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Abstract

Plane wave methods have become an established tool for the solution of Helmholtz problems in homogeneous media.
The idea is to approximate the solution in each element with a linear combination of plane waves, which are roughly
equally spaced in all directions. The main advantage of plane wave methods is that they require significantly fewer
degrees of freedom per unknown than standard finite elements. However, for many wave problems there are only
a few dominant wave directions, which can be found using ray tracing or other high-frequency methods. Based on
arguments from high-frequency asymptotics we show that dominant plane waves can be a suitable approximation
basis if multiplied (modulated) by small degree polynomials. We explore this approach for two example problems
and compare its performance against standard equispaced plane wave basis sets. Finally, we present an example with
smoothly varying speed of sound, which demonstrates that for such problems approximations based on polynomially
modulated dominant wave directions can far outperform standard plane wave methods, which are not well suited for
handling problems in varying media.
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1. Introduction

In recent years plane wave methods (see e.g. [1, 2, 3, 4]) have become a widely used tool for the solution of
Helmholtz problems of the form

∆u +

(
ω

c

)2
u = 0, (1)

where ω is the frequency and c is the speed of sound (we will also use the spatial wavenumber k := ω/c). Typically,
plane wave methods are applied only if c is constant or at least piecewise constant. Later in this paper we will also
consider the case that c = c(x) is varying across the domain. The idea of plane wave methods for constant or piecewise
constant c is to approximate the solution u in an element K by a linear combination of plane waves of the form

u(x) ≈
N−1∑
j=0

α jei ωc d j·x, (2)

where α j ∈ C and the d j ∈ Rd, ‖d j‖ = 1, are direction vectors in d = 2 or d = 3 dimensions. In 2-d a typical choice
for the direction vectors d j is

d j =
[
cos θ j, sin θ j

]T
, θ j =

2π j
N
. (3)

In 3-d a suitable choice of directions is for example described in [5]. Plane wave methods often require substantially
fewer degrees of freedom for a given accuracy than standard finite element methods. The reason is that the basis
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functions are already solutions of the underlying Helmholtz equation and therefore have the right oscillatory behavior.
This is one example of a wider class of methods, called Trefftz methods, which approximate solutions of PDE prob-
lems using a basis composed of particular solutions of the homogeneous partial differential operator. Other frequently
used choices of basis functions include Fourier-Bessel functions [6, 7, 8] and fundamental solutions [9, 10].

One potential advantage of plane wave methods is the freedom in the selection of the plane wave directions.
Standard approximation estimates for plane waves, such as those in [5], necessarily assume that the directions are
approximately equally spaced on the unit sphere. However, in many wave problems, such as scattering from convex
obstacles, there are only few dominant wave directions, and it seems natural to try to exploit this fact. One way to
determine dominant directions is to use ray tracing, which is particularly simple for problems in homogeneous media.

Assume that a Helmholtz solution has a single dominant wave direction d̂ in an element K. Then a naive approach
would be to just approximate the solution u in K by ũ := αei ωc d̂·x for some constant α. But this only gives an acceptable
solution if u itself is very close to a plane wave. A more general approach, based on high-frequency arguments, is to
use functions of the form

M−1∑
j=0

p j(x)ei ωc d̂ j·x, (4)

polynomially modulated plane waves, where the p j are small degree polynomials, and the d̂ j are the dominant wave
directions obtained from ray tracing. Related types of basis functions have already been proposed in the context of
high-frequency finite element methods [11]. The idea in high-frequency finite elements is to exploit that in the limit
ω→ ∞ a Helmholtz solution u has the asymptotic representation

u =
∑

j

A j(x)eiωφ j(x) + O

(
1
ω

)
, (5)

where the A j are amplitude functions and the φ j phase functions. The amplitude functions A j are slowly oscillating and
can therefore be efficiently computed once the φ j are known. However, determining the φ j is often difficult, especially
in problems with varying speed of sound c or in the presence of complex geometries. Here, we only assume that
approximations to the dominant wave directions d̂ j are available.

For the assembly we use a modified formulation of the Plane Wave Discontinuous Galerkin Method (PWDG)
introduced in [12], which keeps the volume terms. This discontinuous Galerkin ansatz makes it easy to include
different dominant directions in different elements.

