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Abstract

We propose an easy-to-implement simulated maximum likelihood estimator for dynamic
models where no closed-form representation of the likelihood function is available. Our method
can handle any simulable model without latent dynamics. Using simulated observations, we non-
parametrically estimate the unknown density by kernel methods, and then construct a likelihood
function that can be maximized. We prove that this nonparametric simulated maximum likeli-
hood (NPSML) estimator is consistent and asymptotically e¢ cient. The higher-order impact of
simulations and kernel smoothing on the resulting estimator is also analyzed; in particular, it is
shown that the NPSML does not su¤er from the usual curse of dimensionality associated with
kernel estimators. A simulation study shows good performance of the method when employed
in the estimation of jump-di¤usion models.
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1 Introduction

We propose a simulated maximum likelihood estimator for dynamic models based on nonparamet-

ric kernel methods. Our method is designed for models where no closed-form representation of the

likelihood function is available. Our method can handle any simulable model without latent dy-

namics. For any given parameter value, conditioning on available past information, we draw N i.i.d.

simulated observations from the model. We then use these simulated observations to nonparamet-

rically estimate the conditional density� unknown in closed form� by kernel methods. The kernel

estimate converges to the true conditional density as N goes to in�nity, enabling us to approxi-

mate the true density arbitrarily well with a su¢ ciently large N . We then construct the likelihood

and search over the parameter space to obtain a maximum likelihood estimator� nonparametric

simulated maximum likelihood estimator (NPSMLE).

NPSML was introduced by Fermanian and Salanié (2004), who obtained theoretical results

only for static models. In this paper, we generalize their method to dynamic models, including

nonstationary and time-inhomogeneous processes. We give general conditions for the NPSMLE

to be consistent and have the same asymptotic distribution as the infeasible maximum likelihood

estimator (MLE). For the stationary case, we also analyze the impact of simulations on the bias

and variance of the NPSMLE. In particular, we show that the estimator does not su¤er from the

curse of dimensionality despite the use of kernel smoothers. Finally, we show that the theoretical

results remain valid even if only simulations from an approximate model are available.

NPSML can be used for estimating general classes of models, such as structural Markov decision

processes and discretely-sampled di¤usions. As for Markov decision processes, the transition density

of endogenous state variables embodies an optimal policy function of a dynamic programming

problem, and hence does not typically have a closed-form representation (Rust, 1994; Doraszelski

and Pakes, 2007). However, we can closely approximate the optimal policy function numerically, and

simulate observations from the model for NPSML. Similarly, as for the estimation of continuous-time

stochastic models with discretely-sampled data, the transition densities are well-de�ned, but only in

few special cases can we derive closed-form expressions for them. Again, a large class of continuous-

time processes, including jump-di¤usions, can be approximated with various discretization schemes

to a given level of precision, and we can simulate observations from the model which are then used

for NPSML. Indeed, we investigate the performance of NPSML when applied to jump-di¤usion

models with particular attention to the impact of number of simulations and bandwidth. We �nd

that NPSML performs well even for a moderate number of simulations and that it is quite robust

to the choice of bandwidth.

For the classes of models that NPSML addresses, there are two categories of existing approaches.

The �rst is based on moment matching, and includes simulated methods of moments (Lee and In-

gram, 1991; Du¢ e and Singleton, 1993; Creel and Kristensen, 2009), indirect inference (Gouriéroux

et al., 1993; Smith, 1993; Creel and Kristensen, 2011), and e¢ cient methods of moments (Gal-

lant and Tauchen, 1996). These are all general-purpose methods, but cannot attain asymptotic
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e¢ ciency� even for models that are Markov in observables� unless the true score is encompassed

by the target moments (Tauchen, 1997). More recently, Carrasco et al. (2007) and Altissimo and

Mele (2009) developed general-purpose estimators based on matching a continuum of moments

that are asymptotically as e¢ cient as MLEs for fully observed systems. One attractive feature

of NPSML� which it shares with Carrasco et al. (2007) and Altissimo and Mele (2009)� is that

asymptotic e¢ ciency is attained without having to judiciously choose an auxiliary model. For

NPSML, the researcher has to choose a kernel and a bandwidth for the nonparametric estimation

of transition densities. However, there exist many data-driven methods that guide the researcher in

this regard such that our method can be fully automated to yield full e¢ ciency (Jones et al., 1996).

Another advantage is that, unlike most of the above methods, NPSML can handle nonstationary

and time-inhomogeneous dynamics.

The approaches in the second category approximate the likelihood function itself, and hence

is more closely related to NPSML. Examples of this approach include the simulated likelihood

method (Lee, 1995) and the method of simulated scores (Hajivassiliou and McFadden, 1998), both

of which are designed for limited dependent variable models. Another set of examples are various

maximum likelihood methods for discretely sampled di¤usions (Pedersen, 1995a,b; Sandmann and

Koopman, 1998; Elerian et al., 2001; Aït-Sahalia, 2002, 2008; Brandt and Santa-Clara, 2002). While

all these methods result in asymptotically e¢ cient estimators, they are designed only for speci�c

classes of models� i.e. limited dependent variable models or di¤usions, and cannot be adapted

easily to other classes of models. NPSML is for general purposes in both theoretical and practical

senses. Theoretically, we establish its asymptotic properties under fairly weak regularity conditions

allowing for a wide range of di¤erent models. At the practical level, when the model speci�cation

changes, only the part of the computer code that simulates observations needs to be modi�ed,

leaving other parts (e.g. kernel estimation of conditional density or numerical maximization of

likelihood) unchanged.

The basic implementation of our method requires that it is possible to simulate the current

variables of the model conditioning on �nitely-many past observations. This excludes models with

latent dynamics since these cannot be simulated one step at a time. However, our method can

be modi�ed to handle latent dynamics, but this modi�ed version will however not obtain full

e¢ ciency. Extensions of our method that obtain full e¢ ciency are worked out in a companion

paper (Brownlees et al., 2011) building on the main results obtained here.

The rest of the paper is organized as follows. In the next section, we set up our framework to

present the simulated conditional density and the associated NPSMLE. In Section 3, we derive the

asymptotic properties of the NPSMLE under regularity conditions. Section 4 provides a detailed

description on implementing NPSML with numerical examples, and Section 5 concludes.
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2 Nonparametric Simulated Maximum Likelihood

2.1 Construction of NPSMLE

Suppose that we have T observations, f(yt; xt)gTt=1, yt 2 Rk and xt 2 Xt. The space Xt can be
time-varying. We assume that the data is generated by a fully parametric model:

yt = gt (xt; "t; �) ; t = 1; � � � ; T; (1)

where � 2 � � Rd is an unknown parameter vector, and "t is and i.i.d. sequence with known
distribution F" and independent of xt and "t. Without loss of generality, assume that F" is known

and does not depend on t and �. Our setting accommodates Markov models where xt � yt�1, such

that fytg is a (possibly time-inhomogeneous) Markov process. In this case (1) is a fully-speci�ed
model. However, we allow xt to contain other (exogenous) variables than lagged yt, in which case

(1) is only a partially-speci�ed model. Also, we allow the processes (yt; xt) to be nonstationary, for

example due to unit-root-type behavior or deterministic time trends.

The model is assumed to have an associated conditional density pt(yjx; �). That is,

P (yt 2 Ajxt = x) =

Z
A
pt(yjx; �)dy; t = 1; � � � ; T;

for any Borel set A � Rk. A natural estimator of � is then the maximizer of the conditional

log-likelihood:

~� = argmax
�2�

LT (�); LT (�) =
TX
t=1

log pt(ytjxt; �):

If the model (1) is fully speci�ed, i.e. xt only contains lagged yt, then this is the full likelihood of

the model conditional on the starting value. If on the other hand, xt contains other variables than

lagged yt, LT (�) is a partial likelihood.

Suppose now that pt(yjx; �) does not have a closed-form representation, and thus the maximum
likelihood estimation of � is not feasible. In terms of the model (1), this occurs when either the

inverse of gt(xt; "t; �) w.r.t. "t does not exist, or when the inverse does not have a closed-form

expression.1 Such a situation may arise, for example, when the function g involves a solution to a

dynamic programming problem, or when we are dealing with discretely-sampled jump-di¤usions. In

such cases, although pt(yjx; �) is not available in closed form, we are still able to generate simulated
observations from the model: A solution to a dynamic programming problem can be represented

numerically, and a jump-di¤usion can be approximated by various discretization schemes up to a

given level of precision.

We here propose a general method to obtain a simulated conditional density, which in turn will

be used to obtain a simulated version of the MLE. For any given 1 � t � T , yt 2 Rk, xt 2 Xt, and

1 If the inverse has a closed-form expression, we have pt(yjx; �) = p"
�
g�1t (y; x; �)

� ��� @g�1t (y;x;�)

@y

���, and the likelihood
is easily evaluated.
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� 2 �, we wish to compute a simulated version of pt(ytjxt; �). To this end, we �rst generate N i.i.d.

draws from F", f"igNi=1, through a random number generator, and use these to compute

Y �t;i = gt (xt; "i; �) ; i = 1; � � � ; N:

By construction, the N simulated i.i.d. random variables, fY �t;igNi=1, follow the target distribution:
Y �t;i � pt(�jxt; �), i = 1; � � � ; N . They can therefore be used to estimate pt(yjx; �) with kernel
methods. De�ne:

p̂t(ytjxt; �) =
1

N

NX
i=1

Kh(Y
�
t;i � yt); (2)

where Kh(�) = K(�=h)=hk, K : Rk 7! R is a kernel, and h > 0 a bandwidth.2 Under regularity

conditions on pt and K, we obtain:

p̂t(ytjxt; �) = pt(ytjxt; �) +OP (1=
p
Nhk) +OP (h

2); N !1;

where the remainder terms are oP (1) if h! 0 and Nhk !1.
Once (2) has been used to obtain the simulated conditional density, we can now construct the

following simulated MLE of �0:

�̂ = argmax
�2�

L̂T (�); L̂T (�) =
TX
t=1

log p̂t(ytjxt; �):

When searching for �̂ through numerical optimization, we use the same draws for all values of �.

We may also use the same batch of draws from F"(�), f"igNi=1, across di¤erent values of t and x.
Numerical optimization is facilitated if L̂T (�) is continuous and di¤erentiable in �. With (2), if K

and � 7! gt (x; "; �) are r � 0 times continuously di¤erentiable, then L̂T (�) has the same property.
This follows from the chain rule and the fact that we use the same random draws f"igNi=1 for all
values of �.

Since p̂t(ytjxt; �)
P! pt(ytjxt; �), L̂T (�)

P! LT (�) as N ! 1 for a given T � 1 under regularity
conditions. The main theoretical results of this paper demonstrate that �̂ inherits the properties of

the infeasible MLE, ~�, as T;N !1, under suitable conditions.
The precision of �̂ relative to ~� clearly depends on the quality of the approximation of pt(yjx; �)

by p̂t(yjx; �). Let us note the following important points concerning the impact of the simulated
density. Firstly, because we use i.i.d. draws, the density estimator is not a¤ected by the dependence

structure in the observed data. In particular, our estimator works whether the observed data are

i.i.d. or nonstationary. Secondly, the simulated density, p̂t(yjx; �), su¤ers from the usual curse

of dimensionality for kernel density estimators with its variance being of order 1=(Nhk). The

curse of dimensionality only depends on k � dim(yt) here since we do not smooth over xt, and so
the dimension of xt is irrelevant in itself. Still one could be concerned that for high-dimensional

2Here and in the following, we will use K to denote a generic kernel.
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models (i.e. large k), a much larger number of simulations must be used to control the variance

component of the resulting estimator relative to, say, standard simulated method of moments

(where the variance is of order 1=N). However, as we demonstrate in Section 3, this is fortunately

not the case: The summation of the log-densities in the computation of L̂T (�) functions as an

additional smoothing device such that the additional variance of L̂T (�) due to simulations recovers

the standard parametric rate 1=N . This a well-known phenomenon in the literature on two-step

semiparametric estimators: They can obtain parametric rates despite the fact that they depend on

�rst-step nonparametric estimators� e.g. Kristensen (2010).

On the other hand, a disadvantage of our estimator is that for a �xedN and h > 0, the simulated

log-likelihood function is a biased estimate of the actual one. First, to obtain consistency, we will

have to let N ! 1 which is a feature shared by most non-linear simulation-based likelihood

methods.3 In addition, we have to let h ! 0 which is an additional complication relative to

other simulation-based estimators where no such nuisance parameter appears. In particular, one

has to choose h for a given sample and simulation size. However, if one is willing to make a

stronger assumption about the identi�cation of the model, the choice of the bandwidth may be less

important. For example, in the stationary case, the standard identi�cation assumption states that

E [log p(ytjxt; �)] < E [log p(ytjxt; �0)] for � 6= �0. A stronger identi�cation condition implying the

former is

E
�
log

�Z
K(�)p(yt + h�jxt; �)d�

��
< E

�
log

�Z
K(�)p(yt + h�jxt; �0)d�

��
; � 6= �0;

for all 0 � h � �h for some �h > 0.4 Under the latter identi�cation condition, one can show

consistency of our estimator for any �xed 0 < h � �h as N !1. A similar identi�cation condition
can be found in Altissimo and Mele (2009). Still, for a �xed h > 0, the resulting estimator will no

longer enjoy full e¢ ciency. To obtain this, one has to let h ! 0. Moreover, the above argument

assumes knowledge of the threshold �h > 0 for a given model and so in practice the bandwidth

selection problem still remains. However, it suggests that one can still identify parameters in large

samples when a given h > 0 is chosen and that the NPSMLE will be fairly robust to the choice of

h. This is supported by our simulation study which shows that the NPSML performs well within

a fairly broad range of bandwidth choices. Still a careful choice of the bandwidth will in general

lead to better performance of the estimator.

While we here focus on the kernel estimator, one can use other nonparametric density estimators

as well. Examples are the semi-nonparametric estimators of Wahba (1981), Phillips (1983), Gallant

and Nychka (1987), and Fenton and Gallant (1996); the log-spline estimator of Stone (1990); and

3See Lee and Song (2009) for an exception.
4This follows from the following inequality:

E [log p(ytjxt; �)] = lim
h!0

E
�
log

�Z
K(�)p(yt + h�jxt; �)d�

��
< lim

h!0
E
�
log

�Z
K(�)p(yt + h�jxt; �0)d�

��
= E [log p(ytjxt; �0)] :
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the wavelet estimator of Donoho et al. (1996).

