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ABBREVIATIONS
AED Antiepileptic drug
COX Cytochrome oxidase
MDDS mtDNA depletion syndrome
MELAS Mitochondrial encephalomyopathy,

lactic acidosis, and stroke-like
episodes

MEMSA Myoclonus, epilepsy, myopathy,
sensory ataxia

MERRF Myoclonic epilepsy with ragged red
fibres

MILS Maternally inherited Leigh syndrome
MIRAS Mitochondrial recessive ataxia

syndrome
NARP Neurogenic muscle weakness,

ataxia, retinitis pigmentosa
mtDNA Mitochondrial DNA
OXPHOS Oxidative phosphorylation
SNHL Sensorineural hearing loss

Mitochondrial respiratory chain disorders are relatively common inborn errors of energy

metabolism, with a combined prevalence of one in 5000. These disorders typically affect tissues

with high energy requirements, and cerebral involvement occurs frequently in childhood, often

manifesting in seizures. Mitochondrial diseases are genetically heterogeneous; to date, mutations

have been reported in all 37 mitochondrially encoded genes and more than 80 nuclear genes. The

major genetic causes of mitochondrial epilepsy are mitochondrial DNA mutations (including those

typically associated with the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like

episodes [MELAS] and myoclonic epilepsy with ragged red fibres [MERRF] syndromes); mutations

in POLG (classically associated with Alpers syndrome but also presenting as the mitochondrial

recessive ataxia syndrome [MIRAS], spinocerebellar ataxia with epilepsy [SCAE], and myoclonus,

epilepsy, myopathy, sensory ataxia [MEMSA] syndromes in older individuals) and other disorders

of mitochondrial DNA maintenance; complex I deficiency; disorders of coenzyme Q10 biosynthe-

sis; and disorders of mitochondrial translation such as RARS2 mutations. It is not clear why some

genetic defects, but not others, are particularly associated with seizures. Epilepsy may be the pre-

senting feature of mitochondrial disease but is often part of a multisystem clinical presentation.

Mitochondrial epilepsy may be very difficult to manage, and is often a poor prognostic feature. At

present there are no curative treatments for mitochondrial disease. Individuals with mitochondrial

epilepsy are frequently prescribed multiple anticonvulsants, and the role of vitamins and other

nutritional supplements and the ketogenic diet remain unproven.

Mitochondria are extremely dynamic subcellular organelles
with a multitude of functions. The best known of these func-
tions is ATP generation by the oxidative phosphorylation
(OXPHOS) system, but mitochondria also have important
roles in intracellular calcium homeostasis, generation of reac-
tive oxygen species, regulation of apoptosis (programmed cell
death), and cell-specific functions, such as neurotransmitter
synthesis in neuronal cells. The term ‘mitochondrial disease’
refers to any disorder affecting the respiratory chain and
OXPHOS system, a series of five multisubunit enzyme com-
plexes (complexes I–V) embedded in the inner mitochondrial
membrane.1 Mitochondrial disorders are common, with an
estimated birth prevalence of one in 5000,2 although recently
we have demonstrated that one in 500 children has a patho-
genic mitochondrial DNA (mtDNA) mutation.3 Mitochon-
dria are unique amongst cellular organelles in that they
contain their own genetic material, the small (�16.6kb), circu-
lar mtDNA molecule. This small genome is exclusively mater-
nally inherited and is present inside the mitochondria of cells
in multiple copies. The 37 mitochondrial genes encode 13

proteins (all components of the mitochondrial respiratory
chain ⁄ OXPHOS system) and 24 RNA molecules necessary
for the intramitochondrial synthesis of these 13 proteins. Cor-
rect coordinated expression of the 13 proteins encoded by the
mitochondrial genome is essential for efficient mitochondrial
energy production (Fig. 1), and also requires the contribution
of many of the �1500 nuclear-encoded proteins that consti-
tute the mitochondrial proteome.4

This review discusses the clinical epilepsy phenotypes
observed in mitochondrial disease together with the biochemi-
cal classification, molecular genetics, and management of
mitochondrial epilepsies.

