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Abstract 

The continuous network design problem (CNDP) is known to be difficult to solve due to the property of 

non-convexity and nonlinearity. Such kind of CNDP can be formulated as a bi-level programme, which 

may be classified into Stackelberg approach and Nash one according to the relationship between the 

upper level and the lower level parts. This paper formulates the CNDP for road expansion based on 

Stackelberg game where leader and follower exist, and allows for errors of travelers' behavior in 

choosing their routes. In order to solve the problem by Stackelberg approach, we need a relation 

between link flow and design parameter. For the purpose of that, we use logit route choice model, in 

which there exists an explicit closed-form function between them. The developed model will be applied 

to two example road networks for test and compared the results between the Stackelberg and Nash 

approaches  to emphasise their differenc between them.   

 

1. INTRODUCTION 

The network design problem (NDP) is to determine a set of design parameters that leads the road 

network to an optimal state after allowing for travellers’ responses. NDP includes traffic signal control, 

traffic information provision, congestion charge and new transportation modes as well as road expansion. 

In general, the NDP can be formulated as a bi-level problem, which has an upper level part that 

represents system design and a lower level one that represents travellers’ responses. According to the 

strategy between them, we may classified the bi-level problem into Stackelberg game and Nash game. 

The Stackelbeg game is different from the Nash game in that the upper level decision maker knows how 

the lower level decision maker will respond to an upper-level decision. Although he can not intervene in 

the lower level decision maker’s decision, he can consider the lower level decision maker’s reaction in 



his own decision making. Since it has been difficult in solving the problem as Stackelberg game, most of 

conventional NDP models have been formulated as a Nash game, in which each decision maker acts 

unilaterally and without consideration of the response of others. However. the Stackelberg game 

provides a preferable model for decision making because the system designer anticipates the responses 

of others. For example, traffic operator in expressway agency sets the ramp metering rates under 

considering the route change behaviors of drivers corresponding to the changed metering rates. Thus the 

design variables of upper level problem should be specified under such circumstance taking into 

consideration the travellers’ response. This corresponds to a Stackelberg game condition. 

 

We have long list of network design problems, which can be classified into two classes such as discrete 

network design problem (DNDP) and continuous network design problem (CNDP). A DNDP defines 

the design parameter as discrete variable, while CNDP does it as continuous one.  For solving such 

CNDP as Stackelberg game, the sensitivity analysis of user equilibrium was introduced by Tobin and 

Friesz (1988) and has been used for the static network design problem byYang (1995; 1997) and in the 

dynamic case by Heydecker (2002).  Various sensitivity analysis-based  heuristic algorithms are also 

proposed for the CNDP and relevant problems (Friesz et al,1990; Yang and Yagar, 1994;Yang et al, 

1994). Recently Maher et al (2001) proposed a bi-level problem for trip matrix estimation and traffic 

control problem with stochastic user equilibrium (SUE), and their solution algorithms in which SUE 

assignment map was approximated as a linear relationship. More detail and wider literature reviews and 

their algorithms are described in the paper of Yang et al (1998).  

 

This paper formulates the CNDP for road network design based on a Stackelberg game formulation where 

leader and follower are identified respectively as the designer and the travelers. The present formulation 

allows for errors of travelers' perceptions of costs in choosing their routes, which can be described by 

stochastic traffic assignment. We can easily formulate the relationship between link flow and design 

parameters, because there exist an explicit closed-form function between them in logit-type stochastic 

user equilibrium assignment, while there does not exist such a function in deterministic user equilibrium 

assignment. 

 

The bi-level CNDP is intrinsically nonlinear, non-convex, and hence it might be difficult to solve. We 

therefore suggest a heuristic solution algorithm, which makes use of derivative information of link flow 

with respect to the design parameters. Compared to the method of Maher et al. (2001), this paper has no 

linear approximation of SUE in the solution process. We directly use the derivative deduced from logit 

route choice model. We also compare the results between the Stackelberg approach and the Nash one to 

emphasise the differences between them.  The developed model will be applied to two example road 

networks for test. 



