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Abstract 

The formation of a functional neural network is dependent on the correct assembly of cell-cell contacts. 

Apposition of pre and post synaptic terminals is a highly regulated process culminating in the formation of the 

functional junction points called synapses. Whilst much is understood of the processes involved in bringing 

axon and target together less is understood of the mechanisms controlling synapse assembly and maintenance. 

 

Wnts are highly glycosylated secretary proteins which have been demonstrated to be involved at several stages 

of the developing nervous system. Through a range of signalling pathways Wnts are able to produce cellular 

effects including embryonic patterning, fate and movement. Much recent research has been focused on the role 

of Wnts in synapse formation and function.  

 

In this thesis I present data from hippocampal cultures showing Wnt7a regulation of excitatory synapses. 

Exposure of developing hippocampal neurons to Wnt7a results in an increase in the density of surface GluA1, 

GluA2 and GluN1 puncta on dendritic spines. Wnt7a also regulates the co-localisation of postsynaptic glutamate 

receptor puncta with presynaptic sites labelled with vesicular glutamate transporter protein (vGlut). Interestingly 

the Wnt7a mediated increase in excitatory synapse formation is no longer present on neurons from mature 

cultures. 

 

At the main postsynaptic site of excitatory synaptic transmission I identified Wnt7a and Dvl mediated 

maturation of glutamatergic receptor localisation. Both exogenous Wnt7a and overexpression of Dvl in 14DIV 

hippocampal cultures caused an increase in the size and number of receptor puncta located on spines and the 

proportion of spines containing GluA1, GluA2 and GluN1 puncta. In my thesis I also present in vivo functional 

data, using animals null for both Wnt7a and Dvl expression. These animals demonstrate defects in evoked post 

synaptic currents and paired pulse ratio at the CA3-CA1 hippocampal synapse. 

 

In conclusion this report demonstrates the crucial role of Wnt7a – Dvl signalling in the regulation of excitatory 

synapse formation in the hippocampus. Furthermore amongst the myriad ways in which Wnt7a-Dvl signalling 

affects development of the CNS, Wnt7a acts directly at postsynaptic sites to increase synaptic strength. 
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Chapter 1: 

 

Introduction 

  

The ability of complex multicellular organisms to perceive their environment, to sense 

different cues and to make voluntary and reflex movements in response to sensory input or 

conscious decisions is the direct result of the development and maintenance of a functional 

nervous system. Across living species the complexity of the nervous system varies by orders 

of magnitude. The nervous system of C.elegans consists of a total of 302 neurons, drosophila 

have about 300,000, whilst current estimates suggest that the human brain contains around 

10
11 

neurons (Williams and Herrup, 1988). However the complexity of these nervous systems 

can be observed at more levels than just the number of neurons involved. A key characteristic 

of nervous systems is the organisation of neurons into functional neural networks. These 

neural networks are defined by tightly regulated communication between specific groups of 

neurons. The complexity of a fully functional neural network is further increased by the 

variety of types of connection between neuron and communicating partner (excitatory 

glutamatergic, inhibitory GABAergic, modulatory dopaminergic, cholinergic, serotonergic or 

adrenergic for example).  

 

These connecting sites were termed ‘synapsis’ as early as 1897 by Sir Charles Sherrington 

(Foster and Sherrington, 1897). In the intervening period since their discovery much research 

has been conducted in understanding their function and the molecular processes underlying 

this. It has been estimated that on average in the human brain each neuron forms 

approximately 600 synapses suggesting a total of approximately 6 x 10
13

 synapses in the fully 

developed adult (Cowan et al., 2001).   

 

The structure of a chemical synapse is the apposition of specialised regions from two 

communicating cells. Whilst these connections may be between neurons, glands and muscles, 

in the central nervous system the communicating partners are neurons. Neuronal signalling 

begins in the presynaptic neuron where an action potential or spike is generated. This signal 

is the result of rapid movement of positively charged ions across the membrane generating an 

electrical signal which propagates from the soma down the axon. This electrical signal is 

transferred, cell to cell via chemical (neurotransmitter) messengers at the synapse. The action 

potential in the presynaptic neuron arriving at the synaptic specialisation results in release of 
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neurotransmitter into the synaptic cleft and activation of postsynaptic receptors. Sufficient 

activation of these receptors generates an electrical signal which is propagated throughout the 

postsynaptic cell. Generally the direction of synaptic transmission is uni-directional, one 

notable exception to this is observed in the cyanea jellyfish (Anderson, 1985). Commonly 

synaptic transmission generates a similar action potential in the postsynaptic cell as was 

present in the presynaptic neuron. The presence of synapses maintains the cell to cell 

electrical signalling fidelity whilst also providing a site for modulation of the signal. As such 

the location of synapses in relation to the structure of the neuron is tightly regulated. 

Presynaptic sites are generally found on axons whilst postsynaptic sites may be found across 

the cell usually concentrated on dendrites and soma but also on axons. Synapses can therefore 

be described in terms of the direction and sites of transmission e.g., axodendritic, axosomatic 

or dendrodendritic.  

 

 

 

 

Figure 1.1 Electrochemical neuronal transmission. Neuron to neuron signalling involves 

the generation of an action potential in a presynaptic neuron. A) This action potential is 
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initiated in the dendrites of the neuron and is integrated in the soma. B) An action potential is 

subsequently generated in the axon initial segment of the axon (proximal to the soma) and 

propagates all the length of the axon. C) The axon may form synaptic sites with a 

postsynaptic partner in terminal structures or en passant formations. The majority of these 

synapses are made between axon and dendrite. D) An enlarged view of the pre and 

postsynaptic junction site reveals the structure of a typical synaptic site. Here the action 

potential enters the presynaptic bouton and initiates synaptic vesicle exocytosis causing 

neurotransmitter release into the synaptic cleft. Receptors on the postsynaptic surface bind 

neurotransmitter and generate electrical currents which propagate into and along the dendrite. 

E) Sufficient postsynaptic activation generates a new action potential which propagates along 

the dendrite in the direction of the soma.  

 

Central synapses are generally classified as either Type I asymmetric or Type II symmetric 

(Colonnier, 1968; Gray, 1959). These descriptions refer to their appearance under electron 

microscopy (EM) and broadly describe whether these synapses are excitatory or inhibitory. 

The overwhelming majority of excitatory asymmetric synapses in the CNS release glutamate 

to generate depolarising excitatory postsynaptic potentials (EPSPs) and action potentials in 

the postsynaptic neuron via the presence of specific ionotropic and metabotropic receptors. 

Inhibitory symmetrical synapses generally act to prevent the formation of an AP in the post 

synaptic neuron. The number and strength of these different synapses within neural networks 

are tightly regulated to ensure appropriate levels of electrical signalling through these 

pathways.  Defects in the formation or function of the excitatory and inhibitory synaptic 

networks have been linked with neurological disorders such as epilepsy, autism and 

schizophrenia (Kehrer et al., 2008; Leite et al., 2005; Rubenstein and Merzenich, 2003). 

Whilst these synapses have different functions many of the morphological and molecular 

components are common to both types. The next sections address the molecular components 

and structures common and unique to both excitatory and inhibitory synapses.  

   

1.1 Synapses: Presynaptic terminus 

 

Presynaptic and postsynaptic sites contain an array of protein machinery, allowing the 

translation of electrical signal to chemical and back to electrical. These proteins may also 

play roles in the structural and regulatory aspects of synaptic transmission. The presynaptic 

terminal is ultrastructurally characterized by the accumulation of neurotransmitter filled 
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vesicles. Often larger organelles such as mitochondria are also found associated with this 

region (Ly and Verstreken, 2006). Mitochondria provide ATP for many of the energy 

dependent processes which occur at this specialisation. This generalised description of the 

presynaptic terminal ignores a plethora of proteins found at the terminal.  

 

A key feature of any presynaptic terminal is the presence of a number of spherical vesicles 

containing neurotransmitter ranging in size from 35-50nm (Jahn et al., 1990).Whilst 

ultrastructural observations suggest synaptic vesicles form large continuous clusters in 

synaptic terminals, fluorescence and electrophysiological data suggests more discrete “pools” 

of organisation (Rizzoli and Betz, 2005). Experiments looking at the depletion of vesicles in 

response to high frequency electrical stimulation or hypotonic shock have allowed grouping 

of vesicles into readily releasable (RRP), recycling or reserve pools. Maintenance of these 

various pools is important for sustained presynaptic release (Rizzoli and Betz, 2005). 

Alongside the small synaptic vesicles larger dense core vesicles (70-200nm) are often 

observed at synapses across the nervous system (Thureson-Klein and Klein, 1990). These 

neuropeptide containing vesicles are released with lower frequency than neurotransmitter 

containing vesicles (Hokfelt et al., 2000).  

 

Synaptic vesicles mediate the chemical signalling at these sites by exocytosis of a range of 

neurotransmitters and neuropeptides into the synaptic cleft. The neurotransmitters present at a 

synapse are specific to the function of the synapse. In the central nervous system (CNS) the 

most common synaptic neurotransmitters are glutamate, glycine and gamma-aminobutyric 

acid (GABA). Glutamate is the most abundant neurotransmitter in the CNS and found 

exclusively at excitatory synapses (Cowan et al., 2001). Glycinergic synapses are mainly 

found in the brainstem and spinal cord but have also been identified in the retina, forebrain 

and cerebellar cortex (Kirsch, 2006). Glycine primarily plays an inhibitory role in the CNS. 

This neurotransmitter however is also a co-agonist in activation of the NMDA receptor 

(Johnson and Ascher, 1987; Kleckner and Dingledine, 1988). Both glycine and GABA in 

early development are excitatory neurotransmitters and become inhibitory as the nervous 

system develops (Kirsch, 2006; Li and Xu, 2008). 

 

Vesicle exocytosis and endocytosis occur in the presynaptic terminal in a cyclic manner. 

Vesicles travel from reserve pool to RRP adjacent to the active zone (Sudhof, 2004). These 

docked vesicles then fuse with the active zone membrane, release neurotransmitter into the 
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synaptic cleft and are then endocytosed back into the cytoplasm. These vesicles are ready to 

again be loaded with neurotransmitter by the action of specific vesicle associated uptake 

transporters. At central synapses vesicle loading of glutamate, glycine and GABA is driven 

by the proton gradient and indirectly requires ATP hydrolysis to drive the proton pump 

(Gasnier, 2000). Interestingly whilst glutamate loading is mediated by the protein vesicular 

glutamate transporter-1 (vGlut) both the inhibitory neurotransmitters glycine and GABA are 

loaded by the same protein, vesicular GABA transporter (vGat). In fact at synapses where 

both glycine and GABA are expressed vesicles may be double loaded with a combination of 

the two neurotransmitters (Gasnier, 2000). Because vGlut and vGat segregate to excitatory 

and inhibitory presynaptic sites respectively, antibodies to these proteins are useful for 

identifying excitatory and inhibitory terminals. Besides the distinct vesicle pools an array of 

proteins essential to the regulation of vesicle transport underlies the presynaptic terminal. 

 

Synapsins are vesicle associated proteins making up approximately 9% of the vesicle surface 

(Huttner et al., 1983). Synapsins are generally believed to play a role in tethering vesicles to 

the actin cytoskeleton maintaining a pool for efficient release (Dresbach et al., 2001). 

Knockout of various combinations of the synapsin I, II and/or III genes in mice causes an 

enhancement in the frequency of seizures and defects in learning (Rosahl et al., 1993; Rosahl 

et al., 1995). 

 

Proteins such as bassoon and piccolo are large cytoskeletal proteins important in the 

structural maintenance of both exocytic and endocytic machinery in close proximity to the 

synaptic cleft (Dresbach et al., 2001). Studies by Mukherjee and colleagues using Piccolo and 

Bassoon KO mice have revealed these proteins are primarily involved in the regulation of 

synaptic vesicle clustering at the active zone (Mukherjee et al., 2010). Actin fibres are key 

structural components of the presynaptic terminal, supporting both the morphology of the 

terminal and proteins within the structure. The specific role of actin at synapses in relation to 

transmission is mired in debate in the field. Actin depolymerisation via latrunculin A resulted 

in a short lived enhancement of vesicle release (Morales et al., 2000). In investigations by 

Cole and colleagues latrunculin A inhibited vesicle release as observed by FM staining in 

Garter snake nerve terminal (Cole et al., 2000) In contrast f-actin disruption with cytochalasin 

D had no effect on FM1-41 staining suggesting no role for actin in vesicle 

exocytosis/endocytosis (Job and Lagnado, 1998).  The discrepancies in results may be 

explained by differences in both experiment design and experimental system. Closer to the 
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plasma membrane several proteins are involved in the process of both action potential and 

non-action potential stimulated release.  

 

Action potential evoked release is coordinated by the Ca
2+

 sensitive SNARE protein 

complex. This complex consists primarily of synaptobrevin/VAMP, syntaxin and Snap-25 

(Ungar and Hughson, 2003). Calcium sensitivity of both AP evoked and spontaneous release 

is conferred by the non-core SNARE protein synaptotagmin (Geppert et al., 1994; Xu et al., 

2009). AP evoked release occurs in several stages mediated by both the vesicle and plasma 

associated proteins combining to form the active snare (Sudhof and Rothman, 2009). The 

snare protein mechanically draws synaptic vesicles into close apposition with the plasma 

membrane initiating the fusion process (Sudhof, 2004). 

 

Munc-13, Munc-18 and Rim proteins are further examples of active zone proteins essential in 

presynaptic function (Dresbach et al., 2001).RIM proteins impact vesicle release in a number 

of ways leading to defects in basic synaptic transmission. RIM1/2 isoform knockout reduced 

Ca
2+

 channel density at the calyx of Held in the auditory brain stem (Han et al., 2011). 

Schoch and colleagues observed severe defects in neuromuscular transmission of E18 mice 

with the double knockout of RIM1α/2α. Evoked release amplitudes decreased in size whilst 

synaptic failure rates were increased (Schoch et al., 2006). These effects were complemented 

by an inability to modulate mEPSC frequency by Ca
2+

 concentration increase again 

demonstrating RIM mediated regulation of the link between vesicle release and Ca
2+

.  This 

removal of RIM also resulted in a decrease in the number of readily releasable pool vesicles 

and docked vesicles. Munc-13 KO mice exhibit hippocampal defects in readily releasable 

vesicle pool and also display severe impairment of presynaptically generated EPSCs 

(Augustin et al., 1999). Deletion of Munc-18 prevents vesicle exocytosis without affecting 

synaptic ultrastructure (Verhage et al., 2000). This is most likely because munc-18 is directly 

involved in vesicle exocytosis via interactions with syntaxin and SNAP25 (Jahn and Sudhof, 

1999).  

 

Voltage gated Ca
2+

 channels are also present clustered adjacent to release sites in the active 

zone. Calcium influx mediated by these channels triggers the rapid exocytosis of vesicles at 

the active zone. Indeed direct binding between the SNARE associated protein synaptotagmin 

and Ca
2+

 channels further strengthens this idea (Catterall, 1999). It is clear that whilst 

presynaptic sites have many common features several proteins and processes are distinct to 
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the type of synapse. These differences are further accentuated on the opposing side of the 

synaptic cleft.  

 

1.2 Synapses: Postsynaptic terminal 

 

Postsynaptic specialisations of the CNS are generally observed ultrastructurally as regions 

with morphology varying from dendrite to exaggerated dendritic protrusions. These 

structures are generally crowned by one or several regions of high electron density described 

as the postsynaptic density. In order to further examine the postsynaptic density the next 

section will be divided in to sections focusing on inhibitory and excitatory specialisations. 

 

1.2.1 GABAergic postsynaptic specialisation 

 

Inhibitory synapses in the CNS generally form as axosomatic or axodendritic specialisations 

with little or no distinctive postsynaptic protrusions. GABAergic presynaptic terminals have 

however been observed synapsing directly onto dendritic spines of excitatory cortical 

synapses (Kubota et al., 2007). This type of integrated excitatory/inhibitory postsynaptic 

structure is believed to allow greater inhibitory regulation by the GABAergic neuron.  

 

At the molecular level the postsynaptic density of central inhibitory synapses differs 

fundamentally from that of excitatory synapses. Inhibitory synaptic transmission in the CNS 

is mediated by GABA and glycine ionotropic receptors. A lack of glycinergic transmission 

and the presence of glycine receptors only at extra-synaptic sites suggest that GABAergic 

transmission is dominant in the hippocampus, cortex and entire CNS with the exception of 

the spinal cord (Lynch, 2009). The data presented in this thesis is primarily concerned with 

the synapses of the hippocampus and so I will focus my discussion in the following section 

specifically on GABAergic postsynaptic specialisations.   

 

GABA(A/C) receptors are chloride ion channels which upon activation by GABA in mature 

neurons allow a flow of Cl
-
 ions across the membrane, hyperpolarising the neuron. 

Pharmacologically these receptors are characterised by inhibition by bicuculine or picrotoxin. 

As mentioned previously during the first postnatal week these receptors mediate depolarising 

effects on neurons. This developmental effect is due to the high [Cl
-
]i in postnatal neurons 

generated by reversed operation of the membrane Cl
-
 pump (Misgeld et al., 1986). This is 
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because the GABA receptor ion flow is reversed due to the Cl
-
 reversal potential of 

approximately -52mv generating a depolarising effect (Cherubini et al., 1991). This shift in 

Chloride ion reversal potential between adults and neonates coincides with the expression of 

chloride transporters (Blaesse et al., 2009). Interestingly whilst these receptors depolarise 

postsynaptic neurons the summation of these synaptic receptors may not lead to the 

generation of an excitatory current in the postsynaptic neuron in the same way as 

glutamatergic transmission in mature systems.    

 

Functional channel forming GABAA receptors, based on biochemical analysis, atomic force 

microscopy and comparison with heterologous expression studies, are composed of five 

subunits (Sieghart et al., 1999). However the crystal structure of the receptor has not been 

resolved. Homology between GABAA receptors and other cys-loop membrane proteins such 

as the glycine receptor, 5HT3R and the nAChR have led to clues about the membrane 

structure of the functional receptor. In humans several subunit isoforms exist many of which 

also have splice variants. Six α subunits: three β: three γ: alongside π, θ, δ and ε classes of 

subunit have been identified (Hevers and Luddens, 1998). Any two α, two β and one γ 

subunit may comprise the functional channel. Despite the large potential variety of subunit 

combinations it appears that only a fraction have been observed expressed in humans 

(Whiting et al., 1995). Differences in agonist and antagonist binding affinity between 

subunits, confers a range of channel properties on the various functional channels. 

Differences in the expression of subunit types in various brain regions have also been 

observed demonstrating a subtle regulation of GABAA receptors in the CNS. This regulation 

is further accentuated at the synapse where receptors containing α1,2,3 or 5 with β and γ 

subunits are predominantly located centrally as opposed to the α5 containing receptors which 

are found extra-synaptically (Jacob et al., 2008) . Interestingly GABAC receptors are almost 

exclusively expressed at the retina where they function alongside the other subtypes 

(Passafaro and Sheng, 1999). The above data clearly indicates spatial segregation of the 

various GABAA and GABAC subtypes suggesting both specialised regulation of expression 

and trafficking alongside unique roles for each subtype in the CNS. 

 

Insertion and removal of GABAA receptors at synapses is regulated by a variety of receptor 

associated proteins. Gephyrin is a scaffolding protein found associated with inhibitory 

receptors, binding directly to glycine receptors via their β subunits (Meyer et al., 1995). 

Gephyrin proteins are highly enriched at inhibitory synaptic sites and are believed to be 
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important in the stabilisation of GABA receptor at these sites. Indeed reduction of gephyrin 

in neurons leads to the loss of α2 and γ2 subunits at synapses (Jacob et al., 2005; Kneussel et 

al., 1999). In addition synaptic GABAA receptors are significantly more mobile in neurons 

where gephyrin has been knocked down (Jacob 2005). In spinal cord, loss of gephyrin 

destabilises α3 and β2/3 containing receptor pools but has minimal effect on α1/5 containing 

receptors suggesting a degree of subunit specificity in the action of gephyrin. Indeed, on 

neurons where Gephyrin expression has been knocked down, surface receptor number was 

increased but the larger GABAA clusters were significantly decreased (Jacob et al., 2005).  

 

GABA receptor associated protein (GABARAP) binds GABA receptors in the cytosol and 

ER but not at cell membranes (Wang et al., 1999). GABAA receptors bind GABARAP via the 

intracellular loop of the γ2 subunit, which is the most abundant in the CNS suggesting most 

GABAA receptors are associated with GABARAP in the CNS. Overexpression studies of this 

protein result in an increase in surface GABAA receptor possibly via addition of phospholipid 

groups to the immature receptor (Mohrluder et al., 2009). GABARAP expression is essential 

for the activity dependent synaptic localisation of GABA receptor following NMDAR 

activation (Marsden et al., 2007; Muir et al., 2010). 

 

Microtubule associated proteins (MAP1A, MAP1B and MAP1C) as the name suggests are 

scaffolding and linker proteins which associate other proteins with both the microtubule and 

actin cytoskeletons. In accordance with their function these proteins are found in neurites 

particularly in dendrites. MAP1B plays a key role in the stabilisation of GABAC receptors at 

synaptic sites (Passafaro and Sheng, 1999). MAP1B was discovered as a binding partner of 

ρ1 subunits which are exclusive components of GABAC receptors (Billups et al., 2000). 

Interestingly the similarity between the MAP1A/1B light chain and GABARAP protein 

structures suggest that these proteins may use similar mechanisms to stabilise GABAC 

receptors at synapses (Passafaro and Sheng, 1999).  

 

Whilst initial fast inhibitory signalling is mediated by GABAA receptors, slow long acting 

inhibitory control occurs via GABAB receptors. GABAB receptors are metabotropic receptors 

linking synaptic GABA activity to membrane potassium channels. Activation of these 

synaptic receptors causes opening of synapse adjacent K
+
 channels via G-protein α/β subunit 

signalling (Luscher et al., 1997). Potassium ion flow hyperpolarises the neuron, inhibiting 

action potential duration. Interestingly both GABAA and B receptors are found both pre and 
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postsynaptically (Kasugai et al., 2010; Vigot et al., 2006). Depolarisation in the presynaptic 

neuron inactivates Na
+
 and Ca

2+
 channels, thereby reducing AP amplitude and subsequent 

presynaptic release (Kullmann et al., 2005). In comparison to excitatory synapses, inhibitory 

synapses are still poorly understood particularly with respect to the mechanisms which 

actively regulate receptor movement in and out of the synapse. Interestingly the variety of 

subtypes and division of inhibitory synaptic receptors into both metabotropic and ionotropic 

is mirrored at excitatory synapses.  

 

 

Figure 1.2 The Excitatory Glutamatergic and Inhibitory GABAergic specialisation. Left 

and right mirror panels demonstrate the complexity, similarities and differences pre and 

postsynaptically at synaptic sites. Both glutamatergic and GABAergic presynaptic sites 

contain many of the same proteins essential for vesicle release. These include both vesicle 

associated proteins such as Rims and proteins which form part of the snare complex. These 

proteins are displayed in greater detail in the inset where the cell membrane associated 

proteins syntaxin and SNAP25 and VAMP2 and synaptophysin appear in the complete 

complex. Associated with the SNARE complex, Munc 18 and 13 are present associating with 

syntaxin. The major differences between glutamatergic and GABAergic presynaptic boutons 

are visible in the neurotransmitters and vesicle loading proteins. Postsynaptically the most 

striking difference is the morphologies of the sites. Where the postsynaptic glutamatergic 
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synapse is a specialised dendritic spine, the GABAergic site is directly on the surface of the 

dendrite. Microtubules are present throughout dendrites but are only present in the dendritic 

initial segment of spines, whilst Actin is polymers are found both throughout the synapse. 

Both types of postsynaptic site contain an array of receptors stabilised by scaffolding 

proteins. Associated with both scaffolding arrays are a number of signalling proteins which 

link receptor activation to intracellular signalling cascades.    

 

1.2.2 Excitatory postsynaptic specialisation: Dendritic spines 

Typically excitatory synapses (in contrast to the axosomatic synapses of inhibitory synapses) 

form almost exclusively on morphogically specialised dendritic protrusions called spines 

(Cowan et al., 2001; Luscher et al., 2000; Segal, 2010). Variety in spine morphology, 

number, location and regulation has significant consequences on the ability of a neuron to 

function within a neural network.  

 

At the most simple level these protrusions act to increase the surface area for synaptic contact 

however there are various theories for the biological significance of dendritic spines. 

Generally spines are thought of as areas of separate synaptic compartment. This idea stems 

from both computational and immunofluorescence studies describing spines as discrete 

regions that allow the neuron to better discriminate single synaptic activation and 

subsequently integrate this information in the neuron. Diffusion between a spine and the 

adjacent dendritic shaft has been observed to be approximately 100 times slower than 

expected in a ‘freely diffusible’ system (Nevian and Sakmann, 2004; Svoboda et al., 1996). 

This data suggests larger signalling proteins and other essential species would exhibit similar 

or slower diffusion rates making a continuous flow of signalling with the dendritic shaft 

extremely inefficient. This compartmentalisation allows greater sensitivity of signalling 

proteins at the postsynaptic density due to small changes in cytoplasmic protein 

concentrations (Cowan et al., 2001). In particular Ca
2+

signalling is well served by the 

microenvironment of spines which will be discussed later in further detail.    

 

At the ultrastructural level excitatory spines are very distinctive structures. A typical spine 

consists of a spherical head connected to the dendritic shaft by a relatively thin stalk. 

Generally spines may range from 0.01 µm
3
 to 0.8µm

3
 in volume (Harris, 1999). Other types 

of spine may vary in the relative proportion of head volume to spine volume and/or the total 
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length of the protrusion. Spine morphology can be loosely grouped into 3 types; stubby (I), 

thin (II) and mushroom (III) (Harris et al., 1992). 

 

As important structures within the CNS it is not surprising that dendritic spines also undergo 

developmental regulation. Generally spines are believed to develop from filopodia (type I) to 

more mature mushroom (type III) spine. Dendrites of early neonatal pyramidal cells are 

relatively bare and this situation is rapidly modified over the first and second weeks. 

Coinciding with the generally perceived peak of synaptogenesis  (P14-18) there is a rapid 

expansion in the density of dendritic protrusions on neurons (Nimchinsky et al., 2002). The 

vast majority of spines in the 1-2 week postnatal period consist of stubby and thin (type I/II) 

or filopodia morphology (Cowan et al., 2001). Spine motility in early postnatal neurons has 

been suggested as the key mechanism in the coming together of pre and postsynaptic sites. 

Time lapse microscopy has led to the proposal of three mechanisms by which spines find 

presynaptic partners and mature, reviewed in (Yuste and Bonhoeffer, 2004). Most studies 

identify the high motility of filopodia and long thin spines as the active structures in 

searching out axons for nascent synaptic sites. Model 1 suggests these early spines come into 

contact with presynaptic partners and then change into mature mushroom like spines. The 

observation that a large number of shaft synapses are present on early neurons led to model 2. 

In this mechanism once the pre synaptic site and immature filopodia come into contact the 

filopodia retracts to form a shaft synapse and subsequently develops a mature spine from this 

site. The third model presents an idea of spines as constantly fluctuating in terms of 

morphology. Here spines may form nascent synapses, retract from the presynaptic partner 

and subsequently reposition with the same or a different partner as a mature mushroom 

shaped spine. Far from being competing theories of synapse development it is likely that all 

three models can describe spines in the formation, elimination and maintenance of their 

structures. After the rapid formation of synapses a period of synapse elimination occurs in 

development. This is marked at the spine level by decreases in spine density and shifts in 

spine morphology. The number of spines decreases until there is a balance of spine removal 

and formation resulting in a net zero change of spine number (Dunaevsky et al., 1999). The 

composition of mostly filopodia, stubby and thin spines shifts to incorporate a large 

proportion of mushroom spines and spines with relatively large head to neck ratio 

morphology. 
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Importantly the dynamic nature of dendritic spines remains in the mature CNS allowing these 

structures to respond to intrinsic and extrinsic stimuli (Fischer et al., 1998).  Presynaptic 

activity amongst other stimuli is crucial for both the formation and stabilisation of spines into 

nascent synaptic sites. Local application of glutamate to dendrites encouraged formation of 

new spines whilst uncaging of glutamate at established spines caused an increase in spine 

head volume (Matsuzaki et al., 2004). These observations have also been recorded by afferent 

stimulation of presynaptic neurons resulting in an increase in presynaptic release. The activity 

dependent stabilisation of spine synapses is a highly detailed process observed in regions as 

diverse as the retino-tectal system to the neuromuscular junction (Nimchinsky et al., 2002). 

The most clear example of this is the loss of spines upon deafferentation of postsynaptic 

neurons (Cheng et al., 1997). Cheng and colleagues studied morphological changes to spines 

of medium spiny striatal neurons in 6 month old mice. By creating lesions in the cortex these 

neurons were deprived of presynaptic partners from corticostriatal terminals, the result being 

a decrease in spine density with no observed defect in overall dendrite structure. Interestingly 

after 10 days, spine density began to recover to control levels coinciding with clearance and 

replacement of degenerated cortical afferent fibres by the contralateral cortex. Similarly 

Parnevelas and colleagues (1974) were able to show defects in spine density on dentate 

granule neurons as a result of entorhinal cortex lesions. Spine density again returned to 

control levels after a period as a result of reafferentation from nearby axons (Parnavelas et al., 

1974). 