The paper is organised as follows. In Section 2 we give a brief overview of some concepts from high-frequency
asymptotics, which motivate the concepts in this paper. Then in Section 3 we demonstrate the approximation prop-
erties of polynomially modulated dominant plane waves in comparision to standard equispaced plane waves. A
discontinuous Galerkin approach to assemble the matrices for a computation on a mesh is presented in Section 4. This
is used in Section 5 and 6 to investigate two example problems. The scattering problem in Section 6 also contains
diffracted waves and we propose one approach of incorporating them. In Section 7 we present an example involving
a problem with varying speed of sound. We conclude the paper with remarks in Section 8.

2. Elements of high-frequency asymptotics

In this section we briefly summarize some results from high-frequency asymptotics, which will be needed in this
paper. A more detailed introduction is given in [13].

We assume that the solution u of (1) can be represented as

u(x) = eiωφ(x)
∞∑
`=0

a`(x)(iω)−`.

Here, φ(x) is an unknown phase function and the a` are unknown amplitude functions. Plugging into (1) and matching
leading order coefficients in ω gives

|∇φ(x)| =
1

c(x)
, (6)

∆φA + 2∇φ∇A = 0. (7)
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Equation (6) is an eikonal equation for the phase function φ and (7) is a transport equation for the leading order
amplitude function A(x) := a0(x). After solving for φ and A, an approximation to the Helmholtz solution u, is

u(x) = A(x)eiωφ(x) + O

(
1
ω

)
.

For multiple scattering configurations the solution for the eikonal equation is not unique, giving rise to the represen-
tation in (5).

Now define the Hamiltonion H(x, p) := |p|c(x). Obviously, from (6) it follows that H(x,∇φ(x)) ≡ 1. The Hamil-
tonian is constant along the bicharacteristic curves, (x(t), p(t)) defined by

d
dt

x(t) = ∇pH(x, p) = c(x)
p
|p|
, (8)

d
dt

p(t) = −∇xH(x, p) = −|p|∇c(x). (9)

By rescaling p, we have H(x(t), p(t)) = 1 and a short calculation, given in [13], shows that the pair (x(t),∇φ(x(t)))
satisfies (8)-(9). So by uniqueness we have p(t) = ∇φ(x(t)).

Defining η(x) = c(x)−1 and rescaling (8)-(9) such that |p|c(x) = 1 gives the ray equations

d
dt

x(t) =
1
η2 p, (10)

d
dt

p(t) =
∇η

η
(11)

with initial conditions x(0) = x0, p(0) = p0 under the constraint that |p0| = η(x0). Ray tracing consists of solving this
system of ODEs. The solutions, x(t), are called rays and p is called the slowness vector. For homogeneous media η is
constant. It follows that p(t) is constant along the rays x(t), which are just straight lines. Also, since p = ∇φ(x), from
(10) it follows that the rays are orthogonal to the level sets of φ.

We now define what we mean by a dominant wave direction in an element K.

Definition 1 (Dominant wave direction). Let φ be a solution of the eikonal equation (6), which is differentiable in K.
The dominant wave direction in K associated with φ is defined as the average

d :=
∫

K
∇φ(x)dx.

If the solution of the eikonal equation in K is non unique, as it is the case in multiple scattering problems, each
branch of the multi-valued solution to the eikonal solution will lead to a different dominant direction. This is natural
for the case that the Helmholtz solution u in K is composed of waves travelling in different directions.

In practice we assume that a wave is only slowly changing in an element. Hence, a good approximation to a
dominant direction is to set d := ∇φ(x0) for some x0 ∈ K. If x0 = x(t) for some t, then d = p(t). Hence, we need to do
ray tracing in such a way that the element K is hit by a ray. For constant media problems this is usually not difficult.
For problems in inhomogeneous media rays may diverge exponentially in which case, for example, wavefront tracking
methods can be used [14].

3. Approximating a Helmholtz solution by a dominant plane wave

Consider a sound source at 0 of the form u(r) = H(1)
0 (k|x|). If we are sufficiently far from the origin, this function

locally appears to be a plane wave. We now consider the best approximation of u in the square [1, 2 + h] × [2, 2 + h],
where h = 0.2 by a plane wave of the form αeikd·x, where d =

[
cos θ, sin θ

]T
. As wavenumber we choose k = 30.

