 

O-variant  Opaque variant 

OMP   Outer membrane proteins 

OD   Optical density 

OEP   Overlap extension PCR 

OP   Opsonophagocytosis  

Ori   Origin of replication 

ORF   Open reading frame 

Ply   Pneumolysin 

PPV   Pneumococcal polysaccharide vaccine 

http://en.wikipedia.org/wiki/National_Center_for_Biotechnology_Information


 26 

PCV   Pneumococcal conjugate vaccine 

Pnc D   PCV with diphtheria toxoid as protein carrier 

Pnc T   PCV with tetanus toxoid as protein carrier 

PspA   Pneumococcal surface protein A 

PspC   Pneumococcal surface protein C 

PsaA   Pneumococcal surface antigen A 

PiaA   Pneumococcal iron acquisition A 

PiuA   Pneumococcal iron utilisation A 

PpmA   Putative proteinase maturation protein 

PrtA   Cell-wall associated precursor protein 

PavA   Pneumococcal fibronectin binding protein 

PC   Phosphorylcholine 

PAFr   Platelet activating factor receptor 

PAF   Platelet activating factor 

Pce   Phosphorylcholine esterase 

pIgR   polymeric immunoglobulin receptor 

PPI   Pneumococcal pathogenicity island 

PLG   Plasminogen binding proteins 

PA   Plasminogen activators 

PMNL   Polymorphonuclear leukocytes 

Por1A   Porin 1 A 

PAMPs  Pathogen associated molecular patterns 

PcsB   Protein required for cell division and separation 

PotABCD  Polyamine transporter ABCD 

PstS   Phosphate specific transporter 



 27 

PCR   Polymerase chain reaction 

PBS   Phosphate buffered saline 

PitADBC  Pneumococcal iron transporter ADBC 

PO4 buffer  Phosphate buffer 

p-value  Statistical significance 

%   Percentage 

Rlr islet  RofA like-regulator 

Rrg ABC  RlrA regulated gene ABC 

ROI   Reactive oxygen intermediates 

RNI   Reactive nitrogen intermediates 

Reg M,R  Orthologues of Ccp 

RR   Response regulator 

Rpm   Rotations per minute 

RT-PCR  Reverse transcriptase-polymerase chain reaction 

RPMI   Roswell Park Memorial Institute 

RBC   Red blood cells 

R primer  Reverse primer 

Rev    Reverse primer 

16S rRNA  16 subunit ribosomal ribonucleic acid 

ST   Serotype 

SrtH   β-N-acetylglucosaminidase 

ScaA   Streptococcal coaggregation adherence A 

SsaB   Streptococcus sanguis adhesion B 

SpsA   S. pneumoniae secretory IgA binding protein 

SIgA   Secretory IgA 



 28 

SlrA   Streptococcal lipoprotein rotamase 

Srt   Sortase 

SK-MES-1  Lung squamous cell carcinoma cell line 

Spx   Puruvate oxidase 

STM   Signature tagged mutagenesis 

SBP   Substrate binding protein 

SRP   Signal recognition particle 

Sec   Sec translocase 

Sit ABCD  Salmonella iron transporter 

SloABC  S. mutans LraI operon 

SDS-PAGE  Sodium dodecyl sulfate –polyacrylamide gel electrophoresis 

s   seconds 

SalI   Restriction enzyme 

SacI   Restriction enzyme 

TIGR   The Institute of Genomic Research 

TNF-α   Tumor necrosis factor alpha 

TI   T-cell independent immune response 

TA   Teichoic acid 

T-variant  Transparant variant 

TLR-4   Toll-like receptor-4 

TCSTS  Two-component signal transduction system 

TCS   Two-component system 

THY   Todd-Hewit yeast extract 

TBS-T   Tris buffered saline-tween 

Tris-HCL  Tris-hydrochloric acid 
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TSA   Tris sodium chloride azide 

TA   Thymine Adenine 

Th1, 2 response T-helper 1, 2 response 

USA   United States of America 

UK   United Kingdom 

UCL   University College London 

WHO   World Health Organisatin 

W1, 2   Washes 1, 2 

XbaI   Restriction enzyme 

YidC   E. coli secretory protein  

Ybt    Yersinobactin 

Zn2+   Zinc 
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    Chapter 1 

 Introduction to Streptococcus pneumoniae 

 

1. 1 GENERAL 

Streptococcus pneumoniae are Gram-positive, encapsulated cocci, facultative 

anaerobic and α-haemolytic bacteria usually arranged in short chains. S. pneumoniae 

is a human pathogen which inhabits the upper respiratory tract of healthy individuals 

and commonly causes diseases such as pneumonia, septicaemia, acute otitis media 

and meningitis. It can rarely cause other infections such as sinusitis, arthritis, 

pericarditis and peritonitis. Infants, elderly people and patients with predisposing 

medical conditions such as chronic lung disease, alcohol abuse, malignant disease, 

immunosuppressive therapy, diabetes, splenectomy and renal dialysis are particularly 

susceptible to S. pneumoniae infections (McKenzie et al., 2000). Based on the 

polysaccharide capsule, more than 90 serotypes of S. pneumoniae have been 

identified. 

S. pneumoniae belongs to the Streptococcus mitis-Streptococcus oralis group 

(Smit group) of viridans group streptococci, also known as the oral streptococcal 

group which includes S. mitis, S. oralis, S. cristatus, S. infantis, S. peroris. To 

differentiate S. pneumoniae from other viridans group streptococci, four phenotype 

tests are routinely performed, which are colony morphology, optochin sensitivity and 

bile solubility tests and agglutination with antipolysaccharide capsular antibodies. 

However, some S. pneumoniae strains resistant to optochin and bile insoluble (bile 

insoluble-atypical pneumococci) have been reported (Whatmore et al., 2000), and 

concerns have also been raised on the sensitivity and specificity of the commercially 
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available agglutination test kits containing capsular antibodies to known S. 

pneumoniae serotypes as S. pneumoniae cells lacking capsule (atypical pneumococci) 

may not react and cross-reaction has been observed with other S. mitis group bacteria 

(Arbique et al., 2004). The availability of complete genome sequence of the capsular 

serotype 4 strain (TIGR4) of S. pneumoniae and virulence studies performed in 

animal models has allowed conserved virulence genes to be used as an alternative 

way to identify S. pneumoniae. Amplification of virulence genes of S. pneumoniae 

such as autolysin gene (lytA), pneumolysin gene (ply), pencillin binding protein genes 

and specific regions of 16s rRNA gene have all been used to identify S. pneumoniae 

from other viridans group streptococci (Arbique et al., 2004), although contradictory 

results suggest that the lytA, and ply genes can be occasionally present in both S. mitis 

and S. oralis (Kawamura et al., 1999; Muller-Graf et al., 1999; Whatmore et al., 

2000). Despite the inaccuracies of each of the above techniques, optochin sensitivity 

test and bile solubility tests remain the routine methods for identification of S. 

pneumoniae.  

 

1.2 CLINICAL CONSIDERATIONS 

1.2.1 Nasopharyngeal carriage 

 
S. pneumoniae is a commensal residing in the upper respiratory tract of healthy 

children and adults. Transmission of the bacteria between people is through airborne 

droplets of respiratory secretions (Obaro and Adegbola, 2002). The first step in the 

nasopharyngeal colonisation of S. pneumoniae is adherence of the bacteria on to the 

epithelial surface with the help of various surface proteins (McCullers and Tuomanen, 

2001). Transition from asymptomatic nasopharyngeal carriage to invasive disease is 
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thought to depend on the balance between the host’s defence mechanisms and the 

ability of the bacteria to cause the disease. 

The normal flora of the nasopharynx includes various haemolytic streptococci, 

S. pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Staphylococcus 

aureus and Moraxella cattarrhalis (Bogaert et al., 2004). Despite the genetic 

dissimilarities between S. pneumoniae, H. influenzae and N. meningitidis, they share 

some common features in their mode of pathogenesis, such as asymptomatic 

nasopharyngeal carriage with the capability of invading the lungs, blood stream, ear, 

brain and a tendency to target the elderly and the very young (McCullers and 

Tuomanen, 2001). Competition between the pathogenic bacteria during the 

colonisation in the respiratory tract has also been reported, where hydrogen peroxide 

produced by S. pneumoniae is bactericidal to other bacteria residing in the respiratory 

tract. Phosphorylcholine, a cell wall component produced by S. pneumoniae and H. 

influenzae mediates the adherence to the receptor of platelet activating factor leading 

to competition between the two bacteria. Since phosphorylcholine is antigenic, 

antibodies raised against one species of bacteria can cross-react and aid in the 

clearance of various bacterial species also expressing phosphorylcholine (Pericone et 

al., 2000). Bogaert et al and Regev-Yochay et al have shown an age effect on the 

dominant pathogen colonising the nasopharynx. S. aureus colonizes the nasopharynx 

of 50% of children by the age of 10 years compared to 10% in their early years, whilst 

S. pneumoniae colonisaton was highest in infants (43%). Bogaert et al performed a 

cohort study on age-dependent carriage in children and adults aged 1-19 years and 

found that the peak of S. pneumoniae colonisation was 55% at the age of 3 years, 

declining to 8% after the age of 10 years. Other factors of relevance in S. pneumoniae 

colonisaton include socioeconomic background and environmental factors such as the 
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number of siblings, larger family size, income, smoking, children attending day care 

centre and previous respiratory viral infections (Vives et al., 1997) (Bogaert et al., 

2004). The incidence of nasopharyngeal carriage in children in developing countries 

such as Gambia (Lloyd-Evans et al., 1996), Pakistan (Mastro et al., 1993), Papua 

New Guinea (Gratten et al., 1989), Zambia (Frederiksen and Henrichsen, 1988), 

Australian aborinal infants (Watson et al., 2006) and the Philippines (Lankinen et al., 

1994) is higher than in developed countries. 

 

1.2.2 Diseases caused by S. pneumoniae 

S. pneumoniae causes less severe mucosal infections such as sinusitis and acute otitis 

media and also causes more severe diseases such as pneumonia, septicaemia, 

meningitis. Transition from an asymptomatic carrier state to disease causing state 

occurs when the bacteria are aspirated from the nasopharynx into the lungs causing 

pneumonia or when the bacteria penetrate the nasopharyngeal mucosa and invade the 

blood stream to cause septicaemia and invasion across the blood-brain barrier leading 

to meningitis (Figure 1.1). S. pneumoniae also invades the blood from the lungs as a 

consequence of pneumonia. Risk of invasive disease after pneumococcal colonisation 

is higher in certain ethnic groups such as African American, Native American and 

Alaskan native population.  

 

(a) Acute otitis media 

Acute otitis media (AOM) is a common infection of the middle ear and is associated 

with the upper respiratory tract infections in up to 90% children. Nasopharyngeal 

carriage is the main risk factor for bacterial AOM. S. pneumoniae serotypes isolated 

from the nasopharynx and the middle ear during AOM are usually the same (Syrjanen 
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et al., 2005), and the rate of nasopharyngeal carriage is higher in children with 

respiratory infections and AOM (Syrjanen et al., 2001). A Finnish cohort study 

performed in children found S. pneumoniae in 26% of patients with AOM, with most 

of the other cases due to M. cattarrhalis (23%) and H. influenzae (23%) (Kilpi et al., 

2001). Synergy between S. pneumoniae and the influenza viruses has been reported 

(Syrjanen et al., 2005) (McCullers, 2006) in which a previous viral infection of the 

respiratory tract helps the establishment of bacterial superinfection. Influenza virus 

induces epithelial damage, and impairs the ability of respiratory epithelium to clear 

pathogens. Furthermore, the neuraminidase activity of the virus cleaves the terminal 

sialic acid from the cell surface aiding S. pneumoniae adherence (McCullers, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Diseases caused by S. pneumoniae 
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(b) Septicaemia 

Septicaemia is a systemic infection during which the bacteria invade in to the blood 

and multiply, and may seed other sites to cause focal disease. Septicaemia caused by 

S. pneumoniae usually occurs secondary to pneumonia, but S. pneumoniae is also 

capable of establishing bacteremia in the absence of evidence of infection, 

presumably due to direct invasion from the nasophayrnx, a phenomena observed in 

15% of cases of bacteremia in children (Gillespie and Balakrishnan, 2000). The 

incidence of bacteremia caused by S. pneumoniae is higher than bacteremia caused by 

other bacterial pathogens such as H. influenzae, N. meningitidis and S. aureus in 

children ≤ 1 year, the incidence decreasing with age (Schutzman et al., 1991; Eskola 

et al., 1992; Brent et al., 2006). The incidence of bacteremia is also high in people 

over 65 years of age, and in adults with predisposing medical conditions (Breiman et 

al., 1990). Other factors contributing to the high incidence of bacteremia are ethnicity, 

living conditions such as crowding, socioeconomic conditions such as family size, 

active / passive smoking and recent antibiotic use and age. The incidence of invasive 

S. pneumoniae infection in certain ethnic groups such as Alaskan natives were 4 times 

higher than non-natives and are associated with lack of breast feeding, attendance of 

day care centre and smoking tobacco (Gessner et al., 1995; Davidson et al., 1994). 

 

(c) Pneumonia 

S. pneumoniae is the commonest cause of community acquired pneumonia (CAP) 

(Lim, 2004). Translocation of the pneumococci from the nasopharynx into lower 

respiratory tract (lungs) is thought to occur through microaspiration (Obaro and 

Adegbola, 2002). S. pneumoniae is particularly likely to be established in the lungs in 

conditions where the host’s structural barriers are altered such as damage to epithelial 
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lining and ciliary function following respiratory viral infection and smoking. The 

incidence of pneumonia is increased in metabolic and nutritional abnormalities such 

as diabetes mellitus and vitamin A deficiency (Obaro and Adegbola, 2002) and in 

patients with impaired immunity such as HIV infection, patients on 

immunosuppressive therapy and congenital immunoglobulin and complement 

deficiences (Bogaert et al., 2004). Respiratory tract infections with influenza virus 

and / or S. pneumoniae are a serious worldwide health problem and together are the 

6th leading cause of death worldwide (McCullers and Tuomanen, 2001). 

 

(d) Meningitis 

Meningitis is usually caused by nasopharyngeal colonisation with S. pneumoniae 

followed by asymptomatic bacteraemia and invasion of the central nervous system 

(CNS). S. pneumoniae meningitis has a 20% mortality and is particularly associated 

with moderate to severe neurological damage which is observed in 50% of the 

survivors (Arditi et al., 1998) (Muhe and Klugman, 1999). Invasion of the CNS 

occurs by crossing the blood-brain barrier but the mechanism used by S. pneumoniae 

to cause meningitis is not properly understood. In the CSF, S. pneumoniae can 

multiply and reach cell densities of 109 cfu ml-1, which induces a strong inflammatory 

reaction in response to cell wall components after autolysis of the bacteria. 

Proinflammatory cytokines (TNF-α, IL-1 and IL-6) and chemokines [IL-8, 

macrophage inflammatory protein (MIP-1 and MIP-2)] are known to be raised, which 

leads to the recruitment of macrophages and granulocytes for the clearance of 

bacteria. The neurological damage partially results as a consequence of the severity of 

the inflammatory reaction to S. pneumoniae (Meli et al., 2002). 
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1.3 VACCINES AGAINST S. PNEUMONIAE 

After S. pneumoniae was isolated and cultured by Sternberg and Pasteur 

simultaneously in 1881, pursuit for an effective vaccine against S. pneumoniae 

infections has continued until today. Although a whole-cell pneumococcal vaccine 

clinical trial performed in 1911 was unsuccessful, groundwork for the role of 

antibodies against S. pneumoniae capsular polysaccharide was laid which initiated the 

development of the polyvalent pneumococcal capsular polysaccharide vaccine 

(Reinert, 2004). At present, the pneumococcal capsular polysaccharide vaccines 

(PPV) and pneumococcal conjugate vaccine (PCV) have their own advantages and 

disadvantages. Protein based vaccines may offer some advantages over the PPV and 

are also currently under investigation.  

 

(a) S. pneumoniae serotype distribution 

As the existing vaccines protect against specific S. pneumoniae serotypes, the 

distribution of disease causing serotypes will dictate the potential efficacy of the 

vaccine at reducing S. pneumoniae disease. There are more than 90 serotypes of S. 

pneumoniae and the serotype distribution varies with geographic area and age group. 

In the USA, serotypes 4, 6, 9, 14, 18, 19, 23 causes 80-90% of invasive diseases, and 

in Europe the same serotypes cause 61-81% invasive diseases in children. In India, 

serotypes 14, 8, 19F, 7 and 11 are known to cause systemic and ophthalmic infections 

(Kar et al., 2006) and serotypes 1, 6, 19, 5, 23 and 7 are prevalent in south India, with 

serotype 1 being the main cause of meningitis and pneumonia (Kanungo and 

Rajalakshmi, 2001). In Taiwan, serotypes 14, 23F, 6B, 19F, and 3 were found to be 

prevalent in 1999-2004. The reasons for the variation in serotype prevalence with 
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geographic location are unclear, but could include socio-economic status and 

differences in the age distribution in the study population (Hausdorff, 2002). 

 

Table 1.1 S. pneumoniae serotype distribution causing invasive pneumococcal diseases 

(IPD) in various parts of the world (Hausdorff, 2002, Sleeman et al, 2001) 

 

 

 

(b) S. pneumoniae capsular polysaccharide vaccines 

The pneumococcal capsular polysaccharide vaccine is a polyvalent vaccine based on 

the formulation of various capsular polysaccharide antigens. In 1977, a 14-valent 

capsular PPV was licensed first and was followed by a 23-valent vaccine in 1983 

which is still in current use (French, 2003). The capsular polysaccharide antigens 

included are from 23 serotypes of S. pneumoniae that commonly cause invasive 

disease and provides a broad spectrum of protection (up to 90% of invasive strains) 

even though the epidemiology of the distribution of serotypes differs according to the 

geographical area (Jefferson and Demicheli, 2002). In the U.S.A, PPV are 

recommended for elderly people aged 65 and over, and in children above 2 years or 

adults with the predispositions to S. pneumoniae infections. Although the PPV is 

effective in healthy adults, it is not recommended to children under the age of 2 years 

as it only induces a T-cell independent immune response (TI) which is ineffective in 

S.  pneumoniae ST causing IPD Geographical distribution of IPD  ST
s 

Developing countries 1, 5, 7, 14, 19, 23 

Latin America, W. Europe 1, 3, 4, 6, 7, 9, 14, 15, 18, 19, 23   

United Kingdom. 1, 3, 4, 6, 7, 8, 14, 18, 19    

Australia, Canada, U.S.A. 4, 6, 9, 12, 14, 18, 19, 23  
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infants. The antibody concentration and protection induced by PPV wanes with time 

and this vaccine does not effectively induce protection in the elderly (French, 2003). 

Furthermore PPV induces protection mainly against septicaemia and meningitis and 

its efficacy at preventing S. pneumoniae pneumonia is poor (Huss et al., 2009; 

Moberley et al., 2008). 

 

(c) S. pneumoniae conjugate vaccines 

To improve the efficacy of PPV, epidemiologically important serotypes of S. 

pnemoniae are covalently coupled to protein carriers such as diphtheria toxoid (PncD 

conjugate vaccine), tetanus toxoid (PncT), and meningococcal outer membrane 

complex (OMPC). Covalent coupling of the polysaccharide antigens with the carrier 

proteins converts the immune response to T-cell dependent and increases the 

immunogenicity. 

The first PCV licensed in the U.S in 2000 was 7-valent vaccine conjugated to 

non-toxic mutant diphtheria toxoid (CRM197), commercially known as Prevenar® 

(Wyeth-Ayerst laboratories, Philadelphia, USA) and later introduced in Europe in 

2001. The serotypes present in the 7-valent PCV are 4, 6B, 9V, 14, 18C, 19F and 23F 

which cause 51-82% of invasive infections in children and 58% of those causing 

AOM. Two more PCVs, a 9-valent PCV including the additional serotypes 1 and 5 

and an 11-valent vaccine including the additional serotypes 3 and 7V are in clinical 

trials. Although the addition of 4 more serotypes covers 73-92% of invasive 

infections, increasing the vaccine valency within the limits of the quantity of protein 

carrier and also maintaining the immunogenicity is technically difficult. 

High antibody responses are observed in children to conjugate vaccines 

compared to no response to the unconjugated polysaccharide antigens (Feikin et al., 
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2004). In addition to children, other risk group such as elderly and 

immunocompromised patients (bone marrow transplant patients, HIV-infected 

people) who have shown suboptimal immunogenicity to polysaccharide vaccines have 

exhibited good antibody response to the conjugate vaccine (Reinert, 2004). Clinical 

trials have shown that conjugated vaccines are very effective at preventing invasive 

infections due to S. pneumoniae, and unlike the unconjugated vaccine also prevent 

pneumonia and otitis media in children (WHO report, 2007, 2008). In addition, the 

incidence of S. pneumoniae infections caused by vaccine serotypes in adults is 

reduced presumably due to herd immunity effects (WHO report, 2008). 

The main disadvantages with conjugate vaccines are the limitation of the 

number of capsular serotypes that could be used in vaccine formulation and high costs 

of its production. As more than 90 capsular serotypes are present and only a limited 

number of capsular serotypes are used in the conjugate vaccine, serotype replacement 

may occur, where the ‘vaccine serotype’ may be replaced by the ‘non-vaccine 

serotype’ (Singleton et al., 2007) (Munoz-Almagro et al., 2008). Similarly, the 

conjugate vaccine formulation may need to be varied based on the geographic area as 

the prevalence of serotypes in different countries may vary. Although 9 and 11 valent 

conjugate vaccines offer better protection against S. pneumoniae invasive diseases, 

nevertheless, as the number of serotypes increases, the cost of preparation increases. 

Due to this reason, there are major difficulties in introducing a conjugated vaccine to 

developing countries (Ortqvist, 2001). 

 

(d) S. pneumoniae protein vaccines and lipoproteins as vaccines 

The limitations posed by the polysaccharide and conjugate vaccines have stimulated 

research for an alternative S. pneumoniae vaccine. Targeting conserved antigens that 



 43 

are important for survival of S. pneumoniae in the host could be a promising 

vaccination strategy and could be used as an alternative to the polysaccharide and 

conjugate vaccines. Protein based vaccines are known to induce a thymus-dependent 

immune response in young children contributing to immunological memory. Hence 

the development of a protein based vaccine can provide protection against most of the 

S. pneumoniae serotypes, thereby overcoming limitations of serotype-specific 

protection as observed in capsular polysaccharide vaccines and serotype replacement 

phenomenon observed in conjugate vaccines. Furthermore, protein based vaccines can 

be produced by relatively inexpensive recombinant DNA technology.  

Several S. pneumoniae protein antigens are being investigated and their 

efficacies as vaccines in animal models are currently under evaluation. Most of the S. 

pneumoniae proteins evaluated in animal models are cell surface proteins, although 

proteins that are secreted or cytoplasmic have also been invesitgated. Potential protein 

vaccine candidates that have shown protection in animal models are the choline 

binding proteins PspA and PspC (also called CbpA), the lipoproteins PsaA, PiaA and 

PiuA (Brown et al., 2001; Garmory and Titball, 2004; Jomaa et al., 2006), inactivated 

toxin Ply (Paton, 1998), PpmA, a putative proteinase maturation protein which is 

important during the secretion of proteins (Overweg et al., 2000), PrtA, a cell-wall 

associated precursor protein (Bethe et al., 2001) and PavA, a fibronectin binding 

protein (Swiatlo and Ware, 2003). As it is evident that these proteins contribute at 

different stages during pathogenesis, a combination of protein antigens rather than a 

single antigen may provide a superior degree of protection against nasopharyngeal 

carriage and invasive S. pneumoniae diseases (Ogunniyi et al., 2000), (Briles et al., 

2000; Brown et al., 2001; Jomaa et al., 2006). 
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(e) Live, killed and DNA vaccines 

Roche et al have used S. pneumoniae deletion mutant strains lacking capsular 

polysaccharide, pneumolysin and PspA as live attenuated vaccines. The live 

attenuated vaccine was able to colonise the upper respiratory tract, demonstrating 

significant increased levels of serum and mucosal antibody titres, and a single 

intranasal administration of the live attenuated vaccine without adjuvant was 

sufficient to induce both systemic and mucosal protection against S. pneumoniae 

challenge (Roche et al., 2007). Oliveria et al have expressed PsaA antigen in certain 

species of lactic acid bacteria such as Lactobacillus casei, L. plantarum, and L. 

helveticus. Following the intranasal inoculation of these lactic acid bacteria 

expressing PsaA in mice, increased levels of specific IgG and IgA antibodies were 

obtained. Also the intranasal immunisation with these recombinant lactic acid bacteria 

reduced the nasopharyngeal colonisation upon S. pneumoniae challenge (Oliveira et 

al., 2006). Similar experiments performed by Campos et al in L. casei expressing 

PspA as mucosal vaccine in mice induced specific anti-PspA antibodies, deposition of 

complement on the surface of S. pneumonaie and led to increased survival of 

immunized mice after a systemic challenge with S. pneumoniae (Campos et al., 

2008). Hvalbye et al demonstrated that the intranasal immunisation of mice with heat 

inactivated S. pneumoniae (serotype 4) induced specific anti-capsular polysaccharide 

antibodies in serum and mucosal secretions. Following intraperitoneal S. pneumoniae 

serotype 4 challenge, the intranasally immunised mice were protected against both 

systemic and pulmonary infection (Hvalbye et al., 1999). Lesinski et al have 

synthesised the oligodeoxynucleotides encoding the peptide mimic of the serotype 4 

capsular polysaccharide of S. pneumoniae, which was then ligated into an expression 

vector and used for the immunisation in Balb/c mice. Epidermal immunisation of this 
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DNA vaccine in Balb/c mice was able to elicit antibodies specific to serotype 4 

capsular polysaccharide of S.pneumoniae (Lesinski et al., 2001). Ferreira et al have 

shown that the DNA vaccine vectors expressing the N-terminal region of PspA confer 

systemic protection against S. pneumoniae in the intraperitoneally immunised mice, 

and that the level of protection using PspA as a DNA vaccine was similar to that of 

protection observed with PspA as protein vaccine (Ferreira et al., 2006). Moore et al 

have demonstrated protection against serotype 4 S. pneumoniae in the CBA/N mice 

immunised with PspA DNA and PspA protein using prime / boost strategy and have 

demonstrated enhanced antibody response using this method (Moore et al., 2006). 

Table 1.2 summarises the different approaches of experimental immunisation and the 

efficacy as vaccine candidates are evaluated based on the survival rate after S. 

pneumoniae challenge. 

Identifying novel conserved protein antigens and investigating the best protein 

combinations and / or alternate vaccines such as DNA, live and killed vacines may 

provide an alternative method to PPV and PCV vaccines that are effective at 

preventing S. pneumoniae nasopharyngeal carriage and invasive infection. However, 

there is lack of consensus of best method to compare the efficiency of the vaccine 

candidates due to variations in mouse strain, route of infection, bacterial strain, and 

adjuvant used. 

 

1.4 VIRULENCE FACTORS INVOLVED IN THE PATHOGENESIS OF S. PNEUMONIAE 

INFECTIONS 

As discussed above, S. pneumoniae inhabit the nasopharynx as a commensal and 

spread to different hosts as an aerosol or by mucosal contact (Hava et al., 2003). 

During invasive disease, various virulence factors of S. pneumoniae contribute to the  
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Vaccine candidates Route of immunisation /  
Whether successful In vivo models References 

Pneumolysin 
(Ply) 

IN (Yes), IP 
(Yes) 

Mic
e  

Briles et al. 2003, 2000, Ogunniyi et 

al. 1996   
Pneumococcal 
surface  
adhesin A (Psa A) 

IV (Yes), IP 
(No) 

Mic
e  

Seo et al. 2002, Gor et al. 2002, Talkington et 

al. 1996  

Pneumococcal 
surface  
protein A (Psp A) 

IN (Yes), IV 
(Yes),  
IP (Yes) 

Mic
e  

Briles et al. 2000, 2003, Arulanandam et 
al. 2001   

Pneumococcal 
surface  
protein C (Psp C) 

IN (No), IV 
(Yes),  
IP (Yes) 

Mic
e  

Ogunniyi et al. 2001, Balachandran et 

al. 2002   

Pneumococcal histidine 
triad  
A, B, D, E (Pht A, B, C, 
D) 

SC 
(Yes) 

Mic
e  

Adamou et al. 2001, Hamel et al. 2004, Zang et 
al. 2001  

Neuraminidase A 
(Nan A) 

IP (No), IN 
(Yes) 

Chinchilla, 
mice  

Long et al. 2004, Lock et al. 
1988  

 Table 1.2: Different approaches of immunisation against S. pneumoniae  

Autolysin A (lyt 
A) 

IN (No), IP 
(Yes) 

Mic
e  

Berry et al. 1989, Lock et al. 
1992   

Pneumococcal 
iron  

 utilisation A (Piu 
A) 

IN (Yes), IP 
(Yes) 

Mic
e  

Brown et al. 2001, Jomaa et al. 
2005 

Pneumococcal 
iron 
acquisition A (Pia 
A) 

IN (Yes), IP 
(Yes) 

Mic
e  

Brown et al. 2001, Jomaa et al. 
2005 

Novel surface proteins  
(Sp46, Sp91, Sp128, 
Sp130) 

SC 
(Yes) 

Mic
e  

Wizemann et al. 
2001   

Protein 
vaccines 



 47 

 

 

Vaccine 
candidates 

Route of immunisation /  
Whether successful 

In vivo 
models 

Referenc
e 

DNA vaccines + protein 
boost 

psp A DNA + Psp A 
protein 

IM 
(Yes) 

Mic
e  

Moore et al. 
2006 

Mutant of cps, psp A 
and ply  

IN 
(Yes) 

Mic
e  

Roche et al. 
2007 

psa A, psp A gene 
expressed  
in lactic acid bacteria  

IN 
(Yes) 

Mic
e  

Oliveira et al. 2006, Campos et 

al. 2008 

Killed S. pneumoniae 
vaccines  

Heat inactivated 
serotype 4  
S. pneumoniae  

IN 
(Yes) 

Mic
e  

Hvalbye et al. 
1999 

IP: Intraperitoneal, IM: Intramuscular, IN: Intranasal, IV: Intravenous, SC: Subcutaneous, cps: capsular polysaccharide. Partly 
adapted from Tai,S.S., 2006. 

Live attenuated S. pneumoniae 
vaccines 
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establishment of the bacteria in different parts of the human body such as ear, lungs, 

blood and brain. Stages important for the development of invasive S pneumoniae 

disease can be divided into the following categories:  

(1) adhesion to nasopharyngeal epithelium 

(2) invasion of underlying tissue and the blood. 

(3) evasion of the host’s immune response  

(4) induction of inflammation and direct tissue damage 

(5) replication and growth in vivo 

(6) co-ordinated expression of genes responsible for S. pneumoniae growth and 

survival at different stages of infection 

Nasopharyngeal epithelial adhesion is the prerequisite for S. pneumoniae 

colonisation which may progress to invasion of the underlying tissues and further 

dissemination of the bacteria into the blood. While stages 3, 5 and 6 are essential for 

nasopharyngeal colonisation of S. pneumoniae, invasive infection also leads to stage 

4, the induction of inflammation. These stages of infection do not necessarily occur in 

a sequential manner; for example, although invasion usually follows adhesion, growth 

in vivo and coordinated expression of genes in reaction to environmental changes will 

occur continuously. 

Various S. pneumoniae virulence factors contribute to each of these stages and 

their involvement in pathogenesis is discussed in the following section (Table 1.3). 

 

1.4.1 Adhesion 

Adherence of S. pneumoniae to the mucosa of the nasopharynx is the first step to 

either remain as a commensal or to progress to cause an invasive disease. S. 

pneumoniae engages cell surface proteins, enzymes and other surface molecules to  
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Fig 1.2: Schematic diagram of various virulence factors involved in S. pneumoniae 

adherence to host cells. Adapted from Bogaert et al., 2004. 

 

successfully adhere to the host’s tissues. These virulence factors not only initiate the 

adherence but also promote the localised persistence / colonisation of S. pneumoniae, 

which would otherwise be cleared from the nasopharynx by the host’s physiological 

fluids such as mucus and saliva. S. pneumoniae virulence factors often exhibit 

specificity for the host’s cell surface receptors and mediate adhesion (Fig 1.2). Some 

of the identified S. pneumoniae virulence factors known to contribute to S. 

pneumoniae adherence including the capsule, IgA1 protease, phosphorylcholine, 

neuraminidases, exoglycosidases, pneumococcal surface adhesin, choline binding 

protein A, pneumococcal adhesion and virulence factor A, streptococcal lipoprotein 

rotamase and the newly identified streptococcal pili and are discussed below.  
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(a) Capsule 

The capsule of S. pneumoniae is the outermost covering comprised of polysaccharide. 

A possible role of the S. pneumoniae polysaccharide capsule in the nasopharyngeal 

colonisation has been recently identified by Nelson et al using both in vitro and in 

vivo methods. Histological observations of the nasal tissue of mice following 

intranasal inoculation of the S. pneumoniae wild-type and mutant unencapsulated 

strains demonstrated that the encapsulated S. pneumoniae were able to remain on the 

mucosal surface for as long as 2 weeks, suggesting the establishment of a stable 

nasopharyngeal colonisation. Unlike the wild-type strain, the unencapsulated strain of 

S. pneumoniae was agglutinated in the luminal mucus, and was unable to transit to the 

mucosal surface suggesting a role of capsule in avoiding mucus-mediated clearance of 

S. pneumoniae from the nasopharynx (Nelson et al., 2007). A probable mechanism for 

the evasion of the mucosal entrapment of encapsulated S. pneumoniae is thought to be 

the electrostatic repulsion created due to similar negative charge imparted by sialic 

acid of the mucus and the S. pneumoniae capsular polysaccharide. This electrostatic 

repulsion created between mucus and the S. pneumoniae capsule may hinder 

mucociliary clearance of S. pneumoniae in the nasal passage and thereby contribute to 

the early stages of S. pneumoniae colonisation (Nelson et al., 2007). 

 

(b) IgA1 protease 

IgA1 proteases are enzymes produced by S. pneumoniae and other bacteria residing in 

the upper respiratory tract. These enzymes cleave the IgA1 immunoglobulin which 

comprises of over 90% of IgA antibody in the respiratory secretions. IgA1 proteases 

produced by S. pneumoniae are cell wall associated (Weiser, 2006), and specifically 

cleave the proline-threonine or proline-serine peptide bonds at the hinge region of 
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human IgA1, thereby separating the Fab fragments (antigen-binding region) from the 

Fc fragment (responsible for secondary effector functions) of the IgA1 antibody. It 

has been suggested that following binding of the host’s IgA1 antibodies to S. 

pneumoniae capsular polysaccharide, secreted IgA1 protease cleaves the Fc region of 

the IgA1 antibody, and this facilitates S. pneumoniae adhesion to host cells. The 

authors have shown that the incubation of encapsulated, IgA1 protease producing S. 

pneumoniae strain with human IgA1 antibody increased the adherence of S. 

pneumoniae to the Detroit cell line (a human pharyngeal epithelial cell line), where as 

S. pneumoniae mutant strains unable to produce IgA1 protease failed to adhere to the 

Detroit cell line upon treatment with IgA1 antibody. The suggested mechanism 

behind IgA1 protease mediated S. pneumoniae adherence is that the ionic interactions 

between IgA1-Fab and the S. pneumoniae polysaccharide capsule strips the S. 

pneumoniae polysaccharide capsule from the bacteria, thereby unmasking the cell 

wall phosphorylcholine (PC) of S. pneumoniae. The cell wall PC of S. pneumoniae 

can then interact with the platelet activating factor receptor (PAFr) present on the host 

epithelial cells for the adherence (Weiser, 2006). However, the specificity of S. 

pneumoniae IgA1 protease to human IgA1 antibodies prevents effective experiments 

in mouse models of infection to support the above in vitro data (Weiser et al., 2003). 

 

(c) Phosphorylcholine (PC) 

The cell wall of S. pneumoniae plays a very important role in the adhesion of S. 

pneumoniae to the host tissues. The cell wall of S. pneumoniae is composed of 

peptidoglycan, teichoic acid (TA) and lipoteichoic acid (LTA). Although LTA is 

chemically identical to TA, LTA is attached to the cell membrane by a lipid moiety. 

Both LTA and TA contain phosphorylcholine (PC), which plays a major role in S. 



 52 

pneumoniae adhesion and also anchors an important class of S. pneumoniae surface 

proteins called choline binding proteins (CBPs). The role of PC in the adherence of S. 

pneumoniae during asymptomatic colonisation is unknown but in vitro and in vivo 

experiments have demonstrated an important role of PC in the adherence of S. 

pneumoniae during the conversion from an asymptomatic colonisation to the onset of 

an invasive disease. Studies have demonstrated that PC of S. pneumoniae has 

increased affinity for a host cell surface receptor, PAFr which is present only on the 

activated cells, therefore enhancing S. pneumoniae adherence in the presence of 

inflammation (Prescott et al., 2000). PAFr is a G-protein coupled receptor for the 

platelet activating factor (PAF), a glycerophospholipid which is produced 

predominantly by platelets as well as epithelial cells, endothelial cells, neutrophils and 

macrophages. In vitro studies have demonstrated PC mediated adherence of S. 

pneumoniae to human endothelial, epithelial and PAFr-transfected COS-7 cells 

(Cundell et al., 1995) and human tracheal epithelial cells in vitro ((Ishizuka et al., 

2001). Furthermore, Cundell and colleagues have demonstrated the interaction of S. 

pneumoniae PC with the PAFr in an in vivo rabbit model of pneumonia. The authors 

have observed that following administration of exogenous IL-1 during the intranasal 

challenge of S. pneumoniae in rabbits, there was an increased recovery of S. 

pneumoniae from the bronchoalveolar lavage than from control rabbits, while 

administration of a PAFr antagonist reduced the colonisation and progression to 

pneumonia by >90% (Cundell et al., 1995). Further evidence for the importance of PC 

has been provided by the studies of the cell wall hydrolase, phosphorylcholine 

esterase, Pce (CbpE) which modulates the amount of PC on the S. pneumoniae cell 

wall. Inactivation of the gene encoding Pce causes an altered S. pneumoniae colony 

morphology and decreased colonisation of the nasopharynx in rats (Vollmer and 
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Tomasz, 2001). Pce has also been shown to be important for the virulence of some S. 

pneumoniae strains, such as a serotype 3 strain, possibly by increasing the choline 

residues on the cell wall thereby increasing the affinity to PAFr and hence invasion 

(Hammerschmidt, 2006). 

 

(d) Neuraminidases (NanA, NanB, NanC) 

Neuraminidase enzymes are another group of virulence factors produced by S. 

pneumoniae. These enzymes cause damage to the host tissue by cleaving the terminal 

sialic acid of glycans, mucins and glycoproteins present on the cell surface, which is 

thought to expose receptors that facilitate S. pneumoniae adherence and invasion of 

the host tissues. To date three neuraminidases have been identified, NanA and NanB 

with molecular weight of 108 and 75 kDa respectively (Camara et al., 1994) and 

NanC which is a homologue of NanB, with as yet unknown function. Both NanA and 

NanB are produced by all S. pneumoniae strains, however NanC, a homologue of 

NanB, is produced by only some strains of S. pneumoniae (Pettigrew et al., 2006). 

NanA and NanB exhibit very little homology at the amino acid level and the activity 

of NanA is much higher than NanB (Jedrzejas, 2001). Both enzymes are exported 

proteins, however NanA has a C-terminal LPXTGX motif suggesting that it is 

covalently anchored to peptidoglycan. It is unclear why S. pneumoniae produces two 

neuraminidases, but it has been suggested that they may function at different stages 

during adhesion or invasion and this is supported by the differences in their molecular 

weights and optimum pH (maximum activity of NanA at pH 5.0, and of NanB is at 

pH 7.0) (Berry et al., 1996; Jedrzejas, 2001). Both NanA and NanB have been shown 

to be important for colonisation, pneumonia and sepsis (Manco et al., 2006). 
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(e) Exogylcosidases 

Glycosylated human cell surfaces aid in functions such as cell-cell interactions and 

binding and transport of positively charged molecules. Glycosylation of human cell 

surface involves the deposition of sugar residues on the inner mannose residues with 

later elongation by linkage of N-acetylglucosamine (GlcNAc), then galactose residues 

which are further linked to sialic acid residues (King et al., 2006). S. pneumoniae 

recognises and cleaves the glycosylated surface of the host’s nasopharyngeal 

epithelium to aid its adherence. S. pneumoniae has been shown to produce cell-

surface associated enzymes, known as exoglycosidases. These include NanA (Camara 

et al., 1991), β-galactosidase (BgaA) (Zahner and Hakenbeck, 2000) and β-N-

acetylglucosaminidase (StrH) (King et al., 2006). NanA contributes to the adhesion of 

S. pneumoniae by cleaving the terminal sialic acid present on the host epithelial cells 

as discussed in an earlier section. BgaA, another S. pneumoniae exoglycosidase, 

specifically cleaves the terminal β(1-4) galactose linked to GlcNAc, and StrH cleaves 

the terminal β 1-linked N-acetylglucosamine residues on the host cell surfaces. 

Studies have shown that NanA, BgaA and StrH cleave the terminal sialic acid, 

terminal galactose and terminal N-acetylglucosamine in a sequential manner to expose 

the mannose residues necessary for the adherence of S. pneumoniae (King et al., 

2006). Although in vivo studies of colonisation in infant rats demonstrated no 

attenuation of virulence following the intranasal inoculation of the S. pneumoniae 

triple mutant strain of nanA, bgaA and strH, in vitro this triple mutant showed 

significant reduction in adherence to the Detroit cell line when compared to the wild-

type S. pneumoniae (King et al., 2006). These results suggest that although NanA, 

BgaA and StrH contribute to S. pneumoniae adherence in vitro the role in vivo of 

these exoglycosidases remains unclear. 
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(f) Pneumococcal surface adhesion (PsaA) 

PsaA is a 37-kDa surface lipoprotein component of a S. pneumoniae manganese 

uptake ATP binding cassette transporter (ABC transporter) (Berry and Paton, 1996). 

psaA
- mutants have reduced degree of adhesion to type II pneumocytes (A549 cell 

line) (Berry and Paton, 1996) and the Detroit cell line (D562) (Romero-Steiner et al., 

2003) suggesting that PsaA is important for the nasopharyngeal colonisation. PsaA 

belongs to a family of surface associated proteins called lipoprotein receptor-

associated antigen I (Lra I) and the PsaA homologues such as FimA of Streptococcus. 

parasanguis (Burnette-Curley et al., 1995), ScaA of Streptococcus gordonii 

(Kolenbrander et al., 1998) SsaB of Streptococcus sanguis (Ganeshkumar et al., 

1993) are identified to function as adhesins and some also transport manganese 

(Kolenbrander et al., 1998). It is unclear why a cation ABC transporter affects 

adhesion, and it may be that the secondary effects of loss of manganese uptake cause 

the reduced adhesion of psaA
- strains to the epithelial cells. However, a recent study 

by Anderton et al. has demonstrated that the PsaA protein of S. pneumoniae 

specifically binds to the transmembrane glycoprotein, E-cadherin, in D562 

monolayers (Anderton et al., 2007). So perhaps PsaA in common with many virulence 

factors has dual functions during infection, acting as both a direct adhesin and for 

manganese uptake.  

