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Abstract: We present 3D optical topography images reconstructed from data 

obtained previously while infants observed videos of adults making natural 

movements of their eyes and hands. The optical topography probe was placed over 

the temporal cortex, which in adults is responsible for cognitive processing of 

similar stimuli. Increases in oxyhaemoglobin were measured and reconstructed 

using a multispectral imaging algorithm with spatially variant regularisation to 

optimise depth discrimination. The 3D optical topography images suggest that 

similar brain regions are activated in infants and adults. Images were presented 

showing the distribution of activation in a plane parallel to the surface, as well as 

changes in activation with depth. The time-course of activation was followed in the 

pixel which demonstrated the largest change, showing that changes could be 

measured with high temporal resolution. These results suggest that infants a few 

months old have regions which are specialised for reacting to human activity, and 

that these subtle changes can be effectively analysed using 3D optical topography. 
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1. Introduction 

Optical topography is a non-invasive imaging technique that uses near-infrared light to measure 

changes in brain activity (Gibson and Dehghani 2009, Durduran et al. 2010, Quaresima et al. (in 

press)). It is well suited to studying early brain development, as it can be used on alert, moving 

infants due to its portability, non-invasiveness and low sensitivity to movement. Moreover, the 

information provided by optical topography, i.e., changes in oxy- and deoxy-haemoglobin 

concentration ([HbO2] and [HHb]), is physiologically relevant and cannot be obtained by any 

other imaging modality.  

In the adult brain, certain regions are known to be involved in the perception of social and 

human action cues (Overwalle 2009). However, imaging modalities such as functional magnetic 

resonance imaging (fMRI) and positron emission tomography (PET), which have successfully 

been used to study the adult brain, have factors that restrict their use with awake infants. We 

have used our own optical topography system (Everdell et al. 2005) to investigate cortical 

responses in young infants watching videos showing human action. We observed an increase in 

[HbO2] in the posterior superior temporal region bilaterally, when visual human dynamic 

stimuli (such as nursery rhymes), but not visual non-human dynamic stimuli, were presented to 

five-month-old infants (Lloyd-Fox et al. 2009). Recently, we investigated cortical responses to 

the perception of simple eye, hand and mouth movements (Lloyd-Fox et al. 2011). This work 

was motivated by recent fMRI research in adults, which found different patterns of cortical 

responses to different forms of human actions (Pelphrey et al. 2005; Thompson et al. 2007) in 

the frontal and temporal cortices. Our study, using multi-channel near infrared spectroscopy 

(NIRS), found similar evidence of different patterns of frontal and posterior temporal cortical 

activation in infants according to the type of human action being watched. However, these and 

related NIRS studies treat the data as single source-detector (channel) haemodynamic responses, 

even if the data are measured from multiple channels at different separations. We have 

previously shown that certain stimuli produce a response in source-detector pairs that 

interrogate deeper regions of the cortex, whereas others activate more superficial regions (Blasi 

et al. 2007). In this paper, we extend our previous work (Lloyd-Fox et al. 2011) by 

reconstructing images of data which we previously analysed as single-channel NIRS 

measurements.  

Numerous research groups have produced optical images of brain activity. The first method, 

pioneered by researchers at Hitachi Medical Co., assumes that a change in intensity measured 

by a given source-detector pair has its origin midway between the source and detector, and there 

is no attempt to resolve in the depth direction (Taga et al. 2003). This approach limits the lateral 



 

 4 

spatial resolution to the optode separation (Yamamoto et al. 2002). Researchers have also 

developed methods for reconstructing data from multiple source-detector separations and have 

produced 3D topographic images (Bluestone et al. 2001) with increasingly high spatial 

resolution and some depth discrimination (Zeff et al. 2007, White and Culver 2009) and have 

begun to investigate incorporating anatomical models into the image reconstruction (Custo et al. 

2010). 

There is confusion in the literature over the terminology used to describe diffuse optical imaging 

(DOI). We take this opportunity to clarify in some detail the terms used by our research group at 

UCL, in the hope that this will encourage discussion and consensus within the DOI community. 

