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Abstract 
 
In this paper we formulate a discrete choice model that incorporates thresholds in the 
perception of attribute changes. The model considers multiple options and allows 
changes in several attributes. We postulate that if thresholds exist they could be random, 
differ between individuals, and even be a function of socio-economic characteristics and 
choice conditions. Our formulation allows estimation of the parameters of the threshold 
probability distribution starting from information about choices. 
 
The model is applied to synthetic data and also to real data from a stated preference 
survey. We found that where perception thresholds exist in the population, the use of 
models without them leads to errors in estimation and prediction. Clearly, the effect is 
more relevant when the typical size of change in the attribute value is comparable with 
the threshold, and when the contribution of this attribute in the utility function is 
substantial. Finally, we discuss the implications of the threshold model for estimation of 
the benefits of transport investments, and show that where thresholds exist, models that 
do not represent them can overestimate benefits substantially. 
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Introduction 
 
Many factors affect the behaviour and decision processes of individuals; these factors 
are dynamic and change continuously. Moreover, the changes can occur at a 
macroscopic scale (e.g. social and political processes, environmental quality, 
urbanization processes), or microscopic scale (e.g. income changes, vehicle purchases). 
It is important for planners to establish the behaviour of individuals in respect of these 
changes and therefore the magnitude, direction and timing of their responses. However, 
individuals seldom acquire information on changes immediately, so this knowledge is 
imperfect and changes may often be ignored. In addition, in the face of new situations 
people might undergo a process of experimentation and learning, through trial and error 
(Kitamura, 1990). 
 
Small changes (absolute or relative) most likely do not prompt any action due to the 
existence of thresholds in perceptions or just noticeable differences (Coombs et al 
1970). In this sense, perceptible changes would be values above a certain threshold, and 
those below it would not cause a reaction in the individual (utilities do not change). So, 
if we define  Xt  as the value that attribute X takes at time t, the change in utility between 
t and t+1 will only be perceptible to the individual if |∆Xt+1|=|X t+1-Xt|>δ1, where δ is a 
non-negative threshold value. 
 
This phenomenon is complex because changes can accumulate and eventually exceed 
the threshold, but at the same time there is an adjustment in individual behaviour 
dependent on the speed of change, that in turn modifies the threshold. Thus, in the most 
general case the thresholds should be dynamic and depend on the experiences and 
restrictions of the individual. Therefore, it is possible to postulate that these thresholds 
are distributed randomly in the population according to the concept of psychological 
thresholds in the theory of consumer choice introduced by Georgescu-Roegem (1958). 
 
To delve into the complexity of the phenomena, according with Prospect Theory 
(Kahneman and Tversky, 1979) the response to changes could be asymmetric; thus, the 
magnitude of changes in behaviour may be different depending on their direction. In 
addition, other phenomena such as inertia, habit or reluctance to change may also be 
present; that is, individual behaviour can be characterized by habit formation making 
people reluctant to change and consequently the same past behaviour can still prevail 
because altering it implies time and costs (monetary and psychological). Moreover, 
change asymmetry can lead to the phenomenon of hysteresis (Goodwin, 1977; Blase, 
1979; Williams and Ortúzar, 1982). 
 
Researchers in mathematics, psychology and psychophysics have studied the magnitude 
of individual response in the presence of changes in the intensity of stimuli in the 

                                                
1 A more general approach is to express 1 1 1t t tX X X+ + +∆ = − % , where 1tX +%  is the expected (or 

reference) value of Xt+1. The latter can be defined as an exponentially smoothed function 

( )1 1t t tX X Xλ λ+ = + −% % , where λ should be between 0 and 1. We do not search exhaustively on this 

parameter so we just assume λ=0. A more suitable value could be obtained using a Bayesian approach or 
a Kalman Filter (Harrison and Stevens, 1976) 
 



physical world; the existence of thresholds is recognized in this context and they are 
defined as the minimum size of stimulus required to produce an effect. The relation 
between the physical stimulus and the response of the mind has been modelled, among 
others, by Dzhafarov and Colonius (2001). Biostatististicians have proposed models 
considering dose-response thresholds with random effects (Li and Hunt, 2003), and 
researchers in Marketing have examined consumer price sensitivity using models that 
incorporate probabilistic thresholds for price gains and losses with respect to the 
reference price (Han et al, 2001). Finally, Li and Hultkrantz (2000) proposed a model to 
estimate the value of time considering a stochastic perception threshold; however, the 
model was restricted to binary choice and assumed a uniformly distributed time 
threshold and no thresholds for the other attributes. 
 
To summarise, the discussion about thresholds in discrete choice modelling has focused 
on the duration of time saved in transport projects and on the sensibility to prices in 
marketing. We intent to extend the discussion to any attribute starting from the 
hypothesis that it is important to study this concept because if thresholds are not 
considered, especially when changes are small, it could lead to errors in prediction. 
Moreover, it is possible to overestimate benefits in transport projects (e.g. time savings) 
because the impact of each unit of travel time saved below some critical thresholds 
could amount to nothing that is appreciable for the individual (Welch and Williams, 
1997). 
  
In the present paper, we formulate a discrete choice model incorporating thresholds as 
minimum perceptible changes in attributes. As an important contribution we generalize 
the model to multiple options and allow changes in several attributes, providing a fairly 
general approach. We also postulate that if thresholds exist they could be random, differ 
between individuals and even be a function of socio-economic characteristics and 
choice conditions. The formulation allows us to estimate the parameters of the threshold 
probability distribution starting from information about choices. Here, we do not 
consider either the presence of habit or the asymmetry in thresholds although we 
recognize that they could be present. Extensions to a non-symmetric treatment are 
straightforward, but incorporating inertia or habit effects is complicated.  
 
The rest of the paper is organized as follow. In the next section we discuss the 
theoretical and mathematical formulation of the model including hypotheses, constraints 
and procedures for its estimation. Then, we present two empirical analyses: one using 
simulated data and another using data collected as part of a SP survey. In both cases we 
carry out a comparison of our method with the traditional compensatory model. After 
that, we consider the implications of the threshold model in the evaluation of transport 
investment benefits. Finally we present the practical conclusions and implications of our 
work, and discuss possible avenues for further research. 
 
 



A threshold model 
 
Consider the case of an individual q who at time t chooses option r and has a set of 

other available options Ar(q)2. Let us denote by ̂ kX  the difference between the values of 

attribute Xk for options j and r. In addition, let Yq
3 be a vector of socio-economic 

characteristics of the individual. Then, at time t we have: 
 

 t
krq

t
kjq

t
kjq XXX −=ˆ  (1) 

 

and assuming a linear in the parameters expression, the utility of option j relative to r 
can be written as: 
 

 ˆ ˆ ˆt t t t t t
jq jq jq jq q jqU V ε ε= + = + +αX βY  (2) 

 

where α and β are vectors of parameters4. Then, the probability that individual q 
chooses option r at time t is: 
 

 ( ){ }ˆ ˆt t t r
rq jq rqP P U U j A q= ≤ ∀ ∈ . (3) 

 

Suppose that at time t+1 there are changes in some attributes, for example from ˆ t
kjqX  to 

1ˆ t
kjqX + : 

 

 
1 1ˆ ˆ ˆt t t

kjq kjq kjqX X X+ += + ∆  (4) 
 

As an hypothesis we suggest that if the change is small the variation in the individual’s 
systematic utility will be null. Therefore, the individual will only perceive an alteration 

in his/her utility if 1ˆ t
kjq kqX δ+∆ ≥ , where kqδ  is a non-negative random perception 

threshold that is distributed in the population with density function ( )kφ δ . The 

individual only perceives that part of 1ˆ t
kjqX +∆  bigger than kqδ , so that the response is to a 

stimulus of size ( )1ˆMax , 0t
kjq kqX δ+∆ − 5. The value of the threshold kqδ  can be 

expressed as a proportion of ˆ t
kjqX  so that: 

 

 ( )ˆ t
kq kjq k kqXδ δ η= ⋅ + 6 (5) 

 

                                                
2 Ar(q) does not include option r; its size is ||Ar

(q)||=J. 
3 In our notation, bold-face letters represent vectors. 
4 As in this notation ̂ t

rqV = 0, the utility of r is given only by the error term ˆ t t
rq rqU ε= . 