Example: Discretely-Observed Jump Di¤usion Consider an Rk-dimensional continuous-
time stochastic process fyt : t � 0g that solves the following stochastic di¤erential equation:

dyt = � (t; yt; �) dt+�(t; yt; �) dWt + JtdQt: (3)

The model contains both continuous and jump components. Wt 2 Rl is a standard Brownian
motion, while Qt is an independent pure jump process with stochastic intensity �(t; yt; �) and jump

size 1. The functions � : [0;1) � Rk � � 7! Rk and � : [0;1) � Rk � � 7! Rk�l is the drift and
the di¤usion term respectively, while Jt measures the jump sizes and has density v (t; yt; �).

Such jump di¤usions are widely used in �nance to model the dynamics of stock prices, interest

rates, exchange rates and so on (Sundaresan, 2000). Suppose we have a sample y1; :::; yT� without

loss of generality, we normalize the time interval between observations to 1� and wish to estimate

� by maximum likelihood. Although under regularity conditions (Lo, 1988) the transition density

pt(yjx; �) satisfying P (yt+1 2 Ajyt = x) =
R
A pt(yjx; �)dy is well-de�ned, it cannot in general be

written in closed form which in turn complicates estimation.5 However, discretization schemes

(Kloeden and Platen, 1992; Bruti-Liberati and Platen, 2007) can be used to simulate observations

from the model for any given level of accuracy, enabling NPSML. We re-visit this example in Section

4 where we provide a detailed description of implementing NPSML in practice.

2.2 Extensions and Alternative Schemes

Latent Dynamics Our method can be modi�ed to handle dynamic latent variables: Suppose yt
is generated from

[yt; wt] = g (yt�1; wt�1; "t; �) ;

where wt is unobserved/latent and "t �i.i.d. F". The full likelihood function will require com-

putation of conditional densities on the form p (ytjyt�1; yt�2; :::; y0; �) which in general is compli-
cated due to the expanding information set; see e.g. Brownlees et al. (2011). We can however

construct a simulated version of the following "limited information" likelihood (LIL) given by

LT (�) =
Pt
t=1 log p (ytjxt; �) where xt is a set of conditioning variables chosen by the econometri-

cians, say, xt = (yt�1; :::; yt�m) for some m � 1. There will be an e¢ ciency loss from estimating �

using this LIL relative to the full likelihood, but the LIL is a lot easier to implement: First simulate

a (long) trajectory fY �t g
~N
t=1 byh

Y �t ;W
�
t

i
= g

�
Y �t�1;W

�
t�1; "t; �

�
; t = 1; ::::; ~N ,

5Schaumburg (2001) and Yu (2007), building on the approach of Aït-Sahalia (2002), use analytic expansions to
approximate the transition density for univariate and multivariate jump di¤usions, respectively. Their asymptotic
result requires that the sampling interval shrink to zero. The simulated MLE of Pedersen (1995a,b) or Brandt and
Santa-Clara (2002) need to be substantially modi�ed before they can be applied to Lévy processes.
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where f"tg
~N
t=1 are i.i.d. draws from F". We can then use these simulations to construct a simulated

version of p (ytjxt; �) by the following kernel estimator of the conditional density,

�p(yjx; �) =
P ~N
t=1Kh(Y

�
t � y)Kh(X

�
t � x)P ~N

t=1Kh(X
�
t � x)

: (4)

where X�
t =

�
Y �t�1; :::; Y

�
t�m

�
. Similar ideas were utilized in Altissimo and Mele (2009) and Creel

and Kristensen (2009).

A disadvantage of the above method is that the convergence of �p relative to p̂ will be slower

due to (i) the dimension of (Y �t ; X
�
t ) can potentially be quite large and (ii) the simulated variables

are now dependent. So one will have to choose a larger ~N for the simulated conditional density in

(4) relative to the one in (2).

To handle (ii), one will typically have to assume a stationary solution to the dynamic system

under consideration, and either have to start the simulation from the stationary distribution, or

assume that the simulated process converges towards the stationary distribution at a suitable rate.

For the latter to hold, one will need to impose some form of mixing condition on the process, as

in Altissimo and Mele (2009) and Creel and Kristensen (2009). Then a large value of ~N is needed

to ensure that the simulated process is su¢ ciently close to its stationary distribution� that is, one

has to allow for a burn-in.

The estimator in (4) may work under nonstationarity as well. Recently, a number of papers have

considered kernel estimation of nonstationary Markov processes. The kernel estimator proves to

be consistent and asymptotically mixed-normally distributed when the Markov process is recurrent

(Karlsen and Tjøstheim, 2001; Bandi and Phillips, 2003). However, the convergence rate will be

path-dependent and relatively slow.

In the remainder of this paper we focus on (2). The properties of (4) can be obtained by

following the same strategy of proof as the one we employ for (2). The only di¤erence is that,

to obtain �p P! p in the sup-norm one has to take into account the dependence of the simulated

values. This can be done along the lines of Creel and Kristensen (2009) where kernel regressions

and simulations are combined to compute GMM estimators for dynamic latent variable models.

Discrete Random Variables Discrete random variables can be accommodated within our

framework. Suppose yt contains both continuous and discrete random variables. For example,

yt = (y1t; y2t) 2 Rk+l where y1t 2 Rk is a continuous random variable while y2t 2 Y2 � Rl is a ran-
dom variable with (potentially in�nite number of) discrete outcomes, Y2 = fy2;1; y2;2; :::g. We could
then use a mixed kernel to estimate pt (yjx). For given simulated observations Y �t;i =

�
Y �1t;i; Y

�
2t;i

�
,

i = 1; :::; N :

p̂t(y1; y2jx; �) =
1

N

NX
i=1

Kh(Y
�
1t;i � y1)IfY �2t;i = y2tg; (y1t; y2t) 2 Rk+l; (5)

where If�g is the indicator function and K : Rk 7! R is the kernel from before. However, the

resulting simulated log-likelihood will be discontinuous and optimization may be di¢ cult. One
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could replace the indicator function used for the discrete component with a smoother. Examples of

smoothers can be found in Cai et al. (2001) and Li and Racine (2007, ch. 2). These will increase bias

but reduce variance of the estimator, and at the same time lead to a continuous function. However,

in general, � 7! Y �2t;i itself will not be continuous so either way, with a discrete component, L̂T (�)

based on (5) is no longer continuous w.r.t. �.

Instead, we will here assume that there exists a function Y �2t;i = g2 (y2t; xt; "i; �) that is smooth

in � such that

E
h
Y �2t;ijY �1t;i = y1t

i
= pt(y2tjy1t; xt; �): (6)

Thus, Y �2t;i now denotes a simulated value of the associated density, and not the outcome of the

dependent variable. We then propose to estimate the joint density by

p̂t(y1t; y2tjxt; �) =
1

N

NX
i=1

Kh(Y
�
1t;i � y1t)Y �2t;i: (7)

To motivate the above assumption and the resulting estimator, we �rst note that a discrete random

variable can always be represented as y2;t = D (zt) for some continuous variables zt 2 Rm and some
function D : Rm 7! Y2 which we, for the sake of the argument, assume does not depend on (t; x; �).
For example, most limited dependent variables can be written in this form, c.f. Manrique and

Shephard (1998) and the references therein. We assume that zt satis�es zt = gZ (xt; "t; �) for some

function gZ that can be written in closed form, and has associated conditional density pztjxt (zjx).
Clearly, pt (y2jx) = P (y2t = y2jxt = x) satis�es

pt (y2jx) = P
�
zt 2 D�1 (y2) jxt = x

�
=

Z
D�1(y2)

pztjxt (zjx) dz:

The last integral is equal to
R
Rm

pt(zjx)
pD(zjy2)pD (zjy2) dz for any density pD (zjy2) with support D

�1 (y2).

If pztjxt (zjx) is known in closed form, this integral can then be simulated by

p̂t (y2tjxt) =
1

N

NX
i=1

K(1)( ~Z�t;ijy2t; xt), K(1)
�
~Z�t;ijy2t; xt

�
=
pztjxt(

~Z�t;ijxt)
pD( ~Z�t;ijy2t)

; (8)

where ~Z�t;i
iid� pD (zjy2t), as is standard in the estimation of limited dependent variable models.

If pzjx (zjx) cannot be written in closed form, we propose to use p̂ztjxt (ztjxt) = 1
N

PN
i=1Kb(Z

�
t;i�

z), where Z�t;i = gZ (xt; "i; �) and b > 0 is another bandwidth. If
R
D�1(y2)

Kb(Z
�
t;i � z)dz can be

written in closed form, we follow Fermanian and Salanié (2004, pp. 709�710 and 724�725) and use:

p̂t (y2tjxt) =
1

N

NX
i=1

K(2)b
�
Z�t;i; y2t

�
; K(2)b

�
Z�t;i; y2t

�
=

Z
D�1(y2t)

Kb(Z
�
t;i � z)dz: (9)

If this is not the case, we can use

p̂t (y2tjxt) =
NX
i=1

K̂(2)b
�
Z�t;i; y2t

�
, K̂(2)b

�
Z�t;i; y2t

�
=
1

N

NX
j=1

Kb(Z
�
t;i � ~Z�t;j)

pD( ~Z�t;j jy2t)
: (10)
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In all three cases, we can write the resulting simulated joint density in equation (7) by choosing

Y �2t;i = K(1)( ~Z�t;i; y2tjxt), Y �2t;i = K(2)b
�
Z�t;i; y2t

�
and Y �2t;i = K̂(2)b

�
Z�t;i; y2t

�
, respectively. Here,

� 7! Y �2t;i is smooth with a bias that disappears as b! 0 and variance that is bounded in b. Thus,

the order of the variance of L̂T (�) is not a¤ected by any added discrete variables, and the curse of

dimensionality remains of order k = dim (y1t).

Quasi Maximum Likelihood Estimation The use of our approximation method is not limited

to actual MLEs. In many situations, one can de�ne quasi- or pseudo-likelihood which, even though

it is not the true likelihood, identi�es the parameters of the true model. One obvious example of

this is the standard regression model, where the MLE based on Gaussian errors (i.e. the least-

squares estimator) proves to be robust to deviations from the normality assumption. Another

example is estimation of (G)ARCH models using quasi-maximum likelihood� e.g. Lee and Hansen

(1994). These are cases where the quasi-likelihood can be written explicitly. If one cannot �nd

explicit expressions of the quasi-likelihood, one can instead employ our estimator, simulating from

the quasi-model: Suppose for example that data has been generated by the model (1), but the data-

generating distribution of the errors is unknown. We could then choose a suitable distribution F",

draw f"igNi=1 from F" and then proceed as in Section 2.1. The resulting estimator would no longer

be a simulated MLE but rather a simulated QMLE. In this setting, the asymptotic distribution

should be adjusted to accommodate the fact that we are not using the true likelihood to estimate

the parameters. This obviously extends to the case of misspeci�ed models as in White (1984).

The above procedure is one example of how our simulation method can be applied to non-

and semiparametric estimation problems where an in�nite-dimensional component of the model

is unknown. Another example is the situation where data has been generated by the model (1)

with known distribution F", but now � = (�; 
) where � and 
 are �nite- and in�nite-dimensional

parameters respectively. An application of our method in this setting can be found in Kristensen

(2010) where 
 is a density. Again, our asymptotic results have to be adjusted to allow for � to

contain in�nite-dimensional parameters.

3 Asymptotic Properties of NPSMLE

Given the convergence of the simulated conditional density towards the true one, we expect that

the NPSMLE �̂ based on the simulated kernel density estimator will have the same asymptotic

properties as the infeasible MLE ~� for a suitably chosen sequence N = N(T ) and h = h(N).

We give two sets of results: The �rst establishes that �̂ is �rst-order asymptotic equivalent to ~�

under general conditions, allowing for nonstationarity. Under additional assumptions, including

stationarity, we derive expressions of the leading bias and variance components of �̂ relative to

the actual MLE due to simulations and kernel smoothing, and give results for the higher-order

asymptotic properties of �̂.

We allow for a mixed discrete and continuous distribution of the response variable, and
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write yt = (y1t; y2t) 2 Y1 � Y2, where Y1 � Rk and Y2 = fy2;1; y2;2; :::g � Rl. Here, y1t
has a continuous distribution, while y2t is discrete. The joint distribution can be written as

pt(y1; y2jx; �) = pt(y2jy1; x; �)pt(y1jx; �) where pt(y2;ijy1; x; �) are conditional probabilities satisfy-
ing

Pl
i=1 pt(y2;ijy1; x; �) = 1, while pt(y1jx; �) is a conditional density w.r.t. the Lebesgue measure.

Also, let pt(y2;ijx; �) denote the conditional probabilities of y2tjxt = x.

The asymptotics are derived for the kernel estimator given in equation (7) where

Y �1t;i := g1;t (xt; "i; �) ; (11)

Y �2t;i := g2;t (y2t; xt; "i; �) ; (12)

for i = 1; � � � ; N and t = 1; � � � ; T , where f"igNi=1 are i.i.d. draws from F", such that equation (6)

holds. Recall that Y �2t;i denotes a simulated value of the associated density, and not the outcome

of the dependent variable. The condition in equation (6) is met when Y �2t;i = K(1)( ~Z�t;i; y2tjxt) with
K(1) given in equation (8), while it only holds approximately for K(2) and K̂(2) de�ned in equations
(9) and (10) due to biases induced by the use of kernel smoothing. We handle these two cases in

Theorem 3.4 where results for approximate simulations are given.

Note that we here use the same errors to generate the simulations over time. An alternative sim-

ulation scheme would be to draw a new batch of errors for each observation xt, Y �t;i = gt (xt; "t;i; �),

i = 1; :::; ~N , such that the total number of simulations would be ~N � T , f"i;tg
~N
i=1, t = 1; :::; T .

