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Abstract

In this paper we formulate a discrete choice modél iti@rporates thresholds in the
perception of attribute changes. The model considergipteuloptions and allows
changes in several attributes. We postulate thategtimlds exist they could be random,
differ between individuals, and even be a functionogics-economic characteristics and
choice conditions. Our formulation allows estimata@itthe parameters of the threshold
probability distribution starting from information abailtoices.

The model is applied to synthetic data and also todata from a stated preference
survey. We found that where perception thresholds exidteé population, the use of
models without them leads to errors in estimation andigifed. Clearly, the effect is
more relevant when the typical size of change in thréate value is comparable with
the threshold, and when the contribution of this attebut the utility function is
substantial. Finally, we discuss the implications efttireshold model for estimation of
the benefits of transport investments, and show thatrevthresholds exist, models that
do not represent them can overestimate benefits siiadia
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Introduction

Many factors affect the behaviour and decision processeslividuals; these factors
are dynamic and change continuously. Moreover, the ggdsarcan occur at a
macroscopic scale (e.g. social and political processesjronmental quality,
urbanization processes), or microscopic scale (e.gmeahanges, vehicle purchases).
It is important for planners to establish the behavidundividuals in respect of these
changes and therefore the magnitude, direction and tinfitigeio responses. However,
individuals seldom acquire information on changes immeljiaso this knowledge is
imperfect and changes may often be ignored. In additiothhe face of new situations
people might undergo a process of experimentation andirgathrough trial and error
(Kitamura, 1990).

Small changes (absolute or relative) most likely doprompt any action due to the
existence of thresholds in perceptionsjust noticeable difference@Coombset al
1970). In this sense, perceptible changes would be values aloeviin threshold, and
those below it would not cause a reaction in the indiviflutdities do not change). So,
if we define X' as the value that attribuketakes at time, the change in utility between
t andt+1 will only be perceptible to the individual [iffX"*|=|X"**-X'|>¢*, whered is a
non-negative threshold value.

This phenomenon is complex because changes can acoerantheventually exceed
the threshold, but at the same time there is an adjostmeindividual behaviour
dependent on the speed of change, that in turn mothfgethreshold. Thus, in the most
general case the thresholds should be dynamic and depetiik eexperiences and
restrictions of the individual. Therefore, it is possibd postulate that these thresholds
are distributed randomly in the population according # dbncept ofpsychological
thresholdsin the theory of consumer choice introduced by Gearg&oegem (1958).

To delve into the complexity of the phenomena, accgrdiith Prospect Theory
(Kahneman and Tversky, 1979) the response to changes coudgrmetric; thus, the
magnitude of changes in behaviour may be different dependirtheir direction. In
addition, other phenomena such as inertia, habit or egloetto change may also be
present; that is, individual behaviour can be charaeigrizy habit formation making
people reluctant to change and consequently the same pasichg can still prevail
because altering it implies time and costs (monetary paydhological). Moreover,
change asymmetry can lead to the phenomenon of hysté@sodwin, 1977; Blase,
1979; Williams and Ortuzar, 1982).

Researchers in mathematics, psychology and psychoplmgsiesstudied the magnitude
of individual response in the presence of changes in tleasity of stimuli in the

L A more general approach is to expré®¥ '™ =| X" = X" where X' is the expected (or

reference) value ofX"!. The latter can be defined as an exponentially smootluedtion
X" = AX"+(1-A) X', whereA should be between 0 and 1. We do not search exhaustivéyson

parameter so we just assurwd. A more suitable value could be obtained using a Bayepjamoach or
a Kalman Filter (Harrison and Stevens, 1976)



physical world; the existence of thresholds is recoghirethis context and they are
defined as the minimum size of stimulus required to produrceffect. The relation
between the physical stimulus and the response ahiig has been modelled, among
others, by Dzhafarov and Colonius (2001). Biostatististicihave proposed models
considering dose-response thresholds with random eftectand Hunt, 2003), and
researchers in Marketing have examined consumer pricé&iggnsising models that
incorporate probabilistic thresholds for price gains ande®swith respect to the
reference price (Haet al, 2001). Finally, Li and Hultkrantz (2000) proposed a model to
estimate the value of time considering a stochastiception threshold; however, the
model was restricted to binary choice and assumed aromyfodistributed time
threshold and no thresholds for the other attributes.

To summarise, the discussion about thresholds in déschetice modelling has focused
on the duration of time saved in transport projects andhe sensibility to prices in
marketing. We intent to extend the discussion to anybaté starting from the
hypothesis that it is important to study this concept lseaf thresholds are not
considered, especially when changes are small, it coattl tle errors in prediction.
Moreover, it is possible to overestimate benefitgangport projects (e.g. time savings)
because the impact of each unit of travel time sdaldw some critical thresholds
could amount to nothing that is appreciable for the iddal (Welch and Williams,
1997).

In the present paper, we formulate a discrete choiademocorporating thresholds as
minimum perceptible changes in attributes. As an impodantribution we generalize
the model to multiple options and allow changes in sg\atributes, providing a fairly
general approach. We also postulate that if thresholds tbely could be random, differ
between individuals and even be a function of socio-@win characteristics and
choice conditions. The formulation allows us to eatethe parameters of the threshold
probability distribution starting from information abouhoices. Here, we do not
consider either the presence of habit or the asymmetmhresholds although we
recognize that they could be present. Extensions tonasymmmetric treatment are
straightforward, but incorporating inertia or habit effeis complicated.

The rest of the paper is organized as follow. In thet rsection we discuss the

theoretical and mathematical formulation of the maggluding hypotheses, constraints
and procedures for its estimation. Then, we presentetwpirical analyses: one using
simulated data and another using data collected as pa$Bfsurvey. In both cases we
carry out a comparison of our method with the tradé@locompensatory model. After

that, we consider the implications of the threshotttet in the evaluation of transport
investment benefits. Finally we present the practicatlosions and implications of our

work, and discuss possible avenues for further research.



