
Model-driven architecture for cancer research

Radu Calinescu, Steve Harris, Jeremy Gibbons and Jim Davies
Computing Laboratory, University of Oxford

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Igor Toujilov and Sylvia B. Nagl
Oncology Department, The Royal Free and University College Medical School
Hampstead Campus, Rowland Hill Street, Hampstead, London NW3 2PF, UK

Abstract

It is a common phenomenon for research projects to col-
lect and analyse valuable data using ad-hoc information
systems. These costly-to-build systems are often composed
of incompatible variants of the same modules, and record
data in ways that prevent any meaningful result analysis
across similar projects. We present a framework that uses a
combination of formal methods, model-driven development
and service-oriented architecture (SOA) technologies to au-
tomate the generation of data management systems for can-
cer clinical trial research, an area particularly affected by
these problems. The SOA solution generated by the frame-
work is based on an information model of a cancer clinical
trial, and comprises components for both the collection and
analysis of cancer research data, within and across clin-
ical trial boundaries. While primarily targeted at cancer
research, our approach is readily applicable to other areas
for which a similar information model is available.

1. Introduction

This paper presents a framework for the generation of
data management software for cancer clinical trials. The
framework was implemented as part of CancerGrid [4], a
project developing open-standards cancer informatics, and
uses a combination of formal methods, model-driven devel-
opment and service-oriented technologies to automate the
generation of software systems for the collection, manage-
ment and analysis of cancer clinical trial data.

Our overall approach to trial management system devel-
opment is depicted in Figure 1. The clinical trial meta-
model underlying the architecture [16] is built as an embod-
iment of the Consolidating Standards of Reporting Trials
(CONSORT) statement [1, 25], the de-facto set of guidance
rules for the reporting and execution of clinical trials. A

trial designer tool provides oncology clinicians with an in-
tegrated environment for the design of cancer clinical trials
that are instances of the metamodel. This use of a common
metamodel for the design of different clinical trials enables
the model-driven development of reusable software compo-
nents for cancer research. Additionally, the tool enforces
the consistent use of controlled cancer vocabulary and com-
mon data elements (i.e., cancer metadata)—a key factor for
sharing data across clinical trials. Starting from a set of
trial designs produced by means of this tool, an assembly
of software artefact generators build the complete code for
the services, electronic forms and documentation that com-
pose a trial management system. In this paper we present
the architecture of our model-driven framework for the gen-
eration of data management software for cancer research.
The other elements of our approach are described in detail
in [5, 16, 29, 30].

The availability of a concise and unambiguous specifi-
cation was deemed essential for a joint project involving
multi-disciplinary teams located at several research institu-
tions across the UK. The Z formal specification language
[32] was selected to construct this formal description of the
framework based on our prior experience with using Z in
software engineering projects. The resources invested in
building a formal specification of our architecture paid off,
as the resulting Z model has been of great help in gaining
and conveying a good understanding of the framework. In
particular, the specification of the processes and semantics
involved in generating the IT system for clinical trial execu-
tion was very useful in defining parts of the architecture that
are not captured in the clinical trial metamodel itself, and
would have been difficult to specify unambiguously other-
wise. Furthermore, the Z specification was used to guide the
actual development of software components that automate
the generation of clinical trial data management systems,
contributing significantly to their timely delivery.

A service-oriented architecture (SOA) was chosen as the

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.18

51

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.18

51

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.18

59

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.18

59

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

Figure 1. Metamodel- and metadata-based generation of cancer data management systems

target for this generation due to its ability to combine inde-
pendent, reusable components as required by each specific
trial and by the cross-trial data analysis [5]. Another factor
that recommended this approach was the good match be-
tween the cancer research use cases and the decoupling of
services and clients characteristic to SOAs [33].

The remainder of the paper is organised as follows. After
a review of related work in the next section, Sections 3 and 4
introduce our common data element and trial design spec-
ifications, respectively. Section 5 presents several types
of queries involved in the analysis of research data across
multiple clinical trials. The techniques used for the model-
driven generation of a trial management system are formally
defined in Section 6. Section 7 describes the components of
the framework and how they co-operate to build an instance
of the trial management system. A case study that illustrates
the use of the framework for two of CancerGrid’s primary
clinical trials [26, 27] is provided in Section 8, followed by
our concluding remarks in Section 9.

2. Related work

The US cancer Biomedical Informatics Grid (caBIG)
project [19] models clinical trials [22] and has cancer data
sharing as one of its primary objectives. Their caCORE
software development kit [18] handles the generation of
web service stubs for some aspects of cancer research, with
the actual logic being manually added to these stubs. Our
framework succeeds in generating fully-fledged web ser-
vices for clinical trial execution automatically by including
in its underlying model a comprehensive specification of the
targeted clinical trials. Additionally, our model-driven ap-
proach to generating a trial management system automates
the generation of the web forms that, together with these
services, provide a complete SOA solution.

The WSDL .NET tool [24] produces web service and
client stubs from WSDL contracts and XML schemas.

However, in the absence of any knowledge about the service
and client logic, the missing code needs to be added man-
ually. In contrast, the use of a generic clinical trials model
and of a formally defined set of transformations makes the
CancerGrid framework capable of generating web services
and forms that can be readily deployed on to an IIS server.