Under regularity conditions, the NPSMLE based on this simulation scheme would have similar

asymptotic properties as the one based on the simulations in equations (11) and (12). However, as

demonstrated in Lee (1992), choosing N = ~NT , the variance of the NPSMLE based on equations

(11) and (12) will be smaller.6

In order for �̂ to be asymptotically equivalent to ~�, we need p̂ P! p su¢ ciently fast in some

suitable function norm. To establish this, we verify the general conditions for uniform rates of

kernel estimators found in Kristensen (2009). These general conditions are satis�ed under the

following set of regularity conditions regarding the model and its associated conditional density:

A.1 The functions (x; t; �) 7! g1;t (x; "; �) and (x; t; �) 7! g2;t (y2; x; "; �) are continuously di¤eren-

tiable for all y2 and " such that for some function �(�) and constants �i;j � 0, i; j = 1; 2,

kg1;t (x; "; �)k � �(")
h
1 + kxk�1;1 + t�1;2

i
; kg2;t (y2; x; "; �)k � �(")

h
1 + kxk�2;1 + t�2;2

i
;

and E [� (")s] < 1 for some s > 2. The derivatives of g1 and g2 w.r.t. (x; t; �) satisfy the

same bounds.

A.2 The conditional density pt(y1; y2jx; �) is continuous w.r.t. � 2 �, and r � 2 times continuously
di¤erentiable w.r.t. y1 with the r-th derivative being uniformly continuous. There exists

6The results of Lee (1992) are for discrete choice models, but we conjecture that his results can be extended to
general simulated MLE.
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constants �B0 > 0 and �0;1; �0;2 � 0, such that the following bounds hold uniformly over

(t; y1; y2; x; �) with �B (x; t) = �B0

�
1 + kxk�0;1 + t�0;2

�
:

X
j�j=r

����@rpt(y1; y2jx; �)@y�1

���� � �B (x; t) ; ky1kk pt (y1; y2jx; �) � �B (x; t) : (13)

A.3 � 7! g1;t (x; "; �) and � 7! g2;t (x; y2; "; �) are twice continuously di¤erentiable for all t; x; " with

their derivatives satisfying the same moment conditions as g1 and g2 in Assumption A.1.

A.4 @pt(yjx; �)= (@�) and @2pt(yjx; �)=
�
@�@�0

�
are r � 2 times continuously di¤erentiable w.r.t.

y1 with bounded derivatives such that they satisfy the same bounds in equation (13) as p.

Assumptions A.1 and A.2 are used to establish uniform convergence of p̂ (Lemma B.1). As-

sumption A.1 imposes restrictions on the two data-generating functions g1 and g2. The smoothness

conditions are rather weak, and satis�ed by most models, while the polynomial bounds imposed on

the two functions can be exchanged for other bounds, but will complicate some of the conditions

imposed below. Note that the moment condition in Assumption A.1 does not concern the observed

process f(yt; xt)g, only the errors " that we draw when simulating. If for example, �(") / k"kq, then
the moment condition is satis�ed if E [k"kqs] < 1. Thus, in this case, the moment condition only
rules out models driven by fat-tailed errors. If the model is time-homogenous, �i;2 = 0, i = 1; 2.

Assumption A.2 restricts the conditional density that we are trying to estimate. The smoothness

assumptions imposed on p in A.2 in conjunction with the use of higher-order kernels (which are

introduced below) controls the bias of p̂. The bounds are imposed to obtain a uniform bound of

the variance of p̂. Again, the assumptions are quite weak and are satis�ed by many models. If the

model is time-homogenous, �0;2 = 0.

Assumptions A.3 and A.4 will only be used when examining the higher-order impact of sim-

ulations and kernel smoothing on our estimator. These two conditions yield uniform convergence

of @p̂t(yjx; �)=@� and @2p̂t(yjx; �)=
�
@�@�0

�
, which in turn allows us to analyze the �rst and second

derivatives of the simulated log-likelihood (Lemma B.2).

Our conditions are slightly stronger than the ones found in Fermanian and Salanié (2004, M.1�2

and L.1�3). There, weaker bounds and smoothness conditions are imposed on the function g, while

their restrictions on the conditional density are very similar to ours.

The kernel K is assumed to belong to the following class of so-called higher-order or bias-

reducing kernels.

K.1 The kernel K satis�es:

1. supu2Rk jK (u)j <1 and
R
Rk jK (u)j du <1. There exist C;L <1 such that either (i)

K (u) = 0 for kuk > L and jK (u)�K (u0)j � C ku� u0k, or (ii) K (u) is di¤erentiable
with supu2Rk j@K (u) =@uj � C. For some a > 1,

��@j�jK (u) =@u��� � C kuk�a for kuk � L

and all 1 � j�j � 2.
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2.
R
Rk K (u) du = 1 and for some r � 1:

R
Rk K (u)u

�du = 0, 1 � j�j � r � 1, andR
Rk K (u) kuk

r du <1.

K.2 The �rst and second derivatives of K also satisfy K.1.1.

This is a broad class of kernels allowing for unbounded support. For example, the Gaussian

kernel satis�es K.1 with r = 2. When r > 2, K is a so-called higher-order kernel that reduces the

bias of p̂ and its derivatives, and thereby obtains a faster rate of convergence. The smoothness

of p as measured by its number of derivatives, r, determines the degree of bias reduction. The

additional assumption K.2 is used in conjunction with Assumptions A.3 and A.4 to show that the

�rst and the second derivatives of p̂ w.r.t. � also converge uniformly.

Next, we impose regularity conditions on the model to ensure that the actual MLE is asymp-

totically well-behaved. We �rst introduce the relevant terms driving the asymptotics of the MLE.

We �rst normalize the log-likelihood by some factor �T !1:

LT (�) =
1

�T

TX
t=1

log pt(ytjxt; �):

This normalizing factor �T is introduced to ensure that LT (�) is well-behaved asymptotically and

that certain functions of data are suitably bounded, c.f. C.1�C.4 below. It is only important for

the theoretical derivations, and not relevant for the actual implementation of our estimator since

�T does not depend on �. The choice of �T depends on the dynamics of the model. The standard

choice is �T = T as is, for example, the case when the model is stationary. In order to allow for

non-standard behavior of the likelihood due to, for example, stochastic and deterministic trends,

we do not impose this restriction though.

We also rede�ne the simulated version of the likelihood: In order to obtain uniform convergence

of log p̂t (yjx; �), we need to introduce trimming of the approximate log-likelihood as is standard in
the literature on semiparametric estimators. The trimmed and normalized version of the simulated

log-likelihood is given as

L̂T (�) =
1

�T

TX
t=1

�a(p̂t(ytjxt; �)) log p̂t(ytjxt; �);

where �a(�) is continuously di¤erentiable trimming function satisfying �a(z) = 1 if jzj > a, and 0

if jzj < a=2, with a trimming sequence a = a(N) ! 0. One could here simply use the indicator

function for the trimming, but then L̂T (�) would no longer be di¤erentiable, and di¤erentiability

is useful when using numerical optimization algorithms to solve for �̂.

Assuming that LT (�) is three times di¤erentiable, c.f. Assumption C.3 below, we can de�ne:

ST (�) =
@LT (�)

@�
=
1

�T

TX
t=1

@ log pt(ytjxt; �)
@�

2 Rd;

13



HT (�) =
@2LT (�)

@�@�0
=
1

�T

TX
t=1

@2 log pt(ytjxt; �)
@�@�0

2 Rd�d;

GT;i(�) =
@3LT (�)

@�@�0@�i
=
1

�T

TX
t=1

@3 log pt(ytjxt; �)
@�@�0@�i

2 Rd�d:

The information is then de�ned as:

iT (�) =
1

�T

TX
t=1

E
�
@ log pt(ytjxt; �)

@�

@ log pt(ytjxt; �)
@�0

�
= E [HT (�)] 2 Rd�d:

We also de�ne the diagonal matrix IT (�) = diag fiT (�)g 2 Rd�d, where diag fiT (�)g denotes the
diagonal elements of the matrix iT (�), and

UT (�) = I
� 1
2

T (�)ST (�); VT (�) = I
� 1
2

T (�)HT (�)I
� 1
2

T (�); WT;i(�) = I
� 1
2

T (�)GT;i(�)I
� 1
2

T (�): (14)

With IT � IT (�0), we then impose the following conditions on the actual log-likelihood function
and the associated MLE which ensure consistency and a well-de�ned asymptotic distribution of the

actual MLE, ~�:

C.1 The parameter space is given by a sequence of local neighborhoods,

�T =
n
� : kI1=2T (� � �0) k � �

o
� Rd;

for some � > 0 with I�1T = OP (1).

C.2 For any � > 0, there exists a � > 0 such that

lim
T!1

P

0@ sup
kI1=2T (�0��)k>�

fLT (�0)� LT (�)g � �

1A = 1:

C.3 LT (�) is three times continuously di¤erentiable with its derivatives satisfying:

1.
�p
�TUT (�0); VT (�0)

� d! (S1;H1) with H1 < 0 a.s.;

2. maxj=1;:::;d sup�2�T kWj;T (�)k = OP (1).

C.4 The following bounds hold for some �; q > 0:

1. sup�2�T �
�q
T

PT
t=1 jlog pt(ytjxt; �)j

1+� = OP (1);

2. ��qT
PT
t=1 kxtk

1+� = OP (1) and �
�q
T

PT
t=1 �

2 ("t) = OP (1).

The above conditions C.1�C.4 are generalized versions of the conditions normally required for

consistency and asymptotic normality of MLE�s in stationary and ergodic models. For general

non-ergodic models, simple conditions for C.2�C.4 are not available and they have to be veri�ed
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on a case-by-case basis. For the stationary case, they are implied by primitive conditions as found

below in Corollary 3.2.

The speci�cation of the parameter space in C.1 to be a sequence of non-increasing compact sets

is introduced to allow for non-ergodic models. Given C.1, we re-de�ne ~� and �̂ as the maximizers of

the exact and approximate likelihood over �T . This in particular means that we will only conduct

our analysis of the NPSMLE in a (possibly shrinking) neighborhood of the true parameter value.

Ideally, a global analysis would have been preferable, but currently, to the best of our knowledge,

there exists no general results on the properties of MLEs for non-ergodic models over a �xed

parameter space. For speci�c models, global results exist such as those found in Park and Phillips

(2000, 2001), but these results appear di¢ cult to extend to a more general setup and usually the

analysis of non-ergodic models is done locally, see e.g. Kristensen and Rahbek (2010).

Assumption C.2 gives us consistency of the actual MLE, c.f. Lemma A.1. It is a combined

uniform convergence and identi�cation condition. It is for example implied by uniform convergence

of the log-likelihood towards some population function which in turn identi�es the true value of the

parameter; see for example Amemiya (1983). Note that the condition may potentially hold even if

the log-likelihood is not continuous, since its asymptotic limit will in great generality be so.

Assumption C.3 is a further strengthening of C.2 stating that the score and hessian converge

in distribution after suitable normalization. This condition, in conjunction with C.1, implies both

consistency and that the asymptotic distribution of the MLE is given as
p
�TI1=2T (~� � �0)

d!
�H�1

1 S1, c.f. Lemma A.3.7

Assumption C.4 imposes bounds on a number of sample averages. They are used to show that

the trimming of the simulated log-likelihood is asymptotically negiglible for suitable choices of the

trimming parameter a. Note that the factor �T in C.4 is the same as the one we normalized the

log-likelihood with. The exponent q > 0 should be chosen to ensure that both the log-likelihood

and the sample averages in C.4 are well-behaved.

In the ergodic case, we can appeal to standard results for stochastic equicontinuity� e.g. Propo-

sition 1 in Kristensen and Rahbek (2005)� to obtain that C.4 holds with �T = T and q = 1, given

that E[ kxtk1+�] <1 and E
�
sup�2� j log p(ytjxt; �)j1+�

�
<1. See Corollary 3.2 below and its proof

for further details. Furthermore, iT (�0) = i(�0) + oP (1) with i(�) = E
�
@2 log p(ytjxt; �)=(@�@�0)

�
,

such that IT can be chosen as the constant diag fi(�0)g. This in turn implies that �T is a �xed
compact parameter set, and we get standard

p
T -convergence towards a normal distribution. Thus,

in the case of stationarity, C.1�C.4 are more or less identical to the ones imposed in Fermanian and

Salanié (2004, L.1�3).

In the general case, one should choose �T as the square of the slowest rate of convergence of

the vector of MLEs. There is a tension between C.1 and C.4 in terms of the choice of �T . We

cannot choose �T !1 too fast, since then kIT k ! 0 (in which case no information regarding �0 is

available) and this is ruled out by C.1. On the other hand, we have to choose �qT !1 su¢ ciently

fast to ensure that the bounds in C.4 hold. By choosing q > 0 su¢ ciently large, C.1 and C.4

7Basawa and Scott (1983) and Jeganathan (1995) show what S1 and H1 look like in various cases.
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will both be satis�ed. However, a large value of q implies that we have to use a larger number of

simulations for the NPSMLE to be asymptotically equivalent to the MLE, c.f. B.1 and B.2 below.

As an example of non-standard asymptotics of the MLE, consider a linear error-correction

model, �yt = ��0yt�1+
1=2"t, where "t � N (0; Ik). We can split the parameter vector into short-

run, �1 = (�; vech (
)), and long-run parameters, �2 = �. The MLE ~�1 converges with
p
T -speed

towards a normal distribution, while ~�2 is superconsistent with T (~�2 � �2) converging towards a

Dickey-Fuller type distribution. In this case, we choose
p
�T =

p
T , and so iT (�0) and therefore IT ,

is not asymptotically constant. As demonstrated in Saikkonen (1995), this model satis�es C.2�C.4.

Furthermore, xt = yt�1 satis�es T�2
PT
t=1 kxtk

1+� = OP (1) so we can choose q = 2. We also refer

to Park and Phillips (2001) and Kristensen and Rahbek (2010) where C.2�C.4 are veri�ed for some

non-linear, non-stationary models.

We impose the following restrictions on how the bandwidth h and trimming sequence a can

converge to zero in conjunction with N;T !1:

B. With q; � > 0 given in Condition C.4, ��k = �0;k + �1;k + �2;k, k = 1; 2, where �i;1; �i;2 � 0,

i = 0; 1; 2, are given in Assumptions A.1 and A.2 and for some 
 > 0:

1. j log aj�q�1T N�
(1+�) ! 0; j log(4a)j���q�1T ! 0; T��1T a�1
h
N
��1 + T

��2
i
log(N)=

p
Nhk !

0; and T��1T a�1
�
N
�0;1 + T �0;2

�
hr ! 0.