EPILEPSY PHENOTYPES, CLINICAL RECOGNITION,
AND DIAGNOSIS OF MITOCHONDRIAL DISEASE
The exact prevalence of mitochondrial epilepsy is not known,
but seizures have been reported to occur in �35 to 60% of
individuals with biochemically confirmed mitochondrial
disease.5,6 In another study, one-third of individuals with
refractory seizures were found to have biochemical evidence of
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mitochondrial dysfunction.7 Few reports have systematically
examined epilepsy phenotypes in the context of mitochondrial
disease.6,8,9 In one series of 48 individuals with epilepsy and
confirmed mitochondrial respiratory chain defects, two had
Otahara syndrome, 10 had West syndrome, 12 had Lennox–
Gastaut syndrome, two had Landau–Kleffner syndrome, 14
had generalized epilepsy, and eight had partial epilepsy.9

Another study, of 56 children with mitochondrial disease and
seizures, classified the types of epilepsy observed into six
groups according to age at onset and major seizure type: (1)
neonatal refractory status and multiorgan failure; (2) neonatal
myoclonic epilepsy; (3) infantile spasms; (4) refractory ⁄ recur-
rent status epilepticus; (5) epilepsia partialis continua; and (6)
myoclonic epilepsy.8 Although seizures may be the presenting
symptom of mitochondrial disease,10 the first seizures were
preceded by other symptoms in more than 80% of cases in this
series.8 Initial symptoms may include failure to thrive, devel-
opmental delay, ataxia, and evidence of multiorgan involve-
ment. El Sabbagh et al.8 reported that 60% of their cases had
several seizure types, emphasizing the complexity of this group
of disorders.

Clinical recognition of mitochondrial epilepsy is difficult.
Explosive onset of focal epilepsy, epilepsia partialis continua,
or status epilepticus should arouse suspicion of Alpers syn-
drome, particularly in cases in which predominant occipital
epileptiform discharges are observed on the electroencephalo-
gram.11 Electroencephalographic changes are not specific in
other mitochondrial syndromes. Elevation of lactate in blood
and ⁄ or cerebrospinal fluid may be a clue, but normal values do
not exclude mitochondrial disease. Elevated alanine in the
plasma amino acid profile is suggestive of persistent lactic

acidosis. Involvement of other organs, such as sensorineural
hearing loss (SNHL), pigmentary retinopathy, cardiomyopathy
or cardiac conduction defects, diabetes mellitus, liver disease,
and renal tubulopathy, may also be useful pointers to an
underlying mitochondrial disorder.

There is no single criterion standard diagnostic test for
mitochondrial disease. Coordinated investigation across a
range of testing modalities, including neuroimaging, meta-
bolite profiling, and histological, biochemical, and genetic
analysis of muscle (or sometimes liver) biopsy, is often neces-
sary in order to make a definitive diagnosis. Muscle histology
may be normal, or may reveal ragged red fibres and cyto-
chrome oxidase (COX)-negative fibres. Both of these changes
point to a defect of mtDNA, which may be a deletion or point
mutation, or quantitative defect (mtDNA depletion). In very
specific cases, such as MELAS (mitochondrial encephalo-
myopathy, lactic acidosis, and stroke-like episodes) or Alpers
syndromes, it may be possible to make a genetic diagnosis
(mtDNA mutation m.3243A>G or POLG mutations
respectively) in DNA extracted from blood without the need
for tissue biopsy. In most cases, however, genetic investigations
are directed by the biochemical findings in the muscle biopsy.

THE GENETIC BASIS OF MITOCHONDRIAL EPILEPSY
Mitochondrial diseases may be classified by the clinical pheno-
type or by the biochemical defect identified in the skeletal
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Figure 1: Molecular mechanisms leading to mitochondrial epilepsy. mtDNA, mitochondrial DNA; OXPHOS, oxidative phosphorylation.