A threshold model

Consider the case of an individualwho at timet chooses optiom and has a set of
other available option&'(g)?. Let us denote b))A<k the difference between the values of

attribute Xx for optionsj andr. In addition, Ieth3 be a vector of socio-economic
characteristics of the individual. Then, at titnge have:

xlt<jq = xlzjq - xlzrq (1)

and assuming a linear in the parameters expression, libe aftioption j relative tor
can be written as:

UJt'q zvjtq +g§q zath'q +ﬂth +gtjq (2)
where @ and f# are vectors of parametérsThen, the probability that individual
chooses option at timet is:

prtq:p{O}qsqu DjDA’(q)}. 3)

Suppose that at tinte-1 there are changes in some attributes, for exampm )A(ﬁjq to
)Zt_+1.

g+l _ Nyt i+l

Xija = Kijg T BXigq (4)
As an hypothesis we suggest that if the changmadl she variation in the individual's
systematic utility will be null. Therefore, the imalual will only perceive an alteration

in his/her utility if ‘A)Zﬁjgl >9,,, Where J,, is a non-negative random perception

threshold that is distributed in the population hwitlensity function ¢(d,). The

individual only perceives that part p:fitkﬁ bigger than5kq, so that the response is to a

stimulus of size Max(‘A)Z‘kj*ql ~ O

0)5. The value of the threshold, can be

expressed as a proportion iitjq So that:

8q = |Xi

Kid

0 +77)° (5)

% A'(g)does not include option its size ig|A"g||=J.
% In our notation, bold-face letters represent vectors.

* As in this notatioﬁ\/r; = 0, the utility ofr is given only by the error termﬁ:q =&,
® An alternative approach is to consider responsestimalgs of sizeIAX'kaqli whenever this exceeds
Oyq-

® An alternative approach would teexpress the threshold in absolute termg as: (Sk +/7kq) .



where J, is an expected perceived value common to all individwdlssimilar
characteristics and,, represents individual deviations following a certain pbiliig

function with mean zero and varianaﬁ. If the population is relatively homogenous

the means of the distributions may be identical, negtzds, it is possible to consider
variations between individuals by expressing these meanfuractions of certain
attributes of the individuals. For example, a lineaih parameters expression might be
used:

O =T +pY, (6)
wherer andp are parameters.

As an illustration, Figure 1 shows the variation irityti(AV;) when the attribute
(with negative marginal utility) changesteris paribusThe threshold in this case is 5,
so values ofAXj between -5 and +5 do not induce changes in utility, whevatside
this interval the utility is affected. Note that here wuppose the threshold to be
symmetric.
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Figure 1. Influence of thresholds in the utility function

After the changes at tinte if we consider thresholds fon of theK attributes the new
conditional utility function for optiof given the vector of thresholdg would be:

Tt It ' N wt-1 St ; 3 S A tya ! (7)
Uiq |6q :VJq|6q + &g :;aqu[xqu +(Aijq—5qu|gr(A Xk&) fqu} +k;1a kg ijq+ﬁY o €

>5,

where =)t ‘M;Jq
“a 0 otherwise

" An alternative and more complicated formulation oféher term is€j, =V, +{; +&,, wherev,

is a random term representing an effect that is spetifithe individual but invariant over time (that
introduces serial correlation)(} is a time-specific error affecting all individuals equadiyd
purely random error term.

jq @



Let the thresholds be distributed in the populatioroading to a join density function
Q(S). We will assume that the thresholds are independentebet attributes; so we

express:

M®=ﬁﬂ@) (8)

The conditional probability that the individual switchlesm r to j given the vector of
thresholds will be:

pfa=P{ Uy o> s o DiD A O Oy Jo >0, |9} 9)

On the other hand, the probability that the individualsdo@t switch and remains with
optionr givensd is:

t
Fo

q

8= P{ U8 <UL [6 DiO qu)} (10)

To calculate the unconditional probability of switchiagd that of not switching it is
necessary to integrate over the valuess.ofAs an illustration, suppose that random
errors are distributed Gumbel 1ID, in which case we Idobave the following
expression:

Pl = T eXp(Vj; |6) Q(3) do (11)
1o 3 ool
DiDA{q)

In the same vein, the probability that the individuahaens using is given by:

= [t ———0())® 12)

ﬂuZwWM]

DDA

Equations (11) and (12) are difficult to solve analyticatigcause they involve
multidimensional integrals. Here instead, we emplgy@bability simulator within a
maximum likelihood framework, which leads to Maximum Sineda Likelihood

(MSL) estimates.

The log-likelihood function is:

a=l jDA(’q) jDA(rQ)

u<a,m>:i{ S o,n(8 e+ 1- 5 6, o a\a,ﬂ,a)] )

where(jq is 1 if the individual switches tpand O otherwise. The response probability
for optionj is replaced with the unbiased, smooth, tractable simufatam, 2003):
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a,/)’,JZ%nZZ/\(Ha,/)’,é“) (14)

where 6" denotes thaith draw from the distribution 08, and A is the probability

equation for the logit kernel model specified by equations &ht) (12). In order to
generate the set of discrete points we can use psendornasequences (see the
discussion in Silva and Garrido, 2003).

Incorporating the simulated probability, the simulategtlikelihood function is then:

a,ﬂ,d’)+[1— > gjq}m(ﬁgq a,ﬂ,d’)] (15)

I0Hq)

ﬁ‘(%”ﬁﬂ > g.in#,

a=1| J0A,

It is worth emphasizing that the traditional discrelteice model without thresholds (i.e.
in this case a Multinomial Logit, MNL model) is a patiar case of the model
presented here, where the means and their variancesraréhis implies the absence
of any thresholds).

Empirical Analysis

We applied the present threshold model (7) to two dasatbet first is synthetic and the

second came from a SP survey. Because the emphasis lver thresholds rather than
on the error term of the utility functions, in allses we suppose that errors are
distributed IID Gumbel.

Application to synthetic data

To examine the performance of the proposed model for a ggapulwhere thresholds
do exist, we followed the Williams and Ortuzar (1982) mdthaf generating a
simulated data bank. This consists of three hypothetjgbns: Taxi, Bus and Metro
and includes three attributeéSost G Travel Time TandAccess TimeI We used left-
truncated Normal distributed attributes and a Normalibigions for relative changes
as shown in Table 1.

Table 1. Parameters used for attribute generation

. Initial Situation Relative Changes
Attribute Taxi Bus Metro CaseA CaseB CESSGC
Cost C) Mean 45 20 15 0.10 0.25 0.50
Standard deviation 10 3 1 0.03 0.05 0.07
Travel Time T) Mean 18 30 10 -0.10 -0.25 -0.50
Standard deviation 5 10 3 0.03 0.05 0.07
Access TimeT,) Mean 8 10 15 -0.10 -0.25 -0.50

Standard deviation 4 5 5 0.03 0.05 0.07

Thresholds were also generated for each attributewimp symmetric triangular
distributions, the parameters of which are shown in @&blWe studied three cases:
small, medium and large changés B andC respectively, see Table 2). In the main
body of the text we only show caBecasesA anC can be found in the Appendix. We
generated 10,000 independent observations according to theirfigllprocedure:



1. Initially individuals choose between options accordmgtcompensatory utility
maximizing process (i.e. a MNL with scale parameter eqaabne). The
parameters of the utility function used in the simalaare presented in Table 2.