2. j log aj�qTN�
(1+�) ! 0; j log(4a)j���qT ! 0; T��1=2T a�1
h
N
��1 + T

��2
i
log(N)=

p
Nhk !

0; and T��1=2T a�1
�
N
�0;1 + T �0;2

�
hr ! 0.

Condition B.1 is imposed when showing consistency of the NPSMLE, while B.2 will imply that

the NPSMLE has the same asymptotic distribution as the MLE. The parameter 
 > 0 can be

chosen freely. We observe that large values of q and/or ��1; ��2 implies that N has to diverge at

a faster rate relative to T . In practice, this means that a larger number of simulations have to

be used for a given T to obtain a precise estimate. The joint requirements imposed on a, h and

N are fairly complex, and it is not obvious how to choose these nuisance parameters for a given

sample size T . This is a problem shared by, for example, semiparametric estimators that rely on a

preliminary kernel estimator. We refer to Ichimura and Todd (2007) for an in-depth discussion of

these matters. Fortunately, our simulation results indicate that standard bandwidth selection rules

together with a bit of undersmoothing in general deliver satisfactory results.

Our strategy of proof is based on some apparently new results for approximate estimators, c.f.

Appendix A. In particular, Theorems A.4 and A.5 establish that the NPSMLE and the MLE will

be asymptotically �rst-order equivalent if L̂T (�) converges uniformly towards LT (�) at a su¢ ciently

fast rate. This makes our proofs considerably less burdensome than those found in other studies of

simulation-based estimators� e.g. Fermanian and Salanié (2004) and Altissimo and Mele (2009)�

since we do not need to analyze the simulated score and Hessian.
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Theorem 3.1 Assume that Assumptions A.1, A.2, and K.1 hold. Then the NPSMLE �̂ based on

(7) satis�es:

(i) Under Conditions C.1, C.2, and C.4: I1=2T (�̂ � �0) = oP (1) for any sequences N ! 1, and
h; a! 0 satisfying B.1.

(ii) Under Conditions C.1, C.3, and C.4:
p
�TI1=2T (�̂��0)

d! �H�1
1 S1 for any sequences N !1,

and h; a! 0 satisfying B.2.

When the data generating process is stationary and ergodic, the following more primitive con-

ditions can be shown to imply C.1�C.4:

Corollary 3.2 Assume that (yt; xt) is stationary and ergodic, and that Assumptions A.1, A.2,
K.1, and B.1 hold with q = 1, �T = T , ��2 = �0;2 = 0 and:

(i) E[ kxtk1+�] <1, j log p(yjx; �)j � b1(yjx), 8� 2 �, with E
�
b1(ytjxt)1+�

�
<1 and � compact;

(ii) E [log p(ytjxt; �)] < E [log p(ytjxt; �0)], 8� 6= �0.

Then �̂ P! �0.

If furthermore B.2 holds with q = 1, �T = T and ��2 = �0;2 = 0 together with:

(iii) i(�0) = E
h
@ log p(ytjxt;�0)

@�
@ log p(ytjxt;�0)

@�0

i
exists and is nonsingular;

(iv) k@
2 log p(yjx;�)
@�@�0

k � b2(yjx) uniformly in a neighborhood of �0 with E [b2(ytjxt)] <1;

then
p
T (�̂ � �0)

d! N (0; i(�0)�1).

If for simplicity we set 
 = 0 in B.2 and disregard the conditions on the trimming parameter

a, then roughly speaking the NPSMLE will be �rst-order equivalent to the exact MLE in the

stationary case if Th2r ! 0 and T=
�
Nhk

�
! 0 re�ecting the bias and variance due to kernel

smoothing and simulations. The variance requirement seems to indicate that the usual curse of

dimensionality inherent in kernel density estimation is present. However, this is caused by the

initial error bounds used to establish Corollary 3.2 being overly conservative. In the following we

will obtain more precise error bounds which show that the curse of dimensionality is signi�cantly

less severe. Moreover, these re�ned error bounds allow us to better gauge which additional biases

and variances the NPSMLE su¤ers from due to simulations and kernel smoothing. These can

potentially be used to adjust con�dence bands based on the NPSMLE to take into account the

additional simulation errors.

Since the higher-order analysis involves the �rst and second derivatives of L̂T (�), we have to

invoke the additional smoothness conditions on g and p stated in Assumptions A.3 and A.4. Under
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the additional smoothness conditions, the �rst two derivatives of g1;t (x; "; �) and g2;t (y2; x; "; �)

w.r.t. � exist, and so the �rst two derivatives of our density estimator are well-de�ned:

@p̂t(ytjxt; �)
@�

=
1

N

NX
i=1

n
_Y �2t;iKh

�
Y �1t;i � y1

�
+ _Y �1t;iK

(1)
h

�
Y �1t;i � y1

�
Y �2t;i

o
; (15)

@2p̂t(ytjxt; �)
@�@�j

=
1

N

NX
i=1

n
�Y
�j
2t;iKh

�
Y �1t;i � y1

�
+ _Y �2t;iK

(1)
h

�
Y �1t;i � y1

�0 _Y �j1t;io (16)

+
1

N

NX
i=1

n
�Y
�j
1t;iK

(1)
h

�
Y �1t;i � y1

�
Y �2t;i + _Y �1t;iK

(2)
h

�
Y �1t;i � y1

�
_Y
�j
1t;iY

�
2t;i

o
+
1

N

NX
i=1

_Y �1t;iK
(1)
h

�
Y �1t;i � y1

�
_Y
�j
2t;i;

for j = 1; :::; d, where K(i)
h (y1) = K(i) (y1=h) =h

k+i, i = 1; 2, with K(1) (y1) = @K (y1) = (@y1) 2 Rk

and K(2) (y1) = @2K (y1) = (@y1@y
0
1) 2 Rk�k, while _Y �1t;i =

�
_Y �11t;i; ::::;

_Y �d1t;i

�0
2 Rd�k with

_Y
�j
1t;i =

@g1;t (xt; "i; �)

@�j
2 Rk; �Y

�j
1t;i =

@2g1;t (xt; "i; �)
0

@�@�j
2 Rd�k;

and similarly for _Y �2t;i 2 Rd and �Y
�j
2t;i 2 Rd. Lemma B.2 shows that these are uniformly consistent

estimates of the actual derivatives of the conditional density pt. The corresponding simulated

version of the score is given by

ŜT (�) =
1

�T

TX
t=1

@p̂t(ytjxt; �)
@�

�
�a(p̂t(ytjxt; �))
p̂t(ytjxt; �)

+ � 0a(p̂t(ytjxt; �)) log p̂t(ytjxt; �)
�
; (17)

an expression for the simulated version of the Hessian can be found in the proof of Theorem 3.3. We

then follow Kristensen and Salanie (2010) and consider a second order functional Taylor expansion

of ŜT (�) w.r.t. p̂. This takes the form:

ŜT (�0) = ST (�0) +rST;N [p̂� p] +r2ST;N [p̂� p; p̂� p] +RT;N ; (18)

where rST;N [p̂� p] and r2ST;N [p̂� p; p̂� p] are the �rst and the second order functional di¤er-
entials w.r.t. p, while RT;N is the remainder term. The expressions of these can be found in the

proof of Theorem 3.3, where the properties of the �rst- and second-order terms are analyzed.

To facilitate our analysis, which involves U -statistics, we restrict our attention to the stationary

and �-mixing case. See e.g. Ango Nze and Doukhan (2004) for an introduction to this concept.

We also assume that p (yjx; �) is uniformly bounded away from zero thereby obviating trimming.

Under these and other regularity conditions, we show that the two �rst terms in the expansion in

equation (18) satisfy (c.f. the proof of Theorem 3.3):

p
TST (�0) +

p
TrST;N [p̂� p] '

p
Thr�1 + Z1 +

r
T

N
Z2; (19)

where higher-order terms have been left out. Here, the �rst term is a bias component incurred

by kernel smoothing, while the two remaining ones are variance components: Z1 and Z2 are two
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independent variables where Z1 � N (0; i(�0)) is the variance component of the observed data,

while Z2 � N (0;Var ( 2 ("i))) is the variance component of the simulations. The variance of Z2 is

given by

 2 ("i) = E

"
_Y �02t;i

p (y2tjxt)
j"i

#
� E

"
s(Y �01t;i; y2tjxt)Y

�0
2t;i

p (y2tjxt)
j"i

#
; (20)

where s(y1; y2jx) denotes the score at � = �0.

The second order term also contains a bias component which all non-linear, simulation-based

estimators su¤er from,

p
Tr2ST;N [p̂� p; p̂� p] '

p
T

Nhk+1
�2 +OP

�p
Th2r

�
; (21)

while the remainder term is of a lower order,

p
TRT;N = OP

�p
T=
�
Nhk+2

�3=2�
+OP

�p
Th3r

�
:

The two leading bias terms in the above expressions, �1 and �2, are given by:

�1 =
X
j�j=r

Z Z �
@j�j+1p (ytjxt; �)

@�@y�t
� s (ytjxt; �)

@j�jp (ytjxt; �)
@y�t

�
p (xt) dxtdyt 2 Rd; (22)

�2 = E

264 _Y �01t;i

�
Y �02t;i

�2
p
�
Y �01t;i; y2tjxt

�
p (y2tjxt)

375Z K (v)K(1) (v) dv 2 Rd; (23)

where p (xt) denotes the marginal density of xt.

This shows that the overall bias of the estimator due to the use of simulations and kernel

smoothing is i�1(�0)
�
hr�1 + 1=

�
Nhk+1

�
�2
	
while an additional variance term relative to the

exact MLE shows up and is given by T=N � i�1(�0)Var
�
� 2 ("i)

�
i�1(�0). Thus, if

p
Thr ! 0 andp

T=
�
Nhk+1

�
! 0, all bias terms vanish and

p
T (�̂ � �0) follows a normal distribution centered

around zero. If furthermore T=N ! 0, no additional variance will be present and the NPSMLE

is �rst-order equivalent to the true MLE. On the other hand, if either
p
Thr or

p
T=
�
Nhk+1

�
does not vanish, a bias term will be present and the asymptotic distribution will not be centered

around zero. Also, if T=N 9 0 there will be an increase in variance due to the presence of Z2.

One could potentially reduce (or even remove) some of these bias and variance components by

employing the techniques of Kristensen and Salanie (2010) who develop higher-order improvements

of simulation-based estimators.

We collect the results in the following theorem:

Theorem 3.3 Assume that:

(i) f(yt; xt)g is stationary and �-mixing with geometrically decreasing mixing coe¢ cients;

(ii) A.1�A.4 and K.1�K.2 hold;
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(iii) (i)�(iv) of Corollary 3.2 hold;

(iv) xt is bounded and infy1;y2;x;� p (y1; y2jx; �) > 0.

Then, if
p
Thr ! c1 � 0,

p
T=
�
Nhk+1

�
! c2 � 0 and T=N ! c3 � 0,

p
T (�̂ � �0)

d! N
�
�c; i�1(�0) [i(�0) + c3Var ( 2 ("i))] i

�1(�0)
�
;

where �c = i�1(�0) fc1�1 + c2�2g, with �1 and �2 as in equations (22) and (23).

The requirement (iv) is only imposed to simplify the proofs which otherwise would get overly

long and complicated. We expect that the above result will still hold with the requirement (iv)

replaced by additional restrictions on the trimming parameter a.

For the case where an unbiased estimator of the density is available and a new batch of simu-

lations is used for each observation, Lee (1999) derives results similar to Theorem 3.3.

Estimation of Asymptotic Distribution To do any �nite-sample inference, an estimator of

the asymptotic distribution is needed. A general Monte Carlo method would be to simulate a

large number of independent, long trajectories from the model and for each trajectory compute

the corresponding score and hessian at � = �̂. This would yield an approximation of the limiting

distribution, �H�1
1 S1. The computation of the score and Hessian can be done in several ways.

If the model satis�es Assumption A.3, the estimators of the score and Hessian given in equation

(17) and the proof of Theorem 3.3 are available. In the general case, a simple approach is to use

numerical derivatives. De�ne:

@p̂t(yjx; �)
@�k

=
p̂t(yjx; � + �ek)� p̂t(yjx; � � �ek)

2�
;

where ek is the kth column of the identity matrix. We have:

@p̂t(yjx; �)
@�k

� @pt(yjx; �)
@�k

=
p̂t(yjx; � + �ek)� pt(yjx; � + �ek)

2�
� p̂t(yjx; � � �ek)� pt(yjx; � � �ek)

2�

+

�
pt(yjx; � + �ek)� pt(yjx; � � �ek)

2�
� @pt(yjx; �)

@�k

�
:

Now letting � = �(N) ! 0 as N ! 1 at a suitable rate, all three terms are oP (1). A consistent

estimator of the second derivative can be obtained in a similar fashion. These can in turn be used

to construct estimators of the information and score.

Approximate Simulations In many cases, the model in (1) is itself intractable, such that one

cannot directly simulate from the exact model. Suppose that one on other hand has an approxi-

mation of the model at one�s disposal. For example, solutions to dynamic programming problems
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are typically approximated numerically, and sample paths of di¤usions must be approximated by

some discretization scheme.

We here derive the asymptotics of the approximate NPSMLE based on simulations from a se-

quence of approximate models. Assuming that the approximation error from using the approximate

model relative to the true one can be made arbitrarily small, we demonstrate that the approximate

NPSMLE has the same asymptotic properties as the actual MLE.

Suppose we only have the following approximations of g1t and g2t, gM;1t (x; "; �) and

gM;2t (y2; x; "; �) available, where gM;kt ! gkt, k = 1; 2, as M ! 1 in L1-norm. We then

rede�ne the simulated conditional density as:

p̂M;t(ytjxt; �) =
1

N

NX
i=1

Kh(Ŷ
�
1t;i � y1)Ŷ �2t;i;

where Ŷ �t;i is generated by the approximate model,

Ŷ �1t;i = gM;1t (xt; "i; �) ; Ŷ �2t;i = gM;2t (y2t; x; "i; �) ; i = 1; � � � ; N:

Let �̂M be the associated approximate NPSMLE,

�̂M = arg max
�2�T

L̂M;T (�); L̂M;T (�) =

TX
t=1

�a(p̂M;t(ytjxt; �)) log p̂M;t(ytjxt; �):

We give regularity conditions under which �̂M has the same asymptotic properties as �̂ which

is based on simulations from the true model. We impose the following condition on the sequence

of approximate models, and on the rates of N , h, a relative to the approximation error.