5 An alternative approach is to consider responses to a stimulus of size 1ˆ t
kjqX +∆  whenever this exceeds 

kqδ . 
6 An alternative approach would be to express the threshold in absolute terms as ( )kq k kqδ δ η= + . 



where kδ  is an expected perceived value common to all individuals of similar 

characteristics and kqη  represents individual deviations following a certain probability 

function with mean zero and variance 2ησ . If the population is relatively homogenous 

the means of the distributions may be identical; nevertheless, it is possible to consider 
variations between individuals by expressing these means as functions of certain 
attributes of the individuals. For example, a linear in the parameters expression might be 
used: 
 

 kq qδ τ= + ρY   (6) 
 

where τ and ρρρρ are parameters. 
 
As an illustration, Figure 1 shows the variation in utility (∆Vj) when the attribute Xjk 

(with negative marginal utility) changes ceteris paribus. The threshold in this case is 5, 
so values of ∆Xjk between –5 and +5 do not induce changes in utility, whereas outside 
this interval the utility is affected. Note that here we suppose the threshold to be 
symmetric. 
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Figure 1. Influence of thresholds in the utility function 

 
After the changes at time t, if we consider thresholds for m of the K attributes the new 
conditional utility function for option j given the vector of thresholds δq would be: 
 

 ( )( )1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ
m K

t t t t t t t t t
jq q jq q jq kjq kjq kjq kq kjq kjq kjq kjq q jq

k k m

U V X X sign X f Xε α δ α ε−

= = +

 = + = + ∆ − ∆ + + + ∑ ∑δ δ βY
7 (7) 

 

where 
ˆ1  

0 otherwise.

t
kjq kq

kjq

if X
f

δ ∆ ≥=   

                                                
7 An alternative and more complicated formulation of the error term is t t t

jq jq j jqε ν ζ ξ= + + , where jqν  

is a random term representing an effect that is specific to the individual but invariant over time (that 

introduces serial correlation), tjζ  is a time-specific error affecting all individuals equally and t
jqξ  a 

purely random error term. 



 
Let the thresholds be distributed in the population according to a join density function 

( )Ω δ . We will assume that the thresholds are independent between attributes; so we 

express: 
 

( ) ( )
1

m

k
k

φ δ
=

Ω = ∏δ  (8) 

 

The conditional probability that the individual switches from r to j  given the vector of 
thresholds δ will be: 
 

 ( ){ }ˆ ˆ ˆ ˆ   t t t r t t
jq jq iq jq rqqP P U U i A U U= > ∀ ∈ ∧ >δ δ δ δ δ  (9) 

 

On the other hand, the probability that the individual does not switch and remains with 
option r given δ, is: 
 

 ( ){ }ˆ ˆ  t t t r
rq iq rq qP P U U i A= ≤ ∀ ∈δ δ δ  (10) 

 

To calculate the unconditional probability of switching and that of not switching it is 
necessary to integrate over the values of δ. As an illustration, suppose that random 
errors are distributed Gumbel IID, in which case we would have the following 
expression: 
 

 ( )

( )
( )

( )
exp

1 exp
r
q

t
jqt

jq

t
iq

i A

V
P d

V
∀ ∈

= Ω  +  ∫ ∑0

δ δ δδ∞∞∞∞  (11) 

 

In the same vein, the probability that the individual remains using r is given by: 
 

 

( )
( )

( )1

1 exp
r
q

t
rq

t
iq

i A

P d

V
∀ ∈

= Ω  +  ∫ ∑0

δ δδ∞∞∞∞  (12) 

 

Equations (11) and (12) are difficult to solve analytically because they involve 
multidimensional integrals. Here instead, we employ a probability simulator within a 
maximum likelihood framework, which leads to Maximum Simulated Likelihood 
(MSL) estimates.  
 
The log-likelihood function is: 
 

 ( ) ( )
( ) ( )

( )
1

, ln , 1 ln ,
r r
q q

Q
t t t

jq jq jq rq
q j A j A

L g P g P
= ∈ ∈

    = + −    ∑ ∑ ∑α β, α β, α β,δδδδ δδδδ δδδδ  (13) 

 

where gjq is 1 if the individual switches to j and 0 otherwise. The response probability 
for option j is replaced with the unbiased, smooth, tractable simulator (Train, 2003): 
 



 ( )
1

1ˆ , ,
N

t
jq

n

P i
N =

Λ∑ nα β, = α β,δδδδδ  (14) 

 

where nδ  denotes the nth draw from the distribution of δδδδ, and Λ is the probability 

equation for the logit kernel model specified by equations (11) and (12). In order to 
generate the set of discrete points we can use pseudo-random sequences (see the 
discussion in Silva and Garrido, 2003). 
 
Incorporating the simulated probability, the simulated log-likelihood function is then: 
 

 ( ) ( )
( ) ( )

( )
1

ˆ ˆ ˆ, ln , 1 ln ,
r r
q q

Q
t t t

jq jq jq rq
q J A J A

L g P g P
= ∈ ∈

    = + −    ∑ ∑ ∑α β, α β, α β,δδδδ δδδδ δδδδ  (15)  

 

It is worth emphasizing that the traditional discrete choice model without thresholds (i.e. 
in this case a Multinomial Logit, MNL model) is a particular case of the model 
presented here, where the means and their variances are zero (this implies the absence 
of any thresholds). 

Empirical Analysis 
 

We applied the present threshold model (7) to two data sets; the first is synthetic and the 
second came from a SP survey. Because the emphasis here is on thresholds rather than 
on the error term of the utility functions, in all cases we suppose that errors are 
distributed IID Gumbel. 

Application to synthetic data 
To examine the performance of the proposed model for a population where thresholds 
do exist, we followed the Williams and Ortúzar (1982) method of generating a 
simulated data bank. This consists of three hypothetical options: Taxi, Bus and Metro 
and includes three attributes: Cost C, Travel Time  Tt and Access Time Ta. We used left-
truncated Normal distributed attributes and a Normal distributions for relative changes 
as shown in Table 1.  
 
Table 1. Parameters used for attribute generation 

Initial Situation Relative Changes  Attribute 
Taxi Bus Metro Case A Case B Case C 

Mean 45 20 15 0.10 0.25 0.50 Cost (C) 
 Standard deviation 10 3 1 0.03 0.05 0.07 

Mean 18 30 10 -0.10 -0.25 -0.50 Travel Time (Tt)  
Standard deviation 5 10 3 0.03 0.05 0.07 
Mean 8 10 15 -0.10 -0.25 -0.50 Access Time (Ta) 
Standard deviation 4 5 5 0.03 0.05 0.07 

 

Thresholds were also generated for each attribute following symmetric triangular 
distributions, the parameters of which are shown in Table 2. We studied three cases: 
small, medium and large changes (A, B and C respectively, see Table 2). In the main 
body of the text we only show case B; cases A an C can be found in the Appendix. We 
generated 10,000 independent observations according to the following procedure: 
 



1. Initially individuals choose between options according to a compensatory utility 
maximizing process (i.e. a MNL with scale parameter equal to one). The 
parameters of the utility function used in the simulation are presented in Table 2. 