2. Attributes change and individuals compare these changbsheir respective
thresholds; if the changes do not exceed the threshbklsitility function does
not change. We assume the triangular threshold disiviis start at zero, so
they are specified by a single parameter (i.e. mearodejn

3. After the changes in attributes and the consequenttiars in the utility
function, the individual chooses again between theongtiaccording to the
original compensatory utility maximizing process.

Table 2 shows the number of individuals for whom the gban one or other of the
options exceeds the respective threshold for each sedutaise. To present results in
the table, we used the following convention: if an indlill choose$axi, then option 1
will be Busand option 2Metro; is s/he chooseBus option 1 will beTaxi and option 2
Metro; finally, if s/lhe chooseMletro, option 1 will beTaxi and option Bus Obviously
this distribution depends on both the thresholds in Talsled the changes in Table 1. It
is possible to see that the effect of thresholdsr@ngest for the attributAccess Time
and weakest fo€ost. This is becaus€osthas the smallest marginal utility, aAdcess
Timethe largest orfe

Table 2. Parameters used for threshold generation
Individuals whose threshold is exceeded by an attribiegeh

Threshold Value in (Total sample= 10,000)
Parameter mean utility function Case A Case B Case C
Option1l Option2 Optionl Option2 Option 1l Option 2
Cost 0.08 -0.070 7991 2428 9680 5391 9942 7972
tTirrr?(‘a’e' 0.12 -0.150 3896 5446 6852 8124 8447 9158
ﬁr‘;‘;ess 0.16 -0.200 1448 2039 3166 3467 5065 5956

We analysed eight scenarios for each case considamginations of the presence or
absence of thresholds. For instance (see Table 3)irsheconsists of a population
without thresholds in any attribute; by contrast, the daenario considers a population
with thresholds for all attributes. For each scemanie estimated first a classical MNL
model consistent with compensatory behaviour and nohibieks the second is the
proposed model including thresholds for all of the attréube parentheses two t-tests
appear: the first corresponds to the traditional null Hygsisé, = 0, and the second
refers to the null hypothests = 6,, whered, are thetrue parameter values, which are
referred to asargetsin the table and are the parameter values in theyutilitction of
Table 2.

Scenario 1 shows that when thresholds do not exisptbposed model converges
correctly to the standard MNL, with estimates of thodd parameters close to zero. In
general, parameter recovery is successful and the ggdpoodel has always a better fit
than the mis-specified MNL model. In fact, in all case likelihood ratio (LF) test

® The latter is a consequence of having based the $eduttata on real data and models estimated
previously.

? LR=-2{I(0,)- 1(A)}, wherel(0,) is the log-likelihood at convergence for a restrictedsion of a more
general model with log-likelihook{f). LR is distributed asymptoticall with r degrees of freedom;is



shows that the proposed model is preferable at the 56b tiexthe MNL. In addition,
almost always the null hypothegig= 6, is accepted at the same level, and only in few
cases theé-tests show that the estimated thresholds parametedifierent from their
respective targets. Furthermore, the parameters in tlity @unction are recovered
accurately in all cases.

It is worth noting that the MNL does not generally gadverse diagnostics in this case
(i.e. in 3 of 7 scenarios the parameters in the utfliryction are well recovered).
Simulations show that when changes in the attributeease the difference in fit
between the proposed model and the MNL increases todhéatturacy in parameter
recovery decreases. On the other hand, as the incidéticeAccess Timéhreshold is
stronger than the others, its estimation tends todye successful.

In order to investigate the consequences of adopting modblamd without thresholds
when they do exist, we tested the performance of thé kil of the proposed model
estimated for scenario 8 in case B (Table 3), in terfrthair predictive capabilities.

Consequently, we used plans representing “policy changeshwéiged from slightly

to substantially different from the base data used gomation. This entailed changing
attribute values for the options and re-executing tlmcehsimulation procedure. We
generated a series of simulated future scenarios, whiglkl d® compared with the
model predictions.

Following the approach of Munizagd al (2000) we tested six policid&l to P6; the
specific changes in attributes associated to eaclam@shown in Table 4. Polici®d to
P3 correspond to small changes; in contr&st, to P6 represent aggressive policy
changes. The error measure considered was the peyeediference between the
behaviour that was simulated for the modified attribugtleles and that estimated with
the model under scrutiny. The minimum response error i@t be considered a
prediction error is given by the standard deviation of $iraulated observations
generated with different seeds, as it reflects the ertevariability of the simulation
process.

We carried out 15 repetitions of the data generation psof® each policy using

different seeds for the pseudo-random numbers and founhthehéargest value of the

coefficient of variation was 8.3%. Given these resuiis decided to take 10% as a
reasonable tolerance error. Therefore, any discrepaxcgeding this value was
considered an estimation error.

the number of linear restrictions needed to pass ftmnnon restricted threshold model to the MNL
(Ortdzar and Willumsen, 2001, p263)