M.1 The sequence of approximate models fgMg satis�es for some constants Bk; �3;k; �4;k � 0,

k = 1; 2:

E
�
sup
�2�

kgM;1t (x; "; �)� g1t (x; "; �)k
�

� B1

�
1 + kxk�3;1 + t�3;2

�
�M;1;

E
�
sup
�2�

kgM;2t (y2; x; "; �)� g2t (y2; x; "; �)k
�

� B2

�
1 + kxk�4;1 + t�4;2

�
�M;2;

where �M;k ! 0 as M !1.

B.10 T��1T a�1h�1
�
N
�3;1 + T �3;2

�
�M;1 ! 0 and T��1T a�1

�
N
�4;1 + T �4;2

�
�M;2 ! 0.

B.20 T��1=2T a�1h�1
�
N
�3;1 + T �3;2

�
�M;1 ! 0 and T��1=2T a�1

�
N
�4;1 + T �4;2

�
�M;2 ! 0.

Assumption M.1 simply states that the approximation error is bounded as a polynomial in x

and t. Assumptions B.10 and B.20 require that coe¢ cients of this polynomial error bound, �M;1 and

�M;2, go to zero su¢ ciently fast as M ! 1 to control for the impact of the approximation error.

Kloeden and Platen (1992) and Bruti-Liberati and Platen (2007) give primitive conditions under

which the discrete-time approximation satis�es Assumption M.1; see also Detemple et al. (2006).
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Under Assumptions M.1 and B.10 (B.20), we show that the approximate NPSMLE is asymptoti-

cally equivalent to the NPSMLE up to order I1=2T (
p
�TI1=2T ). Combining this result with Theorem

3.1, we obtain the following.

Theorem 3.4 Assume that the conditions of Theorem 3.1 hold together with M.1. Then the ap-

proximate NPSMLE satis�es:

1. I1=2T (�̂M � �0) = oP (1) for any sequences M;N !1, and h; a! 0 satisfying B.1 and B.10;

2.
p
�TI1=2T (�̂M � �0)

d! �H�1
1 S1 for any sequences M;N ! 1, and h; a ! 0 satisfying B.2

and B.20.

One can exchange M.1 for

E
�
sup
�2�

jlog pM;t(y1t; y2tjxt; �)� log pt(y1t; y2tjxt; �)j
�
� �M ;

in which case Theorem 3.4 holds with B.10 and B.20 being replaced by the simpler conditions

B.100 : �M ! 0 and B.200 :
p
�T �M ! 0, respectively. However, since pM;t(ytjxt; �) and pt(ytjxt; �)

in general are di¢ cult to analyze, condition M.1 is easier to verify.

4 Implementing NPSML

One of the merits of NPSML is its general applicability. The applications include Markov decision

processes, and discretely-sampled di¤usions, where pt(ytjxt; �) typically does not have a closed-form
representation but observations can still be simulated for NPSML.

The �rst example (Section 4.1.1) is the short-term interest rate model of Cox et al. (1985). This

univariate di¤usion has a known transition density, and therefore has been a popular benchmark

of numerous di¤usion estimation strategies (Durham and Gallant, 2002). We provide a detailed

description on the implementation of NPSML in practice, and then test the validity of our approach

by comparing it to the true MLE. In Section 4.1.2 we re-visit the jump-di¤usion example of Section

2. The literature on estimating general jump di¤usions has largely sidestepped maximum likelihood.

In this context, this estimation exercise showcases the usefulness of NPSML. In Section 4.2, we

brie�y discuss how NPSML can be used for estimating generic Markov decision processes. We

discuss di¤usion models in detail here because they can be described more concisely than a typical

Markov decision model, which requires a detailed description of the economic environment. We

refer to Kristensen and Schjerning (2011) for implementation and analysis of smoothed maximum-

likelihood estimators in discrete Markov decision model.

NPSML being for general purposes, other applications can be implemented in a similar way. At

the implementation stage, only the part of the computer code that generates simulated observations

needs to be modi�ed.
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4.1 Discretely-Observed Jump-Di¤usions

4.1.1 Cox-Ingersoll-Ross Model

Cox et al. model short-term interest rates as a square-root di¤usion process:

dyt = �(�� yt)dt+ �
p
ytdWt:

We collect the unknown parameters in � = (�; �; �)0, which can be estimated with maximum

likelihood. Conveniently, the transition density for a discretely-sampled path is known. When

t > s,

p(yt; tjys; s; �) = ce�w�v
� v
w

�q=2
Iq(2

p
wv); (24)

where c = 2�=
�
�2
�
1� e��(t�s)

��
, w = cyse

��(t�s), v = cyt, q = 2��=�2 � 1, and Iq(�) is the
modi�ed Bessel function of the �rst kind of order q. Note that non-negativity of yt requires

2�� � �2.

Following the benchmark in Durham and Gallant (2002), we generate 1,000 arti�cial sample

paths of yt according to the true transition density with (�; �; �) = (0:06; 0:5; 0:15). Each path

is then discretely observed T = 300 times, with time distance t � s = 1=12 betwen observations.

These can be thought of monthly observations over 25 years. We estimate the di¤usion parameters

with true maximum likelihood and then with our NPSML.

In the implementation of NPSML, we forgo our knowledge of (24). Given a set of parameter

values and ys, we simulate paths using the Euler scheme� c.f. Kloeden and Platen (1992).8 We

divide the interval t� s into M subintervals, and recursively compute for m = 0; : : : ;M � 1:

uim+1 = uim + �(�� uim)� + �
q
uim�

1=2W i
m+1;

where ui0 = ys, � = t�s
M , and W i

m+1�s are i.i.d. standard normal random variables. Then, we set

Ŷ �t;i = uiM � the ith simulated observation of yt conditional on ys Once we have generated Ŷ �t;i for i =

1; : : : ; N , then we can estimate the transition density by p̂M (yt; tjys; s) =
PN
i=1Kh

�
Ŷ �t;i � yt

�
=N ,

where K is chosen as a Gaussian kernel. It is now straightforward to construct L̂T (�) and maximize

it over �.

To study the �nite-sample properties of our estimates as we increase the number of simulated

observations per data point (N), we run NPSML for four di¤erent N�s (N = 100; 250; 500; 625).

Another choice to be made in implementing NPSML is bandwidth (h). Silverman�s rule of thumb

gives us h = 0:0035, using the estimated standard deviation of yt+1 � yt and N = 100. In

each estimation with a given h and N , we hold �xed h while we maximize over the parameter

space. To assess the e¤ect of bandwidth choice in NPSML, we consider three di¤erent h�s (h =

0:0030; 0:0035; 0:0040). In the simulation stage of NPSML, we use Euler scheme with M = 10

8We are approximating a continuous-time process using a discretization scheme, and hence need to appeal to
Theorem 3.4.
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� � �

Bias -0.0008 0.0805 0.0002
True MLE Std. dev. 0.0069 0.1214 0.0034

RMSE 0.0069 0.1456 0.0034

Bias 0.0036 0.0749 -0.0060
h = 0:0030 Std. dev. 0.0143 0.1888 0.0066

RMSE 0.0147 0.2031 0.0089

NPSMLE
N = 500

Bias 0.0028 0.0778 -0.0093
h = 0:0035 Std. dev. 0.0132 0.1857 0.0064

RMSE 0.0135 0.2013 0.0113

Bias 0.0021 0.0793 -0.0129
h = 0:0040 Std. dev. 0.0122 0.1819 0.0064

RMSE 0.0124 0.1984 0.0144

Bias 0.0071 0.0740 -0.0043
N = 100 Std. dev. 0.0180 0.2115 0.0076

RMSE 0.0193 0.2241 0.0087

NPSMLE
h = 0:0035

Bias 0.0031 0.0817 -0.0078
N = 250 Std. dev. 0.0127 0.1908 0.0068

RMSE 0.0131 0.2076 0.0103

Bias 0.0006 0.0650 -0.0090
N = 625 Std. dev. 0.0076 0.1269 0.0043

RMSE 0.0076 0.1426 0.0100

Table 1: Estimation Results for Cox-Ingersoll-Ross Model

to approximate the continuous-time process, and also adopt antithetic methods to reduce the

simulation variance.

The results of the simulation study are shown in Table 1. The true MLE result is shown in the

top panel. In the middle panel, we �x the number of simulated observations at N = 500, and vary

the bandwidth for NPSML. In the bottom panel, we �x the bandwidth at h = 0:0035, and vary

the number of simulations for NPSML. The true parameter values are (�; �; �) = (0:06; 0:5; 0:15).

We report the bias, standard deviation, and the root mean-squared error (RMSE) from the 1,000

estimations.

For all parameters, NPSML has larger biases and standard deviations (and hence RMSEs) than

does the true MLE, with the exception being the smaller bias in the NPSML estimates of �. In the

bottom panel, we see that the biases and standard deviations decrease as we increase the number

of simulated observations N . The exception is the bias of the � estimates, which increases and then

decreases in absolute value with N .

Changing bandwidths produces a more complex pattern. For �, both biases and standard

deviations decrease as we increase h. For �, biases increase but standard deviations fall as h goes

up, although RMSE goes down like standard deviations. For �, the magnitude of biases increases
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with h, while standard deviations barely move leading to an overall increase in RMSE as h increases.

However, the changes in bias and standard deviations are not very large, and we conclude that the

NPSMLE appears to be quite robust towards the choice of bandwidth.

Comparing the magnitudes of biases and standard deviations from NPSML with those of the

true MLE, one can get a sense of how the the additional biases and variances as stated in Theorem

3.3 are a¤ected by our choice of bandwidth h and the number of simulated observations N .

4.1.2 Jump-Di¤usion

We consider a bivariate version of the model in (3).

dy1;t =

�
�� exp(y2;t)

2

�
dt+ exp

�y2;t
2

�
dW1;t + log(1 + Jt)dQt; (25)

dy2;t = (�0 � �1y2;t)dt+ �2dW2;t: (26)

This speci�cation is used by Andersen et al. (2002) to model daily stock (S&P 500) returns. In

their paper, y2;t is an unobservable stochastic volatility process, and they use EMM for estimation.

Here we assume that both y1;t and y2;t are observable. One interpretation is that we infer the

volatility from derivative prices as in Aït-Sahalia and Kimmel (2007). Note that it is not our

intention to replicate either paper.

The factors W1;t and W2;t are standard one-dimensional Brownian motions with correlation �

between them. Qt is a pure jump process with jump size 1, independent of W1;t and W2;t, and its

jump intensity is given by �0. The jump size Jt is assumed to be log-normally distributed:

log(1 + Jt) � N
�
�0:5
2; 
2

�
: (27)

The parameter vector is � = (�; �0; �1; �2; 
; �; �0)0 2 R7.
Ideally, we would like to give precise conditions under which the general jump di¤usion (3)

satis�es Assumptions A.1�A.4 and C.1�C.4. However, this proves very di¢ cult without imposing

strong conditions ruling out standard models considered in empirical �nance, including the current

example (25) and (26). Su¢ cient conditions for the existence of a twice-di¤erentiable transition

density for the general jump di¤usion can be found in Bichteler et al. (1987) and Lo (1988), but

these are rather restrictive and require, among other things, that the drift and di¤usion terms be

linearly bounded and in�nitely di¤erentiable. The asymptotic properties of the MLE of general

jump di¤usions are not very well-understood yet due to the problems of not having the transition

density in closed form. Only in a few special cases, its properties can be derived; see e.g. Aït-Sahalia

(2002).

In what follows, we �rst generate a sample path f(y1;t; y2;t) 2 R2 : 0 � t � Tg from the true

parameter values given in Table 2. We then assume that we observe this process only discretely, for

t = 0; 1; � � � ; T . Note that the discrete observations are temporally equidistant, with the interval
length normalized to 1. We use these discrete observations f(y1;t; y2;t) : t = 0; 1; � � � ; Tg as our
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data. To generate this data series, we use the Euler scheme with the observation interval divided

into 100 subintervals to approximate the jump-di¤usion process.

Then we use NPSML without using our knowledge of the parameter values used for data

generation. The �rst step of NPSML involves generating simulated observations from the model

for any given �, and we use the Euler scheme to approximate the data generating process. Given

(y1;s; y2;s) for some period s, we divide the interval between s + 1 and s into M subintervals. In

our benchmark estimation, we use M = 10. We recursively compute for m = 1; � � � ;M :

ui1;m = ui1;m�1 +

 
��

exp(ui2;m�1)

2

!
1

M
+ exp

 
ui2;m�1
2

! fW i
1;mp
M

+ log(1 + J im)U
i
m;

ui2;m = ui2;m�1 + (�0 � �1ui2;m�1)
1

M
+ �2

W i
2;mp
M

;

with ui1;0 = y1;s and ui2;0 = y2;s for all i = 1; � � � ; N ; J im is an i.i.d. random variable with its

distribution given in (27); U im is an i.i.d. binomial random variable, with Prob(U im = 1) = �0
M ;fW 1

m;i =
p
1� �2W i

1;m+�W
i
2;m, where W

i
1;m and W

i
2;m are i.i.d. standard normal random variables.

The subscript i indexes simulations. In our benchmark estimation, we use N = 1; 000.

With the (approximate) simulated observations Ŷ �s+1;i � (ui1;M ; u
i
2;M ) for i = 1; � � � ; N with

N = 1; 000, we use (2) to obtain:

p̂M (y1;s+1; y2;s+1jy1;s; y2;s; �) =
1

N

NX
i=1

Kh

�
Ŷ �s+1;i � (y1;s+1; y2;s+1)

�
:

where K is a multiplicative Gaussian kernel, Kh(�) = Kh1(�)Kh2(�). The bandwidths h1 and h2
(for y1 and y2 respectively) are chosen by the rule of thumb of Scott (1992, p.152). Again, we hold

�xed h1 and h2 while we maximize over the parameter space.