2. Attributes change and individuals compare these changes with their respective 
thresholds; if the changes do not exceed the thresholds, the utility function does 
not change. We assume the triangular threshold distributions start at zero, so 
they are specified by a single parameter (i.e. mean or mode) 

3. After the changes in attributes and the consequent variations in the utility 
function, the individual chooses again between the options according to the 
original compensatory utility maximizing process. 

 
Table 2 shows the number of individuals for whom the change in one or other of the 
options exceeds the respective threshold for each simulated case. To present results in 
the table, we used the following convention: if an individual chooses Taxi, then option 1 
will be Bus and option 2 Metro; is s/he chooses Bus, option 1 will be Taxi and option 2 
Metro; finally, if s/he chooses Metro, option 1 will be Taxi and option 2 Bus. Obviously 
this distribution depends on both the thresholds in Table 2 and the changes in Table 1. It 
is possible to see that the effect of thresholds is strongest for the attribute Access Time 
and weakest for Cost. This is because Cost has the smallest marginal utility, and Access 
Time the largest one8.  
 
Table 2. Parameters used for threshold generation 

Individuals whose threshold is exceeded by an attribute change  
(Total sample= 10,000) 

Case A Case B Case C 
 

Parameter 
Threshold 

mean 
Value in 

utility function 
Option 1 Option 2 Option 1 Option 2 Option 1 Option 2 

Cost 0.08 -0.070 7991 2428 9680 5391 9942 7972 
Travel 
time 

0.12 -0.150 3896 5446 6852 8124 8447 9158 

Access 
time 

0.16 -0.200 1448 2039 3166 3467 5965 5956 

 
We analysed eight scenarios for each case considering combinations of the presence or 
absence of thresholds. For instance (see Table 3), the first consists of a population 
without thresholds in any attribute; by contrast, the last scenario considers a population 
with thresholds for all attributes. For each scenario, we estimated first a classical MNL 
model consistent with compensatory behaviour and no thresholds; the second is the 
proposed model including thresholds for all of the attributes. In parentheses two t-tests 
appear: the first corresponds to the traditional null hypothesis θk = 0, and the second 
refers to the null hypothesis θk = θv, where θv are the true parameter values, which are 
referred to as targets in the table and are the parameter values in the utility function of 
Table 2. 
 
Scenario 1 shows that when thresholds do not exist the proposed model converges 
correctly to the standard MNL, with estimates of threshold parameters close to zero. In 
general, parameter recovery is successful and the proposed model has always a better fit 
than the mis-specified MNL model. In fact, in all cases a likelihood ratio (LR)9 test 

                                                
8 The latter is a consequence of having based the simulated data on real data and models estimated 
previously. 
9 LR=-2{ l(θr)- l(θ)}, where l(θr) is the log-likelihood at convergence for a restricted version of a more 
general model with log-likelihood l(θ). LR is distributed asymptotically χ2 with r degrees of freedom; r is 



shows that the proposed model is preferable at the 5% level to the MNL. In addition, 
almost always the null hypothesis θk = θv is accepted at the same level, and only in few 
cases the t-tests show that the estimated thresholds parameters are different from their 
respective targets. Furthermore, the parameters in the utility function are recovered 
accurately in all cases. 
 
It is worth noting that the MNL does not generally give adverse diagnostics in this case 
(i.e. in 3 of 7 scenarios the parameters in the utility function are well recovered). 
Simulations show that when changes in the attributes increase the difference in fit 
between the proposed model and the MNL increases too, but the accuracy in parameter 
recovery decreases. On the other hand, as the incidence of the Access Time threshold is 
stronger than the others, its estimation tends to be more successful.  
 
In order to investigate the consequences of adopting models with and without thresholds 
when they do exist, we tested the performance of the MNL and of the proposed model 
estimated for scenario 8 in case B (Table 3), in terms of their predictive capabilities. 
Consequently, we used plans representing “policy changes” which ranged from slightly 
to substantially different from the base data used for estimation. This entailed changing 
attribute values for the options and re-executing the choice simulation procedure. We 
generated a series of simulated future scenarios, which could be compared with the 
model predictions.  
 
Following the approach of Munizaga et al (2000) we tested six policies P1 to P6; the 
specific changes in attributes associated to each one are shown in Table 4. Policies P1 to 
P3 correspond to small changes; in contrast, P4 to P6 represent aggressive policy 
changes. The error measure considered was the percentage difference between the 
behaviour that was simulated for the modified attribute values and that estimated with 
the model under scrutiny. The minimum response error that may be considered a 
prediction error is given by the standard deviation of the simulated observations 
generated with different seeds, as it reflects the inherent variability of the simulation 
process. 
 
We carried out 15 repetitions of the data generation process for each policy using 
different seeds for the pseudo-random numbers and found that the largest value of the 
coefficient of variation was 8.3%. Given these results, we decided to take 10% as a 
reasonable tolerance error. Therefore, any discrepancy exceeding this value was 
considered an estimation error. 
 

                                                                                                                                          
the number of linear restrictions needed to pass from the non restricted threshold model to the MNL 
(Ortúzar and Willumsen, 2001, p263) 



 
Table 3. Models with simulated database, Case B, medium size changes; n = 10,000 

Scenario 
Threshold 

1 2 3 4 5 6 7 8 

Cost  √   √ √  √ 

Travel Time   √  √  √ √ 

Access Time    √  √ √ √ 
Individuals changing their 
choice when threshold present 

0 142 251 316 179 247 544 427 

Model Target MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed 

Cost 
-0.070 -0.071 

(-48.8) 
[-0.6] 

-0.071 
(-44.3) 
[-0.8] 

-0.069 
(-48.0) 
[0.6] 

-0.071 
(-48.0) 
[-0.3] 

-0.072 
(-47.8) 
[-1.4] 

-0.070 
(-46.5) 
[-0.3] 

-0.073 
(-47.1) 
[-1.6] 

-0.071 
(-46.8) 
[-0.6] 

-0.071 
(-47.7) 
[-0.6] 

-0.070 
(-46.3) 
[-0.1] 

-0.072 
(-47.1) 
[-1.1] 

-0.071 
(-46.5) 
[-0.5] 

-0.074 
(-46.8) 
[-2.3] 

-0.071 
(-45.2) 
[-0.3] 

-0.073 
(-46.9) 
[-2.2] 

-0.071 
(-44.9) 
[-0.6] 

Travel Time 
-0.150 -0.147 

(-53.0) 
[1.3] 

-0.147 
(-51.2) 
[1.1] 

-0.145 
(-53.1) 
[2.0] 

-0.147 
(-53.6) 
[1.2] 

-0.151 
(-53.1) 
[-0.4] 

-0.148 
(-51.2) 
[0.8] 

-0.149 
(-52.5) 
[0.3] 

-0.146 
(-52.1) 
[1.4] 

-0.150 
(-53.1) 
[-0.1] 

-0.149 
(-52.0) 
[0.3] 

-0.147 
(-52.4) 
[1.1] 

-0.145 
(-52.2) 
[1.7] 

-0.152 
(-53.3) 
[-0.6] 