 

(g) Pneumococcal surface protein C / Choline binding proteinA (PspC / CbpA) 

CbpA is a cell surface expressed CBP. CbpA, also known as PspC, SpsA (S. 

pneumoniae secretory IgA binding protein) and Hic (Factor H binding protein) has 

multiple functions in adhesion during carriage and lung infection (Balachandran et al., 

2002). CbpA is known to bind to the human polymeric Ig receptors (hpIgR) produced 
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by human nasopharyngeal cell lines in vitro (Zhang et al., 2000). pIgR is synthesised 

and exported to the apical surface of epithelial cells. Once at the cell surface, the 

secretory component of pIgR is released which then binds to IgA, forming secretory 

IgA (SIgA) (Phalipon and Corthesy, 2003). It has been suggested that the presence of 

excess free secretory component of IgG and secretory IgA (SIgA) in the mucosal 

cavity may lead to the binding of CbpA to SIgA or IgG, thereby aiding the adhesion 

of S. pneumoniae to the nasopharynx (Elm et al., 2004; Hammerschmidt et al., 1997). 

This has been supported by in vivo studies, where S. pneumoniae mutant strains 

deficient in CbpA have reduced colonisation of infant rats nasopharynx (Rosenow et 

al., 1997). In addition, S. pneumoniae nasopharyngeal colonisation is reduced in pIgR 

knockout mice (Zhang et al., 2000; Hammerschmidt, 2006). 

In addition to the pIgR binding, S. pneumoniae CbpA also exhibits binding to 

the complement components C3 (Smith and Hostetter, 2000) and factor H (fH, a 

glycoprotein and also functions as fluid phase regulator of host’s complement 

components). Surface bound fH on S. pneumoniae has been shown to prevent the 

complement mediated opsonophagocytosis of S. pneumoniae (Dave et al., 2001) and 

will be discussed in evasion of immunity section. A recent study has demonstrated 

that host cell surface fH bound to CbpA thereby mediating the adherence of S. 

pneumoniae to the nasopharyngeal cells (D562 cell line), lung epithelial cells (A549 

cell line) and human brain derived endothelial cells in vitro (Hammerschmidt et al., 

2007). Furthermore, microarray analysis of gene expression demonstrated an 

upregulation of CbpA by S. pneumoniae attached to the nasopharyngeal epithelial 

cells (Detroit cells) in vitro, but not by the S. pneumoniae isolated from the blood and 

CSF of mice suggesting CbpA is important for the interaction of S. pneumonaie with 

epithelium (Orihuela et al., 2004). 
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(h) Pneumococcal adhesion and virulence factor A (PavA) 

Pneumococcal adhesion and virulence factor A (PavA) is an outer cell surface protein, 

although it lacks both the typical LPXTG anchorage motif of Gram positive cell wall 

associated proteins or choline binding domains typical of CBPs. PavA binds to 

immobilized fibronectin, a mammalian glycoprotein present in either soluble or less 

soluble forms. The soluble form of fibronectin is present in body fluids such as 

plasma, CSF and amniotic fluid, whereas the less soluble form is present in the 

extracellular matrix and basement membrane (van der et al., 1995). Binding to 

fibronectin is observed for the oral bacterium, S. gordonii, which belongs to the mitis 

group of streptococci, and for other Gram positive bacteria such as S. aureus and S. 

pyogenes, and is thought to be important for adherence to epithelial cells. PavA of S. 

pneumoniae exhibits 67% amino acid identity to Fbp54, a fibronectin binding protein 

of S. pyogenes (Holmes et al., 2001). pavA
- strains of S. pneumoniae exhibited 

reduced adherence to A549 and Hep-2 epithelial cells in vitro suggesting that it also 

has a role for adhesion of S. pneumoniae in the nasopharynx (Pracht et al., 2005). 

 

(i) Streptococcal lipoprotein rotamase (SlrA) 

SlrA is a S. pneumoniae lipoprotein and belongs to the family of peptidyl-prolyl 

isomerases (PPIases). Although the function of SlrA is not known, SlrA has been 

demonstrated to be important for the nasopharyngeal colonisation of S. pneumoniae in 

mice, as the mutant strains of SlrA exhibited increased clearance from the 

nasopharynx when compared to the wild-type S. pneumoniae. Moreover, in vitro 

adherence studies also demonstrated reduced adherence of the mutant strains of SlrA 
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to the Detroit cell line suggesting that SlrA may play an important role during 

adhesion of S. pneumoniae to the host cells (Hermans et al., 2006). 

 

(j) Pili 

The presence of the pili and their role in S. pneumoniae adhesion has been recently 

identified (Barocchi et al., 2006). S. pneumoniae pili are long appendages that extend 

beyond the polysaccharide capsule and S. pneumoniae capsular serotypes with better 

colonising and invasive potential such as serotype 4 and 19F have been identified to 

possess pili. The S. pneumoniae pilus is encoded by a pathogenicity island (PI), the rlr 

islet, which consist of DNA segments that differ in genetic content compared to the 

same location in strains that do not possess pili. PIs confer particular virulence traits 

on bacterial pathogens, and are often present in pathogenic but absent in non 

pathogenic strains of the same or related species (Hacker and Kaper, 2000). The rlrA 

pathogenicity islet is a cluster of 7 genes found in approximately 27% of the invasive 

S. pneumoniae isolates (Aguiar et al., 2008) . Of the 7 genes, three of them (rrgA, 

rrgB, rrgC) encode proteins with LPXTG motifs suggesting they are surface proteins, 

and 3 encode for the sortase homologues srtB, srtC and srtD which catalyse the 

covalent attachment of rrgA, rrgB, rrgC, which contain LPXTG motifs, to the 

bacterial cell wall (Hava et al., 2003). RrgA is an important pilus subunit and is 

responsible for increased adherence to the human respiratory epithelial cell line (A549 

cell line) in vitro (Nelson et al., 2007). S. pneumoniae mutant strains expressing no 

RrgA have a significant reduction in their adherence to the A549 cell line even though 

they still form pili, suggesting that the expression of RrgA on the pili is essential for 

adhesion. In support of the in vitro adherence studies, in a mouse model the rrgA
- 

mutant strain was significantly reduced in its ability to colonise the nasopharynx 
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compared to the wild-type S. pneumoniae. In contrast, rrgB
- and rrgC

- mutant strains 

of S. pneumoniae did not exhibit any significant difference in vitro adherence studies 

or in nasopharyngeal colonisation of mice when compared to the wild-type S. 

pneumoniae (Nelson et al., 2007).  

 

(k) Phase variation 

S. pneumoniae undergoes a spontaneous but reversible phenomenon known as phase 

variation. Three different phase variants have been identified, transparent (T), 

semitransparent and opaque phase variants (O) (Weiser et al., 1994). T variants of S. 

pneumoniae are thought to be better colonisers of the nasopharynx due to the presence 

of high levels of TA and PC in the cell wall and higher expression of CbpA aiding 

adherence, whereas O variants are thought to be capable of escaping phagocytosis 

during blood stream infections or septicaemia because of the presence of more 

capsular polysaccharide (Cundell et al., 1995). The frequency of spontaneous phase 

variation is known to be strain specific among S. pneumoniae serotypes, and is 

relatively low. 

In vivo colonisation in the infant rat model demonstrated that the transparent 

variants of S. pneumonaie showed significantly higher nasopharyngeal colonisation 

than the opaque variants (Weiser et al., 1994). The in vivo observations were 

supported by the in vitro adhesion studies where the T variants of S. pneumoniae 

exhibited increased adherence compared to opaque variants to the buccal epithelial, 

cytokine-activated A549 lung epithelia (which leads to increased expression of PAFr 

on the cell surface), and vascular endothelial cell lines. In vitro adhesion assays of S. 

pneumoniae to various carbohydrate sugars, which represent the glycoconjugate 

receptors such as Gal, GalNAc, GlcNAc on the resting epithelial cell surface, 
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demonstrated increased adherence of T variants to these immobilized glycoconjugates 

compared to the O variants of S. pneumoniae (Cundell et al., 1995). These results 

suggest that phase variation of S. pneumoniae is an important phenomenon where the 

relative levels of capsule and PC expression are altered to enable better colonisation. 

Overall, a large range of virulence factors have been identified that influence 

S. pneumoniae adherence to cell lines, some of which are important for 

nasopharyngeal colonisation. Why there is such variety in adhesins and variety in 

their corresponding host ligands is not at all clear, and whether each adhesin has a role 

at different stages of infection or whether there is broad overlap in their particular 

roles and therefore a great deal of redundancy requires further investigation. 

 

1.4.2 Invasion of tissues 

Following S. pneumoniae adhesion to the nasopharynx, invasion of the underlying 

tissues to cause diseases such as pneumonia and / or meningitis occurs through the 

interaction of S. pneumoniae virulence factors with the host and probably as a 

consequence of the host inflammatory response as well. S. pneumoniae is known to 

produce enzymes and harbour surface proteins that degrade the host’s extracellular 

matrix (ECM) allowing access to deeper tissues and thus promoting invasion. 

Dissemination of S. pneumoniae into deeper tissues can occur by the paracellular 

route which involves breaking of tight junctions or by intracellular transmigration 

(transcytosis) of epithelial and endothelial cells. Intracellular transmigration requires 

the internalisation of S. pneumoniae by non-phagocytic host cells such as epithelial 

and endothelial cells and is thought to provide a survival advantage for bacteria which 

would otherwise be cleared by immune cells.  
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Some of the identified S. pneumoniae virulence factors known to contribute to 

tissue invasion include hyaluronidase, plasminogen binding proteins, PC, CbpA, 

PavA and pneumolysin are discussed below. 

 

(a) Hyaluronidase 

Hyaluronidase, an enzyme produced by S. pnemoniae degrades hyaluronic acid, a 

chemical component of the connective tissue. Degradation of the connective tissue 

helps in gaining access into the blood stream. It has been demonstrated that some S. 

pneumoniae strains with higher hyaluronidase acivity are capable of escaping into the 

blood brain barrier to cause meningitis (Kostyukova et al., 1995). S. pneumoniae 

strains isolated from patients with meningitis and meningoencephalitis have exhibited 

an increased hyaluronidase activity than strains isolated from patients with otitis 

media (Volkova et al., 1994; Gillespie and Balakrishnan, 2000). 

 

(b) Plasminogen (PLG) binding proteins 

S. pneumoniae possesses housekeeping enzymes which are involved in various 

metabolic functions, but certain housekeeping enzymes also contribute to virulence. 

Two key housekeeping enzymes of the glycolytic pathway, α-enolase (Eno) and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may have important roles for 

S. pneumoniae virulence (Bergmann et al., 2003). Both Eno and GAPDH are surface 

exposed and are displayed on the cell wall of S. pneumoniae and are proteolytic in 

nature. These enzymes lack the signal peptide and cell wall anchoring motifs and their 

mechanism of secretion is not known. Eno exhibits affinity to both plasminogen and 

plasmin and GAPDH to plasmin (Bergmann et al., 2004; Kolberg et al., 2006). 

Plasmin is an enzyme which is essential for the degradation of extracellular matrix by 
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fibrinolysis for vessel formation and angiogenesis. S. pneumoniae and other 

pathogens are known to bind to host plasmin which might facilitate invasion and 

further dissemination by leading to degradation of the extracellular fibrin matrix 

deposited at sites of infection. Plasminogen however is a pro-enzyme form of plasmin 

and its conversion to the active form is mediated by the host’s physiological 

plasminogen activators (PA) such as tissue-type PA or urokinase PA which hydrolyse 

plasminogen. However several streptococcal and staphylococal bacterial pathogens 

are known to secrete PAs which bind to plasminogen, including S. pneumoniae 

enolase and GAPDH (Ehinger et al., 2004). The inability of eno mutant strains of S. 

pneumoniae to dissolve fibrin and their attenuation in pulmonary mouse models of 

infection suggest the role of S. pneumoniae enolase in plasmin-mediated invasion of 

host tissues (Bergmann et al., 2005). 

 

(c) PC 

PC contributes to the invasion by facilitating the S. pneumoniae transmigration across 

the host cell barriers. In vitro transmigration studies were performed using 

monolayers of rat and human brain microvascular endothelial cells (BMEC) to 

understand the role of S. pneumoniae PC in tissue invasion. Transparent variants were 

able to transcytose from the apical surface to the basal surface of rat and human 

BMEC via binding of PC to the PAFr, even though both the transparent and opaque 

variants of S. pneumoniae were able to enter into the endothelial cells. This study 

demonstrates the selective preference of the S. pneumoniae transparent variants which 

exhibit higher levels of PC, therefore specific binding to the host’s cell-surface 

associated PAFr during tissue invasion when compared to S. pneumoniae opaque 

variants (Ring et al., 1998). 
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The in vivo models of S. pneumoniae invasion demonstrated reduced mortality 

and delayed progression to pneumonia in PAF-/- mice than the wild-type mice, 

following the intranasal inoculation of S. pneumoniae, suggesting the PAFr is 

exploited by S. pneumoniae to progress from adhesion to invasion (Rijneveld et al., 

2004).  

 

(d) Pav A  

Pav A has been shown to contribute not only to the adhesion but also invasion, as the 

PavA
- strains were attenuated in virulence both in murine pulmonary and also 

septicaemia models of S. pneumoniae infection. In vitro invasion studies 

demonstrated decreased internalisation of PavA
- strains of S. pneumoniae by human 

brain-derived microvascular endothelial cells and human umbilical vein derived 

endothelial cells. These results suggest that PavA could be necessary for translocation 

of S. pneumoniae across cellular layers, although the mechanisms involved are not 

described (Pracht et al., 2005).  

 

(e) Pneumolysin (Ply) 

Pneumolysin is a toxin present in the bacterial cytoplasm with a molecular weight of 

35 kDa, produced by all the clinically important serotypes of S. pneumoniae. 

Pneumolysin belongs to the thiol-activated cytolysin family, which are cholesterol 

binding toxins that permeabilize the cell membrane, aggregate and fuse the cells to 

form a large vacuole (Tilley et al., 2005). Pneumolysin lacks the N-terminal signal 

sequence required for secretion and is known to be secreted during the late 

logarithmic growth phase and the release of pneumolysin is dependent on autolysin 

causing S. pneumoniae autolysis (Cockeran et al., 2002). Contradictory reports have 
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shown that the pneumolysin is also produced during the early logarithmic growth 

independent of autolysin and the mechanism may vary between strains of S. 

pneumoniae (Balachandran et al., 2001). 

Pneumolysin contributes to the host tissue invasion by disrupting the alveolar 

capillary boundary and cell junctions in the lungs. This in turn provides the required 

nutrients for S. pneumoniae and helps the penetration of the bacteria into the 

epithelium to obtain access to the blood stream (Jedrzejas, 2001). During acute otitis 

media, the hair cells of cochlea are highly sensitive to the cytotoxic effects of 

pneumolysin (Tuomanen, 2000). In vitro studies have demonstrated that exogenous 

pneumolysin and S. pneumoniae secreting pneumolysin causes severe damage to the 

human brain microvascular endothelial cell line representing an in vitro blood brain 

barrier suggesting its possible role during meningitis (Zysk et al., 2001). In vitro 

studies have also demonstrated that S. pneumoniae culture filtrates containing 

pneumolysin and pneumolysin alone are both capable of damaging the respiratory 

epithelium and slowing its ciliary function (Feldman et al., 1990). 

 

1.4.3 Evasion of host immunity 

For successful colonisation of the nasopharynx and / or the invasion of host’s tissue 

and blood S. pneumoniae will also have to evade the host’s immune response to 

infection. Clearance of bacterial pathogens from the host requires the innate and 

adaptive immune responses and the components of complement system are important 

in both these responses. The complement system consists of around 30 serum and cell 

surface proteins organised into three different enzyme cascades termed the classical, 

alternative and mannose binding lectin (MBL) pathways. Each pathway is activated 

by different mechanisms but all result in opsonisation of bacteria with breakdown 
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products (C3b and iC3b) of the central complement component C3 (Walport, 2001). 

Complement, in particular (Alper et al., 1970; Gross et al., 1978; Winkelstein, 1981; 

Sampson et al., 1982; Mold et al., 2002) the classical and alternative pathways, and 

phagocytosis (Giebink et al., 1977) are both vital for immunity to S. pneumoniae, and 

it is not surprising that S. pneumoniae has several mechanisms which affect these 

elements of host immunity as discussed below. 

 

(a) Polysaccharide capsule and cell wall 

The polysaccharide capsule is an important virulence determinant of S. pneumoniae 

and is thought to aid the bacterium by inhibiting complement activity and 

phagocytosis, thereby allowing the S. pneumoniae to multiply in the blood stream and 

possibly cause septicaemia. The capsule consists of high molecular weight polymers 

made up of repeating units of oligosaccharides containing 2-8 monosaccharides. 

Oligosaccharides such as glucuronic acid, arabinitol, ribitol and phosphorylcholine 

may be present in the capsule. More than 90 capsular serotypes have been identified 

based on the sugar composition and the linkages (Hardy et al., 2000). The degree of 

virulence of a particular serotype is dependent on the chemical composition rather 

than the thickness of the capsule, and perhaps reflects the varying ability of different 

serotypes to evade complement-dependent and independent opsonophagocytosis and 

hence to establish invasive infection (AlonsoDeVelasco et al., 1995). 

As well as conferring protection against phagocytosis and complement 

deposition, the capsule of S. pneumoniae inhibits neutrophil extracellular traps 

(NETs)-mediated killing. NETs are extracellular fibrous structures consisting of DNA 

backbone, histones and neutrophil granular proteins produced by activated neutrophils 

in the host as the first line defense against bacterial pathogens (Wartha et al., 2007). It 
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has been demonstrated that NETs capture S. pneumoniae thereby confining the 

infection, and reducing the spread of the bacteria to other parts of the host (Beiter et 

al., 2006). However encapsulated S. pneumoniae serotypes have reduced trapping by 

NETs and also exhibited resistance to NET-mediated killing. In addition to the 

polysaccharide capsule, D-alanylation of another surface- exposed polymer, the LTA 

of S. pneumoniae also confers resistance to NET-mediated killing. Incorporation of D-

alanine residues into LTA imparts positive charge on the bacterial surface thereby 

repelling the antimicrobial peptides (AMPs) secreted by neutrophils which are used to 

recognise and kill the bacteria. D-alanylation of LTA has been shown to contribute to 

the virulence of S. pneumoniae during the early stages of invasive infection when 

capsule expression is low (Wartha et al., 2007) 

 

(b) Pneumococcal surface protein A (PspA) 

Pneumococcal surface protein A (PspA) is a CBP which is anchored to the S. 

pneumoniae cell wall and has a molecular weight of 84 KDa. PspA is immunogenic 

and elicits protective antibodies (McDaniel et al., 1994). PspA prevents both classical 

and alternative pathway mediated C3b deposition on S. pneumoniae (Tu et al., 1999) 

and pspA
- strains are reduced in virulence during systemic infection (Yuste et al., 

2005; Briles et al., 2000). Addition of anti-PspA antibodies enhanced the deposition 

of C3 on the surface of PspA+ strains of S. pneumoniae.  

PspA also interacts with human lactoferrin, an iron-binding glycoprotein 

present in milk and mucosal secretions that is also released by polymorphonuclear 

leukocytes during inflammation. Lactoferrin is bactericidal in nature and inhibits 

cytokine and complement activation, as well as potentially inhibiting bacterial growth 

by sequestering iron. Lactoferrin is formed of hololactoferrin, containing the binding 
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site for Fe2+ or Fe3+, and apolactoferrin. Apolactoferrin, is thought to be bactericidal 

by membrane destabilisation upon interaction with S. pneumoniae, and PspA is 

known to bind and prevent apolactoferrin-mediated killing of S. pneumoniae. 

Interaction of PspA with human lactoferrin has been demonstrated in fresh human 

saliva suggesting that PspA may contribute to carriage by preventing apolactoferrin-

mediated killing of S. pneumoniae (Shaper et al., 2004). 

 

(c) Pneumolysin  

In addition to the inhibition of the mucocliliary clearance (ie physical defences) by 

pneumolysin which has been discussed in the invasion of host tissues, pneumolysin 

also contributes to the evasion of host’s immunity. Pneumolysin is known to activate 

C1q directly or indirectly by binding to the Fc receptor of IgG in vitro thereby 

activating the complement by classical pathway (Rossjohn et al., 1998; Mitchell et al., 

1991). Using unvaccinated human sera and mice sera with no prior exposure to S. 

pneumoniae Yuste and collegues have demonstrated an increased in vitro C3 

deposition on the ply
- mutant compared to wild-type S. pneumoniae. The above 

mentioned in vitro result was supported by in vivo mixed infection experiments in 

wild-type and complement-deficient mice demonstrating that pneumolysin affects 

classical pathway-mediated complement immunity against S. pneumoniae. Yuste and 

collegues have also showed that the PspA and pneumolysin interactions with 

complement are synergistic and allows the progress of infection from lungs to the 

blood (Yuste et al., 2005). However, it is not clear how pneumolysin prevents the 

complement deposition on S. pneumoniae. Extracellularly released pneumolysin may 

divert complement activity away from the bacterial surface and also consume the 

available C3 upon binding to C1q (Paton, 1996).  
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As well as preventing complement activity, pneumolysin has been shown to 

have direct inhibitory effects on white cells. In vitro results have shown that highly 

purified pneumolysin is capable of interfering with the bactericidal function of 

polymorphonuclear leukocytes (PMNL) and is shown to inhibit the PMNL 

antimicrobial function at an extremely low dose thereby enhancing the virulence of S. 

pneumoniae (Paton and Ferrante, 1983).  

 

(d) CbpA 

S. pneumoniae
 evades complement-mediated innate immunity by recruiting 

complement factor H (FH), a complement alternative pathway inhibitor. S. 

pneumoniae CbpA and its allelic variants (Janulczyk et al., 2000; Dave et al., 2001) 

have been demonstrated to bind to human FH. FH is a 155-kDa plasma glycoprotein, 

which inhibits the alternative pathway of the complement system by preventing the 

binding of factor B to C3b, enhancing the decay of the C3-convertase (C3bBb) and 

acting as a cofactor for the cleavage of C3b by complement factor I (Lu et al., 2006). 

Deposition of FH on host tissue and cellular surfaces prevents nonspecific damage and 

avoids the wasteful consumption of complement components (Lu et al., 2006). 

Interaction of CbpA with FH leads to the degradation of C3b, which further prevents 

the opsonisation of S. pneumoniae by the components of the alternative complement 

pathway (Shaper et al., 2004; Tai, 2006). Receptors similar to CbpA are expressed in 

other pathogenic bacteria that bind to FH such as M6 of group A streptococci 

(Kotarsky et al., 1998), YadA of Yersinia enterocolitica ((Roggenkamp et al., 1996), 

Por1A of N. gonorrhoea (Ram et al., 1998), and CRASP1 of Borrelia burgdorferi 

(Rossmann et al., 2007). Using an in vivo mouse model, mice intranasally infected 

with S. pneumoniae preincubated with FH had increased bacteraemia and lung 
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invasion compared to that of mice challenged with D39 alone (Quin et al., 2007). As 

discussed above, using in vitro adherence assays, Quin and collegues have also 

demonstrated that S. pneumoniae preincubated with FH showed increased adherence 

to human cell lines such as endothelial (HUVEC) and lung epithelial cells (SK-MES-

1).  

 

(e) Endonuclease A 

One of the characteristic features of S. pneumoniae pneumonia is the neutrophil 

infiltration to the site of infection. Recently it has been shown that the activated 

neutrophils release neutrophil extracellular traps (NETs) which are antimicrobial 

proteins bound to DNA scaffold. NETs not only function by killing the bacteria 

extracellularly but may confine the trapped bacteria in lungs during pneumonia 

thereby reducing the possible spread of the pathogen to cause septicaemia. Bacterial 

pathogens such as S. enterica, serovar Typhimurium, Shigella flexneri, S. aureus and 

the yeast Candida. albicans are trapped and killed by NETs. Although NETs are 

unable to kill S. pneumoniae, they prevent the rapid dissemination of S. pneumoniae 

to other compartments of the host. EndA produced by S. pneumoniae have the ability 

to degrade the extracellular DNA present in NETs (Beiter et al., 2006). endA mutant 

strains of S pneumoniae are unable to degrade NETs and after intranasal challenge in 

mice are out-competed by wild-type S. pneumoniae both in the lungs and the 

bloodstream (Beiter et al., 2006). 

 

1.4.4 Inflammation, tissue damage and the induction of septic shock 

Powerful inflammatory response may be mediated by immune cells such as 

macrophages during the bacterial clearance from the host or may also be triggered 
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directly by S. pneumoniae virulence determinants upon interaction with host cells. 

The inflammatory response consists of the release of cytokines in response to 

cytotoxic metabolites released upon recognition of the S. pneumoniae virulence 

determinants which are also called as pathogen associated molecular patterns 

(PAMPs). Inflammatory response may also occur as the result of S. pneumoniae 

mediated injury to host cells, activation of complement cascade, and the release of 

nitric oxide and H2O2 produced by the host and / or S. pneumoniae. The inflammatory 

response may lead to tissue injury and have detrimental effects on the host like septic 

shock. S. pneumoniae virulence determinants such as pneumolysin, cell wall 

components, autolysin and pyruvate oxidase that are known mediators of 

inflammation and tissue injury are discussed in this section. 

 

(a) Pneumolysin 

Pneumolysin by itself can reproduce the acute lung injury associated with fatal S. 

pneumoniae pneumonia (Feldman et al., 1991). Treatment of  a mouse model of 

disease with exogenous pneumolysin can cause increased lung vascular permeability, 

decreased resident alveolar macrophage population and recruitment of neutrophil and 

monocytes in the alveolar space (Maus et al., 2004). Pneumolysin is known to injure 

immune (Paton and Ferrante, 1983; Nandoskar et al., 1986) and respiratory cells 

(Rubins et al., 1993; Rubins et al., 1992) in vitro and is shown to activate the 

phospholipase A in the pulmonary artery endothelium. The activated phospholipase A 

breaks down different phospholipids present in the cell membrane and releases free 

fatty acids and lysophosphatides. The metabolites released due to lysophosphatides 

are cytotoxic and recruit activated neutrophils causing more lung injury and 

inflammation. The inflammation is further enhanced by pneumolysin as it is capable 
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of activating the classical complement pathway without the need of specific antibody 

(Paton et al., 1984). Pneumolysin is also known to induce the release of nitric oxide 

and inflammatory cytokines such as tumour necrosis factor-α (TNF- α), interleukin-6 

(IL-6) (Malley et al., 2003), and IL1β (Shoma et al., 2008; Malley et al., 2003; 

Houldsworth et al., 1994) by macrophages. Pneumolysin in combination with H2O2 

induces apoptosis of brain cells during experimental S. pneumoniae meningitis (Braun 

et al., 2002). Protection against S. pneumoniae infections is mediated by TLR-4 

mediated pneumolysin induced apoptosis (Srivastava et al., 2005; Malley et al., 

2003). Recently it has been demonstrated that S. pneumoniae pneumolysin activates 

nuclear factor of activated T cells (NFAT) signalling pathway independently of TLR 

which in turn upregulates the expression of inflammatory mediators (Koga et al., 

2008). Overall, pneumolysin has a variety of mechanisms which induce inflammation 

and seems to make a significant contribution to the strong pro-inflammatory nature of 

S. pneumoniae infection. 

 

(b) Cell wall and cell wall polysaccharides and Autolysin (LytA) 

Cell wall components of S. pneumoniae are mainly composed of peptidoglycan, TA 

and LTA induce acute inflammation during S. pneumoniae otitis media, septicaemia, 

pneumonia and meningitis. Cell wall components have been shown to mimic the 

symptoms of infection in animal models of otitis media (Ripley-Petzoldt et al., 1988), 

pneumonia (Tuomanen et al., 1987) and meningitis (Tuomanen et al., 1986). The 

majority of the inflammation associated with host defence could be driven by TA and 

LTA, which also can activate the alternative complement pathway (Winkelstein and 

Tomasz, 1978). LTA and TA bind to the acute phase reactant C-reactive protein 

(CRP) via their PC component and so can also activate the classical complement 
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pathway (Winkelstein and Tomasz, 1978). TA containing cell wall fragments have 

been shown to induce leukocytosis and increase vascular permeability in pneumonia 

(Tuomanen et al., 1987) and meningitis (Tuomanen et al., 1985) in animal models of 

infection. The S. pneumoniae cell wall is also responsible for the induction of 

cytokines such as IL-1, IL-6, TNFα and PAF upon binding to epithelia, endothelia and 

macrophages (Riesenfeld-Orn et al., 1989; Heumann et al., 1994; Cabellos et al., 

1992) and induce procoagulant activity on the surface of endothelial cells (Geelen et 

al., 1992). 

Autolysin (Lyt A) is an enzyme that lyses S. pneumoniae by degrading the cell 

wall components. Autolysin is a surface protein and belongs to CBPs anchored non-

covalently to the choline present in the cell wall instead of the usual type of anchorage 

using the LPXTG motif. Autolysin is produced during the late logarithmic growth 

phase and contributes to the inflammation by cell wall degradation and S. pneumoniae 

lysis as this releases LTA- and TA-containing cell wall products as well as 

pneumolysin (Gillespie and Balakrishnan, 2000). 

 

(c) Pyruvate oxidase (Spx) 

S. pneumoniae is a facultative anaerobe and due to its inability to produce catalase 

fails to neutralise reactive oxygen intermediates (ROI) and so produces large amounts 

of hydrogen peroxide (H2O2). In addition to the production of H2O2, S. pneumoniae 

infection also induces the production by host cells such as phagocytes, eosinophilic 

granulocytes and mononuclear phagocytes of anti-bacterial reactive nitrogen 

intermediates (RNI) and nitric oxide (NO). Although ROI and RNI produced by host 

cells are antimicrobial in nature, they also damage host cells and peroxynitrite, a toxic 

oxidant produced by combination of ROI and RNI compounds, cause cell death. 
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Although cytotoxicity due to the production of reactive intermediates by host cells is 

not completely understood, H2O2 produced by S. pneumoniae is apoptotic in nature 

(Hoffmann et al., 2006). 

 

1.4.5 Replication and growth in vivo 

As well as adhering to host tissues and avoiding immune responses, all pathogenic 

bacteria have to be able live and replicate in the physiological conditions found in the 

host, that is at a temperature of 37°C, an osmolality of approximately 290 

milliosmolality per kg, high oxygen tension, low availability of iron and other 

micronutrients and restricted nutritional opportunities. This has been emphasised by 

signature tagged mutagenesis (STM) screens for identifying genes involved in the 

virulence of micro-organisms, which usually identify large numbers of genes involved 

in growth and replication under stress conditions (Polissi et al., 1998; Lau et al., 2001; 

Hava and Camilli, 2002). One such group were sugar uptake and metabolism genes 

which included phosphotransferase system (PTS) and ABC transporters (Tettelin et 

al., 2001) 

Investigation of PPI1 (pathogenicity island 1) by Brown et al led to the 

identification of a three gene operon phgABC also required for the full virulence both 

in pulmonary and systemic models of infection. The disruption of this operon impairs 

the growth of S. pneumonaie under high osmotic and oxidative conditions (Brown et 

al., 2004). Alkyl hydroxyl peroxidase D (ahpD) is important for resistance to killing 

by H2O2 in vitro, suggesting that the operon is responsive to oxidative stress, and is 

required for S. pneumoniae virulence in pneumonia and bacteraemia models of 

infection in mice (Paterson et al., 2006). PcsB is an essential hydrolase which aids in 

the separation and cell division of S. pneumoniae and the in vitro results have 
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demonstrated that the pcsB expression is upregulated during stress such as the 

presence of high temperature and osmolarity. However, in vivo data to demonstrate 

the role of S. pneumoniae PcsB in virulence is not yet available (Mills et al., 2007). 

Another large group of proteins that are important for the replication and 

survival of S. pneumoniae in vivo are ABC transporters which will be discussed in 

detail in the section on ATP binding cassette transporters. 

 

1.4.6 Regulation of S. pneumoniae virulence  

STM screening of 3 different serotypes of S. pneumoniae (serotypes 3, 4, 19F) have 

identified transcriptional regulators necessary for the regulation of virulence genes 

during various stages of disease establishment and also in response to the host’s 

(external) stimuli. Progression from colonisation to invasive disease involves the 

adaptation of S. pneumoniae to different environmental niches in the host, during 

which many virulence factors are differentially expressed. It is therefore likely that 

S.pneumoniae undergoes controlled changes in the expression of various virulence 

factors during different stages of disease development and in different sites of 

infection. This hypothesis is supported by microarray data of transcriptional factors 

from mice models showing variations in gene expression (Orihuela et al., 2004). 

There are 33 identified S. pneumoniae transcriptional regulators 20 transcription 

factors (Tettelin et al., 2001) (Hava et al., 2003) and 13 two-component signal 

transduction systems (TCSTS) (Throup et al., 2000) (Lange et al., 1999) whose role 

in the regulation of virulence were either demonstrated or described as putative based 

on the sequence data. However, unlike other major pathogens such as S. pyogenes, as 

yet no regulator has been shown to control an invasive virulence phenotype for S. 
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pneumoniae. Several regulators are known to influence virulence and are discussed 

below but the exact mechanisms involved are often not clear. 

CtsR is a transcription factor that negatively regulates the expression of the S. 

pneumoniae Clp ATP-dependent protease, which in turn regulates the expression of 

LytA, CbpA, CbpE, CbpF and CbpJ and also contributes to the genetic transformation 

of S. pneumoniae (Chastanet et al., 2001), colonisation in the nasopharynx and 

survival in the lungs after intranasal challenge thereby contributing towards S. 

pneumoniae virulence (Kwon et al., 2004). Another transcriptional regulator termed 

carbon catabolite repression (CCR) allows the utilisation of preferred sugars by 

silencing the genes specific for nonpreferred sugars. Catabolite control protein A 

(CcpA), another regulator, regulates sugar metabolism and is required for S. 

pneumoniae colonisation and survival in lungs (Iyer et al., 2005). RegM, which is a 

homologue of CcpA, is required for the growth of S. pneumoniae in blood and hence 

contributes to virulence. Mutation of RegM results in the reduced transcription of the 

capsular polysaccharide biosynthesis locus (Giammarinaro and Paton, 2002). RegR, 

another transcriptional regulator has been shown to regulate hyaluronidase activity of 

S. pneumoniae and controls competence. It also regulates the S. pneumoniae 

adherence to A459 epithelial cells in vitro and also contributes to S. pnemoniae 

virulence in vivo (Chapuy-Regaud et al., 2003).  

TCSTS or TCS of S. pneumoniae consists of 13 histidine kinases (HK) paired 

with response regulators (RR) and an orphan unpaired RR. Of the 13 TCS, 10 have 

been shown to play role in the virulence of S. pneumoniae including the orphan RR. 

TCS12 consists of a HK encoded by comD and an RR encoded by comE and responds 

to competence-stimulating peptide (CSP), activates competence and also contributes 

to S. pneumoniae virulence. TCS05 also called CiaRH, was the first TCS to be 
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identified and is known to affect virulence, competence and antibiotic resistance. 

TCS13 (also called blpTCS for bacteriocin-like peptide) controls a 16-gene quorum-

sensing regulon which regulates the synthesis and export of bacteriocin-like peptides 

and immunity proteins. Bacteriocins are bacterial products which inhibit the growth of 

related strains or species of bacteria and immunity proteins protect the bacteriocin-

producing bacteria. The role of the blp product of S. pneumoniae in lung is unclear but 

they might be cytotoxic to host cells as well as other bacteria (Paterson et al., 2006).  

In conclusion, there is some evidence for several regulators that are important for 

virulence but little is understood about the role of different transcriptional regulators 

within specific sites during infection such as lungs and blood. At present the research 

into the regulation of S. pneumoniae gene expression is confused as various regulators 

have significant differences in their regulons when two different strains have been 

investigated. Further studies are required to understand the regulation of virulence-

associated genes in S. pneumoniae (McCluskey et al., 2004). 

 

1.5 ATP BINDING CASSETTE TRANSPORTERS (ABC TRANSPORTERS) 

ATP binding cassette transporters are proteins that are widespread among both 

prokaryotic and eukaryotic organisms. In bacteria, ABC transporters are involved in 

the import of wide variety of substrates such as sugars, amino acids, peptides, 

polyamines, sulphate and metal ions such as iron, molybdate. They are also 

responsible for the export of capsular polysaccharide in Gram-negative bacteria, 

secretion of antibiotics by antibiotic resistant bacteria and drug -resistant bacteria and 

secretion of extracellular toxins, role in translational regulation and DNA repair. 
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Class                 Virulence factor                                                          Role in vivo   

Adhesion        Invasion     Immune     Inflammation    
Replication 
                                          evasion Carbohydrate            Capsule 

                                  PC     
                                  LTA, 
TA CBPs                        CbpA 
                                 PspA   

Cell wall                  
PavA 
proteins                    Pili Enzymes /               IgA1 protease 
Toxins                     Nan A, B, C 
                                Exoglycosidases 
                                Hyl 
                                PLGs-α enolase 
                                    -GAPDH 
                                Ply 
                                EndA 
                                LytA 
                                Pyruvate 
oxidase 

Lipoproteins            PsaA            
                                PiuA 
                                PiaA 
                                PitA 
                                SlrA 
                                Adc 
                             

Table 1.3: Role of S. pneumoniae virulence factors in 
pathogenesis 
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Class                Virulence factor                                                        Role in vivo      

Adhesion        Invasion     Immune     Inflammation    Replication / 
                                          evasion                                 survival 

Others          PhgABCD 
                                 AhpD 
                                 PcsB 

Transcriptional         CcpA  
regulators of             RegM 
virulence             RegR 
gene expression        Lsp 

Two-component       TCS02 
systems                     TCS04 
                                  TCS05 
                                  TCS06 
                                  TCS09 
                                  TCS12 
                                  TCS13   



 79 

Approximately 5% of the E. coli and B. subtilis genomes are encoded by the 

components of ABC transporters (Garmory and Titball, 2004). 
 

1.5.1 Structure of ABC transporters 

The structure of ABC transporters differ in both Gram positive and Gram negative 

bacteria. A typical ABC transporter consists of four membrane-associated domains also 

known as transmembrane domains or integral membrane domains. Integral membrane 

domain consists of two ATP binding domains (ATPase) and two membrane spanning 

domains (MSD / permeases) which may be fused in many ways to form multidomain 

polypeptides. A typical MSD consists of six putative α-helical transmembrane segments 

which act as a channel through which the substrates are transported into the cell. 

Permeases or MSDs are also known as bacterial importers and are bound to the solute 

binding proteins (SBPs) in both Gram positive and Gram negative bacteria. In Gram 

negative bacteria, SBPs are also known as periplasmic solute binding proteins as they 

bind to the substrates and import them into the inner membrane. Outer membrane 

proteins (OMPs), such as porins, import the substrates across the outer membrane from 

the external environment. In contrast, as the Gram positive bacteria lacks the 

periplasmic space and outer membrane, the solute binding proteins are anchored to the 

outer surface of the cell with the help of lipid moiety (lipoproteins) aiding in the 

transport of substrates (Garmory and Titball, 2004; Davidson et al., 2008) (Fig 1.3). 

 

1.5.2 Processing of lipoproteins 

Lipoproteins are a group of surface proteins performing important functions such as 

antibiotic resistance, substrate binding, adhesions, protein secretion, sensing, spore  
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Figure 1.3: Schematic diagram of Gram positive ABC transporter. 

 

formation, conjugation etc (Sutcliffe and Russell, 1995). The annotated genome 

sequence of S. pneumoniae has 47 lipoproteins in TIGR4 strain (Bergmann and 

Hammerschmidt, 2006). Lipoproteins in various Gram positive and Gram negative 

bacterial pathogens are known to be important during infection (Pennini et al., 2006; 

Reglier-Poupet et al., 2003), while some of them can induce protective immune 

responses by the host (Sadziene and Barbour, 1996). The investigated S. pneumoniae 

lipoproteins that are important in virulence and known to induce protection against S. 

pneumoniae are PiuA, PiaA (Jomaa et al., 2006; Brown et al., 2001) and PsaA (Seo et 

al., 2002; Miyaji et al., 2001).  

Lipoprotein processing in bacteria is of ‘Braun’ type and is conserved among 

prokaryotes (Sutcliffe and Harrington, 2002). Three different enzymes are required for 

the processing of the lipoproteins: Lgt (prolipoprotein diacylglyceryl transferase), Lsp 

(prolipoprotein signal peptidase) and Lnt (apolipoprotein N-acyltransferase) in Gram 

negative bacteria such as E. coli and S. typhimurium  Lgt and Lsp are known to be 

involved in the lipoprotein processing of low G+C content Gram positive bacteria such 
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as Bacillus subtilis (Fig 1.4) (Sutcliffe and Russell, 1995; Sankaran et al., 1995). 

Various bioinformatics analyses have been used to predict bacterial lipoproteins 

(G+LPP (Sutcliffe and Harrington, 2002), LipoP (Juncker et al., 2003) and DOLOP 

(Madan and Sankaran, 2002). In Gram positive bacteria, the N-terminal amino acid 

sequence of the unmodified prolipoprotein (signal peptide sequence) is followed by a 

lipobox which is a unique amino acid sequence [LVI] [ASTVI] [GAS] C where leucine 

is highly conserved and cysteine is strictly conserved. It is to this cysteine residue that 

the cell membrane lipid is anchored through a disulphide bridge (prolipoprotein). 

Following the lipid attachment, the enzyme Lsp cleaves the prolipoprotein removing the 

signal peptide amino acid sequence. In E. coli it has been shown that the localization of 

lipoproteins in the inner membrane is directed by aspartic acid at the +2 position 

(Masuda et al., 2002) and the translocation of the processed lipoprotein is known to 

occurs through the SRP/Sec/YidC secretory pathway (Froderberg et al., 2004). 

However, the mechanisms controlling the lipoprotein localization and translocation in 

Gram positive bacteria are not known and need to be investigated. Recent studies in 

Listeria monocytogenes, Streptococcus agalactiae and S. uberis have identified that Lsp 

can still cleave the unlipidated prolipoprotein (Baumgartner et al., 2007; Henneke et al., 

2008; Denham et al., 2009) indicating that the processing of lipoproteins may not 

follow a sequential pattern. However, Denham et al have identified that the full length 

unprocessed prolipoproteins were shed from the S. uberis cells independent of Lsp 

(Denham et al., 2009).  

 

1.5.3 Roles of ABC transporters in S. pneumoniae and other bacterial pathogens 

ABC transporters in pathogenic bacteria are known to play important roles in the 

nutrient acquisition, antibiotic resistance and other functions essential for the survival in 
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the host, thereby contributing to the virulence of the bacteria. Such ABC transporters 

from various pathogenic bacteria have been identified by in vivo screening techniques 

such as signature tagged mutagenesis (STM) which allows the large scale identification 

of attenuated phenotype of mutant strains. STM of S. pneumoniae has revealed the 

virulence associated ABC transporter genes homologous to polyamine transport in E. 

coli (potA and potF), glutamine transport in Bacillus subtilis (glnH and glnQ) and sugar 

transport in S. mutans (msmK) (Polissi et al., 1998). Similarly, STM performed in 

Yersinia spp. identified phosphate and nitrogen uptake ABC transporters (Darwin and 

Miller, 1999). In Staphylococcus aureus, STM identified oligopeptide transporter genes 

which formed the largest class of genes required for full virulence (Coulter et al., 1998). 