With the estimated p̂t for t = 1; 2; � � � ; T , we can evaluate the conditional likelihood, which is
then maximized over the parameter space. As is typical for simulation-based estimations, when we

maximize the likelihood function, we use the same set of random numbers for any �.9

In our simulation study, we draw 100 sample paths of length T = 1; 000 each, and estimate each

sample path with NPSML. In column (1) of Table 2, we report the mean of the 100 point estimates

for each parameter, and the 90% con�dence interval constructed from the point estimates, with

N = 1; 000 and the rule-of-thumb bandwidths. The NPSML performs reasonably well, although

the correlation coe¢ cient � is systemically underestimated. One remarkable outcome is that the

jump parameters (
 and �0) are rather precisely estimated, even though there are only 20 or so

jump realizations in each sample path.10

To assess how sensitive the estimation results are to the choice of N (number of arti�cial obser-

vations used for density estimation) and the kernel bandwidths, we try di¤erent N and bandwidths.

9 In the case of the binomial random variable U , we �x the realization of the underlying uniform random variable.
For di¤erent �� �0, to be exact, U itself may have di¤erent realizations.
10We ran the same exercise with trimming of the approximate log-likelihood. The results, with N being as large

as 1,000, were virtually the same as in column (1).
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Parameter True Value (1) (2) (3) (4)

� 0.0304
0.0305 0.0305 0.0307 0.0306

(0.0022,0.0524) (0.0162,0.0533) (0.0012,0.0661) (0.0084,0.0448)

�0 -0.0120
-0.0148 -0.0152 -0.0144 -0.0149

(-0.0181,-0.0100) (-0.0186,-0.0111) (-0.0188,-0.0088) (-0.0185,-0.0100)

�1 0.0145
0.0161 0.0164 0.0160 0.0161

(0.0116,0.2061) (0.0121,0.0207) (0.0114,0.0214) (0.0120,0.0214)

�2 0.1153
0.1147 0.1139 0.1167 0.1127

(0.1107,0.1168) (0.1092,0.1185) (0.1118,0.1198) (0.1089,0.1156)


 0.0150
0.0199 0.0310 0.0100 0.0121

(0.0060,0.0542) (0.0000,0.0368) (0.0017,0.0158) (0.0085,0.0126)

� -0.6125
-0.7291 -0.7526 -0.6933 -0.7740

(-0.7595,-0.6863) (-0.7984,-0.7012) (-0.7189,-0.6592) (-0.8064,-0.7344)

�0 0.0200
0.0169 0.0133 0.0196 0.0166

(0.0101,0.0213) (0.0086,0.0175) (0.0122,0.0197) (0.0104,0.0222)

Table 2: Estimation Results for Jump Di¤usion. In each cell, the mean of the 100 point
estimates in the simulation study is reported in the top half. In the bottom half, the 90%
con�dence interval constructed from the point estimates is reported. Column (1) is our
benchmark with N = 1; 000 and the rule-of-thumb bandwidths. Column (2) reports the results
with N = 750. Column (3) is for N = 1; 000 and bandwidths that are 20 percent narrower than
those in the benchmark. Column (4) is for N = 1; 000 and bandwidths that are 20 percent
wider than those in the benchmark.

In column (2), we reduce the number of arti�cial observations to N = 750. In column (3), we use

N = 1; 000, but reduce both bandwidths by 20 percent. Finally, in column (4), we use N = 1; 000

and bandwidths that are 20 percent greater than those in the benchmark.

When N is reduced to 750� column (2), the mean estimates move further away from the true

parameter values. However, there is no clear increase or decrease in the dispersion of the estimates.

The results in column (3) are of particular interest to us. Our theoretical results suggest that

bandwidths should be chosen to go to zero at a faster rate than in the standard cases. With a

little under-smoothing as in column (3), the mean estimates are closer to the true parameter values

than in the benchmark. Note the estimates of � in particular. On the other hand, the results

with over-smoothing as in column (4) do not compare favorably with the benchmark results with

slightly more bias. We, in accordance with our theory, recommend a bandwidth narrower that

what is given by the rule of thumb in actual implementations. At the same time, we would like to

emphasize that the estimator in general is quite robust to the choice of bandwidth.
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4.2 Markov Decision Processes and Dynamic Games

Another class of economic models that NPSML can readily be applied to is Markov decision

processes: see Rust (1994) for an overview. In these models, the transition density is given by

p(ytjxt; �) =
Z
p(ytjxt; ut)q(ut)dut;

where p(ytjxt; ut) is typically governed by an optimal decision rule of a dynamic programming
problem. The integral on the right-hand side does not have a closed-form representation, except in

few special cases. However, conditioning on xt, one can simulate ut and hence yt, and use kernel

methods to estimate p(ytjxt). Therefore, NPSML is feasible; see Kristensen and Schjerning (2011);
NPSML can also be used to estimate a related class of economic models: Markov-perfect

equilibria of dynamic games. Ericson and Pakes (1995) provide a canonical framework for this

literature: a dynamic model of oligopolistic industry with entry and exit. The equilibrium transition

probability of this model is given by

pt(!t+1j!t; �); ! 2 Zn;

where Z is a �nite set of states, and n is the number of state variables. The transition probability

depends on individual �rm-speci�c shocks, industry-wide shocks, and Markov-perfect strategies of

�rms regarding entry, exit and investment.11 Firms�strategies represent an optimal decision rule

of a dynamic programming problem. Clearly, the transition probability does not have a closed-

form representation, but it is still possible to simulate observations from the model conditioning

on !t.12 Thus, NPSML is feasible. The computational burden of such models grow quickly with

n. Doraszelski and Judd (2008) show how one can avoid this problem by casting the problems in

continuous time. NPSML is readily applicable to such continuous-time dynamic stochastic games

as well.

5 Concluding Remarks

We have generalized the NPSML of Fermanian and Salanié (2004) to deal with dynamic models,

including nonstationary and time-inhomogeneous ones. Theoretical conditions in terms of the num-

ber of simulations and the bandwidth are given ensuring that the NPSMLE inherits the asymptotic

properties of the infeasible MLE.

This method is applicable to general classes of models, and can be implemented with ease. Our

�nite-sample simulation study demonstrates that the method works well in practice.

One limitation of the paper is that we only consider the cases where it is possible to simulate

the dependent variable conditional on �nitely-many past observations. This excludes cases with

11 In this class of models, conditioning on !t, !t+1 depends not only on individual actions but also on idiosyncratic
and aggregate shocks. To obtain the transition probability, all the shocks need to be integrated out.
12 In solving individual �rms� dynamic programming problem, one needs to know their continuation value, and

hence the transition probability. Therefore, for a given �, one needs to compute a �xed point in pt(!t+1j!t).

28



latent dynamics. Extensions to methods with built-in nonlinear �lters that explicitly account for

latent variable dynamics are worked out in a companion paper (Brownlees et al., 2011) based on

the main results given here.
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Appendix

A Some General Results for Approximate Estimators

We �rst establish some general results for approximate MLEs. These results will then be applied

to show the desired results for our proposed NPSMLE. In the rest of this part of the appendix,

we consider the fully general situation where L̂T (�) = L̂T;N (�) is a sequence of approximations

to LT (�) (not necessarily the nonparametric simulated one proposed in the main text) of some

infeasible (quasi-)log-likelihood function LT (�). We will analyze the impact of the approximation

on the corresponding approximate estimator �̂.

We �rst establish the asymptotic properties of the true MLE ~� under Assumptions C.1�C.3.

Next, we give a general set of conditions for the approximate estimator �̂ to be asymptotically

equivalent to ~�.

A.1 Asymptotics of True MLE

Lemma A.1 Assume that Assumptions C.1 and C.2 hold. Then I1=2T (~� � �0) = oP (1).

Proof We introduce a normalized version of the parameter � 2 �T , � := I1=2T (� � �0), and de�ne

the corresponding likelihood in terms of this new parameterization, QT (�) := LT (�0+I�1=2T �). The

claim will now follow from ~� := I1=2T (~� � �0)
P! 0. However, under Assumptions C.1 and C.2, it is

easily seen that QT (�) satis�es the conditions of Theorem 3.4 of White (1994) with �QT (�) = QT (�)

from which the desired result follows. �

Lemma A.2 Assume that Assumption C.1 holds. Then Assumption C.3 implies Assumption C.2.

Proof Use a second order Taylor expansion to obtain for any bounded sequence �T 2 Rd such that
�0 + I�1=2T �T 2 �T ,

LT (�0 + I�1=2T �T )� LT (�0) = UT (�0) �T +
1

2
�0TVT (��)�T ;

for some �� 2 [�0; �0 + I�1=2T �T ] 2 �T , and with UT (�) and VT (�) de�ned in equation (14). By
another application of Taylor�s Theorem,���0TVT (��)�T � �0TVT (�0)�T �� = ����0TI�1=2T

�
HT (��)�HT (�0)

�
I�1=2T �T

���
�
(
max
i=1;:::d

sup
�2�T

�0TWT;i (�) �T

)
� kI�1=2T �T k = oP (1) ;

where we have used Assumption C.3.2 and the fact that kI�1=2T �T k = oP (1). Thus,

LT (�0 + I�1=2T �T )� LT (�0) = UT (�0) �T +
1

2
�0TVT (�0)�T + oP (1) =

1

2
�0TH1�

0
T + oP (1) ;

where the second equality follows from C.3.1. Since �0TH1�
0
T < 0 a.s., LT (�) is concave with a

unique maximum at � = �0 in �T (with probability tending to one). In particular, C.2 holds. �
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Lemma A.3 Assume that Assumptions C.1 and C.3 hold. Then the MLE ~� satis�es

p
�TI1=2T (~� � �0)

d! �H�1
1 S1:

Proof By Lemmas A.1 and A.2, we know that ~� is consistent. A �rst-order Taylor expansion of
the score and C.3.2 together with the same arguments as in the proof of Lemma A.2 yield

p
�TUT (�0) = �VT (��)

p
�TI1=2T (~� � �0) = �VT (�0)

p
�TI1=2T (~� � �0) + oP (1) ;

and the result now follows from C.3.1. �

A.2 Asymptotics of Approximate MLE

Theorem A.4 Assume that C.1 and C.2 hold and sup�2�T jL̂T (�) � LT (�)j = oP (1) as T ! 1
for a sequence N = N(T )!1. Then I1=2T (�̂ � �0) = oP (1).

Proof We wish to show that for any � > 0,

P (kI1=2T (�̂ � �0)k > �)! 0; T !1:

Let � > 0 be given. Then by C.2 there exists a � > 0 such that, LT (�0)�LT (�̂) � � with probability

tending to 1. Thus, as T !1,

P (kI1=2T (�̂ � �0)k > �) � P (LT (�0)� LT (�̂) � �):

We then have to show that the right-hand side converges to zero. To this end, write

LT (�0)� LT (�̂) =
n
LT (�0)� L̂T (�0)

o
+
n
L̂T (�0)� LT (�̂)

o
;

where,

LT (�0)� L̂T (�0) � sup
�2�T

jLT (�)� L̂T (�)j = oP (1);

while, by the de�nition of �̂,

L̂T (�0)� LT (�̂) � L̂T (�̂)� LT (�̂) � sup
�2�T

jLT (�)� L̂T (�)j = oP (1): �

Next, we state two results for the approximate estimator to have the same asymptotic dis-

tribution as the actual MLE. Theorem A.5 establishes this result only requiring that the ap-

proximate likelihood function satis�es sup�2�T jL̂T (�) � LT (�)j = oP (1=
p
�T ). Theorem A.6 im-

poses stronger smoothness conditions, requiring that L̂T (�) be twice di¤erentiable with derivatives

ŜT (�) and ĤT (�); on the other hand we only require kŜT (�0) � ST (�0))k = oP (1=k
p
�TI1=2T k)

and sup�2�T kĤT (�) � HT (�))k = oP
�

I�1T 

� which are weaker convergence restrictions than

oP (1=
p
�T ), since kI�1=2T k = O (1). So there is a trade-o¤ between smoothness and the convergence

rate.
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Theorem A.5 Assume that Assumptions C.1 and C.3 hold, and sup�2�T jL̂T (�) � LT (�)j =
oP (1=

p
�T ) for some sequence N = N(T ) ! 1. Then, p�TI1=2T (�̂ � ~�) = oP (1). In particu-

lar,
p
�TI1=2T (�̂ � �0)

d! �H�1
1 S1.

Proof De�ne ~�T = I1=2T (~� � �0) and �̂T = I1=2T (�̂ � �0). By a second-order Taylor expansion of

LT (�̂) around ~� together with the fact that ST (~�) = 0 yields, for some �� 2 [~�; �̂],

LT (~�)�LT (�̂) = LT (�0+I�1=2T
~�T )�LT (�0+I

�1=2
T �̂T ) =

1

2
(~�T � �̂T )0I

�1=2
T HT (��)I�1=2T (~�T � �̂T ):

By the same arguments as in the proof of Lemma A.2, we obtain

LT (~�)� LT (�̂) =
1

2
(~�T � �̂T )0H1(~�T � �̂T ) + oP (1=

p
�T ) :

Write the left-hand side as
p
�T fLT (~�)� LT (�̂)g =

p
�T fLT (~�)� L̂T (~�)g+

p
�T fL̂T (~�)� LT (�̂)g

where
p
�T fLT (~�)� L̂T (~�)g �

p
�T sup

�2�T
jL̂T (�)� LT (�)j = oP (1) ;

and, using that �̂ is the maximizer of L̂T (�),
p
�T fL̂T (~�)� LT (�̂)g �

p
�T fL̂T (�̂)� LT (�̂)g �

p
�T sup

�2�T
jL̂T (�)� LT (�)j = oP (1) :

Thus,

kp�TI1=2T (�̂ � ~�)k2 � kH�1
1 kp�T (~�T � �̂T )0H1(~�T � �̂T ) = oP (1): �

Theorem A.6 Assume that Assumptions C.1 and C.3 hold together with:

(i) � 7! L̂T (�) is twice di¤erentiable in �T .

(ii) There exists a sequence N = N(T ) ! 1 such that



I1=2T

n
ŜT (�0)� ST (�0)

o


 = oP (1=
p
�T ),

and



I�1T n

HT (�0)� ĤT (�0)
o


 = oP (1).

Then
p
�TI1=2T (�̂ � �0)

d! �H�1
1 S1 for this sequence N .