Hence, for the wavelength λ we have λ = 2π
k ≈ h. The situation is depicted in the left plot of Figure 1. The right plot

of Figure 1 shows the relative L2 approximation error in dependence on the angle θ. The 1% error level is shown by
a dashed line. The best possible error is about 3% with only one degree of freedom. Naturally, if we move further
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Figure 1: Left: A sound source with wavenumber k = 30. In the square we approximate the field by a single plane
wave. The right plot shows the relative approximation error in the square in dependence of the angle θ of the plane
wave.

away from the source the wave appears more like a plane wave and we expect the error to be smaller. This artificial
example demonstrates that we can approximate a non-trivial Helmholtz solution locally by using a dominant plane
wave direction. However, we need to correct the error between the dominant plane wave and the exact solution. In the
high-frequency limit we assumed a representation of the form u(x) ∼ A(x)eiωφ(x) as ω → ∞ with a smooth amplitude
function that is the solution of the transport equation (7). For finite frequencies this is still a valid assumption. If we
make the ansatz u(x) = Ã(x)eiωφ(x) we have, by substituting into the Helmholtz equation (1) the relationship [15],

0 =
1
ω

∆Ã + 2i∇Ã · ∇φ + iÃ∆φ − ω
(
|∇φ|2 − η2

)
Ã

=
1
ω

∆Ã + 2i∇Ã · ∇φ + iÃ∆φ. (12)

As ω→ ∞ we recover the transport equation (7). Hence, the diffusion term 1
ω

∆Ã is a finite frequency correction term.
If the high-frequency approximation A(x)eiωφ(x) is a good approximate model for the wave then we can expect that
also the finite frequency amplitude function Ã is only mildly oscillatory since all oscillations are contained in eiωφ(x)

if φ is the correct phase function.
In the model problem we approximated the phase contribution eiφ(x) by a plane wave. But the amplitude contri-

bution Ã was only approximated by a constant α in the small square. To capture the amplitude contribution better we
approximate u by a function of the form ũ := p(x)ei ωc d·x. Let ‖·‖0,K be the L2(K) norm and suppose that diam K ≤ h.
Furthermore, without loss of generality we can assume that 0 is in the interior of K and that φ(0) = 0. This is obtained
by rewriting A(x)eiωφ(x) = A(x)eiωφ(x0)eiω(φ(x0+x)−φ(x0)) for some x0 ∈ K. Then

‖u − ũ‖0,K = ‖p(x)ei ωc d·x − Ã(x)eiωφ(x)‖0,K

≤ ‖ei ωc d·x‖0,K

(
‖p(x) − Ã(x)‖0,K + ‖Ã‖0,K‖eiω(φ(x)− d

c ·x) − 1‖0,K
)

(13)

Now, eiω(φ(x)− d
c ·x) − 1 ≈ iω(φ(x) − d

c · x) if ω‖φ(x) − d
c · x‖0,K is sufficiently small. Hence, from (13) it follows that

‖u − ũ‖0,K / ‖ei ωc d·x‖0,K

(
‖p(x) − Ã(x)‖0,K + ω‖Ã‖0,K‖φ(x) −

d
c
· x‖0,K

)
. (14)

There are two error sources, namely the error of approximating Ã by a polynomial p in the element K and the error of
approximating φ by a linear function d · x in K. While the first error can be controled by the polynomial degree of the
finite element space the second error depends on how well φ can be approximated by a linear function in the element
K. Assume that φ is sufficiently smooth. Then

φ(x) −
d
c
· x =

[
∇φ(0) −

d
c

]
· x + O(h2)
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Figure 2: Approximating the wave in the small square shown in Figure 1. This time the approximating wave is
modulated with polynomials of degree 0 (left plot, same as the approximation in Figure 1), 1 (middle plot), and 2
(right plot).

since ‖x‖ ≤ h in K. Hence, by denoting the angle between ∇φ(0) and d as θ and assuming that θ ∈ [0, π/2), up to
quadratic terms in h we have

‖φ(x) − d · x‖ / h‖∇φ(0) −
d
c
‖ ≤
√

2
h
c

sin θ.