 

The variety in spine morphology is largely maintained by the rich F-actin cytoskeleton found 

in these structures. Interestingly, in contrast to the rest of the dendrite, microtubules and 

microtubule associated proteins are largely excluded from spines helping to generate a 

specialised compartment within these structures (Harris and Kater, 1994). This accumulation 

of actin in spines allows use of antibodies to actin and actin associated proteins in the 

identification of dendritic spines. In confirmation of actins role in the regulation of spine 

shape, experiments looking at small actin GTPases such as Rac, Rho and CDC42 (which 

themselves regulate actin structure) revealed some interesting results. Schubert and 

colleagues identified RhoA kinase inactivation as key in the maintenance of spine size 

(Schubert et al., 2006), whilst when using a transgenic mouse model expressing constitutively 

active Rac1, Luo and colleagues observed development of smaller spines on Purkinje cells 

(Luo et al., 1996). 
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Defects in the formation and maintenance of dendritic spines have been linked with several 

neurological disorders.  Spine and synapse loss has been identified in mouse models for 

Alzheimer’s disease (D'Amelio et al., 2011). Upon comparison of post-mortem hippocampi 

from Alzheimer’s patients with age matched non-sufferers, defects in spine number were 

observed (Ferrer et al., 1990). Dysfunction of spine morphogenesis is also associated with 

Fragile X syndrome, one the most common forms of single gene mutation associated with 

mental retardation. Cortical spines of neurons in which Fragile X gene expression is removed 

appear greater in density but have long, thin immature morphology (Comery et al., 1997). 

Similarly to Fragile X syndrome, autism spectrum disorders are associated with both 

dysfunction in spine morphology and significant increase in the density of spines throughout 

the brain in comparison to ‘normal’ specimens (Penzes et al., 2011).  Spine loss has also been 

observed in caudal putamen of neostriatal medium spiny neurons in late stage Parkinson 

disease sufferers (Zaja-Milatovic et al., 2005). The work of Garey and colleagues revealed 

details of spine defects in the brains of schizophrenia sufferers.  Looking at post-mortem 

temporal and frontal cortex brain samples of schizophrenia sufferers showed respectively 

59% and 66% decreases in spine density observed (Garey et al., 1998). 

 

In comparison to inhibitory synapses the postsynaptic density is defined by an area of very 

strong electron density. Postsynaptic densities are found at virtually every excitatory synaptic 

site and generally the structures are 40-50nm thick and a few hundred nanometres wide. 

Three dimensional EM reconstructions reveal the region to be disc-like occasionally 

perforated suggesting discontinuity of the structure (Harris and Kater, 1994) Interestingly 

across all brain regions PSD area is proportional to the total size of the spine suggesting a 

relationship between spine size and synapse content (Harris and Stevens, 1988; Peters and 

Kaiserman-Abramof, 1970; Westrum and Blackstad, 1962).  

 

More than a single structure, this region contains a vast number of proteins essential for and 

associated with excitatory postsynaptic transmission and downstream signalling. Several 

hundreds of these proteins were identified by the various proteomic studies conducted by 

groups headed by Morgan Sheng and Seth Grant (Husi and Grant, 2001; Sheng and 

Hoogenraad, 2007). In particular proteomic studies conducted by the aforementioned groups 

allowed analysis of synaptic sites and the identification of large proteins associated with PSD 

proteins. One of the earliest identified PSD interactions was the link PSD-95 and NMDARs 

(Husi and Grant, 2001; Kornau et al., 1995). These proteins include; postsynaptic 
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neuroreceptor proteins, protein kinases, structural protein, proteins involved in endocytosis 

and glycolytic proteins. The above list does not begin to account for the number of proteins 

loosely associated with the PSD or whose localisation may be dependent on synaptic activity 

or activation of specific cell signalling pathways.   

 

The postsynaptic density is populated by groups of scaffolding proteins which are essential 

for the assembly and maintenance of machinery at the excitatory synapse. PSD-95/SAP90, 

PSD-93/Chapsyn-110, SAP97 and SAP102 proteins are prominent features of excitatory 

synapses and associate with many of the receptors, scaffolding proteins and signalling 

molecules that localise in the region (Boeckers, 2006).  Members of the MAGUK 

superfamily, these proteins contain several protein-protein interacting domains. In particular 

this family of proteins are characterised by the presence of PDZ, SH3 and GK domains 

(Anderson, 1996). PSD-95 proteins in particular have been studied in detail because of their 

relationship with glutamate receptors in the PSD. PSD-95 contain three PDZ domains in the 

N-terminal domain and through the first two (PDZ1 and PDZ2), PSD-95 binds NMDARs 

(Kornau et al., 1995).   

 

Neuronal nitric oxide synthase (nNOS) are important biological catalysts involved in the 

conversion of L-arginine and oxygen to nitric oxide (Alderton et al., 2001; Bredt, 1999; Luo 

and Zhu, 2011). In the CNS, Nitric oxide (NO) has been identified as a retrograde signalling 

molecule in presynaptic LTP (Schuman and Madison, 1991). The presence of nNOS at the 

synapse and the regulation of the enzyme is therefore important in synaptic function. 

Alternative splicing generates various nNOS isoforms which contain a range of PSD 

interacting domains. More specifically the α and µ variants contain N-terminal PDZ domains 

localising these proteins to the synaptic PSD whilst β and γ isoforms lack these domains and 

are found in the cytoplasm (Alderton et al., 2001). Synaptic localisation of nNOS is mediated 

via direct binding to PSD-95 and PSD-93 (Brenman et al., 1996). Interestingly 

overexpression of PSD-95 results in both an increase in nNOS expression and the formation 

of multiple innervated dendritic spines (MIS) (Nikonenko et al., 2008). In the same 

investigation pharmacological inhibition of nNOS decreases MIS formation suggesting NO 

acts as the retrograde signal at sites where PSD-95 accumulation occurs. 

 

The remainder of this section will take a more detailed look at the key postsynaptic proteins 

involved in transduction of excitatory signalling. Of the range of proteins present at the PSD 
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the postsynaptic neurotransmitter receptors are the most essential in excitatory transmission. 

As with inhibitory receptors, glutamatergic excitatory receptors exist as a similarly diverse 

group. This similarity extends to the presence of both ionotropic and metabotropic glutamate 

receptors. 

 

 

 

1.2.3 Metabotropic glutamate receptors 

The metabotropic glutamate receptors or mGluRs are a family of G-protein coupled 

glutamate binding receptors primarily derived from 8 gene sequences with several splice 

variants (Niswender and Conn, 2010). mGluR1 and mGluR5 are classed as Group I mGluRs. 

Classical group 1 mGluR signalling acts to enhance Ca
2+

 concentration postsynaptically by 

signalling to intracellular stores using Gq/G11 (Ferraguti et al., 2008). Activation of these 

receptors activates phospholipase C which generates IP3 via hydrolysis of phosphoinositides. 

IP3 translocates to the ER and affects calcium exocytosis from internal stores as well as PKC 

activation. However depending on the cell type or neuronal population a range of pathways 

involving phospholipase D, casein kinase 1 and Jun kinase may become active (Niswender 

and Conn, 2010). Group 1 mGluRs are predominantly, postsynaptically located and tend to 

be found around the periphery of the PSD (Lujan et al., 1996). 

 

Group II and Group III mGluRs are generally coupled to Gi/o and as a result activate similar 

pathways (Niswender and Conn, 2010). The most well studied pathways of Group I and II 

mGluRs involve inhibition of adenylate cyclase reducing the formation of cAMP. At the 

synapse these receptors are found both pre and postsynaptically with seemingly inhibitory 

effects on transmission. Presynaptically these receptors are associated with ion channels and 

inhibition of release. Postsynaptically these receptors decrease NMDA activity and act to 

prevent excitotoxicity (Ambrosini et al., 1995).  

 

1.2.4 Kainate receptors 

A second group of glutamate binding receptors are those of the kainate (KAR) family. These 

ionotropic receptors are mediators, postsynaptically of excitatory effects and inhibitory 

effects presynaptically (Ozawa et al., 1998). Kainate receptors are derived from a 

combination of 5 subunits GluR5, GluR6, GluR7 and KA1 and KA2. The functional receptor 

tetramer may be composed of homomers or heteromers of GluR5-7, KA1/2 containing 
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receptors must contain any of the GluR5-7 subunits (Bettler et al., 1990; Egebjerg et al., 

1991; Herb et al., 1992; Schiffer et al., 1997). These ionotropic receptors once activated by 

glutamate are permeable to Na
+
, K

+
 and dependent on the presence of Q/R edited subunits are 

permeable to Ca
2+

 (Huettner, 2003). These characteristics combined with AMPAs ability to 

act as an agonist (and the ability of kainate to activate AMPARs) initially made identification 

of these receptors quite difficult. Kainate receptors are expressed strongly throughout the 

cerebellum with lower levels in the hippocampus and caudate putamen (Ozawa et al., 1998). 

Postsynaptically, antibodies for GluR5-7 suggest these receptors are present both in dendrites 

and PSDs. Presynaptic localisation has been identified with antibodies for GluR6 and GluR7 

in unmyelinated axons of the CA3 region in the hippocampus. The role of KA receptors both 

pre and postsynaptically is still under much debate. Experimenters have observed both 

enhancement and depression of neurotransmitter release as a result of KAR activation 

(Huettner, 2003). The discrepancy in these experiments lies in the synapses under observation 

suggesting KAR activation presynaptically may have different effects depending on the 

receptor type. Postsynaptically KA receptors contribute a slow current with low (relative to 

AMPAR) amplitude (Castillo et al., 1997; Kidd and Isaac, 1999; Li et al., 1999; Mayer and 

Westbrook, 1987; Vignes and Collingridge, 1997).  

 

1.2.5 AMPA receptors 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are primarily 

responsible for fast synaptic current generation in postsynaptic neurons. In combination with 

NMDARs they mediate most of the basic transmission and plasticity associated with 

excitatory synaptic transmission. In addition, these receptors are the most commonly 

expressed glutamate receptors in the CNS and whilst these patterns vary throughout 

development these receptors are fundamental in synaptic transmission across vertebrates.  

 

As is true for many of the receptors of the CNS functional pore forming receptors are 

composed of various AMPA subunits. In vivo these receptors are formed as hetero-tetramers 

consisting of pairs of subunits or ‘dimers of dimers (Mayer, 2005).  Currently 4 subunits have 

been isolated; GluA1, GluA2, GluR3 and GluR4. All four subunits share high homology and 

are predicted to have similar tertiary structure with the crystal structure of the GluA2 subunit 

being one of the few ionotropic receptors to have been resolved (Greger et al., 2007). Each 

subunit contains a large extracellular N-terminal domain adjacent to an S1 domain which 

forms part of the glutamate binding domain (Ayalon and Stern-Bach, 2001). All subunits 
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contain four transmembrane regions, one of which forms a re-entrant loop within the 

membrane and the third of which is joined to an extracellular region which forms the second 

part of the glutamate binding domain. Much of the diversity between the 4 receptor subunits 

and other receptors is derived from differences in the sequences of the intracellular C-

terminal tails. Subunits GluA1, 4 and an alternately spliced GluA2(l) have long C-terminal 

tails containing unique interaction sites for CaMKII, PKC and PKA (McDonald et al., 2001). 

Whereas the short sequence C-terminal tail containing subunits, GluA2, GluR3 and 

alternately spliced GluR4(c) contain binding sequences for GRIP and PICK1 (Dong et al., 

1997; Xia et al., 1999).   

 

AMPAR gating is regulated by the binding of glutamate to sites in each of the four subunits 

in the heterotetramer (Rosenmund et al., 1998). Once two sites are occupied channel opening 

occurs with the single channel conductance increasing upon further glutamate binding. 

AMPA receptors, dependent on the complement of subunits, have varying gating properties. 

Ca
2+

 permeability in AMPA receptors is dependent on the presence of the GluA2 subunit. 

AMPA receptors lacking GluA2 subunits are largely impermeable to Ca
2+

 due to post-

translation mRNA editing by adenosine deaminase of the Q/R site in the subunits transcript 

(Hume et al., 1991; Verdoorn et al., 1991). This changes an amino acid from the uncharged 

glutamine to the positively charged arginine and alters the otherwise energetically favourable 

flow of Ca
2+

 through the channel. Interestingly, this form of editing occurs in greater than 

99% of expressed GluA2 transcripts rendering the vast majority of GluA2 subunit-containing 

protein with these characteristics (Schmauss and Howe, 2002; Seeburg, 2002). 

 

A second channel property of GluA2 lacking receptors results in decreased ion conductance 

at polarized potentials. These receptors are described as inwardly rectifying stemming from 

channel blockade at depolarised potentials by intracellular Mg
2+

 and polyamines (Donevan 

and Rogawski, 1995). GluA2 containing receptors are unaffected by this blockade and as 

such have a non- rectified I/V relationship (Seeburg et al., 2001). 

 

The presence of a 38 amino acid sequence in the extracellular space, adjacent to the fourth 

transmembrane region confers a variety of channel properties on all members of the AMPAR 

family. Generated by alternative splicing,  point mutations in the glutamate binding domain 

results in either ‘flip’ or ‘flop’ subunit varieties (Sommer et al., 1990). Specifically ‘flop’ 

versions desensitize more rapidly to glutamate than ‘flip’ versions. These differences also 
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result in differences in re-sensitisation and inhibition of desensitisation by allosteric 

compounds benzothiadiazides (Partin et al., 1995). Alterations in the expression of ‘flip’ or 

‘flop’ containing receptors are observed in disorders such as schizophrenia and epilepsy 

(Eastwood et al., 1997; Rosa et al., 1999). 

 

Transmembrane AMPA receptor regulator proteins (TARPS) are recently identified 

ionotropic AMPAR auxiliary subunits influencing receptor trafficking and gating (Jackson 

and Nicoll, 2011; Payne, 2008). Until quite recently ionotropic ligand binding channels were 

stood apart from many other membrane channels due to the lack of evidence of accessory β 

subunits. These subunits form central pieces of the channel complex and affect channel 

processing and localisation (Arikkath and Campbell, 2003). The γ-2 subunit, also referred to 

as stargazin, was identified in 1998 (Letts et al., 1998). Work by Chen and colleagues later 

identified the ability of stargazing to interact with both AMPAR and PSD-95 and mediate the 

surface synaptic localisation of receptor (Chen et al., 2000). Further investigation into 

receptor gating revealed stargazin slows both desensitization and deactivation by modulating 

the rate of channel opening (Tomita et al., 2005). Gene comparison studies have revealed a 

number of other TARPs which are expressed throughout the CNS and demonstrate a variety 

of effects on channel gating (Burgess et al., 2001; Klugbauer et al., 2000; Milstein et al., 

2007). 

 

1.2.6 NMDA receptors 

N-Methyl D-Aspartate receptors are mediators of ‘slow’ excitatory currents and are crucial to 

many synaptic plasticity mechanism including those likely to be important for learning and 

memory functions in the brain (Bliss and Collingridge, 1993; Cowan et al., 2001; Li and 

Tsien, 2009; Lynch, 2004; Malenka and Nicoll, 1999). These ionotropic neurotransmitter 

receptors are unique in that they require the binding of two independent ligands, glutamate 

and glycine and their channel has a voltage dependent block by Mg
2+

 (Johnson and Ascher, 

1987; Kleckner and Dingledine, 1988). This means that following receptor activation 

membrane depolarisation is necessary before significant synaptic current and calcium and 

other ion influx can occur through the channel (Collingridge et al., 1988).  

 

Several lines of evidence suggest the pore forming receptor is composed of a heteromeric 

composition of two obligate GluN1 and either homo or heteromeric combinations of 

GluN2/GluN3 gene products (Behe et al., 1995; Benveniste and Mayer, 1991; Clements and 
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Westbrook, 1991). GluN1 subunits are derived from alternative splicing of a single gene 

whilst NR2 and NR3 subtypes are the result of alternative splicing of these 2 genes 

(Stephenson, 2006). These subtypes comprise; GluN1 1a, 1b 2a, 2b, 3a, 3c, 4a, 4b, GluN2a, 

b, c, d, GluN3a, b.   

 

Tertiary structure predictions suggest these subunits have similar structures to other cys-loop 

ionotropic glutamate receptors with key differences in agonist binding and pore forming 

domains (Mayer and Armstrong, 2004). Similar to the glutamate binding domain of AMPA 

subunits, NMDA subunits bind glycine (GluN1, GluN3) or Glutamate (GluN2) between 

modified extracellular S1 and S2 domains (Anson et al., 1998; Hirai et al., 1996; Kuryatov et 

al., 1994; Laube et al., 1997; Wafford et al., 1993). Residue differences in the pore forming 

region confer the unique properties of voltage dependent Mg
2+

 blockade and lack of 

specificity in ion permeability (Na
+
, K

+
 and Ca

2+
) through the channel. Mg

2+
 blocks flow 

through the channel at resting membrane potentials requiring depolarisation of the neuron 

before the channel can pass significant inward current (Mayer et al., 1984; Nowak et al., 

1984). For this property NMDARs are termed ‘coincidence detectors’ as they are able to 

integrate electrical activity in the cell with the action of receptors such as AMPARs,  with 

their own binding of glutamate (Sjostrom et al., 2008). These characteristics combined with 

the ability to permit ‘efficient’ Ca
2+

 flow into neurons led to NMDARs identified as the key 

mediators of synaptic potentiation in most brain regions. Indeed experiments where NMDAR 

function is blocked or receptor expression is ablated, severe defects in the formation of both 

LTP and LTD are observed (Kirkwood and Bear, 1995; Niewoehner et al., 2007; Tsien et al., 

1996). Interestingly the presence of the various subunits is crucial for the mechanisms of 

different kinds of memory/potentiation. Mice unable to produce the GluN2A subunit suffered 

defects in both CA1 LTP and spatial learning (Kiyama et al., 1998; Sakimura et al., 1995). 

Deletion of the GluN2B gene causes defects in LTP formation in both the hippocampus and 

neuronal barrelette of the trigeminal complex (Kutsuwada et al., 1996). This was mirrored by 

GluN2B overexpression experiments resulting in enhancement of LTP (Tang et al., 1999). 

The resultant transgenic mouse line termed the “smart” mouse performed significantly better 

than wild-type animals in learning and memory experiments these included water maze and 

contextual and fear conditioned tests.     

 

Calcium signalling, common to most cell types is essential in both the potentiation and 

depression of neuronal synapses. In particular calcium, derived from the extracellular space 
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via NMDARs, is the key mediator of synaptic plasticity (Gnegy, 2000). Long term 

potentiation and depression are generated at molecular level, postsynaptically by changes in 

the activity and number of AMPA receptors (Kessels and Malinow, 2009).  LTP and Ca
2+

 

influx via NMDA receptors are directly linked by the Ca
2+

/Calmodulin-dependent protein 

kinase (CaMKII) (Lisman et al., 2002). This multimeric holoenzyme translates the fast Ca
2+

 

influx event into a more sustained phosphorylation based signal. CaMKII holoenzymes are 

composed of subunits arranged into dodecamers, which in the presence of Ca
2+

/calmodulin, 

autophosphorylate themselves and subsequently proceed to phosphorylate synaptic proteins 

(Lou et al., 1986; Miller and Kennedy, 1986; Schworer et al., 1986). Over 30 targets of 

CaMKII phosphorylation have been identified. These include proteins such as receptors and 

channel proteins, scaffold proteins, cytoskeletal proteins, motor proteins and enzyme (Fink 

and Meyer, 2002; Soderling, 2000; Wayman et al., 2008). Phosphorylation of S831 on GluA1 

subunits by CaMKII increases single channel conductance whilst impairment of this 

phosphorylation causes defects in behavioural learning (Crombag et al., 2008; Derkach et al., 

1999). CaMKII mediated phosphorylation of GEFs has been directly linked to activity 

dependant spine morphogenesis (Saneyoshi et al., 2008).  

 

1.2.7 Developmental regulation of glutamate receptor expression 

Both AMPA and NMDA receptor expression at synaptic sites is dynamic throughout the 

development of the nervous system (Hall and Ghosh, 2008; Monyer et al., 1994). Subunit 

expression varies both in brain regions and during developmental time. In virtually every 

neuron in the CNS the obligatory GluN1 gene is expressed at all stages whereas there are 

various differences in the expression of the four NR2 transcripts. GluN2a and GluN2c are 

poorly expressed at prenatal stages and become significantly expressed in discrete brain 

regions such as the cerebellum by P7 (Monyer et al., 1994). GluN2b and GluN2d are strongly 

expressed at E17 and E19 and postnatally the strength of expression decreases into adulthood. 

For all four subtypes these developmental differences are particularly striking in the cortex 

and hippocampi of rat forebrains (McCarthy, 2006). These changes coincide with major 

periods of synapse formation in the rodent brain (Hall et al., 2007). 
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Figure 1.3 Developmental regulation of dendritic spines and glutamate receptors. In 

early postnatal brain postsynaptic structures are generally minor dendritic protrusions.  

Functional synaptic sites lack AMPAR but contain functional NMDAR. Developing synaptic 

sites feature structurally better defined spine, filopodia and spine like morphology. Actin 

accumulation underlies increased motility of these sites. Both NMDAR and AMPAR are 

present at these sites with receptors containing GluN2B, GluN2D, GluA1 and GluA4 

subunits particularly prevalent. These receptors are associated with structural PSD proteins 

such as PSD-95 and signalling proteins such as CaMKII.  More mature postsynaptic spines 

tend to morphologically resemble mushrooms with spine necks decreasing in diameter. PSD-

95 volume increases in proportion with spine volume alongside associated signalling proteins 

such as CaMKII. Both the number and subunits of glutamate receptor change as synapses 

mature. Ca2+ impermeable AMPARs such as GluA2/3 containing increase in proportion 

whilst GluN2A and GluN2C containing NMDARs are more prevalent at synapses.  

 

AMPA receptor expression is similarly developmentally regulated with changes in synaptic 

subunit composition as the neural network matures. The presence of GluA4 in particular is 

highly indicative of an immature hippocampus (Zhu et al., 2000). In contrast, the presence of 

GluA2/3 containing synapses are more prevalent in postnatal brains where the majority of 

synapse development has already occurred (Hall and Ghosh, 2008; Zhu et al., 2000). GluA1 
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expression in the hippocampus seems to follow a similar profile to that of GluA2, increasing 

after birth of the organism. In contrast to GluN1, the GluA1 subunits of AMPARs are non-

obligate. However the majority of receptors found in brain tend to contain this subunit. It is 

therefore of significance that a majority of synapses in early postnatal brain whilst containing 

GluN1 receptors, lack GluA1 subunits. These synapses are rendered inactive under ‘normal’ 

conditions and as such are termed ‘silent synapses’ (Isaac et al., 1995). In the hippocampus, 

virtually all CA3-CA1 synapses are silent during the first postnatal week rising to 

approximately 50% functional by the second and third weeks (Kerchner and Nicoll, 2008). 

Classically, silent synapses have been studied by analysis of differences between AMPA and 

NMDA synaptic failure rates during development and after unsilencing (Isaac et al., 1995). 

These studies assume the likelihood of release at a non AMPA synapse is the same as that of 

an AMPA-NMDA synapse. Similarly differences in the amplitude of mEPSCs between 

NMDA only and AMPA-NMDA synapses could suggest changes to the number of silent 

synapses or simply synapse number. However it has been postulated that during paring or 

unsilencing protocols only a fraction of synapses involved in asynchronous release become 

unsilenced making changes difficult to observe via mEPSCs (Isaac et al., 1995). Interestingly, 

the formation of silent synapses early in network development seems to be a product of the 

regulation by presynaptic activity and NMDAR activation on both expression and synaptic 

localisation of AMPARs. 

 

Much data has been accrued looking at the specific developmental surface expression of 

AMPA receptor subunits and the relationship this has with NMDAR function. Indeed 

localisation of AMPARs at synaptic sites is regulated by NMDARs at transcriptional, 

translational, protein degradation and synaptic insertion levels.  As previously described 

AMPARs are derived from 4 gene products and as such are transcribed in neuronal ER. In 

response to NMDAR activation both GluA1 and GluA2 mRNA transcript levels are 

decreased via ERK/MAPK and Ca
2+

 signalling (Grooms et al., 2006). This activation using 

NMDA decreases the colocalisation of GluA2 puncta with synapsin-1 puncta in hippocampal 

cultures suggesting this down regulation ultimately affects synaptic localisation of receptor at 

synaptic sites (Grooms et al., 2006). Interestingly by use of bath applied NMDA the results of 

this investigation were unable to distinguish the effects of activation of synaptic vs. extra-

synaptic NMDAR activation. It has been established that these distinct pools often promote 

antagonistic cell signalling pathways e.g., BDNF/CREB signalling in cell survival 
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(Vanhoutte and Bading, 2003). Further strengthening this idea NMDAR deletion both in vivo 

and in vitro enhances synapse unsilencing (Adesnik et al., 2008). 

 

 

Due to the relatively large distance separating distal dendritic compartments from the soma of 

neurons, the presence of protein synthesis machinery in dendrites is not surprising (Steward 

and Schuman, 2001; Waung and Huber, 2009). Receptor subunit mRNA has been observed 

in dendrites adjacent to synaptic sites providing a rapid means for receptor replenishment 

(Bilak et al., 1995). Indeed dendritically located receptor appears to be important in the 

process of synaptic scaling (Sutton et al., 2006). Synaptic scaling describes the homeostatic 

up-regulation of synaptic transmission in response to prolonged or chronic inhibition of AP 

firing. Sutton and colleagues were able to prevent homeostatic up-regulation of AMPAR 

mEPSC amplitude by blockade of local protein synthesis (Sutton et al., 2006). This data was 

strengthened by observations of the inhibition of GluA1 receptor insertion, post chronic APV 

and TTX treatment by local application of anisomicin in dendrites. Interestingly whilst 

GluA1 subunits are believed to be the mediators of the synaptic scaling events, later analysis 

of these neurons gradually saw an incorporation of GluA2 subunits at synaptic sites (Sutton et 

al., 2006). 

 

Regulation of synaptic levels of AMPAR by ubiquitin proteasome degradation are mediated 

by the removal of PSD-95 and the glutamate receptor interacting protein (GRIP1). NMDAR 

activation causes ubiquitination of PSD-95 resulting in the removal of GluA1 subunits from 

synaptic sites (Colledge et al., 2003).GRIP1 associates with GluA2 subunits and is directly 

involved in their stabilisation at synaptic sites. Whilst no direct link has been established, 

ubiquitination decreases the levels of available GRIP1 in neurons as experiments looking at 

the decrease in GluA2 caused by GRIP1 decrease due to ubiquitination are blocked by the 

exposure of neurons to APV (Guo and Wang, 2007).   

 

Whilst there are several mechanisms at play promoting AMPAR receptor down regulation in 

early postnatal stages synaptic unsilencing is a crucial mechanism in plasticity of early neural 

networks. Up to postnatal day 12, early LTP is driven almost entirely by the unsilencing of 

synapses in a PKA dependent manner (Abrahamsson et al., 2008).   
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1.3 Synaptogenesis 

 

The formation of functional synaptic sites generally features a series of clearly defined stages. 

The stages encompass the apposition of nascent pre and postsynaptic sites leading up to the 

formation of synapses with all essential transmission machinery present (Waites et al., 2005). 

Peripheral synaptogenesis seems to differ slightly from central synaptogenesis in that much 

of the postsynaptic machinery is able to organise in the absence of a functional presynaptic 

partner (Yang et al., 2001). However much of our current understanding of central 

synaptogenesis suggests presynaptic specialisation occurs prior to that of postsynaptic 

formation and that the former may influence development of the latter (Friedman et al., 2000; 

Ziv, 2001). Current research has also revealed much about the cell derived factors which 

regulate these stages of synapse development. Expressed at various stages of CNS 

development and with a myriad of forms and properties, these proteins contribute to the 

complexity of neuronal circuits. 

 

1.3.1 Axon extension and target recognition 

The complexity with which neural networks in the CNS are formed begins with the initial 

target recognition between prospective connected neurons (Chen and Cheng, 2009; Salinas, 

1999; Shen and Cowan, 2010). Generally this process is mediated by axonal outgrowth and 

regulated by signals derived by the postsynaptic cell (Waites et al., 2005). The specificity 

with which these axons form synaptic partners is a marvel considering the relative distance 

axons may have to travel. One such example of this specificity exists in the eye where retinal 

ganglion axons extend from the eye to the thalamus forming synapses only with thalamic 

cells (Shatz, 1996; Shatz, 1997).  

 

Of essential importance to this process are the presence of diffusible axon guidance 

molecules (Terauchi and Umemori, 2011). The growing axons are directed toward their 

postsynaptic partner by signals derived from these targets (Waites et al., 2005). The result is 

an increasing concentration of chemo-attractant as the axon grows closer to its partner. 

Several types of guidance molecules (both attractant and repellent) exist operating in various 

brain regions. Netrins are an example of proteins both able to encourage and inhibit axonal 

growth (Kennedy et al., 1994). Commissural axons of the spinal cord are regulated by a 

gradient of netrin 1 and 2, whilst RGC axon growth is regulated by netrin 1 released by Optic 

nerve head (ONH) cells (Kennedy et al., 2006; Oster et al., 2004). Semaphorins are a second 
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group of secreted proteins which act to repel sensory, sympathetic and axons in the 

hippocampus (Chedotal et al., 1998). Several proteins initially identified as developmental or 

growth morphogens have also been identified as axon guidance proteins. Morphogens are 

substances involved in the regulation of cell and tissue fate acting in a concentration 

dependent manner (Turing, 1990). These include proteins such as Wnts, BMP, FGF, NGF 

and Hedgehog (Waites et al., 2005).  

 

Close proximity between the pre and postsynaptic neurons initiates further specialisation and 

priming processes in first the presynaptic followed by the postsynaptic terminals. This stage 

is identified initially by a decrease in the outgrowth of the axon with a concomitant increase 

in volume of the axon terminal (Hall et al., 2000; Krylova et al., 2002). Concurrently 

accumulation of synapse specific proteins in the nascent synaptic site occurs (McAllister, 

2007). It is important to note that whilst there may be no physical interaction between pre and 

post synaptic terminal at this stage signals derived from the postsynaptic terminal have been 

identified as acting in a retrograde manner to aid presynaptic development (Salinas, 2005; 

Tessier-Lavigne and Goodman, 1996). These signalling proteins include many of the same 

axon guidance family of proteins along with cell surface signalling proteins which come in to 

play as the surfaces come into contact. These factors include FGF’s, Wnts, Cholesterol and 

TSP whilst cell surface signals include cadherins, CAMs, Narp, Neurexin/Neuroligin and 

Ephrin/Eph complexes (Waites et al., 2005). 

