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ABSTRACT 

 

The involvement of the basal ganglia in motor control has been highlighted in studies of Parkinson’s 

disease (PD) and other movement disorders. The loss of dopaminergic neurons in the substantia nigra pars 

compacta and subsequent decrease of the dopamine level in the basal ganglia is recognized as the hallmark of 

PD. The classical view of the architecture of the dopamine depleted basal ganglia-thalamo-cortical circuit 

identifies changes in firing rates as the probable cause for the motor impairments in PD. Yet, more recent 

findings have shown that disturbances in other intrinsic dynamical properties of these networks may also 

contribute to motor deficits. Electrophysiological recordings in the basal ganglia of deep brain stimulation 

(DBS) patients (when OFF stimulation) have found pathological oscillations at beta frequency (13-30 Hz). This 

abnormal oscillatory activity has also been found in basal ganglia nuclei of animal models of PD. Additionally, 

the beta frequency oscillations were found to decrease when the patients are on dopamine replacement therapies 

and as they initiate movement. Beta frequency oscillations have been identified in the firing of single neurons 

and in the coupling of discharges between neurons.  

Within the framework of information theory, we proposed a time series model to analyse and relate the 

effects of changes in the dynamics of individual factors – such as alterations in firing rates, oscillations and 

synchrony (or auto and cross-correlations) caused by dopamine depletion – on the coding capacity (i.e., entropy) 

of a network. We estimated the entropy of a neural network based on the probabilities of current spiking 

conditioned on the observation of firing rate and spiking history of the current neuron and of neighbouring 

neurons. Moreover, we could estimate entropies for each of these factors separately, in healthy and dopamine 

depleted conditions, and assess their relative contribution to the decrease of coding capacity in disease. 

Furthermore, the causal characteristics of the model made it possible to compare the synaptic connectivity of 

neuronal populations in health with that in disease, by measuring the amount of directed information transferred 

between populations. 

We employed the model to study the external globus pallidus (GPe) network in control and 

6-hydroxydopamine (6-OHDA) lesioned rats – a model for PD. We found a significant decrease in the coding 

capacity in lesioned animals, compared to controls, and that this decrease was predominantly on account of a 

reduction in the GPe firing rates. Although to a lesser extent, the amplification of the oscillatory activity (mainly 



 

ii 

in the beta frequency range) observed in the lesioned animals had also a significant impact on the reduction of 

their coding capacity. The higher synchrony found in the 6-OHDA rats had the least effect. We also found that 

the levels of coding capacity in the GPe were restored to levels close to control when the lesioned animals were 

treated with the dopamine agonist apomorphine. In addition, we detected a stronger coupling between the 

subthalamic nucleus (STN) and the GPe in the dopamine depleted rats, pointing to an abnormally exaggerated 

transfer of information within this network. 

We have shown that the GPe and the STN-GPe networks in the dopamine depleted rat exhibit 

information processing irregularities. We believe these deficits in processing and relaying information may also 

be present in other structures of the basal ganglia-thalamo-cortical circuit and that they may underlie the motor 

impairment in PD. 
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1 INTRODUCTION 

1.1 THE BASAL GANGLIA 

The basal ganglia, as one of the most enigmatic structures in the brain, have been extensively studied 

over the last few decades. Due to the intrinsic complexity of these subcortical structures it is still not clear what 

their exact function is. The similarity of the neurotransmitter systems and anatomical connections of the basal 

ganglia among vertebrates indicates that the evolution of these structures has been very conservative (Medina 

and Reiner, 1995). This piece of the puzzle makes us think that the functions in which the primate basal ganglia 

are involved are probably as important as in lower vertebrates. It has been shown that the basal ganglia play an 

important role in movement control (Delong et al., 1985; Alexander et al., 1990; Brown, 2006). Furthermore, 

several studies present evidence of their involvement in a wide range of other functions including cognition, 

association, action selection and emotion (Alexander and Crutcher, 1990; Graybiel, 1995; Mink, 1996; 

Redgrave et al., 1999). 