What this paper adds
• This review provides a comprehensive list of the nuclear gene causes of mito-

chondrial epilepsy.
• An overview of the therapeutic options available to treat mitochondrial epi-

lepsy is provided.
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muscle (or another affected tissue). This may be an isolated
deficiency of a single respiratory chain complex (most com-
monly complex I or complex IV) or multiple defects affecting
several enzyme complexes. Another classification system is
according to the underlying genetic defect. A genetic classifi-
cation system is preferable for a number of reasons. The same
biochemical defect may be caused by many different genetic
defects, for example mutations in more than 30 genes have
been associated with isolated complex I deficiency. Further-
more, normal respiratory chain activities have been observed
in individuals with genetically proven mitochondrial disease.
However, at present, genetic classifications are inevitably
incomplete since the responsible mutation is identified in only
20 to 25% of childhood cases using routine diagnostic tests,
although in specialized research laboratories focusing on
highly selected subgroups of individuals and using the latest
next-generation sequencing technologies the diagnostic rate
may approach 50%.12 This review will take a combined bio-
chemical and genetic approach to the classification of mito-
chondrial epilepsy (Fig. 1 and Table I).

Isolated complex I deficiency
Complex I deficiency is the most commonly identified bio-
chemical defect in most centres, accounting for 25 to 30% of all
mitochondrial disease presenting in childhood. The relative
proportion of complex I deficiency in mitochondrial epilepsy
may be even higher.9 Mutations have been reported in all seven
mtDNA-encoded subunits of complex I, presenting with sei-
zures in many cases, for example in individuals with mutations
in the ND5 subunit, which appear to be particularly associated
with Leigh syndrome (subacute necrotizing encephalomyelop-
athy) or MELAS syndrome.13,14 Mutations in mitochondrial
transfer RNA (tRNA) genes and large-scale rearrangements of
the mtDNA may also lead to isolated complex I deficiency, and
overall changes in mtDNA account for 20 to 25% of cases of
complex I deficiency. Mutations have been reported in 13 of
the 38 nuclear-encoded subunits of the enzyme in another 20
to 25% of individuals with complex I deficiency. Of these
nuclear subunits, epilepsy has been associated with mutations
in NDUFV1, NDUFS4, NDUFS8, and NDUFA1.15–18 The
remaining �50% of complex I deficiency is believed to be
caused by mutations in proteins needed for assembly and ⁄ or
proper functioning of the enzyme. Nine assembly genes have
so far been associated with complex I deficiency, including
three new genes reported in the last few months of 2010.12,19,20

Epilepsy is a feature of mutations in five of the nine known
complex I assembly factors: NDUFAF2, NDUFAF3 ⁄ C3orf60,
NDUFAF4 ⁄ C6orf66, C8orf38, and FOXRED1.4,19,21–23

Myoclonic epilepsy appears to be particularly associated with
complex I subunit mutations, both mtDNA and nuclear
encoded, and has also been reported in some of the complex I
assembly defects (Table I). Myoclonic seizures were apparently
responsive to antiepileptic drugs (AEDs) in two individuals
with nuclear-encoded complex I deficiency,18,19 which is in
marked contrast to the seizures associated with other mito-
chondrial diseases, in particular POLG mutation-related
epilepsy, which is typically resistant to multiple AEDs.

Isolated complex II deficiency
Complex II deficiency is a rare disorder and usually presents
as Leigh syndrome caused by mutations in the SDHA subunit,
although recently two assembly factors have been identified.
Epilepsy appears to be unusual in complex II deficiency, but
may still occur; for example, a 9-year-old female with Leigh
syndrome caused by SDHA mutations had focal and general-
ized seizures.24

Isolated complex III deficiency
Complex III deficiency is also rare. Mutations have been
reported in cytochrome b, the only mtDNA-encoded subunit
of the enzyme, and in two of the 10 nuclear-encoded subunits.
Only one complex III assembly factor, BCS1L, has been char-
acterized in humans, and mutations in the BCS1L gene are
associated with a broad spectrum of disease, ranging from the
severe neonatal-onset growth retardation, aminoaciduria, cho-
lestasis, iron overload, lactic acidosis, and early death (GRAC-
ILE) syndrome to the milder Björnstad syndrome (congenital
SNHL with pili torti). Seizures have occasionally been
reported in children with BCS1L mutations, but are not recog-
nized to be a major feature of complex III deficiency. Seizures
were documented in two unrelated individuals with BCS1L
mutations characterized by a progressive encephalopathy with
early-onset developmental delay and spastic quadriplegia,
associated with lactic acidosis, cerebral atrophy, and basal
ganglia changes on magnetic resonance imaging.25 One of
these two individuals also had SNHL and brittle hair reminis-
cent of Björnstad syndrome, indicating the clinical continuum
of BCS1L mutation-related disease.

