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A B S T R A C T

Background: People with Hereditary and Sporadic Spastic Parapresis (SP) walk with a stiff legged gait

characterised by a lack of knee flexion.

Objective: We investigated the relationship between lower limb strength and stiffness and knee flexion

during swing phase while walking in 20 people with SP and 18 matched controls.

Methods: Maximal isometric strength was measured using a dynamometer. Passive stiffness and

spasticity was assessed during motor-driven slow (58/s) and fast (608/s) stretches at the ankle and knee

while the subject was relaxed or preactivating the muscle. Walking was assessed using 3D motion

analysis.

Results: Isometric muscle strength was decreased in people with SP with over a 50% reduction in

strength being found in the ankle dorsiflexors. Passive stiffness, assessed during slow stretches, was 35%

higher in the plantarflexors in people with SP (P < 0.05). Faster stretches induced large stretch evoked

muscle activity and over a 110% increase in stiffness at the ankle and knee in people with SP reflecting the

presence of spasticity (P < 0.05). However, stretch reflex size and stiffness was similar between the

groups following identical stretches of the pre-activated muscle (P > 0.05). Lower knee flexion during

swing phase was associated with reduced knee flexion velocity at the end of stance phase which in turn

was associated with reduced plantarflexor strength and increased passive stiffness in the knee extensors.

Conclusions: The relative importance of muscle paresis and passive stiffness in limiting walking in SP

suggests that these impairments should be the target of future therapies.

� 2011 Elsevier B.V. All rights reserved.

Contents lists available at SciVerse ScienceDirect

Gait & Posture

jo u rn al h om ep age: ww w.els evier .c o m/lo c ate /g ai tp os t
1. Introduction

Hereditary Spastic Paraparesis (SP) is an heterogeneous
degenerative condition. In the type I or uncomplicated presenta-
tion people present with predominately lower limb paresis and
spasticity with �40% of people showing an additional reduction in
vibration sense. In the type II or complicated forms there may be
added signs, for example, myopathy, cerebellar ataxia or dementia
[1,2].

Pathological studies in spastic paraparesis reveal a dying back
axonal degeneration of the corticospinal tracts, fasciculus cuneatus
and spinoceberebellar tracts with additional degeneration of the
corpus callosum in people with dementia [3]. Both autosomal,
recessive and X linked forms of inheritance have been described
with abnormalities in axonal transport being implicated in the
pathogenesis of the most common form caused by mutation of the
* Corresponding author. Tel.: +44 01752 587 590.

E-mail address: jonathan.marsden@plymoutth.ac.uk (J. Marsden).

0966-6362/$ – see front matter � 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.gaitpost.2011.09.018
spastin gene [4]. Spastin mutations are also seen in �13% of people
with sporadic onset of spastic paraparesis restricted to the legs
[5,6].

Difficulties with walking and standing balance are commonly
reported in people with spastic paraparesis. People with Heredi-
tary and Sporadic SP trend to walk with a stiff-legged gait
characterised by a reduction in knee flexion during swing phase,
often with the addition of increased hip adduction during the
swing phase [7,8]. Reduced knee flexion can lead to an increased
incidence of trips and falls and to compensatory strategies such as
leg circumduction that can greatly increase the effort of walking.

Typically such patterns of walking are felt to be mainly caused
by the presence of spasticity [9,10]. Indeed excessive muscle
activity of the knee extensors, such as rectus femoris, during
preswing and swing phase could limit knee flexion during swing
phase. However, studies modelling the contributions of individual
muscles during walking suggest that there may be multiple factors
contributing to a particular gait pattern. The amplitude of knee
flexion in swing phase, for example, is strongly dependent on the
velocity of knee flexion at the end of stance phase [11]. The degree

http://dx.doi.org/10.1016/j.gaitpost.2011.09.018
mailto:jonathan.marsden@plymoutth.ac.uk
http://www.sciencedirect.com/science/journal/09666362
http://dx.doi.org/10.1016/j.gaitpost.2011.09.018


J. Marsden et al. / Gait & Posture 35 (2012) 266–271 267
of knee velocity in turn depends on the activity of the ankle
plantarflexors and hip flexors which are responsible for initiating
swing phase [12]. Therefore, factors that affect swing phase
initiation such as muscle paresis of the hip flexors or plantarflexors
can cause a stiff legged gait.