The basal ganglia are a collection of nuclei densely connected to the cerebral cortex and thalamus, but 

also to other brain centres. Established on both sides of the thalamus (Figure 1-1A), they form a fundamental 

component of the vertebrate forebrain (telencephalon). Four major nuclei are conventionally considered to 

characterize the basal ganglia: the striatum, the globus pallidus (GP), which in primates is considered to be 

divided into external (GPe) and internal (GPi) segments; the subthalamic nucleus (STN) and the substantia nigra 

(SN), a midbrain structure divided into two segments: the substantia nigra pars compacta (SNc) and the pars 

reticulata (SNr) (Figure 1-1B and Figure 1-2). Using stereological counting methods and systematic random 

sampling techniques, Oorschot (1996) quantified the number of neurons in several nuclei of the rat basal 

ganglia, like the striatum (2.79 ×10
6
), the GPe (45.96 ×10

3
), the STN (13.56 ×10

3
), the SNc (7.20 ×10

3
) and the 

SNr (26.32 ×10
3
), estimating a total number of 2.883 ×10

6
 cells. 

The information processing in the basal-ganglia-thalamo-cortical circuit is strongly directional, receiving 

its input from particular cortical and thalamic areas which exert excitatory input on the striatum, the primary 



 

18 

afferent structure of the basal ganglia. The GPi and the SNr give rise to the primary output of the basal ganglia, 

which sends GABAergic inhibitory projections into the thalamus and brainstem. GABA, which is the major 

inhibitory neurotransmitter in the mammalian central nervous system, dominates the signal flow in the basal 

ganglia.  

Alexander, DeLong, Strick and Crutcher suggested that the circuits that link cortex, basal ganglia and 

thalamus were structurally and functionally segregated, and that a parallel functional architecture of the basal 

 

Figure 1-1. The basal ganglia. A. Coronal section through the mid-thalamus at the level of mamillary bodies (taken from Fix, 2005). 

B. Parasagittal section through the caudate nucleus and the substantia nigra (taken from Woolsey et al., 2003). 
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ganglia-thalamo-cortical circuitry was involved in the regulation of motor, oculomotor and cognitive behaviour 

(Alexander et al., 1986; Alexander and Crutcher, 1990; Alexander et al., 1990). They proposed a model of the 

basal ganglia-thalamo-cortical circuitry, the so called rate model, which has been expanded by other groups 

(Crossman, 1989; Gerfen, 1992; Chesselet and Delfs, 1996; Smith et al., 1998), emphasizing the functional 

relation between the striatum and the motor thalamus as determined by two different parallel pathways from the 

striatum to the basal ganglia output nuclei: the direct pathway which connected the striatum straight to the 

GPi/SNr neurons, and the indirect pathway that linked to the same output nuclei via relays in the GPe and STN 

(Figure 1-2). Later, further evidence of direct projections from the cortex, in particular from the frontal lobe, to 

the STN (Hartmann-von Monakow et al., 1978; Kitai and Deniau, 1981; Nambu et al., 1996; Joel and Weiner, 

1997; Nambu et al., 1997; Mink, 2003) have led to the proposal of a third pathway connecting the cortex 

directly to STN and then to GPi/SNr: the hyperdirect pathway (Gerfen, 2000; Nambu et al., 2002). Although the 

rate model has been largely consensual, there has been some debate, in particular about the role of the indirect 

pathway, but also about some fundamental 

issues which will be addressed on the final 

discussion (Kincaid et al., 1991; Marsden and 

Obeso, 1994; Parent and Hazrati, 1995; 

Stefani et al., 2002). 