Many commercial and open-source tools have been de-
veloped for the design and generation of XForms from
XML documents and schemas. XFormation [23] is a com-
mercial tool providing a graphical environment for XForms
design and the ability to generate XForms from XML
schemas. Although one of the few mature products pro-
viding schema-based XForms generation, XFormation does
not expose an API for the runtime creation of forms—
an important requirement for the CancerGrid framework,
whose users need to build web forms from dynamically gen-
erated XML schemas. The same applies to IBM’s XML
Forms Generator [17], a highly-configurable Eclipse plug-
in that generates functional forms with XForms mark-up
embedded within an XHTML document from an XML data
instance, an XML schema or a WSDL document.

XSLT is often presented [15] as a straightforward means
for the generation of XForms from XML schemas. One dis-
advantage of this approach is the complexity of the resulting
XSL document. It is easier to develop and maintain a solu-
tion of this level of complexity in a traditional programming
language such as Java or C#, which is the approach taken
by our project. An important benefit of this approach is
the ability to use the same generator for producing different
types of forms, e.g., XForms and ASP.NET forms.

In the data analysis area, the query of data from multi-
ple sources has been an important research topic for the last
two decades. Generic approaches for querying multiple in-
formation sources were proposed [2, 7, 8] that use a model
of a problem domain to devise global query systems. The
approach in [2] requires the user to build a semantic do-
main model as well as a model of each database and knowl-

52526060

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

edge base used as an information source. Therefore, this
solution is appropriate only for users with expertise in both
data modelling and the target problem domain. Similar ap-
proaches are described in [7, 8], where sophisticated tech-
niques are used to create a “reference data model” [7] or a
“metadatabase” [8] that are then employed to generate the
global query. Unlike these approaches to querying hetero-
geneous data sources, our data analysis takes advantage of
the homogeneity of data across cancer clinical trials to hide
most of the complexity of a cross-trial query. Implementa-
tions of this system can therefore be used directly by cancer
researchers with limited data modelling expertise.

Other medical projects such as VOTES [28] and PRATA
[9] are concerned with the integration of data from multiple,
distributed databases. VOTES [28] is interested in the inte-
gration of distributed medical data pertaining to the same
patient, so candidate patients for new clinical trials can be
identified easily. The query forms used by the VOTES por-
tal resemble those from the prototype implementation of the
trials management system introduced in this paper, however
they are encoded manually by software developers familiar
with the internal structure of the data sources. The PRATA
system [9] addresses the XML integration of data extracted
from multiple, distributed databases. The integration and
visualisation of the data is based on a user-specified XML
schema that requires inside knowledge of the data sources.
In contrast, our data analysis is model-based, and provides
information to guide user querying rather than relying on
the users for this knowledge.

3. Common data elements

The consistent use of a controlled vocabulary (i.e., a set
of domain-specific terms managed by a vocabulary regis-
tration authority) is key to sharing data between projects in
any field of research. This is particularly relevant to cancer
research, where tremendous human and financial resources
are employed for the generation of small amounts of data
[4]. The ability to analyse these data across multiple clinical
trials is crucial to reaching statistically relevant conclusions.

The CancerGrid project is addressing this important re-
quirement by basing its clinical trials model [16] on the use
of thesauri – collections of controlled vocabulary terms and
their relationships, and common data elements – controlled
sets of cancer concepts and measurements. A common data
element [29] is defined in terms of several basic types:

• CdeID , the set of common data element identifiers
used to refer uniquely to specific CDEs;

• CdeType , the set of types that common data element
values may have;

• CdeInfo, the metadata that fully define the semantics
of the common data element.

These basic types are summarised below using Z notation:

[CdeID ,CdeType,CdeInfo],

and the common data element type is specified by

Cde
id : CdeID
valueDomain : CdeType
info : CdeInfo

The common data elements for a specific domain are main-
tained in a CDE (or metadata) repository for that area of
research:

CdeRepository
cdeSet : P Cde

∀ x , y : cdeSet • x .id = y .id ⇒ x = y

4. Trial designs

Clinical trial data are generated during the execution of
a trial as a result of a number of trial events, each of which
corresponds to a stage in the execution of the clinical trial.
For instance, clinical and personal patient data are collected
during the registration stage, treatments are allocated in the
randomisation stage, and periodical follow-up data collec-
tion is performed to assess response to treatment. The com-
plete set of trial events in the CancerGrid trial model is
given below:

TrialEvent ::= registration | eligibility | randomisation |
onStudy | treatment | offStudy | followUp | adverseEvent

Clinicians gather the data corresponding to the trial events
by filling in case report forms that comprise CDEs drawn
from the cancer CDE repository [29],

cancerCdeRep : CdeRepository .

A case report form is fully defined by the sequence of trial
events corresponding to its sections:1

CaseReportForm
events : seqTrialEvent

For the purpose of our model-driven trial system develop-
ment, a clinical trial is composed of a set of case report
forms and the CDEs corresponding to each of their events:

TrialDesign
forms : P CaseReportForm
eventCdeSet : TrialEvent 7→ P cancerCdeRep.cdeSet

dom eventCdeSet =
⋃
{f : forms • ran f .events}

∀ f1, f2 : forms • f1 6= f2 ⇒ ran f1.events ∩ ran f2.events = ∅

1The set of event handlers for the events in a case report form must
be executed in a well-defined order, so it is essential that the trial events
associated with the form are ordered instead of being organised into a set.