-0.147 
(-51.2) 
[1.2] 

-0.150 
(-52.3) 
[-0.1] 

-0.147 
(-49.1) 
[1.1] 

Access Time 
-0.200 -0.198 

(-39.1) 
[0.4] 

-0.201 
(-39.0) 
[-0.2] 

-0.198 
(-39.5) 
[0.5] 

-0.199 
(-39.7) 
[0.1] 

-0.197 
(-38.3) 
[0.6] 

-0.197 
(-38.1) 
[0.7] 

-0.181 
(-35.5) 
[3.8] 

-0.196 
(-35.4) 
[0.7] 

-0.196 
(-38.4) 
[0.8] 

-0.197 
(-38.4) 
[0.6] 

-0.179 
(-35.4) 
[4.2] 

-0.193 
(-30.3) 
[1.1] 

-0.177 
(-34.4) 
[4.6] 

-0.193 
(-34.2) 
[1.3] 

-0.178 
(-34.7) 
[4.4] 

-0.193 
(-34.0) 
[1.2] 

Mean Threshold Cost 
0.080 

- 
0.002 
(0.2) 
[0.2] 

- 
0.084 
(9.0) 
[0.5] 

- - - - - 
0.071 
(4.4) 
[-0.5] 

- 
0.052 
(4.5) 
[-2.4] 

- - - 
0.059 
(4.1) 
[-1.4] 

Mean Threshold Travel 
Time 

0.120 
- 

0.000 
(0.0) 
[0.0] 

- - - 
0.105 
(7.0) 
[-1.0] 

- - - 
0.094 
(6.6) 
[-1.8] 

- - - 
0.101 
(9.8) 
[-1.9] 

- 
0.090 
(4.1) 
[-1.4] 

Mean Threshold Access 
Time 

0.160 
- 

0.008 
(1.2) 
[1.2] 

- - - - - 
0.149 
(13.7) 
[-1.0] 

- - - 
0.128 
(3.0) 
[-0.8] 

- 
0.162 
(10.6) 
[0.1] 

- 
0.150 
(10.6) 
[-0.7] 

Log-likelihood  -5751.8 -5751.7 -5859.5 -5851.8 -5595.3 -5577.9 -5512.8 -5489.9 -5654.4 -5646.7 -5581.4 -5570.8 -5380.9 -5314.1 -5427.2 -5391.3 

LR  0.2 15.3 34.9 45.8 15.5 21.3 133.6 71.7 

Critical χ2 at 5% level  7.81 3.84 3.84 3.84 5.99 5.99 5.99 7.81 

 



Table 4. Policy changes: percentage change in attribute values 

Policy 
Cost 
Bus 

Cost 
Metro 

Travel Time 
Bus 

Travel Time 
Metro 

Access Time 
Taxi 

Access Time 
Bus 

Access Time 
Metro 

P1   -20     

P2  -10      

P3     -15   

P4   -50     

P5  100      

P6 -50 50 -50 50  -50 50 

 
To test goodness of fit we used the following Chi-squared measure: 
 

( )2

2
ˆ

i i

i i

N N

N
χ

−
=∑ ,              (16) 

 

where ˆ
iN  is the model estimate of the number of individuals choosing option i, and Ni is 

the actual (simulated) number. This result should be compared with the critical 2χ  value at 
the 5% level with two degrees of freedom, which is 5.99. 
 
Table 5 shows that the proposed model always provides superior results to the mis-
specified MNL, with response errors well within the tolerance of 10%. By contrast, the 
MNL yields response errors larger than this value in several cases (P1, P4 and P6). 
Furthermore, the 2χ  index shows that the errors for the proposed model are not statistically 
significant at the tested level but the model errors for the MNL are significant in the above 
cases. These results allow us to infer that if there are thresholds for perceptible minimum 
changes in attributes, use of a mis-specified no-threshold model can lead to prediction 
errors. 
 
Table 5. Comparison of simulated and modelled forecasts 

Target MNL Proposed Model 
Policy 

Taxi Bus Metro Taxi Bus Metro χ2 Taxi Bus Metro χ2 

P1 108 147 745 87 164 749 6.1 100 155 745 1.0 
        -19.4% 11.6% 0.5%   -7.4% 5.4% 0.0%   
P2 110 110 780 102 109 789 0.7 108 112 780 0.1 
        -7.3% -0.9% 1.2%   -1.8% 1.8% 0.0%   
P3 112 108 780 109 101 790 0.7 108 109 783 0.2 
        -2.7% -6.5% 1.3%   -3.6% 0.9% 0.4%   
P4 84 308 608 68 330 602 4.7 79 312 609 0.4 
        -19.0% 7.1% -1.0%   -6.0% 1.3% 0.2%   
P5 195 170 635 184 180 636 1.2 189 179 632 0.7 
        -5.6% 5.9% 0.2%   -3.1% 5.3% -0.5%   
P6 63 832 105 52 874 74 13.2 60 839 101 0.4 
        -17.5% 5.0% -29.5%   -4.8% 0.8% -3.8%   

 



To evaluate the effect of sample size on model estimation we generated simulated data with 
only 1,000 draws. Similar to before, case B is presented in Table 6 whilst the others can be 
found in the Appendix. In these cases, the recovery of the true parameters is similar to the 
previous experiment but the improvements in log-likelihood are less pronounced, being 
significantly different from zero in 4 out of the 7 cases simulated with thresholds. In fact, 
excluding scenarios 4, 7 and 8, the 2χ  tests show that the proposed model and the MNL are 
equivalent at the 5% level. This confirms the requirement for adequate sample size in 
estimation, especially when dealing with complex models including many attributes 
(Williams and Ortúzar, 1982; Munizaga et al, 2000). 
 
The results of the simulation allow us to conclude that the threshold parameters are 
reasonably well recovered if the sample size is large enough, especially when the effect of 
the attribute is strong (high marginal utility and/or high threshold mean). In these cases the 
model without thresholds may lead to errors in estimation and in prediction. Conversely, 
when the effect of the attribute is weak (low marginal utility and/or threshold mean close to 
zero), or if the sample size is not large enough, the threshold parameters are not so well 
recovered and, also, in these cases the errors using the traditional MNL are small. 

Application to a stated preference survey 
The data for this part of the analysis consists of a route choice SP survey for car-trips 
(Caussade et al, 2004). We selected part of the survey with choices based on three 
attributes: Travel time (min), Trip time variability (min), and Total cost (US$). In the 
implementation of the experiment, respondents were first asked to consider a trip they had 
taken recently and to report its attributes (this was called Current Route). Then a computer 
program automatically generated the hypothetical choice scenarios according to a fractional 
factorial design. Each specific design pivoted on the attribute levels associated with the 
Current Route. As a generic design, the added options (two in the case of this data) were of 
exactly the same nature.  
 
The total number of valid observations for our analysis was 718. Of these, 247 (34.4%) 
chose the current route. On the other hand, there were 108 (16%) respondents who 
answered lexicographically; of these, 96 were lexicographic in the Travel time variable and 
12 in the Total cost variable. No observation was found to be lexicographic on Trip time 
variability.  
 