We distinguish between topography and tomography based on the purpose of carrying out the 

experiment. If the experimenter intends to reconstruct a 3D volume using widely spaced optodes 

and (crucially) attempts to measure light which has travelled through the centre of the object, 

then we call this optical tomography. This is directly analogous to X-ray computed tomography 

and generates 3D images where the spatial resolution in all three directions is similar. If, on the 

other hand, the intention is to measure activity from an array placed over a small portion of the 

head from close-by sources and detectors with limited depth discrimination and good temporal 

resolution, then we call this optical topography. This is analogous to topographic mapping (e.g. 

from satellites), where longitude and latitude are mapped accurately but altitude may be found 

less accurately and over a smaller range. Using this terminology, optical topography may use 

many overlapping sources and detectors but if they are all on the same side of the object being 

imaged, the depth discrimination will be poor compared to the lateral resolution, so we would 

not refer to it as tomography. Using this terminology, cortical mapping is the same technique as 

optical topography but we would restrict its use to functional brain studies. 

In this paper, we reconstruct 3D optical topography images from data which were previously 

analysed as single channel NIRS measurements (Lloyd-Fox et al. 2011). We examine whether 

images reconstructed of subtle changes in alert infants provide additional information beyond 

that which can be obtained by analysing the single channel measurements alone. We use a new 

image reconstruction algorithm which reconstructs directly for chromophore concentrations 

from dual-wavelength data, and which uses spatially variant regularisation to enhance the depth 

discrimination. Note that we are not imaging visual activation in the visual cortex; rather, we are 

attempting to image the cognitive processing of visual activity in the temporal cortex. Our 

previous work showed that these areas do show activation in infants. Here, we present images of 

that activity for the first time. 
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2. Methods 

2.1 Protocol 

The data sample of 13 five-month-old infants was taken from the previously published data set 

of Lloyd-Fox et al. (2011), where the experimental paradigm and psychological rationale for the 

work are explained in detail. Briefly, the infants sat on their parent’s lap while the stimuli were 

displayed on a screen. The experiment consisted of three different videos of human action 

stimuli performed by female actors either performing hand games, making silent mouth 

movements or looking to the left and right. The baseline or reference condition consisted of 

videos of non-human motion (rotating toys, cogs and pistons). In this paper, we emphasise the 

image reconstruction aspects of the work by concentrating on the hand and eye conditions only.  

For each experimental trial, a stimulus with a duration of 10 s was alternated with a 10 s 

baseline measurement. These durations are shorter than are often used in adult studies to reduce 

the total experiment time to one which the infants tolerate with minimum movement. The 

stimulus does generally appear to return to baseline in this relatively short period, but it may 

reduce the reliability of the temporal behaviours of [HbO2] and [HHb] in this work. The three 

experimental conditions were displayed pseudo-randomly to avoid anticipatory effects, but over 

12 trials, an equal number of trials per condition were displayed. Trials where infants failed to 

look at the stimuli were excluded. At least three valid trials were required for an infant to be 

included in the study.   

2.2 Data acquisition and processing 

The UCL optical topography system (Everdell et al. 2005), which emits at wavelengths of 

770 nm and 850 nm, was used for the data acquisition. The sources are frequency modulated 

and illuminated simultaneously. The photodetector output signal is then processed by a fast 

Fourier transform algorithm, allowing the contribution from each individual source to be 

recovered. Using this method, imaging rates of 10 frames per second can be achieved. 

Two optical imaging arrays were placed on each temporal lobe, each consisting of 5 sources and 

5 detectors, providing a total of 19 source-detector pairs per array. Each array had 13 source-

detector separations at 2 cm and six at 4.5 cm (figure 1). In five-month old infants, the surface 

of the temporal cortex is located approximately 0.5 cm below the surface of the scalp (Salamon 

et al.1990). If we follow the generally accepted rule that the mean penetration is about half the 

optode separation, we see that the smaller optode separation offers some limited cortical 

sensitivity, but the larger separation allows deeper regions of the cortex to be interrogated 
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efficiently.  

