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The large-scale manufacture of biological products results in the generation of significant quantities of process

information that can be used to inform future design decisions. Currently this information is not exploited to its full

potential. The challenge is thus to identify and/or develop tools that allow the utilisation of this valuable resource.

The  main objective of the research reported in this paper was to investigate whether it was possible to utilise infor-

mation, in particular that extracted from protein sequence data, from previous processes, with the goal of informing

process route selection early in development. The approach adopted draws on tools in the areas of data mining and

pattern  recognition including the techniques of Fisher correlation score and self-organising maps. The methodology

developed was applied to two case studies utilising data from the amino acid sequences of 41 proteins previously

developed at Avecia Biologics, along with associated information relating to the downstream processing steps used

during their large scale manufacture. The results demonstrate that information from previous processes can be used

to  inform process route selection.
© 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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.  Introduction

he development and manufacture of human healthcare
roducts is an exciting and fast moving sector of the biotech-
ology industry. However, to be successful in this competitive
nvironment, biotech companies need to balance the con-
icting business requirements resulting from the need to
inimise time to market, while at the same time ensur-

ng product is fit for purpose and maximising production
fficiency. Success relies on creating an environment where
aximum use is made of available knowledge and expertise.

his is particularly important in the area of contract devel-

pment and manufacture, where time lines are short and
roduct histories are limited.
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Over the past 30 years, the biopharmaceutical industry
has launched more  than 100 molecules, a figure which is
anticipated to maintain a growth rate of 15–30% annually
(Walsh, 2006). For whole antibodies (IgG), which have been
a major growth area of biopharmaceuticals for a number of
years, there exist template/platform processes based on pro-
tein A capture (Shukla et al., 2007). Consequently the basic
process structure is in place for any IgG, with development
focussing on the optimisation of the platform for individual
cases. However, for therapeutic proteins, as a general category,
no platform exists and development of a process for each new
protein must be treated on an individual basis. Major funda-
epted 19 January 2012

mental process design decisions that need to be made include
consideration of:

neers. Published by Elsevier B.V. All rights reserved.
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• Organism (prokaryote, eukaryote)
• Location of product accumulation (intracellular, periplas-

mic, secreted)
• Strain
• Construct
• Primary separation methods (centrifugation, TFF, direct

capture)
• Multi-step chromatographic purification (chromatography

media selection, operating conditions, elution strategy,
pooling criteria, etc.)

• Drug substance formulation

At production scale, a complex series of options for process
route selection exist. The potential to assess experimentally
the multiple options available for route selection and devel-
opment has resulted in the need to generate data that would
support process development. One approach to receive signifi-
cant attention is that of high throughput process development
involving extremely scaled down, parallel experimentation
(Micheletti and Lye, 2006). An alternative, complementary
approach is to make use of the knowledge contained in
data from pre-existing processes (Avramenko and Kroslawski,
2006). This can range from relatively small amounts of data
from early stage design, such as from shake flask experiments,
to more  comprehensive, later phase records such as those
generated during scale-up studies. Accessing and interpreting
the underlying correlation structure of this valuable resource
have the potential to enhance process knowledge and under-
standing and hence contribute to route selection and process
development.

The nature of the complex processes used at production
scale makes a mechanistic approach to understanding the
fundamental relationships of bioprocess data a challenge,
with reduced complexity models being the only viable option.
A more  industrially relevant approach is to adopt a data based
style of knowledge acquisition, specifically, through the utili-
sation of data mining and pattern recognition techniques, for
example. Typically, these are less labour-intensive and time-
consuming than mechanistic approaches. By adopting such
methods, a degree of inferred knowledge can be extracted
from the data leading to a more  focused, efficient design pro-
cedure through enhanced process understanding. If this were
to also lead to a reduction in the work involved in the design
process, significant financial benefits would result. Further-
more  by reducing time to market, manufacturing time under
patent protection would increase.

Within this paper, the hypothesis considered is whether
through the use of data mining techniques, it is possible to
identify proteins that exhibit ‘similar’ characteristics to the
current development organism/product based on the interro-
gation of protein sequence data. It is subsequently conjectured
that through the use of information available on these past
products and the manufacturing route selected, the develop-
ment time of the new process could be reduced. Furthermore
potential bottle-necks and challenges in production could be
identified before they occur and hence areas of research that
necessitate specific attention in the design process identified.