Understanding the underlying cause of a given pattern of
walking will allow clinicians to more effectively target therapies.
This study examined the relationship between the lack of knee
flexion in people with spastic paraparesis and their underlying
impairment.

2. Methods

2.1. Recruitment criteria

Twenty people with Spastic Paraparesis (SP) were recruited from the Hereditary

Spastic Paraplegia support group, UK and the Neurogenetics and Spasticity clinics at

the National Hospital for Neurology and Neurosurgery, London, UK. People were

included if they had a clinical diagnosis of type 1 spastic paraparesis and were able

to walk at least 100 m with or without a walking aid. Exclusion criteria included the

presence of additional neurological or orthopaedic impairments. None of the

participants were on regular anti-spasticity medication or had received botulinum

toxin injections within the last 3 months. People matched for age, gender and

height with no history of neurological or orthopaedic impairment were recruited

from colleagues and spouses/friends of people with SP to act as a control group.

People participated with informed written consent and the approval of the local

ethics committee in accordance with the Declaration of Helsinki.

2.2. Clinical outcome measures

Clinical measures of three functional movements were taken. Maximal and

normal walking speed and cadence was measured over 10 m; gait aids were used as

required and a 2 min rest was given after each trial. Timed sit to stand (�5) was

assessed as participants stood up and down from a chair (50 cm height) with their

arms folded. Balance was assessed using the Berg balance scale.

2.3. Measurement of walking

Three-dimensional joint kinematics and kinetics were measured via markers

placed on standardised bony landmarks and wands (Codamotion, Charnwood

dynamics, UK) while the person walked on a customised walkway containing two

embedded force plates (9286AA Kistler, Instruments Ltd., Hampshire, UK). People

used a gait aid as required (1 stick n = 6; 2 sticks/crutches n = 2) but without the use

of any external electrical stimulation or use of any orthotic. A total of 3 steps with

either leg landing on a single force plate were recorded. Control participants walked

at a matched speed and cadence. Lines at the start of the walkway indicated the

desired step length and auditory cues about the required step frequency were

provided via a metronome, practice trials were provided prior to recording the data.

Data was AD converted (1 kHz for EMG and 200 Hz for force plate and motion

analysis data) for off line analysis.

2.4. Measures of impairment

Measures of lower limb impairment were taken after the assessment of walking

to avoid muscle fatigue associated with the tests impacting on the pattern of

walking. A 20 min rest was provided between the walking test and impairment

measures. In all cases the right leg was measured.

Isometric strength was measured using a dynamometer (Biodex Systems 3, IPRS

Mediquipe, UK). Agonist–antagonist pairs at the hip, knee and ankle were measured

in standardised positions (see supplementary material). The axis of the motor was

aligned with the axis of the joint and the proximal segment fixed. The maximal

voluntary contraction (MVC) was recorded twice and the applied torque was

recorded (2 kHz AD sampling rate).

Limb stiffness was measured by applying ramp and hold stretches to the ankle

plantarflexors and the knee extensors (Biodex Systems 3, IPRS Mediquipe, UK).

Stretches had a 58 amplitude with a peak velocity of either 5 or 608/s with a return

velocity of 58/s. Six stretches per velocity condition were recorded with a 6.5 s inter-

stretch interval. The order of the conditions was randomised between participants.

Stretches were either delivered with the participant resting or pre-activating the

muscle of interest to achieve a torque of 10 Nm. This torque level corresponded to

approximately 10% of the maximal voluntary contraction (MVC) achieved by the

people with SP. Additionally, control subjects pre-activated their muscle to the

same percentage of their MVC that was achieved in their matched participant with

SP. Surface electromyography (EMG, MT8 Telemetry, MIE, Leeds, UK) was recorded

from the medial head of gastrocnemius, tibialis anterior and rectus femoris and

medial hamstrings at mid thigh level with an inter-electrode distance was 2.5 cm.