Table 3. Models with simulated database, (Bsaedium size changes= 10,000

Threshold Scenario
1 2 3 4 5 6 7 8
Cost Y Y Y Y
Travel Time Y Y Y Y
IAccess Tirr Y Y Y Y
Individuals changing their 0 142 251 316 179 247 544 427
choice when threshold present
Model Target MNL |Proposed MNL |Proposed MNL |Proposed MNL |Proposed MNL [Proposed MNL |Proposed MNL |Proposed MNL [Propose
-0.070| -0.071| -0.071| -0.069 | -0.071| -0.072 | 0.070 | -0.073 | 0.071 | -0.071 | 0.070 | -0.072 | -0.071 | -0.074 | -0.071 | -0.073 | -0.071
Cost (-48.8) | (-44.3)| (-48.0) | (-48.0) | (-47.8) | (-46.5) | (-47.1) | (-46.8) | (-47.7) | (-46.3) | (-47.1) | (-46.5) | (-46.8) | (-45.2) | (-46.9) | (-44.9)
[-0.6] | [-0.8 | [06 | [-03 | [-14] | [-0.3] | [-16 | [-0.6] | [-0.6 | [-0.] | [-1.9] | [0.9 | [-2.3] | [0.3 | [-2.2 | [-0.6
-0.150| -0.147| -0.147 | -0.145| -0.147 | -0.151 | 0.148 | -0.149 | 0.146 | -0.150 | -0.149 | -0.147 | -0.145| -0.152 | -0.147 | -0.150 | -0.147
Travel Time (-563.0) | (-51.2)| (-53.1) | (-53.6) | (-53.1) | (-51.2) | (-52.5) | (-52.1) | (-53.1) | (-52.0) | (-52.4) | (-52.2) | (-53.3) | (-51.2) | (-52.3) | (-49.1)
(13 | (1.9 | [20 | [1.4 | [-04 | [08 | [03 | [14 | [04 | [03 | [1. | [1.7 | [06 | [1.2 | [-0.9 | [1.]]
-0.200| 0.198 | -0.201 | -0.198 | -0.199| -0.197 | -0.197 | -0.181 | 0.196 | -0.196 | -0.197 | -0.179 | -0.193 | -0.177 | -0.193 | -0.178 | -0.193
IAccess Tirr (-39.1) | (-39.0) | (-39.5) | (-39.7)| (-38.3) | (-38.1) | (-35.5) | (-35.4) | (-38.4) | (-38.4) | (-35.4) | (-30.3) | (-34.4) | (-34.2) | (-34.7) | (-34.0)
04 | [02 | [05 | [03 | [0.6 | [07 | [3.8 | [0.7 | [08 | [0.6] | [42 | [1.9 | [46] | [1.3 | [44 | [1.7
0.080 0.002 0.084 0.071 0.052 0.059
Mean Threshol€ost - (0.2) - (9.0) - - - - - 4.4) - (4.5) - - - 4.1)
[0.2] [0.5] [-0.9 [-2.4 [-1.4
Mean Thresholdravel 0.120 0.000 0.105 0.094 0.101 0.090
Time - (0.0) - - - (7.0) - - - (6.6) - - - (9.8) - (4.1)
[0.0] [-1.0 [-1.9] [-1.9] [-1.4]
M Threshold 0.160 0.008 0.149 0.128 0.162 0.150
Tiﬁlae“ resholéccess - (1.2) - - - - - (13.7) - - - (3.0) - (10.6) - (10.6)
1.2 [-1.0 [-0.9] [0.1] [-0.7]
Log-likelihood -5751.8 -5751.7| -5859.5| -5851.8| -5595.3| -5577.9| -5512.8| -5489.9| -5654 .4 | -5646.7| -5581.4| -5570.8| -5380.9| -5314.1| -5427.2| -5391.3
LR 0.2 15.3 349 45.8 155 213 133.6 71.7
Critical y* at 5% level 7.81 3.84 3.84 3.84 5.99 5.99 5.99 817.




Table 4. Policy changes: percentage change itaii¢rivalues
Cost Cost Travel Time Travel Time Access TimeAccess TimiAccess Time

Policy Bus Metro Bus Metro Taxi Bus Metro
P1 -20
P2 -10
P3 -15
P4 -50
P5 100
P6 -50 50 -50 50 -50 50

To test goodness of fit we used the following Gipirered measure:

e =Z(Ni ;i’\*) , (16)

where Ni is the model estimate of the number of individugisosing option i, andl; is

the actual (simulated) number. This result shoelddmpared with the criticgy® value at
the 5% level with two degrees of freedom, whicb.B9.

Table 5 shows that the proposed model always pesvisluperior results to the mis-
specified MNL, with response errors well within tt@erance of 10%. By contrast, the
MNL yields response errors larger than this valneseveral casesP{, P4 and P6).

Furthermore, they” index shows that the errors for the proposed maxehot statistically

significant at the tested level but the model exrfor the MNL are significant in the above
cases. These results allow us to infer that ifeleme thresholds for perceptible minimum
changes in attributes, use of a mis-specified nestiold model can lead to prediction
errors.

Table 5. Comparison of simulated and modelled fastc

Polic Target MNL Proposed Model
Y Taxi Bus Metro  Taxi Bus  Metro X2 Taxi Bus  Metro X2
P1 108 147 745 87 164 749 6.1 100 155 745 1.0
-19.4% 11.6% 0.5% -7.4% 5.4% 0.0%
P2 110 110 780 102 109 789 0.7 108 112 780 0.1
-7.3% -09% 1.2% -1.8% 1.8% 0.0%
P3 112 108 780 109 101 790 0.7 108 109 783 0.2
-2.7% -6.5% 1.3% -3.6% 0.9% 0.4%
P4 84 308 608 68 330 602 4.7 79 312 609 0.4
-19.0% 7.1% -1.0% -6.0% 1.3% 0.2%
P5 195 170 635 184 180 636 1.2 189 179 632 0.7
-5.6% 5.9% 0.2% -3.1% 53% -05%
P6 63 832 105 52 874 74 13.2 60 839 101 0.4

-17.5% 5.0% -29.5% -4.8% 08% -3.8%




To evaluate the effect of sample size on modefasion we generated simulated data with
only 1,000 draws. Similar to before, case B is @nésd in Table 6 whilst the others can be
found in the Appendix. In these cases, the recowéthe true parameters is similar to the
previous experiment but the improvements in loglihood are less pronounced, being
significantly different from zero in 4 out of thecases simulated with thresholds. In fact,

excluding scenarios 4, 7 and 8, tjpé tests show that the proposed model and the MNL are
equivalent at the 5% level. This confirms the regment for adequate sample size in

estimation, especially when dealing with complexdels including many attributes
(Williams and Ortazar, 1982; Munizagéal, 2000).

The results of the simulation allow us to conclutiat the threshold parameters are
reasonably well recovered if the sample size igea@nough, especially when the effect of
the attribute is strong (high marginal utility andhigh threshold mean). In these cases the
model without thresholds may lead to errors inneation and in prediction. Conversely,
when the effect of the attribute is weak (low maagiutility and/or threshold mean close to
zero), or if the sample size is not large enoubh, threshold parameters are not so well
recovered and, also, in these cases the errorg t&rtraditional MNL are small.

Application to a stated preference survey

The data for this part of the analysis consistsa abute choice SP survey for car-trips
(Caussadeet al, 2004). We selected part of the survey with cloibased on three
attributes: Travel time (min), Trip time variability (min), andTotal cost(US$). In the
implementation of the experiment, respondents Viiesseasked to consider a trip they had
taken recently and to report its attributes (th&swalledCurrent Route Then a computer
program automatically generated the hypotheticalaghscenarios according to a fractional
factorial design. Each specific design pivoted ba &ttribute levels associated with the
Current RouteAs a generic design, the added options (twoenctse of this data) were of
exactly the same nature.

The total number of valid observations for our gsisl was 718. Of these, 247 (34.4%)
chose the current route. On the other hand, theree vi08 (16%) respondents who
answered lexicographically; of these, 96 were egraphic in theélravel timevariable and
12 in theTotal costvariable. No observation was found to be lexicpgr@ onTrip time
variability.