Other ABC transporters known to contribute to the virulence in the infection models are 

metal ion ABC transport systems such as iron, zinc, manganese as metal ions act as 

important cofactors for various metabolic pathways. Iron-binding siderophores, 

haemoproteins or glycoproteins used to acquire iron have been identified in Yersinia. 

pestis. These are also known as yersiniabactin (Ybt) (Fetherston et al., 1999), FeoABC 

(Boyer et al., 2002), iron uptake ABC transporter, SitABCD which transports both 

manganese and iron are required for the full virulence in Salmonella enterica serovar 

Typhimurium (Janakiraman and Slauch, 2000). Piu and Pia are iron uptake ABC 

transporters required for the full virulence of S. pneumoniae (Brown et al., 2001). The 

PsaABC manganese transporter is known to transport manganese and is also acts as an 

adhesin 
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Figure 1.4: Processing of the lipoproteins in Gram positive bacteria described by 
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for pneumocytes (Berry and Paton, 1996). MtsABC of Streptococcus pyogenes 

(Janulczyk et al., 2003) and SloABC of Streptococcus mutans transport both iron and 

manganese (Paik et al., 2003).  

The annotated S. pneumoniae TIGR 4 genome contains 73 ABC transporters 

(Harland et al., 2005) of which 33 genes encode putative lipoproteins, 24 of which are 

organised as operons with genes encoding other components of ABC transporter 

proteins (ATPases, permeases and or additional lipoproteins). Eleven of these have been 

previously described, (Table 1.4). However the roles of the remaining ABC transporters 

in S. pneumoniae virulence need to be investigated.  

 

1.5.4 Role of components of bacterial ABC transporters as vaccine candidates 

Components of ABC transporters have shown to be protective in animal models as 

protein vaccine candidates against various pathogenic bacteria. In S. pneumoniae, solute 

binding components (SBP / lipoproteins) that have been demonstrated to be protective 

against both systemic and pulmonary infections are pneumococcal iron acquisition (Pia) 

and pneumococcal iron uptake (Piu) ABC transporters. PsaA is a  

 

Table 1.4: ABC transporters investigated before. 
 

Operon Given name Function Reference 

Sp0042 comABCDE Competence Havarstein et al 
Sp0241-243 pitADBC Iron uptake J.S.Brown et al. 
Sp0366 aliA Oligopeptide A.R.Kerr 
Sp0601-604 vex123-pep27-vncRS Vancomycin tolerance E.I. Toumanen et al 
Sp1032-35 piuA Iron uptake J.S.Brown et al 
Sp1396-1400 pstSCAB Phosphate uptake E.I.Toumanen et al 
Sp1648-50 psaABC Manganese uptake J.P.Claverys et al 
Sp1869-72 piaA  Iron uptake J.S.Brown et al. 
Sp1887-91 amiACDEF Oligopeptide  A.R.Kerr et al 
Sp2169-71 adcABC Zinc uptake J.P.Claverys et al 
Sp1526-27 aliB Oligopeptide  A.R.Kerr et al 
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manganese uptake ABC transporter present in S. pneumoniae. Although, the degree of 

protection afforded by PsaA against systemic infection is not good, it does provide 

protection against the nasopharyngeal carriage of S. pneumoniae. The vaccine against 

Lyme disease caused by Borrelia burgdorferi is based on the outer-surface lipoprotein 

A (Steere et al., 1998). Three conserved lipoproteins identified from the genome 

sequence of serogroup B of Neisseria meningitidis were able to induce bactericidal 

activity (Pizza et al., 2000), and active immunisation with 5 S. pyogenes lipoproteins are 

protective (Lei et al., 2004). PstS, a surface exposed SBP of phosphate transport system 

on mycobacteria is highly immunogenic when administered to mice through the 

intramuscular route as DNA vaccine and exhibits protection against intravenous 

challenge with M. tuberculosis (Garmory and Titball, 2004).  

 

1.5.5 Lipoprotein components of ABC transporters investigated as vaccine 

candidates in S. pneumoniae 

Immunisation of lipoprotein components of S. pneumoniae ABC transporter proteins 

such as PsaA, PiaA, PiuA and PotD, lipoprotein component of the polyamine ABC 

transporter have been shown to protect against S. pneumoniae infections. Anti-PsaA 

antibodies naturally developed in humans or elicited by recombinant PsaA in animals 

reduce the adherence of S. pneumoniae to nasopharyngeal epithelial cells in vitro. 

(Romero-Steiner et al., 2003) and Intranasal (IN) immunisation with recombinant PsaA 

provides protection against the nasopharyngeal carriage of S. pneumoniae and has little 

effect on the remaining microflora (Pimenta et al., 2006). IN immunisation with 

combination of PsaA with other proteins such as PspC has shown to protect against 

naopharyngeal carriage in mice (Briles et al., 2000). PiaA and PiuA are the lipoprotein 

components of two separate iron uptake ABC transporters required for the full virulence 
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of S. pneumoniae. Systemic immunisation (intraperitoneal, IP) (Brown et al., 2001) and 

mucosal immunisation (IN) (Jomaa et al., 2006) with PiuA and PiaA induced protective 

antibody response in mice against IP and IN challenge with S. pneumoniae. Flow 

cytometry analysis of in vitro opsonophagocytosis demonstrated that anti-PiaA and anti-

PiuA aids in the complement-dependent and complement-independent clearance of S. 

pneumoniae (Jomaa et al., 2005). Amplification of piaA and piuA genes have shown 

that piaA is strictly conserved among typical S. pneumoniae and completely absent in 

oral streptococci and S. mitis group whereas piuA is conserved in typical S. pneumoniae, 

and it is also present in atypical S. pneumoniae plus closely related species of S. mitis 

and S. oralis group. PotD is yet another lipoprotein component investigated as potential 

vaccine candidate and has demonstrated protection against S. pneumoniae septicaemia 

in mice upon immunisation with the recombinant PotD and S. pneumoniae challenge 

intraperitoneally (Shah and Swiatlo, 2006). Recently Shah and collegues have also 

demonstrated that the IN immunisation with recombinant PotD (rPotD) protects against 

nasopharyngeal carriage of S. pneumoniae serotypes (TIGR4 and 19F) in mice, and that 

the rPotD immunised mice clear S. pneumoniae from target organs such as brain, lungs, 

olfactory bulbs compared with the control mice (Shah et al., 2009). Although other 

groups of surface exposed proteins such as putative proteinase maturation protein A 

(PpmA) and streptococcal lipoprotein rotamase A (SlrA) are known to be immunogenic, 

their efficacy as vaccine candidates needs to be investigated (Bergmann and 

Hammerschmidt, 2006). 

Of the S. pneumoniae lipoproteins investigated, PsaA (Sampson et al., 1997) 

PiaA and PiuA (Whalan et al., 2006) have been demonstrated to be conserved between 

S. pneumoniae strains. However, these lipoproteins are less likely to be surface exposed 

probably because the lipoproteins are likely to be membrane bound underneath the 
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peptidoglycan and capsule layers (Tai et al., 2003; Lawrence et al., 1998). Nevertheless 

their functional importance in the acquisition of nutrients and therefore survival of S. 

pneumoniae in the host makes it less likely for these genes to be lost by mutation as a S. 

pneumoniae adaptation to vaccine-induced immunity. 

 

1.5.6 Conclusion 

S. pneumoniae is a major worldwide cause of morbidity and mortality especially 

amongst children and the elderly. Currently, capsular polysaccharide vaccines and 

conjugate vaccines are administered to prevent S. pneumoniae diseases. The most 

unconjugated capsular polysaccharide vaccines does not stimulate adequate immunity in 

infants, elderly and immunocompromised patients, and this drawback has been 

overcome by conjugating the capsular polysaccharide antigens to a protein carrier to 

make a vaccine that is effective in infants. However the conjugated vaccine has only 

limited serotype coverage and is expensive. Therefore conserved S. pnemoniae surface 

proteins such as ABC transporter lipoproteins are being evaluated for their potential role 

in future vaccination against S. pneumoniae diseases. PsaA, PiaA, PiuA and PotD are 

among the many lipoproteins of the S. pneumoniae ABC transporters that have been 

successfully investigated as potential vaccine candidates. However these are only a 

handful of the S. pneumoniae ABC transporter SBP components identified by genome 

sequencing, and the uninvestigated lipoprotein components may be important for the S. 

pneumoniae virulence and could be additional potential vaccines candidates.  
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1.6                                                                      HYPOTHESIS 

 

‘Previously uninvestigated ABC transporters may be required for the in vivo growth and 

full virulence of S. pneumoniae, and their lipoprotein components could be potential 

novel vaccine candidates’. 

 

AIMS 

 To identify previously uninvestigated S. pneumoniae ABC transporters required 

for S. pneumoniae in vivo growth and virulence in mouse models 

 To characterise the function of previously uninvestigated ABC transporters that 

are important for S. pneumoniae virulence 

 To investigate the potential of the corresponding lipoprotein(s) components of 

ABC transporters found to be important for virulence as vaccine candidates using 

mouse models of S. pneumoniae septicaemia and pneumonia. 
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    Chapter 2 

   Materials and methods 

 

2.1 BACTERIAL STRAINS 

The E. coli strains DH5α, Novablue competent cells (Novagen), JM109 (Promega) and 

M15 (Qiagen) were used for cloning procedures. The capsular serotype 3 S. pneumoniae 

strain 0100993, originally isolated from a patient with pneumonia and obtained from 

Smithkline Beecham PLC (Lau et al., 2001), was used to construct S. pneumoniae 

mutant strains for the in vitro and in vivo phenotype analysis. While most of the in vitro 

and in vivo phenotype analyses were performed in 0100993 strain, some experiments 

such as radioactive uptakes assays were performed using capsular serotype 2 strain D39 

since mucoid colonies of 0100993 strain prevented effective pelleting of bacteria. 

Vaccination studies were mostly performed using the capsular serotype 2 strain D39 

since this strain has been previously used for these experiments (Brown et al., 2001b). 

S. pneumoniae, E. coli mutant strains and plasmids constructed and primers used for 

this thesis are listed in the tables 2.2, 2.3 and 2.4.  

 

2.2 MEDIA AND GROWTH CONDITIONS 

E. coli DH5α was cultured using Luria Bertani (LB) medium (Sambrook J. et al., 1989) 

at 37ºC. Liquid cultures were grown with continuous shaking at 200 rotations per 

minute (rpm) and colonies were grown on LB agar plates. Plasmids pID701 was 

selected using chloramphenicol (10 μg ml-1) and pST-1, pGEM-Teasy, pQE30, 

pQE30UA plasmids were selected using appropriate antibiotics according to 

manufacturer’s instructions. For long term storage, strains were cultured overnight in 
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LB broth with appropriate antibiotic selection and stored at -70ºC in 10% glycerol. S. 

pneumoniae strains were cultured at 37ºC in the presence of CO2 on Columbia agar 

(Oxoid) supplemented with 5% horse blood (TCS Biosciences), or in Todd-Hewitt 

broth supplemented with 0.5% yeast-extract (Oxoid). Mutant strains were grown on 

blood agar plates in the presence of appropriate antibiotic (10 µg ml-1 chloramphenicol 

and 0.2 µg ml-1 erythromycin). Broth culture growth was monitored by measuring 

optical density (OD) at 580nm. Single use 0.5 ml aliquots of THY broth culture (O.D580 

0.3 - 0.4) of different S. pneumoniae strains were stored at -70ºC in 10% glycerol. 

 

2.3 DNA METHODS 

2.3.1 Extraction of plasmid DNA from E. coli 

Plasmid DNA was isolated from E. coli using the Qiaprep® Spin Miniprep kit (50 μl at 

400 ng ul-1) or the Eppendorff Fast PlasmidTM Miniprep kit (50 μl at 400 ng ul-1). 

Plasmid concentrations were quantified by comparing band intensity to the Bioline 

Hyperladder 1 after electrophoresis in a 0.8-1% agarose gel. 

 

2.3.2 Extraction of genomic DNA from S. pneumoniae 

4-6 ml of S. pneumoniae culture (OD580 ~ 0.4) was resuspended in 200 μl of 50 mM 

EDTA and 0.1% deoxycholate and the genomic DNA extracted using Wizard genomic 

DNA kit (Promega) according to the manufacturer’s instructions. 

 

2.3.3 Gel extraction and purification of DNA 

Specific DNA fragments obtained by restriction digestion or PCR were fractionated 

using 1% agarose gels and purified using the QIAquick gel extraction kit. Restriction 

digests or PCR were purified by using Qiagen® QIA quick columns. 5 volumes of PB 
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buffer (Qiagen®) were added to the reaction product, mixed and transferred to Qiagen® 

QIAquick columns and centrifuged at 13000 rpm for 1 minute. The membrane bound 

DNA was washed 2 times with 750 µl of PE buffer (Qiagen®) and centrifuged for 2 

minutes to remove traces of PE buffer, then eluted in 30 µl of distilled water or EB 

buffer (10 mM Tris-Cl  pH8.0) (Qiagen®). 

 

2.3.4 PCR 

Templates for PCR were either genomic DNA, plasmid DNA or E. coli colonies picked 

directly from transformation plates. In a reaction volume of 200 µl, 100 pmoles of 

primers (Invitrogen), 200 µM of dNTPs (Promega) and 0.5 units (U) of Taq DNA 

polymerase (Sigma) were used. The standard PCR cycle was an initial denaturing step 

at 94ºC for 4 minutes, 94ºC for 30 seconds, followed by an annealing step at 50ºC for 30 

seconds and an extension step at 72ºC for 45 seconds, for 35 cycles, with a final 

extension at 72ºC for 10 minutes. PCR products were purified by Qiagen® QIAquick 

columns (see above) and visualised on 1% agarose electrophoresis gels. 

 

2.3.5 Restriction digestion 

When necessary, PCR products and plasmids were digested with appropriate restriction 

enzymes. 4 µl of PCR products / plasmid preparations were digested by 2-4 µl of 

restriction enzymes at 37ºC. For ligations, the digested plasmid products were 

dephosphorylated by the addition of 5 U of calf intestinal alkaline phosphatase (MBI 

Fermentas, 10 U µl-1) and incubating for up to 30 minutes at 37ºC. Once digested and 

dephosphorylated, PCR products and plasmids were cleaned using a Qiagen® spin kit 

(see above) and eluted in 20 µl or 40 µl of distilled water or EB buffer respectively (10 

mM Tris-Cl pH 8.0) respectively. 
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2.3.6 Ligation 

Ligations were performed in a total volume of 20 µl of 1x ligation buffer (50 mM Tris-

Cl pH 7.6, 1 mM ATP, 1 mM DTT, 5% w/v PEG 8000) with 1 U of T4 DNA ligase 

(Gibco RL). Ligation reactions were performed overnight at 16ºC with variable ratios of 

prepared plasmid DNA and insert DNA (3:1 to 1:3). Negative controls included 

plasmids ligated without insert DNA and reactions with no added T4 DNA ligase. 

 

2.3.7 Overlap extension PCR (OEP) 

The deletion construct of Sp0149 was obtained by flanking the erythromycin gene 

(antibiotic resistance) between Sp0148 and Sp0150 genes which are upstream and 

downstream to Sp0149 respectively. To obtain the Sp0149 deletion construct, fragments 

of Sp0148 and Sp0150 genes were amplified from the genomic DNA of S. pneumoniae 

(0100993 strain). The erm gene was amplified from the erm cassette of pACH74 (a 

suicide vector carrying erm for selection in S. pneumoniae, a kind gift from J. Paton). 

Similarly the deletion construct of Sp0750-53 was obtained by flanking the 

erythromycin gene (antibiotic resistance) between Sp0749 and Sp0754 genes which are 

upstream and downstream of Sp0750-53 respectively. To obtain the Sp0750-53 deletion 

construct, fragments of Sp0749 and Sp0754 genes were amplified from the genomic 

DNA of S. pneumoniae (0100993 strain). All the primers (table 2.2) were designed from 

5’to 3’ direction but the reverse primer of the Sp0148 and Sp0749 and the forward 

primer of the Sp0150 and Sp0754 had linkers that were complementary to the 5’ and 3’ 

portion of the erm gene at their 5’ ends (Shevchuk et al., 2004). 
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(a) Initial PCR 

The individual PCR products were amplified in a reaction volume of 200 µl, 100 

pmoles of primers, 200 µM of dNTPs (Bioline) and 0.5 U of Taq DNA polymerase 

(Sigma) using a PCR cycle of an initial denaturing step at 94ºC for 4 minutes, 94ºC for 

30 seconds, followed by an annealing step at 55ºC for 45 seconds and an extension step 

at 72ºC for 1 minute, for 30 cycles, with a final extension at 72ºC for 10 minutes. PCR 

products were purified by Qiagen® QIAquick columns (see above) and visualised on 

1% agarose gels. 

 

(b) Fusion of the initial PCR products without primers 

Purified individual PCR products were pooled in a reaction volume of 20 µl which 

contained 8.7 µl of nuclease free water, 1 µl of buffer, 1 µl of 2 mM dNTPs, 0.4 µl of 

50 mM MgSO4, 2 µl (approximately 50 ng) of fragment 1 and 3, 5 µl (approximately 50 

ng) of fragment 2 and 0.2 µl of Taq polymerase (Bioline). The PCR cycle was an initial 

denaturing step at 94ºC for 2 minutes, 94ºC for 20 seconds, followed by an annealing 

step at 50ºC for 30 seconds and an extension step at 72ºC for 1 minute, for 10 cycles, 

and a final hold at 4ºC. 

 

(c) Amplification of fused PCR products 

Final amplification was performed in a reaction volume of 100 µl which contained 68.2 

µl of nuclease free water, 10 µl of buffer, 10 µl of 2 mM dNTPs, 4 µl of 50 mM 

MgSO4, 100 pmoles of forward primer of the fragment 1 and reverse primer of fragment 

3, 3 µl of unpurified PCR product from the step (b) and 0.8 µl of Taq polymerase. The 

PCR cycle was an initial denaturing step at 94ºC for 2 minutes, 94ºC for 20 seconds, 

followed by an annealing step at 50ºC for 30 seconds and an extension step at 72ºC for 
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2.30 minutes, for 35 cycles, with a final extension at 72ºC for 3 minutes and a final hold 

at 4ºC. The fusion PCR products were then analysed on 1% agarose gel, desired DNA 

bands excised and purified using Qiagen® QIAquick columns and the resulting deletion 

constructs were used to transform S. pneumoniae serotype 3 strain (0100993). 

 

2.3.8 Transformation of E. coli 

Transformation of E. coli was performed by mixing 5 µl of ligation reaction with 100 µl 

of competent E. coli DH5α cells (prepared by the rubidium chloride method, Sambrook 

et al. 1989) and using heat shock at 42ºC (Sambrook et al. 1989). The transformation 

mix was then plated on LB agar containing the required antibiotic. (10 µg ml-1 

chloramphenicol or 100 µg ml-1 carbenicillin) and incubated overnight at 37ºC. Correct 

inserts in the plasmids from the transformants were confirmed by colony PCR, 

restriction digests and / or sequencing. 

 

2.3.9 Transformation of S. pneumoniae 

A single S. pneumoniae colony from an overnight incubation on a blood agar plate was 

inoculated into THY pH 6.8 broth and cultured until the O.D580 reached 0.015. The 

culture was pelleted at 15,000 rpm at 4ºC for 10 minutes and the pellet resuspended in 1 

ml of pre-warmed THY pH 8.0 broth containing 1 mM CaCl2 and 0.2% BSA. The 

resuspended solution was transferred into Falcon tubes and competence stimulating 

peptide-І (CSP1) (kind gift from D. Morrison) was added to a final concentration of 200 

ng ml-1 (Håvarstein et al., 1995; Lau et al., 2001). The transformation mix was 

incubated at room temperature for 5 minutes before the addition of transforming DNA 

(circular plasmid or linear constructs) followed by incubation at 37ºC for 2 hours in the 

presence of CO2. 200 µl of the above transformation mixture was spread onto antibiotic 
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containing blood agar plates and the identity of successful transformants confirmed by 

PCR and / or sequencing. 

 

2.3.10 Nucleotide sequencing 

Mutant identities were confirmed by PCR followed by sequencing of the PCR products 

obtained using mutant genomic DNA, a target gene specific forward primer and a vector 

specific reverse primer. DNA sequencing was performed by Lark Technologies Inc. UK 

or UCL sequencing services using the Big Dye™ Terminator technique and gene 

specific PCR primers. 

 

2.4 RNA METHODS 

2.4.1 RNA extraction from S. pneumoniae 

RNA was extracted from S. pneumoniae using the SV total RNA extraction kit 

(Promega). S. pneumoniae colonies from overnight grown blood agar were inoculated 

into 20 ml of THY and incubated at 37ºC in the presence of CO2. Once OD580 reached 

0.2-0.3, 2-5 ml of the culture was centrifuged at 13,000 rpm for 10 minutes at room 

temperature. The pellet was resuspended in 100 µl of TE (50 mM Tris, 5 mM EDTA) 

and 0.01% DOC (deoxycholate) and incubated for 10 minutes. Further steps of the 

extraction were performed according to the manufacturer’s instructions. To inhibit RNA 

degradation, 0.5-1 µl of RNAsin was added to the completed RNA preparation and 

aliquots of 5-8 µl were made and stored at -70ºC until use. 

 

2.4.2 RNA extraction from S. pneumoniae by acid-phenol method 

Total RNA from S. pneumoniae grown in human and mouse blood was extracted as 

described by Ogunniyi et al, (2002). S. pneumoniae was harvested from the human and 
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mouse blood by brief centrifugation at 825 g at 4ºC for 5 minutes to pellet the 

erythrocytes and leucocytes. The resulting supernatant which is a mixture of plasma and 

thrombocytes along with the bacteria was centrifuged further at 15500 g at 4ºC for 5 

minutes. The supernatant was discarded and the bacterial pellet was then used to extract 

the total RNA. 

The bacterial pellet was resuspended in 300 µl of pre-warmed (65ºC) acid-

phenol (Ambion) and incubated for 5 minutes at 65 C followed by further addition of 

300 µl of pre-warmed NAES buffer and incubation at 65 C for 5 minutes with 

intermittent mixing. The mixture was cooled on ice for 1 minute and centrifuged at 

15500 g for 1 minute to separate the phases. The aqueous phase was re-extracted twice 

with acid-phenol and NAES buffer and later extracted twice with 300 µl of chloroform. 

To this mixture, sodium acetate was added at a final concentration of 300 mM followed 

by addition of 2 volumes of ethanol and RNA was precipitated at -20 C overnight. The 

precipitated RNA was centrifuged at 6000 rpm for 5 minutes and the resulting pellet 

was washed in 70% ethanol and resuspended in 50 µl of nuclease-free water. To the 

resulting RNA, recombinant RNasin ribonuclease inhibitor (Promega N251A) was 

added to a final concentration of 1 U µl-1 and then treated with 0·5 U µl-1 RQ1 RNase-

free DNase (Promega M610A) at 37 C for 40 minutes. Aliquots of this RNA were 

stored at -70 C until use. An aliquot was used to check the purity by RT-PCR as 

described in section 2.4.3 with and without reverse transcriptase using gene specific 

primers.  

 

2.4.3 RT-PCR 

RT-PCR was performed using the Access RT-PCR system (Promega). In the final 

volume of 25 µl, 5 µl AMV buffer, 0.5 µl of 5 mM dNTPs (Promega), 1 µl of 25 mM 
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MgSO4, 1.5 U each of AMV reverse transcriptase and Tfl DNA polymerase, 1 µl of 

RNA with 0.1 µl stop solution and primers at 120 nanomoles final concentration were 

added and the volume was made up with nuclease free water. Amplification of target 

specific DNA was performed at 48ºC for 45 minutes, followed by PCR amplification of 

the cDNA with the following parameters of 94ºC for 2 minutes, 94ºC for 30 seconds, 

55ºC for 30 seconds, 72ºC for 45 seconds, 72ºC for 10 minutes for 35 cycles. 

 

2.5 PROTEIN METHODS 

2.5.1 Induction of positive clones for protein expression 

Protein induction was performed according to The QIAexpressionistTM manual. 

Colonies of E. coli M15 strain were confirmed for the insert and the orientation of the 

lipoprotein gene by colony PCR using the vector specific forward primer (pQE30F) and 

insert specific reverse primers (Sp0149Rev, Sp0749Rv, PiaARv and PiuARv). These 

colonies were picked and inoculated in 1.5 ml LB broth containing carbenicillin (100 µg 

ml-1) and kanamycin (25 µg ml-1). An extra culture was inoculated to serve as a non-

induced control. These cultures were grown overnight at 37ºC at 220 rpm (rotations per 

minute). 500 µl of the above overnight culture was inoculated into 10 ml LB containing 

carbenicillin (100 µg ml-1) and kanamycin (25 µg ml-1) and grown at 37ºC at 220 rpm 

until the OD580 reached 0.5-0.7. Protein expression by the cultures was induced by 

adding isopropyl ß thiogalactosidase (IPTG) to a final concentration of 1 mM and 

incubation for an additional 4-5 hours. The cells were harvested by centrifugation at 

4800 g for 5 minutes and supernatant was discarded. The harvested cells were 

resuspended in 400 µl of buffer B (appendix) and lysed by gentle vortexing until the 

solution became translucent. The lysate was centrifuged to remove the cell debris 

(termed pellet), and the supernatant was transferred to a fresh tube. 2.5 µl of 5x SDS-
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PAGE sample buffer (appendix) was added to 10 µl of the supernatant and boiled at 

95ºC for 5 minutes to denature the proteins for analysis by SDS-PAGE. 

 

2.5.2 Purification of 6xHis-tagged lipoproteins by Ni-NTA affinity 

chromatography under native conditions 

Purification of His-tagged lipoproteins was performed according to the 

QIAexpressionistTM manual. 10 ml of LB containing 100 µl ml-1 of carbenicillin and 25 

µl ml-1 of kanamycin was inoculated with a positive clone cultured on LB agar 

containing 100 µl ml-1 of carbenicillin and cultured at 37ºC with vigorous shaking at 

220 rpm overnight. 100 ml of pre-warmed LB medium with 100 µl ml-1 of carbenicillin 

and 25 µl ml-1 of kanamycin was inoculated with 5 ml of the overnight culture and 

cultured until the OD580 reached 0.6. The culture was then induced with IPTG at a final 

concentration of 1 mM and cultured for an additional 4-5 hours. The bacteria were 

pelleted by centrifugation at 4000 g for 20 minutes and the pellets stored at -20ºC until 

use. The cell pellets were thawed for 15 minutes on ice and resuspended in 2-5 ml per 

gram of wet weight in cell lysis buffer (appendix) and sonicated on ice using six 10 

second bursts at 200-300W, with 10 seconds cooling between each burst. The lysates 

were centrifuged at 10,000 g for 20-30 minutes at 4ºC to pellet the cellular debris and 

the supernatant (CL) was saved for further use. 5 µl of 2x SDS-PAGE sample buffer 

was added to 5 µl of cell lysate and stored at -20ºC for analysis. 1 ml of 50% Nickel 

tagged Nitrilotriacetic acid (Ni-NTA) agarose slurry was added to 4 ml of the cleared 

cell lysate and mixed by shaking at 200 rpm at 4ºC for 1 hour. The lysate-Ni-NTA 

slurry was then loaded into the protein purification columns with the bottom outlet 

capped. After loading, the outlet caps were removed to collect the flow-through (FT). 5 

µl of 2x SDS-PAGE sample buffer was added to 5 µl of flow-through (FT) and were 
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stored at -20ºC for the analysis by SDS-PAGE. The columns were washed twice with 4 

ml of wash buffer (appendix) and the successive fractions (W1 &W2) were saved for 

SDS-PAGE analysis. Finally the protein was eluted with four 0.5 ml volumes of elution 

buffer (appendix), and the eluate collected in 4 tubes and analysed by SDS-PAGE. 

 

2.5.3 Preparation of dialysis tubing 

Dialysis tubings were prepared as follows. The tubings were first boiled in 500 mls of 

2% w/v sodium bicarbonate and 1 mM EDTA pH 8.0 for 10 minutes, rinsed in distilled 

water, boiled again in 1 mM EDTA pH 8.0 for 10 minutes, cooled and finally stored 

submerged in ethanol at 4ºC. The tubings were washed with distilled water before use. 

 

2.5.4 Dialysis of purified lipoproteins 

One end of the treated dialysis tubing was tied with a thread, the purified protein sample 

was loaded carefully and then the other end was also tied. The tubing was tied to a rod, 

placed in 10 mM NaH2PO4 and dialysed extensively overnight at 4 ºC. The dialysed 

protein samples were removed and transferred into a fresh tube and an aliquot was used 

to determine the protein concentration. The proteins were mixed in a final concentration 

of 50% sterile glycerol and stored at -20ºC. 

 

2.5.5 Protein concentration determination by Bicinchonic acid (BCA) method 

(Pierce) 

2 mg ml-1 bovine serum albumin (BSA) was diluted in 10 mM NaH2PO4 to 25, 125, 

250, 500, 750, 1000, 1500 and 2000 µg ml-1 and used as protein standards. The negative 

control consisted of 10 mM NaH2PO4. BCA working reagent was prepared by mixing 

50 parts of BCA reagent A with 1 part of BCA reagent B. 10 µl of each diluted standard 
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and the unknown samples were added into a microtitre well and 200 µl of BCA working 

reagent added to each well and mixed for 30 seconds. The plate was incubated for 30 

minutes at 37ºC and cooled after incubation to room temperature. Absorbance was 

measured at 562 nm on a plate reader. The protein concentration was determined by 

plotting a standard curve with the BSA values on the X-axis and the absorbance at 562 

nm on the Y-axis. The concentrations of the unknown protein samples were determined 

using the albumin values as standard. 

 

2.5.6 Whole cell lysate preparation from S. pneumoniae 

Different serotypes of S. pneumoniae were grown in THY medium until the OD580 

reached 0.6 and the cells were centrifuged for 10 minutes at 4800 g. The supernatant 

was discarded and the pellet resuspended in sterile phosphate buffered saline (PBS) and 

sonicated on ice using six 10 second bursts at 200-300W with 10 seconds of cooling 

between each burst. The cell lysate was centrifuged for 30 minutes at 4800 g, the 

supernatants saved for further analysis and the pellet containing cell debris discarded. 5 

µl of SDS-PAGE sample buffer (appendix) was added to 30 µl of the supernatant and 

boiled at 95ºC for 5 minutes to denature the proteins for analysis by SDS-PAGE and 

Western blotting. 

 

2.5.7 Extraction of S. pneumoniae membrane proteins by Triton X-114 

Membrane proteins were extracted from S. pneumoniae according to Khandavilli et al. 

(2008). S. pneumoniae grown in THY to mid-logarithmic phase were pelleted at 3000 g 

for 20 minutes at 4ºC and then resuspended in 0.1% DOC. This mixture was cooled for 

2 minutes and then sonicated for 15 seconds with 10 seconds cooling between each 

sonication. 800 µl of PBS and 100 µl of 10% Triton X-114 was added to this mixture 
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and incubated at 4ºC for 2 hours, and then centrifuged at 13,000 rpm for 10 minutes at 

4ºC. The resulting supernatant was incubated at 37ºC for 30 minutes, followed by 

centrifugation at 13,000 rpm for 5 minutes at room temperature to separate the phases. 

The upper phase was removed and 1 ml of PBS was added to the lower phase (Triton X-

114 phase) and incubated at 4ºC for an hour, followed by incubation at 37ºC for 30 

minutes and further centrifugation at 13,000 rpm for 5 minutes at room temperature. 

The upper phase was removed and the Triton X-114 phase was then diluted at 1:2 with 

PBS and stored at -20ºC until use. 

 

2.5.8 SDS-PAGE 

SDS-PAGE gels were prepared using SDS-PAGE cassettes (Invitrogen) according to 

Sambrook et al. 5 µl of SDS-PAGE sample buffer (appendix) was added to 30 µl of the 

supernatant, heated at 95ºC for 5 minutes before loading and electrophoresis using 1x 

Tris-glycine electrophoresis buffer (appendix) at a constant 120 volts for 11/2 hours. The 

gels were stained with 0.1% Coomassie Brilliant Blue R250 stain (appendix) for 2 

hours, and then destained using 40% methanol and 10% acetic acid until the 

background staining had disappeared. 

 

2.5.9 Western blotting 

After electrophoresis, the SDS-PAGE gels were transferred to HyBond Nitrocellulose 

membranes (Amersham Biosciences) using a constant current of 40 mA per membrane 

for 2 hours and the semi-dry blotting method (Sambrook et al). Transferred membranes 

were washed for 5 minutes in 1x transfer buffer (appendix), and stained in Ponceau S 

solution (Sigma) to confirm the transfer of proteins. After washing to remove the stain, 

the membranes were incubated overnight at 4ºC in 5% milk in 1x TBS-TWEEN (TBS-
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T, appendix) to block any non-specific binding of antibodies. The membranes were 

incubated with primary antibody (polyclonal mouse serum at 1/2000 dilution) at room 

temperature for 2 hours, washed 2-3 times with 1x TBS-T for one hour, and then 

incubated with secondary antibody (goat anti-mouse IgG conjugated with HRP [Dako 

Cytomation] at 1/2000 dilution) at room temperature for 2 hours. After washing 3 times 

with 1x TBS-T for 10 minutes, the membranes were analysed using the ECLTM Western 

blotting analysis system according to the manufacturer’s instructions and exposed to 

photographic film for up to 2 minutes before developing. 

 

2.5.10 Tryptophan fluorescence spectroscopy 

The protein concentration of purified lipoprotein was estimated and the protein dialysed 

in 10 mM NaH2PO4 and then used for the tryptophan fluorescence spectroscopy. The 

assay was performed using a Hitachi F-2500 spectrofluorimeter at an excitation 

wavelength of 280 nm (slit width 3 nm) and an emission wavelength of 309 nm (slit 

width 3 nm). Ligands (individual amino acids) were solubilised in 10 mM NaH2PO4. 

The assay was performed by mixing 0·5 µM protein in 1·5 ml 50 mM Tris/HCl pH 8 in 

the sample cuvette maintained at 25ºC in the spectrofluorimeter with continous stirring. 

The slit width of the spectrofluorimeter was adjusted to avoid photobleaching of the 

protein and fluorescence changes upon addition of ligands were recorded (Thomas et 

al., 2006). 

 

2.5.11 Radioactive substrate binding assay 

100 µl of purified lipoprotein was first incubated on ice for 15 minutes. A mixture of 

14C-labelled and non-radioactive ligand (GE Healthcare, United Kingdom) at 5 µM 

concentration was added to the protein and further incubated on ice for 10 minutes. To 
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this mixture, 1 ml of saturated ammonium sulphate was added and incubated on ice for 

20 minutes, then filtered using glass fibre filter papers (GF/F; Whatman, United 

Kingdom), the filters washed with 4 ml of saturated ammonium sulphate and dried for 5 

minutes. The filters were allowed to dissolve in the Ready safe scintillation cocktail 

(Beckman Coulter, United Kingdom) for 20 minutes and the radioactivity was 

determined using Wallac 1214 RackBeta liquid scintillation counter after brief 

vortexing of the samples. 

 

2.5.12 Streptonigrin assay 

For streptonigrin assay (Brown et al., 2001a), frozen S. pneumoniae strains were thawed 

and pelleted by centrifugation at 13,000 pm at 4ºC, then resuspended in 2.5 µg ml-1 or 5 

µg ml-1 of streptonigrin (Sigma) and incubated at 37ºC. The reaction culture was serially 

diluted and appropriate dilutions were plated for cfu before (0 minute) and after (20 and 

40 minutes) the addition of streptonigrin. Results are represented as the percent survival 

of wild-type and mutant strains of S. pneumoniae on exposure to streptonigrin. 

 

2.5.13 Radioactive substrate uptake assays 

Radioactive uptake assays were performed as described by (Webb et al., 2008) with 

some modifications. Wild-type and mutant strains of S. pneumoniae were inoculated in 

THY medium until the O.D620 reaches 0.2-0.4. Bacteria were harvested at 6000 rpm for 

20 minutes and resuspended in potassium phosphate buffer (appendix) to an 

approximate O.D620 between 0.8-1.1. The radioactive uptake assay was performed in a 

total volume of 1 ml which contained 0.85 ml of bacteria, 50 µl of 0.5 mM non-

radiolabelled test substrate and 100 µl of 2.5 µCi radiolabelled test substrate. 150 µl of 

sample was taken immediately after the addition of non-radiolabelled substrate followed 
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by the addition of radiolabelled substrate at time 0. Equal volumes of samples were 

taken at 1, 2 and 3 minutes, and immediately filtered through glass fibre filters, then 

washed with potassium phosphate buffer. 50 µl of total isotope control was directly 

added into a scintillation vial immediately after the 3rd minute. Washed filters were 

placed in scintillation vials, 5 ml of Ready safe scintillation cocktail (Beckman Coulter) 

was added to all the vials and radioactivity was counted using a Wallac 1214 RackBeta 

liquid scintillation counter.  

 

2.8 IN VIVO METHODS 

2.8.1 In vivo studies of S. pneumoniae in mouse models 

Male outbred white mice (strain CD1; Charles River Breeders) which were 4-8 weeks 

old were used for the in vivo experiments as they have been previously used in our 

laboratory for competitive indicies experiments. The use of different mouse strains for 

different in vivo experiments is listed in Table 2.1. The colony forming units per ml 

(cfu) from the frozen stocks of S. pneumoniae were first determined by plating serial 

dilutions, and diluted in 0.9 ml PBS to the cfu concentration required for inoculation. 

For mixed infections, equivalent numbers of bacteria from the wild-type and mutant 

strains were used. To determine the equivalent numbers of bacteria from the wild-type 

and mutant strains, the frozen THY stocks of the wild-type and mutant strains whose 

cfu has been previously determined were thawed, calculated to obtain equivalent 

numbers and mixed. The mixed strains were then centrifuged to remove THY and 

resuspended in sterile PBS, serially diluted and appropriate dilutions were plated on 

plain media and media containing appropriate antibiotic to enumerate the wild-type and 

mutant bacterial cfu. For the systemic models of infection, 100 µl containing 1x103 cfu 

of bacteria were injected intraperitonially (IP) per mouse. For pneumonia models of 
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infection, mice were deeply anaesthetized by inhalation of halothane and 40 µl 

containing 5 x 106 cfu of bacteria per mouse inoculated intranasally (IN). After 24 hours 

(IP) or 48 hours (IN), mice were sacrificed and the target organs (spleens for IP 

inoculations, and lungs and spleen for IN inoculations) were homogenised in 0.5 ml of 

PBS. Appropriate dilutions of organ homogenates were plated on plain and antibiotic 

blood agar plates and incubated overnight (Brown et al., 2001). Bacterial cfu were 

enumerated and the competitive index (CI) calculated using the formula: ratio of mutant 

to wild-type strain recovered from mice divided by the ratio of mutant to wild-type 

strain in the inoculum. The CI technique is useful in analysing the role of surface 

proteins such as ABC transporters, however this technique cannot be used to analyse the 

role of secreted proteins (Holden et al, 2000). All the in vivo CI and survival 

experiments using the wild-type and mutant strains were performed using 0100993 S. 

pneumoniae strain. To recover blood, mice were deeply anaesthetized by IP injection of 

pentobarbital (100 µl) and the blood obtained by cardiac puncture or from the femoral 

artery. The blood was stored on ice during transport and allowed to clot for 2-3 hours at 

4ºC and then centrifuged for 10 minutes at 10,000 rpm to obtain serum. Aliquots of sera 

were stored at 4ºC for ELISAs and the remaining aliquots stored at -70ºC for C3 

binding and opsonophagocytosis assays. 

 

2.8.2 IP vaccination schedule and challenge experiment 

Purified proteins were prepared for vaccination at 100 µg ml-1 in 50% glycerol and 10% 

alum (Pierce) as adjuvant. Alum alone was used as the negative control. For the 

vaccination experiments, proteins were mixed with 10% alum at room temperature for 2 

hours, and 100 µl (10 µg of protein) injected intraperitonially into groups of 24 mice. 2 

booster doses of proteins were prepared as above and were given at 7 to 10 day intervals 
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after the initial vaccination. After 2 weeks, serum was recovered from 5 mice from 

each group, and the remaining 19 mice challenged intraperitonially with 100 µl 

containing 1 x 105 or 1 x 103cfu of S. pneumoniae D39 strain. Mice were routinely 

observed every 3-4 hours from 2 days to 5 days post-challenge and then twice a day 

for a further 9 days. When they exhibited hunched posture and poor mobility, mice 

were sacrificed and the survival rates of each vaccination group recorded (Brown et 

al., 2001).  

 

2.8.3 IN vaccination schedule and challenge experiment 

Intranasal vaccination was performed by mixing the purified proteins and cholera 

toxin (CT) (Sigma) as the adjuvant at 2.5 µg ml-1 in a final volume of 10 µl. Groups 

of 20 mice were deeply anaesthetized by inhalation of halothane and 10 µl of the 

Table 2.1: Mouse strains used for different in vivo experiments 
during this study 

Mouse strain Reasons 

CD1 
 
 
 
 
 
 
 
BALB/C 
 
 
CBA/Ca  

CI, survival studies 
 
 
IP and IN 
immunisation 
 
 
 
IP immunisation 
 
 
IN immunisation 

Established model for phenotype 
analysis 
 
Less expensive, greater relevance if 
positive results were obtained as this 
mouse strain is outbred and genetically 
variable 
 
Inbred mouse strain and therefore 
immunologically less variable  
 
Inbred mouse strain, susceptible to 
intranasal infection and 
immunologically less variable 

Experiment 
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prepared proteins were intranasally administered. 2 booster doses of proteins were 

prepared as above and were given at 7 intervals after the initial vaccination. After 2 

weeks, serum, bronchoalveolar lavage fluid (BALF) and lungs was recovered from 5 

mice from each group for immune assays, and the remaining 15 mice challenged 

intranasally with 50 µl of PBS containing 1 x 105 or 1 x 106 cfu of S. pneumoniae D39 

or 0100993 strain. Mice were routinely observed every 3-4 hours from 2 days to 5 

days post-challenge and then twice a day for further 9 days. When they exhibited 

hunched posture and poor mobility, mice were sacrificed and the survival rates of 

each vaccination group recorded (Jomaa et al., 2006). 

Survival curves were further refined by quantitative analysis of the S. 

pneumoniae cfu from the target fluids and organs such as bronchoalveolar lavage 

fluid, lungs and blood after IN immunisation and S. pneumoniae challenge. 