The approach presented is based on the interrogation of
protein sequence data through the application of the clus-
tering and classification algorithm, the Self-Organising Map
(SOM) (Kohonen, 1982). The objective was to compare proteins

using molecular level descriptors generated from the primary
sequence as it was conjectured that it is the relationships
at  the molecular level that influence the tertiary structure of
the protein and ultimately which then define the process and
hence how it will behave at the production scale. Using this
information, i.e. which proteins are similar, it is then possible
to look at the properties of these proteins.

Specifically, this paper focuses on the causes of varia-
tion in downstream processing (DSP) requirements. Two case
studies are considered. Case Study 1 is concerned with iden-
tifying whether differences between the likely downstream
processing steps required for primary purification could be
determined from the primary sequence. Case Study 2 relates
to inclusion body formation. Specifically whether it is possible
to pre-determine the appropriate solvent to use to re-dissolve
proteins, which have formed inclusion bodies during the fer-
mentation process.

2.  Methodology

The data utilised was provided by Avecia Biologics, and
comprised of amino acid sequences from 41 of their previ-
ously developed proteins (Table 1). These sequences exhibit
a great deal of variation, particularly in terms of their size
(6.2–92.7 KDa), pI (4.34–10.09) and hydrophobicity (GRAVY
range of −1.044–0.123). In addition to the sequence data, infor-
mation relating to the DSP steps was also provided. In Case
Study 1, information pertaining to whether an expanded-bed
was used or more  traditional separation units such as filtration
and centrifugation was the basis for classification of the pro-
teins. In Case Study 2, information related to whether proteins
had experienced inclusion body formation in DSP. This DSP
data was used to generate class descriptors for each protein.

Using the sequence data, a number of protein descrip-
tors were generated as described in the research reported by
Idicula-Thomas et al. (2006).  The primary sequence of each of
Avecia’s proteins was presented to the ProtParam tool on the
ExPASy World Wide Web server (Gasteiger et al., 2005). This
on-line analysis tool utilises a set of empirical relationships
to calculate a number of protein parameters directly from
the primary sequence. Parameters calculated include: Theo-
retical Isoelectric Point (pI), Instability Index (II) (Guruprasad
et al., 1990), Aliphatic Index (Ikai, 1980) and Grand Average
of Hydropathy (GRAVY) (Kyte and Doolittle, 1982). Alongside
this information, the on-line tool also provides a breakdown of
the molecular weight and associated amino acid abundances
for the protein, which were used to generate di-peptide and
tri-peptide scores for each protein. This data was assembled
into a database of protein characteristics that could be used as
descriptors for the classification of the proteins with regards
to the associated class data. A total of 12,732 variables were
attained (Table 2).

Most classification algorithms are unable to handle such
a large number of variables effectively, due to issues such
as computational load. To address this challenge, methods
for reducing the number of variables can be applied. Idicula-
Thomas et al. (2006) utilised the unbalanced correlation score
(Weston et al., 2003b)  to identify the top 20 features correlated
with solubility. In this research a number of feature selec-
tion algorithms were investigated including Fisher correlation
score, unbalanced correlation score (Weston et al., 2003b),
recursive feature elimination (Guyon et al., 2002) and primal
zero-norm (concave minimisation) (Bradley and Mangasarian,

1998). The detailed results of the study are not reported but
it was observed that some feature selection algorithms lead
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Table 1 – Primary sequence identifiers for proteins used
in Case Study 1 & 2.

Protein
Number

Case
Study 1

sequence
IDs

Case
Study 2

sequence
IDs

Protein description

1 B2007 Protease inhibitor
2 B2033 Enzyme
3 B2109 Protease inhibitor
4 B2114 1a B2114 1a Growth factor binding

protein
5 B2114 2 B2114 2 Growth factor
6 B2187 Trefoil protein
7 B2212 Anti viral protein
8 B2257 B2257 Cytokine
9 B2272 B2272 Antigen
10 B2285 Metallopeptidase
11 B2289 B2289 Enzyme
12 B2296 Chemo-attractant protein
13 B2337 GST protease fusion protein
14 B2346 Heat shock antigen fusion