Model TM1 in Table 7 includes a threshold foravel Time model TM2 incorporates a
threshold forVariability and model TM3 a threshold fa@ost In all cases we assumed
symmetric Triangular distributions for the threstwlAs seen, models TM2 and TM3 are
equivalent to the MNL, with estimated threshold meealose to 0 (< If) and unchanged
log-likelihood; this means that there is no evidenaf thresholds for the attributes
Variability and Cost In marked contrast, model TM1 is significantlyttee than the
reference MNL model (LR= 33.8 is substantially f@glhan 3.84, the critical value at the
5% level); consequently, we can conclude that astiwld forTravel Timeexists with a
mean close to 12% of its initial value. Note that presence results in a substantially
increased magnitude for the coefficient of travelet (i.e. from -0.0353 to -0.1299); it also
results in an increase in the magnitude of the cosfficient (i.e. from -0.2100 to -0.420).



Table 6. Models with simulated database, Case Bjunesize changes;= 1,000

Threshold Scenario
1 2 3 4 5 6 7 8
Cost N N N N
Travel Time N N N N
IAccess Timr N N N N
Individuals changing their 0 18 26 34 21 32 51 26
choice when threshold present
Model Target MNL |Proposed MNL |Proposed MNL |Proposed MNL |Proposed MNL [Proposed MNL |Proposed MNL |Proposed MNL [Propose
-0.073| 0.073| -0.072 | -0.072| -0.072| 0.071| -0.073| 0.072| -0.069 | -0.068 | -0.071| 0.071| -0.072 | -0.070| -0.073 | -0.071
Cost -0.070| (-15.6) | (-14.7) | (-15.7) | (-15.6) | (-15.3) | (-15.0) | (-15.0) | (-15.0) | (-15.2) | (-14.9) | (-15.0) | (-14.7)| (-14.9) | (-14.4) | (-15.0) | (-14.3)
(01 | [01 | [03 | [04 | [08 | [02 | [-07 | [-0.5 | [0.2 04 | [0Y | [02 | [04 | [0 | [-0.6] | [-0.9]
-0.142 | 0.142| -0.140| -0.140| -0.147 | 0.145| 0.149| 0.147 | -0.146 | -0.144 | -0.146 | 0.147 | -0.154 | -0.150| -0.150 | -0.146
Travel Time -0.150| (-15.5)| (-15.8) | (-16.5) | (-16.1) | (-16.6) | (-16.5) | (-16.4) | (-16.3) | (-16.7) | (-15.9) | (-16.5) | (-15.0) | (-16.5) | (-16.2) | (-16.4) | (-15.2)
09 | 09 |[17 | [12 | [03 | [05 (01 | [04 | [09 (07 | [04 | [03 | [04 | [00 | [00 (04
-0.201| 0.201| -0.205| -0.205| -0.194| 0.195| 0.177| 0.198 | -0.189 | -0.189 | -0.172| 0.191| -0.177 | -0.199 | -0.177 | -0.196
IAccess Timr -0.200| (-12.5)| (-12.4)| (-12.8) | (-12.8) | (-11.9) | (-11.9) | (-10.8) | (-10.9)| (-11.8) | (-11.8) | (-10.7) | (-10.5)| (-10.7)| (-10.8) | (-10.8) | (-10.3)
0.9 | [-0.9] | [-03] | [0.3] | [04 | [03 (14 | [04 | [0.7 07 | (18 | [09 | [14 (01 | [14 [0.2
0.000 0.012 0.000 0.025 0,010
Mean Threshol€ost 0.08 - (0.0) - (0.2) - - - - - (0.0) - (0.2) - - - (0.1)
[0.0 [-1.2] [-1.2] [-0.5] [-0.7
0.000 0.097 0.073 0.081 0,077
_I\l_/li%aen Thresholdravel 0.12 ) (0.0) ) ) ) 5.1) ) ) ) (3.2) ) ) ) 2.1) ) (0.6)
[0.0 [-1.2] [-2.1] [-1.0 [-0.3
Mean Thresholdccess 0.000 0.201 0.108 0.250 0,177
Time 0.16 - (0.0) - - - - - (5.6) - - - (4.0) - 3.3) - (1.6)
(0.0 (1.9 [-1.9 1.2 [0.2
Log-likelihood -568.3| 568.3 -582.%5 -582/4 -555.0552.7| -534.4| -530.2 5675 566/2 5485 -546,1298| 520.5| -535.1 -528,
LR 0.0 0.2 4.7 8.3 25 4.8 17.8 13.6
Critical y* at 5% level 7.81 3.84 3.84 3.84 5.99 5.99 5.99 817.




Table 7. Models for the SP survey
Parameter MNL TM1 TM2 TM3
-0.0353 -0.1299 -0.0357 -0.0355

Travel Time (-14.8) (7.3) (-14.8) (-14.8)
Variabilit -0.0146 -0.0156 -0.0149 -0.0147
y (-34) (3.0) (-31) (-3.5)
Cost -0.2100 -0.420 -0.2100 -0.2100
(-8.7) (-8.6) (-8.7) (-8.1)
. 0.1247
ThresholdTravel Timemean (17.0)
N 0.0000
Thresholdvariability mean (0.00)
0.000
ThresholdCostmean (0.00)
Number of Observations 782 782 782 782
Log-likelihood -623.2 606.3 623.2 623.2
LR 338 0.0 0.0

Implications for the Evaluation of Transport Investments

Apart from forecasting the impacts of transportiggobn demand, random utility models
are widely used to estimate Willingness-To-Pay (WP improvements in attributes. For
example, the subjective value of time (SVT) is dedi as the marginal rate of substitution
between time and money at constant utility (Gawtrgl, 1989). If the utility function is
linear in the parameters and there are no threshtild SVT is computed as the ratio of the
time and cost parameteiS\(T=0/a.).

However, in the presence of thresholds as definetis paper the estimation of benefits is
more complicated. For example, if the travel timagesl is too small the individual could
not perceive it and therefore the benefit of eath af travel time saved would be reduced
(possibly to zero). From the utility function (7)ewcan derive the expected value
(compensated variation) per unit of time; therefdhe conditional SVT in the proposed
threshold model is given by:

SVTId = E(—EM} _lafo () Jgsign(At)) g, sigr(A g 17
At a.f, At Ac
and the uncondition8VTwould be:

svT= €42 =] {Z‘ - [1-5t‘°'ig”(m)]-5°3ig'm ‘)}o(d)co(dc)dddac (19

At Ac

Expressions (17) and (18) cannot be usefd # 0; they only are valid whedc > &. In
order to compute (18), it is necessary to solve the intefgrathis, Monte Carlo simulation
can be used. Note that the SVT depends on the valufsafd4t. If there is no evidence



of a threshold for cost, the computation is eabetause we have a one-dimensional
integral.