During ankle stretches the participant was supine with the knee extended and the

ankle in plantigrade. During knee extensor/flexor stretches the participant was
supine with the hip extended and the knee flexed by 908. The contralateral leg was

supported in extension. The torque, position, velocity and surface EMG were AD

converted at 2 kHz (Power 1401, Spike 2, Version 5, CED Electronics, Cambridge,

UK) and stored for off-line analysis.

3. Analysis

3.1. Walking

Three dimensional joint angles, internal joint moments and
power normalised to body weight were calculated using inverse
dynamics (CODAmotion, Leister, UK). One step cycle including
ipsilateral and contralateral foot on and foot off was defined from
the vertical ground reaction force and the horizontal and vertical
acceleration of the toe and heel markers. Each gait cycle was
normalised to 100% and 3 cycles for each leg were averaged.
Preswing was defined as the period of double stance between
contralateral foot down and ipsilateral foot off.

The peak knee flexion and extension amplitude in swing phase
and the peak knee flexion velocity in preswing were determined.
Peak ankle and hip power generation and knee extensor torque
during pre-swing was assessed.

Isometric strength: The MVC was defined as the peak difference
between maximal and baseline torque and was normalised to the
body weight.

Limb stiffness: Imposed stretches were aligned to the onset of
the stretch; the first stretch was omitted to allow for the effects of
thixotropy and the final 5 stretches were averaged. The average
torque and position was calculated over a 100 ms period prior to
the onset of the stretch and immediately following the cessation of
the stretch. Stiffness was defined as:

Stiffness ¼ D Torque

D Position

Stiffness was normalised to the body weight. Surface EMG was
filtered (30 Hz low pass filter) and rectified. A stretch-evoked
response occurred if the EMG signal moved above a level of the
baseline mean + 4 standard deviations within a 25–125 ms post
stretch window. The mean amplitude between the onset and offset
of activity, when the EMG fell rose and below this level, was
calculated.

3.2. Statistical analysis

Differences in strength and stiffness between the SP and control
group were compared using an unpaired two-tailed t-test.
Although walking speed during the walking test was not
significantly different between groups the control group did tend
to walk faster despite auditory and visual cues about step length
and cadence. Therefore measures of walking were analysed using
an analysis of covariance with walking speed as a covariate. A
Bonferroni correction was applied to account for multiple
comparisons during the assessment of walking (n = 6), muscle
strength (n = 8) and stiffness (n = 4 per muscle). The relationship
between impairment and gait-related variables and peak to peak
swing phase knee amplitude and peak knee flexion velocity in
preswing phase were assessed using a Pearson correlation. Data
was felt to be significant if P < 0.05.

4. Results

Twenty people with spastic paraparesis were compared to 18
healthy participants matched for gender, age, height and weight
(Table 1). A family history was present in 15 of the people with SP
with five of these having a genetic diagnosis (SPG4 n = 4 and X-



Table 1
Demographic data and clinical characteristics of the SP and control groups.