 

1.3.2 Synapse maturation 

The formation of a nascent synaptic site by apposition of pre and postsynaptic neurons 

initiates the maturation stage of synapse development. Via a complex array of signalling 

proteins and cascades the machinery for release presynaptically and postsynaptic 

neurotransmitter array is assembled. Presynaptically many of the proteins required at synaptic 

sites are transported together in the developing axon ready for delivery to designated sites 

(McAllister, 2007; Ziv and Garner, 2004). PTVs (piccolo transport vesicles) and STVs 

(synaptic vesicle protein transport vesicles) are two such cargo vesicles identified in young 

neurons. PTVs contain proteins such as piccolo, bassoon, Munc13, Munc18, syntaxin and 

Snap25 (Zhai et al., 2001). STVs colocalised strongly with markers for VAMP, SV2, 

Synapsin and amphiphysin (Ahmari et al., 2000). Many of these proteins rapidly accumulate 

in the early stages of synapse formation and these sites provide a reliable marker for future 
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functional sites (Gerrow et al., 2006). Presumably the early presence of scaffolding proteins 

generates a favourably ‘set-down’ point for subsequent synaptic vesicle delivery.  

 

The maturation of the presynaptic apparatus is proceeded (approximately 30-45minutes later) 

by the development of the PSD, at glutamatergic synapses, beginning with scaffolding 

proteins such as SAP90/PSD95 (Friedman et al., 2000). Studies are divided as to the method 

of the method of PSD95 transport to nascent synaptic sites. Similar to presynaptic cargo 

vesicles, PSD95 transport has been observed in clusters (Prange and Murphy, 2001). Whilst 

several studies have observed a more gradual accumulation of the scaffolding protein at 

synaptic sites (Bresler et al., 2001; Mars et al., 2001). The presence of postsynaptic 

scaffolding proteins encourages receptor recruitment as evidenced by the short delay in 

receptor recruitment proceeding PSD-95 clustering (Friedman et al., 2000). PSD-Glutamate 

receptor insertion is tightly regulated at developing synapses, receptor present along dendrites 

or adjacent to synaptic sites may not be incorporated into synapses. Indeed various studies 

suggest receptor may be inserted directly into PSDs from adjacent (internal or surface) 

regions or shuffled into the PSD from either proximal or distal surface regions (Waites et al., 

2005). These regulatory mechanisms seem to vary even between receptor subunits, where 

GluA2is more locally inserted than GluA1 (Passafaro et al., 2001). Interestingly other 

important components of the postsynaptic terminus seem to be recruited passively. CaMKII 

and the scaffolding proteins homer and shank are accumulated at the synapse by trapping of 

local cytosolic pools (Bresler et al., 2004; Okabe et al., 2001; Shen and Meyer, 1999).   

 

Formation of inhibitory central synapses is less well understood. The majority of inhibitory 

synapses are formed directly onto the dendritic shaft suggesting maturation of a presynaptic 

terminal which then seeks out and promotes maturation of the postsynaptic terminal. 

Consistent with this, data from Wierenga and colleagues suggests GABAergic synapses form 

exclusively without the assistance of postsynaptic dendritic protrusions (Wierenga et al., 

2008). In common with glutamatergic synapses this study also revealed a delay of 

approximately 60 minutes between the accumulation of presynaptic vGAT and Postsynaptic 

Gephyrin. 

 

1.4 Synaptogenic Molecules 

The rapid accumulation of both pre and post synaptic proteins are regulated by a range of 

secreted and cell surface molecules. Identification and study of this field of neuroscience has 
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expanded in the last decade revealing much about the mechanisms and roles these diverse 

groups of proteins have. Nominally these molecules can be grouped as either trans-synaptic 

or secreted molecules.   

 

1.4.1 Trans-synaptic molecules 

Neurexins and Neuroligins form heteromeric synaptic cleft spanning complexes which have 

varying effects on synapse formation. Postsynaptic neuroligins bind presynaptic neurexin to 

generate the fully signalling complex. Three genes each encode α-neurexin and β-neurexin 

however both spliced and unspliced gene products are present at synapses. Presynaptically 

neurexins interact with a range of scaffolding proteins such as CASK and actin binding 

proteins such as Band4.1 (Dean and Dresbach, 2006). Through these interactors neurexins are 

able to stabilise the developing presynaptic terminal and cytoskeleton. Differences in the 

splicing of both neurexins and neuroligins, generates differences in binding affinities of the 

pre and postsynaptic partners (Boucard et al., 2005).  Of the five neuroligin genes found in 

humans 1, 2 and 3 are expressed  in the brain (Dean and Dresbach, 2006). Neuroligins play a 

key role in directing the formation of excitatory or inhibitory synapses. Neuroligins 1 and 2 

are enriched at excitatory and inhibitory synapses respectively (Graf et al., 2004; Song et al., 

1999; Varoqueaux et al., 2004).  Indeed overexpression studies by Chubykin and colleagues 

further elucidated the causative role of both neuroligins in synapse formation. Overexpression 

of Neuroligin 1 in hippocampal neurons increased both AMPA and NMDA mediated 

synaptic responses alongside an increase in overall synapse number, measured by synapsin 

and spine density (Chubykin et al., 2007). Neuroligin 2 overexpression had no such effect on 

excitatory synaptic response but showed a significant promoter effect on inhibitory synaptic 

response. Neuroligin 3 is found at both glutamatergic and GABAergic synapses in the 

hippocampus and is believed to play associate roles in synapse formation with Neuroligin 1 

and 2 (Budreck and Scheiffele, 2007). 

SynCAM are cell adhesion molecules found at many cell-cell junctions and highly enriched 

at synaptic sites. These proteins were initially identified as potential synaptogenic molecules 

due to their structural similarity to cadherin and neurexin-neuroligin complexes (Biederer et 

al., 2002). In particular the presence of several Ig domains coupled with a PDZ interacting 

domain identified this protein as a potential pro-synaptogenic molecule. Expression of full 

length SynCAM in neuronal cultures promoted functional synapse formation, in contrast with 

expression of a SynCAM containing a C-terminal deletion which inhibited synapse number 
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increase (Biederer et al., 2002). Interestingly SynCAM1 has been identified as a specific 

promoter of excitatory synapse number without having an effect on inhibitory synapses as 

defined by ultrastructural analysis (Robbins et al., 2010). 

Eph Receptors form synapse spanning complexes with Ephrin molecules. Eph Receptors 

comprise the largest members of the receptor tyrosine kinase family. Both the Ephs and 

ephrins are expressed in A and B forms, which specify the presence of either a GPI moiety or 

transmembrane domain respectively. The Eph receptors are generally located 

postsynaptically whilst the ephrin molecules are found presynaptically, similar to the 

neuroligin complex there is specificity in the binding affinities of the various Ephs and 

ephrins. In general Eph A and B receptors have highest affinity for Ephrins of the same form. 

EphB2 overexpression in cortical neurons directly increases clustering of GluA2 and 

enhances spine formation (Kayser et al., 2006). Interestingly investigations into the binding 

of EphB with EphrinB show a direct interaction with NMDARs required for the effects on 

GluA2. Indeed activation of EphB enhances NMDAR mediated Ca2+ influx and gene 

expression (Takasu et al., 2002). However while in vivo studies of EphB2 null mice reveal 

minor defects in synaptic function they have failed to reveal defects in both synapse 

formation or spine morphology (Grunwald et al., 2001; Henderson et al., 2001). The 

discrepancies in the effects in vivo and in vitro are likely due to the array of Eph-Ephrin 

complexes generating a measure of compensatory mechanisms in KO experiments. In 

concurrence with this triple KO EphB1/B2/B3 mice form fewer synapses and do not form 

dendritic spines in the hippocampus (Henkemeyer et al., 2003). EphA4 signalling, also 

expressed at synaptic sites, inhibits spine formation. Exposure of cultured neurons to ephrin 

A1 or A3 (activators of EphA4 signalling) caused varying defects in spine density and size 

(Murai et al., 2003). This is mirrored by disorganisation of dendritic spines in EphA4 KO 

mice (Murai et al., 2003). The physiological relevance of this negative regulation may be to 

limit uncontrolled growth of spines believed to be important for later potentiation and 

memory paradigms (Lai and Ip, 2009). EphrinB reverse signalling is also important in 

synaptogenic regulation. In experiments by Kayser and colleagues heterologous 293T-

neuronal co-cultures were generated. Overexpression of EphB in 293T cells provided a 

pseudo postsynaptic contact for axons, activating reverse EphrinB signalling. SV2 and FM4-

64 sites were observed to increase on cultured neurons where EphrinB was activated (Kayser 

et al., 2006). In the developing xenopus optic-tectum, activation of EphrinB via infusion of 
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EphB2-Fc increases size and number of synaptobrevin and SNAP-25 clusters (Lim et al., 

2008).  

 

Wang and colleagues recently identified the Synaptic adhesion like molecule (SALM) family 

of transmembrane synaptic organising proteins (Wang et al., 2006). Currently 5 members of 

this family have been identified via human and mouse cDNA screens (Ko et al., 2006; Wang 

et al., 2006) SALM1 interacts with both NMDARs and overexpression increases NMDAR 

and PSD-95 clustering at synapses (Wang et al., 2006). SALM2 overexpression increased the 

number of excitatory synapses without any effect on the inhibitory synapses in hippocampal 

neurons (Ko et al., 2006). In the same study SALM2 was demonstrated to interact directly 

with PSD-95 whilst the synaptic protein organiser effects were reversed with knockdown.  

  

 

1.4.2 Secreted molecules 

Brain derived neurotrophic factor is emerging as regulator of synapse formation in the CNS. 

Signalling through synaptic TrkB receptors, have been identified as specific enhancers of 

excitatory synapse number (Vicario-Abejon et al., 1998).  Consistent with this, studies using 

both BDNF gain of function and TrkB inactivation/activation models have demonstrated 

effects on both synaptic proteins and spine number/morphology (Luikart and Parada, 2006). 

Using organotypic hippocampal slice Tyler and Pozzo-Miller observed presynaptic 

enhancements after long term exposure to BDNF. BDNF exposure increased the number of 

docked vesicles at CA1 stratum radiatum synapses without affecting reserve pool size (Tyler 

and Pozzo-Miller, 2001). The same treatment enhanced both synapse number per neuron 

(observed via synaptobrevin) and spine density. The same study also used whole cell patch 

clamp technique to measure miniature excitatory currents (mEPSC). mEPSC frequency 

changes roughly represent presynaptic changes whilst postsynaptic changes are represented 

by amplitude changes (Fatt and Katz, 1952). Exposure of these synapses to BDNF saw an 

enhancement in mEPSC frequency with no change to amplitude size (Tyler and Pozzo-

Miller, 2001). Electrophysiological studies have also observed BDNF induced enhancements 

in spontaneous synaptic firing rate and increases in both amplitude and frequency of EPSCs 

in hippocampal cultures (Levine et al., 1995). Interestingly the increases in EPSC frequency 

were occluded by use of postsynaptic TrkB inhibitor suggesting BDNF acts directly at both 

pre and postsynaptic sides of the synapse. BDNF also impacts synaptic function by directly 

influencing NMDAR activity. Exposure of hippocampal neurons to BDNF enhanced 
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NMDAR channel open probabilities whilst also causing an enhancement in plasma 

membrane associated expression of NMDAR (Caldeira et al., 2007; Levine et al., 1998). 

Concurring with BDNF in vivo gain of function studies TrkB signalling loss caused synaptic 

defects. Using a conditional TrkB KO mouse system Luikart and colleagues observed 

decreases in spine density alongside decreases in PSD-95 and synaptophysin stains in CA1 

(Luikart et al., 2005). The severity of these defects increased proportionally with the length of 

TrkB signalling knockout and maintained from p20 into “adulthood”. BDNF/TrkB signalling 

clearly plays a strong role in the formation and maintenance of synapses. Contrary to the old 

ideas of presynaptic enhancer molecules, BDNF is directly involved in regulation at both 

sides of the synapse. 

 

The FGF family of proteins play a number of roles in the differentiation and proliferation of 

various cell types. These soluble proteins also function as synaptic organisers most 

commonly signalling through Fgf(R) receptors and heparan sulfate proteoglycans. Fgf2 was 

observed, by Dai and Peng when applied to spinal cord neurons, to increase both the number 

of synaptic vesicles and amount of synaptotagmin in axons (Dai and Peng, 1995). Several 

Fgfs were subsequently identified by Umemori and colleagues as potent presynaptic 

organiser in pontine and vestibular neurons. Exposure of pontine and vestibular cultures to 

recombinant Fgf22 promoted vesicle, SV2 and synapsin clustering (Umemori et al., 2004). 

Furthermore use of FGFR2bAP and inhibitor of endogenous Fgfs7, 10 and 22 resulted in 

defects in synapsin accumulation in vitro and mossy fibre varicosities (representing 

presynaptic sites) in vivo. With the use of postnatal FgfR2 KO mice, defects were observed in 

synapsin, bassoon and synaptophysin accumulation in the cerebellum of p14 animals 

(Umemori et al., 2004). Recent work has identified specificity in the synaptogenic properties 

of the various Fgfs. Terauchi and colleagues examined the expression of Fgfs22 and 7 and 

found these enriched in CA3 hippocampal layers. By measuring the accumulation of the 

excitatory marker vGlut and the inhibitory marker vGat in Fgf22 or Fgf7 KO animals defects 

were observed at excitatory and inhibitory synapses respectively (Terauchi et al., 2010). 

These defects appeared to be limited to the presynaptic terminals with no effect on 

postsynaptic gephyrin or PSD-95. mPSCs confirmed the imaging data by showing defects in 

excitatory or inhibitory mini frequency in Fgf22 or Fgf7 neurons respectively (Terauchi et al., 

2010). Current data and work on Fgfs identify these target derived molecules to be essential 

for the presynaptic development post axonal outgrowth however much of the specific roles of 

each Fgf in synapse formation continues to be uncovered.  
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Semaphorins are another group of secreted axon guidance molecules which seem to be 

important at various stages in neural circuit formation (McAllister, 2007). Of particular 

interest the Class 3 and 4 semaphorins have been intensely studied and observed to have 

myriad effects on synapse maturation. Morita and colleagues demonstrated the ability of 

Sema3A to enhance clustering of PSD-95 and the number of PSD-95 associated spines on 

cortical neurons. The number of synapsin clusters associated with PSD-95 clusters also 

increased suggesting an enhancement of excitatory synapse number (Morita et al., 2006). 

Exposure of hippocampal neurons to Sema4D meanwhile causes a RhoA dependent increase 

in spine density (Lin et al., 2007). Sema4B has been observed acting both at excitatory and 

inhibitory sites. RNAi knockdown of Sema4B in neurons resulted in a decrease in 

synaptotagmin and GluA2 stained synapses alongside a decrease in both mEPSC frequency 

and amplitude (Paradis et al., 2007). Interestingly Sema4B and Sema4D knockdown inhibited 

GABAR/GAD67 colocalisation in hippocampal neurons suggesting both molecules have 

general synaptogenic properties (Paradis et al., 2007). Further research is required into the 

roles played by the various semaphorin classes at the various synapse types, in particular little 

is known of the role of class 3 semaphorins on GABAergic synapse formation. As such it is 

clear both class 4 and 3 semaphorin signalling is important in receptor and spine organisation 

in neurons.  

 

Similar to many of the above examples of secreted proteins Wnts have been identified as 

important molecules in the regulation of synapse formation. Like Fgfs these proteins have 

long been studied for the variety of effects they have on embryo development, more recent 

research has begun to reveal roles for Wnts at various stages of neural circuit formation and 

maintenance. The experiments of this thesis primarily concern the abilities of Wnt proteins in 

brain development and so the next section will contain a detailed summary of our current 

understanding of these molecules. 

 

 

 

 

 

 

 



43 

 

1.5 Wnts 

Wnts are a conserved group of highly glycosylated diffusible molecules. These proteins are 

found across both vertebrate and invertebrate and have a wide range of roles across the life 

span of an organism. The first Wnt protein discovered (Wnt1) was uncovered as a proto-

oncogene which when over-expressed caused mammary tumours in mice (Nusse and 

Varmus, 1992).  

1.5.1 Wnts: expression and secretion 

The number of Wnt proteins expressed varies across vertebrate and invertebrate species, from 

5 members in C.elegans to 19 in humans and rodents (Nusse and Varmus, 1992). The name 

Wnt is derived from a combination of the drosophila Wnt homologue wingless (Wg) and the 

mouse mammary gland tumour associated protein Int1 (Klaus and Birchmeier, 2008; Nusse 

et al., 1991). In 1982 Nusse and Varmus identified the Int1 gene as causative in the formation 

of mammary gland tumours (Nusse and Varmus, 1982). With the subsequent identification of 

the drosophila Int1 homologue Wg, which produced amongst other developmental defects a 

wingless phenotype the term Wnt was later used to describe genes and the downstream 

signalling pathways (Nusse et al., 1991). Interest into research of Wnts has been driven by 

their interesting combination of effects on both cancer proliferation and embryonic 

development. Due to this Wnt signalling have been identified and studied in carcinogenesis, 

body axis specification, neural tube development, cell polarity, stem cell proliferation and 

CNS development (Barker and Clevers, 2006; Budnik and Salinas, 2011; Cayuso and Marti, 

2005; Katoh, 2007; Niehrs, 2010).  

  

Wnt proteins are expressed throughout the body but most strongly enriched in the brain, 

lungs, kidneys and prostate(Kirikoshi et al., 2001). In the mammalian brain, with varying 

degrees of intensity various Wnt proteins are found in the cerebellum, cortex, hippocampus 

and olfactory bulb (rodents) of both young and adult animals (McCarthy, 2006). Indeed the 

expression of Wnt and Wnt signalling molecules postnatally and into adulthood provided 

early clues as to the role of Wnt in neural development and maintenance (Coyle-Rink et al., 

2002).  

 

The Wnt family of proteins are highly conserved secreted proteins post-translationally 

modified and approximately 40kDa in size (Port and Basler, 2010).  The discovery that these 

proteins were highly hydrophobic, attaching to cell membranes and extracellular matrices, 
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was initially analogous to both sequence predictions and their function as secreted guidance 

molecules (Bradley and brown 1990). The discovery of several lipid moieties in association 

with most of the Wnt proteins explained the hydrophobic nature of the molecules. The first of 

these was a palmitate group attached to one of the many conserved cysteine residues on Wnt 

proteins. This was first discovered in Wnt3a and subsequently demonstrated in Wnt1 and 

Wnt5a (Galli et al., 2007; Kurayoshi et al., 2007; Willert et al., 2003) 

.  

Whilst the lipid modifications to most Wnt species are responsible for their hydrophobicity 

these modifications are also essential for both Wnt secretion and activity. Mutation of Cys
77

 

in Wnt3a and Cys
104

 Wnt5a, normally post-translationally palmitoylated, display no secretion 

defects but exhibit loss of Wnt signalling ability (Galli et al., 2007; Kurayoshi et al., 2007). 

Galli and colleagues identified porcupine mediated Wnt3a lipid modification as essential for 

signalling by analysing the downstream readout of Top/FopFlash renilla luciferase in 293T 

cells. TopFlash assays involve transfection of TCF (nuclear effector of Wnt signalling) 

reporter constructs. The experimenters knocked down porcupine expression and assessed the 

effect on TCF reporter activity, observing a decrease (Galli et al., 2007). Loss of 

palmitoylation decreases the ability of Wnt5a to inhibit Wnt3a induced Tcf-4 activity, to 

promote cell migration and bind to cell surface signalling receptors (Kurayoshi et al., 2007).  

 

The multi-pass transmembrane protein Wntless (Wls) or Eveness interrupted (Evi) has 

recently been identified as an essential mediator of Wnt secretion. Banziger and colleagues 

investigated the effect of Wls in both human and C.elegans cell systems and found 

overexpression and knockdown of the protein inhibited release of Wnt species (Banziger et 

al., 2006). To date only WntD secretion is free from regulation by Wls (Ching et al., 2008). 

The subcellular localisation of Wls to the golgi and the subsequent accumulation of Wnt 

within the compartment during Wls knockdown, suggests Wls acts to facilitate Wnt 

exocytosis from the golgi network (Port et al., 2008). 

 

Work from the lab of Vivian Budnik has recently demonstrated the release of synaptic vesicle 

containing both Evi and Wg suggesting a role for Evi/Wls in extracellular trafficking of Wnt 

species (Korkut et al., 2009). In confirmation of the study by Banziger and colleagues, 

Korkut et al. demonstrated a requirement for Evi in presynaptic Wg release and the resultant 

NMJ phenotype mimicked Wg loss. Imaging in this study revealed the presence of Evi both 

pre and postsynaptically and in transport across the cleft in vesicles with Wg (Korkut et al., 
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2009). Interestingly postsynaptic Evi was observed to interact with dGRIP trafficking which 

plays a role in postsynaptic DFz2 signalling (Ataman et al., 2006). As yet the lack of hi-

fidelity mammalian Wnt antibodies means these experiments are yet to be recapitulated in 

mammalian systems. 

 

1.5.2 Wnt signalling pathways 

Wnt proteins were initially established from studies in embryo development patterning. 

Injection of Wnt1 into developing xenopus embryo resulted in the formation of a bifurcated 

anterior and enlarged posterior tadpole (McMahon and Moon, 1989). From the mass effect on 

tadpole development and subsequent experiments Wnt proteins were established as important 

regulators of cell fate and cell behaviour.  

The various members of the Wnt family were identified from the initial cloning of Wnt1. 

There are 19 Wnt proteins expressed in humans and mice, this number varies across both 

vertebrate and invertebrate systems. Interestingly from the earliest days of studies on cell 

behaviour it was clear the various Wnt species were able to elicit differing effects on cells. 

The first suggestion of functional differences were the differing expression patterns in cell 

layers found for Wnts 3a, 5a and 5b during gastrulation in mice (Takada et al., 1994). Further 

assays which looked at the transformational activity of the Wnt proteins on mouse mammary 

cells also recorded differences in the strength of their effect (Wong et al., 1994). As a result 

the Wnts tested were able to be grouped, by those which could transform and those which 

couldn’t, Wnts 1, 3a and 7a in the former and Wnts 4, 5a and 6 into the latter (Wong et al., 

1994).  

Wnt signal transduction is key to the ways in which these extra cellular proteins are able to 

cause their vast range of effects on an equally large number of cell types. Wnts cause cellular 

effects by first binding to cell surface receptors, these then as typical receptors cause a 

downstream intracellular cascade. Wnts are known to bind receptors such as Ryk, ROR and 

Crypto however the most well understood relationship is between Wnts and frizzled 

receptors. Functional differences between Wnts are further complicated by the differential 

binding ability of specific Frizzleds for the ligand. The different complements of Wnts with 

frizzleds along with the recruitment of accessory receptors such as the LRPs results in 

activation of a variety of intracellular signalling pathways.  
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Wnt signalling by Frizzled receptor activates a multi module protein named Dishevelled 

(Dvl). Dvl a protein of about 750aa in size consists of three highly conserved domains. The 

amino terminal region is the Dix domain, which shares homology with the same domain of 

axin. The central domain is named the PDZ zone and the C-terminal domain is called the 

DEP Domain. Dvl associates with a wide range of intracellular proteins through these 

domains including Frodo, Pak1, Notch, GBP/Frat, β-arrestin, rhoA, MuSK, CK1&2 

(Wharton, 2003).  By having this wide array of binding partners Dvl is able to activate 

various signalling pathways.  

The canonical Wnt signalling pathway directly results in the transcriptional up regulation of 

specific gene products. Canonical signalling acts to regulate the presence of the intracellular 

protein β-catenin. In the absence of Wnt, intracellular stores of β-catenin are phosphorylated, 

causing them to be recognised by TrCP and degraded by proteosomes following 

ubiquitination. Phosphorylation is mediated by the β-catenin degradation complex which is 

composed of the scaffolding proteins; Axin, Adenomatous Polyposis Coli (APC) and the 

responsible kinases; Glycogen Synthase Kinase-3β (GSK3β) and Casein Kinase Ia (CKIa) 

(Logan and Nusse, 2004). On binding of Wnt to frizzled receptor, LRP co-receptor is 

recruited to the complex and Dvl is activated within the cell. Dvl then acts to destabilise the 

β-catenin degradation complex. One way in which it has been proposed Dvl may affect the 

degradation complex is by the recruitment of axin from the intracellular compartment and the 

degradation complex to the membrane and receptors. Over expression studies in drosophila 

with Dvl have demonstrated increased axin recruitment to the membrane, whilst axin-GFP 

has been observed recruited to the plasma membrane in a Dvl dependent manner in 

drosophila (Cliffe et al., 2003). Dvl2, via its DIX domain is able to interact with Axin and 

directly influence its recruitment to the plasma membrane thereby disrupting the degradation 

complex.  
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Figure 1.4 Canonical Wnt signalling. In the absence of Wnt (-Wnt), phosphorylated β-

catenin is broken down by proteasomes. This is due to the phosphorylation of β-catenin by 

the destruction complex composed of CK1a, Axin, APC and GSK3β. In the presence of Wnt 

(+Wnt), frizzled receptor recruits the LRP co-receptor which through the activation of Dvl1 

recruits the destruction complex to the surface receptor complex. Β-catenin accumulates in 

the neuron and enters the nucleus displacing groucho from the TCF/LEF repressor complex. 

Transcription of Wnt responsive genes subsequently occurs.   

Inhibition of the degradation complex results in an increase in the amount of intracellular β-

catenin. β-catenin then translocates in high concentration to the nucleus where it interacts 

with the TCF repressor complex. In non-Wnt signalling conditions the repressor in 

association with a co-repressor groucho, prevents transcription (Cavallo et al., 1998). When 

stable β-catenin is able to enter the nucleus groucho is replaced with a histone acetylase 

(Cyclic AMP response element-binding protein) and becomes a transcriptional activator 

complex. These repressors control transcription of several genes many of which have been 

previously mentioned and some which act as feedback repressors/promoters of the signalling 

pathway. 

Wnt also modifies cytoskeletal dynamics using members of the canonical pathway in a 

translation independent manner (Salinas, 2007). Here axin directly associates with 

microtubules and stabilizes these dynamic structures in opposition of the actions of MAP1B 



48 

 

(Ciani et al., 2004). Phosphorylated MAP1B negatively regulates microtubule stability (Hall 

et al., 2000). The presence of Dvl1 decreases the phosphorylation of MAP1B in likelihood 

via GSK3β inhibition (Ciani et al., 2004; Lucas et al., 1998). Decrease in the amount of 

MAP1B in association with microtubules in axons was also observed (Ciani et al., 2004). 

Endogenous Dvl tightly associated with microtubules and also enhances microtubule stability 

strengthening the pro microtubule effects of Wnt signalling here.    

Wnt is also able to signal intracellularly through the actions of Dvl, independent of β-catenin. 

The first of these signalling pathways is described as the Planar cell polarity (PCP) pathway 

(Gordon and Nusse, 2006). The term PCP refers to the reorientation of cells during 

development e.g. during gastrulation (Veeman et al., 2003; Wallingford et al., 2002). In Dvl-

Daam1-RhoA signalling Dvl binds to dishevelled associated activator of morphogenesis 1 

(Daam1) reversing the auto-inhibited state of this protein (Liu et al., 2008). Together Dvl and 

Daam1 activate RhoA-GTPase which in turn activates the protein Rock resulting in the 

remodelling of cytoskeletal proteins (Habas et al., 2001).  

 

 

Figure 1.5 Non Canonical Wnt signalling pathways A) Wnt bound to Frizzled receptors 

activates intracellular Dvl to promote cellular calcium fluxes. The changes in cellular calcium 

concentration promote downstream signalling by CaMKII, PKC and calcineurin. These 

signalling pathways mediate cell adhesion, patterning and movement effects in neurons. B) 

Planar cell polarity signalling involves Wnt proteins signalling through ROR and Frizzled 

receptors to influence cytoskeletal organisation. Through these surface receptors dishevelled 

acts through Daam1, RhoA and Rock or a divergent signalling pathway involving Rac and 
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JNK. C) In drosophila Wnt is able to signal via a Dfrizzled nuclear import pathway. Here Wg 

(drosophila Wnt analogue) initiates the internalisation of the Wg-dFz complex. The frizzled 

N-terminal is cleaved intracellularly and enters the nucleus where it encourages synaptic 

bouton development.   

Dvl can also activate a divergent non-canonical pathway activating the RhoGTPase, Rac. 

This in turn activates c-jun N-terminal kinase (JNK) resulting in modification to neuronal 

dendrite growth and cell polarity during xenopus gastrulation (Habas et al., 2001; Rosso et 

al., 2005). 

Wnt frizzled interactions directly generate calcium fluxes resulting in a series of intracellular 

signalling cascades. These intracellular calcium concentration increases are sufficient to 

activate signalling via protein kinase C (PKC) and CaMKII (Semenov et al., 2007). 

Experiments overexpressing versions of Dvl lacking DIX domains caused intracellular 

increases in calcium flux, PKC and CaMKII activity suggesting an upstream position for Dvl 

in this pathway (Sheldahl et al., 2003). Experiments by Saneyoshi and colleagues identified a 

transcription factor (NF-AT) involved in Wnt/frizzled Ca2+ signalling. The activation of this 

transcription factor was observed in response to Wnt5a mediated calcium flux and is believed 

to be mediated by the calcium responsive protein calcineurin (Saneyoshi et al., 2002). 