On the other hand, if errors are IID Gumbel and itigirect utility functionU has a
common linear income effect we can calculate thaltmnal WTPas follows (McFadden,
1998):

E[WTHJ]:ai{ Ln Y exp(Y(d))- LnD. exq Vl)} (19)

c AgDA ApDA

where the indirect utility functions are defined (B) and (7). Because the vector of
thresholds is in fact not known, the unconditional WTP is:

E[wTH = ai{ Ln Y exp(Y(d))- LnD exq Vl)}Q(J) ) (20)

o7c A DA AqDA

Thus, we can estimate (20) by Monte Carlo simutesis follows:

~ 1{
E[WTH :NZ H WTH" | (21)
n=1
whered' denotes theth draw from the distribution o.

To investigate the effect of using the thresholddelan the evaluation of benefits due to
improvements in a transport system, we applied & test example using the SP database
and compared the results with those of the tratitioon threshold model (MNL). We
considered three hypothetical scenarios correspgrtdi savings of 10, 20 and 30 minutes
in travel time for each of the 782 individuals bétsample. It is necessary to point out that
the range of travel times in the sample is 55 t0 Gfinutes, with mean and standard
deviation close to 230 and 160 minutes respectigycomparison, the expected value of
the threshold for travel time is close to 30 misute

For the MNL model, the SVT is a constant given by tatio between the parameters of
travel time and cost: 0.1681 US$/min. In the casthe threshold model TM1, however,
the SVT is not constant across individuals, butedels on how large the saving in travel
time is in comparison with the current travel tivedue (see Table 8).

Table 8. Benefit estimation by MNL and proposeceshold models
Travel time reduction (minutes)

Estimated Benefit (US$) 10 20 30
Threshold Model 186 1169 2796
MNL Model 1315 2629 3944
Difference (%) 607.0 124.8 41.0
Average SVT (US$/min)

Threshold Model 0.0238 0.0748 0.1192

MNL Model 0.1681 0.1681 0.1681




As can be seen, the MNL overestimates the berdfltsugh the proportionate difference
between the approaches decreases as the savirayah time increases. As can be seen,
when the saving in travel time is 10 minutes, thedjits estimated with the MNL are more
than six times those estimated with the threshaldeh) but when the saving in travel time
is 30 minutes, the difference decreases to 41%.

Figure 2 shows the variation in SVT depending an ¢hrrent travel time and the travel
time saved. As we noted, the estimation with theLM8l invariant with respect to these
variables but the threshold model is sensitiveneort, especially when they are small. The
upper limit for SVT in the threshold model is givby the ratio between the parameters of
travel time and cost (i.e. US$ 0.3093/min), closéwtice the value estimated by the MNL
model.

SVT Threshold Model
<© 30 minutes
Q )
0.25 P 00 20 minutes
) T N 10 minutes
z 02 o % MNL model
£ mode
£ o015 5%
N % <
2 01 n_%—oo
N .
> o <
. (| <
O g o
0o 88§ ARAR n
0 A L)
0 100 200 300 400 500 600
Current Travel Time (minutes)

Fig 2. Variation of SVT in the Threshold Model

Conclusions

We propose a discrete choice model that incorpsred@dom thresholds as minimum
perceptible changes in attributes, multiple optiand changes in several attributes. Our
formulation allows for estimation of the parametefshe threshold probability distribution
starting from information about choices. The moebf sufficient complexity that its
calibration requires use of techniques such aslatedi maximum likelihood.

The model was applied to synthetic data and thereab data collected as part of a SP
survey. We found that where perception threshokist én the population, the use of
models without them leads to errors in estimatiod & prediction, although this occurs
with more emphases when the contribution of a giggribute in the utility function is
strong. On the other hand, threshold effects foeis attributes can be confounded; for
this reason, it could be convenient to test foesholds individually.



Investigation of data from a stated preference exgat shows that there is evidence for
the existence of thresholds in the travel timealald, with an estimated mean size of about
12% of the initial value (note that we considergthmetric thresholds). On the other hand,
estimates of thresholds for the variability of ebtrme and for cost were both close to zero.

The estimation of benefit measures using the tladdsimodel depends on the size of the
change in a variable (in the present example, ti@ve) by comparison with its current
value. Moreover, the use of a model without thrédhosuch as the MNL could
substantially overestimate benefits in cases whignesholds exist in the variable that is
being changed, although the difference decreastgasagnitude of the change increase.

There are several aspects of interest that rensaifufure research. One is to evaluate the
impact of sample size on the estimation of modetsuding thresholds; a first analysis

suggests that the influence of the sample size#asg, especially in terms of improvements

in log-likelihood. Another aspect relates to a morelepth analysis on the application of

the threshold model in the evaluation of transpovestment benefits to real projects.

Finally, the presence of asymmetries in the thrigishis also worthy of investigation.
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APPENDI X