 

2. STOCHASTIC NDP FORMULATION AND ALGORITHM 

Firstly let some variables denote as 

A  : Set of links in the network 

A  : Subset of links considering design parameter 

x  : Column vector of link flows { ax }, Aa∈  

)(cµ  : Matrix of link choice proportion as a function of the vector c of link costs  

T  : Column vector of O-D demand levels {rsT } 

rsT : travel demand for OD pair sr −  

p  : Vector of design parameters (variables) {ap }, Aa∈  

 

In the Stackelberg game, there is a relationship between link flow x and design variable p  as 

( )x x p=  

By expansion around point 0p , we have the following linear approximate expression. 
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In case of deterministic user equilibrium assignment, closed-form functions between x and  p are 

available only for simple networks (Heydecker, 2002). Thus it is difficult to evaluate the derivative of 

0( )x p

p

∂
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 and so it is not easy to calculate the exact solution of bi-level problem formulated as a 

Stackelberg game. For this problem, Yang (1995), Freisz et al (1990) Heydecker (2002) proposed a 

sensitivity analysis-based (SAB) method for attain the derivative, but it is difficult to evaluate the 

functions and to attain derivative information. While, in case of logit-type stochastic user equilibrium 

assignment, we do have a closed-form function between x and  p , so we can calculate the derivative by 

direct manipulation. The bi-level network design model based on Stackelberg game in this paper may be 

written as 

[Upper level problem] 
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 [Lower level problem] 
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where )( pu is construction cost for improving network. The upper level problem is to minimize total 

travel cost of road network less construction costs, and the lower level is stochastic user equilibrium 



assignment. In the lower level problem, let * ( )x p  denote the SUE solution at a given value p of the 

parameter vector, so that   
*( ( ), ) 0f x p p =  for any given p . 

If we assume the function ( , )f x p  to be differentiable, then the first-order expansion of  ( , )f x p in the 

neighbourhood of  *
0 0( , ) ( ( ), )x p x p p=  is; 
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Where the derivative terms are the Jacobian matrices of ( , )f x p  with respect to x and p  respectively, 

evaluated at  *
0 0( ( ), )x p p , which here denote xJ and pJ . 

Since  *
0 0( ( ), ) 0f x p p =  by  SUE at 0p , and we determine 0p , *

0( ), ,x px p J J , then for some 

other 0p p≠  we can approximately solve the equilibrium condition ( ( ), ) 0f x p p =  for ( )x p  as 

*
0 00 0 ( ( ) ( )) ( )x pJ x p x p J p p≈ + − + − . 

Thus we have following equation.  
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so that the sensitivity of equilibrium link flow with respect to design parameter is expressed in the form of 

the implicit function theorem as 

px JJ
dp

dx 1−−= . 

The bi-level problem can be solved by iterative process between the upper level problem and lower level 

one with the equation (3). The only difference between Stackelberg game and Nash is whether they 

consider the equation or not.  

 

To specify equation (3), this paper uses logit route choice model, which can be given as an explicit 

function of path cost as ∑
∈

−
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where, kc is the route cost defined in equation (5) and θ is a parameter of the route perception error, K is 

path set for connecting each origin-destination pair.  
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ac  is a cost for link a and akδ is a dummy variable that 1 if the link a is on the route k , 0 otherwise. 

We have also a relation between )(ckµ and link choice probability )(caµ as follows. ∑ ∈=
k

akka Kkcc ,)()( δµµ  

For evaluating the equation (3) two derivatives of f with respect to px, are required. The first 

derivative is given by  
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where, baδ is Kronecker delta and 
a
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 may be easily determined when the link cost function is 

specified. 
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With the equation (4) of logit model and equation (5),  
a

k
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 may be converted and summarized as 
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Thus, we finally get equation (6) ∑ ∑ ∈−
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where aibkak δδδ ,, are dummy variables that 1 if iakba ∈∈ ,, , 0 otherwise. 

Following the same way described above, we can get 
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So, we can determine the equation (3) by using the equation (6) and (7). The equation (6) and (7) are 

similar to the results of Davis (1994). 



 

Through equation (3), now we can solve the bi-level problem of equation (2). The solution algorithm for 

the problem can be listed as follows. 