 

 

2.8.4 Immune cell surface marker staining recovered from target organs 

Immune cell surface markers such as CD4, CD8, B220, CD45RB, macrophage 

surface markers such as CD80 and I-A-I-E (MHC class II antigens) were stained on 

the recovered cells from the lungs and BALF of mice. Aseptically the lungs were 

homogenised by passage through a nylon sieve and washing with 3 ml of RPMI 

(containing L-glutamine) directly into a Falcon tube and centrifuged at 1200 rpm for 5 

minutes. The resulting supernatant was discarded and the pellet was resuspended in 3 

ml RBC lysis buffer (appendix) for 3 minutes at room temperature, followed by 

addition of 3 ml RPMI to gently resuspend the pellet, which was then centrifuged at 

1200 rpm for 5 minutes. The resulting pellet was resuspended in 1 ml RPMI and an 

aliquot of 50 µl of cells was stained with trypan blue (Sigma) and total cell counts 
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were determined using a haemocytometer. Approximately 500,000 cells were added 

into each well of a round bottomed microdish plate (Nunc) based on the total cell 

counts, centrifuged for 2 minutes at 2000 rpm and the supernatant aspirated. To the 

pellet, 30 µl of antibody solution (appendix) prepared in PBS / 1% BSA / 0.1% azide 

(appendix) was added and incubated in dark for 20 minutes at room temperature. This 

incubation was followed by addition of 100 µl of PBS / 1% BSA / 0.1% azide, 

centrifuged at 2000 rpm for 2 minutes. The supernatant was aspirated and the pellet 

washed with 200 µl of PBS followed by another wash in PBS / 1% BSA / 0.1% azide. 

The pellet was fixed in 100 µl of 3% paraformaldehyde (appendix) and finally 

analysed by flow cytometry (Brown et al., 2002). Immune cell surface marker 

staining in mice BALF was performed by determining the total cell counts in an 

aliquot of 50 µl stained with trypan blue using a haemocytometer followed by staining 

the immune cell surface marker as described above. 

 

2.8.5 Cytological analysis of BALF 

500,000 cells from the BALF were centrifuged onto poly-l-lysine microscope slides 

(Cytospin 3; Shandon, UK). The slides were air dried overnight and then stained 

using DiffQuik (DADE AG, Switzerland). 100 cells per sample were counted and the 

number of macrophages, monocytes and neutrophils were recorded based on the 

cellular morphology (Hodges et al., 2004). 

 

2.8.6 Histological analysis of lung sectioning 

The degree of inflammation of lungs before and after the intranasal vaccination was 

analysed by histological observation. The left lung from each mouse was fixed in 4% 

neutral buffered formalin, processed to paraffin wax, and stained using haematoxylin 
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and eosin. The degree of inflammation during S. pneumoniae infection was 

determined by a previously described scoring system (Bergeron et al., 1998;Yuste et 

al., 2007b). Microscopic observation of the lung cross section at x10 magnification 

was first estimated to determine the extent of inflammation. Later, at x200 

magnification, six fields were scored as: 1 (no visible inflammatory change), 2 

(minimal swelling of alveolar walls with slight change in architecture), 3 (increased 

swelling with presence of erythrocytes and inflammatory cells and an increase in type 

II pneumocytes), and 4 (considerable haemorrhage with inflammatory cell influx, 

widespread alveolar disorganisation with interstitial swelling and pneumocyte 

proliferation). A total score for each mouse was obtained by multiplying the 

percentage of the involved lung by the mean score for the areas analysed, and data 

presented as medians with IQRs (Yuste et al., 2007). 

 

2.9 IMMUNE ASSAYS 

2.9.1 Enzyme Linked Immunosorbant assay (ELISA) 

Microtitre ELISA plates were coated with 100 µl of antigen at a concentration of 5 µg 

ml-1 in TSA buffer (appendix) and incubated overnight at 4ºC. The plates were 

washed 5 times with ELISA wash buffer (appendix) and soaked in 150 µl of 2% 

BSA-Tween (appendix) for 2-4 hours at 37ºC and washed again for 3-4 times with 

ELISA wash buffer. A 1/1000 dilution of mouse serum was made in BSA-Tween 

diluent buffer and added to the first well, and then 2 fold dilutions transferred to 

subsequent wells and incubated at 37ºC for 4 hours. The wells were then washed 6 

times with ELISA wash buffer and incubated overnight at 4ºC in 100 µl of 1/15000 

dilution of goat anti-mouse IgG conjugated to alkaline phosphate (Sigma) diluted in 

enzyme diluent (appendix). The ELISA plate was then washed 5 times in ELISA 
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wash buffer and 100 µl of dinitrophenol (dNP) substrate solution added to each well 

and incubated for 1 hour at 37ºC (dNP substrate solution was prepared by adding 1 

tablet of dNP (Sigma) in 5 ml of water). The absorbance was read at 405 nm and 

antibody titre was calculated as the lowest dilution at 405 nm giving an OD equal to 

or greater than 0.3. 

 

2.9.2 C3 deposition and IgG binding assay 

To analyse C3 deposition on S. pneumoniae, stocks were thawed and washed with 

PBS to remove THY and glycerol and the bacteria diluted in PBS to obtain 5 x 106 

cfu in 50 µl. To these aliquots of bacteria, 10 µl of mouse serum was added and the 

mix incubated for 20 minutes at 37ºC, washed twice with 300 µl of ice cold PBS-

Tween 20 (0.1%) by centrifugation at 10,000 rpm for 5 minutes and resuspending the 

bacterial pellet in 50 µl of 1:300 dilution of fluorescein isothiocyanate-conjugated 

polyclonal goat anti-mouse C3 antibody (ICN Cappel) followed by incubation on ice 

for 30 minutes. The labelled bacteria were then washed twice in 500 µl of PBS-Tween 

20 (0.1%), the bacterial cells were fixed using 3% paraformaldehyde and finally 

analysed by flow cytometry. IgG binding to the bacteria in different sera was analysed 

using the same method but incubating the bacteria with a 1:100 dilution of 

phycoerythrin-conjugated goat anti-mouse IgG (Jackson Immunoresearch). 

 

2.9.3 Opsonophagocytosis 

Opsonophagocytosis assay is a method to determine the serum opsonic activity 

following immunisation. However, in this assay the functional ability of anti-Sp0149 

and anti-Sp0749 antisera to aid in S. pneumoniae association with the phagocytes is 

analysed using flow cytometry. 
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(a) FAMSE labelling of S. pneumoniae for opsonophagocytosis 

The frozen bacterial stocks were streaked on to plain blood agar and incubated 

overnight at 37ºC in the presence of 5% CO2. A loopful of bacteria was inoculated in 

15 ml THY and cultured until the OD600 reached 0.6-0.7. The bacteria were 

centrifuged at 4000 rpm for 10 minutes, washed once with 0.1 M sodium bicarbonate 

buffer and 50 µl of 10 mg ml-1 FAM-SE solution (5,6-carboxyfluorescein-succinidyl 

ester; Molecular Probes, Eugene, Oreg.) prepared in DMSO was added. After 

incubation at 37ºC for 1 hour without shaking, the labelled bacteria washed 5 times in 

opsonophagocytosis buffer (HBSS + Ca + Mg) (Invitrogen) until no free dye was 

present. Aliquots of labelled S. pneumoniae were prepared containing 10% glycerol 

and serial dilutions of an aliquot were plated on plain blood agar plate to determine 

the bacterial counts and the remaining aliquots stored at -70ºC until use. 

 

(b) Tissue culture of HL60 for opsonophagocytosis 

HL60 (Human promyelocytic leukemia cells; CCL240; American Type Culture 

Collection, Rockville, Md.) were cultured in RPMI medium (Invitrogen) containing 

20% foetal bovine serum (Invitrogen), 1% glutamine (Invitrogen) and 1% penicillin / 

streptomycin (Invitrogen) to a cell density of 5 x 105 cells ml-1. Addition of 100 mM 

N,N-dimethylformamide (Sigma) and culturing for 5 days stimulated differentiation of 

the HL60 cells into granulocytes. The undifferentiated HL60 cell line was passaged 

daily for maintenance and propagation. Differentiated HL60 cells were washed twice 

by centrifuging at 1000 g for 7 minutes with HBSS (Hanks balanced salt solution) 

with 0.1% BSA, without Ca2+ and Mg2+. Cells were washed once in 
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opsonophagocytosis buffer (HBSS + Ca2+ + Mg2+), resuspended in 5 ml of 

opsonophagocytosis buffer and counted using haemocytometer. 

 

(c) Opsonophagocytosis 

Different dilutions of mouse sera were prepared in opsonophagocytosis buffer and 10 

µl of the diluted serum was added to a 96 well plate. To obtain a multiplicity of 

infection (MOI) of 10 bacteria per HL60, 106 cfu of FAM-SE labelled bacteria were 

added to each well and the plate was incubated for 20 minutes at 37ºC with gentle 

shaking at 150 rpm. When necessary 10 µl of 1/300 dilution of baby rabbit serum 

(Sigma) was added as a source of exogenous complement and the plate was incubated 

at 37ºC with gentle shaking at 150 rpm for 15 minutes. 105 washed and differentiated 

HL60 cells were added to each well and the plate incubated at 37ºC with gentle 

shaking at 150 rpm for 30 minutes. The cells were fixed by adding 50 µl of 3% 

paraformaldehyde to all the wells and analysed by flow cytometry. 

 

2.10 FLUORESCENCE-ACTIVATED CELL SORTING (FACS) ANALYSIS 

A minimum of 25,000 bacteria and 6,000 HL60 cells were analysed for the C3b 

deposition, IgG binding and opsonophagocytosis asays using a FACSCalibur flow 

cytometer (BD Biosciences). Cell Quest/Pro software (BD Biosciences) was used to 

acquire and analyse the data. Bacteria and the cells that were positive or negative for 

the above mentioned assays were sorted using FL-1 histogram, with the X-axis 

representing the intensity of fluorescence and the number of cells of varying intensity 

represented in the Y-axis. The left peak in the histogram determines the bacteria and 

cells with negative results, while the right peak determines the bacteria and cells with 

positive results for the assays. The percentage of positive bacteria and cells were 
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determined by creating a gate (M1 marker) around the positive peak which represents 

the proportion of bacteria positive for C3b / iC3b or IgG and the proportion of HL60 

cells associated with FAMSE-labelled bacteria. For the immune cell surface marker 

staining from BALF and lungs, lymphocytes were determined using their forward and 

side scatter properties and the identity and proportion of different sub-populations 

confirmed using antibodies to the cell surface markers CD4, CD8 (T cell subsets) and 

B220 (B cells).  Activated T cells were identifed by double staining with anti-CD4 

and -CD8 and anti-CD45RB, with activated cells recognised by loss of the CD45RB 

expression. Lymphocyte counts are presented as  the percent of CD4, CD8 and B220 

positive cells present in the lymphocyte gate, with a minimum of 10,000 (lungs) or 

1000 (BALF) cells counted (Thorpe et al., 2007). 

 

2.11 COMPUTER ANALYSIS 

The genomic DNA sequence of S. pneumoniae serotype 4 strain was obtained from 

The Institute for Genomic Research website (http://www.tigr.org). Blast searches and 

alignments of the available complete and incomplete bacterial nucleotide and protein 

databases were performed using NCBI website (http:// www.ncbi.nlm.nih.gov/blast). 

Primers for both PCR and RT-PCR were designed using ARTEMIS software. 

 

2.12 STATISTICAL ANALYSIS 

Competitive indices of the mutant strains were compared to a theoretical value of 1.0 

and the significance were determined using Student’s t-test. All the in vitro growth 

curves were performed in triplicates and represented as means and standard 

deviations. Results of growth curves, radioactive uptakes, radioactive substrate 

binding assays, ELISA, OP assay, C3b deposition and IgG binding assays and 

http://www.tigr.org/
http://www.ncbi.nlm.nih.gov/blast
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cytospins were analysed using two-tailed t-tests. Results of survival experiments were 

compared using the log rank method. Non-parametric data (eg target organ CFU, 

proportions of lymphocyte and macrophages and lung histology results) were 

analysed using the Kruskal Wallis (if three or more groups) or Mann Whitney U (if 

only two groups) tests.  
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Table 2.2: Primers used during this study 
 

Primer name   Sequence 
 
Sp0090.1 GCT CTA GAC ATT GAG AGA GAC AAC TGG 
Sp0090.2 CGC TCT AGA CAA GAA GTA AGG GAA C 
Sp0149.1 GCT CTA GAG GCT CTT GCA GCT TGC GG 
Sp0149.2 CGC TCT AGA GGC TTT CGT TTG TAG CGT C 
Sp0610.1 GCT CTA GAT TAC GGA GAC TAC CAC G 
Sp0610.2 CGC TCT AGA TCC ACC AGA TAG CAT GCC 
Sp0710.1 GCT CTA GAT TGG GCG TTA CGA TTG 
Sp0710.2 CGC TCT AGA GTG CCT GTC CAC TTT C 
Sp0750.1 GCT CTA GAC GCG CTG TTA GCC CTA GG 
Sp0750.2 GCT CTA GAT GAT ACT GCA CGC ATG GC 
Sp846.1 GCT CTA GAT GTT AGC AGG CCT TCT TG 
Sp846.2 CGC TCT AGA GCC CCT GCA ATT TCA AC 
Sp1690.1 GCT CTA GAT TGC GCT AGC GGC TGT TG 
Sp1690.2 GCT CTA GAG CTT CCT CCA CCA CTA CG 
Sp1798.1 GCT CTA GAT GAC TGT CCC CGG TTT AG 
Sp1798.2 CGC TCT AGA TTG TTG ATT GGT CCT CCC 
Sp1826.1 GCT CTA GAC GAC TGC TTC TTC ATC TG 
Sp1826.2 CGC TCT AGA ATT GCC CGT CCT GTA CC 
Sp2084.1 GCT CTA GAT TTG GGC TTG TTG CCT G 
Sp2084.2 CGC TCT AGA TGT GAC CAC TTG TTG ACC 
Sp2108.1 GCT CTA GAA CTG CTA CAC TTG CTA G 
Sp2108.2 CGC TCT AGA ACC AAG GCT ACC TAC 
Cm.1  GCT CTA GAT TAT AAA AGC CAG TCA AT 
Cm.2  GCT CTA GAT TGA TTT TTA ATG GAT AA 
Sp1  TCG AGA TCT ATC GAT GCA 
Sp3  GGA TCC ATA TGA CGT CGA  
R-20  CAG CTA TGA CCA TGA TTA CG 
Sp0090.3 CCT GCA AAT AGG AGT ATA C 
Sp0149.3 GGT TTC TCA GTT TTT AGG 
Sp0610.3 GAT TTG ACT GTC CCG ATC G 
Sp0610.4 GCT CTA GAG AGG AGG AGT TCC GGA TG  
Sp0710.3 CTC CGC CAT GCA GGA TTC 
Sp0710.4 GCT CTA GAG GTC AGG CGA TTG CTA TCG 
Sp0750.3 GTG AGG GAA AAC CCT CGG 
Sp0846.3 GTG GAT TTG TTG CCA ACG 
Sp1690.3 CGT GCG AAT GCC TCA TCA C 
Sp1798.3 GGA GGT TGC TAT GAA TAG 
Sp1826.3 CCA ACT ATT ACT GTA AAC 
Sp2084.3 GTA GTA AGC CTA CAC AAG 
Sp2108.3 CTA TTC TTT AGG AGG AAT AC 
Sp090RT1 GAG TGA CGC CAT CAC TGG 
Sp090RT2 GAC CAT CCT TGC AGT CGG 
Sp091RT1 CCG TGA AAT AGC GTA GGC 
Sp091RT2 GCC AAA GCG GTC GGC TTG 
Sp092RT1 GAG CGA CTA CAC TAG CAG 
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Primer name   Sequence 

 
Sp092RT2 CAC TGG TAC TGT AGA CCC 
Sp95RT1 GTG GTC TGC AGC AAA TTG 
Sp095RT2 CGA GTG CCG TGT TCA CCC 
Sp096RT1 CAA ACC GTC TAG CAA GGC 
Sp0090RT1.1 CAC ACA ATG CTG GTC AGC  
Sp0091RT2.1 CCA TTG GAA CAA TCA AGG C 
90rt1.2  CTG GGC ATC TGG CCC TAT C 
91rt2.2  GGT AGG ATA CAA GAG AGG 
Sp148RT1 GCT CAG GGT CAA GAT GAG 
Sp149RT1 GGT TGT GAG TAG TCT GTG 
Sp149RT2 GGG AAA CAT CAC CTA AGG 
Sp150RT1 GTG CCA TGA CAA AGG GCG 
Sp150RT2 CCA CAG GGC GTT TCA GTC 
Sp151RT1 CCT CTG CTG TCT TTT GGC 
Sp151RT2 CAG CGT TGG CAG GTG CCC 
Sp152RT1 CTG ACG GGC AAA GAA GGC 
Sp152RT2 GTG ACG ACT GTG ACC TTG 
Sp153RT1 GCG CCC AAA GCC TAT ATG 
Sp0151RT1.1 CGC TGG AGC TTC AAC AGA C 
Sp0152RT2.1 CAG AAA GTC GCT CCG CTC 
Sp606RT1 GCT AGT CCT GGA ATC TAG 
Sp607RT2 CTC TAC TCT GTT ATC GCC 
Sp607RT1 CCA GAG AAG GTT GGG AAC 
Sp608RT2 CTC CCT CCA TTG ACC AAC C 
Sp608RT1 GGT CAC TGA TAA GAG GTA G 
Sp609RT2 CTT CCC TGC ACG CTC ATC 
Sp609RT1 CCA GAA TAA GTA CCG GTC 
Sp610RT2 CCT CCT CTT TGA TGA ACC 
Sp610RT1 CAG GAC AAC AAC TTG TCC 
Sp611RT1 CAA TAG CCT GAC GAA TCC 
Sp0749RT1 CGA TGC AGA CCA CAA CAC 
Sp750RT2 CCT AGG GCT AAC AGC GC 
Sp0750RT1 GGT GCG GCT CTT GGT GG 
Sp0751RT2 CAC CAA TCG CCA TGA AAC C 
Sp751RT1 GAC CAG GTG GAC TCC TTG G 
Sp0752RT2 GTC CAA GTC CCA AAG AGG 
Sp0752RT1 GGC CGT TTA ATC GCT CAA G 
Sp0753RT2 GGG CGC GTC CCA TGG CAA G 
750RT1.1 GAT GGG GGT TAC TCC AGG 
751RT2.1 CCC AGA GTT GCT ACC GC 
751RT1.1 GGT GCG ATT GTT TCG G 
752RT2.1 GGT TCC GTA GCA AGG G 
753RT1.1 GGA GAA TCG TCC TAT CAG 
754RT2.1 CAG GCA GACGGT GCA AAC C 
Sp845RT1 CCC TGG CGG TCA AGT GAT C 
Sp846RT2 CAC CTT GGT ATT ATC ACG C 
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Primer name   Sequence 

 
Sp846RT1 GTG GGT TGG ATG TCG GTG 
Sp847RT2 GCA GAC TGC CAA AGG CTG 
Sp847RT1 GGT ATT TCT GCC AAG CGG 
Sp848RT2 GTA AAG ATG AGA GGT GCT G 
Sp1686RT2 CGC ATC TAC CAT CTC GCG AC 
Sp1687RT1 GAA GTG GCC GCA AGG GAG 
Sp1687RT2 CAG TTG ATA TGA ACC TCC 
Sp1688RT1 GTT GTG CTA CCG ATT GTA G 
Sp1688RT2 CTG CAA CGA TGG TCG CAC 
Sp1689RT1 GGT GCT TCA AGT TGG CAG 
Sp1689RT2 GGC GTA CTC TGT GAA GAG 
Sp1690RT1 GGG CCA AGT GTA CAA GCT G 
Sp1690RT2 CCT TGA GTA AAG GAG TGC C 
Sp1691RT1 CCA TGG CTG TTA CAT CGC C 
Sp1794RT1 GGC AAT TGC CGG GCA ACG 
Sp1795RT1 CCA AGA ACA CAA GTG GGC  
Sp1795RT2 CAA GTG CTC CCA AGT CAC 
Sp1796RT1 CCA AAT GGC GTT TGG ATC 
Sp1796RT2 GGA GAT AAC GGT GAA CTG 
Sp1797RT1 GCT TTT GTA GGA CAG TGG 
Sp1797RT2 GCT GGT AAC CTT CTA CAG 
Sp1798RT1 GCT TCA ACG CTC TAC ACG 
Sp1798RT2 GTG CGT ATA AAA TGA GCT G 
Sp1799RT1 GCA AAC GTA TTC CTC ATG 
Sp1822RT1 CAG GAG GTA AAT GAA AGG C 
Sp1823RT1 GCA TTT GGG CTT CGG CAG 
Sp1823RT2 CCA GCG CCT AGA AAA CCC 
Sp1824RT1 GGA AGA TGC AGC AAG AAG 
Sp1824RT2 CAG TCG CTA AAA CCA CTC 
Sp1825RT1 GTC GGT ACA CCA GTA GAG 
Sp1825RT2 CCA CGC TTT TCA GGT TCC 
Sp1826RT1 GGG GTT CTG GTG CAT TAG 
Sp1826RT2 CAC GGT CTG CTA ATT GAG C 
Sp1827RT1 GAA GAG GAG GAA GAA GAG 
Sp1827RT2 CTC CGT TTC ACG ATT TTC 
Sp1828RT1 GAC ATG TGT AGA GAT ACA TG 
Sp1824RT2.1 GAT GTA CAG CAT CAA GGG 
Sp1825RT1.1 GAC CGA TGA AAC AGT CCA CG 
Sp1825RT1.1 CCA CGC TTT TCA GGT TCC 
Sp1826RT2.1 GCC CTC AAA GAT CTA CCT G 
Sp1827RT1.1 GCT ACA ACT GTA TTC CCA G 
Sp1828RT2.1 CTA GGC TCG GGA GAA GGC 
Sp1825RT1.2 ACC ACA TCC TGA AGG CCA 
Sp1826RT2.2 GAA TGA TGT GGG GTT CTG 
Sp2108RT1 GTC TGC AGT TTG GGA TCC AG 
Sp2109RT2 GGA ATG ATA GAC AGC AGG G 
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Primer name   Sequence 

 
Sp2109RT1 CAA TGG CGG CAG CTG TTA C 
Sp2110RT2 GTT GAG GTA CCA AGT ACC G 
2107RT1.1 CAA CGA AGT CGT AAG CAC 
2108RT2.1 CCA AGC ACC GCA GCG CTC 
2108RT1.1 CCC AGC TAA TAC TGA GGC 
2109RT2.1 GGT TGC TCA ATT CAG GGG 
2110RT1.1 CCG TAG GTC TCC AAA CC 
2111RT2.1 GGA TAG GTC TCC TGG GAG 
16s.1  GGT GAG TAA CGC GTA GGT AA 
16s.2  ACG ATC CGA AAA CCT TCT TC 
PsaA.1  CGT TCC GAT TGG GCA AGA C 
PsaA.2  GCA CTT GGA ACA CCA TAG 
Sp0149.1 G GCT CTT GCA GCT TGC GG 
Sp0149.2 GGC TTT CGT TTG TAG CGT C 
Sp0749.1 T GTG GAG AAG TGA AGT CTG GA 
Sp0749.2:        GCA CGG TAA GCG TCA AGG AAGG 
Sp0148F CAC CAA TTG CCC AAA ATC C 
Ery-Sp0148R TATT TTAT ATT TTT GTT CAT GAT TCT TTC TCC TTA AAA 

ATA 

Ery-Sp0150F ATT ATT TAA CGG GAG GAA ATA A TAA GAA ACA GGG 

AGG TGG GAG 
Sp0150R CCA AGG CAT TTT TGG TCC C 
Sp0749F CAC TGA CAA TGC CAG TGA CTA TGC 
Ery-Sp0749R TAT TT TAT ATT TTT GTT CAT AAG ATT CAC TCT TTC TAT 

TTA TAA 
Ery- Sp0753F ATT ATT TAA CGG GAG GAA ATA A AAC ATT CCA GTG 

GAT TGT TTT AG 
Sp0754R GC GGA ATA TTG ACT GTA TGG GAG 
Sp0149 For TGC GGA AAC TCA GAA AAG AAA GCA 
Sp0149 Rev TTA CCA AAC TGG TTG ATC CAA ACC A 
Sp0749Fwd CGG GAT CCT GTG GAG AAG TGA AGT CTG GA 
Sp0749Rv CGG GAT CCT TAT GGT TTT ACA ACT TCT GC 
Sp1032 (piaA) Fwd TGT TCT TCT AAT TCT GTT AAA AAT G 
Sp1032 (piaA) Rv TTA TTT CGC ATT TTT GCA TG 
Sp1872 (PiuA) Fwd TGT AGT ACA AAC TCA AGC AC  
Sp1872 (PiuA) Rv TTA TTT CAA AGC TTT TTG TAT G  
pQE30F  CCC GAA AAG TGC CAC CTG 
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Table 2.3: Plasmids constructed during the study 
 

Abcr : Antibiotic resistance  
 
Ampr : Ampicillin resistant  
 
Kanr

 : Kanamycin resistant  
 
a No restriction enzyme utilized during ligation. 
 

 

Plasmid  
name  

E. coli 
strain 

Target  
gene (bp) 

Insert 
size 

Restriction site Plasmid 
backbone 

Abc r  

pPC110.1 DH5α |Sp0090 337 5’ XbaI 3’ pID701 Cmr 

pPC111.1 DH5α Sp0149 392 5’ XbaI 3’ pID701 Cmr 

pPC112.1 DH5α Sp0610 315 5’ XbaI 3’ pID701 Cmr 

pPC114.1 DH5α Sp1798 357 5’ XbaI 3’ pID701 Cmr 

pPC115.1 DH5α Sp1826 425 5’ XbaI 3’ pID701 Cmr 

pPC116.1 DH5α Sp0750 462 5’ XbaI 3’ pID701 Cmr 

pPC117.1 DH5α Sp1690 657 5’ XbaI 3’ pID701 Cmr 

pPC118.1 DH5α Sp0846 590 5’ XbaI 3’ pID701 Cmr 

pPC119.1 DH5α Sp2084 500 5’ XbaI 3’ pID701 Cmr 

pPC120.1 DH5α Sp2108 450 5’ XbaI 3’ pID701 Cmr 

ΔSp0149 
 
ΔSp0750-53 
 
pPC749 

JM109 
 
JM109 
 
Novablue 

Sp0149 
 
ΔSp0750-53 
 
Sp0749 

2040 
 
2454 
 
1200 

5’a ; 3’a 
 
5’a ; 3’a 
 
5’ BamHI; 3’ SalI 

pGEM-T 
easy 
pGEM-T 
easy 
pST-1 

Ampr 
 
Ampr 
 
Ampr 

 
pPc138 
 

 
M15 

 
Sp0149 

 
800 

 
5’a ; 3’a 

 
pQE30UA 

 
Ampr / 
Kanr 

 

pPC139 
 
Sp1032-
pQE30UA 
 
Sp1872-
pQE30UA 
 

M15 
 
M15 
 
 
M15 

Sp0749 
 
Sp1032 
 
 
Sp1872 

1200 
 
969 
 
 
900 

5’ BamHI ; 3’ SalI 
 
5’a ; 3’a 

 

 

5’a ; 3’a 

pQE30 
 

pQE30UA 
 
 
pQE30UA 

  Ampr /  
  Kanr 

  Ampr /  
  Kanr 

 

  Ampr /  
  Kanr 
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Table 2.4: S. pneumoniae mutant strains constructed during the study 

 
Strain                  Target  
                             gene 

   ABC    
transporter 

                                  Description 

 

110.1    

 

 

111.1 

 

 

111.1
D39

  

 

 

112.1 

 

 

114.1 

 

 

115.1 

 

 

116.1 

 

 

116.1
D39

 

 

 

117.1 

 

 

118.1 

 

 

119.1 

 

 

120.1 

 

 

ΔSp0149 

 

 

ΔSp0750-53 

 

 

ΔSp0149
D39

 

 

 

ΔSp0750-53
D39

 

 

 

 
Sp0090 
 
 
Sp0149 
 
 
Sp0149 
 
 
Sp0610 
 
 
Sp1798 
 
 
Sp1826 
 
 
Sp0750 
 
 
Sp0750 
 
 
Sp1690 
 
 
Sp0846 
 
 
Sp2084 
 
 
Sp2108 
 
 
Sp0149 
 
 
Sp0750-53 
 
 
Sp0149 
 
 
Sp0750-53 

 
Sp0090-92 
 
 
Sp0149-152 
 
 
Sp0149-152 
 
 
Sp0607-610 
 
 
Sp1796-98 
 
 
Sp1824-26 
 
 
Sp0749-753 
 
 
Sp0749-753 
 
 
Sp1689-90 
 
 
Sp0844-848 
 
 
Sp2084-87 
 
 
Sp2108-10 
 
 
Sp0149-53 
 
 
Sp0749-53 
 
 
Sp0149-53 
 
 
Sp0749-53 
 

 
0100993 containing an insertion made with  
plasmid pPC 110.1:  Cmr 

 

0100993 containing an insertion made with  
plasmid pPC 111.1: Cmr 

 

D39 containing an insertion made from 111.1  
genomic DNA 
 
0100993 containing an insertion made with  
plasmid pPC 112.1: Cmr 

 

0100993 containing an insertion made with  
plasmid pPC 114.1: Cmr 

 

0100993 containing an insertion made with  
plasmid pPC 115.1: Cmr 

 

0100993 containing an insertion made with  
plasmid pPC 116.1: Cmr 

 

D39 containing an insertion made from  
116.1 genomic DNA 
 

0100993 containing an insertion made with  
plasmid pPC 117.1: Cmr 

 

0100993 containing an insertion made with  
plasmid pPC 118.1: Cmr 

 

0100993 containing an insertion made with  
plasmid pPCPC 119.1: Cmr 

 

0100993 containing an insertion made with  
plasmid pPC 120.1: Cmr 

 
0100993 containing the Sp0149 deletion construct:  
ermr 

 
0100993 containing the Sp0750-53 deletion  
construct: ermr 

 
D39 containing the Sp0149 deletion construct  
from 0100993: ermr 

 
D39 containing the Sp0750-53 deletion construct  
from 0100993: ermr 
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    Chapter 3 

   Screening of S. pneumoniae ABC transporters 

 

Eleven S. pneumoniae ABC transporters were chosen from the annotated completely 

sequenced genome of serotype 4 strain (TIGR4) for the investigation. Amino acid 

homologies of the chosen TIGR4 ABC transporters with other bacterial species were 

identified using the Basic Local Alignment Search Tool (BLAST). Genetic 

organisation studies of the chosen ABC transporters were analysed by RT-PCR in the 

serotype 3 (0100993 strain) using the available TIGR4 genome information. Nine 

disruption mutants were then constructed in 0100993 strain and their in vitro and in 

vivo phenotypes were analysed. These results are presented in this chapter. 

 

3.1 IDENTIFICATION AND SELECTION OF ABC TRANSPORTER GENES 

The ABC transporters chosen for these studies were identified from the annotated 

completely sequenced genome of the capsular serotype 4 strain of S. pneumoniae 

(TIGR4) (Tettelin et al., 2001). The genome contains 73 ABC transporters (Harland 

et al., 2005), 33 genes encoding putative lipoproteins, 24 of which are organised as 

operons with genes encoding other components of ABC transporter proteins 

(ATPases, permeases and or additional lipoproteins). Eleven of these have been 

previously described, (Table 1.3). Of the remaining 13 candidates, we selected 11 

ABC transporters from the TIGR4 genome of S. pneumoniae for further investigation 

(Sp0090-0092, Sp0149-52, Sp0607-10, Sp0707-11, Sp0749-53, Sp0846-48, Sp1689-

90, Sp1796-98, Sp1826-28, Sp2084-87 and Sp2108-2110). The genetic organisation 

of these selected ABC transporters are shown in figure 3.1. 
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3.2 AMINO ACID HOMOLOGY OF TIGR4 ABC TRANSPORTER GENES WITH OTHER 

BACTERIAL SPECIES 

To identify the close homologues of the S. pneumoniae ABC transporters, the derived 

amino acid sequence of each gene within the putative ABC transporter operons of 

TIGR4 genome were aligned against the amino acid sequence of completely 

sequenced R6 genome (an avirulent serotype 2 strain of S. pneumoniae) and other 

bacterial genomes using BLAST and the NCBI website (http://www.tigr.org). Six of 

the TIGR4 ABC transporter proteins (Sp0090-92, Sp0148-52, Sp0707-11, Sp0749-53, 

Sp0846-48, Sp2108-10) had >90% identity to the proteins encoded by genes in the R6 

strain. The exceptions were: Sp0607 with 85% identity and 86% similarity; Sp1826 

with 89% identity and 90% similarity and Sp0610, Sp1796, Sp1797, Sp1798, whose 

amino acid sequences were completely absent in the R6 strain of S. pneumoniae. 

Other bacterial species which contained genes encoding proteins exhibited homology 

of at least 50% identity and 60% similarity to the genes encoding proteins present in 

the TIGR4 genome included S. suis, S. agalactaie, S. pyogenes, S. mutans and S. 

thermophilus. In contrast, proteins encoded by the Sp1688-90, Sp1824-26 and 

Sp2084-87 operon had no close homologues amongst streptococci probably 

suggesting that these genes may not be horizontally transferred. Analysis of the S. 

pneumoniae ABC transporter genes, their homology to other bacterial species and 

their probable function according to BLAST similarities are listed in the Table 3.1. 

 

3.3 CONSTRUCTION OF THE DISRUPTION MUTANTS OF S. PNEUMONIAE BY 

INSERTIONAL DUPLICATION MUTAGENESIS 

To investigate the role of these ABC transporters in virulence in mouse models of  

http://www.tigr.org/


Sp0090-92 :  Putative ABC transporter

Sp0090                  Sp0091                           Sp0092

Permease Permease Lipoprotein

Sp0149-0153 : Metal ion ABC transporter, unknown function

Sp0148              Sp0149               Sp0150                    Sp0151                 Sp0152         Sp0153

Lipoprotein        Lipoprotein Peptidase                  ATPase Permease Hypothetical

Sp0607-0610 : Putative amino acid ABC transporter 

Sp0607                   Sp0608                  Sp0609                 Sp0610

Permease Permease Lipoprotein               ATPase

Sp0708-711: Putative glutamine ABC transporter 

Sp0707 Sp0708 Sp0709 Sp0710 Sp0711

PermeaseATPase ? ATPase

Sp0749            Sp0750              Sp0751               Sp0752             Sp0753

Lipoprotein            Permease Permease ATPase ATPase

Sp0749- 0753 : Putative branched chain amino acid ABC transporter

Permease
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Sp0846                          Sp0847                 Sp0848 

ATPase Permease Permease

Sp0846-0848 : Putative sugar ABC transporter

Sp1688                         Sp1689                                Sp1690

Permease Permease Lipoprotein

Sp1688-90 :  ABC transporter, unknown function

Sp1824                          Sp1825                             Sp1826

Permease ATPase Lipoprotein

Sp1824-26 : Putative iron uptake ABC transporter

Sp1796-98 :  ABC transporter, unknown function

Sp1796                         Sp1797                         Sp1798

Permease Permease Permease

Sp2084                          Sp2085               Sp2086                Sp2087

Lipoprotein                 Permease Permease ATPase

Sp2084-87 : Putative phosphate ABC transporter     

Sp2108                          Sp2109                  Sp2110

Lipoprotein                     Permease Permease

Sp2108-10 : Putative maltodextrin ABC transporter     

Fig 3.1 The genetic organisation of TIGR4 S. pneumoniae ABC transporters chosen for the 

phenotype studies. Shaded arrows indicate the genes disrupted by insertional duplication

mutagenesis 124
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Table 3.1 BLAST alignments of the derived amino acid sequences of the investigated 
S. pneumoniae (TIGR4) ABC transporters. 
 

Genea Size 

(amino 

acids) 

Protein name Organism % Identity / 

Similarity 

Possible 

substrate 

(transport 

classification)
b
 

Sp0090 
Sp0091 
Sp0092 

319 
307 
491 

EfaeDRAFT_2526 
EfaeDRAFT_2527 
EfaeDRAFT_2538 

Enterococcus faecium 

E. faecium 

E. faecium 

61/80 (311) 
60/79 (300) 
53/70 (486) 

Sugar 

(CUT1 3.A.1.1) 
Sp0148 
Sp0149 
Sp0150 
Sp0151 
Sp0152 

276 
284 
457 
353 
230 

SMU.1942c 
SPs1626 
SMU.1940c 
SsiuDRAFT_0064 
SPs1624 

Streptococcus mutans 

Streptococcus pyogenes 

S. mutans 

Streptococcus suis 

S. pyogenes 

55/76 (237) 
67/81 (278) 
70/85 (457) 
80/90 (352) 
71/89 (230) 

Methionine 
(MUT 3.A.1.24) 

Sp0607 
Sp0608 
Sp0609 
Sp0610 

219 
219 
254 
252 

SMU.1522 
SMU.1521 
StheL01000593 
StheL01000592 

S. mutans 

S. mutans 

Streptococcus thermophilus 

S. thermophilus 

74/85 (213) 
62/81 (222) 
60/73 (232) 
82/90 (251) 

Amino acid 
(PAAT 3.A.1.3) 

Sp0707 
Sp0709 
Sp0710 
Sp0711 

215 
252 
225 
206 

SsuiDRAFT_0032 
SGO_0983 
SGO_0984 
SGO_0985 

S. suis 

Streptococcus gordonii 

S. gordonii 

S. gordonii 

60/77 (213) 
88/94 (252) 
89/95 (225) 
87/94 (226) 

Amino acid 
(PAAT 3.A.1.3) 

Sp0749 
Sp0750 
Sp0751 
Sp0752 
Sp0753 

386 
289 
318 
254 
236 

SAG1582 
SAK_1597 
gbs1630 
SsuiDRAFT_0078 
SsuiDRAFT_0077 

Streptococcus agalactiae 

S. agalactiae 

S. agalactiae 

S. suis 

S. suis 

53/73 (390) 
83/93 (289) 
73/88 (252) 
85/93 (254) 
87/96 (236) 

BCAAc 

(HAAT 3.A.1.4) 

Sp0846 
Sp0847 
Sp0848 

511 
352 
318 

Spy1227 
SAK_1051 
Spy0928 

S. pyogenes 

S. agalactiae 

S. pyogenes 

81/91 (508) 
77/88 (353) 
80/92 (318) 

Ribonucleoside 
(CUT2 3.A.1.2) 

Sp1688 
Sp1689 
Sp1690 

277 
294 
445 

PM1760 
PM1761 
PM1762 

Pasteurella multocida 

P. multocida 

P. multocida 

80/91 (277) 
79/93 (291) 
70/85 407 

Sugar 
(CUT1 3.A.1.1) 

Sp1796 
Sp1797 
Sp1798 

538 
305 
305 

SsuiDRAFT_0524 
SsuiDRAFT_0525 
SsuiDRAFT_0526 

S. suis 

S. suis 

S. suis 

78/89 (537) 
82/94 (294) 
84/95 (303) 

Sugar 
(CUT1 3.A.1.1) 

Sp1824 
Sp1825 
 
Sp1826 

563 
336 
 
355 

Lxx14070 
STH2752 
 
Lxx14040 

Leifsonia xyli 

Symbiobacterium 

thermophilum 

L. xyli 

31/48 (539) 
45/59 (343) 
 
30/48 (323) 

Cation 
(BIT 3.A.1.20) 

Sp2084 
Sp2085 
Sp2086 
Sp2087 

291 
287 
271 
250 

RUMOBE_00498 
Cthe_1604 
DORLON_00312 
BACCAP_00261 

Ruminococcus. obeum 

Clostridium thermocellum 

Dorea longicatena 

Bacteroides capillosus 

46/65 (287) 
61/98 (284) 
59/80 (287) 
72/86 (253) 

Phosphate 
(PhoT 3.A.1.7) 

Sp2108 
Sp2109 
Sp2110 

423 
435 
280 

M_28Spy1048 
Spy1301 
SsuiDRAFT_0440 

S. pyogenes 

S. pyogenes 

S. suis 

53/67 (420) 
66/82 (430) 
85/93 (280) 

maltodextrin 
(CUT1 3.A.1.1) 

aTIGR4 genome Sp number. 
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bTransport classification and subfamily and number according to the transport 
classification system based on sequence similarity (32,45) (http://www.tcdb.org/). 
cBCAA  Branched-chain amino acid. 

http://www.tcdb.org/
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S. pneumoniae septicaemia and pneumonia, and to identify their growth defects in in 

vitro conditions,, mutant strains were constructed containing a disrupted copy of one 

of the genes encoding each of the ABC transporters using insertional duplication 

mutagenesis (IDM) in 0100993 strain of the capsular serotype 3 S. pneumoniae. The 

0100993 strain was used to construct IDM mutants of the chosen ABC transporters 

because previous virulence studies of S. pneumoniae ABC transporters were 

performed by constructing IDM mutants in 0100993 strain in our laboratory. In 

general, the first gene of the probable operon was disrupted to prevent the 

transcription of the downstream genes and therefore ensure the maximum loss of 

function of the putative ABC transporter operon. 

To construct S. pneumoniae mutant strains by IDM, forward and reverse 

primers were designed (Table 2.1) to amplify an internal portion of the target gene, 

which was amplified by PCR using 0100993 strain of serotype 3 genomic DNA as the 

template (Fig 3.2 A). An Xba1 restriction enzyme site was linked to the primers at 

5’and 3’end and the amplified PCR products were digested with XbaI and ligated into 

pID701 (Fig 3.2 B). pID701 is a suicide vector derived from pEVP3 which carries 

chloramphenicol for selection in S. pneumoniae and E. coli (Claverys et al., 1995; 

Lau et al., 2001). After transformation into E. coli DH5α, positive clones of were 

identified by colony PCR using insert specific forward and reverse primers and 

plasmid DNA was extracted. The 0100993 strain of S. pneumoniae was then 

transformed with recombinant pID701 containing the target gene as described in 

chapter 2, plasmid constructs were confirmed by sequencing the PCR products 

generated by plasmid specific primer Sp1 or Sp3, upstream and downstream primers 

from the target region using the genomic DNA extracted from the mutant strains of S. 

pneumoniae as the template (Fig 3.3 A and B). Of the chosen 11 ABC transporters, 
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mutants were successfully constructed for 10 of them (Table 3.2) Despite repeated 

attempts and confirmation by sequencing that the plasmid was correctly constructed, 

no corresponding mutants were obtained for Sp0710 possibly because some regions 

of S. pneumoniae genome may be resistant to transformation or because the disruption 

of this gene may prove to be lethal for the bacteria. The Sp0090
-, Sp0149

-, Sp0610
-
, 

Sp1796
- and Sp1824

- mutant strains were constructed by Suneeta Khandavilli.  

 

Table 3.2: List of mutants constructed in 0100993 strain with the Sp number, possible 

substrate specificity and disruption site. 

