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Abstract

Longitudinal data can be used to estimate transition intensities between
healthy and unhealthy states prior to death. An illness-death model for his-
tory of stroke is presented where time-dependent transition intensities are
regressed on a latent variable representing cognitive function. The change of
this function over time is described by a linear growth model with random
effects. Occasion-specific cognitive function is measured by an item response
model for longitudinal scores on the Mini-Mental State Examination, a ques-
tionnaire used to screen for cognitive impairment. The illness-death model
will be used to identify and to explore the relationship between occasion-
specific cognitive function and stroke. Combining a multi-state model with
the latent growth model defines a joint model which extends current statis-
tical inference regarding disease progression and cognitive function. Markov
chain Monte Carlo methods are used for Bayesian inference. Data stem from
the Medical Research Council Cognitive Function and Ageing Study in the
UK (1991-2005).
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1 Introduction

The Medical Research Council Cognitive Function and Ageing Study (MRC CFAS,

[1]) has longitudinal information on progression of cardiovascular diseases and infor-

mation on cognitive function as measured by the Mini-Mental State Examination

(MMSE, [2]). One of the interests is to evaluate whether cognitive function can be

identified as a risk factor for cardiovascular diseases.

With regard to cardiovascular diseases, we use data on stroke. Occasion-specific

cognitive function is modeled as a latent variable and its effect as a risk factor for

stroke is investigated by combining a multi-state model for stroke and survival with

a growth model for cognition. The relevance of this joint model will be illustrated by

addressing survival after a stroke given various trends in cognitive decline, and by

estimating the probability of having a stroke in a specified time interval conditional

on an MMSE score at the start of the interval and survival up to the end of the

interval. In both these cases, the change of cognitive function has an effect and thus

illustrates the importance of modeling cognitive function jointly with the multi-state

process.

The Bayesian framework is used for statistical inference. It allows individual-

specific parameters for cognitive function to be estimated using information from

both the multi-state data and the longitudinal MMSE data. Combining the growth

model for latent cognitive function with a multi-state model has not been described

before, and seems a promising way to handle questionnaire data and related latent

variable information in an investigation of a multi-state process.

A continuous-time multi-state model can be used to describe disease progression

over time. If one of the states is the death state, the model is called an illness-death

model. In the analysis of the CFAS data, individuals are classified in state one if

they never had a stroke, and in state two if they experience one or more strokes.

State three is the death state. An intensity (hazard) of a transition from one state

to another can be linked via a regression equation to risk factors for the transition

such as age or sex. We will investigate the effect of cognitive function by modeling

it as a risk factor for the transitions in the three-state model for stroke.

Frequentist continuous-time multi-state models can be found in Kalbfleisch and

Lawless [3] and Jackson et al. [4]. Bayesian inference for parametric multi-state

models is discussed in Sharples [5], Welton and Ades [6], Pan, Wu,Yen, and Chen
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[7], and Van den Hout and Matthews [8]. Semi-parametric Bayesian methodology

can be found in Kneib and Hennerfeind [9].

When risk factors are manifest and time-dependent, and a piecewise-constant

approximation of the values seems reasonable, frequentist multi-state models can be

fitted by using existing methodology. Jackson [10] provides an R package that can fit

a broad range of multi-state models. Prediction in the presence of time-dependent

risk factors is, however, not straightforward as the prediction of the multi-state

process depends on the distribution of the risk factor.

Specific to the application, cognitive function is a latent time-dependent risk

factor and we assume that changes in the function over time can be described by

a random-effects linear growth model. Typically, the MMSE response data consist

of dichotomous and polytomous item scores. Therefore, a generalized item response

theory model will be used for the mixed-response types longitudinal MMSE data.

The longitudinal item-based MMSE data are used to measure individual continuous-

valued cognitive function scores.

An item response theory (IRT) model [11] assumes that certain observed discrete

values are manifestations of an underlying latent construct. With regard to the

MMSE, the discrete values are responses to a series of binary questions and one

question with five ordered categories, and represent aspects of cognitive functioning.

The time-dependent IRT model for longitudinal MMSE data relates the probability

of the discrete values to the underlying occasion-specific cognitive function to explain

MMSE performance.

Traditionally, the MMSE sum score is used as an estimate of cognitive function.

However, using IRT has several advantages. Firstly, item response data contain

more information than sum scores and this allows the IRT model to parameterize

the items individually. Secondly, the IRT model is better equipped to handle missing

data. Thirdly, IRT is more flexible with regard to incomplete designs and different

number of items.

A specific problem with the MMSE sum score is that there is often a ceiling

effect: many observed sum scores are close to the upper bound. Hence, the standard

assumption that the conditional distribution of the observed response in the related

growth model is normal is problematic. When cognitive function is assessed using

IRT, the ceiling effect is less of a problem since cognitive function is modeled as a

latent variable on a continuous scale.
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Fox and Glas [12] defined a multilevel population model for a latent variable to

account for the nesting of students in schools. This multilevel IRT measurement

model is here extended to account for the nesting of time-dependent measurements

within subjects and to account for mixed response types (dichotomous and polyto-

mous items).

To summarize, a joint model is proposed for the multi-state data and the MMSE

data, where cognitive function is the continuous latent variable that explains varia-

tion in the longitudinal MMSE scores and - potentially - variation in the transitions

between the states.

For Bayesian inference, Markov chain Monte Carlo methods (MCMC) are used to

sample values from the posterior density of the overall model that includes the multi-

state model and the IRT growth model. The sampled values are used to compute

posterior means, credible intervals, and other posterior quantities of interest.