53536161

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

Two additional operators are used in our specification. The
first operator returns the set of events associated with a trial:

trialEvents : TrialDesign → P TrialEvent

∀ t : TrialDesign •
trialEvents t =

⋃
{f : t .forms • ran f .events},

and the second operator builds the set of CDEs associated
with a case report form in a clinical trial by combining the
CDE sets corresponding to its events:

formCdeSet : TrialDesign × CaseReportForm 7→ P Cde

dom formCdeSet = {t : TrialDesign;
f : CaseReportForm | f ∈ t .forms • (t , f)}

∀ t : TrialDesign • ∀ f : t .forms • formCdeSet (t , f) =⋃
{e : ran f .events • t .eventCdeSet e}.

To give an example of a trial design, consider the CDEs

NodalStatus,ECOGStatus,TumorResectionStatus,
RadiotheraphyTiming ,QualityOfLifeSubstudyConsent ,
DiseaseStage,OestrogenStatus, ... : cancerCdeRep.cdeSet

that are associated with trial events for the tAnGo trial [27]:

tAnGo : TrialDesign

∃ f : tAnGo.forms •
f .events = 〈registration, eligibility , randomisation〉
tAnGo.eventCdeSet registration =
{QualityOfLifeSubstudyConsent ,OestrogenStatus, ...}
tAnGo.eventCdeSet eligibility =
{TumorResectionStatus,DiseaseStage, ...}
tAnGo.eventCdeSet randomisation =
{NodalStatus,ECOGStatus, ...}

The common data elements used to register tAnGo partic-
ipants, to establish their eligibility, and to stratify the allo-
cation of treatments (i.e., the trial randomisation [3]) are
explicitly specified in the tAnGo trial design. Note that the
complete trial design comprises all of the trial events de-
fined at the beginning of this section, however for the sake
of brevity only three of these are presented above.

5. Trial data analysis

The TrialDesign specification introduced in Section 4
provides all the necessary details for the collection of re-
search data during the execution phase of a clinical trial. In
this section, we formally define the data queries that form
the basis for the analysis of the trial results. In their most
general form, these trial queries are designed to operate on
results pertaining to several cancer research projects based
on CDEs drawn from the same metadata repository; how-
ever we will also demonstrate how specific instances of the
queries support result analysis within a single project.

5.1. Event-based data query

Our data queries are built using a number of pre-defined
comparison operators:

ComparisonOp ::= hasAnyValue | isEqualTo |
isNotEqualTo | isLessThan | isGreaterThan | ...

Each CdeType type that CDEs can draw their values from
is associated with a well-defined set of these operators:

cdeComparisonOp : CdeType → P ComparisonOp.

For our purpose, a query element comprises a CDE and a
comparison operator that is relevant for its value domain:

QueryElement
cde : Cde
op : ComparisonOp

op ∈ cdeComparisonOp cde.valueDomain

The query system described in this section is event based,
that is, we are interested in identifying CDEs that are asso-
ciated with the same trial event in all clinical trials involved
in the query. This approach is consistent with the cancer
researchers’ need to analyse data from patients with similar
characteristics at the same stage of their treatment. For in-
stance, it makes sense to group patient data collected prior
to the commencement of treatment for trials where the treat-
ment varies, because this will avoid the confounding effects
of the different treatments under study. However, compar-
isons at later time points may prove less useful.

Given a set of clinical trials trialSet , the query system
specifies its query terms as a mapping from trial events to
sets of query elements:

TrialQuery
trialSet : P TrialDesign
queryTerms : TrialEvent 7→ P QueryElement

dom queryTerms =
⋂
{t : trialSet • trialEvents t}

∀ e : dom queryTerms • {qt : queryTerms e • qt .cde} =⋂
{t : trialSet • t .eventCdeSet e}

∀ e : dom queryTerms • ∀ qt1, qt2 : queryTerms e •
qt1 6= qt2 ⇒ qt1.cde 6= qt2.cde

The first constraint in the query definition requires that
the trial events involved in the query must be part of
all considered trials.2 The last two constraints state that
the query terms for these events comprise precisely one
QueryElement3 for every CDE that the event is asso-
ciated with in each of the queried trials. Notice that

2This simplifying assumption is relaxed in Section 5.2, which proposes
a generalisation of the event-based cross-trial query.

3Although each queryTerms component consists of a single
QueryElement , the query model can be extended easily to handle terms
defined as logical expressions of multiple QueryElements that refer to
the same CDE.

54546262

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

the TrialQuery specification does not place any restric-
tion on the comparison operators that are part of the
QueryElement items associated with trial events. The
only such constraint is specified by the definition of a
QueryElement , i.e., these operators must be appropriate
for the CDEs they relate to.