Proof By standard Taylor expansions,

0 =
p
�TI�1=2T ST (~�) =

p
�TI1=2T ST (�0) + I�1=2T HT (�0)I�1=2T

p
�TI1=2T (~� � �0) + oP (1) ;

and

0 =
p
�TI�1=2T ŜT (�̂) =

p
�TI1=2T ŜT (�0) + I�1=2T ĤT (�0)I�1=2T

p
�TI1=2T (�̂ � �0) + oP (1) :

Subtracting the two equations, and using that I�1=2T HT (�0)I�1=2T
d! H1 > 0, we obtain

0 =
p
�TI1=2T

n
ST (�0)� ŜT (�0)

o
+H1

p
�TI1=2T (~� � �̂) + I�1=2T

n
HT (�0)� ĤT (�0)

o
I�1=2T

p
�TI1=2T (�̂ � �0)

The result now follows from condition (ii) and Lemma A.3. �
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B Properties of Simulated Conditional Density

We here establish uniform convergence of p̂t given in equation (7) and its derivatives w.r.t. �.

Lemma B.1 Assume that A.1, A.2 and K.1 hold. Then p̂t in (7) satis�es for all y2 2 Y2 and any
compact set �:

sup
1�t�T

sup
y12Rk

sup
kxk�dn

sup
�2�

jp̂t(y1; y2jx; �)� pt(y1; y2jx; �)j = OP

�h
d
��1
n + T

��2
i
log(N)=

p
Nhk

�
+OP

��
d�0;1n + T�0;2

�
hr
�
;

where ��i = �0;i + �1;i + �2;i, i = 1; 2.

Proof De�ne 
 = (x; �; t) 2 � = Xt � � � f1; 2; 3; � � � g. Write p̂(y1; y2; 
) = p̂(y1; y2jx; �) and
p(y1; y2; 
) = p(y1; y2jx; �). We split up into a bias and a variance component:

p̂(y1; y2; 
)� p(y1; y2; 
) = fE[p̂(y1; y2; 
)]�p(y1; y2; 
)g+ fp̂(y1; y2; 
)� E[p̂(y1; y2; 
)]g

= : Bias(y1; y2; 
) + Var(y1; y2; 
):

Using standard arguments for kernel estimators, the bias term can be shown to satisfy

jBias(y1; y2; 
)j � hr
Z
jK (v)j j jvj jrdv �

����@rpt(y1; y2; 
)@yr1

����+ o (hr) :
Thus, using the bound imposed on the r-th derivative, jBias(y1; y2; 
)j = O

�h
d
�0;1
n + T �0;2

i
hr
�

uniformly over (y1; 
). To establish the uniform rate of the variance term, we apply the result of

Kristensen (2009, Theorem 1) for averages of the form

	̂ (x; 
) =
1

nhd

nX
i=1

Yi (
)G

�
Xi (
)� x

h

�
; (28)

for some kernel-type function G. With Yi (
) = g2;t (y2; x; "i; �), Xi (
) = g1;t (x; "i; �) and G = K,

our simulated density can be written in this form. We then verify that his conditions A.1�A.6 in

Kristensen (2009) are satis�ed under our assumptions. His A.1 is trivially satis�ed since we have

i.i.d. draws, while his Condition A.6 imposed on G is implied by our K.1. The bounds in his A.4

and A.5 becomes in our case, using his Remark 2.2:

~B0 = p (y1; 
) ; ~B1 = ky1kk E [jYi (
)j jXi (
) = y1] p (y1; 
) ;

~B2 = ky1kk E [k@
Yi (
)k jXi (
) = y1] p (y1; 
) ;

~B3 = ky1kk E [jYi (
)j k@
Xi (
)k jXi (
) = y1] p (y1; 
) ;

where @
Yi (
) and @
Xi (
) denote their derivatives w.r.t. 
 = (x; �; t). By Assumption A.2,
~B0 = O

�
1 + kxk�0;1 + t�0;2

�
while, using A.1,

E [jYi (
)j jXi (
) = y1] =

Z
fe:g1;t(x;e;�)=y1g

jg2;t (y2; x; e; �)j dF" (e) �
Z
jg2;t (y2; x; e; �)j dF" (e)

= E [jg2;t (y2; "; 
)j] � E [� (")]
h
1 + kxk�2;1 + t�2;2

i
;
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and similarly for the two other conditional expectations in ~B2 and ~B3. Thus,

~Bk � E [� (")]
�
1 + kxk�1 + t�2

�
ky1kq p (y1; 
) = O

�
1 + kxk�0;1+�2;1 + t�0;2+�2;2

�
;

for k = 1; 2, where the second equality follows from A.2, while ~B3 = O
�
1 + kxk��1 + t��2

�
. �

Lemma B.2 Assume that A.1�A.4 and K.1 hold. Then @ip̂t=@�i, i = 1; 2, given in (15) and (16)
satisfy for all y2 2 Y2 and any compact set �:

sup
1�t�T

sup
y12Rk

sup
kxk�dn

sup
�2�

����@ip̂t(y1; y2jx; �)@�i
� @ipt(y1; y2jx; �)

@�i

����
= OP

�h
d
��1
n + T

��2
i
log(N)=

p
Nhk+i

�
+ OP

�h
d
�0;1
n + T �0;2

i
hr
�
:

Proof We only give a proof for the �rst derivative. The proof for the second one follows along
the same lines. We proceed as in the proof of Lemma B.1. With Y �1t;i = g1;t (xt; "i; �) and Y �2t;i =

g2;t (y2t; xt; "i; �), it follows from the expression in equation (15) that conditional on (y1t; y2t; xt):

E
�
@p̂t(y1t; y2tjxt; �)

@�

�
=
1

hk

Z
_Y �2t;iK

 
Y �1t;i � y1t

h

!
dF" (")+

1

hk+1

Z
_Y �1t;iK

(1)

 
Y �1t;i � y1t

h

!
Y �2t;idF" (") ;

where, uniformly over (t; xt; �),

1

hk

Z
_Y �2t;iK

 
Y �1t;i � y1t

h

!
dF" (") =

Z
K (v) p (y1t + vhjxt; �)

@pt (y2tjy1t + vh; xt; �)
@�

dv

=
@pt (y2tjy1t; x; �)

@�
pt (y1tjxt; �) +O

�h
d
�1

n + T�2
i
hr
�
;

1

hk+1

Z
_Y �1t;iK

(1)

 
Y �1t;i � y1t

h

!
Y �2t;idF" (") = pt (y2tjy1t; xt; �)

@pt (y1tjxt; �)
@�

+O
�h
d
�1

n + T�2
i
hr
�
:

For the variance component, we again apply the results of Kristensen (2009). With 
 = (x; �; t)

and Xn;i (
) = g1;t (x; "i; �), @p̂t=@� can be written as the sum of two kernel averages, each of the

form (28); the �rst with Yn;i (
) = _g1;t (x; "i; �) g2;t (y2; x; "i; �) and G = K(1), and the second with

Yn;i (
) = _g2;t (y2; x; "i; �) and G = K. Under the conditions imposed on our model, his A.1�A.5

hold. �

C Proofs

Proof of Theorem 3.1 The �rst part of the result will follow if we can verify the conditions

in Theorem A.4. In order to do this, we introduce an additional trimming function, ~�a;t =

�a(p̂t(ytjxt; �))I fkxtk � N
g, where I f�g is the indicator function and 
 > 0 is chosen as in As-

sumption B.1, and two trimming sets,

A1;t(") = fp̂t(ytjxt; �) � "a; kxtk � N
g ; A2;t(") = fpt(ytjxt; �) � "a; kxtk � N
g ;
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for any " > 0. De�ning At(") = A1;t(") \ A2;t("), it follows by the same arguments as in Andrews
(1995, p. 588), A2;t(2") � A1;t(") � At("=2) w.p.a.1 as N ! 1 under Assumption B.1. Thus,

IA2;t(4) � IA1;t(2) � ~�a;t � IA1;t(1=2) � IAt(1=4).
We then split up L̂T (�)� LT (�) into three terms,

L̂T (�)� LT (�) =
1

�T

TX
t=1

[�a(p̂t(ytjxt; �))� ~�a;t] log p̂t(ytjxt; �)

+
1

�T

TX
t=1

~�a;t [log p̂t(ytjxt; �)� log pt(ytjxt; �)] +
1

�T

TX
t=1

[~�a;t � 1] log pt(ytjxt; �)

=: B1(�) +B2(�) +B3(�);

and then show that sup�2�T jBi(�)j = oP (1), i = 1; 2; 3. By Assumption C.4,

jB1(�)j �
j log aj
�T

TX
t=1

I fkxtk > N
g � j log aj�q�1T

N
(1+�)

1

�qT

TX
t=1

kxtk1+� �
j log aj�q�1T

N
(1+�)
�OP (1);

while,

jB2(�)j � 1

�T

TX
t=1

IAt(1=4)j log p̂t(ytjxt; �)� log pt(ytjxt; �)j

� T

a�T
� sup
1�t�T

sup
�2�

sup
y2Rk

sup
kxk�N


jp̂t(ytjxt; �)� pt(ytjxt; �)j:

The �nal term is bounded by

jB3(�)j � 1

�T

TX
t=1

j~�a;t � 1jj log pt(ytjxt; �)j

� 1

�T

TX
t=1

Ifpt(ytjxt; �) < 4agj log pt(ytjxt; �)j+
1

�T

TX
t=1

I fkxtk > N
g j log pt(ytjxt; �)j

=: B3;1(�) +B3;2(�):

First, as a! 0,

jB3;1(�)j � 1

�T

TX
t=1

I fpt(ytjxt; �) < 4ag j log pt(ytjxt; �)j

=
1

�T

TX
t=1

Ifj log pt(ytjxt; �)j > j log(4a)jgj log pt(ytjxt; �)j

� j log(4a)j���q�1T

1

�qT

TX
t=1

j log pt(ytjxt; �)j1+� = j log(4a)j���q�1T �OP (1):

where we have used Assumption C.5. Similarly, again by C.5,

jB3;2(�)j � 1

�T

TX
t=1

Ifkxtk > N
gj log pt(ytjxt; �)j

�
(
1

�T

TX
t=1

Ifkxtk > N
g
)�=(1+�)(

1

�T

TX
t=1

j log pt(ytjxt; �)j1+�
)1=(1+�)
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� �q�1T

N
(1+�)

(
1

�qT

TX
t=1

kxtk1+�
)�=(1+�)(

1

�qT

TX
t=1

j log pt(ytjxt; �)j1+�
)1=(1+�)

=
�q�1T

N
(1+�)
�OP (1):

The consistency result follows from Theorem A.4 together with Lemma B.1 and Assumption B.1.

To show the second result, we merely have to strengthen the convergence of L̂T (�) to take place

with rate �T , c.f. Theorem A.5. One can still apply the above bounds which now have to go to

zero with rate �T . This is ensured by Assumption B.2. �

Proof of Corollary 3.2 We verify that Assumption C.1�C.4 hold with �T = T and q = 1 under

the conditions imposed in the corollary. First, we obtain by LLN for mixing sequences that

iT (�0) = i(�0) + oP (1) with i(�0) = E
�
@2 log p(ytjxt; �0)=(@�@�0)

�
, such that IT can be chosen

as the constant I = diag fi(�)g. There is a one-to-one deterministic correspondence between the
mapping � 7! LT (�0 + I�1=2T �) and LT (�) and we can restrict our attention to the latter.

To check Assumption C.2, �rst note that by the uniform LLN sup�2� jLT (�)� L (�)j = oP (1)

with L (�) = E [log p (ytjxt; �)] being continuous under Condition (i); see, for example, Kristensen
and Rahbek (2005, Proposition 1). Thus,

LT (~�)� LT (�) =
n
L(~�)� L(�)

o
+
n
LT (~�)� L(~�)

o
� fLT (�)� L(�)g

=
n
L(~�)� L(�)

o
+ oP (1) = fL(�0)� L(�)g+ oP (1) :

Since � is compact and �0 is the unique maximum of L (�), for any given � > 0, there exists � > 0

such that supk�0��k>� fL(�0)� L(�)g � �. This proves that C.2 holds.

To verify C.3, appeal to the Martingale CLT for mixing sequences to obtain:

p
�TUT (�0) = I�1=2 � T�1=2

TX
t=1

@ log pt(ytjxt; �)
@�

����
�=�0

d! N
�
0; I�1=2i(�0)I�1=2

�
;

while by the LLN,

VT (�0) = I�1=2 � T�1
TX
t=1

@2 log pt(ytjxt; �)
@�@�0

����
�=�0

� I�1=2 P! �I�1=2i(�0)I�1=2:

Finally,

max
j=1;:::;d

sup
�2�

kWj;T (�)k � C sup
�2�






T�1
TX
t=1

@2 log pt(ytjxt; �)
@�@�0

� i(�0)





+ Ci(�0) = OP (1) :

Condition C.4 holds by another application of the (uniform) LLN:

sup
�2�T

�����T�1
TX
t=1

jlog pt(ytjxt; �)j1+� � E
h
jlog p (ytjxt; �)j1+�

i����� P! 0;

T�1
TX
t=1

kxtk1+�
P! E

h
kxtk1+�

i
; T�1

TX
t=1

�21 ("t)
P! E

�
�21 ("t)

�
: �
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Proof of Theorem 3.3 Since p (yjx; �) is bounded away from zero, we can leave out the trim-

ming and re-de�ne the simulated likelihood as L̂T (�) = T�1
PT
t=1 log p̂ (ytjxt; �). The associated

simulated score takes the form

ŜT (�) = T�1
TX
t=1

1

p̂ (ytjxt; �)
@p̂ (ytjxt; �)

@�
:

By the mean value theorem, for some �� on the line segment between �̂ and �0,

0 = ŜT (�0) + ĤT (��)(�̂ � �0):

We then analyze the two terms, ŜT (�0) and ĤT (��), in turn. De�ne pt (�) = p (ytjxt; �), p̂t (�) =
p̂ (ytjxt; �) and st (�) = @ log pt (�) = (@�). Also, we will use the notation @�pt (�) = @pt (�) = (@�) 2
Rd, @�;1y1;�pt (�) = @pt (�) = (@y

�
1 @�) 2 Rd, and similarly for other functions. When a function is

evaluated at �0, we will frequently suppress the dependence on �.