The overall approach is very flexible and can therefore be used in other applica-

tions as well. Because MCMC is applied, random effects are estimated along with

population parameters and dealing with missing MMSE item scores is relatively

straightforward. In addition, in the estimation of the parameters it is possible to

specify the information flow: in our joint model, the parameters for the covariate

process are sampled using multi-state data. Both for the growth model and the

multi-state model, the number of observations and the times of interview can vary

within and between individuals.

The paper is organized as follows. Section 2 introduces the CFAS data and

presents some basic descriptive statistics. Section 3 discusses the methods for data

analysis: the multi-state model, the IRT linear growth model, model identification,

and prior densities. In Section 4, the handling of missing MMSE scores is explained.

Section 5 briefly discusses the MCMC that is used for Bayesian inference. The data

analysis can be found in Section 6. Section 7 concludes the paper. The MCMC in

Section 5 is detailed in the appendix.

2 Data

The Medical Research Council Cognitive Function and Ageing Study (CFAS) is a

UK population based study in which individuals have been followed from baseline

1991-1992 ([1], www.cfas.ac.uk) up to the last interviews in 2004. All participants
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Table 1: For men in CFAS data from Newcastle, frequencies of number of times
each pair of states was observed at successive observation times.

To state
1 = Healthy 2 = History of Stroke Death Right-censored

From state 1 836 49 549 239
2 0 75 116 21

are aged 65 years and above, and all deaths up to the end of 2005 have been included.

The three-state model for stroke is defined as follows. State 1 is the healthy

state (no history of stroke), individuals in state 2 have had one or more strokes, and

state 3 is the death state. Transitions from 1 to 2 are interval censored (exact times

of strokes are not available), but death times are known. By definition, transitions

from state 2 to state 1 are not possible.

Cognitive impairment was measured using the MMSE with sum scores in the

range 0-30. There are 25 binary questions and one which has a scale from 0 up to 5.

The latter is about counting backwards, where a score of 5 is given if the counting

is flawless. This question is considered an important item in the MMSE. Note that

when working with sum scores, the question can add 5 points to a scale with a total

range of 0 up to 30. To simplify the model slightly, we take scores 0 and 1 together

in category 1, resulting in ordered scores 1, 2, 3, 4, and 5. An alternative would be

to dichotomize the scale but that would mean that the relative importance of the

question is lost.

In this paper, we describe and analyze the data for men in Newcastle. The sample

size is 925 and in total there are 2810 observations (total number of interviews, right-

censored states, and observed deaths). In this data set, the median age at baseline

is 73. Time between interviews varies between and within individuals. The median

length of the time between two consecutive interviews is 26 months. The median

number of interviews is 2.

The frequencies in Table 1 are the number of times each pair of states was

observed at successive observation times. The table shows that for all individuals

the state in the last record in the study is the death state or a right-censored state:

549 + 116 + 239 + 21 = 925.

Originally, the MMSE was designed to screen for dementia. It contains questions
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on memory, language and orientation. Most of the questions are relatively easy

for individuals with average cognition. MMSE sum scores below 10 are indicative

of dementia. Individuals with scores in the range 25-30 are said to have normal

cognitive functioning. Currently, the MMSE is also widely used to measure overall

cognitive function. When the MMSE is applied in a population based study such

as CFAS, a large proportion of the observed MMSE sum scores will be in the range

25-30. In the data for men in Newcastle, the median of the MMSE sum score at

baseline is 27.

MMSE scores are not always observed. There are 298 missing binary item scores

in the records of 28 men. Nine men have a missing score for the five-category

question.

3 Methods

In this section, the joint modeling framework is presented for latent growth trajec-

tories and multi-state processes. Firstly, the multi-state model is discussed, followed

by the latent growth model part. The derivation of the joint posterior distribution

concludes this section.

3.1 The multi-state model

This section presents the likelihood of the continuous-time multi-state model. The

basic ideas can be found in Kalbfleisch and Lawless [3] and Jackson et al. [4]. The

formulation of the likelihood is different from the one in Van den Hout and Matthews

[8] where an approximation with regard to exact death times was used. Transition

probabilities in the likelihood are conditional on the current state and current values

of risk factors. Commenges [13] uses the term partial-Markov to denote this kind

of multi-state model since using the time-dependent risk factors implies that the

process is not first-order Markov.

Let the interval-censored multi-state data be given by x1, ..., xN , where N is

the number of individuals in the study. The trajectory of individual i is given

by xi = (xi1, ..., xini
), where ni is the number of observed states, and state xij ∈

{1, ..., S}, where j = 1, ..., ni indexes the consecutive times of measurement. Times

of observation - not necessarily equidistant - are given by ti1, ..., tini
, where ti1 = 0,
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for all i, denotes the start of the study. For individual i we have observed risk factor

values wi = (wi1, ..., wini
) at times ti1, ..., tini

.

Let (t, u] denote a generic time interval. For a continuous-time multi-state model,

transition probabilities prs(t, u) = P (xu = s|xt = r) are the entries of transition ma-

trix P (t, u). Likelihood contributions are formulated using the transition matrices

for the observed intervals, but the model itself is defined using intensity matri-

ces which are matrices with transition intensities as entries. The transition matrix

P (t, u) is derived from intensity matrix Q(t) by means of P (t, u) = exp[(u−t)Q(t)],

where exp[·] is the matrix exponential [14]. Off-diagonal entries of Q(t) not re-

stricted to zero can be related to risk factors w by means of a log-linear model

log[qrs(tij)] = β>rswij. For example, a progressive three-state model where state 3 is

the death state has vector β = (β12,β13, β23).

We assume a piecewise-constant multi-state model where individual trajectories

through the states are conditionally independent. For individual i, the likelihood

contribution is

p(xi|β, wi) = P (xini
|xi,ni−1, β,wi,ni−1)× ...× P (xi2|xi1, β,wi1).