The probes were placed according to anatomical landmarks which were obtained by measuring 

each infant’s head circumference and distance between the midpoint of the forehead (glabella), 

ears and the lowest point of the back of the skull (inion). The midpoint of the temporal arrays 

was placed 11 cm from the glabella, and was approximately aligned with T3 and T4 of the 

10/20 international system of EEG electrode placement on an average five-month-old infant 

head. The position of the array did not vary more than 1 cm across infants, since the measured 

distance from the glabella to the imaging array was always between 10.5 and 12 cm. 

Data were acquired and low-pass filtered (cutoff frequency of 1.8 Hz) for all the trials. Then 

each trial was separated into blocks consisting of 4 s baseline, followed by a 10 s stimulus and a 

10 s post-stimulus baseline period. Each block was detrended using a linear fit between the last 

4 s of the pre-stimulus baseline and the last 4 s of the post-stimulus baseline period to remove 

any effects of baseline drift throughout the experiment (Blasi et al. 2007). 

Trials for each infant and experimental condition were averaged. Subsequently, each 

experimental condition was averaged across all thirteen infants. This resulted in a time course 

for each of the three stimuli. Their respective baselines were averaged over time. 

2.3 Multispectral image reconstruction 

Conventional image reconstruction involves finding the optical properties of the medium from a 

set of measurements, which are then combined to calculate the chromophore concentrations. 

However, in this work, we used a multispectral method which involved reconstructing 

chromophore concentrations using all measurements at both wavelengths simultaneously. We 

assumed that the true chromophore concentrations were close to an initial estimate and any 

changes were small, and used a linear approximation to reconstruct the difference in 

chromophore concentrations. We used the Rytov approximation, meaning that we solved for 

changes in the log intensity (O’Leary et al.1995). 

For two measurement wavelengths ( λ1, λ2) and two chromophores (c1,c2) the linear 

multispectral method solves the matrix equation Δ�� = �Δ�, where Δ�� = �ΔΑ�	ΔΑ�
��  

represents the changes in the logarithm of the measured data and ∆c = [∆c1 ∆c2]
T the 

chromophore concentration changes in µMolar (µM). For CW measurements only intensity is 

measured, hence changes in measured data are given by	Δ�� = ��� � ����, where I0 is the baseline 

intensity measurement. The matrix � = ���	�	,�				��	�
,�	; ��
�	,�
			��
�
,�
� is the Jacobian or 
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sensitivity matrix (in units of mm) and ε is the extinction coefficient of the corresponding 

chromophore (in mm−1 µM−1). It has dimensions 2M × 2N, where M represents the number of 

measurements and N is the number of image pixels. 

The Jacobian was calculated for each wavelength using the software package TOAST 

(Temporal Optical Absorption and Scattering Tomography) (Arridge et al. 2000). It uses the 

finite element method (FEM) to model the propagation of light through highly scattering tissue 

using the diffusion equation, given an estimate of the medium optical properties and optode 

positions. The medium is considered to be a homogeneous slab with refractive index η = 1.4, 

absorption coefficient µa = 0.038 mm−1 and reduced scattering coefficient ���  = 0.75 mm−1 at 

wavelength 770 nm and µa = 0.042 mm−1 and ���  = 0.71 mm−1 at wavelength 850 nm. Following 

previous work (Correia et al. 2010), we took µa to be the same as that of an adult, and since 

scattering is much lower for an infant brain than for an adult brain, and based on values found in 

the literature (Bevilacqua et al. 1999, van der Zee 1992), we took, ��� 	to be 1/3 of that of an 

adult. 

A FEM mesh with 32615 nodes, 21845 elements and dimensions 120 mm x 60 mm x 40 mm 

was generated with the meshing software NETGEN (Schöberl 1997). In order to have 

equivalent contributions from all measurements, a row normalisation was performed by dividing 

both sides of the equation by the mean of each row of the Jacobian matrix. Also, the standard 

deviation σ of the log amplitude can be considered a measure of the level of confidence in the 

data points, so a correction was applied by dividing by σ on both sides of the equation. 