To illustrate the application of the trial query, consider
the NEAT clinical trial [26]:

Neat : TrialDesign

∃ f : Neat .forms •
f .events = 〈registration, eligibility , randomisation〉
Neat .eventCdeSet registration =
{QualityOfLifeSubstudyConsent ,ECOGStatus
OestrogenStatus, ...}

Neat .eventCdeSet eligibility =
{DiseaseStage,TumorResectionStatus, ...}
Neat .eventCdeSet randomisation =
{NodalStatus,RadiotheraphyTiming}

An event-based query across the tAnGo trial defined in Sec-
tion 4 and the NEAT trial above is then given by:

tAnGoNeatQuery : TrialQuery

tAnGoNeatQuery .trialSet = {tAnGo,Neat}.

According to the definition of a TrialQuery ,

{registration, eligibility , randomisation}
⊆ dom tAnGoNeatQuery .queryTerms

since all these trial events appear in both tAnGo and Neat .
The CDE sets that are part of the queryTerms for the three
trial events are:

{qt : tAnGoNeatQuery .queryTerms randomisation • qt .cde}
= {NodalStatus}
{qt : tAnGoNeatQuery .queryTerms eligibility • qt .cde}
= {TumorResectionStatus,DiseaseStage, ...}
{qt : tAnGoNeatQuery .queryTerms registration • qt .cde}
= {QualityOfLifeSubstudyConsent ,OestrogenStatus}.

Appropriate comparison operators are associated with each
of these CDEs in the above TrialQuery instance, e.g.,

tAnGoNeatQuery .queryTerms randomisation =
{〈|cde ; NodalStatus, op ; isEqualTo|〉}

Prior to being executed, a TrialQuery instance such as
tAnGoNeatQuery needs to be parameterised by a set of
values from the value domains of all CDEs in the query
terms. For the tAnGoNeatQuery query term above for in-
stance, op was chosen to be isEqualTo, so the NodalStatus
value of interest will need to be specified in an implemen-
tation of the query framework. This part of the query is
not modelled here; however details are provided when a
case study illustrating the use of the model-driven gener-
ation framework is presented in Section 8.

5.2. Combined-event query

Common data elements used in different clinical trials
are not necessarily associated with the same trial event
in each of these trials. An example is the ECOGStatus
CDE defined in Section 4, which is used by both tri-
als considered in the previous sections, but is associated
with different events in the two trials—ECOGStatus ∈
tAnGo.eventCdeSet randomisation and ECOGStatus ∈
Neat .eventCdeSet registration . In both cases the mea-
surement is taken prior to patients joining the clinical trial,
so the ability to perform queries including query terms for
such CDEs is very important.

Having analysed several options for generalising the
event-based trial query [6], we opted for an approach that
is both simple and effective, and which addresses the use
case described above. Our generalised cross-trial query is
very similar to the event-based trial query, except that event
sets rather than individual events are mapped on to query
elements:

GeneralisedTrialQuery
trialSet : P TrialDesign
queryTerms : P TrialEvent 7→ P QueryElement⋃

(dom queryTerms) =
⋂
{t : trialSet • trialEvents t}

∀E : dom queryTerms • {qt : queryTerms E • qt .cde} =⋂
{t : trialSet •

⋃
{e : E • t .eventCdeSet e}}

∀E : dom queryTerms • ∀ qt1, qt2 : queryTerms E •
qt1 6= qt2 ⇒ qt1.cde 6= qt2.cde

The change from individual events to event sets in the def-
inition of the queryTerms component of the query led to
a couple of changes to the constraints. The first change re-
laxes the constraint on the domain of queryTerms , spec-
ifying it as any set of event sets whose union gives the
whole set of overlapping events for the considered trials.
The change to the second constraint specifies that the CDE
components of the query elements associated with a trial
event set are obtained by considering the CDEs associated
with all the events in the set.

5.3. Controlled-access query

The data analysis system needs to ensure that access
to confidential information is limited to the rightful users.
Clinical trials use a role-based access control (RBAC) ap-
proach [12, 13] to constrain data access to users that have
certain roles in the trial, and our data analysis specification
can be further extended to reflect this requirement. A de-
tailed description of this extension is presented in [6], where
we prove that the controlled-access trial query associated
with a set of trial designs is equivalent to the standard trial
query based on the trial design set obtained by eliminating
all inaccessible CDEs from the original trial designs.

55556363

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

6. Implied processes and semantics

The clinical trials model covers only part of what is re-
quired to architect a complete SOA system. Therefore, the
model-based generation of trial management systems also
relies on implicit knowledge about cancer clinical trial pro-
cesses and semantics. Notice that in addition to exposing
the clinical trial data model, the TrialDesign schema spec-
ifies the process decomposition of trial executions into a set
of case report form submission processes. Similarly, the
trial event sequence in a case report form defines the basic
event handler processes composing each case report form
submission.

Given the high-level description of a trial design, the
generation of the clinical trial SOA is based on three ba-
sic types—XML schemas with a single top-level element
(termed simple XML schemas), web forms, and web method
fragments (i.e., blocks of code that can be combined to form
a web service method):

[SimpleXmlSchema,WebForm,WebMethodFragment].

A web service is therefore defined as a set of web methods,
each of which is a sequence (i.e., an ordered collection) of
web method fragments:

WebService
methods : P(seqWebMethodFragment).