This follows by conditioning on the first state, that is, by restricting P (xi1|β,wi) =

1. The likelihood is given by p(x|β,w) =
∏N

i=1 p(xi|β, wi). See Appendix A for the

construction of the likelihood of the three-state model that is used in the application

and which takes into account exact death times and right-censoring and the end of

the follow-up.

As implied by the above, we assume that given the current state and the current

values of the risk factors, the distribution of the next state does not depend on the

states visited before the current state. In addition, we assume that factor values are

constant between consecutive observation times. Within each individually observed

time interval (tij, ti,j+1], this defines a time-homogeneous process. By using age as

a piecewise-constant time-dependent risk factor, possible dependence of transition

intensities on changing age are taken into account [15].

If there are no other risk factors besides age, the model for the intensities is

given by log[qrs(tij)] = βrs.1 +βrs.2Age(tij). This can also be formulated as qrs(tij) =

λrs exp[γrsAge(tij)], for λrs > 0, which shows that the change of the intensities over

time follows a Gompertz model with age as the time-scale.
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3.2 Linear growth model for latent cognitive function

In our modeling, cognitive function is a latent time-dependent risk factor in the

multi-state model. We assume that cognitive function is continuous and that the

time-dependency can be described by a linear growth model. In the growth model,

the function is represented by the variable θ.

For individual i with observation times ti1, ..., tini
, let θi = (θi1, ..., θini

). The

growth model is given by

θij = η1i + η2itij + eij ηi = (η1i, η2i) ∼ MV N (ν,Σ)

eij ∼ N(0, σ2).

That is, random effects ηi are multivariate normally distributed with unknown mean

ν = (ν1, ν2) and 2 × 2 variance-covariance matrix Σ. The conditional distribution

of θij is normal with unknown variance σ2. Random intercept η1i is the value of θij

at the start of the study at time tij = 0. Random slope η2i reflects the change of θij

over time, where a negative value corresponds to a decline of ability over time.

Cognitive function is a latent variable as it cannot be observed directly but is

measured by the MMSE. At every observation time, the MMSE consists of K = 25

binary items (questions) and one item with five ordered answer categories. Item

Response Theory (IRT) models are used to link the observed discrete values to

latent function θ.

For individual i, the data for the binary response IRT model are given by yi =

(yi1, ..., yini
) with yij = (yij1, ..., yijK). The probability of individual i answering

binary item k correctly at time tij given item parameters a = (a1, ..., aK) and

b = (b1, ..., bK) is defined using the probit model

P (yijk = 1|θij, ak, bk) = Φ(akθij − bk), (1)

where Φ(·) is the cumulative distribution of the standard normal. The probit model

is well established in the IRT literature for cross-sectional binary response data.

The logit model is sometimes used as an alternative, but in practice results for

both models are similar. We prefer the probit model because it has a more simple

implementation in MCMC.

For k = 1, ..., K, parameter ak is called a discrimination parameter and is the

effect of a unit change in cognitive function θ on the success probability for item k.
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Parameter bk is a difficulty parameter and is the effect on the success probability

when θ = 0. Note that a large negative value of bk corresponds to a relative easy

question.

Time-specific response data are assumed to be independent given time-specific

cognitive function. This makes it possible to factorize the likelihood and we obtain

p(y|θ,a, b) =
N∏

i=1

ni∏
j=1

K∏

k=1

P (yijk = 1|θij, ak, bk)
yijk (1− P (yijk = 1|θij, ak, bk))

(1−yijk) .

For the item with the five ordered response categories we use the graded response

model [16]. Let ui = (ui1, ..., uini
) denote the polytomous data for individual i.

Given response categories 1 up to 5 (with the latter denoting the best score), the

model has four ordered thresholds parameters d1, .., d4. Together with the bounds

d0 = −∞ and d5 = ∞, and the ordering d0 < d1 < d2 < d3 < d4 < d5, these

thresholds define five segments on the real line. The graded response model written

in cumulative normal response probabilities has parameters c and d = (d1, d2, d3, d4),

and is given by

P (uij = m|θij, c, d) = Φ(cθij − dm−1)− Φ(cθij − dm), (2)

for m = 1, .., 5 [17]. The model defines the probabilities of the five answer categories.

Parameter c is the discrimination parameter, and d is the difficulty parameter. As

an example, when d1 is a large positive number, the first segment from −∞ up to d1

is large compared to the other segments. This implies that category 1 corresponds

to a high probability and this reflects a difficult item. When d4 is a large negative

number, it is relative easy to obtain a score of 5. Notice that for an item with

two categories, the thresholds would be −∞ = d0 < d1 < d2 = ∞ and the graded

response model reduces to the two-parameter (normal ogive) IRT model (1).

Fox [17] formulates this model for cross-sectional data, but - as above - given

the conditioning on θij, the same model can be used for longitudinal data. The

likelihood is

p(u|θ, c, d) =
N∏

i=1

ni∏
j=1

5∑
m=1

P (uij = m|θij, c, d)δ(uij = m),

where δ(u = m) = 1 if u = m and 0 otherwise.
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Analogous to the standard cross-sectional IRT model, we identify the growth

model by fixing the scale of cognitive function θ. Note that for this variable only

differences are important - values considered at face value are not informative. The

mean and the variance of θ are fixed to zero and one, respectively (cf. [17], sec.

4.4.2).