The striatum, the largest nucleus of the 

basal ganglia, is regarded in rodents as a 

single nucleus and in higher vertebrates as 

being ventrally divided by the fibres of the 

internal capsule into two regions similar in 

structure: the caudate nucleus and the 

putamen. The striatum receives its largest 

inputs from virtually all neocortical areas and 

thalamus via glutamate, an excitatory amino 

acid. The primary motor cortex, the premotor 

cortex, the supplementary motor area (SMA), 

and the somatosensory cortex project to the 

putamen (Kunzle, 1975; Flaherty and 

 

Figure 1-2. Schematic representation of the basal ganglia-thalamo-cortical 

circuit. STN: subthalamic nucleus, GPe: external globus pallidus, SNc: 

substantia nigra pars compacta, SNr: substantia nigra pars reticulata, GPi: 

internal globus pallidus, PPN: pedunculopontine nucleus. 
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Graybiel, 1991) and the associative cortical areas to the caudate nucleus and the putamen (Goldman and Nauta, 

1977; Parent and Hazrati, 1995). Three main types of cells have been identified in the striatum: the GABAergic 

medium aspiny interneurons (Kawaguchi et al., 1995), the giant aspiny cells – also called cholinergic 

interneurons – and medium spiny neurons that make up around 95% of this forebrain structure in rodents and 

75-80% in primates (Wilson, 1984; Tepper and Bolam, 2004). GABAergic medium-sized spiny neurons are 

densely covered with dendritic spines and innervate the GPi/e and the SNr/c. Albin et al. in 1989 and Gerfen in 

1990 proposed a division of these striatal neurons into two different populations based on the idea that dopamine 

had different effects on them. This division was based on the neuroactive peptides that they co-express with 

GABA (substance P and dynorphine or enkephalin) and according to the relative proportions of their D1 (D1 

and D5) and D2-like (D2, D3 and D4) family of dopamine receptors. The D1-like receptor family when 

activated by dopamine increases the formation of the second messenger cyclic adenosine monophosphate 

(cAMP). On the other hand, when D2-type receptors are activated, cAMP production is inhibited (Civelli et al., 

1993). The medium-sized spiny neurons that carry dopamine D1-type receptors and express substance P give 

rise to the monosynaptic direct pathway, projecting directly to the basal ganglia output. Conversely, the 

polysynaptic indirect pathway originating in the D2-type/enkephalin medium spiny neurons, projects directly to 

the GPe. 

The GPe can be considered a central structure of the basal ganglia, since it projects to all its nuclei and 

does not receive direct input from peripheral structures (Figure 1-2). Part of the conventional indirect pathway, 

the GPe is known to receive major GABAergic inputs from the striatum and excitatory glutamatergic inputs 

from the STN, and sends GABAergic projections to the STN and GPi/SNr. GPe has long been considered an 

homogeneous GABAergic neural population (Oertel and Mugnaini, 1984), but recent studies have been showing 

evidence that this nucleus is not the simple structure that it was thought to be. Based on anatomical, 

electrophysiological and morphological properties, several in vitro and in vivo studies have suggested that GPe 

can be divided into different subpopulations, but no consensus has yet been reached (Kita and Kitai, 1994; 

Kelland et al., 1995; Cooper and Stanford, 2002; Mallet et al., 2008a; Bugaysen et al., 2010). GABAergic GPe 

neurons have intrinsic oscillatory properties and the larger fraction were described as having elevated tonic 

activity levels which were interrupted by pauses, whereas a minority as firing at low frequency with short 

periods of bursting (Delong, 1971; Georgopoulos et al., 1983; Filion et al., 1991). 

The STN is a gray-matter, small size nucleus which lies along the internal capsule. It is the only structure 

in the basal ganglia that releases glutamate neurotransmitters and has been shown to have an heterogeneous 
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functional organization (Wichmann et al., 1994b). It receives its main inputs directly from striatum, cerebral 

cortex, for the most part from the motor and pre-motor cortical areas, and GPe. The STN is regarded as having 

the main role of stimulating the GPi/SNr output. 