SP Control

Age (yrs) 49 � 13.9 48.1 � 13.4

Height (cm) 172.7 � 9.5 174.6 � 5.5

Weight (kg) 75.5 � 13.4 73.4 � 9.8

Gender (males) 12 11

10 m walk normal speed (speed m/s and cadence steps/min) Speed 0.89 � 0.29

Cadence 104.0 � 19.7

Speed 1.46 � 0.18a

Cadence 117.3 � 7.4a

10 m walk maximal speed (speed m/s and cadence steps/min) Speed 1.22 � 0.48

Cadence 122.5 � 27.4

Speed 2.13 � 0.31a

Cadence 146.5 � 15.7a

Sit to stand time �5 (s) 22.5 � 16.8 8.7 � 1.8a

Berg balance scale 49.5 � 13.5 56.0 � 0a

Walking speed during the clinical test (m/s) 0.86 � 0.4 1.10 � 0.4

Peak to peak knee motion in swing (8) 28.6 � 3.2 61.7 � 2.2a

Peak knee flexion velocity in preswing (rad/s) 3.5 � 0.4 5.7 � 0.4a

Peak ankle power preswing (W/kg) 22.7 � 0.3 1.5 � 0.2a

Peak knee extensor moment preswing (Nm/kg) 0.43 � 0.06 0.18 � 0.03a

Peak contralateral (left) hip flexor power loading phase (W/kg) 0.22 � 0.02 0.19 � 0.03

Mean � standard deviation is indicated except for the Berg balance scale where the median � interquartile range is shown.
a Significant difference between groups.
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linked n = 1). The reported age of symptom onset was 27.4 yrs
(18.2 � standard deviation).

People with SP had a significantly reduced normal and maximal
walking speed and cadence. They were slower standing up/sitting
down and had lower scores on the Berg balance scale indicating
impaired standing balance (Table 1).

4.1. Measures of impairment

4.1.1. Isometric muscle strength

Isometric muscle strength was significantly reduced in people
with SP in every muscle group assessed (P < 0.01). The reduction in
muscle strength, relative to controls, was greater in distal muscle
groups (Fig. 1).

4.1.2. Muscle stiffness and spasticity

Slow stretches (58/s) were not associated with any change in
muscle activity; thus the stiffness is thought to reflect a passive,
non-reflexive component (Fig. 2A). In the plantaflexors the passive
stiffness was significantly higher in people with SP (t = 2.6,
P = 0.01; Table 2). There was no difference in knee extensor
stiffness associated with a slow stretch (t = 0.02, P > 0.05; Table 2).

Faster stretches (608/s) resulted in short latency stretch-evoked
muscle activity in people with SP that resulted in a further increase
in joint stiffness (Fig. 2B, n = 20/20 ankle plantarflexors, n = 17/20
knee extensors). Stretch-evoked activity was less frequently seen
in the control group (n = 16/18 ankle plantarflexors n = 8/18 knee
Fig. 1. Isometric strength. Mean � standard error of the mean (SEM) indicated. Above

each column is the strength of the SP group expressed as a percentage of the controls

highlighting the relative reduction in strength in the more distal muscle groups.
extensors). The relative increase in stiffness compared to that seen
with the slow stretch (fast–slow stretch) correlated with the
stretch reflex amplitude in the SP group (R2 = 0.61; Fig. 2D). The
relative increase in stiffness with the fast stretch was significantly
higher in people with SP for both muscle groups (ankle t = 4.4,
P < 0.001; knee t = 5.5, P < 0.001; Table 2).

When participants pre-activated the muscle prior to the fast
(608/s) stretch there was no difference in the total stiffness
between the groups (Fig. 2C and Table 2). This was seen regardless
of whether the control group pre-activated the muscle to the same
torque level as the SP group (10 Nm) or the same percentage of the
MVC as the matched SP participant.

4.2. Factors affecting stiff-legged gait

People with SP had reduced knee flexion and knee extension in
swing phase (Fig. 3A) resulting in a significant decrease in peak to
peak knee amplitude (F(2,35) = 62, P < 0.001; Table 1). People with
reduced knee flexion velocity in pre-swing tended to show a
reduction in knee motion during swing phase (R2 = 0.51; Fig. 3B
and C).

During pre-swing, peak ankle power generation tended to be
reduced (F(2,35) = 4.8, P < 0.05) and knee extensor torque was
significantly increased (F(2,35) = 64.1, P < 0.001) in people with SP.
Peak hip flexor power generation was significantly increased in the
SP group when co-variation due to walking speed was accounted
for (F(2,35) = 9.3, P < 0.005; Table 1). The reduction in ankle power
and the increase in knee extensor torque was associated with a
reduction in knee flexor velocity in preswing (ankle power
R2 = 0.24, F(1,19) = 5.5, P < 0.05; knee extensor moment
R2 = 0.54, F(1,19) = 20.8, P < 0.001).