Combining this estimate with (13) results in

‖u − ũ‖0,K / ‖eiωd·x‖0,K

(
‖p(x) − Ã(x)‖0,K +

√
2‖Ã‖0,K

hω
c

sin θ
)
. (15)

Assuming that Ã is sufficently smooth and not oscillatory then a low degree polynomial p is sufficient to approximate
Ã on large elements. The main error contribution is therefore given by the second term, requiring that hω

c sin θ � 1.
In standard finite elements the requirement is that hω

c � 1. Hence, if we have a good approximation to the dominant
wave directions we obtain a significant improvement to standard finite element methods. Indeed, if ∇φ(0) = d

c then
up to quadratic terms in h the oscillations in K are completely canceled out, allowing for significantly larger element
sizes than with standard approaches.

This analysis ignores that a sufficiently high degree polynomial p will also approximate the oscillatory phase
factor in an element well. However, the goal here is a different one. We want to have large elements with small degree
polynomials that are just sufficient to approximate the amplitude contribution well.

Figure 2 shows a similar experiment as the right plot of Figure 1, but this time we approximate with functions of
the form p(x)ei ωc d·x. Certainly, the situation is artificial, but it demonstrates that optimally chosen directions can be
efficient in approximating Helmholtz solutions if the amplitude contribution is taken into account by modulating with
polynomial terms. We also note that it is not required to choose the best direction in an element. In the right plot of
Figure 2 we see that with polynomials of degree 2, there is a range of θ for which the error level remains below 1%.
Hence, it ought to be sufficient to have approximate dominant directions in each element.

In Figure 3 we show the approximation error with a basis of equidistant plane wave directions as in (2). In this
example we need at least 11 directions to achieve a relative error of less than 1%. The same level of accuracy is
achieved with only 6 basis functions in the modulated basis used for the right plot of Figure 2. This indicates that
modulated plane waves can be an efficient alternative to equidistant plane waves if there is only one dominant wave
direction in each element.

4. A discontinuous Galerkin formulation

Various approaches have been proposed for the assembly of a discrete system using plane wave type bases, such as
the PUFEM [16, 17], the Ultra Weak Variational Formulation [1, 2] or Lagrange multiplier methods [18]. The UWVF
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Figure 3: Error of approximating the wave in the small square from the left plot of Figure 1 by a linear combination
of plane waves of the form (2).

and Lagrange multiplier methods make use of the fact that the basis functions satisfy the exact Helmholtz equation (1)
in the interior of each element. Hence, the formulation only needs to match up the inter-element continuity conditions
and the boundary conditions. Modulated plane waves in general do not satisfy the Helmholtz equation. Hence, we also
need to assemble volume terms. But this can easily be accommodated. In this section we briefly demonstrate this at
the example of the Plane Wave Discontinuous Galerkin Method (PWDG), a generalisation of the UWVF, introduced
by Gittelson, Hiptmair and Perugia [12]. This method will be used for the numerical experiments presented later in
this paper.

For the derivation in this section we rewrite (1) in the form

−∆u − k2µ2(x)u(x) = 0, (16)

where k = ω/c0 for some reference speed of sound c0 and µ(x) = c0/c(x).
Consider a triangularization Th of the computational domain Ω and let K ∈ Th be an element of the triangularisa-

tion. Multiplying (1) by a test function v in element K and integrating by parts gives∫
K
∇u · ∇vdV − k2

∫
K
µ2uvdV −

∫
∂K
∇u · nvdS = 0.

A further integration by parts yields∫
K

(−∆v − k2µ2)vudV +

∫
∂K

u · ∇v · ndS −
∫
∂K
∇u · nvdS = 0. (17)

Define σ := 1
ik∇u. If µ is constant in K and the test function v is a Helmholtz solution with respect to the wavenumber

kµ in K, that is −∆v − k2µ2v = 0, then ∫
∂K

u · ∇v · ndS − ik
∫
∂K
σ · nvdS = 0. (18)

The standard discontinuous Galerkin approach is now to approximate u and σ on ∂K by fluxes ûh and σ̂h, which are
linear combinations of jumps and averages of function values and normal derivatives in the respective neighboring
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elements. In particular, in [12] the choice

σ̂h :=
1
ik
{{∇huh}} − α [[uh]] −

γ

ik
[[∇huh]]

ûh := {{uh}} + γ · [[uh]] −
β

ik
[[∇huh]] (19)

was proposed. The index h denotes that the functions uh and σh and the operator ∇h are to be understood elementwise.
For a scalar v the jump [[v]] and average {{v}} on a boundary Γ between two elements K− and K+ is defined by

{{v}} :=
1
2

(
v− + v+) , [[v]] := v−n− + v+n+.