 

(0) Initialization :  0,0 pn =  

(1) 1+= nn  

(2) Solve lower level problem with 1−np and yield )( 1−npx  

(3) Calculate derivative information : 1,x pJ J−  and yield ),( 1−nn ppx by using following equation, 

        )()(),( 1111 −−−− −−= nn
px

nnn ppJJpxppx  

(4)  Solve upper level problem with ),( 1−nn ppx   and  yield { np } 

(5) Convergence check 

When criterion is meet, stop 

Otherwise, goto step (1) 

 

In the algorithm, the upper level problem can be solved by unconstrained nonlinear programming method 

such as Newton-Rapson method, Davidon-Fletcher-Powell (DFP) method and Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method. While the lower level problem may be easily evaluated by 

conventional stochastic user equilibrium model given design parameter 1−np .  Several convergence 

criteria can be used for stopping solution process. This paper uses the difference between current value of 

design parameter and previous one.  

 

3. NUMERICAL CALCULATION  

In order to illustrate use of the model and the solution algorithm suggested in the paper, two example 

networks are used. The first example involves a simple network with one origin-destination pair 

connecting 2 paths. This example network is used for comparison between Stackelberg approach and C-

Nash one. The second example is a medium size network with one origin-destination pairs connecting 6 

paths, with considering link capacity improvement as design parameter. 

 

3.1 Comparison of Stackelbeg and C-Nash approach 

Consider a test network consisting of two links (routes) serving a single O-D pair with 12 1.0T =  and  

parameter 0.1=θ  in logit model. The design parameter p is only adopted on the link 1. The cost 

functions on the links are 2
11 21 pxc += ,    2 22c x= +  and the construction function is set to be 

 0( ) ( )u p Cw p p α= − ,    20, 2.0Cw α= = . 



 

<Figure 1> Example network 1 

 

Table 1 and Table 2 present comparisons of the Stackelberg approach with those of C-Nash. Each 

approach has different optimal design parameter values such that the value of Stackelberg approach is 

changed from the initial value of 1.0 to optimal value of 0.989130, while C-Nash changed from the value 

of 1.0 to 0.851355. But both approaches converge to a stochastic user equilibrium for each case because 

the values of equivalent path cost (Ec) are the same as shown in the last column of the table, although 

each path cost is different. The equivalent path cost is expressed as )ln(
1

aaa xcEc
θ

+= . 

 

Table 2 shows the optimal value of design parameter, construction costs, the values of upper level 

problem and total costs. Note here that the values of upper level problem. As we expect, Stackelberg 

approach has a smaller objective value than that of Nash, which imply that Stackelberg approach gives a 

better solution. The results are consistent with the work of Fisk (1984) for the comparison between 

Stackelberg and C-Nash approach. But regarding to the total cost C-Nash approach has lower value.  

 

<Table 1> Results of link volumes and equivalent cost (Ec) in initial and optimal states 

Model  p 
1x  2x  1c  2c  1Ec  2Ec  

Initial 1.0 0.635614 0.364386 1.808009 2.364386 1.354845 1.354844 Stackelberg 

optimal 0.989130 0.636734 0.363266 1.802047 2.363266 1.350644 1.350646 

Initial 1.0 0.635614 0.364386 1.808009 2.364386 1.354845 1.354844 C-Nash 

optimal 0.851355 0.651519 0.348481 1.722760 2.348481 1.294311 1.294309 

 

<Table 2> Summary of numerical results 

Model  p Construction cost Upper level 
objective 

Total cost 

a a
a

x c∑  

Initial 1.0 0.0 2.010746 2.010745 Stackelberg 

optimal 0.989130 0.002368 2.008282 2.005918 

Initial 1.0 0.0 2.010746 2.010745 C-Nash 

optimal 0.851355 0.441908 2.382721 1.940812 



 

 

3.2 Second example for capacity expansion 

The second network has 9 nodes and 12 links with one OD pair from node 1 to node 9, consisting of 6 

paths. The network specifications are given in Table 3 and travel demand 10019 =T . The parameter in 

logit model is 02.0=θ . The BPR (Bureau of Public Roads) cost function is used for the link travel cost 

and the expansion of link capacity is used as design parameter.  