protein
15 B2359 Antibody based fusion

protein
16 B2365/F Antigen
17 B2365/V Antigen
18 B2377 Enterotoxin
19 B2385 B2385 Adipocyte protein fragment
20 B2403 Antibody fragment
21 B2407 Fibronectin derived protein
22 B2422 Metalloprotease
23 B2428 B2428 Cytokine
24 B2436 Enzyme
25 B2438 Growth factor
26 B2454 Cytokine
27 B2462 B2462 Growth factor/Cytokine
28 B2463 Enzyme fusion protein
29 B2484 B2484 Antiviral protein
30 B2494 Flagellin antigen fusion

protein
31 B2521 Cytokine
32 B2530 B2530 Endopeptidase
33 B2531 B2531 Growth factor/Cytokine
34 B2547 B2547 Antigen
35 B2550 Cytokine
36 B2569 Enzyme
37 B2588 Growth factor HSA fusion

protein
38 B2610 B2610 Growth factor/Cytokine
39 B7013 Protease inhibitor
40 B8003 Complement inhibitor
41 B9043 Transferrin family protein
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Table 2 – Variables contained in the initial data set
generated from the primary sequences by the ExPASy
World Wide Web server’s ProtParam tool.

Variable number Parameter details

1 Number of amino acids
2 Molecular weight
3 Theoretical pI
4 Net charge
5 Number of carbons atoms
6 Number of hydrogen atoms
7 Number of nitrogen atoms
8 Number of sulphur atoms
9 Extinction coefficient A280 (all half Cys)

10 Instability index
11 Aliphatic index
12 Grand average of hydropathy (GRAVY)
13–35 Amino acid abundances (23 inc.

non-standard AA’s: B, X and Z)
36–564 Amino acid di-peptide abundances (232

combinations)
565–12,732 Amino acid tri-peptide abundances (233

combinations)
o variables incorrectly being identified as significant due, in
art, to chance correlations occurring as a consequence of the

arge number of variables in the initial data set. The Fisher cor-
elation score (Weston et al., 2003a)  was utilised as it gave the

ost reliable results following discussions with the experts at
vecia Biologics. The Fisher correlation score calculates a rank
f the relative importance of each variable independent of the
ther variables:

j =
(�j(+)

− �j(−)
)2

(�j(+)
)2 + (�j(−)

)2
(1)

here �j(+) and �j(−), are the mean values of variable j for the

ositively and negatively classified samples respectively; �j(+)

nd �j(-) are the corresponding standard deviations.
Once the top features ranked by Fisher correlation score
had been identified, the self-organising map  (Kohonen, 1982)
unsupervised learning technique was used to cluster the
proteins. An unsupervised approach aims to learn how to
represent particular input patterns in a way that reflects the
underlying structure of the overall collection of input patterns.
In contrast to a supervised approach, there are no explicit
target outputs associated with each input and hence the algo-
rithm is not influenced by a priori information. A non-linear
approach was adopted as the assumption of linearity is with-
out basis when considering the complexity of a biological
system. The SOM algorithm can handle both linear and non-
linear systems and is thus preferable to a strategy that is solely
applicable to linear systems.

The objective of the SOM is to map  high dimensional input
data onto a two-dimensional arrangement of nodes known as
the feature space. In this feature space, each node is associ-
ated with a parametric vector in the real space, known as a
codebook vector. Each of these vectors have the same order of
dimensionality as the training samples. The resulting feature
space projection is then utilised for classification purposes by
overlaying the training data on the map  and assigning each
node an associated class based on the relative abundance of
the samples for which that node is the best matching unit
(BMU). The BMU is determined by calculating the minimum
Euclidean distance from each codebook vector to each training
sample. Since the SOM algorithm provides a ‘spatial ordering’
in the feature space, proteins with similar properties will typ-
ically lie close to each other on the map.  The feature space
map can then be used to give an indication of the likely clas-
sification of unseen data by calculating the BMU  for the new
protein and assigning the BMU’s class to the new protein.

3.  Results  and  discussion

The results presented in this section were produced using the
MATLAB SOM toolbox (Vesanto et al., 2000). Two case studies
are presented, which focus on influencing decisions related to
the downstream processing of therapeutic proteins.
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Table 3 – Top 5 features relative to the primary capture
step ranked by Fisher correlation score.