Isolated complex IV deficiency
Complex IV (COX) deficiency is a relatively common cause of
mitochondrial disease, representing �25% of childhood-onset
cases. Mutations affecting subunits of this enzyme are rela-
tively rare, and are only occasionally associated with epi-
lepsy.26 As with complex I deficiency, most individuals are
thought to have mutations in genes encoding assembly factors
of the enzyme. One of the most frequent presentations of
COX deficiency is Leigh syndrome, which in approximately
50% of cases is caused by mutations in the gene coding for the
SURF1 assembly factor.27,28 Although seizures occur in
approximately 40% of individuals with Leigh syndrome,29,30

they appear to be a rare feature of SURF1 deficiency.28 Muta-
tions in the genes coding for seven other assembly factors for
COX have been linked to human disease,31 only occasionally
associated with seizures (Table I). For example, focal and
gelastic seizures were noted in two siblings with developmen-
tal delay, hemiplegia, and asymmetrical brain atrophy caused
by mutations in FASTKD2, which encodes a protein of
unknown function that may be involved in apoptosis.32 Epi-
lepsy has also been reported in some individuals with hyper-
trophic cardiomyopathy and encephalopathy caused by
mutations in the SCO2 assembly factor, which is part of the
molecular system responsible for inserting copper prosthetic
groups into the COX holoenzyme. Seizures were documented
in seven of 10 individuals with SCO2 mutations in one series,
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suggesting that seizures may be a relatively frequent occur-
rence in this condition.33 Initial presentation was with cardio-
respiratory symptoms related to hypertrophic
cardiomyopathy; seizures occurred subsequently. Seizures
have also occasionally been reported in individuals with muta-
tions in the COX10 and COX15 genes, which are necessary for
the biosynthesis of the haem prosthetic group of COX.34,35

Isolated complex V deficiency
Activity of the mitochondrial ATP synthase (complex V) can
only be reliably assayed in fresh tissue. This assay is offered in
only a few specialized centres, and so complex V deficiency is
probably underdiagnosed. Maternally inherited Leigh syn-
drome (MILS) is caused relatively frequently by mutations in
the mtDNA-encoded ATP6 subunit of complex V, in particu-
lar the m.8993T>G mutation, and may be associated with sei-
zures.36 The m.8993T>G mutation has been linked to
heterogeneous clinical phenotypes, which are broadly related
to the mutant load. Mutation loads of more than 90% are
associated with MILS, whereas levels of around 70 to 90%
may present as NARP (neurogenic muscle weakness, ataxia,
retinitis pigmentosa) syndrome.37 An extensive clinical and
molecular survey of Leigh syndrome in Australia suggested
that the m.8993T>G mutation is a relatively common cause of
Leigh syndrome with seizures.29 Heterogeneous seizure types,
including myoclonic and generalized tonic–clonic seizures,
may occur in both NARP and MILS. Infantile spasms may be
the presenting feature of MILS and are usually responsive to
anticonvulsant medications. Other clinical features include
hypotonia, spasticity, dystonia, ataxia, movement disorders,
and peripheral neuropathy. The mutation load is usually high
in blood in both MILS and NARP, so molecular testing in
blood is the preferred diagnostic method for these conditions.
MILS is usually rapidly progressive, with death from respira-
tory failure in early childhood. NARP is associated with a
more indolent course with survival well into adult life.
Nuclear-encoded defects of complex V have so far been asso-
ciated primarily with hypertrophic cardiomyopathy pheno-
types, although seizures have occasionally been reported
(Table I).38,39

Multiple respiratory chain defects
Approximately 25% of children with mitochondrial disease
present with multiple OXPHOS defects, involving two or
more of the enzyme complexes. Combined OXPHOS defi-
ciencies may occur for a number of reasons, including disor-
ders of mtDNA maintenance, disorders of mitochondrial
translation, and defective biosynthesis of coenzyme Q10

(Table I).