A more recently discovered Wnt signalling pathway has been described from experiments in 

the drosophila. Wg secretion initiates endocytosis of Drosophila frizzled 2 (DFz2) whereby 

the receptor is transported to the nucleus via transport vesicle (Mathew et al., 2005). Once at 

the nucleus the C-terminal portion is imported into the nucleus. Interestingly this process is 

mediated by drosophila GRIP (Ataman et al., 2006). 

1.6 Wnts and Synapse formation  

Through these signalling pathways Wnt and Wnt related species are able to regulate a great 

number of cellular processes. In the development of the nervous system many of these 

processes play essential roles. We have a good but incomplete understanding of the 

importance of Wnt signalling in processes guiding neurons from individual immature 

components to functional neural networks. The next section of my thesis aims to underline 

some of our understanding.  
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1.6.1 Dendritic and axonal development 

Various Wnts have been demonstrated causing effects on neurons in terms of dendritic 

development. One of the early suggestions of these effects came from experiments where 

modulation of intra-cellular beta catenin resulted in enhanced dendritic arborisation (Yu and 

Malenka, 2003). Direct action of Wnt on dendritic arborisation was demonstrated in 

experiments using Wnt7b on hippocampal neurones (Rosso et al., 2005).Exposure of neurons 

to Wnt7b generated enhancements in total length and the number of branches in dendrites of 

hippocampal neurons blocked by secreted frizzled related protein (SFRP1) a Wnt7b 

sequestering protein. These effects were mimicked by Dvl1 overexpression in hippocampal 

neurons and mirrored in Dvl1 knockout mouse hippocampal cultures. This study also 

demonstrated activation of the canonical pathway did not stimulate dendritic growth 

suggesting that the work by Yu and Malenka involved a non-canonical signalling cascade 

enhancing beta catenin levels in the cell. Indeed the work by (Rosso et al., 2005) revealed a 

Dvl dependent pathway acting through RhoGTPases to regulate dendritic morphogenesis.  

Looking at neurites in PC-12 and N1E-115 cells Kishida and colleagues identified Wnt3a 

regulated effects in neurite retraction. The group identified a neurite outgrowth inhibition 

mechanism signalling through the Rho-kinase pathway initated by Dvl1 overexpression or 

Wnt1 or Wnt3a exposure (Kishida et al., 2004). The contradiction in effects between this 

study and the previously mentioned study only confirm the complexity of Wnt signalling in 

terms of Wnt subtype and combination with various cell types.  

More recent work has also demonstrated that cultured hippocampal neurons either transfected 

with Wnt-2 or treated with Wnt-2 conditioned media displayed both increased dendrite length 

and branching (Wayman et al., 2006). This study also demonstrates an activity dependent 

component to Wnt-2 mediated dendritic arborisation which will be discussed in further detail 

later in this chapter. 

Wnt signalling in axonal growth and guidance has been in comparison to dendritic 

development been intensely studied. As previously discussed the development of the axonal 

compartment is particularly interesting because of the great distances and specificity with 

which these structures grow/translocate. Wnt proteins fit within the broad number of proteins 

involved in axon guidance and development. The initial clue for Wnt regulated axon growth 

was observed in drosophila studies using DWnt5. Overexpression disrupted the commissural 
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axon tracts in drosophila (Fradkin et al., 1995). Later studies identified the DWnt5 protein as 

a repulsive cue (Yoshikawa et al., 2003).   

Subsequent studies began to reveal various Wnt proteins as axonal guidance 

(growth/retardant) cues along anterior-posterior axis of various species. Amongst these Wnt1, 

Wnt4, Wnt5a, Wnt7b, Frizzled3 and Ryk receptor have been studied (Dickson, 2005; Imondi 

and Thomas, 2003; Keeble et al., 2006; Liu et al., 2005; Lyuksyutova et al., 2003). 

Unsurprisingly with the myriad of proteins present and involved in axonal regulation there is 

interplay between various species. One such example is the relationship between Wnt3 and 

ephrin B1-EphB signalling. In the tectum this ephrin B1-EphB signalling generates attractive 

cues for incoming axons whilst Wnt3 signalling in this region is repulsive helping to direct 

the precise wiring of the Retinal ganglion cells synapses, reviewed in (Salinas and Zou, 

2008).  

1.6.2 Wnts as synaptic organisers 

Whilst it is clear that Wnts have fundamental roles to play in the early development of the 

nervous system, particularly during path finding, less is known about the processes which 

follow. Some of the previously mentioned secreted factors (BDNF, FGF) are known to have 

synaptogenic effects along with these molecules cellular adhesion molecules such as Syn-

Cams, Cadherins and most notably Neurexins and Neuroligins (Cowan et al., 2001; Siddiqui 

and Craig, 2011). The latter two molecules have also been demonstrated with having the 

ability to confer excitatory/inhibitory specificity at the synapse (Cowan et al., 2001). Even 

before neurons find their synaptic partners some of the components which will eventually 

form synaptic machinery are transported up and down axonal processes. A fully functional 

synapse is an extremely complex structure containing a vast number of components. The 

assembly of this structure requires site specific recruitment of these proteins, not just pre- but 

also post-synaptically. In this situation the Wnts would be ideal organiser candidates in the 

regulation of synapse formation due to their properties as soluble secreted molecules, able to 

move between neurons. Indeed several studies have generated evidence for the effects of 

Wnts in these subsequent processes.  

The first indicators came in experiments looking at Wnt axon remodeling in cerebellar 

granule cells. In order to quantify the synaptic organizing power of Wnt proteins the 

investigators assessed synaptic protein accumulation in neurites a technique which gives a 

measure of nascent synaptic site formation (Chin et al., 1995). On addition of Wnt7a the 
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cultured granule cells were observed to have a higher number of synapsin clusters than 

controls (Lucas and Salinas, 1997). Further experiments showed that the total synapsin 

expression in the neurons were up regulated by Wnt addition (Lucas and Salinas, 1997). 

Additional evidence appeared later in work by the same group this time looking at dissociated 

cultures from mutant Wnt7a-/- mice. This time at glomerular rosettes the synapsin stained 

areas appeared to be much smaller than compared to wild type mice (Hall et al., 2000). Wnt 

and its downstream effector Dvl’s effects on both synaptic puncta accumulation and synapse 

function were further investigated in a later study. Here both Dvl knockout mutant mice and 

Wnt7a/Dvl double mutant knockout mice were analyzed. In mossy fibers isolated from Dvl1 

mutant mice puncta for VAMP2, were smaller and lower in number than in wild type cells 

(Ahmad-Annuar et al., 2006). This effect was also mimicked in cells from the Wnt7a/Dvl 

double mutant (Ahmad-Annuar et al., 2006). 

 

The work thus far in the field had looked at the organization of synaptic molecules this left 

questions as to whether the delay in synapse accumulation of some synaptic components 

functionally affected synapse function. Mini post synaptic currents (mPSCs) from the granule 

cells of Wnt7a and Dvl1 deficient mutant mice were analyzed. Here brain slices were whole 

cell patch recorded and compared with wild type mice. The frequency of spontaneous events 

were found to be lower in the mutant mice than in comparison to wild type suggesting a 

defect caused by the lack of Wnt signaling (Ahmad-Annuar et al., 2006). The lack of effect to 

the amplitude of the events combined with EM images displaying ‘normal’ active zones 

suggested that this was specifically a pre-synaptic effect which affected the release of 

neurotransmitter (Ahmad-Annuar et al., 2006; Bekkers and Stevens, 1995). 

It has been demonstrated certain Wnts are potent pro-synaptogenic factors however less data 

has been generated as to any opposing properties of the proteins. Some of the first 

observations of the repulsive activity of Wnts in synapse formation came from work done in 

the lab of Yimin Zou. As previously discussed this work demonstrated that Wnt proteins 

(wnt1 and 5a) produced by transfected COS cells were able to repel corticospinal tract (CST) 

neuron outgrowth (Liu et al., 2005). This was followed on by looking at the Wnt receptor, 

Ryk which was specifically expressed in CST neurons. The work done by this group 

suggested Wnts acting as repulsive cues through the Ryk receptor were responsible for CST 

axon guidance in spinal cord. Whilst it had been previously demonstrated that Wnts may act 
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as repulsive cues in the guidance of axons no evidence had been presented as to the negative 

effects of Wnts at synapses.  

Work by Klassen and Shen has recently demonstrated Wnt mediated anti-synaptogenesis in 

the C.elegans system. In C.elegans the DA9 motor neuron forms precisely patterned en 

passant synapses along the anterior of the organism. By implanting cells in the posterior of 

the organism expressing Lin-44, the Wnt analogue in C.elegans, the group found that 

synapses proximal were disrupted. The generation of these asynaptic regions were shown to 

be mediated by both Lin-44  and the C.elegans frizzled analogue Lin-17 through Dvl1 

(Klassen and Shen, 2007).  

Another recent study in drosophila has demonstrated more evidence of Wnt anti-

synaptogenesis. In this study differing target cues were identified between two adjacent 

muscle blocks (M12 andM13)  which are innervated two specific motor neuron types (MN12 

and MN13). From these muscle blocks Wnt4 proteins were particularly enriched in the M13 

muscle. Both loss of function and gain of function experiments, with Wnt4, were able to 

exchange synapse formation specificity in the M12 andM13 muscle blocks (Inaki et al., 

2007). Interestingly no studies have been published yet looking at the anti-synaptogenesis of 

Wnts at central synapses in mammalian models. A concise record of the characteristics 

different Wnt species possess in their synapse formation/inhibition ability is yet to be 

generated. An important question which remains unanswered is what are the differences 

between Wnts which cause them to have these different properties?  Whether Wnts expressed 

in the CNS have opposing effects in terms of synaptogenesis will again be crucial in the 

topographic brain map of specific synapse formation. It would be particularly interesting if 

the formation of synapses between neurons was determined by the combination of Wnts and 

Frizzled receptors expressed by each neuron. 

1.6.3 Wnts at stable synapses 

Until fairly recently the drive within Wnt research has been directed at the role these proteins 

play in the target direction of neurons and the formation of synaptic sites. Relatively little 

however is currently understood about the effects of Wnts proteins at already formed (and 

functional) synapses. The changes at molecular level of a synapse are crucial to the efficiency 

and function of a neuron. From increasing the ease of transmission to silencing a synapse 

these modifications can have profound effects on neural pathways. To look at synaptic 
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efficiency electrophysiology methods are often applied, as these are able to give a direct 

translation of neuronal activity as they occur. This allows a real time insight into how the 

strength of how synaptic transmission changes. Using these techniques potentially also allows 

dissection of where physical changes are being made within the synapse. Some recent studies 

have combined these techniques with imaging to provide greater insight into Wnt signaling.  

The first suggestion that Wnts may play a role in synaptic regulation came from the work by 

Ahmad-Annuar and colleagues. Miniature Post synaptic currents (mPSCs) were recorded 

from the granule cells of Wnt7a and Dvl1 null mice. mPSCs are spontaneous events of 

synaptic neurotransmitter containing vesicles being released into the synaptic cleft and 

generating small currents. These currents are able to provide a measure of readily releasable 

vesicle release probability and size along with post synaptic receptor clustering changes. In 

the above mentioned study, in comparison with GCs from wild type mice, miniature 

excitatory post synaptic currents (mEPSCs) showed significant decrease in frequency. 

Significantly in this study no effect was observed on amplitude of the post synaptic response 

of these mEPSCs.  

Further work within our lab has led to interesting discoveries concerning the nature of Wnt at 

the synapse. An antagonist of Wnt signaling Secreted Frizzled Related Protein (SFRP) was 

used to look at the effect of blocking endogenous Wnt effect. SFRPs are proteins sharing 

homology with the CRD domain of Frizzled receptors. As such the proteins are able to 

modulate Wnt signaling by binding free extra cellular Wnts and preventing their interaction 

with cell bound Frizzled receptors. Much like Wnts there are several members of the family 

each with a specific affinity for binding partners. Experiments within our lab where 21DIV 

hippocampal neurons were exposed to a cocktail of SFRPs1, 2 and 3 for 16hours resulted in a 

decrease in mEPSC frequency but not change to mEPSC amplitude (Boyle and Salinas 2010). 

In particular the fact that at the 21DIV stage synaptogenic effect is decreasing suggests that 

this effect of blocking Wnt caused direct action on synapse function and not the result of 

synapse formation defects. A second important detail to note is that whilst the average 

frequency of mEPSCs was significantly decreased the amplitude was not (Boyle and Salinas, 

2010). Changes in mPSC frequency specifically suggest increased release of neurotransmitter 

vesicles which may be affected in a number of ways. Frequency may be increased by changes 

to vesicle release probability, the size of the readily releasable vesicle pool or the number of 

release sites at a synapse (Bekkers and Stevens, 1995).  
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Some of the most recent work done in the Wnt field has been on the relationship the Wnt 

release has with neuronal activity. Studies have begun to investigate stimulated neurons and 

how these then cause both the increased expression and secretion of Wnt proteins. As 

previously mentioned Wayman and colleagues investigated the effect of  increased excitatory 

activity on neurons and observed an increase in dendritic complexity (Wayman et al., 2006). 

This led to investigations into the possibility of a Wnt protein being responsible for this 

dendritic activity. Previously Beta-catenin over-expression had been demonstrated, increasing 

dendritic arborization and this provided the initial suspicions for Wnt involvement (Yu and 

Malenka, 2003). Continued investigation by Wayman and colleagues revealed a CAMKK 

mediated pathway resulting in up-regulation of CREB responsive gene expression. Wnt2 was 

identified as a CREB responsive gene and Wnt2 RNA was identified at an increased level 

after treatment with KCl and forskolin (Wayman et al., 2006).   

These results observed in rat organotypic slices and cultures, has been followed up by recent 

discoveries in drosophila. Initial experiments, involving  K
+
 stimulations similar to those 

patterned learning paradigms which induce LTP, showed changes in presynaptic protrusions 

similar to the phenotype of drosophila with defects in wingless (Wg) signaling (Ataman et al., 

2008). These stimulation paradigms also showed the ability to potentiate miniature excitatory 

junction potential (mEJP) frequency. By generating a wingless deficient heterozygous mutant 

the group were able to show in the presence of the stimulation paradigm the protrusion 

number decreased but was rescued by expression of Wg in motor neurons (Ataman et al., 

2008). The link between, neuronal activity and Wg secretion was investigated by looking at 

Wg immune-reactivity around the postsynaptic density of motor neurons. When k
+
 

stimulation was evoked Wag staining was significantly increased, this was suppressed by 

elimination of Ca2
+
 (Ataman et al., 2008).These findings have led to interesting questions as 

to the function of Wnts at these neurons? For instance do these proteins act in a cell 

autonomous and/or in a paracrine manner?  Our understanding of this may increase our 

knowledge of whether Wnts have specific well defined local effects on release or are general 

enhancers of connectivity. What role will the release of these proteins play in the regulation 

of central synapses and their formation?  
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1.7 Project aims 

My research project aimed to investigate the role that Wnt7a and Dvl1 signaling plays in 

regulating synaptic transmission. I used immunofluorescence and electrophysiological 

methods to study Wnt7a and Dvl1 effects based around the following hypotheses: 

• Hippocampal neuronal cultures exposed to Wnt7a will show an increased 

accumulation of excitatory synaptic proteins in neurites. 

• Hippocampal neuronal cultures exposed to Wnt7a or overexpressing Dvl1 will 

increase excitatory synaptic proteins on dendritic spines. 

• Hippocampal neuronal cultures exposed to Wnt7a or overexpressing Dvl1 will have 

an increased number of excitatory synapses. 

• Hippocampal neuronal cultures exposed to Wnt7a will demonstrate enhanced synaptic 

transmission whilst loss of Wnt7a/Dvl1 signaling will result in decreased synaptic 

transmission.  
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Chapter 2  

Materials and Methods 

 

2.1 Hippocampal Cell Culture 

Hippocampal cultures were prepared from E18 Sprague-Dawley rat embryos. Cultures were 

prepared as described by Kaech and Banker (Kaech and Banker, 2006). Pregnant females 

were anaesthetised by use of CO2 and killed by cervical dislocation. The embryos were 

removed and the hippocampi were then dissected from both hemispheres in ice cold Hank’s 

balanced salt solution (HBSS). Once dissected, the hippocampi were dissociated by 18 

minutes incubation in 0.5% trypsin (diluted in HBSS) at 37°C, followed by trituration in 

plating medium through flame-polished glass pasteurs. The density of the resulting single cell 

suspension was determined using a haemocytometer, and the cells were plated onto sterile 

acid-cleaned 13mm coverslips coated with poly-L-lysine (1µg/ml in borate buffer). Cells 

were initially plated in plating medium, and changed over to serum-free N2 and B27 

containing culture medium after 2 hours. All cultures were maintained at 37°C in 95% 

CO2/5% O2 and received partial replacement of the culture medium with fresh medium once 

per week. Cultures were plated at 50 cells/mm
2
 (low density) for recording evoked synaptic 

currents, 200 cells/mm
2
 (high density) for recording mPSCs and calcium phosphate 

transfection, and 100 cells/mm
2
 (medium density) or 200 cells/mm

2
 for all other imaging 

experiments, unless otherwise stated. 

2.2 Hippocampal cell calcium phosphate transfection 

Hippocampal cultures were transfected at 8 DIV with Actin-eGFP and DVl1-HA constructs 

using Calcium Phosphate buffer. Control neurons were transfected with Actin-eGFP and the 

PSC2 empty vector which forms the backbone of the experimental DVL1-HA construct. . For 

each P60 culture dish transfected (containing 10 coverslips), 400ul of CaCl2-DNA-HBS 

mixture was used. This mixture was carefully added drop wise directly onto the culture dish 

containing 3ml of serum free transfection media. DNA was applied to neurons in 

3:1experimental DNA: Actin-eGFP ratio ensuring the majority of eGFP positive neurons 

were double transfected (1.5µg Actin-eGFP + 4.5µg Dvl1-HA, or 1.5µg Actin-eGFP + 4.5µg 

PCS2+ for control) and incubated for 10 minutes. The medium was immediately removed 
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from the culture dish, the cells washed twice with warm PBS, replaced with fresh medium 

and retained at 37°C. The cells were then washed twice in PBS and the old culture medium 

was returned to the culture dish, which was then placed back into the incubator at 37
o
C. 

2.3 Immunofluorescence 

Coverslips were fixed for 18 minutes in 4% paraformaldehyde at room temperature. Cells 

were permeablized with 0.02% Triton for 1 minute, blocked with 5% bovine serum albumin 

(BSA) and then incubated with primary antibodies (diluted in 1% BSA) overnight at 4°C. 

Following three washes in PBS, the coverslips were incubated with alexa-conjugated 

secondary antibodies for one hour at room temperature. The coverslips were then washed 

again in PBS and mounted on glass coverslips using Fluoromount-G (Southern Biotech). 

GluR1 and GluR2 primary antibodies were applied to live neuronal cultures. Coverslips were 

incubated for 10 minutes with the appropriate dilutions of antibody, washed with PBS (37
o
C) 

and subsequently fixed with paraformaldehyde and stained with secondary antibody as 

described above. 

 

2.4 Image acquisition and analysis of synaptic puncta 

Images were captured on Leica TCS SP1 or SP2 confocal microscope. Typically when 

imaging 3D samples using confocal microscopy Z-stack resolution (approximately half that 

of X or Y resolution) must be taken into consideration. In order to address this issue the 

number of Z-stacks taken per sample was optimized to intervals of half the resolution of the 

confocal lens. In my study samples were imaged on Leica TCS SP1 or SP2 confocal 

microscopes through 63x, 1.32NA APO lens. The Z-resolution of this lens is equivalent to 

315nm (Zucker, 2006). Each sample was optimized to take Z-stack images every 158nm, 

double the Z resolution, whilst the upper and lower limits of the sample were determined 

manually (≈3µm). In reality due to light scatter on various surfaces of the microscope the 

actual axial resolution is lower than this (anywhere between 400nm-800nm). Typically 

hippocampal synaptic pre and postsynaptic terminals are larger than this axial resolution, 

therefore this setup will allow resolution of puncta colocalised on these parts of the synapse 

(Harris et al., 1992) Each imaging experiment was performed at least 3 times on independent 

cultures. 8-12 images were taken per condition and analysed using Volocity (Improvision). 

Volocity 3D imaging analysis software created by Improvision is an integrated acquisition, 
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visualisation and analysis tool for confocal images. Using this tool, confocal stacks acquired 

using Leica microscopes and acquisition software were reconstituted into 3D blocks where 

fluorescent puncta could be analysed for colocalisation in both the x, y and Z planes. By 

thresholding fluorescence in the x, y, z planes, 3D structures such as neurites, dendritic spines 

and receptors at synapses can be identified. Therefore puncta and neuritis are referred to in 

volumetric units. Using this method, overlapping thresholded regions of different 

fluorescence (corresponding to neurites, receptors, etc.) were identified using varies 

standardised protocols within the velocity software.  

Regions used for analysis were selected based purely on consistency between images of 

either Tuj1 or EGFP-actin channels. Objects of interest (puncta of synaptic proteins or Tuj-1 

labelled neurites) were delineated using intensity thresholds. Thresholds were set visually for 

each experiment using images from control conditions. Once threshold values were chosen 

for each channel, the same thresholds were applied for all images from all conditions for a 

given experiment. Co-localisation of synaptic puncta was determined using custom-built 

protocols in Volocity.  

 

2.5 Dendritic spine-puncta colocalisation analysis 

Spine analysis was performed manually. For each image of EGFP-actin transfected cells, 2-3 

regions of interest containing ~50-100µm of dendrite each were cropped from maximum 

projections, with only the EGFP channel visible. The number of spines was then counted and 

the head width of the spines determined with a line tool, the volume was determined using a 

custom built Volocity thresholding protocol. Analysis of spine and puncta colocalisation was 

determined by manual selection of spines followed by Volocity colocalisation protocol. The 

3D visualisation tool was used to confirm synaptic puncta were in the same focal plane as 

spines. For each condition, approximately 1000 spines were analysed in total from all three 

repeats of each experiment.  

2.6 Mouse breeding and genotyping 

All mutant mice were maintained on a C57BL/6 background. Wnt7a-/-;Dvl1-/- double mutant 

mice were obtained from crosses of heterozygous Wnt7a+/- and Dvl1+/- mutant mice. 

Genotypes were determined by three-primer PCR using ear clipping. For Wnt7a, the primers 

used were forward, 5′-T T C T C T T C G C T G G T A C T C T GG G T G -3′, reverse, 5`-C 
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A G C G C T G A G C A G T T C C A A C G G -3′, and the Neo primer 5`-A G G C C T A 

C C C G C T T C C A T T G C T C A -3′. For Dvl1, the primers used were forward 5`-T C T 

G C C C A A T T C C A C C T G C T T C T T -3′, reverse 5`-C G C C G C C G A T C C C 

C T C T C -3′, and the Neo primer 5`-A G G C C T A C C C G C T T C C A T T G C T C A 

-3′. 

 

2.7 Acute slice preparation 

Slices were prepared from P12-15 mice for recording miniature postsynaptic currents and 

evoked postsynaptic currents. Preparations were conducted as described by Bischofberger 

and colleagues (Bischofberger et al., 2006). Mice were deeply anaesthetised using isoflurane 

before decapitation and removal of the brain into ice cold slicing solution. The cerebellum 

was removed and discarded, the hemispheres were divided and a thin slice (~1mm) of tissue 

was removed from the dorsal surface of each cortex. The resulting flat surface was used to 

glue the hemispheres onto the base of the slicing chamber using cyanoacrylate glue. The 

slicing chamber was then flooded with ice cold slicing solution bubbled with 95% O2/5% 

CO2. 300µm transverse slices were made using a Dosaka DTK 1000 tissue slicer or a Leica 

VT1000S at the level of the hippocampus. The hippocampal slices were then dissected from 

the surrounding tissue and stored initially in 34°C recording solution (supplemented with 

4mM MgCl2) continuously bubbled with 95% O2/5% CO2. This solution was then allowed to 

cool to room temperature, and the slices were allowed to recover for 1 hour before 

commencing recording. 

 

2.8 Recording of postsynaptic currents 

Coverslips or slices were placed in a chamber on an upright microscope and continuously 

perfused at room temperature with recording solution bubbled with 95% O2/5% CO2. Cells 

were patched in the whole cell voltage-clamp configuration using microelectrodes (resistance 

5 – 8 MΩ) pulled from borosilicate glass (Harvard GC150F-7.5) and filled with sodium 

gluconate pipette solution. When recording miniature currents, 100nM TTX was included in 

the recording solution. Miniature or evoked EPSCs were recorded at -60mV in the presence 
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of 10µM bicuculine and 1mM Mg
2+

, whereas mIPSCs were recorded at 0mV in the presence 

of 10µM CNQX and 50µM AP-5. 

 

Evoked postsynaptic currents were elicited by using a bipolar concentric electrode (FHC) 

attached to a Grass S48 stimulator to depolarise axons close to the patched cell in cell culture 

or axons of the stratum lucidum at MF-CA1 synapses in hippocampal slices. For paired-pulse 

recordings, the stimulus intensity was altered from cell to cell to give the minimum 

reproducible response. Minimal stimulus recordings were made by increasing stimulus 

voltage until single ‘low’ amplitude responses were generated. The responses were noted and 

compared in comparison to the number of evoked stimulations. 10mM QX-314(intracellular 

voltage gated sodium channel blocker) was included in the pipette solution to block action 

potential firing in the patched cell. In hippocampal slices the stimulating electrode was placed 

in the stratum lucidum approximately 100-200µm from the whole-cell patched neuron in the 

CA3 layer. In hippocampal cultures cells with a pyramidal morphology were patched and the 

stimulating electrode was place within approximately 100-200µm of the patched cell.  Paired-

pulse stimuli were delivered at a rate of 0.2 Hz with an inter-stimulus interval of 50ms for 

EPSCs. For single pulse stimulus protocols the stimulus amplitude was manually increased 

until a minimal EPSC was established over a number of stimuli and maintained. During 

Paired pulse stimuli protocols the stimulus amplitude was modified throughout the length of 

the recording to maintain EPSC fidelity. All currents were recorded using an Axopatch 200A 

amplifier, filtered at 1 kHz and digitised onto computer at 10 kHz using WinEDR software.   

2.9 Analysis of miniature currents 

mEPSCs and mIPSCs were analysed using a combination of WinEDR and WinWCP (freely 

available at http://spider.science.strath.ac.uk/sipbs/software_ses.htm). Currents were detected 

using the ‘Template’ function, based on the algorithm developed by Bekkers and Stevens 

(Bekkers and Stevens, 1995). Briefly, an ideal waveform template is slid point-by point along 

the recording and constantly scaled to obtain the optimal fit with the data. A detection 

threshold is set, which is based upon the quality of the fit. Therefore, lowering the threshold 

will allow detection of events which deviate further from the template (Clements and 

Bekkers, 1997). Since this method requires the experimenter to set the template and 

threshold, considerable effort was spent in choosing and testing these parameters. The 

parameters used to describe the template are rise time and decay time. Therefore, for a 
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number of mEPSC and mIPSC recordings, events of >20pA were detected using the 

‘Threshold’ detection function (which detects events based purely on an amplitude threshold) 

and confirmed visually. These events were then used to choose appropriate values for the 

template, based upon averages of synaptic currents and histograms of rise and decay times 

from a number of cells. The threshold of detection was chosen by running the template on 

recordings from several cells, and determining a threshold that detected events with a 

minimum of false positives and missed events (as determined by visual confirmation). A 

threshold was eventually chosen that resulted in slight over-detection, followed by removal of 

false positives by a series of filters. The details of the templates, thresholds and filters used 

for detection are given in Table 2.1 below: 

 Tau Rise Tau Decay  Area Peak 

mEPSC 

5ms-

1000ms 0ms-1ms 0pA/ms-1000pA/ms 

0pA-

1000pA 

  15ms-1000ms   

     

mIPSC 

10ms-

1000ms 0ms-5ms -1000pA/ms-0pA/ms 

-

1000pA-

0pA 

  100ms-1000ms   

Table 2.1WinEDR mPSC filter settings  

 

Detected events were exported to WinWCP. The events were averaged for each cell, and the 

amplitude of the average was determined using the ‘Waveform Measurement’ function. The 

rise and decay times of the average for each cell were determined using the ‘Fit Curves’ 

function. The ‘EPC’ fit was used, which simulate an endplate current with a rising phase 

determined by a Gaussian function and an exponential decay.  

2.10 Analysis of paired currents 

Evoked currents were detected in WinEDR using the ‘Rate of Rise’ function, which easily 

and reliably detected the stimulus artefact preceding the current. Detected events were 

exported to WinWCP and current amplitude was analysed as for miniature currents. The 
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paired pulse ratio was calculated by dividing the peak amplitude of the second response by 

the peak amplitude of the first. 

2.11 Statistical analysis 

Statistical analysis was performed using a combination on InStat (GraphPad) and Excel 

(Microsoft). Normality of data was assessed using the Kolmogorov-Smirnov Test. For 

normally distributed data, the two-tailed Students t test was used when comparing two 

conditions, and ANOVA was used when making multiple comparisons.  For non-normally 

distributed data, the Mann-Whitney test was used when comparing two conditions, whereas 

the Kruskal-Wallis test with Dunn post-test was used for multiple comparisons. A 

randomisation test was also used to complement the above tests where data was non-normally 

distributed. Statistical significance is denoted in all figures as follows: * = P<0.05. 