Chromophore concentration changes were obtained by solving the ill-posed inverse problem 

using all measurements at all wavelengths simultaneously. This was achieved using Tikhonov 

regularisation: 

Δ� = ���� + � !"	��Δ�, 

   (1) 

where R is a scalar regularisation parameter, � = #$%����� + &!	/
 is the NOSER type 

regularisation parameter (Cheney et al. 1990, Adler et al. 2007), with & = ()*+,"	 , where β is a 

scaling factor and Smax is the maximum singular value of ���. The constant γ ensures that the 

regularisation parameter is never too small, and its value is approximately equal to the noise 

present in the data. For experimental data, β = 1 most of the time, but this parameter can be 

adjusted to improve contrast and resolution. 



 

 8 

 Inversion using zero-order Tikhonov regularisation, i.e. equation 1 with α = I  where I is the 

identity matrix, favours high sensitivity regions. Inversion using a NOSER type regularisation 

can be viewed as a weighted Tikhonov regularisation, which gives uniform sensitivity and equal 

weights to the unknowns. We have previously shown that this approach improves sensitivity 

and accuracy of depth reconstruction (Correia et al. 2009b). 

In order to find the constant regularisation parameter R, for each stimulus, data between 8.5 and 

9.5 s after the beginning of the stimulus (corresponding to a point where activation was 

detected) were averaged. The L-curve method (Hansen 1998, Correia et al. 2009a) is usually 

our method of choice to determine the constant regularisation parameter R. However, the L-

curve method fails to find a regularisation parameter when the problem is normalised by the 

standard deviation of the data and row normalisation is applied, possibly because the problem 

then becomes less ill-conditioned. Nevertheless, an alternative generalised cross-validation 

method (GCV) (Golub et al. 1979, Correia et al. 2009a) successfully finds a regularisation 

parameter despite normalisation. We find that images are generally superior when normalisation 

is implemented, so here we used GCV to find R. 

3. Results 

3.1 Overview 

3D optical topography images were reconstructed for changes in [HbO2] and [HHb], for hand 

and eye stimulation. However, particularly in infant research, changes in [HbO2] tend to be 

more robust and reliable indicators of functional activity than those of [HHb] (Lloyd-Fox et al. 

2010, Watanabe et al. 2010, Quaresima et al. 2011). Therefore, haemodynamic maps shown in 

this section (Figures 2-3) correspond to the temporal evolution of [HbO2] in µM. We identify 

the depth where the maximum change was observed and display images reconstructed on both 

sides of the head at that same depth (7mm for hand stimulation and 9mm for eye).  Images are 

displayed with the posterior temporal area on the left and anterior area on the right. The dashed 

lines indicate the region covered by the probe. The 3D nature of the images is emphasised by 

displaying images of [HbO2] as slices oriented perpendicular to the probe for both conditions 

(Figures 4-5), while the extent of the temporal and physiological data we obtain in [HbO2] and 

[HHb] is shown by tracking a single pixel over time (Figures 6-7). Videos of the reconstructed 

images are available as online supplemental information. 

3.2  Infants observing hand movements 

Figure 2 shows xy cross-sections at z = 7 ± 1 mm (error corresponds to half the pixel size) 
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through reconstructed images of changes in [HbO2], when infants watched videos of hand 

movement. The stimulus was initiated at 0 s and ends at 10 s, and is followed by 10 s rest. On 

both sides, the maximum change in [HbO2] is an increase which occurs 5-10 s post stimulus 

onset. Changes occur bilaterally, but the maximum change on the right side was 1.29 µM 

compared to 1.15 µM on the left. 

3.3 Infants observing eye movements 

Figure 3 shows xy cross-sections at z = 9 ± 1 mm through images of changes in [HbO2] when 

infants watched videos of eye movements between 0 and 10 s. Again, increases in [HbO2] occur 

during the stimulus, as expected. The changes on both sides appear to be somewhat more central 

than in the previous condition. Examination of images taken at intermediate timepoints suggests 

that a stronger, faster and longer response to the stimuli occurs in the right hemisphere 

compared to the left hemisphere (see videos in supplemental material). In the right hemisphere, 

the largest [HbO2] change was 1.96 µM while in the left hemisphere it was 1.72 µM. 