Disorders of mitochondrial DNA maintenance
The mtDNA depletion syndrome (MDDS) is characterized
by a severe quantitative reduction in the mtDNA copy num-
ber. Residual mtDNA levels in affected tissues may be as low
as 1 to 2% of those observed in comparison healthy individu-
als.40 MDDS is most frequently caused by mutations in
the POLG gene, encoding the catalytic subunit of the DNA
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polymerase gamma, the only polymerase able to replicate
mtDNA. Among our cohort of 26 individuals with MDDS
who had residual mtDNA less than 35% of healthy compari-
son values, we found POLG mutations in 19 cases, many of
whom experienced seizures11,41 (S. Rahman and J-W. Taan-
man, unpublished data). The clinical spectrum of hepatocere-
bral MDDS caused by POLG mutations overlaps that of the
Alpers syndrome of progressive neuronal degeneration with
epilepsy. Individuals with Alpers syndrome typically present
with focal clonic and complex focal seizures. Epilepsia partialis
continua is also frequently seen. The initial electroencephalo-
gram may be characteristic, with unilateral occipital rhythmic
high-amplitude slow activity and superimposed (poly)spikes,
although subsequently discharges tend to generalize.11 Other
clinical features in Alpers syndrome include global develop-
mental delay and regression, progressive microcephaly, corti-
cal visual impairment with abnormal visual-evoked potentials,
and evidence of liver disease such as elevated hepatic transam-
inases. Magnetic resonance brain scans may be normal or
show non-specific changes such as progressive cerebral atro-
phy. Alpers syndrome was initially diagnosed neuropathologi-
cally; histological features include spongiosis, neuronal loss,
and astrocytosis affecting the cerebral cortex, particularly the
calcarine cortex, which explains the visual loss in this condi-
tion.42 Liver histology in Alpers syndrome may reveal steato-
sis, hepatocyte loss, bile duct proliferation, and fibrosis,
frequently with frank cirrhosis.42 More than 150 mutations
have been reported in the POLG gene, but a handful of these
have been particularly associated with Alpers syndrome. The
two most prevalent mutations are A467T and W748S, which
are present at a frequency of approximately 1% in some white
populations.43 A rapid molecular diagnosis of Alpers syndrome
may be achieved in some cases by screening for selected ‘com-
mon’ mutations in DNA extracted from blood, and progress-
ing to full POLG sequence analysis if clinically indicated.

Older individuals with POLG mutations may have multiple
mtDNA deletions rather than depletion, but seizures can still
be the predominant clinical problem. Various acronyms have
been coined for the adolescent ⁄ adult-onset POLG mutation
disorders associated with myoclonus ⁄ epilepsy, including
SCAE, MIRAS, and MEMSA.44 Individuals with milder or
heterozygous POLG mutations may present with progressive
external ophthalmoplegia without cerebral involvement.43

Eight other genes have also been reported to cause
MDDS,40 and seizures are often associated with mutations in
these genes. In particular, recessive PEO1 (C10orf2) mutations
affecting the Twinkle helicase involved in mtDNA replication
can cause a severe epileptic encephalopathy.45 This was ini-
tially described as infantile-onset spinocerebellar ataxia, a
Finnish heritage disease characterized by severe neurodegen-
eration with ataxia, hypotonia, athetoid movement disorder,
and SNHL in addition to severe epilepsy,46 but recessive
PEO1 mutations have subsequently been reported in other
ethnic groups.47 The clinical phenotype associated with PEO1
mutations overlaps that of Alpers syndrome caused by POLG
mutations. Seizures are also a feature of MDDS caused by
mutations in RRM2B, encoding the p53R2 subunit of ribonu-

cleotide reductase, and SUCLA2, encoding the beta subunit of
the Krebs cycle enzyme succinyl-CoA synthase, both of which
are required to maintain nucleotide pools for mtDNA synthe-
sis.48,49