 

 

2.12 Solutions 

Hippocampal plating medium – 50 ml 

Neurobasal medium (Gibco) Add to 50ml 

1 mM sodium pyruvate (Sigma) 5.5 mg 

2 mM L-glutamine (Sigma) 14.5 mg 

Horse serum (Gibco) 5 mls 

Penicillin/streptomycin (final 20 µg/ml, Gibco) 200 µl 

 

 

Hippocampal culture medium – 50 ml 

Neurobasal medium (Gibco) Add to 50ml 

1 mM sodium pyruvate (Sigma) 5.5 mg 
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2 mM L-glutamine (Sigma) 14.5 mg 

B27 supplement (Invitrogen) 1 ml 

N2 supplement (Invitrogen) 0.5 ml 

Penicillin/streptomycin (final 20 µg/ml, Gibco) 200 µl 

 

 

Borate buffer – 400 ml 

50 mM boric acid (Sigma) 1.24 g 

25 mM borax (Sigma) 1.9 g 

(pH to 8.5 with NaOH)  

Sterile filtered water add to 400 ml 

  

 

 

 4% paraformaldehyde – 50 ml 

4% paraformaldehyde (BDH) 2 g 

4% sucrose (Sigma) 2 g 

0.1 mM NaOH (BDH) 200 µl (of 25 mM) 

2x PBS 25 ml 

Distilled water Add to 50ml 

 

Slicing solution – 500 ml 
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75 mM NaCl (Sigma) 2.19 g 

25 mM NaHCO3 (Sigma) 1.1 g 

2.5 mM KCl (Fluka) 0.1 g 

1.25 mM NaH2PO4 (Sigma) 0.1 g 

100 mM sucrose (Sigma) 17 g 

0.1 mM kynurenic acid (Sigma) 0.02 g 

2 mM pyruvic acid (Sigma) 0.11 g 

Distilled water Add to 500ml 

1 mM CaCl2 (Fluka) 0.5 ml (of 1 M) 

4 mM MgCl2 (Fluka) 2 ml (of 1 M) 

 

 

Extracellular solution – 500 ml 

125 mM NaCl 3.65 g 

25 mM NaHCO3 (Sigma) 1.1 g 

2.5 mM KCl (Fluka) 0.1 g 

1.25 mM NaH2PO4 (Sigma) 0.1 g 

25 mM Glucose (Sigma) 2.25 g 

1 mM CaCl2 (Fluka) 0.5 ml (of 1 M) 

1 mM MgCl2 (Fluka) 

Distilled water 

0.5 ml (of 1 M) 

Add to 500ml 
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Pipette solution – 100 ml 

139 mM D-gluconic acid lactone (Sigma) 2.47 g 

10 mM HEPES (Sigma) 0.24 g 

10 mM EGTA (Sigma) 0.19 g 

10 mM NaCl (Sigma) 0.02 g 

0.5 mM CaCl2 (Fluka) 50 µl (of 1M) 

1 mM MgCl2 (Fluka) 100 µl (of 1M) 

1 mM ATP (Sigma) 0.1 g 

1 mM GTP (Sigma) 0.1 g 

pH to 7.4 with CsOH 

Sterile filtered water add to 400 ml 

 

 

Channel Blockers – Final molarity 

Bicuculine-Methiodide  (Ascent) 10µM 

AP5(Ascent) 50 µM 

DNQX (Ascent) 10 µM 

TTX (Ascent) 100nM 

QX-314 (Ascent) 10mM 

 

Hanks balanced salt solution (HBSS)  

(No calcium, no magnesium) Ordered from Gibco 
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2.13 Antibodies 

 

Primary antibodies 

 

Antibody and supplier Dilution 

Chicken anti-Tuj-1 (Chemicon) 1:1000 

Rabbit anti-GluR1 (Affinity Bioreagents) 1:20 (Live) 

Guinea pig anti-vGlut1 (Chemicon) 1:5000 

Mouse anti-GluR2 (Synaptic Systems) 1:200 (Live) 

Guinea pig anti-Synapsin (Synaptic Systems) 1:1000 

Rat anti-HA (Roché) 1:1000 

Chicken anti-GFP (Upstate) 1:500 

Mouse anti-NR1 (synaptic systems) 1:500 

  

 

SECONDARY ANTIBODIES 

 

Antibody and supplier Conjugate Dilution 

Goat anti-chicken IgG (Molecular Probes) Alexa-647 1:600 

Donkey anti-chicken IgG (Jackson Immunoresearch) DyLight-488 1:600 

Goat anti-guinea pig IgG (Molecular Probes) Alexa-488 1:600 



68 

 

Goat anti-guinea pig IgG (Molecular Probes) Alexa-568 1:600 

Donkey anti-mouse IgG (Molecular Probes) Alexa-488 1:600 

Goat anti-mouse IgG (Molecular Probes) Alexa-568 1:600 

Goat anti-mouse IgG (Molecular Probes) Alexa-647 1:600 

Donkey anti-rabbit IgG (Molecular Probes) Alexa-594 1:600 

Goat anti-rat IgG (Molecular Probes) Alexa-647 1:600 
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Chapter 3 

 Wnt7a signalling promotes the formation of functional glutamatergic synapses in the 

Hippocampus. 

3.1 Introduction 

The formation of a functional neural network requires precise regulation of the formation of a 

variety of different synapse types. A myriad number of proteins found in the brain play 

specific roles in the formation and maintenance of synaptic sites. The trans-synaptic proteins 

complexes formed by neuroligin proteins are one of the most well studied examples of a 

synaptogenic factor. The presence of specific neuroligin variants are associated exclusively 

with specific synapse types and help to direct the formation of these synapses (Chubykin et 

al., 2007). Neuroligins 1 and 2 are enriched at excitatory and inhibitory synapses respectively 

(Graf et al., 2004; Song et al., 1999; Varoqueaux et al., 2004). Similarly BDNF secreted 

proteins have also been identified in the regulation of specific synapses. Luikart and 

colleagues (2005) identified defects in excitatory synapse formation using a conditional TrkB 

mutant (BDNF loss of function model) (Luikart et al., 2005). Wnt proteins play a similar role 

to BDNF in the early development of neurons in development and are also found expressed 

through to adulthood in the brain (for review see (Salinas and Zou, 2008). The role of Wnt 

proteins in the postnatal development of synaptic sites is currently poorly understood 

however some recent studies have begun to reveal more about the role these proteins play.  

The first evidence for a role of Wnt7a in promoting central synapse formation was discovered 

in studies in the cerebellum. Here cerebellar granule cells, grown in tissue culture on Wnt7a 

expressing cells displayed enhancements in synapsin1 clustering (Lucas and Salinas, 1997). 

The role of Wnt7a in central synaptogenesis was further investigated with the analysis of 

knockout mice. Loss of Wnt7a function causes defects in the formation of the mossy fibre-

granule cell synapse as visualised at ultrastructural and immunochemical levels. Specifically 

loss of function reduces complexity of the synapse and size of the PSD whilst also decreasing 

the size of clusters of synapsin1 clusters (Hall et al., 2000). Double knockout Wnt7a-/-, Dvl1-

/- mice exhibit defects in the frequency of AMPA mediated mEPSCs, suggesting these 

structural defects lead to malfunction in synaptic transmission (Ahmad-Annuar et al., 2006). 

These studies demonstrate the crucial regulatory role Wnt7a signalling plays in the formation 

of the cerebellar mossy fibre granule cell synapse.   
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The effect of Wnt7a on synapse specification in the cerebellum led to the question of whether 

this Wnt plays a similar role in other important brain regions. In situ hybridization studies 

have shown Wnt7a mRNA is expressed in various regions of the mammalian brain, most 

strongly in the cerebellum, hippocampus and olfactory bulb at various stages of development 

(Lucas and Salinas, 1997; McCarthy, 2006). Loss of Wnt7a function studies, were some of 

the earliest to suggest that specific Wnts regulate synapse formation within the CNS.  

Whilst there is much data on the presence of Wnt proteins in the brain, their functions are still 

poorly understood. Gogolla and colleagues, through in vivo and ex vivo approaches, have 

investigated the expression of Wnts in the hippocampus in relation to environmental 

enrichment. Antibody staining for Wnt7a and Wnt7b revealed that these proteins are elevated 

in the hippocampus of animals exposed to an enriched environment (Gogolla et al., 2009).. 

This increase in expression is specific only to the CA3 region and not seen using antibodies 

specific for Wnt5 or Wnt3 (Gogolla et al., 2009). Furthermore the increased Wnt7a/b 

expression was correlated with an increased synapse number within the CA3 region of the 

hippocampus as determined by staining for synaptic markers such as bassoon and by the 

remodelling of large mossy fibre terminals (Gogolla et al., 2009). These experiments 

demonstrate a role of Wnt signalling in the formation of synapses in the hippocampus.  

The above study demonstrates a role for Wnt signalling in activity and experience mediated 

changes to the circuitry of hippocampal synapses. However the manner in which these 

changes occur at synaptic level has not been assessed in detail. In particular, changes to the 

localisation of molecules at the synapse and the types of synapse each Wnt proteins act at is 

still poorly understood. Several recent studies have revealed differences in the action of Wnt 

species at central synapses focusing on Wnt3a and Wnt5a (Avila et al., 2010; Cuitino et al., 

2010; Davis et al., 2008).Davis and colleagues (2008) examined the effects of Wnt3a, Wnt7a, 

Wnt7b and Dkk1 on accumulation of vGlut1 puncta on 10 DIV hippocampal cultures (Davis 

et al., 2008). Their normalised data suggests that all three Wnt species have a positive effect 

on the accumulation of this excitatory marker whilst Dkk1 an inhibitor of canonical Wnt 

signalling decreases presynaptic excitatory puncta accumulation.  

More recently Avila and colleagues demonstrated the ability of Wnt3a to enhance both the 

number of presynaptic release sites by analysis of FM1-43 and synapsin staining (Avila et al., 

2010). By examining mEPSC recordings from neurons treated with Wnt3a the same study 
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also revealed increases in mEPSC frequency suggesting likely increases in synapse number 

and or presynaptic release efficiency (Avila et al., 2010). 

Cuitino and colleagues (2010) investigated the ability of Wnt5a to regulate inhibitory GABA 

synapses in the hippocampus (Cuitino et al., 2010). Wnt5a increases the number of GABAA 

receptors on neurons cultured for 18DIVs. In combination with this inhibitory spontaneous 

and miniature currents were recorded and analysed (Cuitino et al., 2010). Wnt5a increases the 

amplitude of both spontaneous and miniature currents. These experiments demonstrate the 

diversity of Wnt proteins in terms of the type of synapse they cause effects on. 

My research aimed to provide greater understanding on the role of Wnt7a in the 

hippocampus. In particular, I have focused my attention on the function of Wnt7a at 

Glutamatergic synapses. Previous experiments in the lab have demonstrated that Wnt7a 

increases the co-localisation of the excitatory pre and postsynaptic markers, vGlut-1 and 

PSD-95 whilst having no effect on the colocalisation of pre- and postsynaptic markers for 

inhibitory synapses, vGat and Gephyrin (Ciani et al., 2011). This preference of Wnt7a action 

for excitatory hippocampal synapses poses the question, is this selective effect also 

manifested at the level of the postsynaptic receptors and can this be seen in transmission at 

these synapses. Furthermore questions still remain as to the characteristics of the effects of 

Wnt7a temporally and spatially across the hippocampus. Several studies indicate the second 

week of postnatal development in rats and mice as the peak period for synapse development 

(Nimchinsky et al., 2002). The coordinated peak of Wnt expression in hippocampus also 

occurs during this time period identifying a potential regulatory role for Wnt proteins at the 

various developmental periods. In this chapter, I addressed these questions by applying 

Wnt7a to hippocampal cultures and assessing the accumulation of the excitatory presynaptic 

protein vGlut and the post synaptic proteins GluA1, GluA2 and GluN1.  

Interestingly the size and number of these synaptic proteins puncta increased in relation to 

Wnt7a exposure of both 3 hours and ≈18 hours. Along with an increase in puncta number, the 

various postsynaptic markers also increased in co-localisation with the presynaptic marker 

vGlut1. In order to assess how these Wnt7a mediated effects  related to synaptic function I 

looked at miniature excitatory post synaptic currents (mEPSCs) in both 14div hippocampal 

cultures treated with Wnt7a (gain of function) and p14 Wnt7a-/-. Dvl1-/-, acute slices (loss of 

function). Exposure to acute (3hour) Wnt7a treatment increases mEPSC frequency and 

amplitude with no effects on the frequency or amplitude of mIPSCs. In the Wnt7a-/-. Dvl1-/- 
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mutant, a clear defect in mEPSC frequency and amplitude is observed. Surprisingly however 

neurons exposed to long (≈18hours) treatments of Wnt7a showed no enhancement in 

frequency or amplitude. These data suggest Wnt7a plays a pro-synaptogenic role at excitatory 

synapses in the hippocampus. This is manifested as an ability to regulate surface expression 

of GluA1 and GluA2 subunits and the total expression of GluN1 subunits.  

3.2 Results 

3.2.1 Wnt7a promotes the formation of excitatory pre and postsynaptic sites  

Aggregation of synapse specific molecules such as synaptotagmin, bassoon, and VAMP or 

the colocalisation of pre and post synaptic proteins have previously been used to assess the 

ability of neuron derived proteins to affect synaptogenesis. In order to investigate the effects 

of Wnt7a, hippocampal neurons, cultured for 12-14 days, were exposed to recombinant 

Wnt7a, and stained (live in the case of GluA1 and GluA2 or fixed and stained for vGlut and 

GluN1). The numbers of clusters of each synaptic protein were quantified in relation to the 

volume of neurite they were present on. Neurites were identified by immuno-labelling with 

an antibody to β-3 tubulin (Tuj-1). I found that a 3 hour exposure to Wnt7a caused a near 

doubling in the number of GluA1 puncta in the neurites of 14 DIV hippocampal neurons 

(Fig3.1a, d). vGlut clusters in these cultures were also found to increase in number opposed 

to dendrites (Fig3.2a, b). vGlut and GluA1 puncta which were found to come into contact 

with each other on a neurite (overlapping by a pixel) were considered to be ‘colocalised’ and 

represent a potential synaptic site. After assessing the colocalisation of vGlut and GluA1 

puncta I found that the percentage of the total number of each cluster opposed to the other, 

increased from 46 ± 1.04% (vehicle) to 57 ± 1.00% (Wnt7a) (Fig3.2c). 
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Figure 3.1 Wnt7a increases GluA1 and GluN1 puncta density and colocalisation. 14 DIV 

hippocampal cultures were treated with recombinant Wnt7a or BSA (vehicle) for 3 hours. (A) 

Images of treated neuronal cultures stained for Tuj1 (blue), GluA1 (Red) and GluN1 (Blue).  

The puncta number and colocalisation are increased by Wnt7a. White dashed boxes indicate 

the area shown in the enlarged panels. Scale bars in top panel = 30 µm and 10 µm in enlarged 

panels. (B) Shows quantification of increased GluA1 density. (C) Shows the quantification of 

GluN1 puncta increase between BSA and Wnt7a. (D) Quantification showing the increase in 

colocalisation between GluN1 and GluA1 puncta. * = P<0.05.   

 

 

The increase in puncta size and colocalisation of vGlut and GluA1 puncta was mirrored by a 

similar sized increase in the number of GluA2 puncta in these cultures (Fig.3.3a, b).  A 3 

hour exposure of neurons to Wnt7a caused a 42% increase in GluN1 subunit  
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Figure 3.2 Wnt7a increases GluA2 puncta density and colocalisation of GluA2 with 

GluA1. 14 DIV hippocampal cultures were treated with recombinant Wnt7a or BSA 

(vehicle) for 3 hours. (A) Images of treated neuronal cultures stained for Tuj1 (green), GluA1 

(Red) and GluA2 (Blue) the puncta number and colocalisation is increased by Wnt7a. White 

dashed boxes indicate the area shown in the enlarged panels. Scale bars in top panel = 30 µm 

and 10 µm in enlarged panels. (B) Quantification of increased GluA2 density. (C) 

Quantification of the increase in colocalisation between GluA2 and GluA1 puncta after 

Wnt7a treatment. * = P<0.05.   
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puncta number in hippocampal cultures (Fig3.1a, c). Interestingly in cultures stained with a 

combination of antibodies for GluA1 and GluN1 the colocalisation of these proteins 

increased from 68.2 ± 0.98% (vehicle) to 81 ± 1.12% (Wnt7a). Furthermore neurons exposed 

to Wnt7a showed an increase in colocalisation of GluA1 and GluA2 subunits; 73 ± 1.36% 

(vehicle) and 84 ± 1.64% (Wnt7a), and vGlut and GluA1; 45 ± 2.01% (vehicle) and 55 ± 

2.93% (Wnt7a).  
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Figure 3.3 Wnt7a increases vGlut puncta density and colocalisation with GluA1. 14 DIV 

hippocampal cultures were treated with recombinant Wnt7a or BSA (vehicle) for 3 hours. (A) 

Images of treated neuronal cultures stained for Tuj1 (green), GluA1 (Red) and vGlut (Blue) 

the puncta number and colocalisation is increased by Wnt7a. White boxes indicate enlarged 

panels. Scale bars in top panel = 30 µm and 10 µm in enlarged panels. (B) Shows 

quantification of increased vGlut density. (C) Quantification showing the increase in 

colocalisation between vGlut and GluA1 puncta. * = P<0.05. 
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These data suggest that at this 14 DIV period, where synapse formation is at its peak, 

hippocampal neurons are susceptible to stimulation of synaptogenesis via Wnt7a signalling. 

In particular these data show that Wnt7a treatment results in both pre- and postsynaptic 

accumulation of synaptic machinery and that Wnt7a stimulates the coming together of the 

complementary parts of the synapse.  

3.2.2 The synaptogenic effect of Wnt7a is related to neuronal maturity 

Following the experiments described above I then investigated if there were Wnt7a effects in 

more mature 21 DIV cultures. The greater maturity of 21 DIV neurons and their connections 

provides a different environment in which to investigate the effects of Wnt7a. Whilst at 14 

DIV there is high turnover of synapses with high net gain of new synapses in hippocampal 

cultures, at 21DIV the network is less dynamic in terms of new synapse 

formation(Nimchinsky et al., 2002). It was therefore interesting to ask if Wnt7a had a similar 

effect in stimulating synapse formation at this later stage as it does in less mature cultures. In 

order to do this hippocampal neurons were cultured for 3 weeks and then exposed to 

recombinant Wnt7a for a period of 3 hours followed by staining for pre- and postsynaptic 

markers. In stark contrast to the 14 DIV period, 3 hour exposure of the 21DIV cultures  to 

Wnt7a did not cause an increase in the accumulation of the presynaptic protein vGlut1 (17.52 

± 2.61 (Vehicle) 22 ± 3.12 (Wnt7a) (Fig 3.4a,b).  
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Figure 3.4 Wnt7a does not increase GluA1 and vGlut puncta density and colocalisation 

in mature cultures. 21 DIV hippocampal cultures were treated with recombinant Wnt7a or 

BSA (vehicle) for 3 hours. (A) Images of treated neuronal cultures stained for Tuj1 (green), 

GluA1 (Red) and vGlut (Blue) show that puncta number and colocalisation are not increased 

by Wnt7a. White dashed boxes indicate the area shown in the enlarged panels. Scale bars are: 

top panel = 30µm and 10µm in enlarged panels. (B) Shows the quantification of vGlut puncta 

between BSA and Wnt7a where no significant increase is observed. (C) Quantification shows 

no change in colocalisation between vGlut and GluA1 puncta. * = P<0.05. 
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Interestingly Wnt7a had no effect on the percentage of total vGlut puncta opposed to GluA1 

puncta in these neurons (65 ± 4.23% (vehicle) 62 ± 3.21% (Wnt7a Fig3.4a, c). These data 

suggest that mature cultures lose the ability to not only regulate vGlut puncta accumulation in 

response to Wnt7a exposure but also lose the ability to localise vGlut puncta to sites which 

may be in apposition to postsynaptic receptors. I then looked at whether the localisation of 

GluA1 puncta was affected by Wnt7a exposure and whether GluA1 colocalisation with other 

synaptic markers was affected by Wnt7a in these more mature cultures.  
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Figure 3.5 Wnt7a does not increases GluA1 or GluN1 puncta density or colocalisation at 

mature synapses. 21 DIV hippocampal cultures were treated with recombinant Wnt7a or 

BSA (vehicle) for 3 hours. (A) Images of treated neuronal cultures stained for Tuj1 (green), 

GluA1 (Red) and GluN1 (Blue) the puncta number and colocalisation were not increased by 

Wnt7a. White dashed boxes indicate the area shown in the enlarged panels. Scale bars: 30 µm 

top panel and 10 µm in enlarged panels. (B) Shows the quantification of vGlut puncta 

between BSA and Wnt7a where no significant increase is observed. (C) Quantification of 

GluN1 puncta between BSA and Wnt7a where no significant change was observed.  (D) 

Quantification showing no change in colocalisation between vGlut and GluA1 puncta. * = 

P<0.05. 

 

As observed for the presynaptic protein vGlut, neither GluA1 puncta per 100um
3
 of dendrite; 

39.71 ± 4.98 (vehicle), 35.21 ± 3.39 (Wnt7a) or GluA2 puncta; 16.13 ± 4.01 (vehicle), 22.41 

± 4.72 (Wnt7a) increased significantly in 21 DIV cultures after Wnt7a exposure for 3 hours 



81 

 

(Fig3.5a, b) (Fig3.6a, b). There were also no changes in the colocalisation of these two 

AMPA receptor subunits on dendrites; 61 ± 3.24% (vehicle), 68 ± 3.98% (Wnt7a) (fig3.6a,b). 

Finally, quantification of staining for the NMDAR GluN1 subunit showed there was no 

change in the number of GluN1 puncta along the dendrites or in their colocalisation with the 

GluA1 subunit (fig3.5a, c, d). These data suggest that Wnt7a does not affect the number of 

glutamatergic synapses in mature (21DIV) cultures. 
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Figure legend on next page 
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Figure 3.6 Wnt7a does not increase GluA1 and GluA2 puncta density and colocalisation 

at mature synapses. 21 DIV hippocampal cultures were treated with recombinant Wnt7a or 

BSA (vehicle) for 3 hours. (A) Images of treated neuronal cultures stained for Tuj1 (green), 

GluA1 (Red) and GluA2 (Blue) show that puncta number and colocalisation are not changed 

by Wnt7a. White dashed boxes indicate the area of the image shown in the enlarged panels. 

Scale bars are 30 µm in the top panel and 10 µm in the enlarged panels. (B) Shows 

quantification of GluA2 puncta following BSA or Wnt7a treatment where no significant 

change was observed. (C) Quantification shows no change in colocalisation between GluA2 

and GluA1 puncta. * = P<0.05. 

 

3.2.3 Wnt7a signalling affects the formation of functional synapses in both mixed 

hippocampal cultures and at the MF-CA3 synapse. 

The accumulation of both pre and post synaptic machinery observed using 

immunohistochemistry suggests only the potential of a synaptic site. The above data suggests 

that Wnt7a increases the colocalisation of synaptic machinery needed for synaptic 

transmission to occur.  However the question of whether these putative synaptic sites are 

functional remained unanswered. In order to investigate this question I recorded mPSCs from 

14 DIV neurons exposed either to Wnt7a or vehicle (BSA). This experiment allows effects on 

excitatory, glutamatergic synapses (AMPAR mediated) to be distinguished from effects of 

Wnt7a on inhibitory (GABAR mediated) synapses. Exposure of 14DIV neurons to Wnt7a for 

3 hours caused a two-fold increase in the frequency of excitatory mEPSCs (fig3.7a, c). On 

average Wnt7a also caused a 50% increase in the amplitude of these mEPSCs (fig3.7a, d). 

This is in marked contrast to the lack of any effect on the frequency and amplitude of 

mIPSCs from inhibitory synapses. mIPSC frequency and amplitude did not change after 

exposure to Wnt7a (fig3.7b, c, d). An increase in mEPSC frequency may reflect both an 

increase in functional synapse number and/or maturation of the presynaptic release 

machinery whilst changes in amplitude are generally equated with changes in postsynaptic 

receptor efficiency as a result of changes in receptor localization or functional properties.  
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Figure 3.7 Wnt7a enhances excitatory AMPA receptor mediated mEPSCs with no effect 

on inhibitory mIPSCs. 14 DIV hippocampal cultures were treated with recombinant Wnt7a 

or BSA (vehicle) for 3 hours and miniature postsynaptic currents were recorded using the 

whole-cell patch-clamp technique. AMPA minis were isolated by perfusion of bath solution 

containing TTX, bicuculine, AP5 and Mg
2+

 whilst inhibitory currents were isolated using 

TTX, Mg
2+

, AP5 and CNQX. (A) 10 second traces of mEPSCs from BSA or Wnt7a treated 

neurons illustrating enhancement of frequency and amplitude. (B) 10 second traces of 

mIPSCs from BSA or Wnt7a treated neurons illustrating no change to frequency or 

amplitude. (C) Quantification of the frequencies of both excitatory and inhibitory currents.  

(D) Quantification of the amplitude (-pA) of both excitatory and inhibitory currents (inset 

numbers give the number of cells recorded from per condition). 
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I then decided to investigate the effects of Wnt signalling in the intact hippocampus. Here I 

focused our investigation on the MF-CA3 synapse which has previously been shown to be 

highly enriched in Wnt7a expression (Gogolla et al., 2009). Using acute slices from p14 

Wnt7a-/-, Dvl-/- knockout mice I assessed the effects of Wnt7a, Dvl1 loss of function on 

synaptic transmission. Here I saw a 27% decrease in the frequency of mEPSCs (fig3.8a, c). 

Wnt7a-/-, Dvl-/- mEPSCWildtype mEPSC

Wnt7a-/-, Dvl-/-Wildtype Wnt7a-/-, Dvl-/-Wildtype
 

Figure 3.8 Loss of Wnt7a, Dvl1 signalling causes defects in AMPA receptor mediated 

mEPSC currents at MF-CA3 synapse. Acute hippocampal slices were prepared from p14 

wild-type or double knockout (Wnt7a-/-, Dvl1-/-) mice. AMPA receptor mediated mEPSCs 

were isolated by perfusion of bath solution containing TTX, bicuculine, AP5 and Mg
2+

 whilst 

inhibitory currents were isolated using TTX, Mg
2+

, AP5 and CNQX. (A) 10 second 

representative traces of mEPSCs recorded from wild-type or Wnt7a-/-, Dvl1-/- neurons. (B) 

Overlays of 5 consecutive minis recorded from wild-type or double knock-out animals 

illustrating the defect in mEPSC amplitude. (C) Quantification of the frequencies of mEPSCs 

from wild-type and double knockout neurons.  (D) Quantification of the amplitude of 
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mEPSCs from wild-type and double knockout neurons (inset numbers give the number of 

cells recorded in each condition). 

 

The effect of the likely loss of Wnt signalling in the double knock-out mice was consistent 

with the effect of application of Wnt7a we had seen cultures in that there was a 42% decrease 

in the mEPSC amplitude (fig3.8a, b, d). These data help to confirm the influence of Wnts and 

more specifically Wnt7a in the regulation of glutamatergic synapses in the hippocampus.  

3.3 Discussion 

3.3.1 Wnt7a regulates the formation of synapses both pre- and post-synaptically 

The above data shows Wnt7a may play a role in both the pre and post-synaptic specialisation 

in hippocampal cultures. Pre-synaptically, this is displayed in an increase in the recruitment 

of the presynaptic specific marker vGlut1.  Post-synaptically this effect is represented by an 

increase in the surface expression of GluA1 and GluA2 protein and total expression of GluN1 

protein along dendrites. Corroborating with the above data, work by (Cerpa et al., 2008) has 

shown that Wnt7a regulates changes to the puncta of another presynaptic protein, 

synaptophysin in hippocampal neurons. In the above study the presynaptic organising ability 

of Wnt7a was compared to that of Wnt5a and the effects of Wnt7a as a postsynaptic organiser 

were also assessed. Here the investigators chose to study the post-synaptic scaffolding protein 

PSD-95 and did not see any changes in the recruitment of this protein in dendrites. These 

results may at first seem counter to the data presented in this chapter since generally post-

synaptic modifications involving PSD-95 and glutamate receptors often observed to go hand 

in hand (El-Husseini et al., 2000). However the explanation for this discrepancy in results 

may be in the length of exposure to Wnt in these experiments. In the experiments conducted 

by Cerpa et al. hippocampal cultured neurons were exposed to Wnt7a for a total of 1 hour 

before the neurons were fixed and assessed for either pre or post synaptic effects. This is in 

contrast to the 3 hour exposure used in the experiments of this chapter.  

Cerpa and colleagues (2008) found enhancements in synapsin recruitment in this time frame 

but no changes to PSD-95 whilst after 3 hours of Wnt7a exposure I detected changes both pre 

and post-synaptically in the staining for vGlut1 and GluA1, GluA2 and GluN1. The increased 

exposure to Wnt7a may have caused these effects by either allowing an increase in 

intracellular signalling or by allowing the extra time needed for post-synaptic effects to 
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develop. A second possibility may be that development of the post-synaptic specialisation is a 

slower process than pre-synaptic specialisation. Via time-lapse microscopy Friedman and 

colleagues (2000) have demonstrated these discrepancies by imaging functional sites of pre-

synaptic release co-localised with various pre and post synaptic markers. Sites positively 

labelled with FM1-43 dye co-localised to a significant degree with sites positively labelled 

with bassoon, a pre-synaptic marker, within 45mins of the sites formation. This was in 

contrast to sites co-labelled for FM1-43 and SAP-90/PSD-96 (75-120mins) or FM1-43 and 

GluA1 or GluN1 (>45mins) (Friedman et al., 2000).  

Beyond simply increasing the number of pre-synaptic vGlut1 and post-synaptic GluA1, 

GluA2 and GluN1 in neurites Wnt7a increases the localisation of these proteins to potential 

synaptic sites. This idea is borne out by the increase in the co-localisation of vGlut1 protein 

with GluA1, GluA1 protein with GluA2 protein and GluA1 protein with GluN1 protein.  

The increases in pre-synaptic vGlut and post-synaptic surface GluA1 colocalisation 

demonstrate what is likely to be a Wnt7a induced increase in functional synaptic sites. The 

presence of GluA1 at these synaptic sites suggesting specifically that Wnt7a leads to an 

increase in the number of synapses which are not post-synaptically silenced. Such changes in 

the presence and localisation of GluA1 containing synapses following Wnt7a application 

have not previously been presented in published studies.  