 

 
aBranched chain amino acids 

 

3.4 STABILITY OF THE MUTATION 

All the isogenic mutants listed in the table 3.2 were checked for the stability of the 

Mutant 

name 

Plasmid name ABC transporter 

gene 

Putative 

substrate 

Site of disruption 

Sp0090
-
 pPC110.1 Sp0090-92 Sugar Sp0090 

Sp0149
-
 pPC111.1 Sp0149-152 Metal ion Sp0149 

Sp0610
-
 pPC112.1  Sp0607-610 Amino acid Sp0610 

Sp0750
-
 pPC116.1 Sp0749-753 BCCAa Sp0750 

Sp0846
-
 pPC118.1 Sp0846-848 Sugar Sp0846 

Sp1690
-
 pPC117.1 Sp1689-90 Sugar Sp1690 

Sp1796
-
 pPC114.1 Sp1796-98 Sugar Sp1798 

Sp1824
-
 pPC115.1 Sp1824-26 Iron Sp1826 

Sp2084
-
 pPC119.1 Sp2084-87 Phosphate Sp2084 

Sp2108
- pPC120.1 Sp2108-2110 Maltose Sp2108 



 A

 

 

 

 

Xba1

Xba1 Xba1
PCR product

Cat gene

Ori

pID701

2906 bp

B

Figure 3.2 Schematic diagram of pID701 plasmid used to construct S. pneumoniae mutants 

in 0100993 strain using insertional duplication mutagenesis.
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1. PCR amplification of an 
internal portion of target gene

2. Ligation into suicide vector

3. Transformation in S. pneumoniae

Sp1

Sp3

P3 P1

P2P2 P4

P1

P1

P2

pID701

Sp1

Sp3

P2 P4

P3 P1

target gene

Sp0749.3            Sp0749.3
+ Sp1                  +Sp3          Kb ladder

B

A

Fig 3.3 Diagram of insertional duplication mutagenesis, showing the integration of the

entire plasmid into the target gene flanked by a duplication of the insert targeting DNA.

(1 and 2) Successful ligation of the PCR product into pID701 was confirmed by PCR

with primers Sp1 and P1 or P2 (depending on the insert orientation). (3 and B)

Successful transformation into S. pneumoniae (0100993 strain) was confirmed by PCR using P3

or P4 and Sp1 or Sp3 (depending on the orientation of the insert).
130
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mutation by culturing the mutant strains in THY broth in the absence of antibiotic 

(and therefore with no selective pressure for the mutation) for two 8 hours growth 

cycles followed by plating onto plain and antibiotic containing Columbia agar plates. 

S. pneumoniae mutant strains Sp0090
-, Sp0149

-, Sp0610
-, Sp0750

-, Sp0846
-, Sp1690

-, 

Sp1796
-, Sp1824

 -, and Sp2108
- had similar number of colonies on the antibiotic-free 

and antibiotic-supplemented plates confirming the mutation was stable over these 

time periods. However, Sp2084
- had an unstable mutation, as the number of colonies 

recovered from these mutant strains were very low on the blood agar containing the 

antibiotic (19 cfu) compared to the number of colonies recovered on the 

unsupplemented blood agar (>1000 cfu) when a 10-4 dilution of the second 8 hour 

THY culture was plated. 

 

3.5 GROWTH CURVES IN THY 

The in vitro phenotypes of the mutants strains were investigated by comparing the 

growth rates of the mutant strains to the wild-type strains in the undefined complete 

medium (THY). Equal numbers of the wild-type and the mutant bacteria obtained 

from thawed stocks were inoculated into THY, cultured at 37°C in the presence of 5% 

CO2 and the optical density recorded at one hourly intervals for 8 hours. All the 

mutant strains exhibited good growth in THY, similar to the wild-type strain (Fig 3.4 

and 3.5), suggesting that the disruption of the target genes of the ABC transporters 

had little effect on the growth of S. pneumoniae in a complete laboratory medium. 

 

3.6 PHENOTYPE ANALYSIS BY COMPETITIVE INDEX 

To investigate the role of the selected ABC transporters in mouse models of 

pulmonary (IN inoculation) and systemic (IP inoculation) infection, mixed inocula of 
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wild-type and mutant strains were inoculated into mice by either intraperitoneal or 

intranasal routes and the competitive indices (CI) determined by plating the bacteria 

recovered from the target organs (spleen and lungs) on plain and chloramphenicol 

containing medium. The in vitro phenotypes of the mutant strains were also 

investigated using CIs to identify any subtle growth defects in complete medium 

(THY), high osmotic stress medium (THY + 100mM NaCl) and normal physiological 

fluid (human blood) and relate these to the in vivo phenotype. The cfu of wild-type 

and mutant strains of bacteria recovered from various target organs and media were 

enumerated by plating and CIs calculated using the formula described in Chapter 2. A 

CI of 1 shows there is no difference in virulence or growth between wild-type and 

mutant strains whereas CIs less than 1 suggest a degree of attenuation in virulence or 

growth. The CIs of the mutants in different in vitro growth conditions and mouse 

models of septicaemia (IP) and pneumonia (IN) infection are shown in the table 3.3. 

Most of the mutants had CIs close to 1.0 in both complete medium (THY) and 

high osmotic stress medium (THY + 100mM NaCl), suggesting that the disruption 

performed in the target gene of the ABC transporters had no effect on growth in rich 

laboratory medium or in the presence of high osmotic stress. The exceptions were 

Sp0610
-which had impaired growth in high osmotic media and Sp0750

- which had 

mildly impaired growth in THY. In contrast, in normal physiological fluid, that is 

human blood, several mutants (Sp0090
-, Sp0149

-, Sp1824
-, Sp0750

-), and to a lesser 

extent Sp0610
-, exhibited decreased CIs. This suggests these mutants have a particular 

problem growing under the greater stress conditions (presence of immune cells, 

restricted nutrient availability) found in physiological fluid compared to THY. In both 

systemic and pulmonary infection, Sp0149
- and Sp0750

- were markedly attenuated in  
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Fig 3.4 Growth of mutant strains (squares) of ABC transporters and the wild-type (diamonds) 

of S. pneumoniae,ST3 (0100993 strain) measured in THY medium. Results presented are the 

mean of triplicate samples for each strain.   133
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Fig 3.5 Growth of mutant strains (squares) of ABC transporters and the wild-type (diamonds) 

of S. pneumoniae,ST3 (0100993 strain) measured in THY medium. Results presented are the 

mean of triplicate samples for each strain.   
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Strain THY THY + 100mM 
NaCl

Blood IP IN

Sp0090- 1.06 ± 0.31
n=7

0.40 ± 0.08
n=6

0.50 ± 0.10
n=5

0.43 ± 0.13
n=4

1.17 ± 0.21
n=3

Sp0149- 0.80 ± 0.27
n=13

0.85 ± 0.26
n=6

0.46 ± 0.13
n=6

0.067 ± 0.028
n=5

0.023 ± 0.019
n=6

Sp0610- 0.94 ± 0.32
n=17

0.65 ± 0.13
n=6

0.71 ± 0.12
n=6

0.70 ± 0.13
n=5

0.64 ± 0.30
n=4

Sp0750- 0.68 ± 0.17
n=9

0.94 ± 0.30
n=3

0.38 ± 0.15
n=6

0.17 ± 0.12
n=10

0.016 ± 0.018
n=8

Sp0846- 1.07 ± 0.22
n=8

0.88 ± 0.26
n=8

0.93 ± 0.17
n=6

0.61 ± 0.37
n=6

0.45 ± 0.18
n=4

Sp1690- 0.97 ± 0.23
n=12

1.27 ± 0.52
n=3

1.61 ± 0.35
n=6

0.89 ± 0.39
n=5

ND

Sp1796- 0.91 ± 0.28
n=7

0.91 ± 0.30
n=3

0.99 ± 0.29
n=6

1.34 ± 0.48
n=6

ND

Sp1824- 0.95 ± 0.23
n=7

0.85 ± 0.14
n=3

0.49 ± 0.008
n=6

0.59 ± 0.10
n=3

0.40 ± 0.17
n=3

Sp2108- 1.06 ± 0.076
n=4

0.81 ± 0.18
n=8

0.94 ± 0.14
n=6

0.37 ± 0.18
n=8

3.33 ± 3.5a

n=5

Table 3.3 In vitro and in vivo phenotype analysis of S. pneumoniae ABC transporter 
mutant strains (0100993) by competitive index (CI).
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ND: Not Done
a: Highly variable results were obtained even after the experiment was repeated several times 
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virulence, while Sp0090
-, Sp0610

-, Sp1824
- and Sp2108

- had partial attenuation of 

their virulence. Sp1796
- and Sp1690

- did not show any impairment in virulence. 

Sp0750
- showed a greater attenuation of virulence in pulmonary infection than in 

systemic infection suggesting a possible greater role for the corresponding ABC 

transporters during pneumonia compared to septicaemia These in vivo CIs mirrored 

the CIs for blood for most mutant strains, with those strains showing no impairment in 

blood also being fully virulent after IP inoculation (Sp0846
-
, Sp1690

-
 and Sp1796

-) 

and those strains with impaired CIs in blood having a similar CI or lower during 

infection. Sp2108
-
 is an exception as this particular mutant strain exhibited attenuation 

in systemic models of infection although there was no impairment in human blood. 

Even though the CIs of the mutant strains in human blood mirrored the CIs in in vivo 

infection models, there was no marked attenuation as observed in IP and IN models of 

infection. One explanation could be that the natural exposure of the humans to S. 

pneumoniae would have elicited antibodies and therefore may have cleared both the 

wild-type and mutant strains of bacteria. The CI for pulmonary infection for Sp2108
- 

was too variable for easy interpretation. The similar CI for the Sp0610
- 

strain in 

THY+NaCl, blood and in vivo suggests the mildly impaired virulence of this strain is 

due to poor growth under the osmotic conditions found in vivo. The impairment in 

virulence of Sp0090
-, Sp0610

-, Sp1824
- and Sp2108

-
 were relatively mild and these 

strains were not investigated further. However, as the Sp0149
- and Sp0750

-
 were more 

significantly attenuated in virulence they were chosen for further investigation and as 

potential vaccine candidates. 

 

3.7 ANALYSIS OF THE GENETIC ORGANISATION OF THE ABC TRANSPORTER 

OPERONS BY RT-PCR 
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To confirm the operon structure of the ABC transporters and identify genes whose 

transcription will be disrupted in the mutant strains, RT-PCR was performed with 

primers designed to amplify a product that spans the junctions of the genes present in 

the possible operon. Total RNA from 0100993 strain of S. pneumoniae serotype 3 was 

used as the template for RT-PCR, its purity being demonstrated by the absence of 

DNA contamination using appropriate RT-PCR negative control reactions containing 

no reverse transcriptase. As controls for the target specific PCR, the same primers 

were used with the genomic DNA as the template. Since the ABC transporters were 

selected using the TIGR4 genome sequence, cDNA products obtained from the RT-

PCR not only gave the information about the organisation of genes, but also, 

confirmed that the genes were organised in the serotype 3 strain in an identical way to 

the TIGR4 genome. In addition, deducing the genetic organisation of these operons in 

serotype 3 genetic background will also provide information on the possible polar 

effect due to IDM. Amplification of cDNA failed if the primers spanned junctions of 

genes of the ABC transporter operon were not co-transcribed. 

 

(a) Sp0090-0092: 

RT-PCR analysis of the transcriptional structure for these three genes suggested that 

Sp0090, Sp0091 and Sp0092 are all co-transcribed with transcription terminating after 

Sp0092 in serotype 3 (Table 3.4).  

 

(b) Sp0148-0152 

Using serotype 3 RNA, RT-PCR analysis of the transcriptional structure for Sp0148-

0152 suggested that Sp0148, Sp0149 and Sp0150 are not transcriptionally linked in 

serotype 3. However, Sp0150, Sp0151 and Sp0152 are all co-transcribed with 
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transcription terminating after Sp0152 (Fig 3.6). Hence the RT-PCR results of 

Sp0148-52 region in serotype 3 strain correlated with the operon structure of the 

TIGR4 genome sequence. 

 

(c) Sp0607-10 

RT-PCR across the junction of Sp0607/Sp0608, Sp0609/610 and Sp0610/611 

suggested that these junctions may be linked in serotype 3. However the junction of 

Sp0608/Sp0609 is not transcriptionally linked in serotype 3(Table 3.4). 

 

(d) Sp0749-53 

RT-PCR analysis of the transcriptional structure for Sp0749-53 suggested that Sp0749 

and Sp0750 are not transcriptionally linked in serotype 3. However, Sp0750, Sp0751 

and Sp0752 are all co-transcribed with transcription terminating after Sp0753 (Fig 

3.7).  

 

(e) Sp0846-48 

RT-PCR analysis of the transcriptional structure for Sp0846-48 suggested that 

Sp0846, Sp0847 and Sp0848 are co-transcribed (Fig 3.8) in serotype 3 genome.  

 

(f) Sp1686-90 

RT-PCR analysis of the transcriptional structure for Sp1686-90 suggested that 

Sp1686, Sp1687 and Sp1688 are co-transcribed. However, from the RT-PCR results it 

was not clear if Sp1688, Sp1689 and Sp1690 are transcriptionally linked (Table 3.4) 

in serotype 3.  

 



Sp0148              Sp0149             Sp0150                 Sp0151               Sp0152                Sp0153

830 bp 854 bp 1373 bp 1053 bp 692 bp 569 bp

98 bp gap 7 bp overlap 1 bp gap 28 bp gap

Gene 

length

148rt1/
149rt1

149rt2/
150rt1

150rt2/
151rt1

151rt1.1/
152rt2.1

152rt1/
153rt1

B

DNA cDNA DNA  cDNA DNA  cDNA DNA  cDNA DNA  cDNA
C

Primer 

pairs

152 bp gap

A

Fig 3.6 (A) Operon structure of Sp0148-0153. Open arrows: ORFs of genes present in the operon

(Sp0148: lipoprotein, Sp0149: lipoprotein, Sp0150: hypothetical protein, Sp0151: ATPase,

Sp0152: permease, Sp0153: hypothetical protein) in the chromosomal DNA of S. pneumoniae.

Diagonally hatched arrow: site of disruption in the mutant strain using IDM. (B) Horizontal line:

PCR products generated using the primer pairs. (C) Ethidium bromide stained agarose

gel containing PCR products generated by primer pairs (mentioned in B) using S. pneumoniae

genomic DNA as the template and RT-PCR products generated using S. pneumoniae RNA as

the template.
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Sp0749               Sp0750          Sp0751            Sp0752             Sp0753              Sp0754

DNA  cDNA DNA  cDNA DNA  cDNA DNA cDNA DNA  cDNA

749rt1/
750rt2

750rt1.1/
751rt2.1

751rt1.1/
752rt2.1

753rt1.1/
754rt2.1

752rt1/
753rt2

266 bp gap 3 bp gap No gap No gap

1160 bp 869 bp 956 bp 763 bp 709 bp

A

Gene 

length

B

C

656 bp

306 bp gap

Primer 

pairs

Fig 3.7 (A) Operon structure of Sp0749-0753. Open arrows: ORFs of genes present in the operon

(Sp0749: lipoprotein, Sp0750: permease, Sp0751: permease, Sp0752: ATPase, Sp0753: ATPase,

Sp0754: putative acetion utilization protein) in the chromosomal DNA of S. pneumoniae.

Diagonally hatched arrow: site of disruption in the mutant strain using IDM. (B) Horizontal

line: PCR products generated using the primer pairs. (C) Ethidium bromide stained agarose

gel containing PCR products generated by primer pairs (mentioned in B) using S. pneumoniae

genomic DNA as the template and RT-PCR products generated using S. pneumoniae RNA as

the template. cDNA band generated from the junction of Sp0751/Sp0752 was sequenced and

then aligned against TIGR4 genome which matched the Sp0751 gene.
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Sp0845                          Sp0846                           Sp0847                 Sp0848 

1052 bp 1535 bp 1050 bp 956 bpGene 

length

A

B
845rt1/
846rt2

846rt1/
847rt2

847rt1/
848rt2

Primer 

pairs

DNA  cDNA DNA  cDNADNA  cDNA

142 bp gap 8 bp overlap 2 bp gap

C

Fig 3.8 (A) Operon structure of Sp0846-0848. Open arrows: ORFs of genes present in the operon

(Sp0845: lipoprotein, Sp0846: ATPase, Sp0847: permease, Sp0848: permease) in the

chromosomal DNA of S. pneumoniae. Diagonally hatched arrow: site of disruption in the mutant

strain using IDM. (B) Horizontal line: PCR products generated using the primer pairs.

(C) Ethidium bromide stained agarose gel containing PCR products generated by primer

pairs (mentioned in B) using S. pneumoniae genomic DNA as the template and RT-PCR products

generated using S. pneumoniae RNA as the template.
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Sp2107                       Sp2108                   Sp2109               Sp2110               Sp2111
A

Gene 

length
1271 bp 842 bp1307 bp

96 bp gap 1 bp gap

B

Primer 

pairs

2108rt1.1/
2109rt2.1

2109rt1/
2110rt1

C DNA  cDNA DNA  cDNA

1517 bp

549 bp gap 250 bp gap

2107rt1.1/
2108rt2.1

2110rt1.1/
2111rt12.1

DNA  cDNA DNA  cDNA

800 bp

Fig 3.9 (A) Operon structure of Sp2108-2110. Open arrows: ORFs of genes present in the

operon (Sp2107: 4-alpha-glucanotransferase, Sp2108: lipoprotein, Sp2109: permease, Sp2110:

permease, Sp2111: malA protein ) in the chromosomal DNA of S. pneumoniae. Diagonally

hatched arrow: site of disruption in the mutant strain using IDM. (B) Horizontal line: PCR

products generated using the primer pairs. (C) Ethidium bromide stained agarose gel

containing PCR products generated by primer pairs (mentioned in B) using S. pneumoniae

genomic DNA as the template and RT-PCR products generated using S. pneumoniae RNA as

the template.
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Operon Junction 
between genes

Gap / overlap 
between junction

in base pairs (bp)  

Primer pairs 
used

DNA (bp)

Expected Obtained

cDNA (bp)

Expected Obtained

Sp0090-96 Sp0090 / 
Sp0091

13 bp Sp0090RT2 / 
Sp0091RT1
Sp0090rt1.2 / 
Sp0091rt2.2

605 bp ~600 bp NP 600 bp 

Sp0091 /
Sp0092

256 bp 467 bp ~500 bp NP Sp0091RT2 /  
Sp0092RT1

~500 bp 

Sp0092 /
Sp0095

600 bp 600 bp NP NPSp0092RT2 /  
Sp0095RT1

Sp0095 /
Sp0096

500 bp 500 bp NP NPSp0095RT2 /  
Sp0096RT1

Sp0607-11 Sp0607 / 
Sp0608

9 bp Sp0607RT1 / 
Sp0608RT2

509 bp 500 bp   NP ~500 bp 

Sp0608 / 
Sp0609

12 bp Sp0608RT1 / 
Sp0609RT2

415 bp ~400 bp NP NP

Sp0609 / 
Sp0610

38 bp Sp0609RT1 / 
Sp0610RT2

436 bp ~400 bp NP ~400 bp 

Sp0610 / 
Sp0611

575 bp Sp0610RT1 / 
Sp0611RT2

578 bp ~600 bp NP ~600 bp 

Sp1686-91 Sp1686 / 
Sp1687

11 bp Sp1686RT2 / 
Sp1687RT1

540 bp >500 bp   NP >500 bp

Sp1687 / 
Sp1688

17 bp Sp1687RT2 / 
Sp1688RT1

400 bp 400 bp   NP 400 bp + other bands 

Sp1688 / 
Sp1689

No gap Sp1688RT2 / 
Sp1689RT1

350 bp 350 bp   350 bp NP

Sp1689 / 
Sp1690

77bp  Sp1689RT2 / 
Sp1690RT1

600 bp 600 bp   NP NP

270 bp 

273 bp 

Table 3.4 Analysis of ABC transporter operon structure in serotype 3 by RT-PCR 
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Operon Junction 
between genes

Gap / overlap 
between junction

in base pairs (bp)  

Primer pairs 
used

DNA (bp)

Expected Obtained

cDNA (bp)

Expected Obtained

Sp1690 / 
Sp1691

18 bp  Sp1690RT2 / 
Sp1691RT1

350 bp 350 bp   NP Non-specific bands

Sp1794-99 Sp1794 / 
Sp1795

400 bp  Sp1794RT1 / 
Sp1795RT1

714 bp 700 bp NP NP 

Sp1795 / 
Sp1796

9 bp  Sp1795RT2 / 
Sp1796RT1

544 bp NP NP ( obtained 544 bp DNA 
from TIGR4)

NP 

Sp1796 / 
Sp1797

27 bp  Sp1796RT2 / 
Sp1797RT1

485 bp 485 bp NP NP 

Sp1797 / 
Sp1798

13 bp overlap Sp1797RT2 / 
Sp1798RT1

583 bp >550 bp 583 bp NP 

Sp1798 / 
Sp1799

149 bp  Sp1798RT2 / 
Sp1799RT1

734 bp >700 bp NP NP 

Sp1822-28 Sp1822 / 
Sp1823

95 bp  Sp1822RT1 / 
Sp1823RT1

626 bp ~600 bp NP ~600 bp 

Sp1823 / 
Sp1824

2 bp  Sp1823RT2 / 
Sp1824RT1

571 bp ~600 bp ~600 bp 571 bp 

Sp1824 / 
Sp1825

11 bp  Sp1824RT2.1 / 
Sp1825RT1.1

431 bp ~400 bp NP NP 

Sp1825 / 
Sp1826

101 bp  Sp1825RT1.1 / 
Sp1826RT2.1

514 bp NP NP NP 

Sp1826 / 
Sp1827

23 bp  Sp1826RT2 / 
Sp1827RT1

426 bp ~400 bp NP NP 

Sp1827 / 
Sp1828

179 bp  Sp1827RT1.1 / 
Sp1828RT2.1

469 bp NP NP NP 
144

NP: No product
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(g) Sp1796-98 

RT-PCR analysis of the transcriptional structure for Sp1796-98 was not clear as the 

expression level of this region was poor in serotype 3 (Table 3.4).  

 

(h) Sp1824-26 

RT-PCR analysis of the transcriptional structure for Sp1824-26 suggested that 

Sp1823, Sp1824 may be transcriptionally linked in serotype 3. However It is not clear 

from the RT-PCR if other genes of this region are transcriptionally linked as the 

expression level of this region was poor (Table 3.4).  

 

(i) Sp2108-10 

RT-PCR analysis of the transcriptional structure for Sp2108-10 suggested that 

Sp2108, Sp2109 and Sp2110 are transcriptionally linked with transcription 

terminating after Sp2110 in serotype 3 (Fig 3.9). 

 
3.8 SUMMARY 

 
For this study, 11 ABC transporters (Sp0090-0092, Sp0149-0152, Sp0607-0610, 

Sp0707-0711, Sp0846-0848, Sp1689-90, Sp1796-98, Sp1826-28, Sp2084-87, 

Sp2108-2110) were chosen for investigation from the annotated completely 

sequenced genome of serotype 4 strain (Tettelin et al., 2001). Of the 11 ABC 

transporters operons, four of the operons (Sp0090-92, Sp0148-52, Sp0846-48 and 

Sp2108-2110) from serotype 3 strain are genetically organised in a similar fashion to 

that of annotated serotype 4 strain. Mutant strains were successfully constructed in a 

serotype 3 (0100993 strain) of S. pneumoniae for 10 of these ABC transporters 

(Sp0090
-
, Sp0149

-
, Sp0610

-
, Sp0750

-
, Sp0846

-
, Sp1690

-
, Sp1798

-
, Sp1826

-
, Sp2084

-
, 

Sp2108
-) by disrupting the first gene of the probable operon using insertional 



 146 

duplication mutagenesis. 9 mutant strains (Sp0090
-
, Sp0149

-
, Sp0610

-
, Sp0750

-
, 

Sp0846
-
, Sp1690

-
, Sp1798

-
, Sp1826

-
, Sp2108

-) were confirmed to have a stable 

mutation, with one mutant strain (Sp2084
-
) containing an unstable mutation. Despite 

the mutations generally having weak or no effect in culture media, in vivo phenotype 

analysis using CIs suggested a strong attenuation of virulence for Sp0149
- and 

Sp0750
- in both systemic and pulmonary models of infection, while Sp0090

-
, Sp0610

-
, 

Sp0846
- Sp1826

- and Sp2108
- had partial attenuation in virulence. These data confirm 

that ABC transporters are frequently required for full virulence and identified the 

Sp0149 and Sp0749 lipoproteins for further investigation. 
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    Chapter 4 

Detailed phenotype analysis of the effects of 

mutation of Sp0149 and Sp0750-53 

 

Results from chapter 3 showed that Sp0149-52 and Sp0749-53 are important for S. 

pneumoniae survival in in vivo models of pneumonia and septicaemia. Therefore, 

detailed in vitro and in vivo phenotype analysis of the effects of deletion of Sp0149 and 

Sp0750-53 were performed mostly using 0100993 strain. However, for the ease of 

performing certain experiments such as uptake assays, the deletion mutation was 

transferred from the serotype 3 (0100993) to serotype 2 (D39) strain. These results are 

presented in this chapter.  

 

4.1 GENE EXPRESSION OF SP0149 AND SP0749 BY SEMI-QUANTITATIVE RT-PCR 

To investigate whether the Sp0149 and Sp0749 lipoprotein genes are expressed during 

infection, semi-quantitative RT-PCR was performed on total RNA extracted from S. 

pneumoniae recovered from mice, or after incubation of the bacteria in blood or THY. 

The abundance of the Sp0149 and Sp0749 lipoprotein mRNA transcripts were 

compared with the mRNA expression of lipoprotein component (Sp1386) of polyamine 

ABC transporter (ORFs 1386-89) (Shah et al., 2008) and another well-characterized 

ABC transporter lipoprotein, psaA, both of which are known to be expressed during 

infection (Ogunniyi et al., 2002; Shah et al., 2008). To analyse the relative abundance 

of Sp0149, Sp0749 and Sp1386, primer pairs (Table 2.1) were designed to amplify 

cDNA products of comparable sizes, and the amplification efficiency of the primer 

pairs was analysed using S. pneumoniae genomic DNA (0100993) as the target for  



A

12 cycles 16 cycles 20 cycles 24 cycles

B

26 cycles                                               30 cycles

Fig 4.1 (A) Amplification efficiency of primer pairs using S. pneumoniae 0100993 genomic 

DNA as template for the PCR. (B) cDNA products generated by RT-PCR after 26 and 30 

cycles using S. pneumoniae 0100993 total RNA extracted from the blood of the infected mice . 

8 μl of the PCR and cDNA products were electrophoresed on the agarose gel. 

148
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PCR. After 12, 16, 20 and 24 cycles Sp0149, Sp0749, Sp1386 and psaA PCR products 

were electrophoresed on prestained ethidium bromide agarose gels, loading the same 

volume of the PCR reaction for each gene. Using DNA as the target, similar intensities 

of Sp0149, Sp0749, Sp1386 and psaA PCR products were obtained for each cycle 

length, indicating that the PCR primers have similar amplification efficiencies for each 

of these genes (Fig 4.1 A). 

To extract total RNA from bacteria grown in human blood and THY, the 

0100993 wild-type strain was first inoculated in THY and grown until the OD580 

reached 0.2-0.3. The culture was divided into two tubes, the resulting bacterial pellets 

were washed in sterile PBS and each pellet was resuspended in 3 mls of THY or in 

freshly extracted heparinised human blood. An aliquot from this culture was removed, 

serially diluted and plated onto blood agar plates to determine the approximate S. 

pneumoniae cfu immediately after the inoculation. The culture was incubated for an 

hour at 37ºC in the presence of CO2 followed by simultaneous extraction of the total 

RNA from S. pneumoniae grown in THY or in human blood. To extract total RNA 

from S. pneumoniae during infection, 3 to 5 CD1 mice were intraperitoneally injected 

with approximately 4 x 106 cfu/ mouse of 0100993 strain of S. pneumoniae and blood 

was obtained from the mice 12 hours later and pooled before total RNA was extracted 

using acid-phenol as described in chapter 2. Expression of the lipoprotein genes in the 

THY was used only as baseline for the comparison of gene expression in human blood 

and septicaemia model of infection. The extracted total RNA from these different 

conditions were subjected to RT-PCR with and without reverse transcriptase to ensure 

that DNA contamination was not present as described in chapter 2 and the RNA 

concentration was determined using a nanospectrophotometer. Equal quantities of total 

RNA (0.04 ng μl-1) from each condition were then used for semi-quantitative RT-PCR  



Fig 4.2 Densitometry analysis of 16S, psaA, Sp0149, Sp0749 and Sp1386 cDNA product 

generated by RT-PCR after different cycles using S. pneumoniae 0100993 total RNA 

extracted from the (A) THY, (B) human blood and (C) infected mouse blood. 
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to assess mRNA expression levels of the Sp0149, Sp0749, Sp1386 and psaA genes. To 

minimise sample variation a master mix was prepared for all RT-PCR reactions and 

these were performed simultaneously by mixing all the RT-PCR constituents except the 

primer pairs and the total RNA before aliquoting into individual tubes. cDNA products 

generated after 10, 14, 18, 22, 26 and 30 cycles for each primer pair were analysed in 

triplicate. Since the 16S rRNA level is constantly maintained under in vitro and in vivo 

conditions, 16S rRNA was used as internal control in all of these experiments. In each 

experiment 8 μl of the cDNA products generated from each triplicate sample was 

electrophoresed on agarose gel and the intensity of the bands corresponding to the 

lipoprotein genes were analysed by densitometry. The results are shown in Fig 4.2. The 

band intensities at 10, 14, 18, 22, 26 and 30 cycles demonstrated that there was 

differential expression of these genes when bacteria were grown in all three conditions. 

From the densitometry analysis (Fig 4.2 A, B, C), in THY 16S rRNA was the most 

abundantly present cDNA followed by those of psaA, Sp0149 and Sp1386 with no 

detectable levels of Sp0749 cDNA observed (Fig 4.2 A). In human blood, the cDNA 

level of Sp1386 was similar to that of Sp0149 but again both were lower than the 

cDNA levels of psaA and Sp0749 cDNA was not detected (Fig 4.2 B). However, in 

bacteria recovered from infected mice (Fig 4.2 C), the results were quite different, with 

greater expression of Sp0749 compared to Sp0149 and Sp1386. Expression of psaA was 

not investigated in this infection model. These data suggest that mRNA of Sp0749 and 

Sp1386 are differentially expressed under different conditions, with expression of 

Sp0749 specifically induced during septicaemia despite low levels of expression after 

culture in THY or incubation in blood. 
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4.2 CONSTRUCTION OF SP0149 AND SP0750-53 DELETION MUTANT STRAINS IN S. 

PNEUMONIAE 

In order to investigate the in vitro and in vivo phenotypes of the Sp0148-53 and 

Sp0749-53 ABC transporters in detail, deletion mutant strains were constructed in 

which the Sp0149 lipoprotein gene and the Sp0750-53 genes (encoding permeases and 

ATPases) were replaced with the erythromycin resistance cassette (erm) by the overlap 

extension PCR (OEP) method (Fig 4.3 A-D and 4.4 A-D) as described in chapter 2. 

The role of these two operons during in vivo virulence and in vitro growth had initially 

been investigated using IDM mutants (chapter 3), and the deletion mutants were 

designed to affect the genes disrupted within the IDM mutant strains (Fig 4.5 A-C). 

The ΔSp0149 and ΔSp0750-53 deletion constructs were then transformed in to the 

0100993 strain of S. pneumoniae. ΔSp0149 and ΔSp0750-53 deletion mutant strains 

were successfully obtained, and the deletion construct confirmed using the genomic 

DNA of the mutant strain as template to amplify the junctions of the upstream and 

downstream regions surrounding the deleted target gene (Fig 4.6 A-D). Fig 4.6 B 

shows the confirmation of Sp0149 deletion by PCR using different primer pairs. To 

demonstrate that erm gene is flanked by Sp0148 and Sp0150 genes in the ΔSp0149 

mutant strain, PCR was performed using the Sp0148F + ermR and ermF + Sp0150R 

primers. This generated correct sized products only in the mutant strain. PCR across 

Sp0148 to Sp0150 genes using Sp0148F and Sp0150R primers generated similar sized 

bands in the wild-type and ΔSp0149 mutant strain because the erm gene and Sp0149 

genes are of similar size. A non-specific band of smaller size was also obtained in the 

mutant strain. The absence of Sp0149 in the ΔSp0149 mutant strain was confirmed by 

PCR across the Sp0149 gene (Sp0149F and R) in the wild-type and ΔSp0149 mutant  

 



A

B

C

Sp0148                       Sp0149                    Sp0150                 Sp0151              Sp0152            Sp0153

Sp0150

erm

Sp0150erm

D
Sp0148                     erm Sp0150                  Sp0151             Sp0152              Sp0153

PCR products generated by individual PCR

PCR on pooled gene products to obtain ΔSp0149

construct by OEP

Transformation of ΔSp0149 construct in 
S. pneumoniae wild-type

Fig 4.3 Schematic diagram of the deletion of Sp149 by overlap extension PCR (OEP). (A) 

Arrows indicate the transcription direction of genes of Sp0148-53 operon in the TIGR4 

genome. The Sp0149 gene, shaded with diagonal lines, was chosen for deletion. Small black 

arrows indicate the forward and reverse primers used for OEP. (B and C) OEP to obtain the 

Sp0149 deletion construct by replacing Sp0149 with the erythromycin gene (erm) (D) 

Representation of the product of transformation of the ΔSp0149 construct in to the 0100993 

S. pneumoniae strain.
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Sp0749                  Sp0750             Sp0751             Sp0752            Sp0753                    Sp0754

erm

erm

Sp0749 Sp0754

Sp0749 Sp0754

Sp0749 Sp0754erm

A

B

C

D

Fig 4.4 Schematic diagram of the deletion of Sp750-53 by overlap extension PCR (OEP). (A) 

Arrows indicate the transcription direction of genes of Sp0749-53 operon in the TIGR4 

genome. The Sp0750-53 genes are shaded with diagonal lines, were chosen for deletion. 

Small black arrows indicate the forward and reverse primers used for OEP. (B and C) OEP to 

obtain the Sp0750-53 deletion construct by replacing Sp0750-53 genes with the erythromycin 

gene (erm) (D) Representation of the product of transformation of the ΔSp0750-53 construct 

in to the 0100993 S. pneumoniae strain.
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A
Individual PCR products 

B

Final deletion constructs obtained after the 
fusion of the individual PCR products 

Sp0148-

erm-

Sp0150

Sp0749-

erm-

Sp0753

C

Sp0148-

erm-

Sp0150

Sp0749-

erm-

Sp0753

Gel purified deletion constructs

Fig 4.5 Generation of ΔSp0149 and ΔSp0750-53 deletion constructs. (A) Amplification of 

Sp0148 (630 bp), Sp0150 (672 bp), Sp0749 (883 bp), Sp0754 (833 bp) using S. pneumoniae

0100993 genomic DNA as the template and the erm gene (738 bp) using pACH74 plasmid 

DNA as the template (B) ΔSp0149 (2040 bp) and ΔSp0750-53 (2454 bp) deletion constructs 

generated by OEP after using the individual PCR products generated from A (C) Gel purified 

ΔSp0149 and ΔSp0750-53 deletion constructs used for S. pneumoniae transformation.
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Fig 4.6 (A + C) Schematic diagram showing the deletion of Sp0149 gene from the Sp0148-53

operon and Sp0750-53 genes from Sp0749-53 operon. Small black arrows indicate the forward 

and the reverse primers used for the confirmation of deletion of target gene(s) Gel pictures 

(B and D) demonstrating the confirmation of the deletion of Sp0149 and Sp0750-53 genes by 

PCR using the 0100993 wild-type, ΔSp0149, ΔSp0750-53 genomic DNA as templates. 
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strain, which generated a correct sized product only in the wild-type. Fig 4.6 D 

demonstrates the confirmation of the Sp0750-53 deletion in the ΔSp0750-53 mutant 

strain by PCR and later by sequencing. To demonstrate the replacement of Sp0750-753 

genes by erm in the ΔSp0750-53 mutant strain, PCR using Sp0749F + ermR and ermF 

+ Sp0754R primers was performed. This generated correct sized product in the mutant 

strain but no product was obtained in the wild-type. Similarly, to confirm the deletion 

of Sp0750-53 genes, primers designed to amplify the junction of genes in the Sp0749-

754 operon were used (chapter 3). PCR using these primers spanning the junction of 

Sp0750-54 did not generate a PCR product in the ΔSp0750-53 mutant strain but 

generated correct sized bands in the wild-type suggesting that Sp0750-53 genes were 

deleted in the mutant strain.  

Efforts to obtain Sp0149 and Sp0750-53 complemented mutants were not 

successful as the Sp0149 complementation construct did not transform into the 

ΔSp0149 deletion mutant and several efforts to obtain the Sp0750-53
c construct failed. 

 

4.3 LOCALISATION STUDIES OF SP0149 AND SP0749 LIPOPROTEINS 

To investigate whether Sp0149 and Sp0749 lipoproteins are localised to the S. 

pneumoniae cell membrane, the Triton X-114 extracts of the membrane bound proteins 

were probed with the polyclonal mouse anti-Sp0149 and anti-Sp0749 antibodies 

(obtained as described in chapter 5) and analysed by Western blotting (Khandavilli et 

al., 2008). To demonstrate whether Sp0149 and Sp0749 are, as predicted, lipoproteins, 

extracts from the lsp mutant strain as well as the wild-type and the complemented lsp
c 

strain were probed. Δlsp and lsp
c strains were constructed by Suneeta Khandavilli 

(Khandavilli et al., 2008). Previous studies have demonstrated that lipoprotein signal 

peptidase (Lsp) is employed to process the prelipoproteins into mature lipoproteins in  



Fig 4.7 Western blots of the whole cell lysates, Triton X-114 and aqueous extracts of 

S. pneumoniae wild-type (WT), ΔSp0149, ΔSp0750-53, Δlsp and lspc strains probed with 

anti-Sp0149 and anti-Sp0749 antibodies to demonstrate the localisation of Sp0149 (A) 

and Sp0749 (B) lipoproteins. Purified His6-Sp0149 and His6-Sp0749 were used as controls. 

The sizes of Sp0149 and Sp0749 are 1-2 kDa larger in the Δlsp strain than in the wild-type, 

lspc strains and the purified lipoproteins. 

Triton-X-114 
extracts

Aqueous 
extracts

A

Whole cell  
lysates

158

Sp0149

Triton-X-114 
extracts

Aqueous 
extracts

B

Whole cell  
lysates

Sp0749



 159 

various bacteria (Sutcliffe and Russell, 1995) (described in chapter 1). Recently, 

Khandavilli and collegues have demonstrated that Lsp (encoded by the Sp0928 gene) is 

responsible for the processing of prelipoproteins by enzymatic cleavage of the N-

terminal signal sequence from the prelipoproteins to form mature lipoproteins in S. 

pneumoniae. They have also demonstrated that the deletion of Sp0928 prevents the 

formation of the mature lipoproteins and therefore the lipoproteins in the Δ928 mutant 

strain (Δlsp) have slightly higher molecular masses. Complementation of Sp0928 in 

928c (lsp
c) strain restores normal processing of lipoproteins. Fig 4.7A shows that the 

molecular weight signals from the whole cell lysates of wild-type, Δlsp, and lsp
c strains 

probed with anti-Sp0149 or anti-Sp0749. The Δlsp gave signal at higher molecular 

weight when probed with anti-Sp0149, but it was difficult to determine the size 

difference of Sp0749 lipoprotein in Δlsp strain when probed with anti-Sp0749 as this 

antibody only gave a weak signal with this strain. Surprisingly, the band identified by 

probing with anti-Sp0149 in the lsp
c strains was not restored to the size found in the 

wild-type strain. However similar sized molecular weight signals were obtained when 

the whole cell lysates of lsp
c and wild-type strains were probed with anti-Sp0749. A 

strong signal was obtained when the Triton X-114 extracts of the wild-type and Δlsp 

strains were probed with anti-Sp0149 antibodies, where as ΔSp0149 strain did not give 

any signal due to the deletion of Sp0149 and the band obtained with the Δlsp strain had 

a slightly higher molecular weight as the result of incomplete processing of the 

lipoprotein.  

The presence of same sized signal in the aqueous extract (Fig 4.7 A) of wild-

type, Δlsp and ΔSp0149 probably occurred as a result of the contamination of Triton X-

114 extract in to aqueous extract during the extraction procedure. Alternatively it is 

also possible that the loss of lsp may result in the release of significant quantities of 
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Sp0149 lipoprotein from the cell surface into the culture medium. When probed with 

anti-Sp0749 antibodies a strong signal was obtained for the whole cell lysates of the 

wild-type and lsp
c strains but only a weak signal of slightly higher molecular mass for 

the whole cell lysate of the Δlsp strains. Furthermore in the Triton X-114 extracts, the 

wild-type and ΔSp0750-53 strain, but not the Δlsp strain gave a strong signal for the 

Sp0749 lipoprotein suggesting that Sp0749 lipoprotein is membrane bound but 

expression on the membrane is lost in the absence of Lsp. However, there was no 

Sp0749 signal in the aqueous extracts indicating that loss of expression of the Sp0749 

in the Δlsp strain was not accompanied by shedding of the protein from the cell surface 

(Fig 4.7 B). 

Overall the Western blots indicated that Sp0149 and Sp0749 are both 

membrane bound, and that the Sp0149 exists as a prelipoprotein that is processed by 

Lsp. The reduction of expression of Sp0749 in the absence of Lsp was unusual and 

differs from the effect of the Δlsp mutation on other lipoproteins. However the 

localisation of Sp0749 within the membrane and the fact that this is affected by Lsp 

does indicate it is also a lipoprotein. 

 

4.4 IN VITRO PHENOTYPE ANALYSIS OF THE S. PNEUMONIAE ΔSP0149 AND ΔSP0750-53 

DELETION MUTANTS 

4.4.1  Growth curve of ΔSp0149 and ΔSp0750-53 mutants in THY 

The in vitro phenotypes of the ΔSp0149 and ΔSp0750-53 mutants strains were 

investigated by comparing the growth rates of the deletion mutant strains to the wild-

type strains in the THY medium. Equal numbers of the wild-type and the mutant 

bacteria obtained from thawed stocks were inoculated into THY, cultured at 37°C in 

the presence of 5% CO2 and the optical density recorded at one hourly intervals for 8 
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hours. Both the deletion mutant strains exhibited good growth in THY, similar to the 

wild-type strain (Fig 4.8 A), suggesting that the deletion of the Sp0149 and Sp0750-53 

genes of the ABC transporters had little effect on the growth of S. pneumoniae in a rich 

laboratory medium that is THY. 

 

4.4.2  Growth curve of ΔSp0149 and ΔSp0750-53 mutants in cation depleted media  

From the BLAST search, Sp0149-52 encodes a putative metal ion ABC transporter, 

hence the role of Sp0149-52 and Sp0749-53 operon in a cation depleted environment 

was investigated by analysing growth of the mutant strain in THY that has been treated 

with Chelex-100 to remove cations from the medium (Brown et al., 2001). Fig 4.8.B 

showed no differences in the growth pattern of ΔSp0149, ΔSp0750-53 mutant strains 

and the wild-type S. pneumoniae in THY-chelex supplemented with 100 μM CaCl2 and 

2 mM MgSO4. Therefore cations such as zinc, ferric iron and cobalt were supplemented 

in THY-Chelex at a final concentration of 100 μM and the growth defect of ΔSp0149 in 

the presence and absence of these cations were compared with the wild-type. Fig 4.9 A 

demonstrates that the wild-type and ΔSp0149 strain had impaired growth in Chelex-

THY medium alone. Both the wild-type and ΔSp0149 showed better growth when 

supplemented with 100 μM ferric citrate (Fe3+) as the source of iron suggesting that the 

depletion of iron from the medium may be responsible for this growth defect, but there 

was no difference between the strains indicating iron was not a major substrate for 

Sp0149 (Brown et al., 2001). However, when the Chelex-THY medium was 

supplemented with 100 μM cobalt or 100 μM zinc chloride, the growth of wild-type 

and ΔSp0149 strains was inhibited, suggesting these concentration of cobalt or zinc 

were relatively toxic. The growth of the ΔSp0149 strain was actually better than the 

wild-type strain in zinc supplemented THY-chelex, and this may indicate that this  
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Fig 4.9 (A) Growth of wild-type and ΔSp0149 S. pneumoniae strains at 4 hours in Chelex-THY 

medium supplemented with and without individual cations (100 μM) such as cobalt, zinc and 

ferric iron. p values were obtained using Student’s-t-test by comparing the wild-type with 

ΔSp0149. (B) Sensitivity to streptonigrin of the wild-type and ΔSp0149 S. pneumoniae strains. 