Disorders of mitochondrial translation
Disorders affecting the intramitochondrial synthesis of the 13
mtDNA-encoded OXPHOS proteins are an increasingly rec-
ognized cause of mitochondrial disease. The most frequent
disorders of mitochondrial translation affect the mitochondrial
tRNA genes, either as point mutations such as m.3243A>G
and m.8344A>G, causing the MELAS and MERRF syn-
dromes respectively,50,51 or by large-scale deletion involving
several tRNA genes, as in the Pearson marrow pancreas and
Kearns–Sayre syndromes. MERRF syndrome is one of the
more frequent causes of progressive myoclonic epilepsy,52 and
has also been associated with other mitochondrial tRNA
mutations.53 Myoclonus and focal and generalized seizures
may all occur in MERRF. Other clinical features include
myopathy, ataxia, peripheral neuropathy, hearing loss, demen-
tia, and multiple lipomas. Most cases have the common point
mutation m.8344A>G in the MTTK gene, but MERRF has
also been linked to other mtDNA point mutations (http://
www.mitomap.org). MELAS syndrome has been associated
with several mtDNA point mutations, although approximately
80% of cases have the common m.3243A>G mutation in the
MTTL1 gene (http://www.mitomap.org). Focal seizures may
be the presenting feature,13 but generalized epilepsy also
occurs. Other clinical features of the MELAS syndrome
include migraine, recurrent vomiting, and stroke-like
episodes which may cause cortical blindness, hemiparesis, or
hemianopia.

More recently, nuclear-encoded defects of mtDNA transla-
tion have been reported,54 and these may also be associated
with epilepsy. Mutations of RARS2, an enzyme required for
aminoacylaton of the mitochondrial tRNA for arginine,
appear to be particularly associated with intractable epilepsy.55

Although multiple respiratory chain defects were present in
the index case of the first reported family, one sibling had iso-
lated complex I deficiency while another had isolated COX
deficiency.55 Furthermore, respiratory chain activities were
normal in an unrelated case.56 Severe lactic acidosis and pon-
tocerebellar hypoplasia are present at birth, and the clinical
course is of progressive neurological decline with severe
intractable epilepsy and profound developmental delay.
RARS2 mutations should be considered in any child with pon-
tocerebellar hypoplasia and initial lactic acidosis, regardless of
the muscle respiratory chain activities.57 Epilepsy has also
been reported in an individual with mutations in TFSM
encoding the mitochondrial translation elongation factor
EFTs.58

Coenzyme Q10 deficiency
Defective biosynthesis of the lipophilic electron carrier coen-
zyme Q10 (CoQ10) typically presents with combined defi-
ciency of complexes I + III or II + III59 and is frequently
associated with seizures. The first phenotype reported to be
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caused by CoQ10 deficiency was of recurrent rhabdomyolysis
associated with an encephalopathy with prominent seizures.60

The molecular cause of this type of CoQ10 deficiency remains
unknown, but seizures are also a feature of other phenotypes
of CoQ10 deficiency in which the genetic basis has recently
been defined. For example, a multisystem disorder of infancy
characterized by encephalomyopathy and renal involvement
has recently been linked to deficiencies of the CoQ10 biosyn-
thetic enzymes encoded by COQ2, PDSS2, and COQ9.61–64

Individuals with COQ6 mutations present with isolated ste-
roid-resistant nephrotic syndrome, which may be associated
with seizures, ataxia, and SNHL.65 In other individuals, muta-
tions in the kinase ADCK3 cause CoQ10 deficiency with cere-
bellar ataxia, generalized seizures, and epilepsia partialis
continua.66,67 Although rare, it is important to recognize dis-
orders of CoQ10 biosynthesis, since at present they represent
the most readily treatable subgroup of mitochondrial disease.
To this end, we have recently published a diagnostic algorithm
to aid in the clinical diagnosis of CoQ10 deficiency.59

Other mitochondrial disorders associated with epilepsy
Other relatively recently described mitochondrial diseases
include disorders of mitochondrial dynamics (fission and
fusion) and of solute transport across the inner mitochondrial
membrane. Mutations have been reported in the mitochon-
drial glutamate carrier (encoded by the SLC25A22 gene) in
some infants with neonatal or early infantile-onset epileptic
encephalopathy with burst suppression (Otahara syn-
drome).68,69 All individuals reported so far have had a homo-
geneous phenotype, with myoclonic and focal seizures from
the first days of life, associated with microcephaly, hypotonia,
and profound developmental delay. Electroencephalography
demonstrated burst suppression, and the electroretinogram
and visual-evoked responses were also abnormal. Magnetic
resonance brain imaging showed hypoplasia of the cerebellum
and corpus callosum, with abnormal gyration of temporopari-
etal regions and hypomyelination of the temporal poles.
Respiratory chain activities were normal in cultured skin fibro-
blasts from one case. Muscle respiratory chain activities have
not been reported, but it is possible that they would also be
normal as SLC25A22 appears to be expressed exclusively in
the brain.68