Within 3 hours, Wnt7a increased the number of surface GluA1 and GluA2 puncta which 

were colocalised. These data further strengthen the suggestion that Wnt7a causes an increase 

in the number of functional synapses in these cultures. The receptor subunit specific content 

of excitatory synapses during development is constantly modified as the neuron matures. 

AMPA receptor subunits are described as changing from predominantly GluA1/4 containing 

to GluA1/2, GluA2/3 (Hall and Ghosh, 2008). The increased presence not only of more 

surface GluA2 protein on neuronal dendrites but at the same sites (co-localisation) as GluA1 

puncta suggests a large proportion of these new synaptic sites are also more mature. 

Regulation of the surface expression of glutamate receptors by an exogenous cellular factor 

has previously been observed in the presence of TNF (Wallach et al., 1999). TNF uses the 

cell surface receptors TNF-R1 or TNF-R2 to transduce intracellular signals and these 

receptors are widely expressed in the hippocampus (Wallach et al., 1999).  TNF-α caused an 

increase in surface expression of GluA1 subunits on hippocampal neurons in tissue culture 

but no change in surface GluA2 subunits (Stellwagen et al., 2005). Interestingly TNF-α 
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effects were seen within 15mins of treatment and the authors suggest, the receptors lacking 

GluA2 subunits would eventually be replaced by GluA2 containing receptors (Stellwagen et 

al., 2005).  

In parallel with changes in surface GluA1 and GluA2 proteins, Wnt7a caused an increase in 

the localisation of GluN1 puncta in and on dendrites. This data in partnership with the 

increase in colocalisation of GluN1 and GluA1 puncta suggest a role for Wnt7a in regulating 

the maturation of potential synaptic sites. The presence of increased synaptic sites containing 

both GluA1 and GluN1 conveys the likelihood that these sites are functional sites as opposed 

to postsynaptically silent synapses (Kerchner and Nicoll, 2008).  

During development, post-synaptically silent synapses are regulated in number within the 

hippocampus (Kerchner and Nicoll, 2008). The population of synapses lacking AMPA 

receptors steadily decreases in number from early postnatal to mature hippocampus. 

Alterations in the proportion of GluA1 (AMPAR) relative to NMDAR content of synapses 

have also been proposed to occur during LTP (Pickard et al., 2001). This form of potentiation 

at a population of synapses may be generated by the conversion of silent synapses to 

functional ones resulting in an increase in the post-synaptic response of a given neuron. 

These kinds of changes are similar to the effects observed in hippocampal cultures exposed to 

Wnt7a at 14DIV. These data suggest that Wnt7a promotes the maturation of synaptic sites by 

regulating the localisation of surface GluA1, GluA2 and total GluN1 protein located post-

synaptically to potential pre-synaptic release sites. 

 

3.3.2 Exposure of mature neurons to exogenous Wnt7a does not affect the localisation of 

pre- or post-synaptic proteins. 

During development, neurons follow a defined temporal program as they mature and form  

synaptic connections (Garner et al., 2006). Neurons that are post cell specification, migrate to 

their correct location, undergo axonal guidance leading to synapse formation and later in the 

mature system these synapses are refined (Cowan et al., 2001). Wnt proteins are expressed in 

the hippocampus from embryonic stages and continuing into maturity (McCarthy, 2006). Wnt 

signalling has also been implicated in the regulation of many of the processes leading to a 

mature neural network (Salinas and Zou, 2008). Therefore it was important to ask whether 

the effects of Wnt7a on neurons at 14 DIV were present at more mature networks. 
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Interestingly the stages of network formation which have been observed in vivo are well 

conserved in hippocampal cultures (Garner et al., 2006; Grabrucker et al., 2009). Studying 

neuronal cultures at 21 DIV allowed analysis of the effects of Wnt7a on neurons largely with 

mature synapses. Interestingly, in these mature neurons Wnt7a exposure did not seem to have 

a significant effect on the localisation of either pre or postsynaptic proteins. 

The lack of effect was consistent regardless of whether I looked at the surface expression of 

AMPA receptor subunits (GluA1, GluA2) or the total NMDA receptor subunit (GluN1).  

This lack of postsynaptic effect is interesting in that it is consistent with the results seen in the 

work of Cerpa and colleagues (2008). Indeed the neuronal cultures used in their experiments 

were taken from a range of time points in vitro (14-21DIV) (Cerpa et al., 2008).  

One possible explanation for the lack of Wnt7a mediated effects in mature cultures may be 

that the Wnt7a signalling pathway is already saturated at this stage in culture (e.g. the 

concentration of Wnt7a in the culture has reached saturating level for the Frizzled receptors 

expressed by the neurons) or that some aspect of the signal transduction process has become 

rate-limiting. At 14 DIV Wnt7a increases the co-localisation of vGlut1 clusters with GluA1 

puncta from a control value of 46% to 57%. At 21 DIV the control value is already at a 

higher value (65%) than the Wnt7a treated cultures at 14DIV. As a result the Wnt7a treated 

co-localisation value remains at a similar value (62%).  

In terms of the formation of glutamatergic synapses these data fall in line with published data 

which suggests synapse formation is most dynamic in the 12-16 day period (in vitro or in 

vivo) (Friedman et al., 2000). At mature synapses the mechanisms that alter synaptic 

machinery may differ from that of nascent and immature synapses, perhaps requiring the 

presence of several Wnts and coordinated changes in synaptic activity. Indeed the complex 

interplay between neurotrophic factors and synaptic activity in altering synaptic strength at 

mature synapses has been well established (Hall and Ghosh, 2008; Li et al., 2007; Li and 

Keifer, 2009). Similar collaborative regulation of synapse maturation has been seen with 

neuronal activity and endogenous Wnts (Sahores et al., 2010).  

Sahores and colleagues (2010) were able to demonstrate the requirement for exogenous Wnt 

species in activity dependent synapse formation. Using a soluble version of the Fz-5 CRD  

increases in synapse number (synapsin co-localisation with GluN1), generated by electrical 

stimulation paradigms were abolished (Sahores et al., 2010). Crucially Wnt7a is a direct 
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binding partner of Fz-5 suggesting in part these effects could be mediated via Wnt7a to Fz-5 

signalling (Sahores et al., 2010).  

3.3.3 Exposure of neuronal cultures to Wnt7a increases the amplitude and frequency of 

excitatory miniature synaptic currents without affecting inhibitory currents.  

The above data illustrates the ability of Wnt7a to affect the formation of glutamatergic 

synapses by regulating the localisation of AMPA and NMDA receptors to nascent synaptic 

sites. Ultimately however these changes in localisation might have no effect on cell to cell 

synaptic signalling that occurs within these cultures. In order to further investigate the 

synaptogenic effects of Wnt7a on synaptic transmission, I measured mPSCs from neurons 

acutely exposed to Wnt7a at 14 DIV. mPSCs are post-synaptic currents generated by 

spontaneous action potential-independent release of neurotransmitter vesicles. The resulting 

post synaptic currents are therefore believed to be quantal events and provide a transmission 

based assessment of the state of synapse number and content (Bekkers and Stevens, 1995; 

Fatt and Katz, 1952).  

Wnt7a exposure increased both the frequency and amplitude of excitatory post synaptic 

miniature currents without affecting either parameter in inhibitory post synaptic currents. 

Changes to frequency are believed to correlate with pre-synaptic changes whilst changes in 

amplitude are correlated with post-synaptic alterations (Fatt and Katz, 1952). This effect in 

mEPSCs strongly reinforces the immunofluorescence data showing increases in post synaptic 

AMPA receptors with presynaptic sites. The lack of changes to inhibitory currents also 

compliments immunofluorescence data showing no changes to inhibitory pre and post-

synaptic proteins vGAT and Gephyrin, respectively (Ciani et al., 2011).  

Inhibitory synaptic transmission in the hippocampus is mediated primarily by GABAA 

receptors. Cuitino and colleagues whilst investigating the effects of Wnt5a on GABAA 

receptors looked at their localisation in relation to Wnt7a exposure. Wnt7a in time-course 

experiments was unable to affect the surface localisation of receptor. This was in contrast to 

experiments using Wnt5a which enhanced the levels of surface GABAA receptor in the same 

time period (Cuitino et al., 2010). 

Interestingly the above data from Cuitino et al. (2010) is just one of a growing number of 

studies that indicate different Wnt proteins regulate synapses with varying characteristics. 

Wnt3a has been shown to enhance the frequency of mEPSCs with no effect on current 
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amplitude which may suggest a pre-synaptic role for this Wnt in the hippocampus (Avila et 

al., 2010) and/or a role in establishment of the post-synaptic apparatus that does not include 

up-regulation of AMPAR number in the post-synaptic membrane. Wnt5a however appears to 

act in contrasting fashion to Wnt3a. Wnt5a gain of function in 10 DIV hippocampal cultures 

results in an enhancement in mEPSC amplitude with no effect on frequency (Varela-Nallar et 

al., 2010). Interestingly this study attempted to investigate NMDAR mediated mEPSCs and 

similarly detected an enhancement in current amplitude, although the NMDAR mediated 

mEPSCs described by Varela-Nallar et al (2010) do not have the expected time course of 

hippocampal NMDA currents (Lester et al., 1989) and it is not clear from this paper why the 

measured frequency of AMPAR mediated mEPSCs would be around 5-fold higher than that 

of the NMDAR mediated mEPSCs (Varela-Nallar et al., 2010 Figure 5 and Supplementary 

Figure S3), or why the amplitude of the AMPAR mediated currents in this study is much 

greater than observed in many previous studies of mEPSCs in hippocampal neurones in tissue 

culture.  
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Chapter 4 

Wnt signalling regulates the localisation of glutamatergic receptors on dendritic spines 

by acting directly at the postsynaptic terminal. 

4.1 Introduction 

At central synapses, particularly in the hippocampus, cerebellum and cortex the majority of 

excitatory synapses are found on dendritic spines (Nimchinsky et al., 2002). Dendritic spines 

are present at central synapses in a variety of shapes and sizes. Changes in spine size and 

shape are often correlated with changes in synaptic strength. Glutamatergic AMPAR and 

NMDAR receptors are believed to mediate these changes by modifications in their 

localisation (Makino and Malinow, 2009; Petralia et al., 2009). However the extracellular 

signals which regulate localisation of glutamate receptors at spines are poorly understood.   

The previous chapter’s results indicate that Wnt7a plays a role in the regulation of excitatory 

synapse formation without effecting inhibitory synaptic transmission. Furthermore recent 

data from our lab indicates a role for Wnt7a acting directly at the postsynaptic specialisation.  

We have recently demonstrated that Wnt7a plays an important role in the regulation of Spine 

morphogenesis in the hippocampus. Neurons cultured and exposed to Wnt7a showed an 

increase in both the size and density of dendritic spines (Ciani et al., 2011). This effect was 

partially mirrored in neurons which overexpressed Dvl1 specifically in the post-synaptic 

neuron. In these neurons spine size was significantly increased with no effect on the overall 

number of spines. Spine morphogenesis by Wnt7a-Dvl1 signalling in vivo was also assessed 

using knockout mice. These models displayed defects in size and number in both the CA1 

and CA3 regions of the hippocampus (Ciani et al., 2011).    

Spines are specialised structures on the dendrite which compartmentalise and concentrate 

machinery essential for efficient excitatory transmission. It is no surprise then that at the 

structural level changes in the morphology of dendritic spines have been correlated with 

changes in the content of synaptic proteins in these structures (Nusser et al., 1998). Inversely 

structural synaptic proteins such as actin filaments and PSD-95 (involved in the stabilisation 

of Glutamatergic synapses) are involved in the regulation of spine morphogenesis (El-

Husseini et al., 2000; Fischer et al., 1998). The presence and activation of NMDARs play 

essential roles in the development of the excitatory neural landscape.   Development of 

precise synaptic inputs is directly regulated by the presence of NMDA receptors in the 
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somatosensory cortex of rodents (Iwasato et al., 2000). Using cortical GluN1 KO mice 

Iwasato and colleagues observed the development of patterned topographic connections 

between the sensory periphery (whiskers) and the brain. Gross analysis of patterning in 

GluN1 KO somatosensory cortex revealed relatively normal whisker related patterning 

(Iwasato et al., 2000). Further analysis of the GluN1 KO mice revealed defects in barrels and 

barrel boundaries indicating a possible role in the consolidation of specific connections at 

these synapses for NMDARs. Furthermore NMDAR activation is important in the plasticity 

of spine morphology (Matsuzaki et al., 2004). Using two photon glutamate uncaging and the 

NMDAR antagonist AP5 matsuzaki and colleagues were able to observe the role of NMDAR 

in spine morphology changes. In the absence of AP5, dendritic spines are enlarged in 

response to uncaged glutamate. In the presence of AP5, spine morphology remained 

unchanged in response to glutamate (Matsuzaki et al., 2004). 

With the above in mind, various interesting questions presented themselves. Knowing my 

studies indicate that Wnt7a affects the localisation of both AMPA and NMDA receptors in 

hippocampal neurons, is the trafficking of receptors spine specific? Furthermore how does 

the localisation of these glutamate receptors relate to changes in the size of spine 

morphology?   

The cell exogenous nature of Wnt proteins provide an interesting subject of study at synaptic 

sites. The ability of these proteins to be expressed from either/or both pre and postsynaptic 

neuron whilst also taking action at either side of the synapse presents several questions about 

the specific role of Wnt proteins. As has been mentioned above and in previous chapters the 

various Wnt species play different roles in synapse formation and maintenance. These 

differing effects may be due to the presence of certain specific Wnt receptors exclusively pre 

or postsynaptically or the lack of specific intra-cellular signalling molecules required in the 

Wnt signalling pathway.  

In the cerebellum Wnt7a seems to have an exclusive role in regulation of the presynaptic side 

of the synapse. Wnt7a produced by the post-synaptic cell acting in a retrograde manner 

enhances miniature synaptic current frequency but not amplitude (Ahmad-Annuar et al., 

2006).  There are however precedents for the action of Wnt signalling directly on post-

synaptic compartments from work at peripheral nervous system synapses. In drosophila Wnt 

signalling via a post-synaptic DFz-2c nuclear import pathway regulates the correct formation 

of the NMJ (Mosca and Schwarz, 2010; Packard et al., 2002). Postsynaptic mutations in the 
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dfz2 resulted in the formation of ghost boutons and defects in the localisation of GluRs. 

Wnt11r directly signals to postsynaptic muscle at vertebrate NMJ (Jing et al., 2009). In the 

zebrafish Jing and colleagues demonstrated blockade of Dvl signalling in muscle prevented 

the formation of pre-patterned AChR clustering. Knockdown of endogenous Wnt11r via 

morpholinos also caused defects in AChR pre-patterning without affecting muscle 

development (Jing et al., 2009). Wnt3 in association with nerve derived agrin signalling 

regulates the mature clustering of AChR in the chick (Henriquez et al., 2008). Myotubes 

directly treated with Wnt3 show an increase in the prepatterning of AChR micro-clusters. 

Furthermore Wnt3 signalling in myotubes activated Rac1 activity whilst DN-Rac1 was 

shown to inhibit the clustering effect. Wnt postsynaptically plays a role in the regulation of 

hippocampal neuronal dendritogenesis (Rosso et al., 2005). Dvl1 gain and loss of function in 

neurons resulted in respective enhancement and defects in dendritic complexity.  

The data in the previous chapter suggests hippocampus neurons exposed to Wnt7a exhibit 

enhancements on both sides of the synapse in the form of changes to pre and postsynaptic 

protein localisation. Whether these are direct effects of the Wnt7a signalling on pre and 

postsynaptic site are as yet unclear. These postsynaptic effects may be secondary effects 

mediated by the release of a secondary messenger from the presynaptic terminal. 

Alternatively an enhancement in presynaptic release caused by Wnt7a may act to enhance the 

trafficking of postsynaptic receptors. To investigate these hypotheses I used neuron specific 

overexpression of the intracellular Wnt signalling protein Dvl1. By activating Wnt signalling 

in the post-synaptic neuron I was able to investigate whether this would be able to mimic the 

effects of Wnt activation in pre and post synaptic neurons on receptor localisation. 

4.2 Results 

4.2.1 Exogenous Wnt7a increases accumulation of glutamate receptors and presynaptic 

inputs onto the dendritic spines of developing neurons. 

To investigate how Wnt7a affects the accumulation of glutamatergic receptors on dendritic 

spines, hippocampal neurons were cultured for 8 days before being transfected with an eGFP-

actin/pc12-empty vector mixed solution. The neurons were transfected using calcium 

phosphate and returned to culture either for an additional 6 days or 13 days at which point the 

cultures were appropriately exposed to Wnt7a, stained and fixed. The sparse transfection of 

neurons allowed individual cells and their dendritic spines to be identified by eGFP stain. In 

order to investigate changes in the number of synapses formed on dendritic spines the 
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cultures were stained with the presynaptic marker vGlut alongside the postsynaptic glutamate 

receptor markers for GluA1, GluA2 and GluN1.I began by investigating the effects of 3 hr. 

Wnt7a treatment on 14 DIV neurons.  
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Figure 4.1 Wnt7a increases GluA1 and vGlut accumulation and localisation on 

dendritic spines of 14DIV neurons. Hippocampal neurons cultured for 14 days were treated 

with BSA (vehicle) or Wnt7a for 3hrs. Dendritic spines were analysed for GluA1 (red) and 

vGlut (blue) puncta. (A) Top panel displays images of treated neurons stained with Actin-gfp 

(green), GluA1 and vGlut (Scale bar =30um).   Middle panels display high magnification 
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images of dashed box in low magnification images (Scale bar =5um). Lower panel displays 

GluA1 and vGlut puncta minus Spines and Dendrites. Wnt7a increases both the number and 

size of spines whilst increasing the number of GluA1 and vGlut associated. (B) 

Quantification of the number of vGlut puncta associated with spines per 100um
3
 of spine 

volume.  (C) Quantification of the % of spines with vGlut puncta associated. (D) 

Quantification of % of total spines associated with both GluA1 and vGlut puncta. (E) 

Quantification of the width of spines. (F) Quantification of number of spines per 100µm 

length of dendrite * = P<0.05. 

Wnt7a increases the number of vGlut puncta in contact with dendritic spines by 46% (fig. 3.1 

A and B). 3 hr. Wnt7a exposure also increases the number of spines contacted with at least 

one vGlut puncta by 70% and similarly increases the number of spines positive for both 

vGlut and GluA1 puncta also by 70% (fig. 3.1 A, C and D). These increases demonstrate 

Wnt7a’s ability to increase the organisation of presynaptic structures onto postsynaptic sites. 
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Figure legend on next page 
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Figure 4.2 Wnt7a increases GluA1 and GluN1 puncta localisation on spines and 

increases the number of spines associated with both proteins at 14 DIV. Hippocampal 

neurons cultured for 14 days were treated with BSA (vehicle) or Wnt7a for 3hrs. Dendritic 

spines were analysed for GluA1 (red) and GluN1 (blue) puncta. (A) High magnification 

images of isolated dendrites display the Wnt7a mediated increases in spine associated GluA1 

and GluN1 puncta number (Scale bar= 5um). Top panel displays stain for Actin-gfp (green), 

GluA1 and GluN1 whilst lower panels display puncta images minus Actin-gfp. (B) 

Quantification of GluA1 puncta number per Spine volume displays the strong increase in 

GluA1 puncta associated with spines after Wnt7a treatment. (C) Quantification of GluN1 

puncta number per spine volume displays the increase in puncta accumulation on spines per 

spine volume. (D) Quantification of the % of spines with GluA1 puncta associated reveals an 

increase with Wnt7a treatment. (E) Quantification of the percentage of total spines associated 

with GluN1 puncta revealed a 36% increase (F) Quantification of spines with both GluA1 

and GluN1 puncta associated display a 56% increase.  * = P<0.05.  

 GluA1 puncta associated with dendritic spines were also increased in number from 69 ± 5 

pp100µm
3
 to 115 ± 20pp100µm

3
 (fig 4.2 A and B). Wnt7a also increases the number of 

GluN1 puncta associated with dendritic spines by 60% (fig. 4.2 A and C). The percentage of 

Spines which were associated with GluA1, GluN1 or both puncta in the same spine all 

increased by 26%, 36% and 56% respectively in response to Wnt7a exposure (fig. 4.2 A, D-

F).  
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Figure 4.3 Wnt7a increases GluA1 and GluA2 puncta localisation on spines and 

increases the number of spines associated with both proteins at 14 DIV. Hippocampal 

neurons cultured for 14 days were treated with BSA (vehicle) or Wnt7a for 3hrs. Dendritic 

spines were analysed for GluA1 (red) and GluA2 (blue) puncta. (A) High magnification 

images of isolated dendrites display the Wnt7a mediated increases in spine associated GluA1 

and GluN1 puncta number (Scale bar= 5um). Top panel displays stain for Actin-gfp (green), 

GluA1 and GluA2 whilst lower panels display puncta images minus Actin-gfp. (B) 

Quantification of GluA2 puncta number per spine volume displays the significant 138% 

increase in puncta accumulation on spines per spine volume. (C) Quantification of the 

percentage of total spines associated with GluA2 puncta revealed a 25% increase (D) 

Quantification of spines with both GluA1 and GluA2 puncta associated display a 45% 

increase.  * = P<0.05. 

Analysis of GluA2 stained cultures also revealed Wnt7a mediated enhancement in puncta 

accumulation on spines. GluA2 puncta associated with dendritic spines increased by 138% 

(fig. 4.3 A and B). The percentage of spines associated with GluA2 puncta or associated with 

GluA2 and GluA1 increased by 25% and 45% respectively (fig. 4.3 A, C and D). These 

results show that at 14DIV, Wnt7a not only increases the aggregation of glutamate receptors 

on dendritic spines but also increases the number of spines with GluA1, GluA2 and/or GluN1 

in apposition with a presynaptic contact. 
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4.2.2 Exogenous Wnt7a does not affect accumulation of synaptic proteins onto the 

dendritic spines of mature neurons. 

The previous results demonstrate an ability of Wnt7a to encourage synaptic protein 

accumulation at dendritic spine sites on 14DIV neurons. I then decided to investigate whether 

Wnt7a was able to further regulate glutamate receptor organisation on the spines of more 

mature neurons. Neurons were maintained in culture for a further seven days until day 21 

where they were treated with Wnt7a stained as appropriate and imaged. Contrary to the 

results seen at 14 DIV, Wnt7a exposure was unable to mediate changes in receptor 

accumulation.  
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Figure legend on next page 
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Figure 4.4 Wnt7a does not affect GluA1 and vGlut accumulation and localisation on 

dendritic spines of 21DIV neurons. Hippocampal neurons cultured for 21 days were treated 

with BSA (vehicle) or Wnt7a for 3hrs. Dendritic spines were analysed for GluA1 (red) and 

vGlut (blue) puncta. (A) Top panel displays images of treated neurons stained with Actin-gfp 

(green), GluA1 and vGlut (Scale bar =50um).   Middle panels display high magnification 

images of dashed box in low magnification images (Scale bar =5um). Lower panel displays 

GluA1 and vGlut puncta minus Spines and Dendrites (actin-gfp stain). Wnt7a does not 

increase the number or size of spines or the number of GluA1 and vGlut associated with these 

spines. (B) Quantification of the number of vGlut puncta associated with spines per 100um
3
 

of spine volume shows no differences between vehicle and Wnt7a treated.  (C) Quantification 

of the % of spines with vGlut puncta associated shows no difference between treatments. (D) 

Quantification of % of total spines associated with both GluA1 and vGlut puncta shows no 

significant difference between treatments. (E) Quantification of the width of spines shows  no 

change in the size of spines heads with treatment. (F) Quantification of number of spines per 

100µm length of dendrite demonstrates no change in the number of spines along the neurites 

* = P<0.05. 

  

 

The number of vGlut puncta associated with dendritic spines did not significantly change 

(BSA: 77 ± 3pp100µm
3
 Wnt7a: 69 ± 7 pp100µm

3)
 (fig 4.4 A and B). The failure of Wnt7a to 

affect vGlut accumulation was mirrored in the percentage of spines associated with vGlut or 

vGlut and GluA1 (fig. 4.4 A, C and D). The failure of Wnt7a to increase the colocalisation of 

GluA1 and vGlut on dendritic spines indicates an inability of 3Hr Wnt treatment to increase 

synapse number at 21DIV.  
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Figure 4.5 Wnt7a has no significant effect on GluA1 and GluN1 puncta localisation on 

spines and in 21 DIV cultured hippocampal neurons. Hippocampal neurons cultured for 

21 days were treated with BSA (vehicle) or Wnt7a for 3hrs. Dendritic spines were analysed 

for GluA1 (red) and GluN1 (blue) puncta. (A) High magnification images of isolated 

dendrites display the Wnt7a mediated increases in spine associated GluA1 and GluN1 puncta 

number (Scale bar= 5um). Top panel displays stain for Actin-gfp (green), GluA1 and GluN1 

whilst lower panels display puncta images minus Actin-gfp. (B) Quantification of GluA1 

puncta number per Spine volume displays no significant change in GluA1 puncta associated 

with spines after Wnt7a treatment. (C) Quantification of GluN1 puncta number per spine 

volume reveals no change in puncta accumulation on spines per spine volume. (D) 

Quantification of the % of spines with GluA1 puncta associated reveals no significant change 
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between treatments. (E) Quantification of the percentage of total spines associated with 

GluN1 puncta revealed no difference (F) Quantification of spines with both GluA1 and 

GluN1 puncta associated display no difference between vehicle and Wnt7a treatments. 

 

Indeed all 3 glutamate receptor markers; GluA1, GluA2 and GluN1 did not significantly 

increase in density on the dendritic spines of 21 DIV neurons in response to 3Hr Wnt7a 

exposure (fig. 4.5 A-C, fig. 4.6 A and B). In confirmation of Wnt7a’s inability to mediate 

receptor accumulation the percentage of spines associated with the various glutamate 

receptors was also diminished. At 21 DIV 73 ± 5.1% of spines were associated with GluA1 

puncta in control conditions becoming 64 ± 8.109% after 3hrs of Wnt7a treatment (fig. 4.5 A 

and D). These observations were mimicked in the number of spines associated with GluN1 

(BSA: 87 ± 5.666%, Wnt7a: 92 ± 7.158%) or GluA1 and GluN1 (BSA: 76 ± 4.571%, Wnt7a: 

72 ± 6.719%) (fig. 4.5A, E and F).  
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Figure 4.6 Wnt7a treatment does not increase GluA1 and/or GluA2 puncta localisation 

on spines or the number of spines associated with both puncta on 21 DIV neurons. 

Hippocampal neurons cultured for 21 days were treated with BSA (vehicle) or Wnt7a for 

3hrs. Dendritic spines were analysed for GluA1 (red) and GluA2 (blue) puncta. (A) High 

magnification images of isolated dendrites display the Wnt7a mediated increases in spine 

associated GluA1 and GluA2 puncta number (Scale bar= 5um). Top panel displays stain for 

Actin-gfp (green), GluA1 and GluA2 whilst lower panels display puncta images minus Actin-

gfp. (B) Quantification of GluA1 puncta number per Spine volume displays no significant 

change in GluA1 puncta associated with spines after Wnt7a treatment. (C) Quantification of 

GluA2 puncta number per spine volume reveals no change in puncta accumulation on spines 

per spine volume. (D) Quantification of the % of spines with GluA1 puncta associated 

reveals no significant change between treatments. (E) Quantification of the percentage of 

total spines associated with GluA2 puncta revealed no difference (F) Quantification of spines 

with both GluA1 and GluA2 puncta associated display no difference between vehicle and 

Wnt7a treatments.  
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These experiments suggest on the spines of 21 DIV neurons, 3hrs Wnt7a exposure does not 

affect the number of postsynaptically un-silenced synapses. GluA2 puncta number associated 

with spines remained constant between neurons treated with BSA (45 ± 5.227 pp100µm) and 

(Wnt7a: 50 ± 7.744) (fig. 4.6 A and B). The percentage of spines associated with GluA2 or 

GluA2 and GluA1 also remained constant between BSA and Wnt7a treatments (fig 4.6 A, C 

and D). These results show that on mature neurons Wnt7a is unable to regulate GluA2 

receptor localisation on dendritic spines. 

4.2.3 Postsynaptic Wnt activation increases accumulation of glutamate receptors and 

presynaptic inputs onto the dendritic spines of developing neurons. 

Whilst the data above clearly indicate Wnt7a signalling regulates the localisation of synaptic 

proteins both pre and postsynaptically the location at which Wnt7a acts is still unclear. The 

ability of Wnt7a to act directly on axons to direct presynaptic development has been 

established (Ahmad-Annuar et al., 2006). The question remains whether the maturation of the 

postsynaptic compartment is the result of direct postsynaptic action by Wnt7a or secondary 

signalling as a consequence of presynaptic maturation.  
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Figure 4.7 Overexpression of Dvl1-HA in hippocampal neurons promotes increases in 

spine size. Hippocampal cultures were transfected with either a combination of Actin-GFP 

and Dvl1-HA expressing constructs or Actin-GFP and PCS2- empty vector constructs. (A) 

The top panels (left to right) show neurons transfected without or with Dvl1-HA respectively. 

Neurons were fixed and stained for actin-GFP (green) and HA-epitope (red) and spine 

morphology was observed. The HA-tag (Dvl1) was observed present throughout neurons in 

overexpressing neurons in contrast to the control transfected neurons where signal was only 

faintly present in the cell body (Scale bar=30µm). (B) Lower panels show magnified sections 

of dendrite illustrating the presence of HA signal (Dvl1) in dendrite and sparsely in dendritic 

spines (Scale bar=5µm).   