The ankle power generation was correlated to the isometric
ankle plantarflexion strength (R2 = 0.37, F(1,19) = 10.4, P < 0.005)
while the size of the knee extensor moment was correlated with
the degree of passive stiffness in the knee extensors (R2 = 0.42,
F(1,19) = 12.9, P < 0.005). In contrast there was no relationship
between the knee extensor moment and either the increase in knee
extensor stiffness measured following fast (608/s) stretches at rest
(R2 = 0.17, F(1,19) = 3.6, P > 0.05) or the total stiffness recorded
after a fast (608/s) ramp stretch of the pre-activated knee extensors
(R2 = 0.05, F(1,19) = 0.9, P > 0.36). In a multiple regression analysis
the isometric ankle plantarflexion strength and passive stiffness of
the knee extensors accounted for 52% of the variance in peak knee
flexion velocity during swing phase (F(2,19) = 9.3, P < 0.005) and
50% of the variance in peak to peak knee amplitude during swing
phase (F(2,19) = 8.6, P < 0.005).



Fig. 2. Change in ankle stiffness with different speeds of stretch. The grand average response to ramp stretches of the ankle into dorsiflexion is indicated in A–C. Stretches were

applied at different speeds (58/s A or 608/s B and C) with the participant either resting (A and B) or preactivating the ankle plantarflexors (C). (D) The relationship in the SP

group between the stretch evoked gastrocnemius EMG activity following a fast stretch and the increase in stiffness between the fast and slow stretch at rest. (E) Differences in

stiffness following different stretches at the ankle. The grey bar indicates the stiffness recorded when the controls preactivated with plantarflexors to the same percentage of

their maximal voluntary contraction as seen in the matched SP participants (mean � SEM is indicated).
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5. Discussion

Knee flexion amplitude in swing phase was related to the size of
the knee velocity at the end of stance phase and in turn to paresis of
the ankle plantarflexors and passive stiffness in the knee extensors.
In contrast there was no association with measures of stretch reflex
hyperexcitability or spasticity [13].

Muscle paresis affected multiple muscle groups in people with
SP, being greatest in the ankle dorsiflexors. Muscle paresis may
reflect both a decrease in corticospinal drive and secondary muscle
atrophy [14] and is often the main determinant in limiting
functional movements in people with an upper motor neuron
lesion [15,16]. Indeed there was a significant negative correlation
between the degree of strength in the knee extensors and the sit-
to-stand time (R2 = 0.47) and a positive correlation between the
strength in the ankle plantarflexors and normal walking speed
(R2 = 0.61). The presence of significant muscle weakness that can
limit functional movements in SP is in contrast with the view that
paresis is relatively mild in this patient group and that function is
mainly limited by spasticity [10]. This may in part reflect the fact
that active movements as opposed to objective tests of muscle
strength have been assessed to date.
Table 2
Measures of stiffness (Nm/rad kg) in response to ramp stretches that stretch the ankle

Condition Ankle Pl

HSP 

Slow stretch (58/s) at rest 0.95 � 0.

Fast stretch (608/s) at rest 1.90 � 0.

Fast–slow stretch at rest 0.95 � 0.

Fast stretch (608/s) preactivated to 10 Nm 2.2.1 � 0

Fast stretch (608/s) preactivated to the same percentage MVC NA 

Mean � SEM is indicated.
a Significant difference between the HSP and control group following a Bonferroni c
We found that a high knee extensor moment during pre-swing
limited swing phase knee flexion and was associated with a higher
degree of passive stiffness in the knee extensors. Increases in
passive stiffness could reflect changes in the connective tissue,
muscle architecture and/or intrinsic muscle proteins [17] and have
been reported in other conditions affecting the central nervous
system such as multiple sclerosis or stroke [18–21]. The change in
passive stiffness was more marked for the plantarflexors than for
the knee extensors; this may reflect different patterns of use and
differences in the amount or pattern of intramuscular connective
tissue. However, in those people with SP an above average passive
stiffness in the knee extensors was associated with a further
limitation in knee flexion.