3.3 Posterior and prior densities

Bayesian inference is based on the posterior density of the model parameters. The

posterior density is proportional to the likelihood of the data times the prior density

of the model parameters. Ignoring manifest risk factors in the notation, the posterior

of our model is given by

p(β,a, b, c, d, θ, η,ν,Σ−1, σ2|x,y,u)

∝ p(x,y,u|β, a, b, c, d,θ,η, ν,Σ−1, σ2)p(β,a, b, c, d,θ,η, ν,Σ−1, σ2), (3)

where p(x,y,u|β,a, b, c, d, θ, η,ν,Σ−1, σ2) is the overall likelihood of the multi-

state data x, and MMSE data y and u. Given the model specification in Section

3.2, it follows that

p(x, y, u|β,a, b, c, d,θ,η,ν,Σ−1, σ2) = p(x|β,θ)p(y|a, b,θ)p(u|c, d,θ)

The prior density for the parameters in (3) is given by

p(β,a, b, c, d,θ,η,ν,Σ−1, σ2)

= p(θ|η, σ2)p(η|ν,Σ−1)p(β)p(a)p(b)p(c)p(d)p(ν)p(Σ−1)p(σ2),

where the conditional distributions of θ and η are specified in Section 3.2.

For the parameter β of the three-state model, we use a non-informative (im-

proper) prior density: p(β) ∝ 1. For the parameters of the growth model, the prior

densities are given by

ν ∼ MV N(ν0,C)

Σ−1 ∼ Wishart((ρR)−1, ρ)

σ2 ∼ Inv−Gamma (ξ, ξ) ,
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see Gelfland et al. [18]. These conjugate priors allow a straightforward implemen-

tation of the Gibb sampler that we use for the growth model. The choice of the

hyper parameters is discussed in the application. For the IRT model, we use non-

informative prior densities for the item parameters: p(a), p(b), p(c), p(d) ∝ 1.

4 Missing scores on test items

In CFAS, not all the MMSE questions are answered by all the individuals. Missing

values are ubiquitous in statistical analysis, and we are not the first to point out the

Bayesian framework is very suitable for dealing with certain forms of missingness.

We will assume that values are missing at random [19], i.e., the missingness does

not depend on the missing value itself, but may depend on observed data. It will

further be assumed that the parameters for the distribution of θ and the parameters

for the distribution of the missing-data mechanism are a priori independent. With

these two assumptions, the missing-data mechanism is assumed to be ignorable for

Bayesian inference ([20], def. 6.5). Given this assumption, Bayesian inference for

the IRT model is relatively easy when item scores are missing. If, for example, for

individual i at time tij, the value of yijk is missing, then the likelihood contribution

for the items scores at tij can be formulated by using the model for the items

1, ..., k − 1, k + 1, ..., K.

This flexible structure with respect to missing values is one of the reasons why

we prefer to use an IRT model instead of using observed sum scores. The definition

of a sum score is problematic when one or more item scores are missing.

Although we can estimate the model by ignoring the missing item scores, the

Markov chain Monte Carlo (MCMC) method in the next section is easier to im-

plement when we sample the scores along the way. In the MCMC algorithm, the

missing scores are sampled first, after which the sampling of the model parameters

proceeds as in the complete data case.

We illustrate the procedure for the binary response data. Given the probit model,

latent cognitive function θ, and item parameters a and b, sampling missing values

is undertaken by using Bernoulli trials. If at time tij, the binary value of yijk is

missing, then we use a trial with success probability Φ(akθijk − bk). By sampling

missing values in each iteration of the MCMC algorithm, the uncertainty with regard

to the missing values is propagated into the sampling of the model parameters.
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For a missing values of polytomous uij, values are sampled in a similar way using

the multinomial distribution and parameters c and d.

5 Bayesian inference

Markov chain Monte Carlo (MCMC) methods are used to sample from the posterior

distribution over the unknown parameters. The algorithm we use is a Gibbs sampler

[21] where each parameter is sampled conditional on the other parameters and the

data. In case there is no closed form of the conditional probability distribution,

Metropolis [22] or Metropolis-Hasting sampling [23] is undertaken. This scheme

is sometimes known as Metropolis-within-Gibbs although some authors dislike this

term, see the discussion in Carlin and Louis ([24], sec. 3.4.4).

To summarize, data of individual i at time tij consist of observed states xij,

binary response yijk for item k, and polytomous response uij. Latent cognitive func-

tion is denoted θij. The parameter vector for the three-state model is β. Item

parameters are a = (a1, ..., aK) and b = (b1, ..., bK), for the dichotomous item re-

sponse model, and c and d = (d1, ..., d4) for the polytomous item response model.

Parameters for the growth model are given by Ω = (ν,η,Σ, σ). Conditioning on

manifest risk factors w is ignored in the following notation.

Sampling the parameters of the IRT model for the dichotomous response is un-

dertaken by using an auxiliary variable z = (z1, ..., zN). This is a continuous rep-

resentation of binary data y which makes it possible to formulate a Gibbs sampler

[25]. Corresponding to each yijk we define the latent variable zijk which is nor-

mally distributed with mean akθijk − bk and standard deviation 1. Value yijk = 1 is

observed when zijk > 0, and yijk = 0 is observed, when zijk ≤ 0.

An innovative step in our Gibbs sampler is the sampling of θ. This parameter

vector is sampled using a Metropolis step where the sampling is informed by both the

IRT data and the multi-state data. This illustrates the flexibility and the strength

of MCMC.

Here, we enumerate the main steps of the Gibbs sampling, where conditioning

on all other parameters is indicated by three dots, e.g., p(a|...). Details of each step

and further references can be found in Appendix B.

1. Sample missing binary scores ymis
ijk from p(ymis

ijk|θ,a, b).
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2. Sample missing polytomous scores umis
ij from p(umis

ij |θ, c, d).

3. Sample z from p(z|...) ∝ p(z|θ,a, b, y).

4. Metropolis sampling of θ.

• A proposal distribution is specified by sampling from

p(θ|z,a, b,Ω) ∝ p(z|θ,a, b)p(θ|Ω).

• The vector θ sampled from the proposal distribution is re-scaled such

that the resulting values have mean 0 and variance 1.