We �rst analyze ŜT (�0): By the same arguments as in Lee (1999, Proposition 1), the expansion

given in equation (18) holds with

rST;N [p̂� p] =
1

T

TX
t=1

�
1

pt
f@�p̂t � @�ptg �

st
pt
fp̂t � ptg

�
;

r2ST;N [p̂� p; p̂� p] =
1

T

TX
t=1

�
� 1
p2t
f@�p̂t � @�ptg fp̂t � ptg+

st
p2t
fp̂t � ptg2

�
;

RT;N =
1

T

TX
t=1

�
� 1

p̂tp2t
f@�p̂t � @�ptg fp̂t � ptg2 +

st
p̂tp2t

fp̂t � ptg3
�
:

We split up the �rst-order di¤erential into a bias and a variance component,

rST;N [p̂� p] = rST;N [E [p̂jZT ]� p] +rST;N [p̂� E [p̂jZT ]] ;

where E [�jZT ] denotes expectations conditional on data, ZT = fz1; :::; zT g where zt = (yt; xt).

Using standard bias expansions for kernel estimators,

p (y1;t; y2;tjxt)� E [p̂ (y1;t; y2;tjxt) jzt] = hr
X
j�j=r

@�y1p (y1;t; y2;tjxt) + o (h
r) ;

@�p (y1;t; y2;tjxt)� E [@�p̂ (y1;t; y2;tjxt) jzt] = hr
X
j�j=r

@�;1y1;�
p (y1;t; y2;tjxt) + o (hr) ;

implying that the bias component satis�es

rST;N [E [p̂jZT ]� p] = hrT�1
TX
t=1

X
j�j=r

"
@�;1y;� pt

pt
� st
pt
@�y pt

#
+ oP (h

r) = �1h
r + oP (h

r) ;

with �1 given in equation (22). Next, de�ne

 N (zt; "i) =
1

pt
�N;1 (zt; "i)�

st
pt
�N;2 (zt; "i) ;
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�N;1 (zt; "i) =
1

hk+1
_Y1t;iK

(1)

�
Y1t;i � y1t

h

�
Y2t;i +

1

hk
_Y2t;iK

�
Y1t;i � y1t

h

�
;

�N;2 (zt; "i) =
1

hk
K

�
Y1t;i � y1t

h

�
Y2t;i:

With  N;1 (zt) = E [ N (zt; "i)j zt], we can then write the variance component as

rST;N [p̂� E [p̂jZn]] =
1

TN

TX
t=1

NX
i=1

�
 N (zt; "i)�  N;1 (zt)

	
;

which, since ZT and EN = f"1; :::; "Ng are mutually independent, we recognize as a so-called two-
sample U -statistic; see, for example, Lehmann (1951). With  N;2 ("i) := E [ N (zt; "i) j"i], and

wN (zt) :=
1

N

NX
i=1

�
 N (zt; "i)�  N;1 (zt)�  N;2 ("i) + E [ (zt; "i)]

	
;

we can decompose the statistic as:

rST;N [p̂� E [p̂]] =
1

N

NX
i=1

�
 N;2 ("i)� E [ (zt; "i)]

	
+
1

T

XT

t=1
wN (zt) =: U1;T;N +W1;T;N :

The second term will now be shown to be negligible. Conditioned on EN , fwN (zt) : t = 1; :::; Tg is
a stationary and mixing sequence for any given N . Moreover,

E
�
1

T

XT

t=1
wN (zt) jEN

�
= E [wN (zt) jEN ]

=
1

N

NX
i=1

�
E [ N (zt; "i) j"i]� E

�
 N;1 (zt)

�
�  N;2 ("i) + E [ (zt; "i)]

	
=

1

N

NX
i=1

�
 N;2 ("i)�  N;2 ("i)

	
= 0:

This implies that E [W1;T;N ] = 0, and, by the law of total variance,

Var (W1;T;N ) = E [Var (W1;T;N j EN )] + Var (E [W1;T;N jEN ]) = E [Var (W1;T;N j EN )] :

Here, by standard results for the variance of mixing sequences� see, for example, Kristensen and

Salanie (2010, Lemma 5),

Var (W1;T;N j EN ) �
C

T
E
h
kwN (zt)k2+� jEN

i2=(2+�)
;

for some constant C > 0 which only depends on the mixing coe¢ cients of fztg. By standard
arguments for i.i.d. sample averages of kernel smoothers,

E
h
kwN (zt)k2+�

i
� C

N1+�=2
E
h
k N (zt; "i)k2(1+�)

i
= O

�
1

N1+�=2hk+2�

�
:

In total, W1;T;N = OP

�
1=
p
TNh2(k+2�)=(2+�)

�
. To analyze U1;T;N , �rst note that

E
�
�N;1 (zt; "i)

p (ytjxt)

���� "i� =
X

y2t2Y2

Z
_Y1t;iY2t;i

�
1

hk+1

Z
K(1)

�
Y1t;i � y1t

h

�
dy1t

�
dFx (xt)
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+
X

y2t2Y2

Z
_Y2t;i

�
1

hk

Z
K

�
Y1t;i � y1t

h

�
dy1t

�
dFx (xt)

= E

"
_Y2t;i

p (y2tjxt)
j"i

#
; (29)

where we have used h�(k+1)
R
K(1)

�
Y1t;i�y1t

h

�
dy1t = h�k

R
K(1) (v) dv = 0. Second,

E
�
s (ytjxt)
p (ytjxt)

�N;2 (zt; "i)

���� "i� =
X

y2t2Y2

Z �
1

hk

Z
s(y1t; y2tjxt)K

�
Y1t;i � y1t

h

�
dy1t

�
Y2t;idFx (xt)

=
X

y2t2Y2

Z
s(Y1t;i; y2jx)Y2t;idFx (xt) +O (hr)

= E
�
s(Y1t;i; y2tjxt)Y2t;i

p (y2tjxt)
j"i
�
+O (hr) : (30)

Thus, U1;T;N =
PN
i=1 f 2 ("i)� E [ 2 ("i)]g =N +OP (hr), with  2 ("i) de�ned in equation (20). By

the CLT for mixing sequences,
p
NU1;T;N

d! N (0;Var ( 2 ("i))). This establishes equation (19).

Next, we analyze the second order di¤erential. Write

r2ST;N [p̂� p; p̂� p] = r2ST;N [E [p̂jZn]� p;E [p̂jZn]� p] +r2ST;N [p̂� E [p̂jZn] ; p̂� E [p̂jZn]]

+2r2ST;N [E [p̂jZn]� p; p̂� E [p̂jZn]] :

Since the cross-term is of a smaller order than the �rst two ones, we can ignore this. Again using the

bias expansion for kernel estimators and appealing to the LLN for stationary and ergodic sequences,

the bias component satis�es

r2ST;N [E [p̂jZn]� p;E [p̂jZn]� p]

=
1

T

TX
t=1

�
� 1
p2t
fE[@�p̂tjzt]� @�ptg fE[p̂tjzt]� ptg+

st
p2t
fE[p̂tjzt]� ptg2

�
= OP

�
h2r
�
:

The variance component can be written as

r2ST;N [p̂� E[p̂jZn]; p̂� E[p̂jZn]] =
1

TN2

TX
t=1

NX
i=1

�N (zt; "i; "i) +
1

TN2

TX
t=1

X
i 6=j

�N (zt; "i; "j)

= :
1

N
U2;T;N +W2;T;N ;

with

�N (zt; "i; "j) = � 1
p2t
f�N;1 (zt; "i)� E [�N;1 (zt; "i) jzt]g f�N;2 (zt; "j)� E [�N;2 (zt; "j) jzt]g

+
st
p2t
f�N;2 (zt; "i)� E [�N;2 (zt; "i) jzt]g f�N;2 (zt; "j)� E [�N;2 (zt; "j) jzt]g :

The �rst term, U2;T;N , is again a second order two-sample U -statistic while W2;T;N is a third order

one. To analyze U2;T;N , we proceed in the same manner as with rST;N [p̂� E [p̂]]. By the Hoe¤ding
decomposition,

U2;T;N = E [�N (zt; "i; "i)]+
1

N

NX
i=1

�
�N;1 ("i)� E

�
�N;1 ("i)

�	
+
1

T

TX
t=1

�
�N;2 (zt)� E

�
�N;2 (zt)

�	
+ ~RT;N ;
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where �N;1 ("i) = E [�N (zt; "i; "i) j"i], �2 (zt) = E [�N (zt; "i; "i) jzt] and ~RT;N is the remainder term.
By the same arguments as used for W1;T;N , it follows that ~RT;N = OP

�
1=
p
TNhk+�

�
, while by

the CLT for stationary and mixing sequences the two sample averages in the above expression are

of order OP
�
1=
p
T
�
and OP

�
1=
p
N
�
respectively. Using the same arguments as before,

E
�
1

p2t
�N;1 (zt; "i) �N;2 (zt; "i)

�
' 1

hk+1
E

"
_Y1t;iY

2
2t;i

p (Y1t;i; y2tjxt) p (y2tjxt)

����� "i
#Z

K� (v) dv

+
1

hk
E

"
Y2t;i _Y2t;i

p (Y1t;i; y2tjxt) p (y2tjxt)

����� "i
#Z

K2 (v) dv;

where K� (v) = K (v)K(1) (v), and

E
�
st
p2t
�2N;2 (zt; "i) j"i

�
' 1

hk
E

"
Y2t;i _Y2t;i

p (Y1t;i; y2jx) p (y2tjxt)

����� "i
#Z

K2 (v) dv;

where we have left out higher order terms. Thus,

E [�N (zt; "i; "i)] = h�(k+1)�2 + h
�k~�2 + o

�
h�(k+1)

�
;

where �2 is given in equation (23) and ~�2 is the sum of the two other expectations above. Next,

E [�N (zt; "i; "j) jzt; "i] = E [� (zt; "i; "j) jzt; "j ] = 0;

while E [�N (zt; "i; "j) j"i; "j ] = o (1) as h ! 0 such that the corresponding U -statistic W2;T;N is

second-order degenerate, implying W2;T;N = OP
�
1=
�
N3=2hk+1

��
. This establishes equation (21).

Finally, appealing to Lemma B.2 and the LLN, the remainder term of the expansion of ŜT (�0)

satis�es

p
T kRT;Nk � T�1=2

TX
t=1

1

jp̂tjp2t
k@�p̂t � @�ptk fp̂t � ptg2 + T�1=2

TX
t=1

st
jp̂tjp2t

jp̂t � ptj3

= OP

�p
Th3r

�
+OP

�p
T=
�
Nhk+2

�3=2�
:

Next, we consider the simulated Hessian:

ĤT (�) =
1

T

TX
t=1

@2��p̂t
p̂t

+
1

T

TX
t=1

@�p̂t@�p̂
0
t

p̂2t
:

We write:

kĤT (��)� i(�0)k � sup
�2�

kĤT (�)�HT (�)k+ sup
�2�

kHT (�)� i(�)k+


i(��)� i(�0)

 :

As shown in the proof of Corollary 3.2, the second and third terms are both oP (1). Regarding the

�rst term, write

ĤT (�)�HT (�) =
1

T

TX
t=1

�
@2��p̂t(�)

p̂t(�)
� @2��pt(�)

pt(�)

�
+
1

T

TX
t=1

�
@�p̂t(�)@�p̂t(�)

0

p̂2t (�)
� @�pt(�)@�pt(�)

p2t (�)

�
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=: A1 (�) +A2 (�) :

The �rst term, A1 (�), satis�es uniformly in � 2 �:

kA1 (�)k � 1

T

TX
t=1

1

pt(�)





1� 1

p̂t(�)
(p̂t(�)� pt(�))









�@2��p̂t(�)� @2��pt(�)	� @2��pt(�)

pt(�)
fp̂t(�)� pt(�)g






� 1

T

TX
t=1

1 + oP (1)

pt(�)



@2��p̂t(�)� @2��pt(�)

+ 1

T

TX
t=1



@2��pt(�)

 (1 + oP (1))
p2t (�)

jp̂t(�)� pt(�)j

= (1 + oP (1))

(
1

T

TX
t=1

1

pt(�)

)
sup
1�t�T



@2��p̂t(�)� @2��pt(�)


+(1 + oP (1))

(
1

T

TX
t=1



@2��pt(�)


p2t (�)

)
sup
1�t�T

jp̂t(�)� pt(�)j = oP (1) ;

where we have used the LLN together with jp̂t(�)� pt(�)j = oP (1),


@2��p̂t(�)� @2��pt(�)

 = oP (1)

and pt(�) > 0 uniformly over 1 � t � T and � 2 �. We can show that sup�2� kA2 (�)k = oP (1)

by the same arguments. The claimed result now follows by combining the results obtained for the

simulated score and Hessian. �

Proof of Theorem 3.4 We follow the exact same arguments as in the proof of Theorem 3.3,

except that we now have

jp̂M;t(ytjxt; �)� pt(ytjxt; �)j � jp̂M;t(ytjxt; �)� p̂t(ytjxt; �)j+ jp̂t(ytjxt; �)� pt(ytjxt; �)j

where p̂t(yjx; �) is the kernel estimator based on simulations from the true model. The uniform rate
of convergence of the second term is given by Lemma B.1, while the �rst term satis�es by M.1,

jp̂M;t(ytjxt; �)� p̂t(ytjxt; �)j � 1

N

NX
i=1

���Kh(Ŷ
�
1t;i � y1t)Ŷ �2t;i �Kh(Y

�
1t;i � y1t)Y �2t;i

���
� 1

Nh

NX
i=1

���K(1)
h

�
�Y �1t;i � y1t

���� ���Ŷ �2t;i��� 


Ŷ �1t;i � Y �1t;i



+
1

N

NX
i=1

��Kh(Y
�
1t;i � y1t)

�� ���Ŷ �2t;i � Y �2t;i���
�

�
�M;1

h
B1

�
1 + kxtk�3;1 + t�3;2

�
+ �M;2B2

�
1 + kxtk�4;1 + t�4;2

��
OP (1);

where �Y �1t;i lies on the line segment between Ŷ
�
1t;i and Y

�
1t;i. Thus, uniformly over yt 2 Rk; kxtk � N


and � 2 �,

T

a�T
�jp̂M;t(ytjxt; �)� p̂t(ytjxt; �)j = OP

�
T

a�T

�M;1
h

h
N
�3;1 + T �3;2

i�
+OP

�
T

a�T
�M;2

h
N
�4;1 + T �4;2

i�
;

where the right-hand side has to go to zero to obtain consistency. This holds by B.10. For �rst-order

equivalence, we require that the right-hand side vanish with rate
p
�T . This holds by B.20. �
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