 

To address this question I attempted to analyse neurons in which Wnt signalling was 

activated only in the postsynaptic neuron. To achieve this I co-transfected neurons with the 

eGFP-actin construct used to visualise spines and Dvl1-HA a downstream intracellular 

activator of Wnt signalling pathways (fig. 4.7). The neurons were transfected as in previous 

experiments at 8DIV and the constructs allowed to express up to 14 DIV to look at 

developing synapses or 21DIV to study more mature synapses. 
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Figure 4.8 Postsynaptic Wnt signalling activation increases GluA1 and vGlut 

accumulation and localisation on dendritic spines of 14DIV neurons. Cultured 

hippocampal neurons at 8DIV were co-transfected with either actin-gfp and control empty 

vector or actin-gfp and Dvl1-Ha constructs. Neurons were fixed and stained at 14DIV and 

dendritic spines were analysed for GluA1 (red) and vGlut (blue) puncta. (A) Top panels 

displays low magnification images of treated neurons stained with Actin-gfp (green), GluA1 

and vGlut (Scale bar =30um).   Middle panels display high magnification images of dashed 

box area in low magnification images (Scale bar =5um). Lower panel displays GluA1 and 

vGlut puncta minus Spines and Dendrites. Dvl overexpression increases both the number and 

size of spines whilst increasing the number of GluA1 and vGlut associated. (B) 

Quantification of the number of vGlut puncta associated with spines per 100um
3
 revealed a 

significant difference between treatments of 48%.  (C) Quantification of the % of spines with 

vGlut puncta associated increased by 40%. (D) Quantification of % of total spines associated 

with both GluA1 and vGlut puncta was significantly increased by 32%. (E) Quantification of 

the width of spines shows a significant increase in spine size. (F) Quantification of number of 

spines per 100µm length of dendrite illustrates the lack of spine number change on neurons 

transfected with Dvl1-HA.  * = P<0.05.  

Post synaptic activation of Wnt signalling mediates a 23% increase in the number of GluA1 

puncta on spines alongside a significant 107% increase in GluN1 puncta fig 4.8 A, B and C. 

These effects were complemented by a slight but significant increase in the percentage of 

spines associated with GluA1 puncta (6%), a strong increase in the percentage of spines 

associated with GluN1 puncta (81%) and a similar increase in the percentage of spines 

associated with both GluA1 and GluN1 puncta (42%) (fig. 4.8 A and D-F). This suggests 

postsynaptic activation alone is sufficient to increase both the localisation of AMPAR and 

NMDAR on spines concomitantly increasing the proportion of postsynaptically active 

synaptic sites.   
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Figure 4.9 Postsynaptic expression of Dvl1 increases GluA1 and GluN1 puncta 

localisation on spines and increases the number of spines associated with both proteins 

at 14 DIV. Cultured hippocampal neurons at 8DIV were co-transfected with either actin-gfp 

and control empty vector or actin-gfp and Dvl1-Ha constructs. Dendritic spines were 

analysed for GluA1 (red) and GluN1 (blue) puncta at 14DIV. (A) High magnification images 

of isolated dendrites display the Dvl1 mediated increases in spine associated GluA1 and 

GluN1 puncta number (Scale bar= 5um). Top panel displays stain for Actin-gfp (green), 

GluA1 and GluN1 whilst lower panels display puncta images minus Actin-gfp. (B) 

Quantification of GluA1 puncta number per Spine volume displays a 23% increase in GluA1 

puncta associated with spines after Dvl1 overexpression. (C) Quantification of GluN1 puncta 

number per spine volume displays the strong 103% increase in puncta accumulation on 

spines per spine volume. (D) Quantification of the % of spines with GluA1 puncta associated 

reveals a small but significant 6% increase with Dvl1 overexpression. (E) Quantification of 

the percentage of total spines associated with GluN1 puncta revealed a 81% increase (F) 

Quantification of spines with both GluA1 and GluN1 puncta associated display a 42% 

increase.  * = P<0.05.  

 

Analysis of GluA2 localisation also revealed an increase in the density of puncta on spines 

from 62 ± 5.516 pp100µm
3
 to 78 ± 3.122 pp100µm

3
 (fig 4.8 A and B). This increase in 

GluA2 mobilisation resulted in an increase in the percentage of spines associated with GluA2 

puncta up 39% from 31 ± 2.633% to 43 ± 6.959% (fig. fig 4.8 A and C). Interestingly the 

number of spines associated with both GluA1 and GluA2 also increases by 37%. Together 

these results indicate the ability of Dvl1 to mediate both maturation of synapses by increase 

of GluA2 into spines and to increase the total proportion of mature spines on a neuron.  
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Figure 4.10 Dvl1 overexpression increases GluA1 and GluA2 puncta localisation on 

spines and increases the number of spines associated with both proteins at 14 DIV. 

Cultured hippocampal neurons at 8DIV were co-transfected with either actin-gfp and control 

empty vector or actin-gfp and Dvl1-Ha constructs. Dendritic spines were analysed for GluA1 

(red) and GluA2 (blue) puncta at 14DIV. (A) High magnification images of isolated dendrites 

display the Dvl1 mediated increases in spine associated GluA1 and GluA2 puncta number 

(Scale bar= 5um). Top panel displays stain for Actin-gfp (green), GluA1 and GluA2 whilst 

lower panels display puncta images minus Actin-gfp. (B) Quantification of GluA2 puncta 

number per spine volume displays a 26% increase in puncta accumulation on spines per spine 

volume. (C) Quantification of the percentage of total spines associated with GluA2 puncta 

revealed a 39% increase (D) Quantification of spines with both GluA1 and GluA2 puncta 

associated display a 37% increase.  * = P<0.05. 

 

Neurons were also stained for the presynaptic marker vGlut to assess any changes 

postsynaptic Wnt activation has on the colocalisation of spine located glutamate receptors 

with presynaptic sites. Changes in these values likely represent changes to functional synaptic 

sites. Intriguingly the percentage of spines associated with vGlut puncta increases by 40% 
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(fig. 4.7A and C) whilst the percentage of spines associated with both GluA1 and vGlut 

increase by 32% from 47 ± 4.502% to 62 ± 6.799% (fig. 4.7A and D). These results suggest 

postsynaptic expression of Dvl1 activates a retrograde synaptic signalling pathway mediating 

enhanced presynaptic organisation onto the maturing spines.  

4.2.4 Postsynaptic Wnt activation does not affect accumulation of synaptic proteins onto 

the dendritic spines of mature neurons. 

The above data suggests activation of Wnt signalling postsynaptically acts specifically to 

increase synapse number and presence of subunits associated with maturity on dendritic 

spines. Although we are aware of these effects in developing, immature cultures the question 

over whether postsynaptic Dvl activation can further increase receptor localisation in more 

mature spine synapses remained. To investigate this I over-expressed Dvl1 in neurons at 8 

DIV and allowed these neurons to remain in culture until DIV 21 where the neurons were 

fixed stained and the synaptic puncta analysed. 
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Figure 4.11 Overexpression of Dvl1 does not affect GluA1 and/or vGlut localisation on 

dendritic spines of 21DIV neurons. Cultured hippocampal neurons at 8DIV were co-

transfected with either actin-gfp and control empty vector or actin-gfp and Dvl1-Ha 

constructs. Neurons were fixed and stained at 14DIV and dendritic spines were analysed for 

GluA1 (red) and vGlut (blue) puncta. (A) Top panel displays images of treated neurons 

stained with Actin-gfp (green), GluA1 and vGlut (Scale bar =50um).   Middle panels display 

high magnification images of dashed box in low magnification images (Scale bar =5um). 

Lower panel displays GluA1 and vGlut puncta minus Spines and Dendrites (actin-gfp stain). 

Dvl1 overexpression does not increase the number or size of spines or the number of GluA1 

and vGlut associated with these spines. (B) Quantification of the number of vGlut puncta 

associated with spines per 100um
3
 of spine volume shows no differences between Control 

and Dvl1 transfected neurons.  (C) Quantification of the % of spines with vGlut puncta 

associated shows no difference between treatments. (D) Quantification of % of total spines 

associated with both GluA1 and vGlut puncta shows no significant difference between 

treatments. (E) Quantification of the width of spines and (F) Quantification of number of 

spines per 100µm length of dendrite showed no change between ctrl and Dvl1 expressing 

neurons. 

 

 Mimicking Wnt7a at 21 DIV, Dvl1 overexpression does not affect synapse number or 

synaptic puncta accumulation. vGlut and GluA1 puncta associated with spines shows no 

significant increase in neurons overexpressing Dvl1 (fig. 4.10A and B, fig 4.11A and B). 

These effects are compounded by a lack of significant change in the percentage of spines 

associated with vGlut puncta (BSA: 61±7.132, Dvl1: 60±5.21%) or both vGlut and GluA1 

puncta (BSA: 69±6.023%, Dvl1: 75±6.143%) (fig. 4.10A, C and D).  
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Figure 4.12 Dvl1 overexpression has no significant effect on GluA1 and GluN1 puncta 

localisation on spines and in 21 DIV cultured hippocampal neurons. Cultured 

hippocampal neurons at 8DIV were co-transfected with either actin-gfp and control empty 

vector or actin-gfp and Dvl1-Ha constructs. Neurons were fixed and stained at 14DIV and 

dendritic spines were analysed for GluA1 (red) and GluN1 (blue) puncta. (A) High 

magnification images of isolated dendrites display the Dvl1 mediated increases in spine 

associated GluA1 and GluN1 puncta number (Scale bar= 5um). Top panel displays stain for 

Actin-gfp (green), GluA1 and GluN1 whilst lower panels display puncta images minus Actin-

gfp. (B) Quantification of GluA1 puncta number per Spine volume displays no significant 

change in GluA1 puncta associated with spines after Dvl1 overexpression. (C) Quantification 

of GluN1 puncta number per spine volume reveals no change in puncta accumulation on 

spines per spine volume. (D) Quantification of the % of spines with GluA1 puncta associated 

reveals no significant change between treatments. (E) Quantification of the percentage of 

total spines associated with GluN1 puncta revealed no difference (F) Quantification of spines 

with both GluA1 and GluN1 puncta associated display no difference between vehicle and 

Dvl1 overexpression. 

Neither GluN1 nor GluA2 receptor puncta were significantly altered in the spines of Dvl1 

overexpressing neurons (fig. 4.11A and C, fig. 4.12A and B). This indicates postsynaptic 

activation of Wnt signalling is unable to alter the Ca
2+

 conductance of spines via GluA2 or 

GluN1 receptor localisation. Dvl1 overexpression similarly has no effect on the percentage of 

spines containing GluN1 puncta (fig. 4.11A and E), GluA2 puncta (fig. 4.12A and C), both 

GluN1 and GluA1 (fig. 4.11A and F) or GluA2 and GluA1 (fig. 4.12A and D). 
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Figure 4.13 Dvl1 overexpression has no significant effect on GluA1 and GluA2 puncta 

localisation on spines and in 21 DIV cultured hippocampal neurons. Cultured 

hippocampal neurons at 8DIV were co-transfected with either actin-gfp and control empty 

vector or actin-gfp and Dvl1-Ha constructs. Neurons were fixed and stained at 14DIV and 

dendritic spines were analysed for GluA1 (red) and GluA2 (blue) puncta. (A) High 

magnification images of isolated dendrites display the Dvl1 mediated increases in spine 

associated GluA1 and GluA2 puncta number (Scale bar= 5um). Top panel displays stain for 

Actin-gfp (green), GluA1 and GluA2 whilst lower panels display puncta images minus Actin-

gfp. (B) Quantification of GluA1 puncta number per Spine volume displays no significant 

change in GluA1 puncta associated with spines after Dvl1 overexpression. (C) Quantification 

of GluA2 puncta number per spine volume reveals no change in puncta accumulation on 

spines per spine volume. (D) Quantification of the % of spines with GluA1 puncta associated 

reveals no significant change between treatments. (E) Quantification of the percentage of 

total spines associated with GluA2 puncta revealed no difference (F) Quantification of spines 

with both GluA1 and GluA2 puncta associated display no difference between vehicle and 

Dvl1 overexpression. 

 

 



120 

 

4.3 Discussion 

The above data shows that at 14 DIV Wnt7a plays a significant role in the regulation of 

glutamate receptor localisation on dendritic spines at synaptic sites. Furthermore the data 

presented above when taken with data presented by Ciani et al. (2011) indicates that whilst 

Wnt7a increases the number and size of dendritic spines, presynaptic input to these spines is 

also increased. This increase is further confirmed by both the changes to percentage of spines 

associated with either vGlut puncta alone or vGlut and GluA1 puncta. These significant 

increases indicate that presynaptic input increases to both the majority of spines but also more 

importantly to spines with GluA1, important for functional transmission.  

4.3.1 The role of Wnt7a signalling on NMDAR to synaptic sites 

Wnt7a exposure of neurons at 14 DIV induces a hereto novel ability to aggregate GluN1 

subunits at the site of excitatory transmission on dendritic spines. Antibody specificity of the 

GluN1 subunit was such that in contrast to the GluA1 and GluA2 assays both intracellular 

and surface receptors were labelled. This detail might lead one to assume increases in GluN1 

puncta may not be specific to synaptic sites but instead be part of intracellular pools. 

However the increase in colocalisation between GluN1 and GluA1 proteins suggest that the 

total increase in GluN1 on spines results in increased synaptic GluN1. The GluN1 subunit is 

an obligatory component of the functional signalling receptor and as such its increased 

presence is an important modification by Wnt7a. This increase in NMDAR density is likely 

to increase the ability of these neurons to potentiate/depotentiate in response to synaptic 

activity via intracellular calcium signalling.  

Very little is known of soluble extracellular factors which regulate GluN1 trafficking into the 

synaptic and perisynaptic regions. However through interactions with PSD proteins, adhesion 

molecules seem to play similar roles to Wnt7a in synaptic NMDAR accumulation. 

SALM1overexpression in 14DIV neurons increases the number of surface NR2B subunits 

along dendrites (Wang et al., 2006). Similarly to Wnt7a proteins SALM proteins are believed 

to have a role specifically in excitatory synapse formation (Ko et al., 2006).  NMDARs are 

believed to be maintained at the synapse by interactions with PSD proteins, knockdown of 

PSD-95 reveals moderate defects in NMDAR currents (Ehrlich et al., 2007; Petralia et al., 

2009). Overexpression of PSD-95 is able to increase the surface expression of NMDAR in 

heterologous cell systems (Lin et al., 2006; Lin et al., 2004). Work from our lab has recently 

demonstrated the role of Wnt7a in regulating PSD-95 accumulation at synaptic sites (Ciani et 
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al., 2011). The increase of NMDAR as a result of Wnt7a activity may in part be due to this 

increase in its synaptic interacting partner. 

4.3.2 Wnt7a signalling regulates increases in spine maturity through glutamate receptor 

complementation   

Concurrently the increase in NR1 localisation at synaptic sites is complemented by increases 

in both GluA1 and GluA2 density. Increase in GluA1, the major contributory subunit in 

AMPAR transmission, on spines indicates that Wnt7a promotes the formation of new 

functional synaptic sites as opposed, AMPA silent synapses. This idea is strengthened by the 

increase in colocalisation % of GluA1 and GluN1 puncta. The increase in both GluA2 density 

and % of spines with GluA2 puncta or GluA2 and GluA1 puncta indicates Wnt7a mediated 

maturation of spines. GluA2 subunit containing receptors play important roles in basal 

synaptic transmission and CA1 LTP (Seidenman et al., 2003). GluA2 subunit containing 

receptors are also non permeable to Ca
2+

 influx providing a role in buffering neurons from 

excitotoxicity (Hollmann et al., 1991). Alongside increases in GluA2 accumulation recent 

data from our lab has indicated a functional role of Wnt7a signalling in increases in spine size 

(Ciani et al., 2011). Together these changes are classic indicators of excitatory synapse 

maturation (Chen et al., 2009; Dunaevsky et al., 1999; Hall and Ghosh, 2008). The GluA2 

puncta density increase together with the increase in % of spines with GluA2 puncta suggests 

that the spines affected by wnt7a mediated puncta mobilisation (the newly formed subset or 

all spines) are more mature. Together with the increases in spines with both GluA1 and 

GluA2 the data suggests Wnt7a exposed neurons have increased numbers of functional 

mature excitatory spine synapses.   

These effects of Wnt signalling most closely mimic the effect of Tumour necrosis factor 

alpha (TNFα) on GluA2 localisation. Experiments by Rainey-smith and colleagues (2010) 

demonstrate an increase in the surface expression of GluA2 protein in response to short term 

treatments of TNFα (Rainey-Smith et al., 2010). In these experiments Ca
2+

 influx was 

significantly decreased indicating a neuroprotective effect of the TNFα signalling molecule. 

Similarly vascular endothelial growth factor (VEGF) has a similar effect on the GluA2 

expression in motor neurons (Bogaert et al., 2010). In these experiments GluA2 

modifications were driven by increases in transcription.  

The increased maturation of these synapses by changes in spine morphology and receptor 

localisation may explain why no significant modifications were observed at 21DIV. Both 
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recombinant Wnt7a and Dvl1 overexpression fail to enhance spine size and number or size 

respectively at 21 DIV (Ciani and Salinas, unpublished). These results suggest a number of 

possibilities; the excitatory spine capacity for receptor accumulation may have reached a 

plateau where no further increases are possible. This seems unlikely because for all of the 

markers assessed, 100% occupancy of spines was never reached. A second possibility may be 

that the level of Wnt activation (using Wnt7a bath application or overexpression) was 

insufficient to mobilise effects in what would be by 21 DIV a Wnt rich system. This idea is 

strengthened by a Wnt loss of function study in our lab using SFRPs in 21 DIV where loss of 

glutamatergic synaptic proteins is observed (Boyle and Salinas, 2010 unpublished).  

4.3.3 Postsynaptic expression of Wnt signalling activates effects both post and 

presynaptically.  

Whilst the role of Wnt proteins signalling to the presynaptic compartment are well 

established the role of Wnt at postsynaptic sites is less well defined. In this chapter I 

identified the effects of Wnt signalling postsynaptically by overexpression of Dvl1 in neurons 

and analysing the dendritic spines of these neurons. Previous studies by our lab revealed 

postsynaptic expression of Dvl1 mimicked increases in spine morphology but not spine 

density caused by recombinant Wnt7a. The changes to spine size were coordinated with 

increases in glutamate receptor localisation at 14 DIV but not at 21 DIV. Most interestingly 

this specific postsynaptic Wnt activation promotes an increase in presynaptic organisation 

onto these spines. The increases in vGlut puncta associated with spines indicate that 

presynaptic terminals may contain more release sites and/or more presynaptic sites may be 

synapsing onto each spine.  

Studies have suggested Wnt7a plays a role in enhancements in presynaptic release however 

these studies have used bath applications of Wnt7a thereby allowing direct action of Wnt7a at 

presynaptic sites. The data in this study indicates that activation of Wnt signalling 

postsynaptically initiates retrograde signalling to enhance presynaptic function. Potentially 

this signal may be Wnt derived however with the lack of high fidelity Wnt specific antibodies 

this would be difficult to ascertain. 

Non Wnt retrograde signals may also play a role in this form of regulation, one such example 

is neuronal nitric oxide synthase (nNOS). Poglia and colleagues (2010) identified an nNOS 

mediated trans-synaptic signalling pathway which enhanced the presynaptic specialisation. 



123 

 

Postsynaptic overexpression of PSD-95 caused an increase in the number of multiply 

innervated spines (MIS). This effect on MIS was diminished by blockade of nNOS function. 

Interestingly postsynaptic overexpression of Dvl1 increases PSD-95, whilst the 

overexpression of PSD-95 in the above study mimics the changes to spine morphology 

observed in Wnt activation (Ciani et al., 2011; Nikonenko et al., 2008).       
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Chapter 5 

 Wnt 7a regulates the number and strength of functional synaptic sites 

5.1 Introduction 

Recent advances in technology have improved our understanding of neuronal activity and 

synaptic transmission. Imaging tools have been used to visualise the gross functional changes 

in the brain caused by disorders such as schizophrenia, Alzheimer’s and epilepsy (Duncan, 

1997; Meyer-Lindenberg et al., 2008; Sperling et al., 2010). These studies have been 

invaluable in characterising the changes that occur in the normal brain and how the brain 

changes in disease conditions. This functional information in turn has been used to identify 

defects in protein expression which mimic these functional defects.  

Functional synaptic communication within the brain is generally mediated by evoked 

transmission and it is here that most deleterious neurological defects take effect. In the 

example of epilepsy the functional phenotype is the occurrence of unregulated, prolonged and 

synchronized neuronal discharges propagating to surrounding structures (neural networks) 

(Vincent and Mulle, 2009). Whilst the ability to induce LTP at functional synapses is 

impaired in the brain of Alzheimer’s sufferers (Gleichmann and Mattson, 2010). Interestingly 

the number and strength of functional synaptic contacts is developmentally determined by a 

number of processes. In early postnatal development, the vast majority of central synapses 

are postsynaptically silenced by regulation of the presence of specific GluA subunits 

(Gomperts et al., 1998; Kerchner and Nicoll, 2008). Presynaptically development and 

maturation of the presynaptic terminal increases the strength of synaptic transmission as 

development proceeds (Gasparini et al., 2000). The mechanisms that regulate processes such 

as synapse silencing, and presynaptic maturation by extracellular signalling molecules remain 

poorly understood. 

As I have demonstrated in the previous two chapters, Wnt signalling plays a role in the 

localisation of excitatory receptors to synaptic sites. Functional studies at the synapse in 

relation to the regulation of Wnt signalling have recently become an area of great interest. 

Currently few studies have examined the functional effects of Wnt signalling in synaptic 

function. Measuring field postsynaptic currents, Chen and colleagues investigated the role of 

Wnt3a in hippocampal LTP. Using both loss and gain of Wnt signalling function in the form 

of Fz-8/Fc and Wnt3a respectively on hippocampal slices both impairment and enhancement 
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(whilst poor) of LTP were observed (Chen, 2006). Following this study, Beaumont and 

colleagues investigated the effects of Wnt signalling on transmission using small compounds 

that mimic canonical Wnt signalling (Beaumont et al., 2007). Using the compound WASP-1 

(Wnt activating small molecule potentiator-1) on hippocampal cultures enhancements in both 

mEPSC frequency and amplitude were observed alongside increases in fEPSC slope and LTP 

pronouncement. These experiments indicate a role for Wnt signalling pathways in the 

functional transmission of synapses. 

The effects of Wnt7a and Wnt5a on both field and local recordings at CA3-CA1 hippocampal 

synapses was analysed by Cerpa and colleagues (Cerpa et al., 2008). The authors observed a 

presynaptic enhancement in transmission with Wnt7a but not with Wnt5a from fEPSC 

recordings. Meanwhile Wnt7a also enhanced presynaptic function as determined by 

intracellular recording at the same CA3-CA1 synapse (Cerpa et al., 2008). The same group 

further investigated the effects of Wnt5a on synaptic function, analysing field recordings on 

hippocampal CA1 neurons, observing an increase in fEPSC normalised amplitude (Farias et 

al., 2009). Subsequently Wnt5a was observed to increase amplitude in both AMPA and 

NMDA derived mEPSC in hippocampal cultures (Varela-Nallar et al., 2010). These series of 

experiments suggests both Wnt7a and Wnt5a mediated transmission effects at the CA3-CA1 

synapse in the hippocampus. Interestingly the effects of Wnt7a and Wnt5a seem to differ in 

specificity with Wnt5a proposed to act specifically at the postsynaptic side of the CA3-CA1 

synapse. Both studies in this thesis and previous studies have demonstrated Wnt7a is able to 

affect synaptic function and receptor localisation presynaptically and postsynaptically 

(Ahmad-Annuar et al., 2006).      

Whilst the localisation of synaptic receptors is a useful indicator of the mechanisms by which 

synapse modification occur, the relationship between receptor localisation and function is not 

always straightforward. Modulatory processes at the synapse may act to diminish the effect of 

increased synaptic receptor localisation by modification of presynaptic release (Pang et al., 

2006). Therefore it was important to establish how the effects of receptor localisation by 

Wnt7a signalling impinge on the functional aspects of synaptic transmission at these 

synapses.  
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5.2 Results 

5.2.1 Wnt7a gain of function enhances evoked postsynaptic current amplitude and 

decreases synaptic failure. 

In order to access the effects of Wnt signalling on synaptic function 14DIV hippocampal 

cultures were treated with Wnt7a for 3hrs and patched. Concurrently a stimulating electrode 

was placed approximately 100-200µm to generate a post synaptic current from presynaptic 

axons. By modulating the stimulus intensity presynaptic axons were able to elicit minimal 

amplitude post synaptic currents alongside synaptic failures.  

After 3hr exposure to Wnt7a hippocampal neurons exhibit an increase in the amplitude of 

synaptic currents by 53% (fig.5.1a and c). The increased amplitude is paired with a decrease 

in the number of stimulus events which fail to generate a significant current (fig5.1a and b). 

The percentage of these failures decreased from 29 ± 8.276% to 15±6.723% indicating a 

significant increase in the activity of Wnt7a exposed synapses. These results demonstrate the 

role of Wnt7a gain of function in increasing the generation of significant postsynaptic 

currents thereby enhancing synaptic efficiency. 
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Figure 5.1 Wnt7a increases evoked postsynaptic currents and decreases synaptic failure 

rates. 14 DIV hippocampal cultures were treated with BSA (vehicle) or Wnt7a for 3 hours 

and postsynaptic currents were recorded by whole cell patch clamp. (A) Left panels show 

overlay of 10 consecutive stimulus runs with representative synaptic failures. Top panel 

shows currents from vehicle treated whilst lower panel displays currents from Wnt7a treated 

neuron.  Right panels display average sweep from vehicle or Wnt7a treated cell. (B) 

Quantification of synaptic failure rates given as %failures of total stimulus events. (C) 

Quantification of averaged currents amplitude reveals an increase after Wnt7a treatment. N 

number of cells, BSA=12, Wnt7a=15 (* = P<0.05)  

5.2.2 Wnt7a/Dvl1 loss of function at the MF-CA3 synapse decreases evoked postsynaptic 

current amplitude and increases the frequency of synaptic failures. 
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In order to look at both loss of function of Wnt signalling and to ascertain whether Wnt 

signalling plays a role in vivo I prepared acute brain slices from both wildtype and Wnt7a-/-, 

Dvl1-/- mutant mice. Prior data has suggested that the expression of Wnt7a and related 

signalling molecules may be strongest in the wildtype animal at the MF-CA3 synapse 

(Gogolla et al., 2009; Sahores et al., 2010) so I focused on this synapse. Postsynaptic currents 

were again elicited by the positioning of a stimulating electrode on the mossy fibre tracts of 

the stratum lucidum, activating presynaptic granule cell axons.  

Postsynaptic currents generated in the double knockout animals are significantly smaller than 

those generated in wildtype animals. Indeed a 60% decrease in current amplitude was 

observed (fig5.2 a and c). The percentage of postsynaptic failures also increases by 22% in 

the double mutant when compared to the wildtype.  Thus this is the converse effect to that 

obtained with Wnt gain of function studies. Here in vivo Wnt7-Dvl1 loss of function clearly 

results in defects in synaptic function. These results demonstrate a role for Wnt7a –Dvl1 

signalling in enhancing the efficiency of currents generated in the postsynaptic component of 

the synapse. 
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Figure 5.2 Loss of Wnt7a-Dvl1 signalling decreases evoked postsynaptic currents and 

increases synaptic failure rates at the MF-CA3 synapse. Acute hippocampal slices were 

prepared from P14 wildtype and Wnt7a-/-, Dvl1-/- null mice and stimulus evoked currents 

were recorded by whole cell patch clamp. (A) Left panels show overlay of 10 consecutive 

stimulus runs with representative synaptic failures. Top panel shows currents from Wildtype 

slices whilst lower panel displays currents from double knockout slices.  Right panels display 

average sweep from wildtype or double knockout cells. (B) Quantification of synaptic failure 

rates given as %failures of total stimulus events. (C) Quantification of averaged currents 

amplitude reveals an increase after Wnt7a treatment. N numbers refer to number of animals 

used, Wildtype=5, Wnt7a-/-, Dvl1-/-=7 (* = P<0.05)  

5.2.3 Wnt7a gain of function decreases paired pulse ratios in hippocampal cultures. 

My experiments looking at AMPAR mediated currents suggest that there is a strong 

relationship between the receptor acumulation described in the previous chapters and 

synaptic function. The changes in the amplitude of postsynaptic currents suggest the 

movement of AMPAR subunits contributes to a functional change at the synapse as opposed 

receptor mobilization into reserve pools around or near the synapse. The effects on failure 

rate suggest that Wnt signalling increases the activity at these synapses which may be the 

result of changes both pre or postsynaptically.  The ability of Wnt7a to act as a presynaptic 

organiser has been demonstrated in various studies however the functional effects of Wnt7a 

at presynaptic compartments are poorly understood (recent reviews (Farias et al., 2010; 

Salinas and Zou, 2008). 

In order to investigate the functional presynaptic effects of Wnt7a signalling, I assessed the 

paired pulse ratio (PPR) at the MF-CA3 synapse after Wnt7a exposure. PPR was determined 

by eliciting a pair of stimulus events separated by a short interval (50ms) and measuring the 

ratio of the first resultant current to the second. This form of short term potentiation or 

depression can be used to assess the presynaptic efficiency of a synapse. Where the PPR is 

modified positively (greater than 1) presynaptic release is likely to be inhibited whereas if 
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PPR is modified negatively (lower than 1) presynaptic release is likely to have been enhanced 

(Cerpa et al., 2008; Dobrunz and Stevens, 1997; Schulz et al., 1994). 

In 14DIV hippocampal cultures, Wnt7a significantly decreases PPR from 1.03±0.053 in 

vehicle treated cultures to 0.84±0.012 (fig5.3 a and c). Confirming the previous single 

stimulus experiment (fig5.1), comparison of first current amplitude shows a 51% increase in 

amplitude between vehicle and Wnt7a treated neurons (fig5.3 a and b).  