• Sampled and re-scaled θ is the candidate for sampling from

p(θij|...) ∝ p(yij|θij,a, b)p(uij|θij, c, d)p(xi,j+1|xij, θij,β)p(θij|Ω).

5. Sample a from p(a|...) ∝ p(z|θ, a, b)p(a).

6. Sample b from p(b|...) ∝ p(z|θ, a, b)p(b).

7. Sample c from p(c|...) ∝ p(u|θ, c, d)p(c).

8. Sample d from p(d|...) ∝ p(u|θ, c, d)p(d).

9. Sample Ω using a standard scheme for a linear mixed model where θ is the

response variable.

10. Sample β from p(β|...) ∝ p(x|β,θ)p(β).

Posterior inference with regard to means, credible intervals, and other derived

quantities is based upon two chains, each with a burn-in of 5000 and an additional

15000 updates. Convergence of the chains for the item parameters and the pa-

rameters for the growth model are assessed by visual inspection of the chains and

by diagnostics tools provided in the R-package coda [26] such as the convergence

diagnostic by Geweke [27].

To compare models, we used the Deviance Information Criterion (DIC, [28]).

The DIC comparison is based on a trade-off between the fit of the data to the model

and the complexity of the model. Models with smaller DIC are better supported by

the data. The deviance of interest is the deviance of the multi-state model given by

D(x,w, β,θ) = −2 log p(x|β,w, θ).

The DIC for the multi-state model is given by

DICmsm = D̂ + 2pD,
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where D̂ = D(x, w, E(β), E(θ)) and pD denotes the effective number of param-

eters in the multi-state model. The latter can be estimated by D − D̂, where

D = M−1
∑M

m=1 D(x,βm,w,θm) with m denoting the iterations in the MCMC al-

gorithm. The DIC is therefore estimated by DICmsm = 2D − D̂, where E(β) and

E(θ) are estimated using the posterior means.

6 Application

The longitudinal MMSE data and multi-state data from the 925 men in CFAS in

Newcastle will now be analyzed. As stated before, in the three-state model, state

1 is the healthy state (no history of stroke), individuals in state 2 have had one or

more strokes, and state 3 is the death state. In the MMSE, there are 25 binary

questions and one which is scored from 1 up to 5.

6.1 Estimation

Although the focus of the analysis is the three-state model, we briefly discuss infer-

ence for the growth model for the MMSE data.

The choice of the hyper parameters for the prior densities is ν0 = (0, 0), C−1 = 0,

ξ0 = 1/100, ρ = 2, and R = 10I2, where I2 is the 2× 2 identity matrix. This choice

defines vague priors.

Posterior means and credible intervals (CIs) for the parameters of the growth

model are presented in Table 2. The negative posterior mean -0.036 for ν2 which is

the mean of the random slopes in the growth model concurs with our expectations.

In the older population, if there is a change of cognitive function over a long time,

then this will be a decline. The posterior mean 0.097 for Σ22 reflects the hetero-

geneity that is present in the data with regard to these slopes. Interesting is also

the negative posterior mean of covariance Σ12, which means, for example, that a

high intercept (high cognitive function) correlates with a small slope (less decline

over time).

We do not aim to investigate the effect of the individual items in the MMSE.

Nevertheless, it is interesting to see that there is indeed variation in the item-specific

characteristics. For the parameters for the binary items see Figure 1. This illustrates

why we are using an IRT model in the first place: assuming for instance that all
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Table 2: Posterior inference for model parameters with 95% credible intervals in
parentheses.

Three-state model
Intercept β12.1 -3.740 (-4.079; -3.437) Cognitive β12.3 -0.502 (-0.884; -0.120)

β13.1 -2.717 (-2.846; -2.590) function β13.3 -0.524 (-0.663; -0.381)
β23.1 -1.766 (-2.007; -1.543) β23.3 -0.181 (-0.309; -0.056)

Age β12.2 0.062 ( 0.003; 0.115)
β13.2 0.020 (-0.005; 0.044)
β23.2 0.024 (-0.007; 0.054)

Growth model
ν1 0.098 (0.009; 0.188) Σ11 0.264 (0.209; 0.329)
ν2 -0.036 (-0.078; 0.006) Σ12 -0.025 (-0.047; -0.006)
σ 1.422 (1.338; 1.511) Σ22 0.097 (0.083; 0.110)

questions are equally difficult is clearly incorrect (bottom part of Figure 1). Note

that all difficulty parameters have a posterior mean smaller than zero. This reflects

that for most people the MMSE items are easy. And this is as expected since

the MMSE is originally constructed to screen for dementia and the questions are

relatively easy for the majority of the individuals in CFAS. The variation in the

discrimination parameters (top part of Figure 1) shows that some items are better

at discriminating individual cognitive function than others.

For the graded response model, the sampling of the threshold parameters d1, d2, d3,

and d4 is depicted in Figure 2. The best way to sample threshold parameters has

been a topic in the literature ([17], sec. 4.3.4) and the references therein. We used

truncated normal distributions to generate new candidates in the Metropolis-Hasting

step for d = (d1, d2, d3, d4), see Appendix B. Figure 2 illustrates that this sampling

scheme works well. Numerical diagnostics for convergence as provided in coda [26]

all indicate good convergence.

We now turn to the three-state model for stroke. The intensities are linked to

age and cognitive function via the log-linear regression model given by

log[qrs(tij)] = βrs.1 + βrs.2Age(tij) + βrs.3θ(tij), (4)

where Age(tij) is the age midway through the interval (tij, ti,j+1] minus 75 years,
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Figure 1: Posterior inference for item parameters using boxplots. Discrimination
parameters a in top graph, difficulty parameters b in the bottom one.

and θ(tij) = θij denotes latent cognitive function at time tij.