The SNc is composed of glutamatergic and dopaminergic neurons. The latter are another major input to 

the striatum (nigrostriatal tract). In addition, the dendrites of the dopaminergic neurons of this midbrain structure 

also expand into its neighbour, the SNr. The SNc is thought to regulate, by afferent dopaminergic signals, the 

balance between the direct and indirect pathways by acting on differentially distributed D1 and D2-type 

receptors.  

It has been shown that the GPi/SNr nuclei have major GABAergic topological projections to the 

thalamus (mostly the ventral thalamus), which are then relayed back to the cortex, as well as to the brainstem 

(Mengual et al., 1999; Mana and Chevalier, 2001). Moreover, the basal ganglia outflow extends to the superior 

colliculus (SC), the reticular formation (RF), the pedunculopontine nucleus (PPN) and the lateral habenula 

(HBN). Specific motor tasks activate movement-related neurons in the GPi/SNr, inducing either phasic 

increases or phasic decreases in their average rates of spontaneous discharge, which are very high 

(Georgopoulos et al., 1983; Mitchell et al., 1987). It is this ability to generate repetitive discharges that allow the 

basal ganglia output to control the information transmission to motor and cognitive areas of the brain, therefore 

acting as a behaviour selector (Redgrave et al., 1999; Gurney et al., 2001). The GPi is less developed in rodents 

than in primates and therefore in these species it is mainly the SNr through which the basal ganglia output. The 

SNr projects its inhibitory connections to the thalamic nucleus, which subsequently drives the motor cortex 

(Beckstead et al., 1979; Deniau and Chevalier, 1992; Tsumori et al., 2003). 

According to the classical (and simplified) view of the direct/indirect pathways, the basal ganglia output 

is activated by functionally opposite effects by both pathways in a balanced manner. Once excited by the cortex, 

the striatum directly inhibits the GPi/SNr, causing a lower inhibition (or disinhibition) of its targets. 

Additionally, the striatum transmits inhibitory signals to GPe neurons, decreasing its tonic activity and 

subsequently its inhibitory action on STN. Therefore, STN will excite the GPi/SNr complex, contributing to the 

thalamus inhibition. Such a detour in the indirect pathway is based on the assumption that the GPe regulates the 

STN activity through inhibitory control, a view that has been supported by many studies (Fujimoto and Kita, 

1993; Plenz and Kitai, 1999). During the 90’s, anatomical studies brought stronger evidence that GPe sent 

GABAergic projections to the GPi/SNr (Hazrati et al., 1990; Kincaid et al., 1991; Bolam and Smith, 1992; Kita 

and Kitai, 1994). Additionally, Shink et al. (1996) traced the interconnections between GPe, STN and GPi of six 
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squirrel monkeys using biotinylated dextran amine (BDA) injections, showing that STN and GPe were tightly 

connected and innervated common regions of GPi. They hypothesized that STN cells that establish excitatory 

projections on to GPi neurons also inhibit the same neurons via a GPe relay. Moreover, our understanding of the 

information transmitted to the output aggregate via the STN is not yet clear. Whether it is from the cortex to 

STN through the striatum-GPe double inhibitory pathway (the indirect pathway) or by the excitatory cortical 

direct projection to STN (the hyperdirect pathway) is still under discussion. Several studies in rats and monkeys, 

where single cell recordings from the GPe and STN were conducted while stimulating the cortex, have shown 

that there is an excitatory response in both GPe and STN following such a stimulus, yet the latency is longer in 

GPe (Ryan and Clark, 1991; Nambu et al., 2000). These results suggest that there is an excitatory domination of 

STN over GPe. According to Nambu et al., the signal transmission in the direct and indirect pathways is slower 

than in the cortico-subthalamo-GPi (hyperdirect) pathway. These authors suggest that the latter is the pathway 

activated when the cortex is triggered due to prior movement initiation, resulting in strong excitation of the 

GPi/SNr and further inhibition of their targets engaged in the selected motor program (Nambu et al., 2000). 