Results are expressed as mean percent survival (triplicate samples) of the wild-type and 

ΔSp0149 mutant strains surviving the exposure to 5 μg ml-1 streptonigrin for 20 and 40 

minutes. 
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strain has had less toxic effects due to loss of cation transport. However this data 

requires further development before the significance of any differences in growth 

between strains can be correctly interpreted. 

 

4.4.3  Streptonigrin sensitivity test 

Streptonigrin is an antibiotic which is bactericidal in nature and requires intracellular 

iron for its activity. Mutations in iron uptake systems are associated with streptonigrin 

resistance due to the reduced levels of intracellular iron preventing streptonigrin 

activity. In S. pneumoniae, mutations in iron uptake ABC transporters such as Piu, Pia 

and Pit have demonstrated increased resistance to streptonigrin (Brown et al., 2001). 

The streptonigrin sensitivity test was performed (as described in chapter 2) to identify 

whether streptonigrin has any effect on the ΔSp0149 mutant strain of S. pneumoniae. 

Both the wild-type and the ΔSp0149 mutant strain were incubated with 5 μg ml-1 

streptonigrin and serial dilutions were plated on Columbia blood agar after 0, 20 and 40 

minutes of streptonigrin exposure. Bacterial cfu were represented as percentage 

survival after each time point and the percentage survival of the wild-type and the 

ΔSp0149 mutant strains were compared. Fig 4.9 B shows no difference between the 

wild-type and the ΔSp0149 mutant strain after 20 and 40 minutes of exposure to 

streptonigrin. The above result suggests that the intracellular concentration of iron was 

adequate for the streptonigrin activity in both the wild-type and ΔSp0149 mutant strain 

of S. pneumoniae, and that the deletion of Sp0149 gene has little or no effect on the 

streptonigrin sensitivity. Hence Sp0149 is either not involved in iron uptake or is 

redundant and can be compensated for by other iron transporters. 

 

  



Fig 4.10 Growth of S. pneumoniae wild-type, ΔSp0149 and ΔSp750-53 strains in Cden

medium in the presence and absence of branched chain amino acids, leucine, isoleucine and 

valine. ΔSp0149 mutant strain was used as negative control in these experiments. Growth of 

the wild-type and mutant strains in (A) complete Cden medium, (B) Cden medium without 

leucine, (C) Cden medium without isoleucine (D) Cden medium without valine. Results 

presented are the mean of triplicate samples.
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4.4.4  Growth curve of ΔSp0149 and ΔSp0750-53 mutants in chemically defined 

medium (Cden) 

From the BLAST search prediction, Sp0749-53 operon encodes a putative branched 

chain amino acid transporter. In order to investigate whether the deletion of Sp0750-53 

genes has any effect on the growth of the ΔSp0750-53 mutant strain, a chemically 

defined medium, Cden (Tomaz., 1964) was used to compare the growth patterns of the 

wild-type and ΔSp0750-53 strain in the absence of branched chain amino acids such as 

leucine, isoleucine and valine. ΔSp0149 was used as a negative control in these 

experiments. The ΔSp0149, ΔSp0750-53 mutant and the wild-type strains did not 

exhibit growth pattern differences in the Cden medium alone (Fig 4.10 A). Growth 

patterns of ΔSp0149, ΔSp0750-53 mutant and the wild-type strains in Cden medium 

were impaired by the absence of any of the branched chain amino acids with a 

maximum optical density attained at 6 hours of approximately 0.2 to 0.4 compared to 

0.6 for complete Cden (Fig 4.10 B, C, D). However, there were no significant 

differences in the growth of the mutant or wild-type strains in the absence of branch 

chain amino acids. 

 

4.4.5  Azaleucine toxicity test 

Azaleucine is a toxic analogue of leucine that is taken up by branched chain amino acid 

transporters. Hence the relative level of toxicity of azaleucine indicates whether a 

bacterial strain has impaired transport of branched chain amino acids. The azaleucine 

sensitivity test was performed using the wild-type and the Sp0750
- IDM mutant strain 

of S. pneumoniae (0100993 strain). Azaleucine at concentrations of 10, 20, 30, 40, 50, 

60, 70, 80, 90 and 100 μg ml-1 in THY were used to grow the bacteria and the growth  

 



Fig 4.11 Growth of S. pneumoniae (0100993) wild-type and Sp0750- IDM mutant strains in 

THY medium at different concentrations of azaleucine. Growth of the wild-type and the 

Sp0750- strain in (A) THY medium, (B) THY + 10 μg azaleucine, (C) THY + 50 μg 

azaleucine and (D) THY + 100 μg azaleucine. Results presented are the mean of triplicate 

samples.
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patterns of wild-type and Sp0750
- mutant strains were recorded (shown in Fig 4.11 A-

D; similar growth patterns were observed in the other concentrations tested). There was 

no evidence of toxicity due to azaleucine in the wild-type and Sp0750
- IDM mutant 

strains of S. pneumoniae at all the tested concentrations. One of the reason could 

perhaps be that the azaleucine toxicity assay was performed in THY which is a rich 

undefined medium with leucine as one of the amino acid component. Therefore even in 

the presence of azaleucine, leucine may be the substrate preferred by Sp0749-0753 

ABC transporter. Therefore repeating the experiment with modifications, such as using 

chemically defined medium in which leucine could be replaced with azaleucine to 

identify the differences between wild-type and Sp0750
- mutant strains may provide 

information regarding the azaleucine toxicity. 

 

4.4.6 Uptake assays 

To try and confirm that Sp0749-0753 does encode a branched chain amino acid ABC 

transporter, uptake assays of 14C-labelled leucine were performed with the wild-type and 

ΔSp0750-53 mutant strains (experiments performed under Dr Hosie’s supervision at King’s 

College London) (Webb et al., 2008). For the ease of performing the uptake assays, deletion 

mutation from the serotype 3 (0100993) was transferred into serotype 2 (D39) because the 

mucoid serotype 3 strain would prevent efficient pelleting. Preliminary 14C-labelled leucine 

uptake experiments were performed as described in chapter 2 by inoculating the wild-type 

and ΔSp0750-53 mutant strains of S. pneumoniae in CDM medium alone containing branched 

chain amino acids and CDM medium without branched chain amino acids (Fig 4.12 A, B, C, 

D). No significant detectable leucine uptake was observed in either the wild-type or 

ΔSp0750-53 S. pneumoniae strains in the presence (Fig 4.12 A) and absence (Fig 4.12 B) of  
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Fig 4.12 Radioactive leucine and maltose uptake using serotype 2 (D39) S. pneumoniae

wild-type (diamonds) and ΔSp0750-53 (triangle) strains in CDM medium containing 

isoleucine, leucine and valine (I, L, V) (A and C) and CDM without isoleucine, leucine and 

valine (B and D). (A) 14C-leucine uptake by wild-type and ΔSp0750-53 S. pneumoniae strains 

in CDM medium (B) 14C-leucine uptake by wild-type and ΔSp0750-53 S. pneumoniae strains 

in CDM medium without I, L, V (C) 14C-maltose uptake by wild-type and ΔSp0750-53 S. 

pneumoniae strains in CDM medium (D) 14C-maltose uptake by wild-type and ΔSp0750-53 S. 
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branched chain amino acids. To ensure that the experimental conditions for the uptake 

were correct, 14C-labelled maltose uptake assays were also performed as a positive 

control. There was good 14C-labelled maltose uptake in the S. pneumoniae wild-type 

both in the presence (Fig 4.12 C) and absence (Fig 4.12 D) of branched chain amino 

acids and by the ΔSp0750-53 mutant strain in the CDM medium. However, in the CDM 

medium without branched chain amino acids, there was markedly reduced maltose 

uptake by the ΔSp0750-53 mutant strain, the reasons are unclear. 14C-labelled 

isoleucine, leucine and maltose uptake was also performed, and again showed 

negligible uptake both amino acids. Hence, the above results indicate that there is no 

significant detectable uptake of BCAA by S. pneumoniae under the in vitro conditions 

tested, preventing effective assessment of whether Sp0749-0753 does encode a BCAA 

ABC transporter using these assays.  

 

4.4.7  Analysis of substrate specificity by tryptophan fluorescence spectroscopy 

In order to investigate whether the Sp0749 lipoprotein binds to branched chain amino 

acids (BCAAs), tryptophan fluorescence spectroscopy was performed using purified 

and dialysed recombinant His6-Sp0749 lipoprotein (Thomas et al., 2006). Tryptophan 

fluorescence spectroscopy analyses the fluorescence emitted as a result of excitation of 

electrons by the tryptophan residues present in the protein. In the absence of tryptophan 

residues, as is the case for the Sp0749 lipoprotein, this method uses tyrosine residues to 

analyse the fluorescence in the proteins. Fig 4.13 A demonstrates that the maximum 

emission of fluorescence for the purified His6-Sp0749 lipoprotein occurs at the 

wavelength of 309 nm. To test which amino acids induce fluorescence changes in His6-

Sp0749 lipoprotein, branched chain amino acids such as isoleucine, leucine, valine and 

other amino acids such as proline, glycine, alanine and threonine were incubated with 
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the recombinant Sp0749 protein. Fig 4.13 B demonstrates that the addition of amino 

acids such as proline, glycine, alanine and threonine and valine at a concentration of 50 

μM to His6-Sp0749 lipoprotein soon after its stabilization in the spectrofluorimeter had 

minor effects on fluorescence. However, the addition of the branched chain amino acid 

isoleucine at the concentration of 3.2 μM resulted in a marked change in Sp0749 

fluorescence. Further addition of 3.2 μM isoleucine did not result in any quenching of 

the changes in fluorescence (data not shown). Therefore to identify the minimum 

concentration of the ligand required to obtain maximum fluorescence change, 

isoleucine concentrations of 0.64 μM, 0.32 μM (Fig 4.14 A) and 0.16 μM (Fig 4.14 B) 

were tested. Addition of 0.16 μM isoleucine did not induce significant changes in 

fluorescence of His6-Sp0749, whereas significant changes did occur with the addition 

of 0.32 or 0.64 μM isoleucine. No further quenching following the addition of a further 

0.64 μM of isoleucine (data not shown). These data suggest that Sp0749 binds to 

isoleucine with a high affinity. 

To investigate whether His6-Sp0749 lipoprotein binds to leucine, another 

potential branched chain amino acid ligand, fluorescence changes upon addition of 

leucine at different concentrations were measured. After the addition of leucine at the 

final concentration of 3.2 μM, change in fluorescence occurred after a small delay as 

shown in Fig 4.15 A, and addition of leucine at the final concentration of 16 μM did not 

result in further quenching of fluorescence. When a lower concentration of leucine 

(0.64 μM) was tested, only a slow change in fluorescence was observed and further 

addition of leucine at 3.2 μM did not result in any fluorescence change. These data 

suggest that the His6-Sp0749 lipoprotein binds to leucine with low affinity.  

Fluorescence changes upon addition of valine, another branched chain amino 

acid ligand was also tested. A marked fluorescence change was observed when valine 
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was added to His6-Sp0749 lipoprotein at the final concentration of 16 μM but 

additional valine at the same concentration did not quench the fluorescence change as 

shown in Fig 4.15 B. To assess the minimum concentration required for maximum 

fluorescence change, 3.2 μM valine was added to the His6-Sp0749 lipoprotein. This 

induced only a small fluorescence change. Addition of 50 μM valine in the presence of 

50 μM each of a variety of other amino acids failed to induce any changes on 

fluorescence, probably due to the large amounts of other amino acids inhibiting binding 

the His6-Sp0749 lipoprotein. Overall, the results of the fluorescence binding studies 

suggest that the His6-Sp0749 lipoprotein binds to BCAA exhibiting its highest affinity 

towards isoleucine, moderate affinity to valine and least affinity towards leucine. 

 

4.4.8  Radioactive substrate binding assay 

To further determine the specific binding affinity of the Sp0749 lipoprotein to 

isoleucine, leucine and / or valine, radioactive ligand binding assays were performed 

using the purified His6-Sp0749 putative lipoprotein. The results suggest that the His6-

Sp0749 lipoprotein bound to 14C-isoleucine, and to a lesser degree to 14C-leucine (p < 

0.05) but not to the negative control, 14C-amino isobutyric acid (AIB) (Fig 4.16 A). 

Branched chain amino acid transporters (LIV transporters) have been well 

characterised in E. coli and P. aeruginosa and have been shown to bind to amino acids 

such as L-threonine, L-alanine, L-serine in addition to L-leucine, L-isoleucine and L-

valine (Rahmanian et al., 1973; Hoshino et al., 1992). Therefore His6-Sp0749 

lipoprotein was used to investigate if Sp0749 exhibits broader specificity towards 

amino acids other than isoleucine, leucine and valine, such as L-threonine. Competitive 

ligand binding with leucine, valine, threonine and AIB (negative control) was 

performed in the presence of 14C-isoleucine. Fig 4.16 B shows that His6-Sp0749 
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lipoprotein strongly binds to 14C-isoleucine alone and does not bind to 14C-AIB. 

However, valine, leucine and threonine inhibited the 14C-isoleucine binding to His6-

Sp0749 lipoprotein and that the His6-Sp0749 lipoprotein bound to valine and threonine 

inhibited the 14C-isoleucine binding at similar affinities than leucine. These results 

confirm that His6-Sp0749 lipoprotein has greatest affinity towards isoleucine and also 

indicates that His6-Sp0749 lipoprotein probably exhibits preferential binding to amino 

acid ligands in decreasing order of isoleucine > valine > threonine > leucine. Although 

the preferential binding experiment should have been performed with other amino acids 

such as serine and alanine in the presence of 14C-isoleucine, it could not be done due to 

the lack of purified His6-Sp0749 lipoprotein and time constraints. 

 

4.5 IN VIVO PHENOTYPE ANALYSIS OF THE S. PNEUMONIAE ΔSP0149 AND ΔSP0750-53 

DELETION MUTANTS 

4.5.1 Competitive index 

To investigate the effect on the virulence of S. pneumoniae as the result of Sp0149 and 

Sp0750-53 deletion during the pulmonary (IN) and systemic (IP) infection in mouse 

models, CIs were performed. Mixed inocula of S. pneumoniae wild-type, ΔSp0149 and 

ΔSp0750-53 strains were inoculated in mice by IN and IP routes and the CIs were 

determined as described in chapters 2 and 3. Deletion of Sp0149 and Sp0750-53 

affected the S. pneumoniae virulence with markedly reduced CIs for the ΔSp0149 and 

ΔSp0750-53 strains in both pulmonary (median CIs in lungs: ΔSp0149: 0.028, 

ΔSp0750-53: 0.109) and systemic (median CIs in spleen: ΔSp0149: 0.028, ΔSp0750-53: 

0.077) models of infection (Fig 4.17). These results are similar to those obtained with 

Sp0149
- and Sp0750

- IDM mutant strains of S. pneumoniae (mean CI in lungs: Sp0149
-:  
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Fig 4.16 Radioactive substrate binding assay expressed as pmoles of amino acid bound per 

mg of purified His6-Sp0749 lipoprotein (A) Binding affinities of His6-Sp0749 towards 14C-

Labelled isoleucine (Ileu), leucine (Leu) and amino isobutryic acid (AIB) (B) Competitive 

amino acid ligand binding of His6-Sp0749 to 14C-AIB (negative control), 14C-isoleucine, 

AIB, leucine, valine and threonine in the presence of 14C-isoleucine.
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Fig 4.17 In vivo phenotype analysis of ΔSp0149 and ΔSp0750-53 deletion mutants measured 

by CIs, expressed as log10 results for the ΔSp0149 and ΔSp0750-53 deletion mutants compared 

to the wild-type strain (0100993) in mouse models of pneumonia (A and B), septicaemia (C). 

In both the models, each symbol represents the CI obtained from an individual animal.
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Fig 4.18 Survival of groups of 10 mice were intranasally inoculated with 107 cfu of ΔSp0149

(A) and ΔSp0750-53 (B) deletion mutant strains compared to mice inoculated with the 

wild-type S. pneumoniae strains (0100993).  
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0.023, Sp0750
-: 0.016) (mean CI in spleens: Sp0149

-: 0.067, Sp0750
-: 0.017) models of 

infection in mice (discussed in chapter 3). 

 

4.5.2 Survival studies 

In order to asses the ability of S. pneumoniae strains to cause fatal disease, group of 10 

CD1 mice strain were intranasally inoculated with S. pneumoniae (0100993) wild-type, 

ΔSp0149 and ΔSp0750-53 strains and their survival curves were determined (Brown et 

al., 2001). The mice were inoculated intranasally with the challenge dose of 107 cfu of 

the wild-type, ΔSp0149 and ΔSp0750-53 strains and monitored for the progress of 

infection. Fig 4.18 demonstrates that there was no difference in the survival of mice 

inoculated with the wild-type, ΔSp0149 and ΔSp0750-53 strains. Only 50% of mice 

cleared infection and survived after inoculation with the wild-type strain. This was an 

unexpectedly high level of clearance, as disease usually progresses into fatal infection 

in 80 to 90% of mice when the wild-type S. pneumoniae is inoculated Therefore this 

experiment should be repeated to ensure a small survival benefit in mice given the 

mutant strains has not been missed.  

 

4.6 SUMMARY 

The Sp0148-53 and Sp0749-53 ABC transporters of S. pneumoniae were investigated 

in detail for their in vitro and in vivo phenotypes. The relative mRNA expression of 

Sp0149 and Sp0749 lipoprotein genes in S. pneumoniae were analysed in THY, human 

blood and during infection in mice after IP infection. The results demonstrated that 

Sp0149 and Sp0749 genes are expressed during infection in mice, and suggest that the 

expression of Sp0749 is actually increased during infection compared to culture in 

either THY or blood in the laboratory.  
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From the localisation studies of Sp0149 and Sp0749, Western blot analysis 

demonstrated that both Sp0149 and Sp0749 are associated with the membrane 

compatible with being lipoproteins. Western blot analysis using the Δlsp and lsp
c 

strains showed that Sp0149 is enzymatically processed by Lsp. Loss of Lsp resulted in 

an unusual phenotpye for Sp0749, with reduced band strength in the Δlsp strain, 

suggesting Lsp activity is required for efficient attachment of Sp0749. ΔSp0149 and 

ΔSp0750-53 deletion mutants were successfully constructed by OEP. In vitro 

phenotypes of these strains did not detect any consistent phenotype in growth in 

specialised media or laboratory assays associated with the predicted functions of the 

corresponding ABC transporter. Uptake assays failed to demonstrate the uptake of 

amino acids. However, using the purified His6-Sp0749 lipoprotein, tryptophan 

fluorescence spectroscopy and radioactive ligand binding assays demonstrated that 

purified Sp0749 binds to BCAAs with a higher affinity towards isoleucine at 

submicromolar concentrations. 

The in vivo phenotype of ΔSp0149 and ΔSp0750-53 mutant strains was assessed 

using CIs, demonstrated a marked decrease in the virulence in pulmonary and 

septicaemia models of infection in mice for both strains. However contrasting results 

were obtained when survival studies were performed, with no impaired ability of the 

ΔSp0149 and ΔSp0750-53 mutant strains to cause fatal disease in a pulmonary model of 

infection in mice. Hence loss of these ABC transporters results in a significant 

impairment of the mutant strains to compete with the wild-type strain during infection 

but the mutants are still able to cause fatal infection. 
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    Chapter 5 

Investigation of Sp0149 and Sp0749 vaccine 

potential against systemic S. pneumoniae disease 

 

The data from chapters 3 and 4 have shown that Sp0149-52 and Sp0749-53 ABC 

transporters have role in S. pneumoniae virulence and that the Sp0749 lipoprotein is a 

branched chain amino acid binding protein. In this chapter, the potential of the 

recombinant Sp0149 and Sp0749 lipoproteins as vaccine candidates are investigated 

against S. pneumoniae septicaemia in two different mouse models (outbred CD1 and 

inbred BALB/c) using a virulent serotype 2 (D39) as the S. pneumoniae challenge 

strain. The immune responses that may be elicited due to intraperitoneal immunisation 

of Sp0149 and Sp0749 lipoproteins are also presented.  

 

5.1 EXPRESSION AND PURIFICATION OF SP0149 AND SP0749 LIPOPROTEINS 

The phenotype analysis of Sp0149-52 and Sp0749-53 ABC transporters using 

Sp0149
- and Sp0750

- mutant strains demonstrated marked attenuation in murine 

models of septicaemia and pneumonia models compared to the parental wild-type 

strain. Hence the lipoprotein components of these ABC transporters were chosen for 

investigation as potential novel S. pneumoniae vaccine candidates. This required the 

expression and purification of the recombinant lipoproteins of both ABC transporters. 

The genes encoding the lipoproteins, Sp0149 for Sp0149-0153 and Sp0749 for 

Sp0749-0753, were amplified with the primers listed in chapter 2 using S. 

pneumoniae strain 0100993 genomic DNA as the template. To design the primers, the 

nucleotide and derived amino acid sequence of Sp0149 and Sp0749 genes were 
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analysed from the available complete genome sequence of a serotype 4 strain of S. 

pneumoniae (Tettelin et al., 2001) to identify the lipobox, the conserved amino acid 

sequence where the N-terminal signal sequence of the prolipoprotein is enzymatically 

cleaved after the attachment to the membrane (Khandavilli et al., 2008; Sutcliffe and 

Russell, 1995, Hutchings et al., 2009). The lipobox has the consensus amino acid 

sequence [LVI] [ASTVI] [GAS] C, where the leucine is highly conserved and the 

cysteine (a site of covalent attachment to the cell membrane phospholipid) is strictly 

conserved (Sutcliffe and Russell, 1995). To avoid potential secretion of recombinant 

lipoproteins by E. coli, primers were designed to amplify Sp0149 and Sp0749 

excluding the N-terminal lipoprotein signal sequence (Table 2.1 and 2.2). Sp0149 

primers were designed without flanking restriction sites, and the amplified PCR 

product (Fig 5.2 A) ligated into the pQE30UA expression vector (a TA cloning vector 

that relies on the addition of terminal thymidine and adenosine residues to the product 

of PCR for ligation) (Fig 5.1 A). The Sp0749 gene was amplified using the forward 

primer with additional nucleotides encoding a BamHI recognition site, and the 

Sp0749 reverse primer with an additional SalI restriction site (Fig 5.2 A). The 

amplified PCR product of Sp0749 was ligated into a TA cloning vector (pGEM-T 

easy) for efficient restriction digestion, the digested PCR product was gel extracted, 

and ligated into the dephosphorylated BamHI and SalI digested pQE30 vector (Fig 5.1 

B). The ligation mixture was digested with SacI to linearize the uncut pQE30 vector 

(SacI is present between the BamHI and SalI restriction sites) and transformed into 

the M15 strain of E. coli. The presence of plasmids containing the correct inserts in 

the right orientation was confirmed by PCR using the vector-specific forward primer 

(pQE30F) and an insert-specific reverse primer (149Rev and 749Rev) (Fig 5.2 B and 

C). The sizes of the PCR products were confirmed by gel electrophoresis. For final 



PCR product
A

PTS LacO LacO RBS ATG 6x His MCS Stop codons
U

MCSU

A
m

pi
ci

ll
in

pQE30UA
3500 bp

ColE

B HI S lI
PCR product

B

PTS LacO LacO RBS ATG 6x His MCS Stop codons

Sa
cI

BamHI SalIB

pQE30
3400 bp

A
m

pi
ci

ll
in

Fig 5.1 (A) Map of Sp0149 lipoprotein gene (800 bp) ligated into prelinearised pQE30UA expression 

vector. (B) Map of Sp0749 lipoprotein gene (1000 bp) ligated into BamHI and SalI restriction sites of 

ColE

the pQE30 expression vector.
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Fig 5.2 (A) Amplified PCR product of Sp0149 (0.8 kb) and Sp0749 (1 kb) lipoprotein genes from 

S. pneumoniae (0100993 strain) genomic DNA used for the ligation into pQE30UA and pQE30 

expression vector. (C) Colony PCR of Sp0749 lipoprotein gene using pQE30F and Sp0749 Rev

primers to confirm the orientation of Sp0749 gene after the ligation into pQE30 expression vectorprimers to confirm the orientation of Sp0749 gene after the ligation into pQE30 expression vector. 

M15 strain of E. coli clones 1 and 2 showing the correct orientation of Sp0749 gene. (B) E. coli

M15 colony PCR for amplification of inserts containing the Sp0149 lipoprotein gene in the expression 

plasmid pQE30UA, using the forward primer pQE30F and the reverse primer Sp0149Rev to confirm 

the correct orientation of Sp0149. Clones 21, 23, 24, 26 contain plasmids carrying Sp0149 in the 

correct orientation.
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MKIKKWLGLAALATVAGLA  LAAC  GNSEKKADNATTIKIANH2

Signal peptide Lipobox Functional domain

A

B

cat cac cat cac cat cac gga tcc cac gtg ata tcc tca atc gct tct tgc gga aac tca gaa aag aaa gca gac aat
H H H H H H G S H V I S S I A S C G N S E K K A D N

gca aca act atc aaa atc gca act gtt aac cgt agc ggt tct gaa gaa aaa cgt tgg gac aaa atc caa gaa ttg gtt aaa
A T T I K I A T V N R S G S E E K R W D K I Q E L V K

aaa gac gga att acc ttg gaa ttt aca gag ttc aca gac tac tca caa cca aac aaa gca act gct gat ggc gaa gta gat
K D G I T L E F T E F T D Y S Q P N K A T A D G E V DK D G I T L E F T E F T D Y S Q P N K A T A D G E V D

ttg aac gct ttc caa cac tat aac ttc ttg aac aac tgg aac aaa gaa aac gga aaa gac ctt gta gcg att gca gat act tac
L N A F Q H Y N F L N N W N K E N G K D L V A I A D T Y

atc tct cca atc cgc ctt tac tca ggt ttg aat gga agt gcc aac aag tac act aaa gta gaa gac atc cca gca aac gga
I S P I R L Y S G L N G S A N K Y T K V E D I P A N G

gaa atc gct gta ccg aat gac gct aca aac gaa agc cgt gcg ctt tat ttg ctt caa tca gct ggc ttg att aaa ttg gat gtt
E I A V P N D A T N E S R A L Y L L Q S A G L I K L D VE I A V P N D A T N E S R A L Y L L Q S A G L I K L D V

tct gga act gct ctt gca aca gtt gcc aac atc aaa gaa aat cca aag aac ttg aaa atc act gaa ttg gac gct agc caa
S G T A L A T V A N I K E N P K N L K I T E L D A S Q

aca gct cgt tca ttg tca tca gtt gac gct gcc gtt gta aac aat acc ttc gtt aca gaa gca aaa ttg gac tac aag aaa tca
T A R S L S S V D A A V V N N T F V T E A K L D Y K K S

ctt ttc aaa gaa caa gct gat gaa aac tca aaa caa tgg tac aac atc att gtt gca aaa aaa gat tgg gaa aca tca cct aag
L F K E Q A D E N S K Q W Y N I I V A K K D W E T S P KL F K E Q A D E N S K Q W Y N I I V A K K D W E T S P K

gct gat gct atc aag aaa gta atc gca gct tac cac aca gat gac gtg aaa aaa gtt atc gaa gaa tca tca gat ggt ttg gat
A D A I K K V I A A Y H T D D V K K V I E E S S D G L D

caa cca gtt tgg taa
Q P V W *

Fig 5.3 N-terminal signal sequence and the lipobox of Sp0149 (A) Sp0149 was ligated into pQE30UA

by designing the forward primer from the nucleotide sequence encoding the cysteine residue of the

lipobox. (B) Inframe sequence obtained from sequencing the expression vector (pQE30UA) after

Ligation of Sp0149 into pQE30UA expression vector. Text in bold; 6xHis tag followed by

sequence of pQE30UA.
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MLLLFALSFVALASVAL  LAAC  GEVKSGANTAGNSNH2

Signal peptide Lipobox Functional domain

A

B

cat cac cat cac cat cac gga tcc tgt  gga  gaa  gtg  aag  tct  gga  gca  gtc aac act  gct  ggt aac tca gta  gag  gaa  aag  aca att aaa 
H   H    H   H   H   H    G    F C    G     E     V    K    S    G      A    V   N   T     A    G   N   S    V    E     E      K     T    I   K

atc  ggg  ttt aac ttt  gaa gaa tca  ggt  tct  tta  gct  gca tac gga aca gct gaa caa aaa ggt gcc caa ttg gct gtt gat gaa atc aat gcc gca 
I G F N F E E S G S L A A Y G T A E Q K G A Q L A V D E I N A A

ggt ggt atc gat gga aaa caa atc gaa gta gtc gat aaa gat aat aag tct gaa aca gct gag gct gct tca gtt aca act aac ctt gta acc caa
G G I D G K Q I E V V D K D N K S E T A E A A S V T T N L V T QG     G    I    D    G    K   Q    I     E    V   V    D    K   D   N   K   S    E    T    A     E    A   A   S   V   T   T  N L   V   T    Q

tct aaa gta tca gca gtc gta gga cct gcg aca tct ggt gcg act gca gct gcg gta gcg aac gct aca aaa gca ggt gtt cca ttg atc tca
S K V S A V V G P A T S G A T A A A V A N A T K A G V P L I S

cca agt gcg act caa gat gga ttg act aaa ggt caa gat tac ctc ttt att gga act ttc caa gat agc ttc caa gga aaa att atc tca aac tat gtt
P S A T Q D G L T K G Q D Y L F I G T F Q D S F Q G K I I S N Y V

tct gaa aaa tta aat gct aag aaa gtt gtt ctt tac act gac aat gcc agt gac tat gct aaa ggg att gca aaa tct ttc cgc gag tca tac aag
S E K L N A K K V V L Y T D N A S D Y A K G I A K S F R E S Y KS E K L N A K K V V L Y T D N A S D Y A K G I A K S F R E S Y K

ggt gaa atc gtt gca gat gaa act ttc gta gca ggt gac aca gac ttc caa gca gcc ctt aca aaa atg aaa ggg aaa gac ttt gat gct atc gtt
G E I V A D E T F V A G D T D F Q A A L T K M K G K D F D A I V

gtt cct ggt tac tat aat gag gct ggt aaa att gta aac caa gcg cgt ggc atg gga att gac aaa cca atc gtt ggt ggt gat gga ttc aac ggt
V P G Y Y N E A G K I V N Q A R G M G I D K P I V G G D G F N G

gag gag ttt gta caa caa gca act gct gaa aaa gca tca aac atc tac ttt atc tca ggc ttc tca act act gta gaa gtt tca gct aaa gct aaa
E E F V Q Q A T A E K A S N I Y F I S G F S T T V E V S A K A KE E F V Q Q A T A E K A S N I Y F I S G F S T T V E V S A K A K

gcc ttc ctt gac gct tac cgt gct aag tac aat gaa gag cct tca aca ttt gca gcc ttg gct tat gat tca gtt cac ctt gta gca aac gca gca
A F L D A Y R A K Y N E E P S T F A A L A Y D S V H L V A N A A

aaa ggt gct aaa aat tca ggt gaa atc aag aat aac ctt gct aaa aca aaa gat ttt gaa ggt gta act ggt caa aca agc ttc gat gca gac cac
K G A K N S G E I K N N L A K T K D F E G V T G Q T S F D A D H

aac aca gtc aaa act gct tac atg atg acc atg aac aat ggt aaa gtt gaa gca gca gaa gtt gta aaa cca taa
*N T V K T A Y M M T M N N G K V E A A E V V K P *

Fig 5.4 N-terminal signal sequence and the lipobox of Sp0749 (A) Sp0749 was ligated into pQE30 by 

designing the forward primer from the nucleotide sequence encoding the cysteine residue of the lipobox. 

(B) Inframe sequence obtained from sequencing the expression vector (pQE30) after ligation of Sp0749 

into pQE30 expression vector. Text in bold; 6xHis tag followed by sequence of pQE30. 
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Induction Purification DialysisA Induction                                   Purification                                       Dialysis

36 KD

U   I    U  I U     I   CL  FT W1 W2 E1 E2  E3  E4
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Protein concentration: 4.3mg/ml

30KDa including His tag
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Induction                                      Purification                                      DialysisB

50 KDa
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Protein concentration: 7mg/ml

39.7KDa including His tag

Fig 5.5 Induction, purification and dialysis of recombinant His6-Sp0149 (A) and His6-Sp0749 (B) 

lipoproteins from E. coli. Key: U, Uninduced; I, Induced; CL, Cell lysate; FT: Flow through; W1-2, 

Washes; E1-4, elutions.; ,
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confirmation of the identity of the PCR products, the PCR products were sequenced 

(Fig 5.3 A, B and Fig 5.4 A, B). The recombinant lipoproteins were expressed as 

histidine tag fusion proteins, and expressed and purified as described in chapter 2 

using conventional techniques. The purity and quantity of His6-Sp0149 and His6-

Sp0749 lipoproteins were checked by running on SDS-PAGE electrophoresis gels. 

The obtained molecular weight of His6-Sp0149 and His6-Sp0749 were 30 KDa and 40 

KDa respectively, correlating closely with the expected molecular weights after 

excluding the N-terminal signal sequence of 29 KDa and 38 KDa respectively. The 

purity and concentration of Sp0149 and Sp0749 were improved by dialysis. After 

dialysis, His6-Sp0149 and His6-Sp0749 were greater than 95% pure, although faint 

high molecular weight bands were observed in both samples (Fig 5.5 A and B), and 

had protein concentrations of 4.3 mg ml-1 and 7 mg ml-1 respectively.  

For systemic immunisation purposes, PspA and PsaA were used as positive 

controls as their efficacy as vaccine candidates against S. pneumoniae infection has 

been previously studied. 

 

5.2 CONSERVATION OF SP0149 AND SP0749 GENES IN S. PNEUMONIAE STRAINS 

A prerequisite for a protein based vaccine candidate is the conservation and 

widespread distribution of the target antigen amongst clinically important capsular 

serotypes of S. pneumoniae. Therefore whether the Sp0149 and Sp0749 lipoprotein 

genes were present in a range of S. pneumoniae strains was analysed by PCR using 

primers Sp0149For and Sp0149Rev, and Sp0749Fwd and Sp0749Rv. Genomic DNA 

obtained from strains representative of common multi-locus strain types (MLST) 

lineages for each vaccine capsular serotype (3, 4, 6B, 9V, 14, 18C, 19F, 23F, a kind 
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2       3      4      6B   9V    14C  18C   19F  23F   His6-Sp0149 protein

Fig 5 6 (A B) Conservation of Sp0149 (A) and Sp0749 (B) genes in the representative strains of

D
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Fig 5.6 (A, B) Conservation of Sp0149 (A) and Sp0749 (B) genes in the representative strains of 

capsular serotypes present in the 7-valent conjugate vaccine. (C, D) Immunoblot of whole cell lysates 

of the representative strains of capsular serotypes from the 7-valent conjugate vaccine (plus the ST2, 

strain D39 and the ST3 strain 0100993 used for the laboratory studies) probed with anti-Sp0149 (C) 

and anti-Sp0749 (D). Identical loading of whole cell lysates were used for (C) and (D).
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gift from Professor Brian Spratt) and from the laboratory strain D39 (capsular 

serotype 2) were used as the templates. For both Sp0149 and Sp0749 identical sized 

fragments were amplified from all the tested strains, indicating that there was likely to 

be a high degree of conservation of these genes amongst S. pneumoniae strains (Fig 

5.6 A, B). To further explore whether these proteins are conserved amongst different 

S. pneumoniae strains, Western blots were performed against whole cell lysates of the 

S. pneumoniae strains discussed above using antisera raised in mice to recombinant 

Sp0749 and Sp0149 raised in mice. Anti-Sp0149 antisera gave good signals for all 

strains probed, whereas the anti-Sp0749 antisera gave a variable strength signal 

between strains, with strong signals only for serotypes 2, 4, 6B and 23F. This suggests 

that the expression of Sp0749 lipoprotein varied with strain background in S. 

pneumoniae (Fig 5.6 C and D). 

 

5.3 ELISA 

To analyse the antibody response after the immunization of mice with the antigens 

His6-Sp0149, His6-Sp0749, His6-PspA, and His6-PsaA and with alum, ELISAs were 

performed using sera obtained by cardiac puncture from 4 to 5 immunized CD1 or 

Balb/c mice 2 weeks after the third booster dose of antigens as described in chapter 2. 

Antibody titres of IgG from individual mouse sera were determined. Both His6-

Sp0149 and His6-Sp0749 induced good titres of specific IgG in most mice, albeit with 

marked variation between mice. His6-PspA induced IgG titres similar to those 

obtained with His6-Sp0149 (median titre of 4.8) and His6-Sp0749 (median titre of 5.4) 

(data not shown). Vaccination of Balb/c mice with His6-PsaA, His6-Sp0149 and His6-

Sp0749 also produced good titres of specific IgG antibody with the exception of the 

results for one mouse serum versus His6-PsaA (Fig 5.7 A). ELISA was also used to  



Fig 5.7 IgG antibody titres measured by ELISA using the sera obtained from Balb/c mice after three  

IP immunisations with purified His6-Sp0149, His6-Sp0749 lipoprotein, PsaA (positive control) or alum 

alone (negative control). (A) Total IgG titres obtained from the sera of Balb/c mice after the IP 

immunisation and cross-reactivity between Sp0149 and Sp0749 lipoproteins (B) IgG1a and IgG2a 

antibody titres in the immunised sera against purified His6-Sp0149 and His6-Sp0749 lipoproteins.

0

2

4

6

8

10

12

14A
A

nt
ib

od
y 

tit
re

(lo
g 1

0)

His6-
Sp0749 

Sp0149 

His6-
Sp0149 

Sp0749 

His6-
PsaA

PsaA

His6-
Sp0149 

Alum 

His6-
Sp0749 

Sp0749 

His6-
Sp0149 

Sp0149 

0

2

4

6

8

10

12

14B

A
nt

ib
od

y 
tit

re
(lo

g 1
0)

IgG1a IgG2a

His6-
Sp0749 

Sp0749 

His6-
Sp0149 

Sp0149 

His6-
Sp0749 

Sp0749 

His6-
Sp0149 

Sp0149 

192

cross-reaction



 193 

demonstrate that there was no cross-reaction of His6-Sp0149 lipoprotein with anti-

Sp0749 IgG antibodies and vice versa, suggesting there was very little or no antigenic 

similarity between the two proteins (Fig 5.7 A). As expected no detectable antibody 

response was observed in anti-alum antisera. To demonstrate whether the His6-

Sp0149 and His6-Sp0749 lipoproteins elicit a Th1 or a Th2 immune response, IgG1a 

and IgG2a antibody titres were analysed (Jomaa et al., 2005). Fig 5.7 B demonstrates 

that both antigens mainly stimulate an IgG1a subclass in Balb/c mice following IP 

immunisation, suggesting mainly a Th2 response. A similar result was obtained using 

CD1 mice sera following IP immunisation. The results of the ELISAs demonstrate 

that the purified antigens are immunogenic and induce a good IgG antibody response. 

 

5.4 C3 DEPOSITION 

To assess whether anti-Sp0149 and anti-Sp0749 were functional, their effect on the 

deposition of C3b/iC3b on several S. pneumoniae strains was analysed by a well-

established flow cytometry assay (Yuste et al., 2005). The pooled sera of anti-Sp0149 

and anti-Sp0749 showed a small increase in the C3b/iC3b deposition (Fig 5.8 A), but 

the combination of pooled sera containing anti-Sp0149 and anti-Sp0749 increased the 

size of the effect (Fig 5.8 B). C3b deposition assay was also performed by incubating 

the pooled sera containing anti-Sp0149, anti-Sp0749 and anti-alum with capsular 

serotype 3, 6B and 9V (Fig 5.9 A, B, C). Fig 5.9 A and B showed a decrease in the 

C3b/iC3b deposition on serotypes 3 and 6B using anti-Sp0149 anti-Sp0749 sera when 

compared to anti-alum sera. Fig 5.9 C showed a significantly lower C3b/iC3b 

deposition on capsular serotype 9V after incubation in sera containing anti-Sp0749. 

Overall, the data suggest that anti-Sp0149 and anti-Sp0749 have a weak effect in 
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Fig 5.8 The role of anti-Sp0149 and anti-Sp0749 in the deposition of C3 on the surface of S. pneumoniae

0
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D39 strain using flow cytometry. The proportion of bacteria positive for the C3 after incubating with 

FITC-goat anti-mouse C3 antibody were analysed using Balb/c mice sera. (A) C3 deposition on D39 

strain using pooled sera of anti-Sp0149 and anti-Sp0749 on D39 strain (p value <0.01). (B) Effect of C3 

deposition on D39 strain upon mixing the pooled anti-Sp0149 and anti-Sp0749 sera (p value ≤ 0.01). 

p values were obtained using Student’s-t-test by comparing alum with anti-Sp0149 and anti-Sp0749. 
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increasing deposition of complement on the surface of some S. pneumoniae strains 

such as serotypes 3, 6B and 9V. 

 

5.5 OPSONOPHAGOCYTOSIS 

Effective antibodies may stimulate phagocytosis directly through Fcγ receptors in 

addition to improving opsonisation of bacteria by increasing C3b/iC3b deposition on 

their surface. Hence the effect of anti-Sp0149 and anti-Sp0749 on phagocytosis of S. 

pneumoniae by human neutrophils was assessed using an in vitro flow cytometry 

assay (Lehmann et al., 2000) which measures the association of S. pneumoniae with 

phagocytes (Yuste et al., 2008). Fluorescently-labelled bacteria were incubated with 

anti-Sp0149 and anti-Sp0749 at different dilutions before incubation with cells from 

the neutrophil cell line HL60, and then the association of bacteria and cells measured 

by flow cytometry. The role of complement in the in vitro opsonophagocytosis of S. 

pneumoniae by HL60 cells was analysed by using heat-treated sera, which inactivates 

complement, as a source of antibody in the presence and absence of exogenous 

supplementation with purified rabbit complement. Both anti-Sp0149 and anti-Sp0749 

increased the proportion of serotype D39 S. pneumoniae associated with HL60 cells 

by 40% in 1 in 20 dilution of serum. Heat treatment prevented increased association 

of bacteria with HL60 cells for both anti-Sp0149 and anti-Sp0749 sera (Fig 5.10 B). 