We start by examining whether adding age and cognitive function as risk factors

provides a better model than the intercept-only model. The latter has DICmsm =

4825. The model with age but without cognitive function has DICmsm = 4777.

Clearly, we get a better model by adding age. The final model, i.e., (4) with no

restrictions, has DICmsm = 4680 which shows that taking cognitive function into

account is worthwhile. Posterior inference for β in (4) is presented in Table 2.

The sign of the estimated effects of risk factors age and cognitive function are

as expected: positive for age (getting older increases the risk of a transition) and

negative for cognitive function (higher function is associated with a lower risk).

Direct interpretation of the numerical results for the estimated effects is of limited

use, see Section 6.4 for interpretation using estimated survival.
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Figure 2: Monte Carlo Markov chains for the difficulty parameter vector d with
thresholds d1, d2, d3, and d4. Burn-in included. Colors black and grey for the two
set of starting values.

6.2 Goodness of fit

Model validation is undertaken by a posterior predictive model check [29]. Valida-

tion is hampered by the interval censoring of the transitions between the healthy

state and the state defined by a history of stroke. Death times are, however, ob-

served during the follow-up. We propose to validate the model by comparing deaths

observed during follow-up with simulated deaths given the posterior distribution of

the parameters. This does not capture all aspects of the three-state model, but nev-

ertheless gives an idea of goodness of fit: if the simulated deaths differ significantly

from observed deaths, then the model cannot be trusted.

We use a test statistic that depends both on observed deaths (say data xd) and

on model parameters (denoted here by ξ). For the time grid 0, 2, 4, 8, 10, 12, 14, 16

in years since baseline, observed cumulative numbers of deaths at the grid points

are given by O = (0, 121, 250, 465, 552, 620, 664, 665). Notice that the last figure is

the sum of the numbers of transitions into the death state in Table 1. Let E be the

corresponding vector with the cumulative numbers of expected deaths given model

parameters. We define the statistic T (xd, ξ) =
∑

(O − E)2/E. The model check is
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Figure 3: Posterior predictive model check. Comparing T (xsim
d , ξ) and T (xd, ξ) for

500 draws of ξ = (β,η) from its posterior distribution.

the comparison of T (xd, ξ) with T (xsim
d , ξ) where ξ varies according to its posterior

distribution, and xsim
d denotes simulated deaths given ξ. The estimate of the p-value

is the proportion of simulations where T (xsim
d , ξ) ≥ T (xd, ξ). A p-value close to 0

or close to 1 means that the observed cumulative numbers of deaths are not very

likely given the model. This would indicate a lack of model fit.

In the model check, given sampled ξ = (β,η), deaths are simulated conditional

on observed individual data (state and age) at baseline. At the grid points, age of

individual i is known given age at baseline, and cognitive function θi is derived given

time and sampled random intercept η1i and slope η2i. Simulation of the three-state

survival conditional on baseline state can then be undertaken and simulated death

times are monitored. In this simulation, the intensities change piecewise-constantly

from grid point to grid point. The algorithm is a Gillespie algorithm [30], and is

also used and explained in Van den Hout and Matthews [15] where all risk factors

are manifest.

We used 500 random samples from the MCMC for β and η, and obtained the

p-value 0.30. Figure 3 depicts simulated T (xsim
d , ξ) and T (xd, ξ). With respect to

observed deaths during follow-up, the model seems to fit the data well.
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6.3 Prediction

Although posterior means for β are informative with regard to the direction of the

effect of a risk factor, for a practical understanding of the effect it is more useful to

investigate predicted survival. Examples will be presented for three individuals: A,

B, and C, where the first two are hypothetical, and C is an individual in the study.

Consider the case of A who has had a stroke in the past. What is his survival

curve (probabilities of not dying) for the next 15 years? According to our model

this depends on current and future cognitive function. Assume that his current

function is equal to the estimated population mean (ηA1 = ν1). We consider baseline

ages 65, 75, and 85. For each choice of baseline age, Figure 4 shows two survival

curves conditional on assumptions with regard to the slope parameter in the growth

model. For A we assume that the slope is equal to the mean of its population

distribution plus one standard deviation of that distribution (ηA2 = ν2 + Σ
1/2
22 ).

The solid line is the estimated survival for A. Individual B is as A, except for his

slope parameter which is equal to the mean of its population distribution minus

one standard deviation (ηB2 = ν2 − Σ
1/2
22 ). The dashed line is estimated survival

for B. The uncertainty in the graph (the 95% CIs) is with regard to the posterior

distribution of β. Even though the CI-bands are quite wide, there is a clear and

relevant difference in survival due to difference in future cognitive function.

When it comes to prediction in practice, we would like to predict survival condi-

tional on observed MMSE scores at baseline. Individual C has baseline scores yC1

and uC1. The posterior of θC1 = ηC1 is given by

p(ηC1|yC1,uC1,a, b, c, d,ν,Σ) ∝ p(yC1|ηC1, a, b)p(yC1|ηC1, c, d)p(ηC1|ν,Σ), (5)

where p(yC1|..) and p(uC1|..) are likelihood contributions and p(ηC1|..) is the density

of the normal distribution with mean ν1 and variance Σ11. Maximizing (5) yields the

most likely value of ηC1 conditional on the posterior means of the model parameters.

This is called maximum a posterior (MAP) estimation.

C is an actual man in the data set. At baseline, he is 69 years old, has an

MMSE sum score of 23, and has no history of stroke. The MAP estimate of baseline

function is -0.670 which is in the lower part of the estimated population distribution

with mean ν1. Given baseline state 1 and assuming that the C’s slope for the trend

of cognitive function is the estimated mean ν2 for the population, we can estimate

survival. The bottom right graph in Figure 4 depicts this survival.
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Figure 4: Prediction for men in state 2 at baseline, aged 65, 75, and 85 years
old. Solid lines for survival if slope in growth model is equal to population mean
plus one standard deviation, dashed lines for slope equal to population mean minus
one standard deviation (thin lines for 95% CIs). Prediction of survival for selected
individual who is in state 1 at baseline, aged 69 (grey lines if baseline state would
have been 2).