Although different views about the functioning of the excitatory-inhibitory closed loop formed by GPe and STN 

have arisen, it is agreed that they have an essential role in basal ganglia information transmission (Shink et al., 

1996; Smith et al., 1998; Plenz and Kitai, 1999). This intrinsic STN-GPe loop, which was described by Plenz 

and Kitai (1999) as a central pacemaker regulated by the striatum, is likely to be involved in the mechanisms 

that underlie the hypokinetic and hyperkinetic movement disorders like Parkinson’s disease, dystonia, 

Huntington’s disease or Tourette’s disorder. These anomalous mechanisms are probably a consequence of 

altered firing rates in the GPi/SNr which presumably are due to a disturbed balance between the pathways that 

project to the basal ganglia output complex. It is then important to fully comprehend the dynamics of the basal 

ganglia-thalamo-cortical circuits in order to recognize and treat these motor pathophysiologies.  

1.2 PARKINSON’S DISEASE 

It was in 1817 that James Parkinson, in his classic “An essay on the shaking palsy” (Parkinson, 1817), 

thoroughly described the disease which bears his name. In his essay, Parkinson emphasized that at that time 
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“this disease does not accord with any which are marked in the systematic arrangements of the nosologists”, as a 

consequence of the complexity and large variety of symptoms that portray each stage of the disorder. 

Parkinson’s disease (PD) affects tens of millions of people around the world and approximately 120,000 people 

in the UK, which is around 0. 2% of the general population, and about 1% of the population above 55 years old, 

with higher incidence in men than in women. 

It is well accepted that PD is a progressive neurodegenerative disorder associated with the selective 

degeneration of dopaminergic neurons mainly in the SNc which project through the nigrostriatal pathway to the 

striatum (Bernheim et al., 1973; Kish et al., 1988; German et al., 1989; Goto et al., 1989; Rinne et al., 1989; 

Fearnley and Lees, 1991). The striatum, the main BG entrance gate, receives inputs from these structures, but 

also from cerebral cortex and thalamus and projects to the pallidonigral formation. Therefore, damage of the 

midbrain dopamine system results in dopaminergic denervation of the striatum, progressing from the rostral-

dorsal striatum to the anterior putamen and caudate nucleus and propagating perturbations throughout the entire 

cortico-striatal network. The deterioration of the nigrostriatal system is thought to be the factor that contributes 

most to the motor impairments seen in PD (Kish et al., 1988; Goto et al., 1989). Although the loss of pigmented 

neurons in the SNc is massive, the degeneration of dopaminergic cells in the midbrain of PD patients is not 

homogeneous; cell loss has been detected in other areas like the ventral tegmental area (VTA) and the SNr 

(Hirsch et al., 1988; German et al., 1989). 

In addition to the degeneration of the dopaminergic cells, other neurotransmitter systems are altered in 

PD. The neuropathological signature of PD is the widespread presence of Lewy bodies (eosinophilic 

cytoplasmic inclusions) in subcortical nuclei (Lewy, 1912; Lewy, 1913; Jellinger, 1990; Charlton and Crowell, 

1995). Lewy bodies are anomalous deposits of a protein made of abnormal filamentous material containing α-

synuclein that form inside the brain’s nerve cells and are thought to account for the degradation of cognitive 

functioning in PD, as well as in other disorders such as Alzheimer's disease and Lewy Body Dementia (Gibb, 