Similarly, exogenous supplementation with purified rabbit complement also increased 

the proportion of S. pneumoniae associated with HL60 cells (Fig 5.10 A), suggesting 

the beneficial effect was complement-mediated. Phagocytosis assays were also 

performed for representative strains of various S. pneumoniae capsular serotypes (6B, 

9V, 23F, 4, 14 and 19) (Fig 5.10 C). In the presence of anti-Sp0149, there was a 

statistically significant increase in the association of S. pneumoniae serotype 4 with 
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HL60 cells compared to alum sera (p < 0.01) but non-significant increases for 

serotypes 9V and 14. In the presence of anti-Sp0749, a statistically significant 

increase in the association of S. pneumoniae with HL60 cells was observed for 

serotypes 6B, 9V, 4, 19 (p < 0.01) and 14 (p < 0.05) compared to sera from mice 

vaccinated with alum alone. Overall, these results suggest that anti-Sp0149 and anti-

Sp0749 could improve complement-dependent opsonophagocytosis of S. pneumoniae 

and therefore aid immunity against S. pneumoniae infection (Jomaa et al., 2005).  

 

5.6 ACTIVE IMMUNIZATION STUDIES 

To assess the efficacy of the purified His6-Sp0149 and His6-Sp0749 lipoproteins as 

vaccine candidates, the degree of protection provided by these two lipoproteins in a 

septicaemia model of S. pneumoniae infection was evaluated. Three separate IP 

immunization experiments were performed using three different challenge doses of 

the virulent capsular strain of S. pneumoniae (D39) in naïve outbred CD1 and inbred 

Balb/c mice as described in chapter 2. 

The initial immunization experiment was performed in male outbred CD1 mice. 10 µg 

of the purified His6-Sp0149 and His6-Sp0749 lipoproteins with alum as an adjuvant 

and alum alone as the negative control were injected intraperitoneally followed by 

two booster doses at 7 days intervals. After 2 weeks of immunization, mice were 

challenged by i.p injection of 105 cfu of the virulent capsular serotype 2 S. 

pneumoniae strain D39 and the progress of infection monitored over two weeks (Fig 

5.11 A, B). Mice immunized with His6-Sp0149 and His6-Sp0749 lipoproteins 

exhibited only a small delay of about 4 hours in the progress of infection compared to 

alum alone. Of the 19 mice challenged with D39 strain of S. pneumoniae, 100% 

mortality was observed in the alum group, while only one mouse was alive in His6- 



Fig 5.11 Survival curves after the first IP active immunisation in CD1 mice strain with purified 

(A) His6-Sp0149, (B) His6-Sp0749 and alum (negative control) followed by challenge with 105

(B) cfu of S. pneumoniae (D39) for a group of 19 mice. 
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Fig 5.12 Survival curves after the second IP active immunisation in CD1 mice strain with (A) 

purified His6-Sp0149, (B) His6-Sp0749, (C) PspA (positive control) and alum (negative control) 

followed by challenge with 103 cfu of S. pneumoniae (D39) for a group of 19 mice. 
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Fig 5.13 Survival curves after the third IP active immunisation in Balb/c mice strain with (A) 

purified PsaA (positive control), (B) His6-Sp0149, (C) His6-Sp0749 and alum (negative control) 

followed by challenge with 104 cfu of S. pneumoniae (D39) for a group of 19 mice
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Sp0149 group and 3 mice were alive in His6-Sp0749 group until the end of the 

experiment. 

To ensure the small differences in the progress of infection in the vaccinated 

mice were not due to an overwhelming bacterial challenge, the immunization 

experiment was repeated with a lower S. pneumoniae (D39) challenge dose of 103 cfu. 

In the second vaccination experiment (Fig 5.12 A, B and C), His6-PspA 

(pneumococcal surface protein) was also included as a positive control. His6-Sp0149 

and His6-PspA failed to exhibit any protection, but mice immunised with His6-Sp0749 

exhibited a non-significant delay (p = 0.08) in the lethal progression of the disease of 

approximately 9 hours. 

Since the His6-Sp0149 failed to exhibit protection and His6-Sp0749 only exhibited a 

delay in the lethal progression of the disease in CD1 mice strain, the immunisation 

experiment was repeated in Balb/c mice strain. Balb/c mice were chosen because they 

are inbred strain of mice and are relatively resistant to S. pneumoniae infections 

unlike the outbred CD1 mouse strain (Gingles et al., 2001). PsaA (pneumococcal 

surface adhesion A), a lipoprotein component of S. pneumoniae manganese ABC 

transporter was used as positive control and a challenge dose of 104 cfu given by IP 

inoculation after immunisation with the purified lipoproteins. Both His6-PsaA and 

His6-Sp0149 failed to protect the mice from fatal infection. Again, His6-Sp0749 

seemed to delay the lethal progression of infection, although the results were not 

statistically significant. After 144 hours only one mouse was alive in the alum group, 

3 mice alive in the His6-PsaA and His6-Sp0149 group, and 5 mice alive in His6-

Sp0749 group (Fig 5.13 A, B and C).  
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5.7 SUMMARY 

The Sp0149 and Sp0749 lipoproteins were chosen for analysis of their efficacy as 

vaccine candidates as the mutant strains affecting the corresponding ABC transporters 

had marked attenuation of virulence in murine models of septicaemia and pneumonia. 

The PCR–amplified products of the lipoprotein genes, Sp0149 and Sp0749 were 

ligated into the expression vectors, pQE30UA and pQE30 respectively (excluding the 

N-terminal signal sequence) and the lipoprotein components were successfully 

expressed in E. coli and relatively high concentrations of good quality protein 

obtained. Vaccination of mice generated high titres of specific antibodies to both 

Sp0149 and Sp0749 and there was no evidence of cross reaction of antibodies to 

Sp0149 with the protein Sp0749 and vice versa. PCR and western blot analysis 

demonstrated that Sp0149 and Sp0749 are conserved in the serotypes present in the 7-

valent conjugate vaccine. In vitro immune assays measuring the effects of polyclonal 

murine anti-Sp0149 and anti-Sp0749 on C3b deposition and phagocytosis 

demonstrated improvements in both complement deposition and phagocytosis for 

several S. pneumoniae strains. Active immunization with the purified Sp0149 and 

Sp0749 lipoproteins and challenge with D39 strain of S. pneumoniae indicated that 

there was a small but non-significant degree of protection when mice were vaccinated 

with recombinant Sp0749.  
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    Chapter 6 

 Investigation of Sp0749 vaccine potential 

against S. pneumoniae pneumonia 

 

In this chapter, data regarding the vaccine potential of the recombinant Sp0149 and 

Sp0749 lipoproteins against S. pneumoniae pneumonia are presented. Many variations 

are adopted in the immunisation-challenge methodology in this chapter compared to 

the methodology presented in chapter 5. These variations include mouse strains, use 

of adjuvant, S. pneumoniae challenge strains and the route of lipoprotein and S. 

pneumoniae administration. In this chapter, the intranasal immunisations and S. 

pneumoniae challenge (using 0100993 and D39 strains) experiments were performed 

in two different mouse strains (outbred CD1 and inbred CBA/Ca). Cholera toxin was 

used as the adjuvant for intranasal immunisation unlike alum which was used as 

adjuvant for the intraperitoneal immunisation in chapter 5. The role of Sp0749 alone 

and in combination with previously investigated lipoproteins of iron uptake ABC 

transporters PiaA and PiuA in eliciting protective immune response was also 

investigated and the data are presented in this chapter. 

 

6.1 EXPRESSION AND PURIFICATION OF PIAA AND PIUA LIPOPROTEINS 

PiaA and PiuA are lipoproteins components of iron uptake ABC transporters of S. 

pneumoniae whose vaccine potential were previously investigated by my supervisor 

Dr. Brown. Brown et al previously identified that intraperitoneal and intranasal 

immunisation with the recombinant PiaA and PiuA lipoprotein components protected 

the mice against S. pneumoniae septicaemia and pneumonia (Brown et al., 2001,  
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Jomaa et al., 2005). Therefore the recombinant PiaA and PiuA lipoproteins were used 

for the intranasal immunisation and challenge experiments in mice as positive 

controls in order to evaluate the vaccine potential of Sp0749. The PiaA and PiuA 

lipoproteins were expressed and purified according to (Brown et al., 2001) with some 

modifications. The PiaA (Sp1032) and PiuA (Sp1872) lipoprotein genes were 

amplified using the primers PiaA F and PiaA R for the PiaA gene and PiuA F and 

PiuA R for the PiuA gene and 0100993 genomic DNA as template as described in 

chapter 2 and 4. The primers were designed using the TIGR 4 genome to exclude the 

DNA sequence encoding the signal peptide as described in chapter 4. The amplified 

PCR products were ligated into the expression vector pQE30UA and transformed into 

the M15 strain of E. coli. The positive clones for the lipoprotein genes were 

confirmed by colony PCR using the vector-specific forward primer (pQE30F) and the 

insert specific reverse primer (PiaA R and PiuA R) and by sequencing. The positive 

clone for each of the lipoprotein gene was then induced for over expression of His-

tagged lipoproteins and purification of the his-tagged protein performed according to 

the QIAexpressionistTM manual. The purified his-tagged lipoproteins were dialysed 

and analysed by SDS-PAGE. 

 

6.2 ELISA 

In order to analyse the antibody responses after the IN immunisations of mice with 

purified lipoproteins (His6-PiaA, and His6-Sp0749), serum and bronchoalveolar 

lavage fluid (BALF) were obtained from 4 to 5 immunised CD1 and CBA/Ca mice 2 

weeks after the second booster dose of antigens and used for ELISAs (Jomaa et al., 

2005). Cholera toxin (CT) was used as the adjuvant with the lipoproteins and CT 

alone was used as the negative control for the immunisation experiments and CT is 
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routinely used as an adjuvant with different S. pneumoniae proteins for IN 

immunisations (Pimenta et al., 2006; Shah et al., 2009). Outbred CD1 mice were used 

because they are less expensive where as inbred CBA/Ca mice were used because 

they are genetically less variable and are susceptible to IN infection (Kadioglu and 

Andrew, 2005; Gingles et al., 2001). Purified His6-PiaA lipoprotein was used as 

positive control as it has been demonstrated to induce good systemic and mucosal 

antibody responses upon pulmonary and systemic immunisations in mice (Brown et 

al., 2001; Jomaa et al., 2006). IN immunisation with both His6-PiaA and His6-Sp0749 

induced significant serum IgG titres to purified PiaA and Sp0749 in the CD1 mouse 

strain (Fig 6.1). Titres of IgG and IgA were measured using BALF obtained from 

CBA/Ca mice immunised IN with combination of proteins (His6-PiaA plus His6-

Sp0749). Fig 6.1 demonstrates that His6-PiaA and His6-Sp0749 induced good IgG 

titres in BALF, with similar levels to the IgG titres found in sera from CD1 mice. 

However, when the IgA titres in the BALF of the CBA/Ca mice were measured, 

negligible amounts of anti-Sp0749 IgA were present and anti-PiaA IgA were only 

elicited in two mice. These data suggest that after IN immunisation both the proteins 

elicit a good systemic and some local IgG response but only a poor mucosal IgA 

response. 

 

6.3 BACTERIAL CFUS IN TARGET ORGANS 

To further investigate whether IN immunisation of CBA/Ca mice with His6-PiaA and 

His6-PiaA plus His6-Sp0749 of CBA/Ca mice protects against S. pneumoniae 

challenge, the cfu counts in target organs were determined from the BALF, lungs and 

blood. The immunised mice were intranasally challenged with 105 cfu of S. 

pneumoniae and the target organs were harvested 48 hours after IN inoculation. The  



Fig 6.2 S. pneumoniae (D39) cfu determined from the target fluids and organs such as BALF (A), lungs 

(B) and blood (C) of IN immunised of CBA/Ca mice (using CT alone, CT + His6-PiaA or CT + His6-

PiaA + His6-Sp0749, n = 6 in each group) 48 hours after S. pneumoniae IN challenge with 105 cfu / 

mouse. p-value analysed by Mann-Whitney test. 
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CT

His6-PiaA

His6-PiaA+ 
His6-Sp0749

BALF  
Median (IQR)

Lungs   
Median (IQR)

1.2 (0.93-3.1)

1.1 (0.57-1.09)

0.35 (0-1.09)

4.5 (4.1-4.67)

4.4 (3.3-4.7)

2.7 (1.9-4.0)

Blood 
Median (IQR)

6.6 (6.05-6.67)

5.7 (5.2-6.16)

4.9 (3.9-6.3)

Table 6.1 Median and interquartile range (IQR) of S. pneumoniae (D39) cfu determined from BALF, 

lungs and blood after the IN immunisation of CBA/Ca mice with CT alone, CT + His6-PiaA, CT + 

His6-PiaA + His6-Sp0749 (n = 6 in each group) followed by S.  pneumoniae challenge 48 hours after 

the inoculation of 105 cfu / mouse. 
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target organs were then homogenised in sterile PBS, serially diluted and appropriate 

dilutions were plated to determine the cfu / ml in the target organs (Fig 6.2 and Table 

6.1). Although CBA/Ca mice immunised intranasally with His6-PiaA plus His6-

Sp0749 had reduced S. pneumoniae cfu in BALF (Fig 6.2 A), lung (Fig 6.2 B) and 

blood (Fig 6.2 C) compared to mice immunised with CT alone, and mice immunised 

with His6-PiaA alone had reduced S. pneumoniae cfu in blood, these reductions failed 

to attain statistical significance. However, data were obtained from a relatively small 

number of mice and varied widely between mice in the same vaccine group. 

 

6.4 CYTOSPINS OF BALF 

BALF cellular content was analysed before and 48 hours after the S. pneumoniae 

challenge (D39) of the CBA/Ca mice immunised with CT alone, His6-PiaA and His6-

PiaA plus His6-Sp0749 proteins. Total cell counts in BALF were determined using a 

haemocytometer and microscopy of the cytospins was used to assess the proportion of 

macrophages, neutrophils and lymphocytes present as described in chapter 2. Total 

cell counts of BALF did not demonstrate significant differences before and after the S. 

pneumoniae challenge (Table 6.2). The BALF cytospin differential counts (Fig 6.3) 

demonstrated significantly higher neutrophil numbers post-challenge with S. 

pneumoniae in all three immunised groups (Fig 6.3 B), whereas the proportion of 

macrophages and lymphocytes were significantly reduced (Fig 6.3 A and B). 

Neutrophil counts were very low in all the three immunisation groups before 

challenge and therefore the data are not shown. A statistically significant increase in 

the neutrophil counts was obtained in the post-challenge mice immunised with both 

His6-PiaA (p = 0.0022) and His6-PiaA plus His6-Sp0749 (p = 0.0043) when compared 

to pre-challenge groups.  



Table 6.2  Median and IQRs of the total cell counts in BALF and lungs of  CBA/Ca mice 

after the IN immunisation with CT alone, CT + His6-PiaA and CT + His6-PiaA + His6-

Sp0749 (n = 6) pre and post S. pneumoniae challenge (D39, 105 cfu / mouse). 

CT

His6-PiaA

His6-PiaA+
His6-Sp0749

BALF  
Median (IQR)

5.5 (5.2-5.7)

5.5 (5.3-5.5)

5.5 (5.5-5.6)

Pre Post

5.9 (5.7-6.1)

5.8 (5.6-5.8)

5.6 (5.4-5.7)

Lungs  
Median (IQR)

6.3 (6.3-7.09)

6.0 (5.9-6.2)

6.6 (5.8-7.3)

Pre Post

6.2 (6.0-6.6)

5.9 (5.7-6.2)

5.9 (5.7-6.3)
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* p < 0.05

Fig 6.3 Differential cell counts of macrophages, lymphocytes and neutrophils present in the 

BALF of IN immunised CBA/Ca mice (n = 6 in each group) with CT alone, CT + His6-PiaA, 

and CT + His6-PiaA + His6-Sp0749 pre (A) and post (B) S. pneumoniae challenge (D39, 105

cfu / mouse). p value for pre vs post-challenge comparisons analysed by Mann-Whitney test.
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6.5 IMMUNE RESPONSE TO CT, HIS6-PIAA AND HIS6-PIAA PLUS HIS6-SP0749 AFTER 

IN IMMUNISATION AND S. PNEUMONIAE CHALLENGE 

To investigate the effects of immunisation of mice with CT, His6-PiaA or His6-PiaA 

plus His6-Sp0749 on the host immune response, leukocytes were isolated from the 

BALF and lungs of CBA/Ca mice immediately before and 48 hours after challenge 

with S. pneumoniae as described in chapter 2. Total cell counts of the homogenised 

lung were determined using a haemocytometer, and cells incubated with 

fluorescently-labelled antibodies to lymphocytes and macrophage surface markers 

were analysed by flow cytometry to identify the proportion of cells belonging to each 

lymphocyte subgroup and the proportion of these cells that are activated (Brown et 

al., 2002).  

There were only small differences in lung cell counts before and after S. 

pneumoniae challenge between the vaccine groups (Table 6.2). The results of the cell 

surface marker experiments were highly variable between mice and it was difficult to 

identify clear trends. There were no clear differences in the proportions of CD4, CD8 

and B cells between the vaccinated groups with the exception of activated CD4 and 

CD8 cells in the lungs (Fig 6.5 C, D).  

In the BALF, the proportion of activated CD4 and CD8 (CD45RB –ve) cells 

(Fig 6.4 C, D) showed a statistically significant decrease in all the three post-

challenge vaccinated groups compared to pre-challenge (for all groups p < 0.01 for 

the comparison of results pre and post-challenge of activated CD4 cells) (for all 

groups p < 0.05 for the comparison of results pre and post-challenge of activated CD8 

cells). 

In the lungs, there was a statistically significant increase in the proportion of  

 



Fig 6.4 Flow cytometry analysis of the host’s immune response in the BALF by immune cell surface 

staining following the IN immunisation (pre) and subsequent challenge (post). The proportion of (A) 

CD4 positive cells, (B) CD8 positive cells, (C) CD4 positive cells (CD45RB –ve) (p < 0.01 for 

comparisons pre vs post for all groups), (D) CD8 positve cells (CD45RB-ve) (p < 0.05 for 

comparisons pre vs post for all groups). p value were analysed by Kruskal-Wallis test 
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Fig 6.5 Flow cytometry analysis of the host’s immune response in the lungs by immune cell surface 

staining following the IN immunisation and challenge. The proportion of (A) CD4 positive cells, (B) 

CD8 positive cells (p < 0.05 for comparisons pre Vs post for all groups), (C) CD4 positive cells 

(CD45RB –ve) (p < 0.01 for comparisons pre Vs post) and (D) CD8 positive cells (CD45RB -ve) (p < 

0.01 for comparisons pre Vs post for all groups). p values were analysed using Kruskal-Wallis test 
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Fig 6.6 Flow cytometry analysis of the proportion of B220 positive cells in the (A) BALF and (B) 

lungs (p < 0.05 for comparisons pre vs post for all groups) by immune cell surface staining following 

the IN immunisation and challenge. p values analysed using Kruskal-Wallis test. 
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Fig 6.7 Flow cytometry analysis of the host’s immune response in the BALF (A, B) and lungs (C, D) 

by immune cell surface staining following the IN immunisation and challenge. The proportion of 

CD80 positive for macrophages in the (A) BALF (p < 0.05 for comparisons pre vs post for all groups) 

and (C) lungs. The proportion of macrophages positive for MHC class II antigens (I-A-I-E) in the 

BALF (B) and lungs (D) (p < 0.05 for comparisons pre vs post for all groups). p values were analysed

using Kruskal-Wallis test 
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CD8 positive lymphocytes in the His6-PiaA plus His6-Sp0749 compared to CT alone 

after S. pneumonie challenge (for all groups p < 0.05 for the comparison of results pre 

and post-challenge) (Fig 6.5 B). His6-PiaA plus His6-Sp0749 vaccinated group 

showed a statistically significant decrease in the proportions of CD4 and CD8 

(CD45RB –ve) cells post-challenge compared to pre and post-CT and pre-PiaA (for 

all groups p < 0.05 for the comparison of results pre and post-challenge) (Fig 6.5 C, 

D). However, the proportion of B220 positive cells may be increased in the lungs of 

His6-PiaA plus His6-Sp0749 vaccinated group after S. pneumoniae challenge 

compared to pre-CT (for all groups p < 0.05 for the comparison of results pre and 

post-challenge) (Fig 6.6 B). 

The activation of macrophages before and after the S. pneumoniae challenge 

of the immunised mice were analysed using antibodies to the cell surface marker 

CD80 and the MHC class II antigen I-A-I-E (Fig 6.7). In the BALF, the proportion of 

CD80 positive cells seemed to be similar in the CT group but decrease in the His6-

PiaA plus His6-Sp0749 vaccinated groups upon S. pneumoniae challenge (Fig 6.7 A) 

(for all groups p < 0.05 for the comparison of results pre and post-challenge). In 

contrast in the lungs, the proportion of CD80 positive cells showed no statistically 

significant increase in the His6-PiaA and His6-PiaA plus His6-Sp0749 vaccinated 

groups upon S. pneumoniae challenge compared to all the pre-challenge groups and 

post-CT (Fig 6.7 C). However, the BALF and lungs results using the (I-A-I-E) surface 

marker did not mirror the results for the CD80 cell surface marker (Fig 6.7 B, D). 

Therefore the significance of the CD80 marker results remain unconfirmed. 

Overall, these results suggest that intranasal immunisation with His6-PiaA and 

His6-PiaA plus His6-Sp0749 may affect components of the cellular immune response 
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to S. pneumoniae pneumonia. However these experiments need to be repeated to 

identify clear patterns. 

 

6.6 HISTOLOGICAL ANALYSIS OF INFLAMMATION AFTER S. PNEUMONIAE 

CHALLENGE OF INTRANASALLY VACCINATED MICE 

To investigate the degree of inflammation leading to lung injury of mice vaccinated 

IN with His6-PiaA or His6-PiaA plus His6-Sp0749, lungs obtained from the pre and 

post, S. pneumoniae challenged mice (48 hours) underwent histological analysis. Each 

lung was scored as follows: 1 (visible inflammatory change), 2 (minimal swelling of 

alveolar walls and changes in architecture), 3 (increased swelling with presence of 

erythrocytes and inflammatory cells and an increase in type II pneumocytes), 4 

(considerable haemorrhage with inflammatory cell influx, widespread alveolar 

disorganisation with interstitial swelling and pneumocyte proliferation) as described 

in chapter 2. A total score of the level of inflammation for each mouse was obtained 

by multiplying the percentage of involved lung by the mean score for the areas 

analysed, and data presented as medians with IQRs. Table 6.3 shows the levels of 

inflammation as medians and interquartile ranges of IN immunised CBA/Ca mice 

with His6-PiaA or His6-PiaA plus His6-Sp0749 proteins followed by S. pneumoniae 

challenge. Histological analysis of lungs showed there was a statistically significant 

increase in the level of inflammation after S. pneumoniae challenge in mice 

vaccinated with His6-PiaA or His6-PiaA plus His6-Sp0749 compared to those 

vaccinated with CT alone (Table 6.3). These data suggest that vaccination with these 

proteins may cause a more rapid inflammatory influx into lungs during subsequent S. 

pneumoniae challenge however these experiments needs to be repeated. 

 



CT

His6-PiaA

His6-PiaA+
His6-Sp0749

Pre-challenge  
Median   (IQR)

Post-challenge   
Median (IQR)

11.25 (6.6-25.6)

22.5 (16.6-35.6)

76.25 (45.4-94)

84.2 (56.3-113.3)

185.8 (147.9-375)

130.8 (103.3-300)

Table 6.3  Histological analysis of the level of inflammation in the lungs of CBA/Ca mice 

after the IN immunisation with CT alone, CT + PiaA and CT + PiaA + Sp0749 pre and post 

S. pneumoniae challenge (D39, 105 cfu / mouse). Degree of lung inflammation before and 

after the S. pneumoniae challenge is represented as medians and IQRs. p values were 

analysed using Kruskal-Wallis test (CT Vs PiaA or PiaA-Sp0749, p < 0.001 or  p < 0.01 or p

< 0.05) and Mann-Whitney test for all groups  (Pre-challenge vs post-challenge, p = 0.0022).    
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6.7 SURVIVAL OF THE HIS6-SP0149 AND HIS6-SP0749 IMMUNISED MICE AFTER S. 

PNEUMONIAE CHALLENGE  

In order to asses the efficacy of the purified His6-Sp0149 and His6-Sp0749 as 

intranasal vaccine candidates, the degree of protection provided by these two 

lipoproteins in the pulmonary models of infection was evaluated. Purified His6-PiaA 

and His6-PiuA lipoproteins were used as positive controls as both the lipoproteins 

have been investigated as vaccine candidates in the pulmonary and systemic models 

of infection in mice (Brown et al., 2001; Jomaa et al., 2006). Four intranasal 

immunisation experiments were performed using four different challenge doses of the 

virulent capsular strain of S. pneumoniae (D39 and 0100993) in naïve outbred CD1 

mice and inbred CBA/Ca mice as described in chapter 2.  

Two separate IN immunisations were performed in CD1 mice using 2.5µg of 

the purified His6-PiaA, His6-PiuA, His6-Sp0749, His6-PiaA plus His6-Sp0749 and 

His6-PiaA plus His6-Sp0149 plus His6-Sp0749 lipoproteins with CT as an adjuvant 

and CT alone as the negative control were injected intranasally followed by two 

booster doses at 7 days intervals. Two weeks after immunization, mice were 

challenged by intranasal injection of 106 cfu of the virulent capsular serotype 2 S. 

pneumoniae strain D39 and the progress of infection monitored over two weeks (Fig. 

6.1 and 6.2). Fig 6.8 A and B represents pooled data of two separate experiments in 

which mice were immunised IN with His6-PiaA and His6-PiaA plus His6-Sp0749 and 

D39 challenge experiments in CD1 mice strain (n = 10+10). IN immunisation with 

His6-PiaA (p = 0.405) did not exhibit protection, although His6-PiaA plus His6-

Sp0749 exhibited a statistically non-significant delay (p = 0.083) in the progression of 

S. pneumoniae infection compared to CT. However the immunisation with His6-PiuA 
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Fig 6.8 Survival curves after the intranasal (IN) immunisation of CD1 mice with cholera toxin CT 

(squares), PiaA, PiuA, Sp0749 and combinations of PiaA with Sp0749 (diamonds). IN immunisation 

of CD1 mice with CT alone, CT + PiaA (p = 0.405) (A), CT + PiaA + Sp0749 (p = 0.083) (B) and CT 

+ PiuA (C) followed by IN challenge with S. pneumoniae D39 (106 cfu / mouse). A and B are the 

pooled results of two separate IN immunisation and challenge experiments (n = 10 + 10, n = 

number of mice) and p values are analysed by the log rank. 222
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Fig 6.9 Survival curves after the IN immunisation of CD1 mice (n = 10) with CT (squares) 

Sp0749 and combinations of PiaA with Sp0149 and Sp0749 (diamonds). IN immunisation of 

CD1 mice with CT alone, CT + Sp0749 (A), CT + PiaA + Sp0149 + Sp0749 (B) followed by 

IN challenge with S. pneumoniae D39 (106 cfu / mouse). p values are analysed by the log 

rank test.
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Fig 6.10 Survival curves after the IN immunisation of  CBA/Ca mice (n = 15) with CT 

(squares), PiaA, Sp0749 and combinations of PiaA with Sp0749 (diamonds). IN immunisation 

of CBA/Ca mice with CT alone, CT + PiaA (A), CT + PiaA + Sp0749 (B) followed by IN 

challenge with S. pneumoniae D39 (105 cfu / mouse). IN immunisation of CBA/Ca mice (n = 

20) with CT alone, CT + Sp0749 (C) followed by IN challenge with S. pneumoniae 00100993 

strain (105 cfu / mouse). p values are anaysed by the log rank test. 224
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(Fig 6.8 C), His6-Sp0749 (Fig 6.9 A), and His6-PiaA plus His6-Sp0149 plus His6-

Sp0749 (Fig 6.9 B) lipoproteins in CD1 mice strain (n = 10) did not show any 

protection compared to CT alone.  

The third intranasal immunisation experiment was performed in the inbred 

CBA/Ca mouse strain .Groups of CBA/Ca mice (n = 15) were immunised with CT 

alone, His6-PiaA, His6-PiaA plus His6-Sp0749 followed by intranasal challenge with 

105 cfu of S. pneumoniae D39. Mice immunised with His6-PiaA, His6-PiaA plus His6-

Sp0749 showed only delayed progression of disease after S. pneumoniae challenge 

(Fig 6.10 A and B). The fourth intranasal immunisation experiment was also 

performed in CBA/Ca mice strain with groups of mice (n = 20) immunised with CT 

alone, His6-Sp0749 followed by intranasal challenge with 105 cfu of S. pneumoniae 

0100993 strain. Fig 6.10 C shows that His6-Sp0749 failed to exhibit any protection 

and that the survival curve of His6-Sp0749 was almost similar to mice immunised 

with CT alone. 

Overall these data suggest there may be some protective effect in these models 

after the combined immunisation with PiaA and Sp0749 lipoproteins, but any 

protective effect of individual lipoproteins was too weak to be detected by the 

infection models used for these experiments. 

 

6.8 SUMMARY 

PiaA and PiuA his-tagged lipoproteins were expressed and purified in order to use as 

positive controls for the intranasal immunisation studies. Following intranasal 

immunisation with PiaA and Sp0749, good IgG titres were demonstrated in sera 

obtained from CD1 mice and BALF obtained from CBA/Ca mice. However, anti-

PiaA IgA titres in BALF were variable and no detectable anti-Sp0749 IgA titres were 
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found. When the S. pneumoniae load was determined from the target organs such as 

BALF, lungs and blood 48 hours after challenge of vaccinated mice with S. 

pneumoniae, statistically non-significant reductions in S. pneumoniae cfu were 

demonstrated in the BALF, lungs and blood of mice vaccinated with PiaA plus 

Sp0749 compared to CT group. Mice immunised with PiaA alone showed non-

significant reductions of S. pneumoniae cfu in blood only compared to CT group. The 

differential cell counts in the BALF of the CT, PiaA and the PiaA plus Sp0749 

immunised mice demonstrated a statistically significant increase in the neutrophil 

infiltration in PiaA vaccinated mice upon challenge with S. pneumoniae compared to 

CT alone. Flow cytometry analysis of the lymphocytes in the BALF and lung 

homogenate of the immunised CBA/Ca mice before and after the S. pneumoniae 

challenge by cell surface marker staining was performed. Flow cytometry analysis 

after immune cell surface staining did not indicate a particular trend and the results 

were highly variable between mice. Intranasal immunisation demonstrated that PiaA 

in combination with Sp0749 only slightly delayed the progression of lethal S. 

pneumoniae infection. In summary, although vaccination with PiaA and Sp0749 

causes evidence of an altered immune response to subsequent pneumonic infection, 

the protective effects of this seems limited.
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    Chapter 7 

    Discussion 

  

There has been strong interest in S. pneumoniae proteins as vaccine candidates 

because they offer the potential to overcome the limitations of the currently available 

S. pneumoniae vaccines based on capsular polysaccharide antigens. Important 

features for a protein to qualify as a potential S. pneumoniae vaccine candidate are 

surface exposure, immunogenicity, conservation amongst a range of clinically 

important serotypes and the ability to elicit a protective immune response. A role for 

virulence would be beneficial as this would suggest that the protein candidate is 

expressed during systemic infection. The antibodies elicited against the protein in the 

host may inhibit the function of the protein thereby affecting the S. pneumoniae 

virulence. In addition, an important role in virulence means that the expression of the 

protein is necessary for the survival of S. pneumoniae in the host to cause disease. 

Genes encoding such proteins which are necessary for the S. pneumoniae survival in 

the host rarely undergo mutations. Therefore use of such proteins as vaccine antigens 

induces immunity to help prevent immune evasion of S. pneumoniae. Simultaneous 

immunisation with several S. pneumoniae surface proteins has been shown to protect 

mouse models against S. pneumoniae pulmonary and systemic infections (Briles et 

al., 1997; Briles et al., 1996; Brown et al., 2001; Briles et al., 2003; Ogunniyi et al., 

2007) and a vaccine containing several protein antigens is likely to offer advantages 

in efficiency and greater serotype coverage. 

One group of surface proteins which are important for the survival of S. 

pneumoniae in the host, thereby playing important role as virulence determinants, are 
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ABC transporters (Unsworth and Holden, 2000) (Garmory and Titball, 2004) (Benton 

et al., 2004). Bioinformatic analysis of the genome of S. pnemoniae has identified as 

many as 73 ABC transporters (Harland et al., 2005), many of which are predicted to 

be involved in nutrient acquisition from the host (Bergmann and Hammerschmidt, 

2006). Several S. pneumoniae ABC transporters are known to be important for 

virulence such as PiaA, PiuA (Brown et al., 2004) and PsaA (Dintilhac et al., 1997), 

but the role of many S. pneumoniae ABC transporters during virulence has yet to be 

investigated. I have therefore chosen 11 ABC transporters from the annotated 

completely sequenced genome of capsular serotype 4 of S. pneumoniae (TIGR4) that 

have previously not been characterised and investigated their role in virulence and 

selected two of these for assessment as potential vaccine candidates. The S. 

pneumoniae ABC transporters chosen for these studies were the majority of the 

remaining 18 uncharacterised ABC transporters that are organised as operons of three 

or more genes containing at least two of the three main components of ABC 

transporters (the lipoprotein, ATPase and transmembrane permeases). Disruption of 

these ABC transporters was thought to be more likely to give a strong phenotype as 

most or all of the components of that ABC transporter would be co-transcribed. 

Components of some of the ABC transporters chosen for this study (Sp0092, Sp0150, 

Sp2086 and Sp2108) have been identified as potential virulence factors by STM 

screening (Hava and Camilli, 2002; Lau et al., 2001). Mutant strains were constructed 

by disruption of the predicted first gene of the operon using IDM to try and ensure the 

disruption of transcription of the whole operon and therefore the generation of a 

stronger phenotype. Nine mutant strains of the chosen 11 ABC transporter operons of 

S. pneumoniae were successfully constructed by IDM. However I failed to obtain any 

mutant strain for the putative amino acid transporter encoded by Sp0707-0711 even 
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after repeated attempts, possibly because some regions of the genome may be 

resistant to transformation or because that disruption of this gene may prove to be 

lethal for the bacterium. In another mutant strain, Sp2084
-, the putative phosphate 

transporter encoded by Sp2084-2087 had an unstable mutation, a relatively common 

problem for mutant strains made by IDM due to the duplicated regions flanking the 

inverted plasmid allowing homologous recombination to excise the plasmid 

containing the gene for antibiotic selection. 

BLAST searches indicated that several of the chosen ABC transporters are 

likely to be sugar ABC transporters (Sp0090-92, Sp0846-48, Sp1796-98, and Sp2108-

10), which is not surprising given the large range of sugars that S. pneumoniae is 

thought to be able to utilise (Tettelin et al., 2001). BLAST searches also indicated that 

Sp0607-10, Sp0707-11 and Sp0749-53 are putative amino acid ABC transporters. 

Sp0749-53 was identified a putative branched-chain amino acid (BCAA) transporter. 

The S. pneumoniae genome also contains genes encoding enzymes required for 

BCAA synthesis (Sp0445-50) (Hendriksen et al., 2008) which may partially 

compensate for BCAA uptake by S. pneumoniae. Sp0149 was identified as a putative 

cation lipoprotein, but other genes of this operon did not correlate with the likely 

function of cation uptake. However another transport classification system (Saier, Jr., 

2000) indicated Sp0148-52 as a putative methionine ABC transporter. A similar 

discrepancy between the BLAST alignment and the transport classification system 

was also observed when predicting the possible substrate for Sp0846-48. BLAST 

alignment predicted Sp0846-48 as a putative sugar transporter, whereas the transport 

classification system predicted it is a possible nucleoside ABC transporter. Detailed 

characterisation of these ABC transporters is needed to confirm their ligand binding 

properties.  
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Many ABC transporters seem to be highly conserved amongst different S. 

pneumoniae strains (eg PiaA, PsaA and PiuA) (Whalan et al., 2006), (Sampson et al., 

1997). BLAST alignment of the predicted lipoprotein genes of the chosen ABC 

transporters to 18 other available S. pneumoniae genomes demonstrated a high degree 

of amino acid conservation between S. pneumoniae strains (Basavanna et al., 2009). 

BLAST alignment of the chosen ABC transporters showed that 8 of the eleven ABC 

transporters have the greatest degree of amino acid homology to various streptococci 

(Sp0090-92, Sp0148-52, Sp0607-10, Sp0707-11, Sp0749-53, Sp0846-48, Sp1796-98 

and Sp2108-10). However no close homologues amongst streptococci were found for 

Sp1688-90 (a putative cation ABC transporter), Sp2084-87 (a putative sugar 

transporter), or Sp1824-26 (a putative phosphate ABC transporter). Previously, the 

iron uptake ABC transporter PiaA was shown to be highly conserved in S. 

pneumoniae strains but absent in oral streptococci, including the S. mitis group 

(Whalan et al., 2006), suggesting horizontal gene transfer of this loci into S. 

pneumoniae from unrelated bacterial species has occurred, and a similar mechanism 

might explain why Sp1688-90, Sp2084-87 and Sp1824-26 are not found amongst 

other streptococci.  

The genetic organisation of all the 9 ABC transporters were analysed using 

TIGR4 genome, and their organisation investigated by RT-PCR using 0100993 strain 

of serotype 3 RNA. The RT-PCR analysis using 0100993 strain showed that the 

probable transcriptional structure of the Sp0149-152, Sp0749-53, Sp0846-48, 

Sp2108-10 loci correlated with the TIGR4 genome. Amplification of cDNA from the 

RNA of 0100993 S. pneumoniae grown in THY for these genes was straightforward 

suggesting these regions are significantly expressed during growth in THY. However 

Sp1794-99 and Sp1822-28 ABC transporter loci were poorly expressed in THY and 
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therefore it was difficult to assess the transcriptional organisation of these operons 

using RT-PCR. The transcriptional structure of other ABC transporter loci did not 

match well with what would be predicted from the TIGR4 genome (Sp0090-92, 

Sp0607-11, Sp1689-91), and sequencing of these regions in the 0100993 S. 

pneumoniae strain may help clarify these results.  

PCR amplification of the junctions of Sp1794-99 and Sp1822-28 ABC 

transporter loci using 0100993 genomic DNA as template showed that some genes of 

these ABC transporter loci may be absent. As discussed earlier, the BLAST alignment 

of Sp1794-99 ABC transporter loci against 18 available S. pneumoniae genomes 

showed that this region was absent in some of the S. pneumoniae strains (Basavanna 

et al., 2009). However why some genes of Sp1822-28 ABC transporter loci were 

absent in 0100993 strain is not clear. I therefore speculate whether the expression of 

Sp1822-28 is induced under certain conditions such as oxidative, osmotic stress, or a 

minimal nutrient supply and that the genes of this region may not be constitutively 

expressed in THY.  

Which transcriptional regulators regulate these S. pneumoniae ABC 

transporters warrants further investigation as the information is very limited at 

present. In other bacteria such as S. mutans and S. agalactiae, genes of methionine 

uptake are under the control of the transcriptional regulator MetR / MtaR respectively 

(Sperandio et al., 2007) (Shelver et al., 2003), and whether Sp0149-152 is regulated 

in a similar fashion needs to be identified. However, Sp0749-73 and the BCAA 

synthesis operon Sp0445-50 have been shown to be negatively regulated by CodY 

(Hendriksen et al., 2008), although the relationship between CodY repression of 

Sp0749-53 requires further investigation to clarify its functional consequences and 

role during bacterial physiology. 
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The phenotype of each of the mutant strains was analysed using in vitro and in 

vivo CIs. CI tests the ability of the mutant strain to replicate compared to the wild-

type parental strain in the test condition (as long as the mutant phenotype cannot be 

complemented by the extracellular secretion of the missing protein(s) by the wild-type 

strain). In vitro CIs performed in a rich complete medium (THY) showed no growth 

defects of the mutant strains except a mild impairment for Sp0750
-. Similarly, all the 

mutant strains grew well in the osmotic stress media (THY + 100 mM NaCl) except 

strain Sp0610
- which had partial attenuation thereby suggesting a role of this ABC 

transporter for aiding growth in high osmotic stress conditions. Osmotic stress is one 

physiological stress that pathogens have to overcome in order to cause invasive 

infection, and decreased resistance to osmotic stress has been associated with 

decreased virulence for some pathogens. For example, expression of the three-gene 

operon of S. pneumoniae, phgABC, has been reported to be important for growth 

during high osmotic conditions and is required for the full virulence in pulmonary and 

systemic infection (Brown et al., 2004), and a proline ABC transporter of S. aureus is 

important for the virulence of S. aureus and protects against high osmolarity by 

accumulating proline within the cell (Schwan et al., 2004). 

To indicate a potential role of the selected S. pneumoniae ABC transporters 

during invasive infections, CIs were performed on human blood as an ex vivo culture 

system that closely represents at least some of the physiological conditions during 

infection such as limited availability of nutrients, pH, and relative hyperosmolarity. 

Culture on blood also replicates some of the interaction with different cell types and 

immune system components such as neutrophils and complement that occur during 

infection (Mereghetti et al., 2008). In this more stringent environment, mutant strains 

Sp0090
-, Sp0149

-
, Sp0610

-, Sp0750
-, Sp1824

- were moderately impaired in growth 
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compared to the wild-type, suggesting that these ABC transporters may contribute to 

growth of S. pneumoniae in normal physiological fluid. These strains would therefore 

be predicted to have impaired virulence and in general, the CIs in human blood 

mirrored the in vivo CIs in mouse models of pneumonia and septicaemia. Unlike the 

in vitro CIs, where the mixed inocula of wild-type and the mutant strains were grown 

for a period of 8 hours in various growth conditions, the in vivo CIs performed in the 

mouse models of infection results in the interaction of the mutant and the wild-type 

strains in various cells, tissues and body compartments during a period of 24-48 

hours. This allows even small differences in virulence between mutant and wild-type 

strains to be identified. Of the nine ABC transporter mutant strains successfully 

constructed, seven were impaired in full virulence in mouse models of sepsis and / or 

pneumonia (Sp0090
-
, Sp0149

-
, Sp0610

-
, Sp0750

-
, Sp0846

-
, Sp1824

- and Sp2108
-). Of 

the seven attenuated ABC transporter mutant strains, five were partially reduced in 

virulence (Sp0090
-
, Sp0610

-
, Sp0846

-
, Sp1824

- and Sp2108
-) and two were markedly 

attenuated (Sp0149
- and Sp0750

-) in mouse models of sepsis and / or pneumonia. For 

two of the ABC transporter mutant strains (Sp1690
-
, Sp1796

-) the impairment in 

virulence was relatively small, comparable to the effect of loss of a single iron 

transporter (Brown et al., 2002), and this maybe because their functions are partially 

redundant. For example, BLAST alignments suggest several of the ABC transporters 

investigated encode sugar transporters, and more than 30% of S. pneumoniae 

transporters are predicted to be sugar transporters which also includes non-ABC 

transporter uptake systems such as phosphoenolpyruvate-dependent sugar transporters 

(Tettelin et al., 2001). Hence disrupting the function of a single sugar ABC 

transporter could be compensated for by the others or by non-ABC transporter uptake 

mechanisms such as phosphoenolpyruvate-dependent sugar transporters (Tettelin et 



 234 

al., 2001). Dual mutations in genes encoding components of ABC transporters with 

related functions may have a much more marked effect on virulence as has been 

shown for the PiuA and PiaA iron transporters (Brown et al., 2001). Two strains 

Sp0149
- and Sp0750

- were markedly more attenuated in virulence in pneumonia and 

septicaemia models of S. pneumoniae infection compared to the other strains. The 

functions of proteins encoded by these genes are indicated by BLAST searches to be 

methionine / cation and BCAA uptake respectively. Sp0750
- had greater degree of 

attenuation of virulence in pneumonia model than in the septicaemia model of S. 

pneumoniae infection suggesting that this ABC transporter may be particularly 

important for the infection of the respiratory tract. As well as ABC transporters 

encoded for by groups of genes investigated in this and previous studies, there are 

many additional ABC transporters components encoded by isolated single genes or 

gene pairs within the TIGR4 genome, some of which STM screens suggest affect 

virulence (Hava and Camilli, 2002; Lau et al., 2001). These ABC transporter 

components also warrant further investigation, although their specific putative 

functions may be in general be even less apparent than those encoded by several 

adjacent genes in putative operons. 