We consider possible transition from state 1 to state 2. For C, the probability

that he will be in state 2 after 15 years (estimated at 0.047) is less interesting than

the probability of being in state 2 conditional on being still alive after 12 years. The

latter is estimated at 0.047/(1 − 0.862) = 0.341 with 95% CI (0.244; 0.521), where

the uncertainty is with regard to the posterior distribution of β,ν,Σ, and σ. Given

the conditioning on baseline function ηC1, we used

ηC2|ηC1,ν,Σ ∼ N

(
ν2 +

σν1

σν2

ρ(ηC1 − ν1), (1− ρ2)σ2
ν2

)

where ρ is the correlation between intercept η1 and slope η2, derived from Σ. This
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conditional distribution follows from the distribution of Z2|Z1 = z1 when both Z1

and Z2 are normally distributed ([31], sec. 3.5.2).

7 Conclusion

This paper presented an application where a three-state model for stroke and survival

encompasses a latent growth model for time-dependent cognitive function using

longitudinal MMSE data. The cognitive function was included in the joint analysis

as a time-dependent risk factor for transitions in the three-state model.

Adding the MMSE sum score as a non-deterministic time-dependent risk factor is

not a problem with respect to the estimation of a multi-state model when we assume

that the piecewise-constant approximation is reasonable. However, for prediction we

need a model for the time-dependent risk factor. A growth model with the MMSE

sum score as response variable is problematic because the conditional distribution

of the sum score is not normal, as the scale is discrete and there are ceiling effects.

The binomial distribution is an alternative for the response distribution, but this

distribution does not distinguish between the items (questions) that make up the

sum score. It is only when IRT models are used that both the discrete nature of the

MMSE and the item-specific characteristics are taken into account.

The presented growth model is an extension from the one introduced by Douglas

[32]. Our model can deal with variation in time intervals between interviews and is

more flexible due to the random-effects structure.

Both within the three-state model and the growth model we have used assump-

tions that are commonly made. In the multi-state process, the transition probabil-

ities are conditional on the current state and current values of risk factors. Using

the time-dependent risk factors implies that the process is not first-order Markov.

The process is also not semi-Markov because time spent in the current state is not

taken into account. Another important assumption is that the piecewise-constant

approximation captures the essential part of time-dependent risk factors. The IRT

for cognitive function in the growth model assumes local independence (given the

item parameters, scores are independently distributed) and time-independent item

parameters. A posterior model check was used to validate the model in the appli-

cation.

In the three-state model for the history of stroke, each individually observed
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interval (say (tij, ti,j+1] for individual i) is modeled in the likelihood as a homogenous

process where values of risk factors at time tij are used to determine the distribution

of the states at time ti,j+1. It is because of this that we can say lower cognitive

function is associated with a higher risk of stroke. Due to the piecewise-constant

approximation, the model is not invalidated by the fact that a stroke often causes a

drop in cognitive function. For example, if a stroke occurred within (tij, ti,j+1] and

there is a drop in function, then the decreased function will only play a role in the

modeling of the next interval (ti,j+1, ti,j+2].

The use of MCMC methods ensures proper propagation of the uncertainty at

the various levels of the model. By using a random-effects growth model, individual

heterogeneity is taken into account. Given the general structure of the model, it can

be extended easily, for example, with additional covariates in the growth model or

in the multi-state model. Possible sub-models may also be of interest. For example,

if there is no MMSE information available, the growth model can be dropped from

the overall model, and θij can take the role of a frailty which takes into account

unobserved heterogeneity with regard to the risk of ill-health or death.
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Appendix A: Likelihood Three-State Model

The following statements can be found in the literature referenced in Section 2.

Presentation here is for convenience sake. The transition intensities qrs(t) are the

entries of the transition intensity matrix Q(t), which for the three-state model in

the paper is given by

Q(t) =



−q12(t)− q13(t) q12(t) q13(t)

0 −q23(t) q23(t)
0 0 0


 .
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It is a general feature of intensity matrices that rows sum to zero. Transition

probabilities for a time interval (t, u] are given by the 3 × 3 matrix P (t, u) =

exp[(u − t)Q(t)], with entries prs(t, u) = P (xu = s|xt = r), for r, s ∈ {1, 2, 3}.
Function exp[·] is the matrix exponential. For the three-state model in the paper,

P (t, u) is available in a closed-form. For qrs = qrs(t) and ∆ = u− t, we have

P (t, u) =




e−(q12+q13)∆ p12(t, u) 1− p11(t, u)− p12(t, u)
0 e−q23∆ 1− p22(t, u)
0 0 1




where

p12(t, u) =
q12(−1 + e(q12+q13−q23)∆)e−(q12+q13)∆

q12 + q13 − q23

.

Most of the more complex multi-state models require numerical approximations to

derive P (t, u) from Q(t). This approximation is implemented in the R package msm

[10].

Assume that an individual i has observations at times ti1, ..., tini
, where the state

at tni is either right-censored or death. Using the Markov assumption w.r.t. the

states, the contribution of this individual to the likelihood is

p(xi|β,w) = P (xini
, ..., xi2|xi1, β,w)P (xi1|β,w)

= P (xini
|xi,ni−1,β,wi,ni−1)P (xi,ni−1|xi,ni−2,β,wi,ni−2)× ...× P (xi2|xi1,β,wi1).

If the state observed at tini
is death, then, in shortened notation,

P (xini
|xi,ni−1) = P (xini

= 1|xi,ni−1)q13(tni
) + P (xini

= 2|xi,ni−1)q23(tni
).