1986; Forno, 1996). Post-mortem neuropathological studies (Candy et al., 1983; Whitehouse et al., 1983) and 

later also imaging studies (Kuhl et al., 1996; Shinotoh, 1999; Bohnen et al., 2003) on PD patients have reported 

significant cholinergic forebrain neuronal losses in the nucleus basalis of Meynert, above the amygdala and just 

beneath the globus pallidus. The cholinergic (acetylcholine-producing) system is involved in the regulation 

of memory and learning and the decrease of the neurotransmitter acetylcholine (ACh) is associated with the 

memory deficits seen in Alzheimer’s disease. Furthermore, it has been observed that there is loss of 

norepinephrine (NE) in the locus coeruleus – a dense cluster of neurons in the dorsorostral pons with projections 
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throughout the central nervous system (CNS) – and serotonin (5-hydroxytryptamine; 5-HT) in the dorsal raphe 

in Parkinsonian patients (Scatton et al., 1983; Gaspar and Gray, 1984; Chanpalay and Asan, 1989; German et 

al., 1992). These pathologies may be involved in the motor dysfunction, but also contribute to cognitive and 

affective changes in PD. The wide variation of symptoms manifested across subjects, are thought to be due to 

different pathophysiological mechanisms, even though these are still poorly understood.  

The major motor impairments characterizing PD are resting tremor, the inability to initiate movement 

(akinesia), slowness in the execution of voluntary movement (bradykinesia) and muscle rigidity. Two main 

subgroups of idiopathic PD have been identified based on clinical manifestations. The most severe variety is 

dominated by akinesia/bradykinesia and rigidity (type-AR), where postural instability, gait disturbances and 

deterioration of cognitive functions are more pronounced. Less common is when tremor is the most prominent 

feature (type-T), with greater preservation of mental status (Hoehn and Yahr, 1967; Zetusky et al., 1985; Paulus 

and Jellinger, 1991).  

Slow tremor, typically in one hand but sometimes in several limbs, is commonly the first symptom to be 

detected. Two different types of tremor with different physiological mechanisms were described by De Jong 

(1926) and later by Lance (1963): rest tremor and the action tremor. The former is an involuntary rhythmic 

tremor at around 3-6 Hz present when the patient is at rest, but it is suppressed or diminished with movement, 

although it reappears seconds later. The action tremor is characterized by a higher frequency (7-10Hz) and 

appears during muscle contraction. A relationship between cortical oscillations and muscular activity in tremor 

had long been discussed before it was shown in 1996 (Volkmann et al., 1996; Brown et al., 1997; Hellwig et al., 

2000). The involvement of basal ganglia pathology in the development of Parkinsonian tremor is still not clear, 

but the correlation observed between rest tremor and GPi activity (Hurtado et al., 1999) suggests that it may 

have a considerable role as a consequence of dopamine depletion. Also posteroventral pallidotomy (Svennilson 

et al., 1960; Laitinen et al., 1992) and stereotactic lesions to the ventralis intermedius thalamic nucleus (VIM, a 

cerebellar receiving area) (Narabayashi, 1989; Hayase et al., 1998) have been used for the surgical treatment of 

PD, providing long-lasting effective alleviation of tremor. Bergman et al. (1990) showed that ibotenic acid 

lesions of STN in Parkinsonian monkeys decreased tremor, as well as major motor irregularities. Therefore, it is 

possible that Parkinsonian tremor is mainly driven by pathways which involve the STN, GPi, and thalamus, 

rather than pathways which project directly to the brain stem or pathways through the PPN. This idea is 

supported by the results of PPN lesions which do not give rise to tremor (Kojima et al., 1997; Aziz et al., 1998; 

Nandi et al., 2002) but instead induce akinesia and rigidity. Therefore, as prominent akinesia is not induced by 
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stereotactic thalamotomy involving pallidal 

receiving areas (Marsden and Obeso, 1994; 

Burchiel, 1995) but is alleviated with pallidotomy 

(Lozano et al., 1995; Baron et al., 2000) and STN 

lesions (Bergman et al., 1990; Aziz et al., 1991), 

akinesia is likely associated with the downward 

projections of the basal ganglia to the PPN and the 

silencing of neurons from this brainstem structure. 