Model TM1 in Table 7 includes a threshold for Travel Time, model TM2 incorporates a 
threshold for Variability and model TM3 a threshold for Cost. In all cases we assumed 
symmetric Triangular distributions for the thresholds. As seen, models TM2 and TM3 are 
equivalent to the MNL, with estimated threshold means close to 0 (< 10-4) and unchanged 
log-likelihood; this means that there is no evidence of thresholds for the attributes 
Variability and Cost. In marked contrast, model TM1 is significantly better than the 
reference MNL model (LR= 33.8 is substantially higher than 3.84, the critical value at the 
5% level); consequently, we can conclude that a threshold for Travel Time exists with a 
mean close to 12% of its initial value. Note that its presence results in a substantially 
increased magnitude for the coefficient of travel time (i.e. from -0.0353 to -0.1299); it also 
results in an increase in the magnitude of the cost coefficient (i.e. from -0.2100 to -0.420). 



 
Table 6. Models with simulated database, Case B, medium size changes; n = 1,000 

Scenario 
Threshold 

1 2 3 4 5 6 7 8 

Cost  √   √ √  √ 

Travel Time   √  √  √ √ 

Access Time    √  √ √ √ 
Individuals changing their 
choice when threshold present 

0 18 26 34 21 32 51 46 

Model Target MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed 

Cost -0.070 
-0.073 
(-15.6) 
[-0.7] 

-0.073 
(-14.7) 
[-0.7] 

-0.072 
(-15.7) 
[-0.3] 

-0.072 
(-15.6) 
[-0.4] 

-0.072 
(-15.3) 
[-0.5] 

-0.071 
(-15.0) 
[-0.2] 

-0.073 
(-15.0) 
[-0.7] 

-0.072 
(-15.0) 
[-0.5] 

-0.069 
(-15.2) 
[0.2] 

-0.068 
(-14.9) 
[0.4] 

-0.071 
(-15.0) 
[-0.1] 

-0.071 
(-14.7) 
[-0.2] 

-0.072 
(-14.9) 
[-0.4] 

-0.070 
(-14.4) 
[0.1] 

-0.073 
(-15.0) 
[-0.6] 

-0.071 
(-14.3) 
[-0.1] 

Travel Time -0.150 
-0.142 
(-15.5) 
[0.9] 

-0.142 
(-15.8) 
[0.9] 

-0.140 
(-16.5) 
[ 1.2] 

-0.140 
(-16.1) 
[ 1.2] 

-0.147 
(-16.6) 
[0.3] 

-0.145 
(-16.5) 
[0.5] 

-0.149 
(-16.4) 
[0.1] 

-0.147 
(-16.3) 
[0.4] 

-0.146 
(-16.7) 
[0.5] 

-0.144 
(-15.9) 
[0.7] 

-0.146 
(-16.5) 
[0.4] 

-0.147 
(-15.0) 
[0.3] 

-0.154 
(-16.5) 
[-0.4] 

-0.150 
(-16.2) 
[0.0] 

-0.150 
(-16.4) 
[0.0] 

-0.146 
(-15.2) 
[0.4] 

Access Time -0.200 
-0.201 
(-12.5) 
[-0.1] 

-0.201 
(-12.4) 
[-0.1] 

-0.205 
(-12.8) 
[-0.3 ] 

-0.205 
(-12.8) 
[-0.3 ] 

-0.194 
(-11.9) 
[0.4] 

-0.195 
(-11.9) 
[0.3] 

-0.177 
(-10.8) 
[1.4] 

-0.198 
(-10.9) 
[-0.1] 

-0.189 
(-11.8) 
[0.7] 

-0.189 
(-11.8) 
[0.7] 

-0.172 
(-10.7) 
[1.8] 

-0.191 
(-10.5) 
[0.5] 

-0.177 
(-10.7) 
[1.4] 

-0.199 
(-10.8) 
[0.1] 

-0.177 
(-10.8) 
[1.4] 

-0.196 
(-10.3) 
[0.2] 

Mean Threshold Cost 0.08 - 
0.000 
(0.0) 
[0.0] 

- 
0.012 
(0.2) 
[-1.2] 

- - - - - 
0.000 
(0.0) 
[-1.2] 

- 
0.025 
(0.2) 
[-0.5] 

- - - 
0,010 
(0.1) 
[-0.7] 

Mean Threshold Travel 
Time 

0.12 - 
0.000 
(0.0) 
[0.0] 

- - - 
0.097 
(5.1) 
[-1.2] 

- - - 
0.073 
(3.2) 
[-2.1] 

- - - 
0.081 
(2.1) 
[-1.0] 

- 
0,077 
(0.6) 
[-0.3] 

Mean Threshold Access 
Time 

0.16 - 
0.000 
(0.0) 
[0.0] 

- - - - - 
0.201 
(5.6) 
[1.1] 

- - - 
0.108 
(4.0) 
[-1.9] 

- 
0.250 
(3.3) 
[1.2] 

- 
0,177 
(1.6) 
[0.2] 

Log-likelihood  -568.3 -568.3 -582.5 -582.4 -555.0 -552.7 -534.4 -530.2 -567.5 -566.2 -548.5 -546,1 -529.4 -520.5 -535.1 -528,3 

LR  0.0 0.2 4.7 8.3 2.5 4.8 17.8 13.6 

Critical χ2 at 5% level  7.81 3.84 3.84 3.84 5.99 5.99 5.99 7.81 

 
 
 
 



 
Table 7. Models for the SP survey 

Parameter MNL TM1 TM2 TM3 

Travel Time 
-0.0353 
(-14.8) 

-0.1299 
(-7.3) 

-0.0357 
(-14.8) 

-0.0355 
(-14.8) 

Variability 
-0.0146 
(-3.4) 

-0.0156 
(-3.0) 

-0.0149 
(-3.1) 

-0.0147 
(-3.5) 

Cost 
-0.2100 
(-8.7) 

-0.420 
(-8. 6) 

-0.2100 
(-8.7) 

-0.2100 
(-8.1) 

Threshold Travel Time mean  
0.1247 
(17.0) 

  

Threshold Variability mean   
0.0000 
(0.00) 

 

Threshold Cost mean    
0.000 
(0.00) 

Number of Observations 782 782 782 782 
Log-likelihood -623.2 606.3 623.2 623.2 
LR  33.8 0.0 0.0 

 

Implications for the Evaluation of Transport Investments 
 

Apart from forecasting the impacts of transport policy on demand, random utility models 
are widely used to estimate Willingness-To-Pay (WTP) for improvements in attributes. For 
example, the subjective value of time (SVT) is defined as the marginal rate of substitution 
between time and money at constant utility (Gaudry et al, 1989). If the utility function is 
linear in the parameters and there are no thresholds, the SVT is computed as the ratio of the 
time and cost parameters (SVT=αt /αc). 
 
However, in the presence of thresholds as defined in this paper the estimation of benefits is 
more complicated. For example, if the travel time saved is too small the individual could 
not perceive it and therefore the benefit of each unit of travel time saved would be reduced 
(possibly to zero). From the utility function (7) we can derive the expected value 
(compensated variation) per unit of time; therefore, the conditional SVT in the proposed 
threshold model is given by: 
 

( ) ( )
1 t ct t

c c

sign t sign cfc
SVT E

t f t c

δ δα
α

 ∆ ∆ ∆ = − = − −   ∆ ∆ ∆     δδδδ δδδδ     (17) 

 

and the unconditional SVT would be: 
 

( ) ( ) ( ) ( )1 t ct t
t c t c

c c

sign t sign cfc
SVT E d d

t f t c

δ δα φ δ φ δ δ δ
α

 ∆ ∆ ∆ = − = − −   ∆ ∆ ∆     ∫∫    (18) 

 

Expressions (17) and (18) cannot be used if fc = 0; they only are valid when ∆c ≥ δc. In 
order to compute (18), it is necessary to solve the integral; for this, Monte Carlo simulation 
can be used. Note that the SVT depends on the values of ∆c and ∆t. If there is no evidence 



of a threshold for cost, the computation is easier because we have a one-dimensional 
integral. 
 