PATHOGENESIS OF MITOCHONDRIAL EPILEPSY
The pathomechanisms leading to epilepsy in mitochondrial
disorders are not clear. Evidence from mouse models has
shown that specific inhibitors of the respiratory chain may
induce seizures. Subcutaneous injection of potassium cyanide
(KCN, inhibits COX) resulted in dose-dependent tonic sei-
zures in treated mice, whilst 3-nitropopionate (inhibitor of
complex II) induced clonic seizures, again in a dose-dependent
manner.70,71 Energy failure undoubtedly plays a role but does
not explain the phenotypic variability of mitochondrial epi-
lepsy, nor why epilepsy is not a feature of all mitochondrial
disorders. Other aspects of mitochondrial dysfunction, such as
reactive oxygen species production, abnormal calcium han-
dling, and increased apoptosis, are also likely to contribute to

seizure generation. Brain lipid peroxidation levels were
increased in the KCN mouse model, supporting a role for
reactive oxygen species formation in the pathogenesis of sei-
zures in these animals.70 There is some evidence that seizures
themselves can trigger mitochondrial dysfunction,72 implicat-
ing a vicious spiral in the aetiology of mitochondrial epilepsy
(Fig. 2). It is also possible that mitochondrial epilepsy may be
precipitated by an autoimmune response. For example, a male
who presented with acute encephalopathy and pathogenic
POLG mutations had evidence of acute disseminated encepha-
lomyelitis on histological examination of a brain biopsy.73

Finally, in occasional individuals with mitochondrial disease,
seizures may be secondary to electrolyte disturbances arising
from severe renal tubulopathy.

MANAGEMENT OF MITOCHONDRIAL EPILEPSY
Mitochondrial epilepsy can be very difficult to manage. It is
important to identify and treat disorders of CoQ10 biosynthe-
sis, since these remain the only readily treatable causes of
mitochondrial epilepsy.59 Recognition and treatment of elec-
trolyte disturbances caused by renal tubulopathy is also criti-
cal. In all other individuals, symptomatic treatment remains
the mainstay of management. The choice of AED depends on
the seizure type. Sodium valproate is well known to be a
broad-spectrum AED effective against many types of partial
and generalized seizures. However, there is evidence that val-
proate may worsen mitochondrial disease symptoms in both
mtDNA and nuclear-encoded mitochondrial diseases. For
example, case reports have documented worsening of seizures
and triggering of stroke-like episodes in MELAS syndrome
and disease progression in individuals with other mtDNA
mutations and with COX deficiency.74–77 Individuals at great-
est risk of valproate-related toxicity are those with POLG
mutations, in whom the drug may trigger fulminant and fatal
hepatic failure.11,78,79 For this reason, it is advisable to avoid
valproate in individuals in whom there is a strong suspicion of
mitochondrial disease, and especially in cases where patho-
genic POLG mutations have been identified. If valproate needs
to be considered, for example because of lack of seizure con-
trol using alternative AEDs, then there is some evidence that
prophylactic co-treatment with L-carnitine may ameliorate the

Energy
failure

Mitochondrial

dysfunction

Cell
death Epilepsy

Vicious spirals

Figure 2: Pathogenesis of mitochondrial epilepsy.
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adverse effects of valproate.80 Levetiracetam is the first choice
for myoclonus in MERRF syndrome,81 while lamotrigine may
exert a neuroprotective effect.82 However, there is no single
AED that is effective in all cases of mitochondrial epilepsy,
and it is important to tailor therapy to the individual. In many
cases, multiple AEDs are needed to achieve seizure control,
and in some individuals (particularly those with Alpers syn-
drome) it may not be possible to control seizures in the termi-
nal stages of the disease.