PPN neurons have been shown to project to the 

thalamus and to form a caudally-directed pathway 

which is involved in the control, initiation and 

termination of automatic motor tasks such as gait, 

and in postural stability and sleep disorders (Masdeu 

et al., 1994; Lee et al., 2000; Pahapill and Lozano, 

2000). Additionally, PPN receives inhibitory 

projections from the SNr and GPi nuclei (Nauta and 

Mehler, 1966; Noda and Oka, 1986; Granata and 

Kitai, 1991) and excitatory descending input from 

STN (Hammond et al., 1983; Kita and Kitai, 1987; Granata and Kitai, 1989). It has been shown that STN has 

abnormally high firing rates in rodent (Hassani et al., 1996; Mallet et al., 2008b; chapter 4, Cruz et al., 2011) 

and primate models of PD (Bergman et al., 1994) as well as in human Parkinsonism. This excessive STN 

activity results in excessive inhibitory output from the SNr and GPi projections to PPN. So, blocking the 

excessive descending inhibition from the BG output with lesions of STN or GPi may alleviate akinesia by 

reversing the suppression of PPN activity, and therefore averting changes in thalamic activity which have been 

implicated in akinesia (Figure 1-3) (Albin et al., 1989; Delong, 1990; Graybiel, 1990). 

Like akinesia, rigidity – an increase in muscle tone which causes resistance to passive movement – is a 

motor coordination anomaly rather than a behaviour selection irregularity. Rigidity is also decreased with STN 

ibotenic acid lesions in Parkinsonian monkeys (Bergman et al., 1990; Wichmann et al., 1994a). In the same 

context, it has been shown that muscle tone is increased by blocking dopamine receptors in the STN and 

therefore augmenting activity in this nucleus (Hemsley et al., 2002). These results suggest that the STN 

 

Figure 1-3. Schematic representation of the basal ganglia-thalamo-

cortical circuitry in Parkinson’s disease. The variation in the width of 

the connecting arrows relative to those in Figure 1-2 correlates with 

the change in neural activity after dopaminergic cell loss in the SNc 

and consequent dopamine depletion in the basal ganglia circuits. 

Same abbreviations as in Figure 1-2. 
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influences the dynamic mechanisms of rigidity. What is not known is if the lesion of the STN has an effect on 

rigidity by following a subcortical pathway throughout the PPN or via thalamo-cortical pathways. 

1.3 DOPAMINE REPLACEMENT THERAPIES 

Over the past centuries, a variety of attempts have been made to find a treatment for idiopathic PD. 

Drugs like anticholinergics — agents which block, in the central and the peripheral nervous system, 

the neurotransmitter acetylcholine, which contributes to regulation of muscle movement – were shown not to be 

of great assistance. Also stereotaxic ablative surgery in the basal ganglia, which was described as early as 1940 

(Meyers, 1940, 1942), proved to provide little improvement for the most disabling symptoms of PD. In early 

studies, stereotactic lesions in the globus pallidus appeared to improve rigidity, but inconsistent results were 

reported for the relief of tremor and bradykinesia (Cooper and Bravo, 1958b; Svennilson et al., 1960). Levodopa 

therapy was established in the late 1960’s as the first efficient treatment for PD (Cotzias et al., 1969; Marsden 

and Parkes, 1977). Levodopa is a precursor to the neurotransmitter dopamine. It enhances synthesis, storage and 

release of dopamine; so high doses of the drug control the disabling symptoms of PD including akinesia and 

bradykinesia, even in patients with severe Parkinsonism. Although levodopa therapy has many beneficial 

effects, it also results in many side effects such as dyskinesia – involuntary movement –, nausea and vomiting, 

as well as cognitive dysfunction. It has been shown that PD patients taking levodopa or other dopamine agonists 

are more risk prone than healthy controls and often develop gambling addictions and other impulsive or 

compulsive behaviours (Djamshidian et al., 2010). 