For brevity, the properties that make a sequence of web
method fragments into a valid web method, and a set of
web methods into a valid web service are not given here.
The trial SOA component generation relies on the implicit
domain knowledge defined by the following techniques:

1. A schema derivation method that produces the simple
XML schema associated with a set of CDEs,

schemaDerivation : P Cde → SimpleXmlSchema

The method consists in pulling together all the CDE
definitions in the CDE set, and wrapping them within
a root XML element definition. Notice that this simple
procedure is not specific to cancer research, but can
be applied to any research field that uses CDE sets for
data representation.

2. A technique for building the web form associated with
a simple XML schema, and a web method fragment
for handling the submission of the form,

submissionForm : SimpleXmlSchema → WebForm
submissionHandler : SimpleXmlSchema →

WebMethodFragment .

The web method fragment created by the CancerGrid
generation framework validates the submitted form
against the schema (reporting any errors to the client)
and logs the form and its validation result. Again, these
techniques are independent of the problem domain.

3. Techniques for generating the web services for han-
dling individual trial events, and the web method frag-
ments for calling their methods:

eventHandlingService : TrialEvent × P Cde →
WebService

eventSubmissionHandler : TrialEvent × P Cde →
WebMethodFragment

The former technique is used for the generation of
web services dedicated to special trial events such as
randomisation or adverseEvent (and their associated
CDEs), while the latter technique is used to create the
code that initiates calls to these services when the sub-
mission of a case report form is handled.The two map-
pings are specific to cancer clinical trials, although
similar mappings are likely to exist for other problem
domains.

4. Techniques for generating web services and forms for
data analysis across a set of clinical trials:

analysisService : P TrialQuery 7→ WebService
analysisForm : P TrialQuery 7→ WebForm

dom analysisService = dom analysisForm =
{trialSet : P TrialDesign • {query : TrialQuery |

query .trialSet = trialSet • query}}

These techniques are also applicable to any research
area characterised by an information model similar to
that used by our framework.

The techniques presented above are first used to build the
case reporting service for a clinical trial, i.e., the service
handling the submission of all the case report forms in the
trial. This service comprises a web method for each case
report form in the trial. Each such web method is obtained
by concatenating the web method fragment corresponding
to the submissionHandler and the fragments that encode
the calls to the event-specific services for all form events:

caseReportingService : TrialDesign → WebService

∀ t : TrialDesign • (caseReportingService t).methods =
{f : t .forms; s : seqWebMethodFragment |
dom s = dom f .events ∧
(∀ i : dom s • s i = eventSubmissionHandler (f .events i ,
t .eventCdeSet (f .events i))) • 〈submissionHandler (

schemaDerivation (formCdeSet (t , f)))〉a s}

With a service-oriented architecture defined simply as a
combination of web forms and web services,

Soa
webForms : P WebForm
webServices : P WebService

the CancerGrid framework generates the trial management
system below:

56566464

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

Figure 2. SOA generation framework

trialManagementSystem : P TrialDesign → Soa

∀T : P TrialDesign •
(trialManagementSystem T).webForms =
{t : T ; f : CaseReportForm | f ∈ t .forms •
submissionForm (schemaDerivation (formCdeSet (t , f)))}
∪{analysisForm {q : TrialQuery | q .trialSet = T • q}}
∧ (trialManagementSystem T).webServices =
{t : T • caseReportingService t}∪
{t : T ; event : TrialEvent | event ∈ trialEvents t •
eventHandlingService (event , t .eventCdeSet event)}∪
{analysisService {q : TrialQuery | q .trialSet = T • q}}.

As a result, the trial management system comprises: the
web forms for all case report forms in the trial set and for
the cross-trial data analysis; per-trial case reporting service
instances; all the event-specific services; and the data anal-
ysis service for the considered set of trials.

7. The SOA generation framework

The CancerGrid SOA generation framework (Figure 2)
consists of several parts. The Component Factory produces
the Artefacts (i.e., the code and data elements) that compose
the clinical trial SOA modules by employing of a number
of Artefact Generators. In turn, the generators use Model

Traversals to apply specialised Model Visitors to fragments
of the trial design, as described in detail below.

SOA components and artefacts for cancer clinical trials
The trial management system comprises a set of interdepen-
dent web services and web forms. Given the software plat-
forms available to most CancerGrid users, the amount of
generated code required for the same functionality, and the
available development tools, .NET was chosen over J2EE
as the target platform for the web service implementation,
and a combination of ASP.NET [11] and XForms [10] is
used for the implementation of web forms. Several classes
of artefacts are used to build these components:

• TextArtefact—A simple, run-time generated string.
• FileArtefact—A file on the local file system, e.g., a

template configuration file that a generator will include
in the components it creates. Typically, file artefacts
are independent of the trial for which they are used.

• XmlArtefact—An XML document, typically trial-
specific and produced at run time by a generators.

• AspDotNetPageArtefact—An XML document repre-
senting an ASP.NET form.

• CodeArtefact—A generated code module.
• XFormsArtefact—A trial-specific XForms artefact.

Common to all these artefacts is their implementation of an
IArtefact interface, whose single method permits artefacts
to be saved to an output stream.