S. pneumoniae disease process is complex and requires the bacterium to 

acclimatise in different environments such as nasopharynx, lungs, blood, ear and 

brain. The optimal survival of S. pneumoniae in any of these niches would depend on 

the expression of virulence factors (Ogunniyi et al., 2002). Since Sp0149 and Sp0749 

ABC transporters have been shown to be important for S. pneumoniae virulence as 

demonstrated by in vivo CIs, their relative abundance in different conditions were 

investigated. The relative expression of Sp0149 and Sp0749 mRNA, were compared 

with the well-characterised virulence protein genes, psaA and Sp1386 (potD, 
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polyamine ABC transporter) (Shah et al., 2008) in the THY, human blood and mice 

blood 12 hours after IP infection with S. pneumoniae. Relative mRNA expression of 

the virulence genes (Sp0149, Sp0749, psaA and Sp1386) in THY were used as 

baseline. psaA was abundantly present in the THY and human blood, therefore I did 

not investigate the relative abundance of psaA gene in mouse blood due to limited 

recovery of total S. pneumoniae RNA. Also similar work has been performed by 

Ogunniyi et al (Ogunniyi et al., 2002) and they have demonstrated that psaA is 

expressed abundantly during in vitro conditions and during pulmonary and systemic 

S. pneumoniae infection in mice. Sp1386, a lipoprotein component of a polyamine 

ABC transporter demonstrated lower expression than psaA and Sp0149 in THY, but 

increased mRNA expression was demonstrated in human blood and in the blood of 

mice recovered 12 hours after IP inoculation of S. pneumoniae suggesting a role in 

this physiological fluid and thereby contributing to S. pneumoniae virulence. Shah et 

al have also demonstrated that the expression of the S. pneumoniae polyamine ABC 

transporter is up-regulated during oxidative stress and high temperature (Shah et al., 

2008) such results that are compatible with the lower expression of Sp1386 in 

favourable growth conditions such as THY. 

In the mouse blood, the relative abundance of Sp0149 was increased compared 

to THY and human blood. However, Sp0749 was only expressed in mouse blood and 

no detectable levels were found in THY and human blood. Previous work by Carlos 

Orihuela and collegues has shown that the Sp0149 lipoprotein gene and Sp0750-53 

operon are both up-regulated in a rabbit model of meningitis suggesting their gene 

expression may contribute towards S. pneumoniae virulence (Orihuela et al., 2004). 

The genes of Sp0749-53 are under the negative control of the transcriptional regulator 

CodY (Hendriksen et al., 2008) but the relationship between CodY repression, in 
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vitro and in vivo expression of Sp0749-53 and BCAA transport requires further 

investigation. There is also a need to repeat the experiment using more sensitive 

technique such as real-time PCR, which would allow more accurate quantification of 

the differential expression of these ABC transporter genes in both in vitro and in vivo 

(systemic and pulmonary murine models).  

The subcellular localisation of the lipoproteins Sp0149 and Sp0749 was 

investigated using Triton X-114 extracts of the S. pneumoniae membrane associated 

proteins. Immunoblots identified that Sp0149 and Sp0749 are membrane localised. 

Reports for other Gram positive bacteria such as Mycobacterium tuberculosis (Sander 

et al., 2004) Listeria monocytogenes (Reglier-Poupet et al., 2003) and S. suis (De et 

al., 2003) have shown that their lipoproteins are processed by Lsp, and that disruption 

of lsp in L. monocytogenes (Reglier-Poupet et al., 2003), S. suis (De et al., 2003) and 

recently by my supervisor’s group in S. pneumoniae (Khandavilli et al 2008) results 

in retention of the N terminal signal peptide by lipopeptides. Hence I investigated the 

effects of deletion of lsp on the Sp0149 and Sp0749 lipoproteins. As expected, the 

Sp0149 gave a higher molecular weight signal in the whole cell lysate of Δlsp strain 

due to incomplete processing of the lipoproteins in the absence of Lsp. However in 

the whole cell lysate of lsp
c strain, the Sp0149 did not revert to the normal wild-type 

molecular weight. Whether the differences of Sp0149 is due to the rate of migration 

of proteins or due to incomplete Lsp function in the complementation mutant as 

described by Khandavilli and collegues (Khandavilli et al 2008) needs to be 

investigated. With respect to Sp0749 there was a weak signal in the whole cell lysate 

of the Δlsp strain, but the intensity of expression was similar in the wild-type and lsp
c 

strain. At present there is no clear explanation for why there is lower expression of 

Sp0749 in the absence of Lsp. However, the localisation of Sp0149 and Sp0749 
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within the membrane and that they are affected by Lsp does indicate that both are 

lipoproteins and could be investigated as potential vaccine candidates against S. 

pneumoniae. Analysis of the effect of loss of lgt on the processing of Sp0149 and 

Sp0749 would also be of interest as this would be predicted to result in loss of both 

lipoproteins from the cell membrane associated protein fraction. 

The data obtained with the disruption mutant strains suggested that the ABC 

transporters encoded by Sp0149-52 and Sp0749-53 have the most crucial roles during 

S. pneumoniae infection. For further investigation of the function of the Sp0149-52 

and Sp0749-53 ABC transporters, mutant strains were made in the S. pneumoniae 

0100993 background in which Sp0149 and Sp0750-53 were deleted from Sp0149-52 

and Sp0749-53 operons using constructs made by overlap extension PCR (OEP) 

(Shevchuk et al., 2004). OEP is a relatively new technique for constructing deletion 

and complemented mutant stains to allow complete replacement of an operon with an 

antibiotic resistance cassette. Different techniques have also been used in recent years 

to construct mutations in S. pneumoniae such as IDM, in vitro mariner transposon 

mutagenesis, and gene replacement using Janus cassette and OEP. IDM however has 

been used to for many years to make disruption mutants in S. pneumoniae using 

plasmids as it is rapid and a relatively simple technique. However, due to homologous 

recombination of duplicated regions flanking the inverted plasmid, the entire plasmid 

may be excised allowing the plasmid containing the gene for antibiotic selection to be 

excised and this is a relatively common problem with IDM. The advantages of OEP 

are that it is a relatively quick method to obtain the desired constructs for mutations 

and does not involve plasmids and restriction digestion. However the main 

disadvantage of OEP is the induction of random mutation due to amplification by 

PCR into the mutant construct. Two other relatively new methods to construct S. 
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pneumoniae mutants are in vitro mariner transposon mutagenesis and gene 

replacement using Janus cassettes. In vitro mariner transposon mutagenesis is rapid 

and is particularly useful for the identification of genes required for growth and 

survival, but causes random insertions into the target sequence rather than a clean 

deletion (Akerley et al., 1998). Gene replacement using Janus cassette is a method for 

negative selection particularly useful to construct substitutions and inframe deletions 

which allows the selection for gene acquisition and loss. Therefore use of Janus 

cassette circumvents the problem of accumulation of antibiotic markers in the mutated 

strains (Sung et al., 2001), but is more complex than OEP and was not necessary as 

multiple mutations in the one strain were not planned. I therefore used OEP to 

construct deletion and complementation mutant strains of Sp0149 and Sp0750-53 in 

S. pneumoniae as this method is relatively quick, stable and it is possible to construct 

in frame mutations. For phenotype analysis of mutant strains it is important if possible 

to have a complemented mutant so any phenotypes observed is linked directly to the 

genetic manipulation of the gene of interest. However, although after several attempts 

I was able to construct the complementation construct of Sp0149 this construct failed 

to transform in S. pneumoniae, and I was also unable to obtain the complementation 

construct of Sp0750-53 possibly due to its larger size.  

The role of S. pneumonaie Sp0149-53 and Sp0749-53 ABC transporters were 

investigated in detail for their possible substrate specificity and role in virulence using 

the ΔSp0149 and ΔSp0750-53 S. pneumoniae deletion mutants. The role of Sp0149-53 

ABC transporter was investigated in vitro by comparing the growth rates of the wild-

type and the ΔSp0149 deletion mutant strains under normal laboratory conditions. 

Particular phenotypes associated with the specific functions of the Sp0149-53 

(requirement of particular cations, sensitivity to streptonigrin) were also investigated. 
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These assays did not show impairment of growth in the tested conditions such as 

cation depleted media, but as discussed earlier recent data suggested that  Sp0149-53 

is a methionine ABC transporter (Saier, Jr., 2000) rather than a cation transporter. 

Further investigation of this transporter is required using uptake assays and ligand 

binding assays. Methionine ABC transporters are functionally characterised in Gram 

negative bacteria such as E. coli (Kadner, 1974) and S. enterica serovar Typhimurium 

(Grundy and Ayling, 1992). To my knowledge, there have been no reports 

demonstrating a role for the methionine uptake in the virulence of Gram positive 

pathogens including S. pneumoniae. In S. mutans, the Sp0149-53 homologues encode 

AtmBDE, an ABC transporter that was identified as a likely methionine uptake 

transporter, with functional studies suggesting AtmBDE has a strong affinity for L-

methionine but also transports other sulphur compounds such as selenomethionine, D-

methionine, or homocysteine (Sperandio et al., 2007). MtaR, a transcriptional 

regulator, was also identified which not only regulates methionine synthesis and / or 

uptake genes (AtmBDE) in S. mutans (Sperandio et al., 2007) and S. agalactiae, but 

was also essential for the survival of S. agalactiae in a rat model of septicaemia 

therefore contributing towards virulence (Shelver et al., 2003). It would therefore be 

interesting to investigate the role of Sp0149-53 as a putative methionine ABC 

transporter using methionine as the potentially preferred substrate.  

In order to identify particular phenotypes associated with the specific 

functions of the Sp0749-53 putative BCAA ABC transporter, toxicity towards 

azaleucine, radioactive uptake assays, tryptophan fluorescence spectroscopy and 

radioactive binding assay were performed. Loss of Sp0749-53 ABC transporter did 

not result in a particular requirement for BCAA in the conditions used such as THY, 

and the wild-type strain was resistant to the toxicity of azaleucine, so we were unable 
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to identify significant uptake of the BCAA leucine by S. pneumoniae. Hence in the 

conditions used for these experiments (ie., the complete medium THY and the defined 

medium CDEM) there seems to be very little BCAA uptake by S. pneumoniae. 

Tryptophan fluorescence spectroscopy and radioactive binding assays using 14C-

leucine, isoleucine and valine demonstrated that His6-Sp0749 binds specifically to 

BCAA, strongly supporting the hypothesis that Sp0749-53 encodes a BCAA ABC 

transporter. Both the tryptophan fluorescence spectroscopy and radioactive binding 

assays suggest that His6-Sp0749 has the highest affinity for isoleucine, moderate 

affinity for leucine, with the least affinity for valine (Basavanna et al., 2009). These 

data suggest strongly that Sp0749 to 0753 does encode a BCAA transporter despite 

the lack of evidence for BCAA uptake in vitro. 

In mouse models of infection the Δ750-53 and the ΔSp0149 deletion strains were 

both significantly out-competed by the wild-type strain. These data suggest there is an 

important role for the S. pneumoniae BCAA and putative methionine ABC 

transporters specifically during in vivo growth, a conclusion that is supported by 

previous publications at least for BCAAs, with disruption of BCAA synthesis 

affecting virulence of the unrelated pathogens B. pseudomallei and M. bovis (Atkins 

et al., 2002; McAdam et al., 1995). However the effect of loss of Sp0750-53 and 

Sp0149 on virulence were only detectable in competitive infection experiments and 

after IN inoculation with the ΔSp0149, ΔSp0750-53, or wild-type strain, progression 

of infection was similar. Hence, Sp0149-53 and Sp0749-53 ABC transporters do not 

have a powerful effect on S. pneumoniae virulence. This could reflect redundancy 

associated with S. pneumoniae ABC transporters. For example, the S. pneumoniae 

genome contains genes encoding enzymes required for BCAA synthesis (Sp0445-50) 

(Tettelin et al., 2001) (Hendriksen et al., 2008) may partially compensate for impaired 
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BCAA uptake in vivo. Whether the loss of Sp0149 is perhaps compensated by other 

gene(s) involved in methionine metabolism is not known. Exactly why loss of genes 

encoding putative methionine and BCAA affects virulence is not clear. The most 

obvious explanation is a nutritional requirement for methionine and BCAA in vivo. 

However, the marked difference in CI between growth in blood and during infection 

for the Sp0149
- and Sp0750

- mutant strains indicates that the loss of virulence maybe 

more complex than simple impaired growth under physiological conditions. As stated 

above BCAA metabolism and uptake genes in various bacteria have been identified to 

be regulated by CodY. CodY, a nutritional repressor identified in L. lactis (Guedon et 

al., 2001), C. difficile (Dineen et al., 2007), S. pyogenes (Malke et al., 2006), and L. 

monocytogenes (Bennett et al., 2007), S. aureus (Majerczyk et al., 2008) and S. 

pneumoniae (Hendriksen et al., 2008) is known to inhibit the genes involved in amino 

acid metabolism. It is highly conserved in Gram positive bacteria and responds to 

intracellular concentrations of BCAAs and GTP (guanosine triphosphate), thereby 

sensing carbon, nitrogen availability and aids the bacterium to adapt to survive under 

harsh conditions. Therefore CodY plays a central role in the regulation of bacterial 

metabolism (Somerville and Proctor, 2009; Tojo et al., 2008) and will influence 

growth and therefore virulence in vivo. In S. pneumonaie, the CodY regulon consists 

of genes involved in BCAA and general amino acid metabolism. Upregulation of 

BCAA metabolism and uptake genes including Sp0749-53 was observed in a codY 

mutant strain suggesting that CodY directly controls the intracellular BCAAs in S. 

pneumoniae (Hendriksen et al., 2008).  

As the Sp0149-0153 and Sp0749-53 ABC transporters are important for 

virulence, and their corresponding lipoprotein genes, Sp0149 and Sp0749 are surface 

localised, they were chosen for further investigation as vaccine candidates analogous 
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to other protein antigens such as PiaA, PiuA and PsaA. Western blotting of the cell 

lysates of clinically important serotypes responsible for S. pneumoniae infections with 

polyclonal antibodies to Sp0149 and Sp0749 demonstrated the presence of the 

lipoproteins Sp0149 and Sp0749 in all serotypes investigated. Furthermore, the 

proteins were of the same size in all strains and PCR amplified identical sized gene 

products. This suggests that both Sp0149 and Sp0749 are identically sized and 

conserved amongst S. pneumoniae strains, making them potentially attractive vaccine 

candidates. Compatible with the results of the in vitro assays and RT-PCR analysis for 

Sp0749 function, the expression of Sp0749 generally seemed to be low compared to 

the expression of Sp0149, with probing with anti-Sp0749 giving a variable and much 

weaker signal compared to probing with anti-Sp0149 serum. ELISA demonstrated 

that Sp0149 and Sp0749 lipoproteins are immunogenic as they elicited good IgG 

antibody titres comparable to that of PsaA which was used as positive control. The 

antibody results were predominantly IgG1 subclass, although a IgG2a subclass 

response was also observed. Hence the lipoproteins may induce a Th2 immune 

response similar to that observed upon immunisation with PiaA and PiuA (Jomaa et 

al., 2005). No cross reactivity between antibodies to the two proteins was seen 

suggesting that both the lipoproteins are antigenically dissimilar. Incubation with anti-

Sp0149 and anti-Sp0749 resulted in small but a significant increase in the deposition 

of complement on S. pneumoniae and aided phagocytosis. Antibodies to iron uptake 

ABC transporters do not inhibit ABC transporter function (Jomaa et al., 2005), and 

although antibodies to Sp0149 and Sp0749 seems to have immunological effects, it is 

not known whether anti-Sp0149 and anti-Sp0749 also inhibits the function of Sp0149 

and Sp0749 lipoproteins. However this would be difficult to assess due to potential 
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redundancy and the lack of a specific phenotype in vitro that could be used to assess 

the function of these ABC transporters (Brown et al., 2001).  

Immunisation with Sp0149 or Sp0749 lipoproteins and subsequent challenge 

by the intraperitoneal route with D39 strain to simulate a model of S. pneumoniae 

septicaemia involving experiments were performed twice in the CD1 mouse strain. In 

the initial immunisation experiment, CD1 mice were challenged with 105 cfu of D39 

strain of S. pneumoniae. Only a minor delay in the development of fatal infection was 

observed in the mice immunised with the lipoprotein groups. Since the lipoproteins 

failed to confer strong protection, one of the questions that arose is whether these 

lipoproteins are unstable in the laboratory storage conditions and whether they have 

degraded from the time of purification to the immunisation or failed to induce good 

antibody responses. Western blotting suggested that this was not the case, as 

polyclonal antisera raised against the purified Sp0149 and Sp0749 lipoproteins 

produced specific signals when used to probe whole cell lysates of S. pneumoniae and 

the purified His6-Sp0149 and His6-Sp0749. The disappointingly weak protective 

effect of immunisation with His6-Sp0149 and His6-Sp0749 may reflect a challenge 

dose that may be overwhelmingly high leading to fast multiplication of S. pneumoniae 

in the host even if the vaccine antigens had elicited protective responses.  

As well as a negative control group vaccinated with alum alone, the efficacy 

of these lipoproteins as vaccines also needs to be evaluated in comparison with a 

positive control whose efficacy as a vaccine candidate has been previously 

determined. I therefore used PspA, a surface protein known to be protective against 

several clinically important serotypes, as a positive control for the second 

immunisation experiment. Unfortunately PspA is a weak vaccine candidate against 

D39 (McDaniel et al., 1991), but this protein was the only alternative vaccine protein 
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available in our laboratory at the time of second immunisation experiment. A lower 

challenge dose of 103 cfu of S. pneumoniae was used in the second immunisation 

experiment to increase the likelihood of detecting protective responses. PspA did not 

exhibit protection against D39 strain of S. pneumoniae, and the survival of mice 

vaccinated with Sp0149 was similar to that of mice immunised with PspA or alum 

alone. Sp0749 showed a statistically non-significant delay the development of fatal 

infection, perhaps suggesting that Sp0749 may be an alternative protein vaccine 

antigen. CD1 mice were used for the immunisation-challenge experiments because 

they are an outbred strain, as well as being cheaper, experiments using outbred mice 

are more likely to be of greater relevance than positive results obtained with an inbred 

mouse population. The immunisation experiment was therefore repeated in the inbred 

mice strain Balb/c. Unfortunately, no protection against S. pneumoniae challenge was 

observed after immunisation with the Sp0149 or Sp0749 lipoproteins, nor with the 

positive control protein PsaA. Why Sp0149, Sp0749 and PsaA did not demonstrate 

protection despite the in vitro data suggesting they induce a significant and 

immunologically relevant response is not clear. One probable explanation is that the 

intraperitoneal route may be too stringent an infection route, and that any protective 

response elicited by the lipoproteins may be masked by the severe S. pneumoniae 

septicaemia induced by this route of inoculation. 

As S. pneumoniae pneumonia is a common disease affecting both the elderly 

and infants to which the available vaccines do not provide efficient protection, 

intranasal immunisation and challenge studies were performed in mice to investigate 

whether immunisation with the protein antigens can protect against S. pneumoniae 

pneumonia. The protective efficacy of the purified Sp0149, Sp0749 by itself or in 

combination with the previously investigated lipoprotein vaccine candidates PiaA and 
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PiuA (Jomaa et al., 2006) against S. pneumoniae pneumonia was investigated through 

the intranasal route (instilling the purified lipoproteins and bacteria into mouse 

nostrils, IN). This simulates the natural route of infection in humans. Cholera toxin 

was used as the adjuvant as it is well established and used as adjuvant with different 

S. pneumoniae proteins for IN immunisation experiments (Jomaa et al., 2006) 

(Pimenta et al., 2006; Shah et al., 2009). Experiments assessing survival after IN 

immunisation and challenge were performed in outbred CD1 mice due to the cost, 

whereas inbred CBA/Ca mice were used for experiments assessing immunological 

responses in more detail in order to minimise mouse to mouse variation in results that 

may compromise the results of the experiment and its analysis.  

The antibody titres, types of immune cell activation and histological 

examination of the degree of inflammation in the lungs elicited against the immunised 

lipoproteins were analysed. Sp0749 in combination with PiaA elicited good IgG titres 

in the sera and respiratory secretions such as BALF after the IN immunisation, 

although greater IgG titres were demonstrated in the sera after IP immunisation with 

Sp0749. Perhaps surprisingly given the immunisation route Sp0749 specific IgA 

antibodies were not detected and PiaA specific IgA antibodies were detected in the 

BALF of only two mice immunised with PiaA and Sp0749. Nevertheless, ELISA 

demonstrated that the IN immunisation with Sp0749 and PiaA can induce specific 

local and systemic IgG antibodies.  

To investigate the detailed host immune responses upon S. pneumoniae 

challenge, cells were isolated from the BALF and lungs of CT, PiaA and 

PiaA+Sp0749 immunised mice before and 48 hours after the S. pneumoniae challenge 

and analysed using labelled lymphocyte and macrophage antibody markers and flow 

cytometry. The total cell counts in the BALF and lungs determined using a 
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haemocytometer indicated only small differences before and after the S. pneumoniae 

challenge between the vaccine groups. The results of the cell surface marker 

experiments were highly variable between mice and it was difficult to identify clear 

trends. However, there was an indication of an increase in the proportion of B220 

cells. As expected, differential cell counts of the BALF cytospins indicated an 

overwhelming increase in the neutrophil infiltration upon S. pneumoniae challenge in 

all groups. Macrophage activation in the vaccine groups upon S. pneumoniae 

challenge was also analysed by flow cytometry using two macrophage surface 

markers (CD80 and I-A-I-E). In the lungs, the results suggests both the active vaccine 

groups had an increase in CD80 positive cells suggesting a greater recruitment of 

activated macrophages in these mice compatible with a positive immunological 

benefit of vaccination with lipoproteins. However, flow cytometry using I-A-I-E 

surface marker did not mirror the results obtained using the CD80 surface marker, 

therefore the significance of the results obtained by CD80 are unconfirmed.  

Interestingly the histological examination of the lung tissues from the control 

and vaccine groups indicated more inflammation in the vaccine groups than the 

control group, with greater degree of inflammation in the PiaA immunised group 

upon S. pneumoniae challenge. Why there was increased level of inflammation in the 

vaccine groups after the S. pneumoniae challenge is not immediately clear, but could 

indicate a more rapid inflammatory response in actively vaccinated mice which could 

aid protective immunity. An analysis of the cytokine response would help identify 

whether there are differences in the inflammatory response between vaccinated and 

control mice after S. pneumoniae challenge. Inflammatory cytokines such as IL-1, 

TNF and IL-6 are present in both the patients (Dehoux et al., 1994) and mice with 

pulmonary infection caused by S. pneumoniae (Bergeron et al., 1998). Blocking the 
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expression or action of cytokines such as TNF-α, and IL-6 impairs the host’s immune 

response to S. pneumoniae with reduced bacterial clearance and reduced survival in 

experimental mice models of pneumonia (Takashima et al., 1997; Van der et al., 

1997). However, studies have demonstrated that the host’s cytokine response depends 

on the specific strain of S. pneumoniae in addition to the type of infection such as 

pneumonia / septicaemia and host’s genetic background (Mohler et al., 2003). 

Furthermore, differences in bacterial cfu present at different time points could make 

the interpretation of a direct comparison of cytokine levels between groups complex. 

Hence a careful selection of the mouse strain and time point for cytokine analysis will 

be necessary. To determine which of the observations on differences in the immune 

response after IN immunisation with PiaA and Sp0749 or the control group are 

consistent and biologically significant and assess their potential importance for 

control of S. pneumoniae infection, these experiments will need to be repeated. 

Despite the evidence of some modifications of the immunological response to 

infection in the pneumonia model in mice vaccinated with the lipoproteins, little 

protection was found after intranasal vaccination with the lipoproteins. Sp0149 alone 

and in combination with PiaA and PiuA in the triple vaccination gave no protection. 

Sp0749 showed a statistically non-significant (p = 0.083) weak level of protection 

when combined with PiaA, but not when used alone or in combination with Sp0149 

and PiaA in a triple antigen vaccination. The results obtained with PiaA and PiuA 

contrast to previously published data on these antigens as intranasal vaccines (Jomaa 

et al., 2006). The reasons why both PiaA and PiuA did not protect in both CD1 and 

CBA/Ca mice strain when previously they had shown protection against pulmonary S. 

pneumonaie infection (Jomaa et al., 2006) are not clear, but could be due to variations 

in the serotype of S. pneumoniae used (1x 106 cfu of serotype 1 in CBA/Ca mice). 
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The results of S. pneumoniae cfu enumeration 48 hours after the S. pneumoniae 

challenge in the BALF, lungs and blood of immunised CBA/Ca mice were compatible 

with the results of the survival experiments. There was a statistically non-significant 

decrease in the bacterial counts in BALF, lungs and blood of mice immunised with 

PiaA and PiaA+Sp0749 when compared to CT alone, suggesting that the 

immunisation with these lipoproteins may perhaps have some weak effect on the 

clearance of S. pneumoniae that might not be enough to influence overall survival in 

this model. These experiments require repetition to identify whether the differences in 

cfu are consistent and to increase the numbers for a more accurate assessment of their 

statistical significance. 

One explanation for the weak protective effects on S. pneumoniae clearance 

from the target organs is that CBA/Ca mice are particularly susceptible to intranasal 

infection. Previous work by Gingles et al. demonstrated that the median survival time 

of CBA/Ca mice after challenge with 106 cfu of D39 was 28 hours, whereas that of 

Balb/c was greater than 168 hours (Gingles et al., 2001). In the future it would be 

important to enumerate S. pneumoniae cfu at an earlier time point in CBA/Ca mice 

strain or to use Balb/c mice, although these mice may be too resistant to S. 

pneumoniae pneumonia for consistent results in the negative control group. When 

designing S. pneumoniae vaccination experiments careful consideration of a range of 

variables such as the quantity of the antigen, type of adjuvants, route of immunisation, 

strain and dose of S. pneumoniae and mice strain is required (Chiavolini et al., 2008; 

Tai, 2006). However at present there is a lack of accepted standard mouse strain / 

bacterial strain combinations as well as positive controls for the different types of 

immunisation-challenge studies for investigating S. pneumoniae vaccine antigens. 

Overall the lack of efficacy of the lipoprotein vaccine candidates was disappointing  



Table 7.1: Flow chart to summarise the novel results of Sp0149-52 and Sp0749-53 ABC transporters 

Chosen 11 ABC transporter operons from TIGR4 genome

Amino acid homology searches using BLAST

Constructed IDM mutants for nine of the 
eleven ABC transporters in 0100993

Analysis of genetic organisation in 
0100993 using RT-PCR

Four of the eleven ABC transporter regions of 
0100993 are similar to TIGR4 genome 

In vivo phenotype screening by CIs:In vitro phenotype screening by CIs:

Detailed phenotype analysis of Sp0149-53 and 
Sp0749-53 using ΔSp0149 and ΔSp0750-53 deletion 

mutant strains 

Investigation of vaccine potential of Sp0149 
and Sp0749 lipoproteins

Sp0149-52 and Sp0749-53 are important for S. pneumoniae virulence

In vitro phenotype analysis demonstrated that:

• Sp0149 and Sp0749 are membrane bound 
lipoproteins
• Sp0749 lipoprotein is a branched chain amino acid 
binding protein.

In vivo phenotype analysis demonstrated that:

• Sp0149 and Sp0749 are differentially expressed in 
mice after systemic S. pneumoniae infection 
• Deletion of Sp0149 and Sp0750-53 affects S. 

pneumoniae virulence in mixed infection models, but 
were able to cause fatal disease when given as pure 
inoculum

• Sp0149 and Sp0749 are present in S. pneumoniae

capsular serotypes present in 7-valent vaccine
• Sp0149 and Sp0749 lipoproteins elicits good IgG
immune response, predominantly Th2 type immune 
response after IP and IN immunisation with Sp0149 
and Sp0749.
• Anti-Sp0149 and anti-Sp0749 induces small increase 
in in vitro complement deposition and 
opsonophagocytosis after IP immunisation with 
Sp0149 and Sp0749.
• IN immunisation with Sp0749 with PiaA may 
increase the activation of lung macrophages.
• IN immunisation with Sp0749 and PiaA increased 
inflammation in lung sections.
• Survival studies after IP and IN immunisation with 
Sp0149, Sp0749 and PiaA did not protect after S. 

pneumoniae challenge

Four mutant strains showed partial 
growth defect in human blood  

Sp0149- and Sp0750- mutant strains were markedly 
attenuated in systemic and pulmonary S. pneumoniae

infection

Sp0749 is a branched chain amino acid binding lipoprotein and Sp0149 and Sp0749 do not aid protection against

S. pneumonaie septicaemia and pneumonia. 
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and suggests that Sp0149 or Sp0749 are not likely to be major vaccine candidates. 

They may contribute as an additional antigen for a multivalent vaccine, but any 

benefit they might add over and above major vaccine antigens such as PiaA, PspA, or 

PsaA would require careful evaluation. Flowchart 7.1 summarises the novel findings 

of Sp0149-52 and Sp0749-53 ABC transporters. 

 

7.1 SUMMARY 

I selected 11 ABC transporters using the annotated TIGR4 S. pneumoniae genome, 

constructed disruption mutant strains for nine of the ABC transporter operons in 

0100993 strain. BLAST searches showed that several of the chosen S. pneumoniae 

ABC transporters have close homologues in streptococci. However, some discrepancy 

in the prediction of the substrate specificity occured using BLAST searches and 

transport classification system (Sp0149-52, Sp0846-48). Of the nine ABC transporter 

mutant strains successfully constructed, six were impaired in full virulence in mouse 

models of sepsis and / or pneumonia (Sp0090
-
, Sp0149

-
, Sp0610

-
, Sp0750

-
, Sp1824

- 

and Sp2108
-). Of these six ABC transporter mutant strains, Sp0149

-
, and Sp0750

- 

were highly attenuated in virulence in mouse models of sepsis and pneumonia 

compared to the other strains. These ABC transporters were predicted by BLAST 

searches to be methionine and BCAA uptake respectively. Semi-quantitative RT-PCR 

indicated that the lipoprotein components of these ABC transporters Sp0149 and 

Sp0749 are expressed in mouse blood during systemic infection, suggesting these 

transporters are expressed under physiological conditions and supporting a role for 

virulence. I also constructed S. pneumoniae ΔSp0149 and ΔSp0750-53 deletion 

mutant strains in the 0100993 background, but failed to obtain complemented strains 

despite several attempts. Membrane localisation studies using the polyclonal mouse 



 251 

antibodies to recombinant Sp0149 and Sp0749, a lipoprotein processing mutant strain 

(Δlsp), and lipoprotein fraction triton-X-114 extracts showed that both Sp0149 and 

Sp0749 are membrane bound lipoproteins and therefore could be potential vaccine 

candidates against S. pneumoniae. Fluorescence spectroscopy and radioactive binding 

assays demonstrated that the Sp0749 lipoprotein is a BCAA binding protein. Similar 

experiments needs to be performed to identify if methionine is the preferred substrate 

for Sp0149 lipoprotein. After IN inoculation with the ΔSp0149, ΔSp0750-53, or wild-

type strain progression of infection were similar, and the effect of loss of Sp0149 and 

Sp0750-53 on virulence were only detectable in competitive infection experiments. 

These data suggest that although Sp0149-53 and Sp0749-53 ABC transporters are 

required for full virulence these ABC transporters do not have a powerful effect on S. 

pneumoniae virulence, perhaps because of functional redundancy of methionine or 

BCAA uptake by these ABC transporters. 

PCR and Western blot analysis demonstrated that Sp0149 and Sp0749 are 

conserved in the S. pneumoniae serotypes present in the 7-valent conjugate vaccine. 

Systemic immunisation with Sp0149 and Sp0749 lipoproteins induced good IgG 

antibody titres, predominantly of a Th2 type immune response. Good IgG titres were 

obtained in the sera and BALF after IN immunisaton with Sp0749, but IgA titres were 

not detected. There was a small but significant increase in in vitro complement 

deposition and opsonophagocytosis assays in the presence of polyclonal antibody to 

Sp0149 and Sp0749. Detailed assessment of the mouse immune response to S. 

pneumoniae pneumonia after IN vaccination with Sp0749 plus another lipoprotein 

vaccine candidate PiaA suggested a possible increase in the activation of lung 

macrophages. Histological analysis of the lung sections also indicated an increased 

degree of inflammation in actively vaccinated mice compared to the controls upon S. 
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pneumoniae challenge. However, despite these immunological effects of vaccination 

with these lipoproteins , IP and IN immunisations with Sp0149 and Sp0749 did not 

significantly delay the progression of infection after systemic or pulmonary S. 

pneumoniae challenge in mice, although IN immunisation with Sp0749 in conjunction 

with PiaA may perhaps have weak effect on the S. pneumoniae clearance in the 

BALF, lungs and blood  
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7.2 POTENTIAL FUTURE DIRECTIONS 

 

 
 To screen for specific substrates as predicted by BLAST searches of the 

chosen ABC transporters using tryptophan fluorescence spectroscopy, 

radioactive binding and uptake assays and their detailed in vitro and in vivo 

characterisation.  

 To investigate the ligand binding properties of Sp0149 using methionine as a 

potentially preferred substrate using different forms of methionine such as D, 

L- methionine, selenomethionine and homocysteine. 

 To investigate the phenotype in vitro and in vivo of a strain containing a 

deletion of the Sp0749-53 BCAA ABC transporter and the Sp0445-50 BCAA 

synthesis enzymes  

 To repeat and investigate in more detail the host’s immune response and S. 

pneumoniae clearance from the target organs after intranasal immunisation 

with Sp0749, perhaps using mouse and bacterial strains that are more likely to 

identify differences between groups. 

 To perform intranasal immunisation-challenge experiments with Sp0749 and 

different combination of potential lipoprotein vaccine candidates such as PiaA, 

PiuA, PsaA and PotD to identify potential optimal combinations of protein 

antigens for a multivalent vaccine.  
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Appendix 

MEDIA 

 

Cden medium 
To prepare 395 ml Cden medium 
 
Cden base   200 ml 
HYR    50 ml 
Glutamine (1 mg ml-1) 10 ml (stock solution) 
Vitamins (without choline  10 ml 
Sodium pyruvate (2%) 5 ml (stock solution 
SAC solution   40 ml 
Supplement   13 ml 
KPO4 (1 M; pH 8.0)  15 ml 
Leucine (10 mg ml-1)  10 ml (stock solution) 
Phenylalanine (10 mg ml-1) 5 ml (stock solution) 
Lysine (10 mg ml-1)  9 ml (stock solution) 
Choline chloride (1 mg ml-1) 2 ml (stock solution) 
Distilled water   26 ml 
 
Filter sterilize before use. 
 
Cden base 

 

Glycine     190 mg 
Alanine   350 mg 
Valine    720 mg 
Isoleucine   760 mg 
Proline    1160 mg 
Serine    590 mg 
Threonine   450 mg 
Methionine   310 mg 
Tryptophan   140 mg 
Asparagine   720 mg 
Glutamic acid   2200 mg 
Cysteine   150 mg 
 
Dissolve in the final volume of 2 litres (L), adjust the pH to 7.0 and filter sterilize. 
 
HYR (Histidine, Tyrosine, Arginine) 

 

Histidine   640 mg 
Tyrosine   122 mg 
Arginine   800 mg 
 
Vitamins without choline 

 

Adam’s I solution  12 ml 
Asparagine (5 mg ml-1) 32 ml (stock solution) 
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Distilled water   36 ml 
 
Dissolve and filter sterilize 
 
Adam’s I Cden solution 

 

Biotin (0.5 mg ml-1)  60 μl (stock solution) 
Nicotinic acid   30 mg 
Pyridoxine   35 mg 
Calcium pantothenate  120 mg 
Thiamine hydrochloride 32 mg 
Riboflavin   14 mg 
 
Dissolve in final volume of 200 ml, filter sterilize and store at 4ºC in dark. 
 
SAC solution 

 

Sodium chloride  12 g 
Anhydrous sodium acetate 12 g 
 
Dissolve in final volume of 1 L. 
 
Supplement 

 

3 in 1 salts   60 ml 
Glucose (20%)  120 ml (stock solution) 
Sucrose (50%)   6 ml (stock solution) 
Adenosine (2 mg ml-1) 120 ml (store at room temperature) 
Uridine (2 mg ml-1)  120 ml (store at room temperature) 
 
Filter sterilize 
 
3 in 1 salts 

 

MgCl2.6H2O   100 g 
CaCl2 (anhydrous)  0.5 g 
MnSO4 (0.1 M)  200 μl (stock solution) 
 
Dissolve in final volume of 1 L, autoclave or filter sterilize. 
 
TE-DOC 

 
Tris    50 mM 
EDTA    5 mM 
Sodium deoxycholic acid 0.01% 
 
NAES buffer 

 

Sodium acetate  50 mM, pH 5·1 
EDTA     10 mM 
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SDS    1% 

 
SDS-PAGE gels 

 

10% resolving gel 

 

30% acrylamide mix  6.7 ml 
1M Tris (pH8.8)  7.5 ml 
10% SDS   0.2 ml 
10% ammonium persulphate 0.2 ml 
TEMED   0.008 ml 
Distilled water   5.4 ml 
 
Stacking gel 

 

30% acrylamide mix  0.83 ml 
1M Tris (pH6.8)  0.63 ml 
10% SDS   0.05 ml 
10% ammonium persulphate- 0.05 ml 
TEMED   0.005 ml 
Distilled water   3.4 ml 
 
10X running buffer for SDS-PAGE 

 

Tris base (0.25 M)  30.3 g 
Glycine (1.92 M)  144 g 
SDS (1% )   10 g 
Distilled water   1000 ml  
 
Adjust the pH to 8.3 
 
5X Laemeli buffer 

 

Tris (312 mM, pH 6.8) 3.125 ml of 1M stock 
SDS (10%)   1 g 
Glycerol (20%)  2 ml 
Dithiothretol (50 mM) 0.5 ml 
Bromophenol blue  Add until dark blue 
Distilled water   10 ml 
 
Coomassie brilliant blue stain (CBB) 

 

CBB R-250   0.025 g 
Methanol   40 ml 
Acetic acid   10 ml 
Distilled water   100 ml 
 
Filter through Whatman No 1 paper. 
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Destaining solution 

 

Methanol   40 ml 
Acetic acid   10 ml 
Distilled water   100 ml 
 
Transfer buffer (1x) 

 

Glycine   2.93 g 
Tris    5.81 g 
SDS    0.375 g 
Methanol   200 ml 
 
Dissolve in 1 L of distilled water. 
 
Tris buffered saline (10x TBS) 

 

Tris    24.2 g 
NaCl    80 g 
 
Dissolve in 1 L of distilled water and adjust the pH to 7.6. 
 
1x TBS-Tween 

 

Dilute 10x TBS to 1x TBS and add 0.1% Tween-20. 
 
Protein purification buffers (E. coli) 

 

Buffer B 

 
NaH2PO4 (100 mM )  13.8 g 
TrisCl (10 mM)  1.2 g 
Urea (8M)   480.5 g 
 
Dissolve in 1 L of distilled water and adjust the pH to 8.0 using HCL. 
 

Cell Lysis buffer 

 

NaH2PO4 (50 mM)  6.90 g 
NaCl (300 mM)  17.54 g 
Imidazole (10 mM)  0.68 g 
 
Dissolve in 1 L of distilled water and adjust the pH to 8.0 using NaOH. 
 
Wash buffer 

 

NaH2PO4 (50 mM)  6.90 g 
NaCl (300 mM)  17.54 g 
Imidazole (20 mM)  1.36 g 
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Dissolve in 1 L of distilled water and adjust the pH to 8.0 using NaOH. 
 
Elution buffer 

 

NaH2PO4 (50 mM)  6.90 g 
NaCl (300 mM)  17.54 g 
Imidazole (250 mM)  17 g 
 
Dissolve in 1 L of distilled water and adjust the pH to 8.0 using NaOH 
 
RBC lysis buffer 

 

NH4Cl    8.29 g 
KHCO3   1 g 
EDTA    37.2 mg 
 
Dissolve in 1 L of distilled water, adjust the pH to 7.3. Filter sterilize and store at 4ºC. 
 
PBS / 1% BSA / 0.1% azide 

 

Sterile PBS (1x)  100 ml 
BSA    1 g 
Azide    0.1 g 
 
Store at 4ºC. 
 
Buffers for ELISA 

 

TSA buffer 
NaCl (132 mM)  7.72 g 
Tris-HCl (125 mM)  3.03 g 
NaN3    0.5 g 
 
Dissolve in 1 L of distilled water and adjust the pH to 7.5. 
 
10x ELISA wash buffer 

 

NaCl    43.83 g 
Tris    3.03 g 
Triton-X-100   5 ml 
HCl (1M)   18 ml 
 
Dissolve in 5 L of distilled water and adjust the pH to 7.6. 
 
BSA-Tween buffer 

 

NaCl    8 g 
Triethanolamine (0.25 M)     50 ml 
Tween-20   0.5 ml 
NaN3    200 mg 
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BSA    200 mg 
 
Dissolve in 1 L of distilled water and store in dark. 
 
Enzyme diluent (for secondary antibody) 

 

NaCl    8 g 
Triethanolamine (0.25 M) 50 ml 
500 x Mg/Zn   2 ml 
BSA    200 mg 
NaN3    200 mg 
 
Dissolve in 1 L of distilled water  
 
500 x Mg/Zn (500 mM MgCl2 / 1.25 mM ZnCl2) 

1 M MgCl2 in 1 M HCL 50 ml 
0.1 M ZnCl2 in 1 M HCL 1.25 ml 
Add 0.1 M HCL to a final volume of 100 ml. 
 
Paraformaldehyde preparation 

 

Paraformaldehyde  3 g 
CaCl2 (100 mM)  100 µl 
MgCl2 (100 mM)  100 µl 
PBS    100 ml 
 
Potassium phosphate buffer 

 

50 mM potassium phosphate buffer, pH 7.2, supplemented with 1 mM magnesium 
chloride 
 
 
 