Feature rank Fisher score

1 Aliphatic index
2 Lysine–glutamic acid–cysteine (KEC)
3 Glutamine–threonine (QT)
4 Instability index

5 Glutamine–proline (QP)

3.1.  Case  Study  1

Case Study 1 is concerned with identifying whether dif-
ferences between contrasting downstream processing steps
required for primary purification could be determined from
the interrogation of the primary sequence data. The problem
is related to the primary capture steps of the 41 previ-
ous processes developed at Avecia Biologics. Six of these
projects utilised an Expanded Bed Adsorption (EBA) chro-
matography step rather than the more  traditional approach of
solids removal by centrifugation or filtration followed by Ion
Exchange (IEX) chromatography or Hydrophobic Interaction
Chromatography (HIC) for product capture and purification.
The objective was to examine whether these six projects
exhibited any degree of clustering, and if observed, was it pos-
sible to deduce which factors were predictors of this behaviour
so this information could be used when developing future pro-
cesses.

3.1.1.  Results  and  discussion
The first stage was to apply the Fisher correlation score and
identify the top 5 features, Table 3. A 4-fold cross valida-
tion of the 41 samples was then performed by classifying the
data into two groups; those samples where the EBA was used
and those that utilised an alternative strategy. The ratio of
EBA processes to non-EBA processes, in each cross-validation

subset was kept approximately constant to ensure a fair com-
parison. The resulting cross-validation produced an average

Fig. 1 – Typical feature space projection for Case Study 1 with as
EBA; Light grey – alternative method; Black node – Empty).
percentage of correct classification of 72.5% with the individ-
ual cross validations giving results of 66.7%, 80.0%, 70.0% and
73.3%. It should be noted that validation samples assigned to
undefined regions of the map  (empty nodes) were not included
in the correct classification category.

Fig. 1 shows a typical feature space projection resulting
from one of the cross validation runs. The size of the feature
space map  is computed by utilising the heuristic formula:

N = 5 ∗ √
n (2)

where N is the number of nodes and n is the number of
training samples. The length and width of the map  are then
determined by calculating the square root of the ratio of the
two largest eigenvalues of the covariance matrix of the train-
ing samples (Vesanto et al., 2000).

On the left side of Fig. 1 is a feature space plot coloured in
terms of the primary capture steps of the training data. Dark
grey nodes describe regions of the map  which are dominated
by training samples which utilised EBA as the primary capture
mechanism, whereas light grey nodes represent regions which
describe an alternative primary capture step. Black nodes rep-
resent regions of the map  where no training data exists. As can
be seen, there is a distinctive clustering of those processes that
utilise the EBA step. This is captured by the dark grey cluster in
the upper section of the map  and is further supported by the
cluster of empty nodes directly surrounding this cluster. On
the right side of Fig. 1, the size of the pie charts represents the
total number of protein samples in that region of the map, with
the sections of the pie representing the abundance of each
individual class. From this figure it is evident that in general
the membership of these codebook vectors is uniquely asso-
ciated with a specific process with only 2 codebook vectors
containing samples associated with both classes.

The Unified Distance matrix (U-matrix), Fig. 2 visualises the

distance between neighbouring nodes on the feature space
plot and hence has one additional node in each direction of the

sociated sample distribution of nodes (Dark grey node –
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of the map  that are dominated by training samples which
utilise Guanidine, whereas light grey nodes represent regions

Table 4 – Top 5 features relative to the inclusion body
formation ranked by Fisher correlation score.

Feature rank Fisher score

1 Threonine–histidine (TH)
2 Glycine–glutamine (GQ)
3 Net charge
4 Proline–alanine (PA)
Fig. 2 – Unified distance matrix and individu

ap. The individual contribution plots show how each vari-
ble relates to the feature space plot. The grey scale gradient
ar represents the range of values observed for each variable
rom high to low (black to white). Analysis of the individ-
al contribution plots associated with the feature space map,
ig. 2, provides a more  detailed explanation of the relation-
hip between the top 5 features and the output classification.
he heat map  of Aliphatic Index, for example, shows a strong

nverse correlation with the primary recovery technique, i.e.
roteins with a small value for their aliphatic index are more

ikely to utilise an EBA step in the recovery process. Conversely,
he heat map  for Instability Index shows a strong positive cor-
elation with the primary recovery technique, which means
roteins which have an EBA step in the down-stream process-

ng stage tend to have a larger value for the instability index
han those processed by more  traditional routes.