On the other hand, if errors are IID Gumbel and the indirect utility function U has a 
common linear income effect we can calculate the conditional WTP as follows (McFadden, 
1998): 
 

( )( ) ( )
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11
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r r
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where the indirect utility functions are defined in (2) and (7). Because the vector of 
thresholds δ is in fact not known, the unconditional WTP is: 
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Thus, we can estimate (20) by Monte Carlo simulation as follows: 
 

[ ]
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where δδδδn denotes the nth draw from the distribution of δδδδ. 
 
To investigate the effect of using the threshold model in the evaluation of benefits due to 
improvements in a transport system, we applied it to a test example using the SP database 
and compared the results with those of the traditional non threshold model (MNL). We 
considered three hypothetical scenarios corresponding to savings of 10, 20 and 30 minutes 
in travel time for each of the 782 individuals of the sample. It is necessary to point out that 
the range of travel times in the sample is 55 to 600 minutes, with mean and standard 
deviation close to 230 and 160 minutes respectively. By comparison, the expected value of 
the threshold for travel time is close to 30 minutes. 
 
For the MNL model, the SVT is a constant given by the ratio between the parameters of 
travel time and cost: 0.1681 US$/min. In the case of the threshold model TM1, however, 
the SVT is not constant across individuals, but depends on how large the saving in travel 
time is in comparison with the current travel time value (see Table 8). 
 

Table 8. Benefit estimation by MNL and proposed threshold models 
 Travel time reduction  (minutes) 

Estimated Benefit  (US$) 10 20 30 
Threshold Model 186 1169 2796 
MNL Model 1315 2629 3944 
Difference  (%) 607.0 124.8 41.0 
Average SVT  (US$/min)    
Threshold Model 0.0238 0.0748 0.1192 
MNL Model 0.1681 0.1681 0.1681 



 

As can be seen, the MNL overestimates the benefits although the proportionate difference 
between the approaches decreases as the saving in travel time increases. As can be seen, 
when the saving in travel time is 10 minutes, the benefits estimated with the MNL are more 
than six times those estimated with the threshold model, but when the saving in travel time 
is 30 minutes, the difference decreases to 41%. 
 
Figure 2 shows the variation in SVT depending on the current travel time and the travel 
time saved. As we noted, the estimation with the MNL is invariant with respect to these 
variables but the threshold model is sensitive to them, especially when they are small. The 
upper limit for SVT in the threshold model is given by the ratio between the parameters of 
travel time and cost (i.e. US$ 0.3093/min), close to twice the value estimated by the MNL 
model. 
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Fig 2. Variation of SVT in the Threshold Model 

 

Conclusions 
 
We propose a discrete choice model that incorporates random thresholds as minimum 
perceptible changes in attributes, multiple options and changes in several attributes. Our 
formulation allows for estimation of the parameters of the threshold probability distribution 
starting from information about choices. The model is of sufficient complexity that its 
calibration requires use of techniques such as simulated maximum likelihood. 
 
The model was applied to synthetic data and then to real data collected as part of a SP 
survey. We found that where perception thresholds exist in the population, the use of 
models without them leads to errors in estimation and in prediction, although this occurs 
with more emphases when the contribution of a given attribute in the utility function is 
strong. On the other hand, threshold effects for several attributes can be confounded; for 
this reason, it could be convenient to test for thresholds individually. 
 



Investigation of data from a stated preference experiment shows that there is evidence for 
the existence of thresholds in the travel time variable, with an estimated mean size of about 
12% of the initial value (note that we considered symmetric thresholds). On the other hand, 
estimates of thresholds for the variability of travel time and for cost were both close to zero.  
 
The estimation of benefit measures using the threshold model depends on the size of the 
change in a variable (in the present example, travel time) by comparison with its current 
value. Moreover, the use of a model without thresholds such as the MNL could 
substantially overestimate benefits in cases where thresholds exist in the variable that is 
being changed, although the difference decreases as the magnitude of the change increase. 
 
There are several aspects of interest that remain for future research. One is to evaluate the 
impact of sample size on the estimation of models including thresholds; a first analysis 
suggests that the influence of the sample size is strong, especially in terms of improvements 
in log-likelihood. Another aspect relates to a more in-depth analysis on the application of 
the threshold model in the evaluation of transport investment benefits to real projects. 
Finally, the presence of asymmetries in the thresholds is also worthy of investigation. 
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APPENDIX 

 
Table A1. Models with simulated database, Case A , small changes; n = 10,000 

Scenario 
Threshold 

1 2 3 4 5 6 7 8 

Cost  √   √ √  √ 

Travel Time   √  √  √ √ 

Access Time    √  √ √ √ 
Individuals changing their 
choice when threshold present 

0 105 172 196 136 152 365 292 

Model Target MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed 

Cost -0.070 
-0.070 
(-45.3) 
[0.3] 

0.069 
(-45.0) 
[0.3] 

-0.068 
(-45.1) 
[1.1] 

-0.070 
(-44.4) 
[-0.3] 

-0.072 
(-45.3) 
[-1.1] 

-0.070 
(-44.2) 
[0.1] 

-0.071 
(-45.2) 
[-0.9] 

-0.070 
(-45.0) 
[-0.1] 

-0.070 
(-45.2) 
[-0.2] 

-0.070 
(-43.4) 
[0.3] 

-0.070 
(-45.0) 
[-0.1] 

-0.070 
(-43.3) 
[0.2] 

-0.074 
(-45.2) 
[-2.3] 

-0.071 
(-44.0) 
[-0.4] 

-0.073 
(-45.1) 
[-1.6] 

-0.070 
(-34.5) 
[0.1] 

Travel Time -0.150 
-0.146 
(-53.2) 
[1.4] 

-0.146 
(-53.1) 
[1.4] 

-0.145 
(-53.3) 
[1.9] 

-0.147 
(-53.6) 
[1.2] 

-0.151 
(-53.1) 
[-0.4] 

-0.146 
(-50.50) 

[1.4] 

-0.149 
(-52.9) 
[0.2] 

-0.146 
(-52.5) 
[0.8] 

-0.150 
(-53.2) 
[0.0] 

-0.147 
(-52.7) 
[1.0] 

-0.147 
(-53.0) 
[0.9] 

-0.146 
(-52.9) 
[1.6] 

-0.155 
(-52.8) 
[-1.7] 

-0.148 
(-51.7) 
[0.9] 

-0.153 
(-52.8) 
[-1.0] 

-0.147 
(-36.8) 
[0.8] 

Access Time -0.200 
-0.195 
(-35.5) 
[1.0] 

-0.195 
(-35.5) 
[1.0] 

-0.193 
(-35.5) 
[1.4] 

-0.195 
(-35.8) 
[0.8] 

-0.198 
(-35.3) 
[0.4] 

-0.195 
(-35.0) 
[1.0] 

-0.190 
(-34.3) 
[1.80] 

-0.194 
(-34.4) 
[1.1] 

-0.196 
(-35.4) 
[0.7] 

-0.196 
(-35.2) 
[0.8] 

-0.188 
(-34.3) 
[2.1] 

-0.194 
(-34.4) 
[1.1] 

-0.195 
(-34.3) 
[0.9] 

-0.196 
(-34.1) 
[0.7] 

-0.193 
(-34.3) 
[1.3] 

-0.194 
(-25.0) 
[0.8] 