 

0

100

150

200

250

50

Vehicle Wnt7a

*

1st Current amplitude (-pA)

0

0.4

0.6

0.8

1.0

0.2

1.2

*

Vehicle Wnt7a

Paired pulse Ratio

Vehicle

Wnt7a

50pA
10ms

 

Figure legend on next page 



132 

 

 

 

Figure 5.3. Wnt7a signalling increases presynaptic efficacy and postsynaptic currents. 

14 DIV hippocampal cultures were treated with BSA (vehicle) or Wnt7a for 3 hours and 

paired currents were recorded by whole cell patch clamp. Stimuli were separated by 50ms 

and currents were recorded and analysed (A) Left panels show overlay of 10 consecutive 

stimulus sweeps whilst top panel shows currents from vehicle treated whilst lower panel 

displays currents from Wnt7a treated neuron.  Right panels display average sweep from 

vehicle or Wnt7a treated cell respectively. (B) Quantification of the first currents in the pair 

for each treatment. The figure clearly shows a significant increase in current amplitude in 

Wnt7a treated cells when compared to controls.  (C) Quantification of current 2 

amplitude/current 1 amplitude displayed as the PPR value Wnt7a decreases the amplitude of 

the second current in the pair, represented as a decrease in PPR value. N numbers of cells, 

BSA=12, Wnt7a=15 (* = P<0.05)  

5.2.4 Wnt7a/Dvl1 loss of function at MF-CA3 synapses results in a decreased Paired pulse 

ratio. 

Witnessing this effect of Wnt7a in cultured neurons, I then decided to test whether loss of 

function of Wnt signalling also affects PPR at the MF-CA3 synapse. The Wnt7a, Dvl1 double 

mutant exhibits an increase in PPR at the MF-CA3 synapse from 1.05±0.034 in the wildtype 

mice to 1.23±0.055 in the mutant mice. Loss of Wnt7a/Dvl1 function in the hippocampus 

also decreases the amplitude of the first currents by 28% (fig5.4 a and b). These results 

suggest that Wnt7a signalling plays a functional role in regulation of presynaptic strength in 

the hippocampus in addition to postsynaptic changes. 
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Figure 5.4 Loss of Wnt7a-Dvl1 signalling decreases presynaptic efficacy and 

postsynaptic currents. Acute hippocampal slices were prepared from P14 wildtype and 

Wnt7a-/-, Dvl1-/- null mutant mice and paired currents were recorded by whole cell patch 

clamp. (A) Left panels show overlay of 10 consecutive stimulus runs. Top panel shows 

currents from wildtype slices whilst lower panel displays currents from double knockout 

slices.  Right panels display average sweep from wildtype or double knockout cells. (B) 

Quantification of the first currents in the pair for each treatment. The figure shows a 

significant decrease in current amplitude in double knockout cells. (C) Quantification of 

current 2 amplitude/current 1 amplitude displayed as the PPR value loss of Wnt7a-Dvl1 

signalling increases the amplitude of the second current in the pair, represented as an increase 

in PPR value. N numbers refers to number of animals used, Wildtype=4, Wnt7a-/-, Dvl1-/- 

=8 (* = P<0.05)  

 

5.3 Discussion 

The results presented in this chapter demonstrate the novel function of Wnt7a to enhance 

synaptic transmission at both the pre and postsynaptic terminals. Using minimal stimulation 

and 3 hour exposure to Wnt7a or slices from Wnt7a-Dvl1 null mice, I demonstrated that 

Wnt7a gain of function increases the number of successful presynaptically mediated 

postsynaptic events and increases the amplitude of these currents whilst in vivo loss of 

Wnt7a-Dvl signalling has the opposite effects. These results indicate that Wnt7a regulates 

both pre and postsynaptic sides of the synapse by increasing synaptic transmission. These 

results are consistent with findings presented in previous chapters showing that Wnt7a 

increases the levels of GluA1 and GluA2 subunits to synaptic sites and the co-localization of 

GluA1 and vGlut1. The increase in postsynaptic current amplitude specifically suggests new 

synapses Wnt7a promotes are also AMPAR functional sites. 

5.3.1 Wnt signalling regulates AMPAR mediated function at hippocampal synapses. 

Prior to my study the role of Wnt7a in functional synaptic transmission was poorly 

understood however studies with similarly synaptogenic molecules reveal similar effects to 

the Wnt7a mediated results demonstrated in this chapter. Neuroligin1 (NL-1) has been 

identified as an excitatory synaptogenic factor in hippocampal neurons (Chih et al., 2005; 

Levinson et al., 2005; Prange et al., 2004). Interestingly postsynaptic overexpression of NL-1 
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increases both AMPAR and NMDAR mediated currents via an NMDAR dependent 

mechanism (Chubykin et al., 2007). These results are particularly interesting in the light of 

results from our lab indicating an NMDAR dependent basis for Wnt7a mediated spine 

morphogenesis (Ciani and Salinas, unpublished).       

The postsynaptic effects of loss of Wnt7a, Dvl1 signalling further confirms the importance of 

these molecules in development of the postsynaptic compartment. Interestingly the long-term 

deprivation of Wnt7a, Dvl1 signalling still generates normal basal synaptic transmission in 

the hippocampus (Boyle and Salinas, 2010). The loss of Wnt7a and Dvl1 however results in a 

defect of both the size and success of stimulus evoked currents. These results confirm the 

effects seen in the mEPSCs of the same animals suggesting loss of Wnt7a, Dvl1 signalling 

decreases synapse number and results in less functional strength at the MF-CA3 synapse. 

These defects also confirm the functional importance of Wnt7a signalling in the CA3 region 

of the hippocampus as demonstrated by Caroni and colleagues. 

Interestingly Cerpa and colleagues’ recent study suggests that Wnt5a but not Wnt7a mediates 

postsynaptic Wnt signalling (Cerpa et al., 2008). Their study implies that whilst Wnt5a alone 

has functional effects on NMDAR signalling neither Wnt5a nor Wnt7a signalling contribute 

to AMPAR transmission in the hippocampus. In contrast my studies clearly demonstrate a 

postsynaptic role for Wnt7a.  The reason for the different results is unclear however, it is 

worth mentioning that Cerpa’s experiments were performed by exposing cells to Wnt7a for a 

short period of time. This short term treatment may have been sufficient to initiate receptor 

mobilisation but not enough to register significant functional output. In contrast, my 

experiments were performed after 3 hours of Wnt7a exposure. Another important issue is the 

synapse studied. Wnt7a localises very strongly at the CA3 region of the hippocampus in 

comparison to the CA1 region (Gogolla et al., 2009). This data suggests that Wnt7a 

signalling plays a greater role at the MF-CA3 synapse region than at the CA3-MF synapse. 

Indeed by studies using Wnt7a; Dvl1 mutant mice demonstrate a clear defect at the CA3-MF 

synapses. 

Considering the data presented in this chapter using both Wnt7a gain and loss of function we 

can conclude that these signalling proteins are crucial in the regulation of hippocampal 

synaptic strength. The localisation of Wnt7a signalling molecules indicate that this role is 

particularly significant at the MF-CA3 synapse where loss of Wnt7a signalling results in 

functional defects. In mixed CA3/CA1 hippocampal cultures however Wnt7a gain of function 
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over a 3hr period strongly enhances functional synaptic transmission pre and 

postsynaptically. The striking similarities between NL-1 and Wnt7a gain of function 

phenotypes further demonstrate the unique ability of these extracellular molecules to enhance 

postsynaptic function.   

 

5.3.2 Wnt7a mediated enhancement in presynaptic function in the hippocampus. 

Enhancement and defects in PPR in respective Wnt loss of function and gain of function 

experiments indicate Wnt7a mediated changes to the efficacy of presynaptic release at these 

synapses. This conclusion is further supported by both increase and decrease of spontaneous 

failures in response to loss or gain of Wnt7a signalling respectively.  

An interesting similarity between my data and the data produced by Cerpa and colleagues 

(2008) mentioned in the last section was the identification of a functional role of Wnt7a 

signalling presynaptically in hippocampal synapses. Cerpa and colleagues observe a decrease 

in facilitation index after Wnt7a treatment in hippocampal CA1 neurons after 30min (Cerpa 

et al., 2008). Similarly, I showed that loss of function of Wnt7a signalling at the MF-CA3 

synapse increases PPR. Taken together with the data presented in previous chapters showing 

both enhancements and decreases in mEPSC frequency in relation to Wnt7a gain and loss of 

function respectively these results suggest a role in presynaptic release efficiency. 

BDNF shares many functional roles with the Wnt family of proteins and indeed plays a 

similar role in synaptic organisation and the function of presynaptic release in the 

hippocampus (Caldeira et al., 2007; Jovanovic et al., 2000). PPR is decreased in neurons CA1 

neurons of the hippocampus when exposed to BDNF (Mohajerani et al., 2007). Similarly a 

decrease in synaptic failures was observed and an increase in the frequency of spontaneous 

(miniature) EPSCs. Interestingly it has been postulated that BDNF activity/release is related 

to presynaptic activity in a positive feedback loop to regulate presynaptic aspects of LTP. 

Enhanced neurotransmitter release as a result of LTP results in enhanced BDNF release 

which acts a secondary messenger at the synapse to further increase presynaptic release 

efficiency (Jia et al., 2010). The same relationship between Wnt signalling synaptic function 

and release have been established and investigated in various studies (Gogolla et al., 2009; 

Sahores et al., 2010). It is likely that that this form of Wnt7a mediated synaptic enhancement 

feedback loop may occur and have effects both pre and postsynaptically. 
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Chapter 6 

Discussion 

6.1 Summary of Results 

During my PhD project I have investigated the role of Wnt signalling in various aspects of 

hippocampal synapse formation and function. I used a combination of cellular and 

electrophysiological techniques together with gain and loss of function approaches. My 

results demonstrate the crucial role of Wnt7a in the regulation of excitatory synapses in the 

hippocampus. Cellular changes induced by loss or gain of function of Wnt7a results in 

profound changes in various functional aspects of synaptic transmission. The key major 

findings are the demonstration that Wnt7a specifically promotes the formation of excitatory 

synapses and that Wnt7a increases synaptic strength. This is the first report that demonstrates 

Wnt signalling modulates the strength of synapses.  

Wnt7a increases the formation of excitatory synapses, this is achieved by promoting the 

increased synaptic localisation of excitatory synaptic markers. Specifically, the presynaptic 

marker vGlut1 (responsible for the recycling of neurotransmitter and the surface expression 

of AMPAR receptor subunits) GluA1 and GluA2. These subunits comprise the major 

components of functional “AMPAR active” synapses on mature neurons (Bredt and Nicoll, 

2003; Hall and Ghosh, 2008). The increase in AMPAR subunits is complemented by an 

increase in the total expression of GluN1 in dendritic spines. Furthermore, Wnt7a increases 

the association of excitatory presynaptic markers with postsynaptic markers, thus indicating 

the ability of Wnt7a to regulate the formation of excitatory synapses. Postsynaptic 

colocalisation assays also suggest greater association of the different glutamate receptor 

subunits (GluA1 with GluN1) with each other at these potential synaptic sites suggesting that 

these sites may be more postsynaptically active. 

Consistent with a role for Wnt7a in excitatory synapse formation, Wnt7a enhances mEPSC 

frequency and amplitude without affecting inhibitory minis. mEPSCs recorded from CA3 

neurons in acute slices prepared from Wnt7a, Dvl1 mutant mice demonstrate that deficiency 

in Wnt7a;Dvl1 signalling results in defects in both frequency and amplitude of excitatory 

minis. Importantly, these results demonstrate the crucial role Wnt7a signalling plays in the 

development of the functional synaptic circuitry of the hippocampus. These results also 

demonstrate regulatory roles of Wnt7a both pre- and postsynaptically in vitro and in vivo. In 

contrast, this role of Wnt signalling is diminished on the synapses of mature neurons. Wnt 
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signalling gain of function experiments revealed no significant effect on the localisation of 

the synaptic markers; vGlut1, GluA1, GluA2 or GluN1.  

In this thesis, I demonstrate a role for Wnt7a/Dvl1 signalling as a potent organiser of 

excitatory transmission. Wnt7a increases spines number and size whereas overexpression of 

Dvl1 specifically increases spine size. These morphological Wnt mediated changes are 

complemented by increases in the number of puncta for postsynaptic glutamatergic receptor 

subunits GluA1, GluA2 and GluN1 concomitantly with an increase in the number of the 

presynaptic marker vGlut1. These results demonstrate that Wnt7a increases excitatory 

innervation. As dendritic spines are the major site of excitatory synaptic transmission in the 

many regions of the brain these results indicate a major role for Wnt7a signalling in the 

regulation of excitatory transmission. 

Finally, I demonstrate that Wnt7a signalling plays a role in AMPAR mediated synaptic 

transmission. In 14DIV hippocampal neurons, Wnt7a increases the amplitude of synaptic 

currents whilst decreasing the number of synaptic failures. Moreover, Wnt7a increases 

presynaptic release efficiency as determined by the PPR. These results from cultured neurons 

were strengthened by data obtained from recordings at the MF-CA3 synapse using acute 

slices from wild-type and Wnt7a, Dvl1 knockout mice. These results confirm the role of 

Wnt7a by displaying defects in evoked current amplitude, increases in the number of synaptic 

failure and defects in presynaptic release efficiency as determined by PPR. The 

enhancements and defects in synaptic failure rates clearly demonstrate the role of wnt 

signalling in producing successful synaptic transmission. These results suggest modulation to 

levels of Wnt proteins at synapses may be a means to control synaptic transmission in an 

on/off mechanism as required by the neural circuitry. Combined with the changes to 

presynaptic release efficiency determined by PPR as a result of Wnt signalling it is clear 

Wnt7a signalling plays roles in pre and postsynaptic transmission.  
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Figure 6.1 Wnt7a signalling increases excitatory synapse strength by enhancing 

synaptic protein localisation on spines. In control neurons vGlut1, GluN1, GluA1 and 

GluA2 are distributed throughout the dendrite whilst spine sizes vary from small/immature to 

larger/mature. In the presence of Wnt7a, the number and size of dendritic spines are 

increased. This is accompanied by an increase in the accumulation of postsynaptic glutamate 

receptors on spines. An increase in the apposition of presynaptic markers such as vGlut1 on 

dendritic spines also indicates an increase in the number of innervated spines. 

6.2 The role of Wnt7a signalling in pre- and postsynaptic excitatory synapse formation. 

The role of Wnts has been well established in the presynaptic regulation of neural circuit 

formation particularly preceding apposition of the pre and postsynaptic specialisations. 

Indeed, experiments performed by Ahmad-Annuar and colleagues (2006) demonstrated the 

role Wnt7a plays in the accumulation of presynaptic components such as bassoon and 

synapsin. Electrophysiological recordings of the mEPSCs in the cerebellum of Wnt7a, Dvl1 

knockout mice revealed a decrease in the frequency of currents but no effect on the amplitude 

of currents (Ahmad-Annuar et al., 2006). These results demonstrate the specific presynaptic 

role of Wnt7a signalling at the MF-Granule cell synapse.  

The above role of Wnt7a in the cerebellum is interesting when compared to its role in 

hippocampus. At the MF-granule cells synapse, mEPSC recordings indicate a strong role for 

Wnt7a/Dvl1 signalling in the presynaptic side. This was also observed in hippocampal 

neurons. Changes in both failure rate and PPR in Wnt7a gain and loss of function 

experiments indicate a crucial role for these proteins at hippocampal synapses. However, the 

mechanisms by which Wnt regulates release efficiency are poorly understood. Alongside 
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changes to vGlut accumulation, changes in the accumulation of synaptophysin and synapsin 

at synaptic sites have been observed in response to Wnt signalling modification (Ahmad-

Annuar et al., 2006; Cerpa et al., 2008).  Postsynaptically, the effect of Wnt7a/Dvl1 loss is 

much less apparent, with the only significant defect being a decrease in PSD width as 

assessed by electron-microscopy in the cerebellum (Ahmad-Annuar et al., 2006). In contrast, 

loss of Wnt7a/Dvl1 signalling at the hippocampal MF-CA3 synapse generates defects in both 

the frequency and amplitude of mEPSCs. Further analysis of the ultrastructure of synapses at 

the MF-CA3 synapse in these double knockout animals reveals strong defects in PSD size 

(Ciani and Salinas, unpublished).  

Understanding the differences in the roles of the various Wnt proteins in hippocampal 

synapse formation has garnered interest from a large number of groups in recent years. The 

data generated by the various labs is producing a clearer picture of the role each Wnt species 

plays in the hippocampus. My results demonstrate that Wnt7a signals to both the pre and 

postsynaptic sides to promote synapse formation. Specifically, analysis of neurons in which 

Dvl1 signalling is activated postsynaptically, reveal enhancements in both the postsynaptic 

increase of glutamate receptor subunits and the presynaptic gain of vGlut1 inputs alongside 

increases in dendritic spine volume (Ciani et al., 2011). This data is further complemented by 

experiments using similar postsynaptic activation of Dvl1 in postsynaptic neurons. The 

resultant mEPSCs display enhancements both in frequency and amplitude, perhaps indicating 

both pre and postsynaptic effects of postsynaptic activation of Wnt signalling (Ciani et al., 

2011). 

In comparison, recent publications describe the action of Wnt5a, which is also believed to act 

postsynaptically. Similar to the action of Wnt7a, Wnt5a increases spine density, and mEPSC 

amplitude (Varela-Nallar et al., 2010). Wnt5a mediated increases in NMDAR currents are 

demonstrated to be regulated by the activity of both PKC and JNK (Cerpa et al., 2011). 

Wnt5a also seems to be less specific in the synapses it interacts with, affecting both inhibitory 

and excitatory synapses. These results are interesting in light of data generated by our lab 

which demonstrate the role of CaMKII in Wnt7a/Dvl1 signalling at the postsynaptic side 

(Ciani et al., 2011). Whilst it is not unusual for two related signalling molecules to activate 

different signalling pathways it is none-the-less interesting that these pathways can be 

employed to induce different responses. These subtle variations in the effects different Wnts 

have at the synapse provide neuronal circuits with an array of system tweaking tools. 
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6.3 Wnt7a signalling strongly regulates synaptic transmission in the CA3 region of the 

hippocampus and the implications for memory and learning 

InterestinglyWnt7a/Dvl1 signalling seems to contribute differentially to various sub-regions 

of the hippocampus. At the MF-CA3 synapse I observed defects in evoked synaptic 

amplitudes and PPR from Wnt7a;Dvl1 null mice.  mEPSCs recorded at the CA3-CA1 

synapse of Wnt7a/Dvl1 knockout mice revealed no significant defects in either frequency or 

amplitude (Boyle and Salinas, unpublished). Interestingly, the same study identifies defects in 

presynaptic release efficiency at this synapse suggesting that the role of Wnt7a/Dvl1 

signalling at the MF-CA3 synapse may have knock on deleterious effects at downstream 

synapses in the hippocampus (Boyle and Salinas, 2010). Indeed experiments examining 

lesions in upstream regions of the hippocampal tri-synaptic circuit (dentate gyrus (DG), CA3 

cell layer) generated results similar to complete hippocampal ablation in memory and 

learning tests (Emerich and Walsh, 1989; Handelmann and Olton, 1981; Sutherland et al., 

1983; Walsh et al., 1986).  
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Figure 6.2 Wnt7a signals directly to both the pre and postsynaptic terminals. (A) In the 

absence of exogenous Wnt7a functional synaptic transmission is maintained. (B) In the 

presence of exogenous Wnt7a, Wnt binds directly to receptors on the presynaptic terminal. 

Here Wnt signalling enhances trafficking of presynaptic proteins to the site of release 

enhancing the strength of neurotransmitter release. (C) Wnt7a directly signals at postsynaptic 

sites and requires Dishevelled-1 to stimulate postsynaptic growth. Wnt7a signalling enhances 

both the localisation of postsynaptic receptor and scaffolding proteins whilst increasing spine 

head volume. (D) Changes to the postsynaptic spine promote retrograde signalling which 

may further enhance presynaptic input at these sites.  

 

The hippocampus has long been identified as a primary brain area required for learning and 

memory. Our current understanding of the hippocampal circuitry suggests each region is 

responsible for different aspects of memory learning and consolidation and these differences 

are generated by addition inputs to the various sub-regions from the entorhinal cortex (Witter, 

1993). Learning tasks requiring the rapid uptake of novel information have been 

demonstrated CA3 dependent (Lee and Kesner, 2003; Nakazawa et al., 2003). Some aspects 

of memory and learning appear to be uniquely mediated by the CA3 and its proximal, medial 

and distal sub-regions. Gilbert and Kesner (2003) identified defects in multiple trial tasks as a 

result of CA3 lesions not mimicked by lesions in the CA1 or DG regions (Gilbert and Kesner, 

2003). The CA3 has also been implicated in the integration of arbitrary associative memory. 

This form of memory describes the association of two spatially separated memories such as 

the location of an object stored in the parietal cortex with the identity of an object stored in 

the temporal cortex (Kesner, 2007). Investigation using pharmacological block of activity of 

parietal and or temporal cortex afferents into the CA3 demonstrated significant defects in 

object-location trials of rats (Hunsaker et al., 2007), whilst CA3 lesion similarly impaired rats 

in specific object–location paired tests (Gilbert and Kesner, 2003). 

The important role of CA3 synapses and neurons in the maintenance of learning and memory 

paradigms suggests impairment in their function may have serious effects in the behaviour of 

an organism. Both experiments using Wnt7a gain of function in mixed CA3/CA1 neuronal 

cultures and loss of Wnt7a/Dvl1 function at the MF-CA3 synapse indicate potential 

functional synaptic dysfunction in the hippocampus potentially resulting in defects to the 

normal behaviour of these animals. Interestingly lack of Wnt7a, Dvl1 signalling in null 
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animals birth results in normal development of the hippocampal architecture and neurons 

which are synaptically active. However the impairment rather than complete loss of activity 

generated by loss of Wnt7a/Dvl1 signalling suggests that the role Wnt7a plays is more subtle 

perhaps more involved in the modulation or up-regulation of synaptic strength and maturity 

in response to presynaptic activity from hippocampal inputs. These roles of Wnt7a fit with 

several studies implicating expression of Wnt7a and other Wnt species as a function of 

increased synaptic activity.  

Two studies in particular relate specifically to Wnt7a expression in the hippocampus in 

relation to heightened synaptic activity/learning paradigms. Gogolla and colleagues 

demonstrated an increased expression of Wnt7a/7b, using immunocytochemistry specifically 

in the hippocampal CA3 (Gogolla et al., 2009). Whilst data from our lab (Sahores et.al 2010) 

demonstrates the enhanced release of species which bind the Fz-5 receptor (of which Wnt7a 

is member), in response to high frequency stimulation, promoting synapse formation 

(Sahores et al., 2010). My results from both gain and loss of Wnt7a function suggest that 

Wnt7a is able to mediate the synaptic demand for both greater presynaptic contacts and 

postsynaptic glutamate receptor proteins to transduce the enhanced presynaptic release 

activity.  
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Figure 6.3 Wnt signalling within the Hippocampal circuitry regulates learning and 

memory. (A) Loss of Wnt7a/Dvl1 signalling at the mossy fibre axons negatively influences 

release of neurotransmitter at postsynaptic targets. The majority of these axons form large 

terminals at CA3 neurons but also synapse onto inhibitory interneurons. (B) Loss of 

Wnt7a/Dvl1 signalling decreases postsynaptic response in CA3 pyramidal neurons. (C) loss 

of Wnt7a/Dvl1 signalling generates defects in PPR and current amplitude at CA3-CA1 

synapse further illustrating the importance of Wnt signalling in the hippocampus (Boyle and 

Salinas, unpublished). (D) Wnt receptors are present but Wnt7a and Dvl are no longer present 

at the CA3-CA1 synapse in the knockout mice. This loss of signalling here generates 

detectable presynaptic defects in PPR but not in EPSC amplitude. (E) At the MF-CA3 

synapse loss of Wnt7a and Dvl1 negatively affect presynaptic release and postsynaptic 

amplitude. 

It is interesting to speculate as to whether high levels of neuronal activity generating high 

levels of Wnt7a release are able to modulate hippocampal circuitry not just at the level of 

synapses but at the level of pathways by enhancing activity along one pathway to the extent 

that other pathways become less significant purely by the activity of Wnt7a alone. In this way 

modulation of hippocampal activity at the level of wiring may be mediated by Wnt7a or a 

battery of Wnt species. 

6.4 The role of Wnt7a signalling in neurodegenerative and neurological disorders  

Defects in the Wnt signalling pathway contribute to cancer, and effects on cell homeostasis 

and neuronal circuit formation and function. Recent studies have begun to reveal roles for 

these proteins in neurological disorders. The preferential role of Wnt7a/Dvl1 signalling in 

excitatory synaptic transmission (Ciani et al., 2011) and synapse formation may link the 

expression of these gene products to several neurological and neurodegenerative disorders.  

The specific enhancement of excitatory synaptic activity over inhibitory synapses in the 

hippocampus is a phenotype often observed in epilepsy (Leite et al., 2005). Interestingly the 

epilepsy forming paradigm ‘kindling’ mimics several aspects of Wnt mediated excitatory 

synaptic enhancement. These changes include increases in synapse number in the basal 

hippocampus and LTP like increases in synaptic transmissions (Geinisman et al., 1990). 

Intriguingly, kindling eventually promotes the loss of postsynaptic neurons and the sprouting 

of new high frequency release mossy fibre terminals believed to play a role in the eventual 

epileptic events. Whilst the long term overexpression of Dvl1 in the hippocampal neurons 
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does not seem to cause such extreme defects it would be interesting to assess the cumulative 

effect of further Wnt activation on the basal activity of transmission. It is likely that a 

massive up-regulation of Wnt signalling (possibly involving several pro-synaptogenic Wnts 

for excitatory synapses) would be required to observe such epileptic activity.  

Wnt signalling mediated regulation of both dendritic spines and spine associated receptors 

mimic phenotypes present in neurocognitive and neurodegenerative disorders such as 

Alzheimer’s (AD), Parkinson disease and schizophrenia (D'Amelio et al., 2011; Garey et al., 

1998; Zaja-Milatovic et al., 2005). Often these disorders are associated with loss or 

dismorphia of spine synapses, a phenotype similar to those observed in Wnt7a/Dvl1 loss of 

function (Ciani et al., 2011). Intriguingly up-regulated Wnt signalling is already believed to 

be a potential target in the future treatment of AD (Boonen et al., 2009).  

In some models Familial Alzheimer’s disease (FAD) has been linked to mutations in the 

presenilin gene family which in turn influence, Wnt signalling (Boonen et al., 2009). 

Presenilins promote the degradation of cytoplasmic β-catenin inhibiting canonical Wnt 

signalling (Kang et al., 2002). Analysis of the various FAD associated presenilin mutations 

(FAD-PSEN1) against various PSEN backgrounds generates a range of cell survival 

phenotypes which may contribute to AD pathogenesis (Boonen et al., 2009).   

Tau proteins, upon hyper-phosphorylation, form the paired helical filaments which 

accumulate to produce the tangles so associated with AD pathology (Goedert et al., 2006). 

Tau hyper-phosphorylation represents a second model of AD pathogenesis with links to Wnt 

signalling. Hyper-phosphorylated Tau is unable to interact with microtubules affecting 

microtubule dynamics and promoting pathogenic tangle formation (Ballatore et al., 2007). 

GSK-3β, a key component of the canonical Wnt signalling pathway, is a major kinase that 

phosphorylates Tau and as such its activity plays a role in the regulation of AD pathogenesis 

(Lovestone et al., 1994).  

Consistent with the view that dysfunction of Wnt signalling could contribute to AD, Dkk1 

(Dickopf 1), an inhibitor of canonical Wnt signalling is linked to AD. Caricasole and 

colleagues, (2004) demonstrated beta amyloid induced expression of Dkk1 in cultured 

cortical neurons. Dkk1 expression was also observed in colocalisation with neurofibrillary 

tangles in the brains of AD patients (Caricasole et al., 2004). Data from our lab also reveals a 

strong anti-synaptogenic role of Dkk1 in the hippocampus resulting in synaptic disassembly 
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(Dickens and Salinas, unpublished). Indeed, increased levels of Dkk1 induced by Aß could 

contribute to decreased synapse density in the brains of AD sufferers (Scheff et al., 2006).       

Excitingly a recent study by De Ferrari and colleagues (2007) has revealed the direct link of a 

Wnt signalling molecule to human late onset Alzheimer’s disease. Mutations in the LRP6 co-

receptor gene have been associated with Alzheimer’s disease presenting a significant risk 

factor to carriers (De Ferrari et al., 2007). Interestingly Wnt7a signalling is believed to be 

mediated by a Fz-5/LRP6 receptor complex potentially indicating Wnt7a signalling to AD 

(Caricasole et al., 2003). Further studies are necessary to fully establish a role for Wnt 

signalling in AD. 

Whilst the roles of Wnt signalling in AD and synapse formation are likely to require different 

signalling pathways this none the less represents an area in which greater research may help 

to produce therapies.  

Discussing the work I have undertaken and the results I have observed during my PhD with 

friends outside of science I have often been asked of the significance my work may have in 

“the real world”. I have always hoped that with our understanding of the role this gene 

product plays in both the enhancement of synapse number and function and the role it plays 

specifically at excitatory over inhibitory synapses that this may one day lead to therapies for 

disorders with complementary aberrant phenotypes. In particular the advent of effective gene 

therapies and continued research into the expression and function of Wnt proteins may allow 

treatments for diseases mentioned above such as epilepsy, Alzheimer’s and Parkinson’s. 

Furthermore, further research into the context specific release and function of Wnt proteins in 

response to activity and learning paradigms may far into the future help us develop a better 

picture of the molecular mechanisms and signalling molecules of memory and learning. 
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