These results demonstrate that the combination of a fea-
ure selection technique and the SOM algorithm to identify
lusters and enable visualisation of high dimensional data can
rovide useful information with regard to design protocols for
uture processes.

.2.  Case  Study  2

ase Study 2 was concerned with inclusion body forma-
ion. Specifically whether it was possible to pre-determine
he appropriate solvent to use to re-dissolve proteins, which
ave formed inclusion bodies during the fermentation pro-
ess, into solution. The problem considers a subset of 13
roteins from previous processes where inclusion bodies were

ormed during the fermentation process. For the majority of
hese projects Urea has been sufficient for the solubilisation of
ariable contributions associated with Fig. 1.

inclusion bodies, whilst in a small number of projects the
stronger chaotrophic agent Guanidine was required. It is
known that these molecules disrupt the hydrophobic interac-
tions, but the manner in which they do is not well understood
(Voet and Voet, 1995). Avecia Biologics were interested in what
features of the proteins may account for these differences.

3.2.1.  Results  and  discussion
As in the previous case study, the top 5 features ranked by
Fisher correlation score were selected, Table 4. A 4-fold cross
validation of the 13 samples was performed by classifying the
data into two groups; those samples that utilised Urea and
those that utilised Guanidine. The resulting cross-validation
produced an average percentage of correct classification of
83.3%, with individual results being 100%, 66.7%, 100% and
66.7%.

Fig. 3 shows a typical feature space projection resulting
from the one of the cross validation runs. On the left side of
the figure is the feature space plot coloured in terms of the
solubilisation agent used. Dark grey nodes describe regions
5 Glutamic acid–arginine (ER)
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Fig. 3 – Typical feature space projection for Case Study 2 with associated sample distribution of nodes (dark grey nodes –
urea based samples; light grey nodes – guamidine; black – no training data present).

Fig. 4 – Unified distance matrix and individual variable contributions associated with Fig. 3.
where samples utilised Urea. From the figure on the right, it
can be observed that no regions of mixed classification exist,
and hence the pie charts are whole. Fig. 4 shows the U-matrix
and contribution plots for each variable used in the training
of the map.  From the feature space map  in Fig. 4, samples
which group towards the lower left corner of the map  typi-
cally exhibit high values for Net Charge. This result provides
evidence to suggest that the net charge of a protein has an
influence on what conditions are required for solubilisation.
Specifically, proteins with a strong negative net charge are
more likely to utilise guanidine for solubilisation. This finding
is reinforced by the appearance of the Glutamic Acid–Arginine
(ER) dipeptide, as these polar amino acids both contribute to
the overall net charge of the protein. Further investigation
led to the hypothesis that it may be that charged chaotrophic

agents, such as the guanidinium ion found in guanidine, are
required to overcome ionic attraction effects in highly charged
proteins. This could explain why in situations where a protein
is insoluble in the non-ionic agent urea, they are likely to be
soluble in the stronger chaotrophic agent, guanidine.

4.  Conclusions

The case studies presented in this paper provide clear evi-
dence that information extracted from protein sequence data
can be exploited to aid process route selection. By utilising
the visualisation properties of the SOM algorithm, in conjunc-
tion with feature selection techniques, it has been possible
to cluster proteins in terms of their similarity with respect
to different classification criteria. This similarity information,
coupled with the expert knowledge of process design engi-
neers, can be used to aid decision making during development

of new manufacturing scale processes. The average classifica-
tion performance on cross-validation for the two case studies
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as 72.5% and 83.3%. These results were considered good due
o the small sample size. The need to apply feature selec-
ion prior to clustering to ensure spurious correlations do not

aterialise is an essential stage in the analysis.
Finally, while the concept of inferring knowledge across

rojects is demonstrated here, it is important to re-enforce
he need for highly skilled individuals to interpret the infor-

ation obtained appropriately and to utilise it effectively in
he design process.
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