For a vector quantity σ we have

{{σ}} :=
1
2

(
σ− + σ+) , [[σ]] := σ− · n− + σ+ · n+,

where n− and n+ are the outgoing normal directions with respect to K− and K+. The PWDG discretisation is now
given by (18) with flux definitions in (19). Suitable choices for the parameters α, β and γ and flux definitions for
impedance boundary conditions are discussed in [12]. In order to incorporate basis and test functions, which do not
satisfy the Helmholtz equation (1) we simply reverse the second integration by parts in (17) and obtain, after including
the flux terms, the formulation (see also [12, eq. 2.5])∫

K
∇uh · ∇vhdV − k2

∫
K
µ2uhvhdV +

∫
∂K

(ûh − uh) · ∇vh · ndS − ik
∫
∂K
σ̂h · nvhdS = 0. (20)

Hence, the additional volume term is given by a block-diagonal matrix whose entries are defined by the weak form

w(uh, vh) :=
∫

K
∇uh · ∇vhdV − k2

∫
K
µ2uvhdV −

∫
∂K

uh · ∇vh · ndS .

For the flux parameters α, β, and γ we choose the following values.

α =
ap2

kh
, β =

bkh
p
, γ = 0.

Here, p is the polynomial degree of the modulated plane wave basis. Without p, corresponding to no polynomial
modulation, these flux parameters were suggested in [12]. If also β = 0 then the formulation corresponds to an
interior penalty DG (IP-DG) method [19]. For the IP-DG parameter α the scaling by p2 is a standard choice (see e.g.
[20]). The division by p in the β parameter can be justified by scaling arguments. The values a, b > 0 are constants.
For simplicity we use a = b = 1.

5. A simple numerical example

To illustrate the behaviour of the modulated plane wave basis within the discontinuous Galerkin framework, we
will approximate the Helmholtz solution due to a source at (−0.2,−0.2) in the square [0, 1]2 (see Figure 4). We use
the formulation from the previous section and impose an impedance boundary condition consistent with the desired
solution.

On an element K with centre cK , the dominant direction is taken to be the unit vector along dK := cK−(−0.2,−0.2).
On each element, therefore, we approximate with functions from a basis set consisting of modulated plane waves of
the form p(x)eikdK ·x, where p(x) is a polynomial of degree p, whose basis functions are L2-orthogonal polynomials on
K. Note that a polynomial of degree p in 2-d is represented by (p + 1)(p + 2)/2 basis functions. For comparison, we
will use the basis of N equispaced plane waves shown in (2), where the unit vectors, d j are as defined in (3).

The relative errors for these choices of bases are shown for k = 20 and k = 60 in the top (plane waves) and middle
(modulated waves) plots of Figure 5. Ignoring conditioning issues with plane waves if m is large, equispaced plane
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Figure 4: The real part of the Hankel function with origin at (−0.2,−0.2), g(x) := H0(k |x + (0.2, 0.2)|) with ray-traced
directions on each element.

waves have a better asymptotic error behavior compared to modulated bases with a similar number of unknowns. Here
the effect becomes visible that polynomials of degree p need O(p2) basis functions to have a similar approximation
order as O(p) plane wave directions as h→ 0 [5].

But in the bottom plots of Figure 5 we see that the asymptotic behaviour is not the full story. The modulated plane
wave basis is able to achieve a modest relative error (e.g. 10−2), using significantly fewer degrees of freedom. The
effect is even more pronounced when we let k = 60.