Hyperexcitable reflexes were seen when higher velocity
stretches were applied at rest in people with SP, this is a hallmark
of spasticity [13]. Stretch reflex size can decrease following a
stretch 2–10 s earlier, termed post activation depression. Post
activation depression can be reduced in people with spasticity [22]
and given the inter-stretch interval of 6.5 s, this could also
contribute to the high stretch reflex size observed. The increase in
stretch-evoked muscle activity and reduction in post-activation
depression reflects in part a decrease in inhibitory activity within
 plantarflexors or knee extensors.

antarflexors Knee extensors

Control HSP Control

08a 0.71 � 0.03 0.33 � 0.03 0.33 � 0.04

16a 0.90 � 0.06 0.87 � 0.09a 0.39 � 0.03

15a 0.19 � 0.06 0.54 � 0.08a 0.06 � 0.02

.12 1.87 � 0.12 1.21 � 0.11 1.29 � 0.09

2.49 � 0.17 NA 1.63 � 0.18

orrection.



Fig. 3. Stiff legged gait in SP. Grand average knee amplitude (A) and knee velocity (B). Grey bars indicate 2 standard deviations of the control group. Cto, contralateral toe off;

chs, contralateral heel strike; ito, ipsilateral toe off. (C) Association between peak knee velocity during preswing and peak to peak knee motion during swing phase.
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spinal cord circuits [23]. The degree of reciprocal inhibition, for
example, from the ankle dorsiflexors to the ankle plantarflexors is
reduced in people with spasticity [24]. In healthy participants the
level of reciprocal inhibition is not static. With the onset of
contraction of the plantarflexors the reciprocal inhibition of that
muscle decreases [25]. This could explain why, compared to the
resting condition, identical stretches of a pre-activated muscle
resulted in EMG evoked activity and total stiffness that was similar
between groups. Such a normalisation of muscle stiffness and
stretch reflex activity in people with spasticity [26,27] raises the
question as to the role of spasticity in limiting movement,
particularly if the stretched muscle is pre-activated such as during
an eccentric contraction.

No relationship between spasticity of the knee extensors and the
degree of knee flexion was seen. Stretch reflex size is normally
modulated by postural set and the phase of walking [28]. In people
with spasticity such modulation is decreased [28]. Therefore, a lack of
correlation between stretch reflex size recorded in supine and
parameters of walking may reflect differences in stretch reflex
properties during functional tasks such as walking. There may also be
differences between how the response to unexpected perturbations
(as delivered in the current study) and expected perturbations as
occurs during voluntary movement. Stretch reflexes were only
recorded at one velocity (608/s). Non-linearity in response to different
stretch velocities may further mean that the contribution of stretch
reflexes at the velocities achieved while walking (�1408/s) was
underestimated.

The current work found that the limitation in knee flexion velocity
and peak to peak knee amplitude during swing phase was associated
with muscle paresis and passive stiffness; explaining �50% of the
variance, rather than static measures of spasticity. This is in keeping
with recent work showing that excessive activation of the rectus
femoris in pre-swing while walking is less common in children with
SP compared to children with cerebral palsy and spastic diplegia
[8,29]. This study has only investigated associations between
variables and it remains unclear whether ankle strength and knee
extensor passive stiffness actually cause a reduction in knee
movement while walking. However, this study highlights the need
to determine muscle strength objectively, to assess the contribution
of stretch reflexes to limb stiffness in both the resting and active
participant and to differentiate between limb stiffness caused passive
stiffness and spasticity; this will have a direct impact on potential
therapeutic approaches. While spasticity may be amenable to
pharmacological interventions; physical interventions such as
stretching or splinting may be more applicable to target changes
in passive stiffness.
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