3.4 Depth discrimination 

In order to demonstrate the capability of the system and the image reconstruction algorithm to 

distinguish between events at different depths, Figures 4 and 5 show slices which are 

perpendicular to the face of the imaging array, extending to a depth of 20 mm below the surface. 

Figure 4 is a slice taken through the right hemisphere as the infants watched hand movements at 

the time where the maximum activation was observed, and Figure 5 is the equivalent figure for 

activation while the infants watched eye movements. 

Both figures show some activation at depth and some activation extending up towards the 

surface. This is more obvious in Figure 4. Figure 5 shows a similar superficial signal but also a 

more substantial change occuring 7-12 mm below the surface. The activation extending to the 

surface may be due to stimulus-related surface effects (such as changes in scalp blood flow), or 

could indicate artefacts caused by imperfect coupling of the light into the head. 

3.5 Time-course of physiological signal 

In order to illustrate the similarities and differences in response times of [HbO2] and [HHb], 

averaged haemodynamic response curves were obtained for the two experimental conditions, by 

following the pixel with maximum concentration change. Figure 6 shows the haemodynamic 

response curves of the right temporal lobe while the group of infants observed hand movements. 

The response times of [HbO2] and [HHb] are quite similar, but [HbO2] increases by an amount 

about four times larger than the decrease which occurs in [HHb]. An initial dip in [HbO2] can be 
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seen. Figure 7 shows the equivalent graphs obtained while infants observed eye movements. For 

this case, the response of [HHb] is again about four times smaller than the response of [HbO2] 

but in this case both demonstrate increases in chromophore concentration. 

4. Discussion 

It is evident that optical topography can measure and provide images of visually induced 

haemodynamic activity in regions of the infant brain which correspond with those parts of the 

brain which are activated by human action stimuli in adults. Imaging arrays were placed over 

both temporal lobes and images of [HbO2] changes were successfully reconstructed, for 

different experimental conditions. 

3D optical topography images (Figures 2 and 3) show that the cortical processing of hand 

movements occurs in more posterior brain regions than that of eye movement. This agrees with 

the NIRS study by Lloyd-Fox et al (2011) from which this data is derived, which showed an 

increase in [HbO2] during the eye condition which was anterior to that seen during the hand 

condition. Similarly, both studies report bilateral activation with greater amplitude on the right 

side than the left. However, to make a more precise statement about anatomical activation, we 

need to register the optical topography images onto an anatomical image (or atlas) such as may 

be obtained by MRI. At the moment, this is challenging as we have no control points in 

common between the optical imaging array, the head and the anatomical image, but future work 

aims to provide such points. It is unclear how best to do this in this population as additional 

setup time, or the presence of markers on the head, may irritate the infant and cause more 

movement. 

Each image is effectively a multi-dimensional array of data (a 120 x 60 x 40 mm 3D image, at 

200 time points, of three chromophores, on two contralateral cortices), and there is no efficient 

way to display that data without losing information. We have chosen four representations here: 

2D slices at a single depth at different time points, 2D slices orthogonal to the imaging array, 

1D traces of the chromophore concentration over time and movies in the online supplemental 

information. None of these representations are ideal; the information from each is 

complementary but some is still lost. 

The depth images (Figure 4 and 5) are informative and provide information which cannot be 

obtained from multi-channel NIRS measurements. In particular, such images may allow surface 

artefact to be identified and rejected, and provide information about the depth at which different 

activations occur. We observed haemodynamic activity to a depth of approximately 15 mm. 

Assuming the thickness of extra-cerebral regions to be about 6 mm and a grey matter thickness 
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of 4 mm in infants of this age, this provides confirmation that superficial regions of the gyral 

white matter or deeper gray matter within the sulci are being imaged. We have not considered 

the effect of uneven sampling on depth images, although it could be significant: the middle of 

the arrays contains more overlapping measurements than the edges. This is likely to reduce the 

quality of reconstructions, particularly depth reconstructions, at the edges of the array. However, 

tests on tissue-equivalent phantoms have shown reliable depth discrimination (Correia et al. 

2009b). 