The deterioration of the error seen as h → 0 for some of the plane wave basis sets is explained by the condition
numbers in Table 1. Condition numbers for the modulated plane wave bases are given in Table 2. The condition
numbers of the systems required to achieve a given error are broadly comparable. For example, at h = 0.167, the
basis composed of plane waves modulated by polynomials of degree 2 achieves a relative error of 1.4% (it goes up
to 2.1% at h = 0.125, but then falls again); the condition number of the linear system is about 3 × 104. To achieve
the same error with 11 equispaced plane waves per element requires h = 0.25, at which point the condition number is
approximately 3 × 103, a difference of one digit in accuracy for a dense linear system solve. The condition numbers
of the modulated plane waves perform a little better for k = 60, but still exceed those of the corresponding uniform
bases for the same relative error. We note that this is despite an orthogonal basis of polynomials being used for the
modulated plane waves. The multiplication of the orthogonal polynomials with the plane wave part increases the
overall condition numbers. Overall, in the asymptotic regime as h → 0, standard plane waves perform better than
a modulated plane wave basis, requiring significantly fewer degrees of freedom for a given accuracy. However, for
moderate accuracy requirements (i.e. a few percent relative error), modulated plane waves can be significantly better
than a standard plane wave basis in terms of degrees of freedom with similar conditioning.

6. Scattering from a unit square

In this section we will explore the application of modulated polynomials to a more difficult problem, namely
sound-soft acoustic scattering of a plane-wave eikx·d from the unit square S := [−0.5, 0.5]2. We truncate the calculation
at the circle of radius 2, and approximate an absorbing boundary using an impedance boundary condition on this outer
circle. The boundary conditions are u = 0 on the interior boundary and ∂u

∂n − iku = ik(d · n − 1)eikx·d on the outer
boundary.
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(b) Plane waves, k=60
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(c) Modulated waves, k=20
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(d) Modulated waves, k=60
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Figure 5: Top plots: Relative errors in the solution with plane wave basis sets for k = 20 (left) and k = 60 (right) as
h → 0. Middle plots: Same experiments but with a basis set consisting of modulated waves with dominant direction
in each element. Bottom plots: Combination of the above error plots to show the relative error versus the number of
degrees of freedom for k = 20 (left) and k = 60 (right).
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No. of plane waves
h 7 11 15 21

0.5 590.7 2468 1199 394114
0.333 1600 579.6 50722 6.432 × 108

0.25 1410 3146 1726330 1.419 × 1011

0.167 378.7 157070 4.723 × 108 4.914 × 1014

0.125 1268 2375458 2.312 × 1010

0.0909 6392

Table 1: Condition numbers for the linear system built
using equispaced plane wave bases to find solutions with
k = 20.

Polynomial degree
h 0 1 2 3

0.5 9.048 274.8 2488 1729
0.333 14.95 316.2 3112 8449
0.25 19.13 524.8 14414 66381
0.167 33.51 2178 32334 368706
0.125 50.53 4336 129632 391678

0.0909 76.53 11848 1321328
0.0625 121.4 33036

Table 2: Condition numbers for linear systems built using
modulated plane wave bases to find solutions with k = 20.

6.1. A ray tracing based approximation
To find the dominant wave directions we use a simple ray tracing algorithm that shoots rays from the outer

boundary, with initial direction d. These reflect if they hit the scatterer S . We mark elements in the mesh with
the directions of the rays that intersect them. The results are shown in Figure 6.

The ray tracing creates three types of regions. Some elements are only traversed by rays associated with the
incident wave. Behind the obstacle, there is a shadow region which is not traversed by any rays. The left and bottom
of the square both cause reflections, which gives a diagonal band in which there are two rays, both incident and
reflected.

Our first choice of basis is to take a modulated plane wave basis on each element with the directions provided by
the ray tracing. In the shadow region, where there is no inherent dominant direction, we use modulated Fourier Bessel
functions of the form p(x)J0(kr), where r is the polar coordinate of x local to a center in the element K. The reason
for these basis functions is heuristic. Since there is no preferred wave direction from ray tracing in the shadow zone
we want to use wave solutions that have an isotropic behavior in all directions, which is satisfied by the function J0.
Also, since the solution goes to zero in the shadow zone as ω → ∞ and is small compared to the other regions, a
modulation by a small degree polynomial will be sufficient to give enough accuracy there.