Model traversal This class library provides the model
traversal support required during artefact generation. In the
current version of the system, its only component is a depth-
first-search (DFS) traversal of XML schemas represented
as (.NET) Schema Object Models (SOMs). Potential can-
didates for new versions of the generation toolset include
traversal of XMI-encoded [21] UML models. The DFS
schema traversal provides simple methods for the traver-
sal of schemas, schema sets and of specific elements within
schemas. Each such method is using a visitor that does the
actual work of generating artefacts from the model.

Model visitors This part of the framework comprises
classes that implement the web form and web service frag-
ment generation techniques from Section 6. The implemen-
tation uses the hierarchical visitor design pattern [31] (i.e.,
a variant of the visitor pattern in [14]) to build web forms
and web service fragments based on XML schemas derived
from a trial design. Each type of visitor generates an arte-
fact or contributes a part to the generation of an artefact:

• RootElementDetectionVisitor identifies the single root
element of a simple XML schema.

57576565

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

• ElementDetectionVisitor finds a pre-specified element
from an XML schema.

• XFormsModelGeneratorVisitor and XFormsUIGener-
ationVisitor are used to generate the model and user
interface parts of XForms [10], respectively.

• AspDotNetUIGenerationVisitor is used to generate the
UI of ASP.NET forms, and AspDotNetCodeGenera-
tionVisitor generates the data binding code required to
create the object for the form submission.4 These vis-
itors implement the submissionForm transformation
from Section 6.

Visitors implement the IXmlSchemaVisitor interface,
which specifies the operations that visitors must support.
This includes methods to be employed when entering and
exiting each type of non-leaf node encountered during the
traversal of a schema object (i.e., VisitEnter and VisitLeave),
and simple Visit methods that are used when a leaf node in
the schema is reached. The boolean value returned by each
of these methods indicates the direction in which the traver-
sal should continue after the method returns. Thus, the chil-
dren of a non-leaf node are visited if and only if the Visit-
Enter method called for the node itself returns true . Simi-
larly, the value returned by a VisitExit or Visit method spec-
ifies whether the next sibling in the model will be visited—
returned value true , or not—returned value false.

Artefact builders and component generation This
module (Figure 2) comprises elements that generate indi-
vidual artefacts from a trial design fragment. Typical ex-
amples include .NET web service .asmx and code be-
hind files, or ASP.NET web forms generated from XML
schemas. Generators employ specialised artefact part
builders to produce an artefact, i.e., they play the direc-
tor role from the builder software design pattern [14].
The framework comprises generators for web service code
(DotNetWebserviceGenerator), ASP.NET form UI and code
(AspDotNetGenerator), XForms model and UI (XForms-
Generator), data types from XML schema (XsdCodeGener-
ator) and XSL transformations (XslTransformGenerator).

SOA component factories These classes generate system
components such as web services and forms using tech-
niques from our Z specification. Each component factory
bases its operation on several trial design fragments ob-
tained by filtering the trial design by means of a set of XSL
transforms. These filters represent a combination of the
eventCdeSet mapping from trial events to CDE sets, and
the schemaDerivation conversion of CDE sets to XML
schemas, as described in the Z specification in Section 6.

4A limitation of ASP.NET is that data binding is one way: web form
fields can get their values from the fields of an associated object, but the
reverse is not supported.

The case reporting service factory is a specialised ser-
vice factory that is responsible for generating the case re-
porting web service and forms required in a clinical trial.
The factory uses a “case reporting schema” design filter to
extract the information required to build its case reporting
artefacts. The result of applying this filter to the trial de-
sign is an XML schema whose top-level elements define
the case report forms in the clinical trial. This schema is
used to generate the data types for the case report forms
exchanged between the web forms and the case reporting
service web methods, as well as to build the web service
and the associated web forms. The submissionHandler
and eventSubmissionHandler transforms from the speci-
fication in Section 6 are used for this generation.

The event-handling service factories implement the
eventHandlingService transform (Section 6) to generate
the web services for handling specific trial events such as
eligibility , randomisation or adverseEvent . The design
filters used extract the CDE sets associated with individ-
ual events by means of the eventCdeSet mapping from the
TrialDesign Z schema. For instance, the randomisation
service factory generates the patient randomisation service
for a clinical trial. Two design filters are used to gather the
information required to generate the randomisation service.
The former filter generates an XML schema for the subset
of case report form fields associated with the randomisation
trial event. The latter is a “stratification” filter that extracts
trial design information about the way in which the value
domains of the stratification CDEs are partitioned into sub-
domains for the purpose of treatment allocation.

Work is underway to add a data analysis service factory
and the visitors on which it relies to the framework. This
factory will employ the analysisService and analysisForm
transforms from Section 6 to generate the data analysis form
and service, a step in the generation of the trial management
system that is currently handled manually.

8. Case study

In order to assess the effectiveness of our framework, we
applied it to two real cancer clinical trials that completed
their data acquisition and are currently in the analysis stage
[26, 27]. This enabled us to devise simulated executions of
the two trials based on made-up but realistic patient data,
and to demonstrate them to clinical trial personnel directly
involved in running the two trials. The feedback obtained
from clinicians, statisticians and IT staff that took part in the
execution of the trials was then used to improve the speci-
fication of the framework, and the general usefulness of the
trial management system it generates.