Table Al. Models with simulated database, Casesmgll changes) = 10,000

Threshold Scenario
1 2 3 4 5 6 7 8
Cost N N N N
Travel Time N N N N
IAccess Timr N N N N
Individuals changing their 0 105 172 196 136 152 365 292
choice when threshold present
Model Target MNL |Proposed MNL |Proposed MNL |Proposed MNL |Proposed MNL [Proposed MNL |Proposed MNL |Proposed MNL [Propose
-0.070 | 0.069 | -0.068 | -0.070| -0.072 | -0.070 | -0.071| 0.070| -0.070 | -0.070 | -0.070 | 0.070| -0.074 | -0.071 | -0.073 | -0.070
Cost -0.070| (-45.3) | (-45.0) | (-45.1) | (-44.4) | (-45.3) | (-44.2) | (-45.2) | (-45.0) | (-45.2) | (-43.4) | (-45.0) | (-43.3) | (-45.2) | (-44.0) | (-45.1) | (-34.5)
03 |03 | [1y | [03 | [13 | [0y | [09 | [0 | [02 | [03 | [0 | [0 | [-23 | [-04 | [-16 | [0.]]
-0.146 | 0.146 | -0.145| -0.147 | -0.151 | 0.146 | -0.149 | 0.146 | -0.150 | -0.147 | -0.147 | 0.146 | -0.155| -0.148 | -0.153 | -0.147
Travel Time -0.150| (-53.2) | (-53.1) | (-53.3) | (-53.6) | (-53.1) | (-50.50)| (-52.9) | (-52.5) | (-53.2) | (-52.7) | (-53.0) | (-52.9)| (-52.8) | (-61.7) | (-52.8) | (-36.8)
(14 | (14 | [19 (12 | [04 | [14 (02 | [08 | [0.0 (10 | [09 | [18 | [17 | [09 | [-10 | [0.8
-0.195| 0.195| -0.193 | -0.195| -0.198 | -0.195| -0.190| 0.194 | -0.196 | -0.196 | -0.188 | 0.194 | -0.195| -0.196 | -0.193 | -0.194
IAccess Timr -0.200| (-35.5) | (-35.5) | (-35.5) | (-35.8) | (-35.3) | (-35.0) | (-34.3) | (-34.4) | (-35.4) | (-35.2) | (-34.3) | (-34.4) | (-34.3) | (-34.1) | (-34.3) | (-25.0)
(10 | [10 | [14 (08 | [04 | [10 |[180 | [1.9 | [0.7] 08 | [23 | [1.3 | [09 07 | [13 (0.8
0.000 0.102 0.060 0.050 0.020
Mean Threshol€ost | 0.080 - (0.0) - (7.2) - - - - - (4.0) - 2.7) - - - (0.2)
[0.0 [19 [-1.3 [-1.4 [-0.9
0.000 0.142 0.114 0.120 0.097
_I\l_/li%aen Thresholdravel 0.120 ) (-0.8) ) ) ) 4.7) ) ) ) 9.2) ) ) ) 8.3) ) (4.0)
[-0.8] [0.7] [-0.5] [0.0 [0.9
Mean Thresholdccess 0.000 0.171 0.175 0.176 0.143
Time 0.160 - (0.0) - - - - - (3.0 - - - (7.5) - (5.4) - (8.7)
(0.0 [0.2 [0.6] [0.9] [-1.0
Log-likelihood -5458.4 -5458 4| -5532.7| -5529.6| -5287.3| -5276.3| -5292.0| -5278.8| -5358.9| -5350.8| -5367.5| -5359.3| -5104.1| -5066.0| -5180.0| -5155.9
LR 0.0 6.3 22.0 26.2 16.0 16.3 76.1 48.2
Critical y* at 5% level 7.81 3.84 3.84 3.84 5.99 5.99 5.99 817.




Table A2. Models with simulated database, Cas&réng changest = 10,000

Threshold Scenario
1 2 3 4 5 6 7 8
Cost N N N N
Travel Time N N N N
IAccess Tirr N N N N
Individuals changing their 0 169 308 461 200 393 779 629
choice when threshold present
Model Target MNL |Proposed MNL |Proposed MNL |Proposed MNL |Proposed MNL [Proposed MNL |Proposed MNL |Proposed MNL [Propose
-0.070| 0.070| -0.069 | -0.071| -0.073| -0.071 | -0.072 | 0.070| -0.071| -0.071| -0.072 | -0.071 | 0.074 | 0.071| -0.074 | -0.071
Cost -0.070| (-52.5)| (-50.4) | (-52.6) | (-51.5) | (-52.2) | (-50.7) | (-51.1)| (-50.1) | (-52.4) | (-51.3)| (-51.3) | (-49.3) | (-50.6) | (-48.5) | (-50.8) | (-48.9)
0. | [-0.2 | [05 | [0 | [-1.8 | [0.8 | [-14 | [0 | [-1.00 | [-0.5 | [-1.9] | [-0.9 | [-2.8 | [0.5 | [-25 | [-0.7]
-0.146 | 0.146 | -0.143 | -0.146 | -0.147 | -0.145 | -0.148 | 0.143| -0.145| -0.145| -0.147 | -0.144 | 0.151 | 0.146| -0.150 | -0.146
Travel Time -0.150| (-49.3) | (-46.1) | (-49.1) | (-49.3) | (-49.1) | (-48.6) | (-48.9) | (-48.4) | (-49.1) | (-49.1) | (-48.9) | (-48.4) | (-48.8) | (-48.5) | (-48.8) | (-48.5)
(15 | [12 | [24 | (159 | [1.9 | (16 | [06 | [23 | [16 | [1.8 | [1.0 | [23 | [03 | [14 | [00 | [15]
-0.198 | 0.198 | -0.199 | -0.198 | -0.193 | -0.196 | -0.174 | 0.195| -0.195| -0.197 | -0.175| -0.198 | 0.168 | -0.200 | -0.170 | -0.197
IAccess Timr -0.200| (-45.8) | (-44.2) | (-46.3) | (-46.0) | (-44.5) | (-44.4) | (-40.9) | (-34.6) | (-45.1) | (-45.1) | (-41.3)| (-37.0) | (-39.3) | (-38.0) | (-39.9) | (-37.0)
[05 | [05 | [0 | [05 | [17 | [09 | [62 | [08 | [13 | [08 | [59 | [04 | [v6 | [0 | [7.0 | [0.5]
0.013 0.107 0.060 0.107 0.071
Mean Threshol€ost | 0.080 - (0.3) - 4.4) - - - - - (3.8) - (4.5) - - - (4.0)
0.3 (1.9 [-1.2] (1.9 [-0.9
Mean Thresholdravel 0.000 0.092 0.085 0.084 0.076
Time 0.120 - (0.0) - - - (5.2) - - - (6.9) - - - (7.0) - (7.4)
(0.0 [-1.6] [-2.9 [-3.0 [-4.3
Mean Thresholdccess 0.000 0.170 0.190 0.205 0.192
Time 0.160 - (0.0) - - - - - (7.4) - - - (10.8) - (15.6) - (12.0)
[0.0 [04 [1.7] (34 [2.0
Log-likelihood -6367.1 -6366.8| -6445.8| -6433.3| -6241.0| -6225.4| -6164.3| -6134.4| -6318.6| -6314.2| -6207.7| -6189.1| -6007.5| -5914.1| -6056.2| -6006.4
LR 04 25.0 31.1 59.9 8.8 37.2 186.9 99.7
Critical * at 95% level 7.81 3.84 3.84 3.84 5.99 5.99 5.99 817