The results, for k = 30, using ray tracing directions modulated with polynomials of degree 0, 2, 4 and 6 are shown
in Figure 7. Since some elements now contain two modulated plane waves, ill-conditioning can occur due to these
elements. To control this we remove redundant information by a local elementwise SVD. Obviously, the results are
not satisfactory. The basis is missing information. The problem is that the ray traced directions do not capture corner
diffraction effects as we describe in the following section.

6.2. Incorporating a GTD correction
A corner hit by a ray essentially acts like a point source, creating rays that shoot out equally in all directions. The

form of this diffracted field ud is ud(r) = uiD eikr
√

r , where ui = Aieiψ is the amplitude Ai and phase ψi of the incoming
wave and D is a diffraction coefficient that depends on k, the direction θ of the diffracted ray and the incident phase
ψi. A simple way of incorporating this diffraction information is to include basis functions around a corner at y j of the

form p(x)H1
0(k|x− y j|) since H(1)

0 (kr) ∼
√

2
πkr ei(kr− π

4 ) as r → ∞ [21]. At the corner y j the function H(1)
0 (k|x− y j|) has a

logarithmic singularity. However, this singularity may be removed by multiplication with a polynomial which is zero
at y j. We note that more effective basis functions around corners are possible. In [6, 22] fractional Bessel functions
around corners were used to obtain an exponentially convergent basis there. But this technique was restricted to 2-d.
Here, we are interested in the question whether we can obtain an acceptable for finite wavenumbers if we include a
simple GTD correction term in a modulated plane wave basis.

6.3. Numerical results for the full formulation
In Figure 8 we plot the real part of the solution for k = 30 using the ray traced modulated plane wave basis, in

the illuminated area, modulated Bessel functions of order zero in the shadow zone and modulated Hankel functions
of order zero around the corners. Each modulated Hankel function is active in those elements that are in the line of
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Figure 6: Ray traced directions for an incident plane wave with direction d = [1, 1]T .

sight of the associated corner. For comparison in Figure 9 we show the solution of the same problem with 15 equally
spaced plane wave directions in each element. In Figure 10 we plot the relative pointwise errors of the computed
solution against a reference solution computed with 27 equally spaced plane waves in each element for the cases of
a) the full modulated basis including GTD correction terms, b) a plane wave basis with 15 uniformly spaced plane
waves and c) a polynomial basis with polynomials of degree 6 in each element. The reference solution is shown in
plot d). It is visible that the plane wave basis has the best error behaviour. The modulated basis has large relative
errors in the shadow zone. However, the reference solution is small in shadow. The degree 6 polynomials seem to
behave similarly to the modulated basis set. The relative L2 errors compared to the reference solutions are as follows:
a) 3.98%, b) 0.69%, c) 4.46%. In comparison for the number of degrees of freedom we have a) 19352, b) 8760, c)
16352. Hence, the accuracy of the modulated wave basis multiplied with polynomials of degree 3 is comparable to
a full polynomial basis of degree 6, but needs slightly more degrees of freedom. The plane wave basis outperforms
both basis sets significantly in terms of error and required degrees of freedom. The plane wave basis has 15 degrees
of freedom on each element. The modulated ray traced plane waves require 10 dofs per element in the case of one
dominant direction and 20 dofs in the case of two dominant directions. Additionally, every element is within the line
of sight of either 2 or 3 corners, and the modulated Hankel function for each of these contributes an additional 10 dofs
per element.

In very simple situations, such as the one in Section 5, a modulated basis with dominant directions can outperform
a plane wave basis. For more complicated situations, such as that presented in this example, plane waves equally
spaced in all directions are preferable since tracking all dominant wave directions including GTD effects can quickly
become expensive. The situation could be improved by using the exact correction term from the asymptotic theory
of diffraction and / or being more sophisticated about the choice of polynomial degree used to modulate these terms.
However, the analytic information required to do this may not be available for every possible configuration.
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(a) p=0 (b) p=2

(c) p=4 (d) p=6

Figure 7: Real part of scattering solution with ray traced plane waves modulated with polynomials of degree 0, 2, 4
and 6.