 

<Figure 2> Example network 2 

 

<Table 3> Network specification for the example 

Link Free flow 
travel time 

Link 
capacity 

Link Free flow 
travel time 

Link 
capacity 

1 12 35 7 15 20 

2 10 35 8 10 35 

3 15 20 9 10 35 

4 10 35 10 12 35 
5 15 20 11 15 20 

6 10 35 12 10 35 

 

Table 4 and Table 5 show the sensitivity, optimal design values and the values of upper level objective 

functions when two design parameters (capacity expansion of link 6 and link 10) are adopted in the 

network. Sensitivity is used to predict changes in equilibrium link flow pattern in response to any small 

variance in design value. The sensitivity of each link with respect to design variables are depicted in 

Table 4. The sensitivities of link 6 have the same signs but somewhat different values with respect to each 

design parameter. This implies that the volume of link 6 is more influenced by the capacity improvement 

of link 10 than that of link 6. On the other hand, link 10 has negative values of sensitivity with respect to 

design parameter of link 10, leading to the fact that the link volumes decrease as the capacity increases.  

These results show that capacity improvement does not always induce increase in link volume under 

fixed demand.  



 

Table 5 gives optimal increase of link capacity, objective values and construction costs. The design 

parameters are converged to 0.013664 and to 0.382983 from zero respectively, and the objective value of 

upper level problem decreases from 6,116 to 6,112. 

 

 

 

 

<Table 4> Sensitivity of each link with respect to design parameter  

 

 

 

 

 

 

 

 

 

 

<Table 5> Optimal design parameters, objective values and construction costs 

 Initial Optimal 

Link 6 0.0 0.013664 
Link 

Link 10 0.0 0.382983 

Objective values 6,116.1274 6,112.7075 

Construction cost 0.0 2.934989 

 

Figures in Table 6 and Table 7 show some results when 3 design parameters (improvement capacity of 

link 5, link 6 and link 10) are adopted. The figures of Table 6 are corresponding to those of Table 4 in two 

design parameters case. Note the minus sign of optimal design value of link 6 in Table 7. This sign 

implies that decrease in link capacity may minimize the objective value of upper level problem, which is 

an unexpected outcome. This phenomenon is known Braess’s paradox when the road capacities are 

expanded.  

 

<Tabel 6> Sensitivity of each link with respect to design parameter  

Link 
6dp

dxa  
10dp

dxa  Link 
6dp

dxa  
10dp

dxa  

1 -0.012794 -0.080154 7 0.010775 1.144179 

2 0.040372 -0.211988 8 0.009549 0.044914 

3 0.247200 0.880170 9 0.027923 0.134546 

4 -0.036169 0.084235 10 0.003091 -0.019392 

5 -0.026262 0.030326 11 -0.017086 0.348960 

6 0.065149 0.139766 12 -0.007189 -0.406587 



 

<Table 7> Optimal design parameters, objective values and construction costs 

 Initial Optimal 

Link 5 0.0 0.334750 

Link 6 0.0 -0.955765 Link 

Link 10 0.0 1.989180 

Objective values 6,116.1274 5,994.8091 

Construction cost 0.0 98.7576 

 

 

4. CONCLUSION 

In this paper, we propose a continuous network design model in stochastic user equilibrium based on 

Stackelberg game. The CNDP is formulated as a bi-level problem where the upper level problem is to 

determine optimal road capacity able to minimize total network cost, and the lower is to depict stochastic 

travel behaviour according to the design parameter. Due to the existence of explicit function between link 

flow and design parameter in logit model, we can easily derive the derivative and introduce it to the 

solution procedures. The derivative information has many important implications in both network design 

problem and operational level. 

 

From the numerical calculations, we calculate sensitivity, optimal design parameters and also can detect 

phenomenon of Braess’s paradox as the road capacities are expanded. But these results are brought out 

under fixed OD demand, thus we expect to get somewhat different results when the demand is elastic, 

which remains for next work. Numerical results also show the extent to which the Stackelberg approach is 

better than Nash one in certain example networks. 

 

 

Link 
5dp

dxa  
6dp

dxa  
10dp

dxa  Link 
5dp

dxa  
6dp

dxa  
10dp

dxa  

1 -0.046033 0.146746 -0.160547 7 -0.029576 0.120788 -0.151013 

2 -0.270415 1.410046 -0.018507 8 -0.011724 0.035798 0.171164 

3 -0.000339 0.135086 -0.000071 9 -0.000322 -0.080295 -0.193762 

4 0.000339 -0.135086 0.000071 10 -0.007020 0.154011 0.203658 

5 0.040456 -0.109789 0.112646 11 0.017395 -0.231300 -0.109157 

6 0.071824 -0.717401 -0.173787 12 -0.014076 0.062481 -0.147360 
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