Table A3. Models with simulated database, Casarlischangesy = 1,000

Threshold Scenario
1 2 3 4 5 6 7 8
Cost Y Y Y Y
Travel Time Y Y Y Y
IAccess Tirr Y Y Y Y
Individuals changing their
choice when threshold present 0 ° 19 23 10 18 34 28
Model Target MNL |Proposed MNL |Proposed MNL |Proposed MNL |Proposed MNL [Proposed MNL |Proposed MNL |Proposed MNL [Propose
-0.068 | -0.067 | -0.066 | -0.066 | -0.072 | -0.070 | -0.071 | -0.070 | -0.069 | -0.067 | -0.070 | -0.069 | -0.074 | -0.071 | -0.072 | -0.070
Cost -0.070| (-14.4)| (-14.2) | (-14.3) | (-14.3)| (-14.6) | (-14.2) | (-14.5)| (-114.4)| (-114.4)| (-1214.0)| (-1145)| (-114.1) | (-1145)| (-14.1)| (-14.5)| (-14.0)
05 | [05 | [09 | [09 |([-03 | [00 | [0Y |[00 | [03 | [06 | [0 | [03 | [0§ | [0.3 | [04 | [0.9
-0.146 | -0.145 | -0.147 | 0.147 | -0.152 | -0.149 | -0.151 | -0.148 | -0.154 | -0.151 | -0.148 | -0.145 | -0.160 | -0.152 | -0.154 | -0.148
Travel Time -0.150| (-16.9) | (-16.1) | (-16.9) | (-16.8) | (-16.7) | (-15.8) | (-16.7) | (-16.7) | (-16.9) | (-15.9) | (-16.7) | (-15.7) | (-26.7) | (-15.7) | (-16.7) | (-15.7)
04 | [0of | [04 | [04 | [0 | [0 |[01 | [0F |[04 |[0] | [0F | [0 | [1.0 | [0.7 | [0 | [07F
-0.196 | -0.196 | -0.196 | -0.196 | -0.202 | -0.199 | -0.197 | -0.202 | -0.205 | -0.202 | -0.194 | -0.198 | -0.209 | -0.211 | -0.198 | -0.200
IAccess Tirr -0.200| (-11.2) | (-11.0)| (-12.3) | (-12.3) | (-11.1) | (-21.0) | (-11.0)| (-11.1)| (-124)| (-124)| (-111.0)| (-110.6) | (-11.2)| (-11.1)| (-10.9)| (-10.8)
02 | [04 | [02] | [02] |([-04 | [0y | [0 | (01 |[03 | ([01 | [04 | [0 | [05 | [-0.6 | [0 | [00
0.001 0.001 0.000 0.000 0,004
Mean Threshol€ost 0.08 - (0.0) - (0.0) - - - - - (0.0) - (0.0) - - - (0.2)
(0.9 [-3.5 [-0.9 [0.5 [-3.3
0.000 0.110 0.083 0.138 0,096
_I\l_/li%aen Threshold ravel 0.12 ) (0.3) ) ) ) (1.3) ) ) ) (5.4) ) ) ) (1.3) ) 1.3)
[0.3 (0.9 [-2.4 [0.2 [-0.3
Mean Thresholdccess 0.018 0.152 0.137 0.117 0,116
Time 0.16 - (0.9) - - - - (2.1) - - - (1.2) - (1.6) - (0.7)
[0.9 [-0.9 [-0.2 [-0.6 [-0.3
Log-likelihood -546.4| -546.1] -552.8 -552/8 -519.3517.9 | -522.9| -520.4§ --529p -528{4 -531.6 -530,2498:1| -493.9| -510.1 -508,
LR 0.5 0.0 2.6 45 16 2.7 8.5 6.6
Critical y at 5% level 7.81 3.84 3.84 3.84 5.99 5.99 5.99 817.




Table A4. Models with simulated database, Casdar@g changes) = 1,000

Ot

Threshold Scenario
1 2 3 4 5 6 7 8
Cost Y Y Y Y
Travel Time Y Y Y Y
IAccess Tirr Y Y Y Y
Individuals changing their 0 17 33 52 18 a4 86 7
choice when threshold present
Model Target MNL |Proposed MNL |Proposed MNL |Proposed MNL |Proposed MNL [Proposed MNL |Proposed MNL |Proposed MNL [Propose
0.071| 0.071| -0.071 | 0.072| -0.073 | -0.072 | -0.073 | -0.071| 0.071| -0.071| 0.071 | -0.069 | -0.074 | -0.071| -0.073 | -0.071
Cost -0.070| (-17.0) | (-15.6) | (-17.1) | (-16.8) | (-16.9) | (-16.5) | (-16.4) | (-16.3) | (-16.9) | (-16.7) | (-16.4) | (-16.1) | (-16.2) | (-15.4) | (-16.3) | (-15.0)
-0y | [0 | [09 | [-04 | [0f | [-04 | [0f | [0 | [-03 | [-04 | [-0.9] | [0.2 | [-0.8 | [0.2 | [-0.8 | [0.7
0.138 | 0.138 | -0.138 | -0.140| -0.143 | -0.143 | -0.141| -0.136 | 0.141 | -0.141 | 0.138 | 0.134 | -0.148 | -0.145| -0.146 | -0.143
Travel Time -0.150| (-15.2) | (-13.1) | (-15.2) | (-15.2) | (-15.3) | (-15.3) | (-15.1) | (-14.9) | (-15.3) | (-15.0) | (-15.0) | (-24.6) | (-15.2) | (-15.0) | (-15.2) | (-14.8)
(13 | (1.9 | [14 | [19 | [07 | [08 | [1.0 | [16] | [09 | [1.00 | [1.3 | [1.7 | [0.2 | [05 | [04] | [0.7]
0.206 | -0.206 | -0.211 | 0.210| -0.201 | -0.204 | -0.174| -0.197 | 0.202 | -0.203 | 0.171 | 0.182| -0.170 | -0.219| -0.172 | -0.213
)Access Timr -0.200| (-15.0) | (-14.1) | (-15.4) | (-15.2) | (-14.6) | (-14.5) | (-13.1)| (-12.4)| (-14.8) | (-14.7)| (-13.0) | (-12.8)| (-12.7)| (-12.0) | (-12.8) | (-12.7)
(04 | [-04 | [08] | [-07] | [0 | [-0.3 | [19 | [0 | [-0.9] | [-0.2 | [22 | [1.3 | [22 | [-1.9] | [27] | [0.7]
0.000 0.100 0.000 0.017 0,036
Mean Threshol€ost 0.08 - (0.0) - 1.4) - - - - - (0.0) - (0.3) - - - 1.3)
[0.0] [0.3] [-1.2 [-1.0 [-1.6]
0.000 0.079 0.032 0.061 0,040
_I\l_/li%aen Thresholdravel 0.12 ) (0.0) ) ) ) (1.4) ) ) ) (1.6) ) ) ) (1.0) ) (0.4)
[0.0] [-0.7] [-4.9 [-1.0] [-0.9
Mean Thresholdccess 0.000 0.176 0.107 0.332 0,282
Time 0.16 - (0.0) - - - - - (5.0) - - - (5.2) - (3.2) - (9.4)
[0.0] [0.5] [-2.6] [1.6] [4.1]
Log-likelihood -636.3| -636.3 -638.83 -637)]3 -618.7617.4| -615.2| -612.53 -6285 -628{4 -626.7 -625596:8| -585.5| -601.6 -595.
LR 0.0 21 2.7 55 0.2 24 22.6 12.1
Critical y* at 5% level 7.81 3.84 3.84 3.84 5.99 5.99 5.99 817.