Figure 8: Real part of scattering solution with ray traced
plane waves and Fourier-Hankels modulated with polyno-
mials of degree 3

Figure 9: Real part of scattering solution with 15 uniformly
spaced plane-waves per element
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(a) Modulated basis (b) 15 plane waves

(c) Degree 6 polynomials (d) Reference Solution

Figure 10: Pointwise relative errors for a) waves modulated with polynomials of degree 3, b) 15 equally spaced
plane waves in each element and c) a polynomial basis of degree 6 polynomials in each element. For comparison the
reference solution is shown in d).
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Figure 11: Real part of the solution to the inhomogeneous problem and dominant wave directions in each element.

7. The case of varying speed of sound

In this section we investigate an example of a problem with varying speed of sound. Plane wave bases only give
higher order convergence for problems with constant or piecewise constant speed of sound c. For functions that are
not Helmholtz solutions with constant c their approximation quality is in general no better than that of piecewise
linear basis functions as h → 0 [12, Section 3.2]. In this section we demonstrate that modulated dominant directions
give higher order convergence and can significantly outperform both standard plane waves and polynomial bases for
problems with varying c.

The idea is, similarly to the case with constant speed of sound, to approximate a Helmholtz solution of the form
u = Ã(x)eiωφ(x) in an element K by a modulated plane wave of the form p(x)ei ωĉ d·x, where in the case of varying c(x)
we choose ĉ = c(x0) for some x0 ∈ K. For problems with moderately changing c this provides a sufficient phase
approximation across the whole element.

If ψ is a harmonic function, then a simple calculation shows that the function u(x) = eiωψ(x) satisfies

∆u + ω2 |∇ψ|2 u = 0.

We choose ψ(x) = 3
2
√

2

[
(x + 1

3 )2 − (y + 1
3 )2

]
. Hence, we have

c(x) =

√
2

(3x + 1)2 + (3y + 1)2

The parameters are chosen in such a way that c(x) varies between 1
4 and 1 in the square [0, 1]2. On the boundary, we

specify Dirichlet conditions compatible with the analytic solution u = eiωφ(x). We fix ω = 20 and discretise using a
regular triangular mesh.

Since we know the analytic solution we can compute the exact gradient∇ψ(x) in the center point of each element to
obtain the dominant direction. This is shown in Figure 11. Figure 12 shows the rate of convergence for decreasing h in
the case of a modulated plane wave basis with degree 2 polynomials (circles), a standard polynomial basis of degree 2
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Figure 12: h-convergence of various bases for the inhomogeneous problem.

(squares), 15 uniform plane wave directions in each element (triangles) and a modulated plane wave basis with degree
2 polynomials, where the dominant directions have a random error of 1% (stars). It is obvious that modulated plane
waves perform significantly better than the other basis types. Already for h = 2−3, which corresponds to around two
wavelengths at the upper right part of the unit square, we have a relative L2 error of less than 1%, using only 6 dofs
in each element. Perturbing the optimal directions only increases the error slightly. For comparison, the error of the
plane wave basis is around two orders of magnitude larger than the error of the modulated basis for h = 2−3.

8. Conclusions

In this paper we asked how well we can approximate the solutions of Helmholtz problems using just plane waves
in a dominant direction instead of the approximately equally distributed plane waves that are typically used in plane
wave methods. In order to achieve higher order convergence we need to modulate the dominant directions with
polynomials. In 2-d a polynomial basis of degree p needs O(p2) basis functions, while in 3-d already O(p3) basis
functions are required. For Helmholtz problems with constant c equally distributed plane waves only need O(p) basis
functions in 2-d andO(p2) basis functions in 3-d to achieve the same asymptotic approximation quality as polynomials
of degree p as h→ 0. Hence, although increasing the degree of the polynomials in modulated plane wave bases does
improve the order of convergence, for problems with constant speed of sound they can only be effective compared to
plane waves if there are are only few dominant directions in each element and the degree of the polynomial modulation
stays small. One such example was given in Section 5. For more complicated problems with varying wave directions
and diffracted wave components, as was the case for the square scatterer in Section 6, modulated plane waves using
dominant directions are outperformed by standard plane wave bases.

The situation changes significantly for problems with varying speed of sound. Here, plane waves do not give
higher order convergence. But modulated plane wave bases continue to do so. Effectively, the modulation corrects for
the varying wavenumber. The authors are currently investigating the application of modulated plane waves to more
complicated problems in varying media based on dominant directions obtained from ray tracing.
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