Mean Threshold Cost 0.080 - 
0.000 
(0.0) 
[0.0] 

- 
0.102 
(7.2) 
[1.5] 

- - - - - 
0.060 
(4.0) 
[-1.3] 

- 
0.050 
(2.7) 
[-1.4] 

- - - 
0.020 
(0.2) 
[-0.9] 

Mean Threshold Travel 
Time 

0.120 - 
0.000 
(-0.8) 
[-0.8] 

- - - 
0.142 
(4.7) 
[0.7] 

- - - 
0.114 
(9.2) 
[-0.5] 

- - - 
0.120 
(8.3) 
[0.0] 

- 
0.097 
(4.0) 
[0.9] 

Mean Threshold Access 
Time 

0.160 - 
0.000 
(0.0) 
[0.0] 

- - - - - 
0.171 
(3.0) 
[0.2] 

- - - 
0.175 
(7.5) 
[0.6] 

- 
0.176 
(5.4) 
[0.5] 

- 
0.143 
(8.7) 
[-1.0] 

Log-likelihood  -5458.4 -5458.4 -5532.7 -5529.6 -5287.3 -5276.3 -5292.0 -5278.8 -5358.9 -5350.8 -5367.5 -5359.3 -5104.1 -5066.0 -5180.0 -5155.9 

LR  0.0 6.3 22.0 26.2 16.0 16.3 76.1 48.2 

Critical χ2 at 5% level  7.81 3.84 3.84 3.84 5.99 5.99 5.99 7.81 

 
 
 



Table A2.  Models with simulated database, Case C, strong changes; n = 10,000 
Scenario 

Threshold 
1 2 3 4 5 6 7 8 

Cost  √   √ √  √ 

Travel Time   √  √  √ √ 

Access Time    √  √ √ √ 
Individuals changing their 
choice when threshold present 

0 169 308 461 200 393 779 629 

Model Target MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed 

Cost -0.070 
-0.070 
(-52.5) 
[-0.1] 

-0.070 
(-50.4) 
[-0.2] 

-0.069 
(-52.6) 
[0.5] 

-0.071 
(-51.5) 
[-0.5] 

-0.073 
(-52.2) 
[-1.8] 

-0.071 
(-50.7) 
[-0.8] 

-0.072 
(-51.1) 
[-1.4] 

-0.070 
(-50.1) 
[0.1] 

-0.071 
(-52.4) 
[-1.0] 

-0.071 
(-51.3) 
[-0.5] 

-0.072 
(-51.3) 
[-1.1] 

-0.071 
(-49.3) 
[-0.5] 

-0.074 
(-50.6) 
[-2.8] 

-0.071 
(-48.5) 
[-0.5] 

-0.074 
(-50.8) 
[-2.5] 

-0.071 
(-48.9) 
[-0.7] 

Travel Time -0.150 
-0.146 
(-49.3) 
[1.5] 

-0.146 
(-46.1) 
[1.2] 

-0.143 
(-49.1) 
[2.4] 

-0.146 
(-49.3) 
[1.5] 

-0.147 
(-49.1) 
[1.1] 

-0.145 
(-48.6) 
[1.6] 

-0.148 
(-48.9) 
[0.6] 

-0.143 
(-48.4) 
[2.3] 

-0.145 
(-49.1) 
[1.6] 

-0.145 
(-49.1) 
[1.8] 

-0.147 
(-48.9) 
[1.0] 

-0.144 
(-48.4) 
[2.1] 

-0.151 
(-48.8) 
[-0.3] 

-0.146 
(-48.5) 
[1.4] 

-0.150 
(-48.8) 
[0.0] 

-0.146 
(-48.5) 
[1.5] 

Access Time -0.200 
-0.198 
(-45.8) 
[0.5] 

-0.198 
(-44.2) 
[0.5] 

-0.199 
(-46.3) 
[0.2] 

-0.198 
(-46.0) 
[0.5] 

-0.193 
(-44.5) 
[1.7] 

-0.196 
(-44.4) 
[0.9] 

-0.174 
(-40.9) 
[6.2] 

-0.195 
(-34.6) 
[0.8] 

-0.195 
(-45.1) 
[1.3] 

-0.197 
(-45.1) 
[0.8] 

-0.175 
(-41.3) 
[5.9] 

-0.198 
(-37.0) 
[0.4] 

-0.168 
(-39.3) 
[7.6] 

-0.200 
(-38.0) 
[0.1] 

-0.170 
(-39.9) 
[7.0] 

-0.197 
(-37.0) 
[0.5] 

Mean Threshold Cost 0.080 - 
0.013 
(0.3) 
[0.3] 

- 
0.107 
(4.4) 
[1.1] 

- - - - - 
0.060 
(3.8) 
[-1.2] 

- 
0.107 
(4.5) 
[1.1] 

- - - 
0.071 
(4.0) 
[-0.5] 

Mean Threshold Travel 
Time 

0.120 - 
0.000 
(0.0) 
[0.0] 

- - - 
0.092 
(5.2) 
[-1.6] 

- - - 
0.085 
(6.9) 
[-2.9] 

- - - 
0.084 
(7.0) 
[-3.0] 

- 
0.076 
(7.4) 
[-4.3] 

Mean Threshold Access 
Time 

0.160 - 
0.000 
(0.0) 
[0.0] 

- - - - - 
0.170 
(7.4) 
[0.4] 

- - - 
0.190 
(10.8) 
[1.7] 

- 
0.205 
(15.6) 
[3.4] 

- 
0.192 
(12.0) 
[2.0] 

Log-likelihood  -6367.1 -6366.8 -6445.8 -6433.3 -6241.0 -6225.4 -6164.3 -6134.4 -6318.6 -6314.2 -6207.7 -6189.1 -6007.5 -5914.1 -6056.2 -6006.4 

LR  0.4 25.0 31.1 59.9 8.8 37.2 186.9 99.7 

Critical χ2 at 95% level  7.81 3.84 3.84 3.84 5.99 5.99 5.99 7.81 

 
 
 
 
 
 



Table A3. Models with simulated database, Case A, small changes; n = 1,000 

 
 
 

Scenario 
Threshold 

1 2 3 4 5 6 7 8 

Cost  √   √ √  √ 

Travel Time   √  √  √ √ 

Access Time    √  √ √ √ 
Individuals changing their 
choice when threshold present 

0 9 19 23 10 18 34 28 

Model Target MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed 

Cost -0.070 
-0.068 
(-14.4) 
[0.5] 

-0.067 
(-14.2) 
[0.5] 

-0.066 
(-14.3) 
[0.9] 

-0.066 
(-14.3) 
[0.9] 

-0.072 
(-14.6) 
[-0.3] 

-0.070 
(-14.2) 
[0.0] 

-0.071 
(-14.5) 
[-0.1] 

-0.070 
(-14.4) 
[-0.0] 

-0.069 
(-14.4) 
[0.3] 

-0.067 
(-14.0) 
[0.6] 

-0.070 
(-14.5) 
[0.1] 

-0.069 
(-14.1) 
[0.3] 

-0.074 
(-14.5) 
[0.8] 

-0.071 
(-14.1) 
[-0.3] 

-0.072 
(-14.5) 
[-0.4] 

-0.070 
(-14.0) 
[0.1] 

Travel Time -0.150 
-0.146 
(-16.9) 
[0.4] 

-0.145 
(-16.1) 
[0.6] 

-0.147 
(-16.9) 
[ 0.4] 

-0.147 
(-16.8) 
[ 0.4] 