So we assume an unknown state at time tini
and then an instant death. If the state

is censored at tini
, then we assume that the individual is alive but with unknown

state and we define P (xini
|xi,ni−1) = P (xini

= 1|xi,ni−1) + P (xini
= 2|xi,ni−1).

Appendix B: Gibbs Sampler

1. When missing, binary value yijk is sampled using a Bernoulli trial with success

probability Φ(akθijk − bk).
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2. When missing, polytomous value uij is sampled using a multinomial distribu-

tion with probabilities given by (2).

3. Sample z from p(z|...) ∝ p(z|θ, a, b,y). Value zijk is sampled from a truncated

normal distribution with mean akθij − bk and variance 1, truncated from the

left at zero if yijk = 1 and truncated from the right at zero if yijk = 0.

4. Metropolis sampling of θ.

• A proposal distribution is specified by sampling from the conditional

distribution of θ with respect to the binary data (as represented by z).

It follows that

p(θ|z, a, b,Ω) ∝ p(z|θ,a, b)p(θ|Ω)

Hence, for X ij equal to 1× 2 matrix [1 tij], we have

p(θij|zij,a, b,Ω) ∝ exp

[
−1

2

K∑

k=1

(zijk + bk − akθij)
2

]
exp

[−1

2σ2
(θij −X ijηi)

2

]
.

This is a normal regression model for zijk + bk on ak, with coefficient θij,

variance known and equal to 1, and prior for θij given by N(θij|X ijηi, σ
2).

It follows that p(θij|zij,a, b,Ω) is a normal distribution with variance

V = (
∑K

k=1 a2
k + 1/σ2)−1, and mean

∑K
k=1 ak(zijk + bk) + X ijηi/σ

2

∑K
k=1 a2

k + 1/σ2
.

• The vector θ sampled from the proposal distribution is re-scaled such

that the resulting values have mean 0 and variance 1.

• Sampled and re-scaled θ is the vector with the candidates for the Metropo-

lis step which takes into account all data. The conditional distribution is

given by

p(θij|yij, uij, xij, xi,j+1,a, b, c, d,β,Ω)

∝ p(yij|θij, a, b)p(uij|θij, c, d)p(xi,j+1|xij, θij, β)p(θij|Ω)

Because most of the information of θij is contained in the binary data y,

the proposal is a good approximation of the posterior conditional distri-

bution for θij, and the acceptance rate is high.
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5. Sample a from p(a|...) ∝ p(z|a,θ, b)p(a), where the prior is p(a) ∝ 1. Let the

total number of records indexed over i and j be M . From zijk = akθijk−bk+eijk

and eijk ∼ N(0, 1), it follows that zijk + bk = akθijk + eijk. Treating ak as a

coefficient in an ordinary linear regression model, it follows that ak can be

sampled form a normal distribution with mean
∑

i,j θij(zijk + bk)/
∑

i,j θ2
ij and

variance 1/
∑

i,j θ2
ij.

6. Sample b from p(b|...) ∝ p(z|a,θ, b)p(b), where prior is p(b) ∝ 1. Let the total

number of records indexed over i and j be M . From zijk = akθijk − bk + eijk

and eijk ∼ N(0, 1), it follows that bk = akθijk − zijk + eijk. Hence bk can

be sample from a normal distribution with mean M−1
∑

i,j akθijk − zijk and

variance M−1.

7. Sample c using a Metropolis step from p(c|...) ∝ p(u|c, d,θ)p(c), where the

prior is p(c) ∝ 1 and the proposal is constructed using a normal distribution

centered around the current value.

8. Sample d using a Metropolis-Hasting step from p(d|...) ∝ p(u|c, d,θ)p(d),

where the prior is p(d) ∝ 1. The ordering in the parameter vector is main-

tained by generating an ordered candidate d∗ conditional on current d. This

is established by sampling d∗m sequentially from the truncated normal density

N(dm, τ 2)I(d∗m−1, dm+1) for m = 1, .., 4,

where d∗0 = −∞ and d∗5 = ∞. This density is not symmetric - hence the

Hasting extension of the Metropolis algorithm.

9. Sample Ω = (ν,η,Σ, σ) by following the scheme for a linear mixed model

(where θ is the response variable). These steps are Gibbs steps with conjugated

priors. The parameters of the latter are ignored in the following notation.

• Sample η from p(η|θ,ν,Σ, σ).

• Sample ν from p(ν|η,Σ).

• Sample Σ−1 from p(Σ−1|ν, η).

• Sample σ2 from p(σ2|θ,η).

10. Sample β from p(β|...) ∝ p(x|β,θ)p(β) using three Metropolis steps, one for

the intercepts, one for the slope for age, and one for the slope of θ. Candi-

dates are sampled using multivariate normal distributions centered around the

current values.
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Steps 3, 5, and 6 are defined for the binary response IRT model and can be found

for cross-sectional data in Johnson and Albert [25]. Fox [17] provides an overview

of MCMC techniques for probit IRT models and logistic IRT models. The fact

that we can formulate the steps with respect to longitudinal data is because of the

conditioning on θ. The sampling scheme for the candidates in the first part of

step 4 can be found in Fox and Glas [12] and Fox [17], but using this scheme to

generate candidates for the Metropolis part has not been done before. Note that in

the Metropolis, the sampling of θ is informed by the multi-state data by including

the transition probability p(xi,j+1|xij, θij,β). Step 8 can be found in Fox [17] for

a cross-sectional model and is here used for a longitudinal model, and step 9 is an

application of the scheme in Gelfand et al. [18]. In steps 7, 8, and 10, acceptance

rates are monitored and adjusted during burn-in when necessary (pilot adaption

[33]).
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