Vigilant monitoring for and treatment of multisystem dis-
ease manifestations is essential. Interventions which may be
required include hearing aids, insulin, thyroxine, and drugs for
cardiomyopathy. Studies in Japanese individuals with the
m.3243A>G mutation have suggested that arginine may
reduce the severity and frequency of stroke-like episodes in
individuals with MELAS syndrome.83 There is some anec-
dotal evidence that seizures in the Kearns–Sayre syndrome
may be related to white matter lesions associated with cerebral
folate (5-methyltetrahydrofolate) deficiency, and that folinic
acid supplementation may lead to symptomatic benefit in
these individuals.84 The role of other vitamins and nutritional
supplements is not clear, and so far has not been supported by
clinical trials.85 However, the prognosis for mitochondrial epi-
lepsy is extremely poor, and there is clearly an urgent need for
novel treatments for these individuals. A fatal outcome was
observed in 45% (22 ⁄ 56) of a French cohort, and 50% of these
individuals died within 9 months of epilepsy onset.8

The ketogenic diet is a high-fat, low-carbohydrate diet that
aims to stimulate fatty acid utilization by mitochondrial beta-
oxidation, with subsequent formation of ketone bodies to pro-
vide an alternative energy source for brain and other tissues.
Ketone bodies are metabolized to acetyl-CoA, which feeds
into the Krebs cycle and thence to the respiratory chain ⁄ OX-
PHOS system to generate ATP, and may at least partially
bypass complex I. Preliminary preclinical studies have sug-
gested that ketogenic diet may be beneficial in a subgroup of
mitochondrial disease, namely those with mtDNA deletions.
A study in which cultured cells (transmitochondrial cybrids)
harbouring a heteroplasmic mtDNA deletion were grown in a
ketone-rich culture medium devoid of glucose demonstrated
that the ketogenic diet favoured wild-type over mutant
mtDNA, leading to a reduction in the proportion of deleted
mtDNA and functional rescue of the respiratory chain defect
in these cells.86 The authors proposed that ketogenic diet
treatment might be beneficial for individuals with heteroplas-
mic mtDNA deletions. A more recent study investigated the
effects of ketogenic diet in the ‘deletor’ mutant mouse.87 This
is a transgenic mouse harbouring a mutation in the Twinkle
helicase, leading to the accumulation of multiple mtDNA
deletions and a late-onset myopathy.88 This study showed
reduction in some features of mitochondrial disease in the
mice, particularly with presymptomatic initiation of ketogenic
diet.

A number of case reports have described ketogenic diet in
the treatment of children with mitochondrial disease,89 but
few studies have examined the effects of ketogenic diet in a
more systematic way. One retrospective study used ketogenic
diet in 24 children with respiratory chain defects and epilepsy
and reported that 50% became seizure free on ketogenic diet.9

However, duration of follow-up and long-term outcome for
these individuals were not reported. Another retrospective
study followed 14 individuals with confirmed respiratory chain
defects treated with a classical ketogenic diet for at least
6 months.90 Eight individuals appeared to benefit from keto-
genic diet in terms of cessation or dramatic reduction of
seizures. Significant side effects were seen, with one individual
experiencing persistent metabolic acidosis and two developing
recurrent symptomatic hypoglycaemia that resulted, in one, in
the ketogenic diet being withdrawn and, in the other, prednis-
olone treatment to maintain blood glucose. Furthermore, two
individuals died as a result of disease progression despite treat-
ment, including one who became seizure free on the ketogenic
diet. In a third study, some individuals benefited from a keto-
genic diet, but no dramatic improvements were observed.8

Overall, there is a suggestion that, although seizure frequency
may be reduced on a ketogenic diet, the diet does not appear
to influence the relentlessly progressive course of mitochon-
drial disease in many individuals. It is not clear whether some
subgroups of mitochondrial disease may respond better than
others to a ketogenic diet. Formal clinical trials are needed,
with the aim of determining which individuals are likely to
benefit from ketogenic diet.

CONCLUSION
In summary, seizures occur frequently in mitochondrial dis-
ease. They may be the presenting feature but are often part of
a multisystem presentation. Mitochondrial epilepsies are bio-
chemically and genetically heterogeneous, but some of the
more common causes are mtDNA mutations and mutations in
POLG. A rapidly increasing number of nuclear gene defects
have been linked to mitochondrial epilepsy (Table I). The
pathogenesis of mitochondrial epilepsy remains poorly under-
stood, contributing to the immense difficulties in treating this
condition. Epilepsy is a poor prognostic sign in mitochondrial
disease, and there is an urgent need for formal clinical trials of
candidate treatments, including the ketogenic diet and novel
therapeutic agents.
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