-0.152 
(-16.7) 
[-0.2] 

-0.149 
(-15.8) 
[0.2] 

-0.151 
(-16.7) 
[-0.1] 

-0.148 
(-16.7) 
[0.2] 

-0.154 
(-16.9) 
[-0.4] 

-0.151 
(-15.9) 
[-0.1] 

-0.148 
(-16.7) 
[0.2] 

-0.145 
(-15.7) 
[0.6] 

-0.160 
(-16.7) 
[-1.0] 

-0.152 
(-15.7) 
[-0.2] 

-0.154 
(-16.7) 
[-0.5] 

-0.148 
(-15.7) 
[0.2] 

Access Time -0.200 
-0.196 
(-11.2) 
[0.2] 

-0.196 
(-11.0) 
[0.2] 

-0.196 
(-11.3) 
[0.2 ] 

-0.196 
(-11.3) 
[0.2 ] 

-0.202 
(-11.1) 
[-0.1] 

-0.199 
(-11.0) 
[0.1] 

-0.197 
(-11.0) 
[0.2] 

-0.202 
(-11.1) 
[-0.1] 

-0.205 
(-11.4) 
[-0.3] 

-0.202 
(-11.4) 
[-0.1] 

-0.194 
(-11.0) 
[0.4] 

-0.198 
(-10.6) 
[0.1] 

-0.209 
(-11.2) 
[-0.5] 

-0.211 
(-11.1) 
[-0.6] 

-0.198 
(-10.9) 
[0.1] 

-0.200 
(-10.8) 
[0.0] 

Mean Threshold Cost 0.08 - 
0.001 
(0.0) 
[0.0] 

- 
0.001 
(0.0) 
[-3.5] 

- - - - - 
0.000 
(0.0) 
[-0.8] 

- 
0.000 
(0.0) 
[0.5] 

- - - 
0,004 
(0.2) 
[-3.3] 

Mean Threshold Travel 
Time 

0.12 - 
0.000 
(0.3) 
[0.3] 

- - - 
0.110 
(1.3) 
[0.1] 

- - - 
0.083 
(5.4) 
[-2.4] 

- - - 
0.138 
(1.3) 
[0.2] 

- 
0,096 
(1.3) 
[-0.3] 

Mean Threshold Access 
Time 

0.16 - 
0.018 
(0.9) 
[0.9] 

- - -  - 
0.152 
(2.1) 
[-0.1] 

- - - 
0.137 
(1.1) 
[-0.2] 

- 
0.117 
(1.6) 
[-0.6] 

- 
0,116 
(0.7) 
[-0.3] 

Log-likelihood  -546.4 -546.1 -552.8 -552.8 -519.3 -517.9 -522.9 -520.6 --529.2 -528.4 -531.6 -530,2 -498.1 -493.9 -510.1 -508,6 

LR  0.5 0.0 2.6 4.5 1.6 2.7 8.5 6.6 

Critical χ2 at 5% level  7.81 3.84 3.84 3.84 5.99 5.99 5.99 7.81 



 
 
Table A4. Models with simulated database, Case C, strong changes; n = 1,000 

Scenario 
Threshold 

1 2 3 4 5 6 7 8 

Cost  √   √ √  √ 

Travel Time   √  √  √ √ 

Access Time    √  √ √ √ 
Individuals changing their 
choice when threshold present 

0 17 33 52 18 44 86 71 

Model Target MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed MNL Proposed 

Cost -0.070 
-0.071 
(-17.0) 
[-0.1] 

-0.071 
(-15.6) 
[-0.1] 

-0.071 
(-17.1) 
[-0.1] 

-0.072 
(-16.8) 
[-0.4] 

-0.073 
(-16.9) 
[-0.6] 

-0.072 
(-16.5) 
[-0.4] 

-0.073 
(-16.4) 
[-0.6] 

-0.071 
(-16.3) 
[-0.1] 

-0.071 
(-16.9) 
[-0.3] 

-0.071 
(-16.7) 
[-0.1] 

-0.071 
(-16.4) 
[-0.1] 

-0.069 
(-16.1) 
[0.2] 

-0.074 
(-16.2) 
[-0.8] 

-0.071 
(-15.4) 
[-0.2] 

-0.073 
(-16.3) 
[-0.8] 

-0.071 
(-15.0) 
[-0.2] 

Travel Time -0.150 
-0.138 
(-15.2) 
[1.3] 

-0.138 
(-13.1) 
[1.1] 

-0.138 
(-15.2) 
[ 1.4] 

-0.140 
(-15.2) 
[ 1.1] 

-0.143 
(-15.3) 
[0.7] 

-0.143 
(-15.3) 
[0.8] 

-0.141 
(-15.1) 
[1.0] 

-0.136 
(-14.9) 
[1.6] 

-0.141 
(-15.3) 
[0.9] 

-0.141 
(-15.0) 
[1.0] 

-0.138 
(-15.0) 
[1.3] 

-0.134 
(-14.6) 
[1.7] 

-0.148 
(-15.2) 
[0.2] 

-0.145 
(-15.0) 
[0.5] 

-0.146 
(-15.2) 
[0.4] 

-0.143 
(-14.8) 
[0.7] 

Access Time -0.200 
-0.206 
(-15.0) 
[-0.4] 

-0.206 
(-14.1) 
[-0.4] 

-0.211 
(-15.4) 
[-0.8 ] 

-0.210 
(-15.2) 
[-0.7 ] 

-0.201 
(-14.6) 
[-0.1] 

-0.204 
(-14.5) 
[-0.3] 

-0.174 
(-13.1) 
[1.9] 

-0.197 
(-12.4) 
[0.2] 

-0.202 
(-14.8) 
[-0.1] 

-0.203 
(-14.7) 
[-0.2] 

-0.171 
(-13.0) 
[2.2] 

-0.182 
(-12.8) 
[1.3] 

-0.170 
(-12.7) 
[2.2] 

-0.219 
(-12.0) 
[-1.1] 

-0.172 
(-12.8) 
[2.1] 

-0.213 
(-12.7) 
[-0.7] 

Mean Threshold Cost 0.08 - 
0.000 
(0.0) 
[0.0] 

- 
0.100 
(1.4) 
[0.3] 

- - - - - 
0.000 
(0.0) 
[-1.2] 

- 
0.017 
(0.3) 
[-1.0] 

- - - 
0,036 
(1.3) 
[-1.6] 

Mean Threshold Travel 
Time 

0.12 - 
0.000 
(0.0) 
[0.0] 

- - - 
0.079 
(1.4) 
[-0.7] 

- - - 
0.032 
(1.6) 
[-4.5] 

- - - 
0.061 
(1.0) 
[-1.0] 

- 
0,040 
(0.4) 
[-0.9] 

Mean Threshold Access 
Time 

0.16 - 
0.000 
(0.0) 
[0.0] 

- - - - - 
0.176 
(5.0) 
[0.5] 

- - - 
0.107 
(5.2) 
[-2.6] 

- 
0.332 
(3.1) 
[1.6] 

- 
0,282 
(9.4) 
[4.1] 

Log-likelihood  -636.3 -636.3 -638.3 -637.3 -618.7 -617.4 -615.2 -612.5 -628.5 -628.4 -626.7 -625.5 -596.8 -585.5 -601.6 -595.5 

LR  0.0 2.1 2.7 5.5 0.2 2.4 22.6 12.1 

Critical χ2 at 5% level  7.81 3.84 3.84 3.84 5.99 5.99 5.99 7.81 

 