The time-course analysis (Figures 6 and 7) looks similar to the analysis provided by NIRS, but 

we hypothesise that a time-course taken from a pixel in the reconstructed image should be a 

more reliable indicator of haemodynamics than one taken from analysing unreconstructed data. 

It should have less contamination from surface layers, it is effectively averaged over many 

measurements, and it should be less affected by the partial volume effect. This latter point is 

somewhat supported by the marginal increase in magnitude of the change reported in Figures 6 

and 7 compared to the changes measured in our previous work (Lloyd-Fox et al. 2011). We 

measured changes of 1.29 and 1.96 µM for the hand and eye conditions respectively, compared 

to 1.2 and 1.5 µM measured using NIRS. 

We observed an initial decrease in [HbO2] (and increase in [HHb]) when the infant was 

presented with videos of eye movement, but not with hand movement. Some other NIRS studies 

(e.g. Gallagher et al. 2008, Minagawa-Kawai et al. 2011) have seen this dip, and it has been 

observed in the blood oxygen level dependent (BOLD) signal in fMRI studies. However, this 

initial dip, which some researchers attribute to rapid oxygen consumption at the site of 

activation, remains controversial in both the NIRS/optical imaging and fMRI communities 

because it is not always found. This topic has been widely discussed and reviewed (Yacoub et 

al. 2001, Hillman 2007, Uludăg 2010). 

The controversy over the initial dip suggests that our observation that it appears to be present in 

some circumstances but not others, may have some truth. However, in common with other 

NIRS and optical topography researchers, we cannot exclude the hypothesis that some changes 

present in the [HHb] images can be due to cross-talk or just noise. Changes in [HHb] are quite 

small and the quality of the measured data can deteriorate due to averaging over infants and 

trials, and thus the fluctuations in activity may reflect noise. Computer simulation suggests that 

[HbO2] may be overestimated by 15 % and [HHb] by 10 % (Correia et al. 2010). 

5. Conclusions 

We have demonstrated that state-of-the-art optical topography systems, coupled with 
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sophisticated data analysis and image reconstruction can provide a practical tool which can be 

used to answer genuine research questions in developmental psychology. We suggest that the 

additional information provided by imaging allows conclusions to be drawn from the data which 

are beyond those that can be obtained by multi-channel NIRS measurements alone. 

Our results suggest that five-month-old infants already have specialised regions for processing 

human action stimuli. To our knowledge this is the first time that optical topography images of 

the temporal cortex have been reconstructed showing cognitive activation in this age group, 

which is difficult to study using other imaging modalities. We have also demonstrated the use of 

a sophisticated linear reconstruction algorithm on data which were obtained during subtle 

stimuli in a challenging study group. Optical topography potentially provides a robust method 

for studying cognitive development. 
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Fig 1: Schematic diagram showing the approximate position of the array on the head. 
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Fig 2: Reconstructed images (depth=7 ± 1 mm) of changes in [HbO2], showing the response to 

the infant observing hand movements.  

 

 

 

 

Fig 3: Reconstructed images (depth=9 ± 1 mm) of changes in [HbO2], showing the response to 

the infant observing eye movements. 
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Fig 4: Depth images of changes in [HbO2] in the right hemisphere evoked by infant observing 

hand movements. The square shows the pixel where the change was maximum and which was 

tracked to obtain the data in Figure 6. 

 

 

 

 

Fig 5: Depth images of changes in [HbO2] in the right hemisphere evoked by infants observing 

eye movements. The square shows the pixel where the change was maximum and which was 

tracked to obtain the data in Figure 7. 
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Fig 6: Haemodynamic response curves, showing changes in [HbO2], [HHb] and total 

haemoglobin concentration [HbT], in the right hemisphere as infants observed videos of hand 

movements. The curves are taken from the pixel highlighted in Figure 4. Time t=0 corresponds 

to the onset of the stimulus. 
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FIG. 7: Haemodynamic response curves, showing changes in [HbO2], [HHb] and total 

haemoglobin concentration [HbT], in the right hemisphere while infants observed videos of eye 

movement. The curves are taken from the pixel highlighted in Figure 5. Time t=0 corresponds 

to the onset of the stimulus. 

 

 