For each of the considered clinical trials, we started from
an English-text description of the trial termed a trial proto-
col. Among other information, trial protocols contain de-

58586666

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

tailed descriptions of the data collection and analysis stages
of the associated trials. Based on these descriptions, we
built instances of our clinical trial metamodel (i.e., trial de-
signs) that are equivalent to the original trial protocols. The
resulting tAnGo and Neat trial designs (presented in Sec-
tions 4 and 5, respectively) were then used as input for the
trial management system generators described in the pre-
vious section, which produced the system artefacts—web
services and web forms—ready for deployment.

We deployed and configured the automatically generated
case reporting and trial event handling services, and the case
report forms for the two clinical trials. The data analysis
form and service described by the Z specification in Sec-
tions 5 and 6 were implemented manually, as the current
version of the system does not include generators for these
artefacts.

By combining demonstrations of our architecture with a
high-level presentation of the associated specification, we
managed to convey a good understanding of our approach
to a representative sample of its intended users. As a re-
sult, valuable comments and suggestions for improvement
have been obtained from these users even from the early
stages of the project. The ability to speed-up trial manage-
ment system development and the enforced usage of con-
trolled cancer metadata were consistently deemed as the
key advantages of our approach. The data analysis compo-
nents, although not automatically generated yet, were also
perceived as powerful tools for analysing cancer research
data both within and across clinical trial boundaries. Pa-
tient workflow was reported as insufficiently supported by
the current version of the framework, and we are in the pro-
cess of adding it to the Z specification in the first instance.
Based on past experience, we expect this to form the ba-
sis for agreeing on the required new functionality with the
users of the IT system generated by our framework.

9. Conclusions

The model-driven development framework described in
this paper formally defines and automates the creation of
the web services and forms for trial management systems in
cancer research. Starting from a design of a clinical trial, the
current version of the framework employs software compo-
nent generators to produce the artefacts (i.e., the code, data
and configuration files) associated with a clinical trial. The
successful generation of fully operational SOA components
for a couple of clinical trials indicates that automating the
model-driven generation of trial management systems is a
viable approach.

The use of a formal specification was essential to defin-
ing our architecture in a concise and unambiguous man-
ner. The resulting Z model expresses not only the can-
cer trial metamodel on which the architecture is based, but

also the internal processes involved in the generation of the
software artefacts that compose a trial management system.
Although the work to use the specification in the verifica-
tion of the generators in our architecture and the software
artefacts they produce is not complete yet, the specification
has proved invaluable in improving our understanding of
the framework and in describing it to other members of the
project and to many of its intended users.

Additional work is carried out within the project to de-
velop generators for the data analysis components whose
specification is given in the paper, and to add automatic
packaging, configuration and deployment to the actual com-
ponent generation. Other extensions that are being investi-
gated include the separation of the clinical trial logic into
standalone BPEL workflows [20] to support the patient
workflow associated with clinical trials, and the generation
of the SOA security components. These extensions are be-
ing developed at the same time as a new, enhanced version
of the CancerGrid clinical trials model [16].

While the association of particular events and event
handlers with well-defined data sets is inherently domain
specific, the largest part of the model-driven development
approach is not directly related to cancer research. This
part can be readily applied to other areas for which a
CDE-based information model of research projects is
available. In particular, the techniques used to generate the
web forms for data collection and analysis, and the services
handling data submission and data queries, respectively are
immediately applicable to other types of clinical trials, and
to other research fields.

Acknowledgements

This work was supported by the UK Medical Research
Council grant G0300648 and a Microsoft Research
grant. The authors are grateful to Charlie Crichton,
Peter Maccallum, Andrew Tsui and the other members of
the CancerGrid team for many insightful discussions dur-
ing the work on the model-driven development framework.

References

[1] D. G. Altman, K. F. Schulz, D. Moher, M. Eg-
ger, F. Davidoff, D. Elbourne, P. C. Gotzsche, and
T. Lang. The revised CONSORT statement for report-
ing randomized trials: Explanation and elaboration. An-
nals of Internal Medicine, 134(8):663–694, April 2001.
http://www.annals.org/cgi/reprint/134/8/663.pdf.

[2] Y. Arens, C. Y. Chee, C.-N. Hsu, and C. A. Knoblock.
Retrieving and integrating data from multiple information
sources. Journal of Intelligent and Cooperative Information
Systems, 2(2):127–158, June 1993.

59596767

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

[3] E. Beller, V. Gebski, and A. Keech. Randomisation in
clinical trials. Medical Journal of Australia, 177:565–567,
November 2002. http://www.mja.com.au/public/issues/
177 10 181102/bel10697 fm.pdf.

[4] J. Brenton, C. Caldas, J. Davies, S. Harris, and P. Mac-
callum. CancerGrid: developing open standards for clin-
ical cancer informatics. In Proceedings of the UK e-
science All Hands Meeting 2005, pages 678–681, 2005.
http://www.allhands.org.uk/2005/proceedings/.

[5] R. Calinescu. Model-based SOA generation for cancer clin-
ical trials. In Best Practices and Methodologies in Service-
Oriented Architectures. Proceedings of the 4th OOPSLA In-
ternational Workshop on SOA and Web Services, pages 57–
71, Portland, October 2006.

[6] R. Calinescu, S. Harris, J. Gibbons, and J. Davies. Cross-
trial query system for cancer clinical trials. In Advances in
Systems, Computing Sciences and Software Engineering—
CISSE 2006. Springer, 2007. To appear.

[7] S. Castano, V. D. Antonellis, and S. D. C. di Vimercati.
Global viewing of heterogeneous data sources. IEEE Trans-
actions on Knowledge and Data Engineering, 13(2):277–
297, March/April 2001.

[8] W. Cheung and C. Hsu. The model-assisted global query
system for multiple databases in distributed enterprises.
ACM Transactions on Information Systems, 14(4):421–470,
October 1996.

[9] G. Cong, W. Fan, X. Jia, and S. Ma. PRATA: A system
for XML publishing, integration and view maintenance. In
Proceedings of the UK e-Science All Hands Meeting, pages
432–435, Nottingham, UK, 2006.

[10] M. Dubinko. XForms Essentials. O’Reilly, 2003.
[11] B. Evjen, S. Hanselman, F. Muhammad, and S. Sivakumar.

Professional ASP.NET 2.0. Wiley Publishing, Inc., 2006.
[12] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-

Based Access Control. Computer Security Series. Artech
House, 2003.

[13] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST standard for role-
based access control. ACM Transactions on Informa-
tion and System Security, 4(3):224–274, August 2001.
http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software. Ad-
dison Wesley, 1995.

[15] E. Gropp. Transforming XML schemas, 2003.
http://www.xml.com/pub/a/2003/01/15/transforming-
schemas.html.

[16] S. Harris and R. Calinescu. CancerGrid clinical trials
model 1.0, 2006. CancerGrid technical report MRC/1.4.1.1,
www.cancergrid.org/public/documents.

[17] IBM Corporation. XML forms generator, 2006.
http://www.alphaworks.ibm.com/tech/xfg.

[18] US National Cancer Institute. The caCORE Software De-
velopment Kit, 2006. http://ncicb.nci.nih.gov/infrastructure/
cacoresdk.

[19] US National Cancer Institute. The cancer Biomedical Infor-
matics Grid, 2006. https://cabig.nci.nih.gov/.

[20] M. B. Juric et al. Business Process Execution Language for
Web Services. Packt Publishing, 2004.

[21] J. Kovse and T. Harder. Generic XMI-based UML model
transformations. In Z. Bellahsene, D. Patel, and C. Rolland,
editors, Object-Oriented Information Systems: 8th Interna-
tional OOIS Conference, volume 2425 of Lecture Notes in
Computer Science, pages 192–198. Springer, 2002.

[22] R. Kush. Can the protocol be standardised? Techni-
cal report, Clinical Data Interchange Standards Consortium,
2006. http://www.cdisc.org/publications/CDISK ed.pdf.

[23] Focus Software Ltd. XFormation, 2006.
http://www.xformation.com/default.asp.

[24] Microsoft. Web services description language tool
(wsdl.exe), 2006. http://msdn.microsoft.com/library/en-
us/cptools/html/
cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp.

[25] D. Moher, K. F. Schultz, and D. G. Altman. The CON-
SORT statement: revised recommendations for improving
the quality of reports of parallel-group randomised trials.
The Lancet, 357, April 2001.

[26] C. Poole and H. Earl. NEAT: National breast cancer study of
epirubicin plus CMF versus classical CMF adjuvant therapy.
http://www.ncrn.org.uk/portfolio/dbase.asp.

[27] C. Poole, H. Howard, and J. Dunn. tAnGo: A phase
III randomised trial of gemcitabine in paclitaxel-
containing, epirubicin based adjuvant chemother-
apy for women with early stage breast cancer, 2003.
http://www.isdscotland.org/isd/servlet/FileBuffer?namedFile
=tAnGo protocol version 2.0 July 2003.pdf.

[28] A. Stell, R. Sinnott, and O. Ajayi. Supporting the clinical
trial recruitment process through the grid. In Proceedings of
the UK e-Science All Hands Meeting, pages 61–68, Notting-
ham, UK, 2006.

[29] I. V. Toujilov and P. Maccallum. Common data element
management architecture. Technical Report MRC-1.1.2,
CancerGrid, May 2006. http://www.cancergrid.org/public/
documents/2006/mrc/Report%20MRC-1.1.2%20CDE%20
management%20architecture.pdf.

[30] I. V. Toujilov and S. B. Nagl. Client’s script execution in
semantic web services. In Proc. 10th International Con-
ference on Intelligent Engineering Systems, pages 247–252,
London, UK, 26–28 June, 2006.

[31] Cunningham & Cunningham, Inc.
(C2) wiki. Hierarchical visitor pattern.
http://c2.com/cgi/wiki?HierarchicalVisitorPattern.

[32] J. Woodcock and J. Davies. Using Z. Specification, Refine-
ment and Proof. Prentice Hall, 1996.

[33] O. Zimmermann, P. Krogdahl, and C. Gee. Elements
of service-oriented analysis and design, June 2004.
http://www-128.ibm.com/developerworks/webservices/
library/ws-soad1/.

60606868

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 13:11 from IEEE Xplore. Restrictions apply.