For patients in whom levodopa medication is no longer effective often apomorphine is prescribed. This 

drug, sometimes used as a complement to levodopa, is a potent dopamine agonist that acts directly on D1 and D2 

striatal dopamine receptors and therefore has different pharmacokinetic mechanisms to levodopa. Apomorphine 

is administered subcutaneously by injection or via an infusion pump that often results in the development of skin 

nodules which can cause discomfort. The response of apomorphine is of shorter duration than that to levodopa 
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and both drugs present similar side effects, although the occurrence of nausea and hallucinations are more 

frequent with apomorphine. 

1.4 DEEP BRAIN STIMULATION 

Dopamine replacement therapy has proved to be an important and long-term way to control the motor 

symptoms in PD in many patients. However, the complications that arise and tend to intensify as the disease 

progresses and the intensification of ON-OFF fluctuations make it a suboptimal treatment. In the beginning of 

the 90’s, Deep Brain Stimulation (DBS) took its first steps as a proficient treatment for PD and other motor 

disorders. It was Benabid et al. that in 1987, while performing a thalamotomy of the VIM, discovered that 

stimulating this structure at high-frequency (around 100 Hz) would suppress tremor. Over the following years, 

this group from Grenoble refined the DBS of VIM which, as the thalamotomy, suppressed tremor but did not 

improve akinesia or rigidity. Furthermore, experimental work on monkeys rendered Parkinsonian by 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that permanently destroys dopaminergic 

neurons in the SNc, allowed a better understanding of the basal ganglia and showed that intranuclear lesion of 

the STN was associated with a substantial decrease of tremor, akinesia, rigidity and bradykinesia (Bergman et 

al., 1990; Aziz et al., 1991; Benazzouz et al., 1993). Following these successful findings, the bilateral high-

frequency DBS of the STN was introduced in 1993 for the treatment of severe Parkinsonism (Pollak et al., 

1993b; Benabid et al., 1994; Limousin et al., 1995). The following year, Siegfried and Lippitz carried out DBS 

of GPi for the treatment of advanced PD (Siegfried and Lippitz, 1994). DBS does not prevent the progression of 

the disease, but in the patients that are eligible for the surgery it can – although it not always does – significantly 

improve the motor symptoms and quality of life (Deuschl et al., 2006; Weaver et al., 2009). Nevertheless, 

adverse motor and cognitive effects can develop with DBS, like dyskinesia, speech and cognitive dysfunction. 

Although DBS of GPi has proven to have a lower incidence of surgical complications and cognitive secondary 

effects than DBS of STN, its motor effects are arguably less marked. DBS of STN improves all Parkinsonian 

symptoms, except gait, speech and dyskinesia, whereas the DBS of GPi has a good effect on bradykinesia and 

rigidity and a moderate effect on tremor and dyskinesia (Okun et al., 2009; Follett et al., 2010). Also STN DBS 



 

28 

allows a reduction of dopamine replacement medication (Follett et al., 2010). Currently, the STN is still the 

most selected functional basal ganglia target for DBS in PD.  

DBS surgery for PD involves the stereotactic implantation of an electrode with four contacts which is 

connected to an implantable pulse generator that might reside in the anterior chest wall, below the clavicle, or 

the abdomen. This programmable battery-powered device stimulates the selected brain target, driving its neural 

activity at very high frequencies, generally around 150 Hz (Hemm and Wårdell, 2010). DBS techniques have 

improved during the last decade and nowadays they are used worldwide with over 40,000 implant procedures 

already performed in PD patients (Benabid et al., 2009). However, although there have been a few studies that 

tried to explain the fundamental mechanisms underlying the therapeutic effects and the adverse side effects of 

DBS, these remain largely unclear (Dostrovsky and Lozano, 2002; McIntyre et al., 2004; Dorval et al., 2008; 

Liu et al., 2008; Gradinaru et al., 2009). 

1.5 BASAL GANGLIA-THALAMO-CORTICAL CIRCUIT IN PARKINSON’S 

DISEASE 

Over the years, excessive excitation of the STN has been increasingly identified as one of the 

pathophysiological mechanism of PD, contributing to the selection of this nucleus as the preferred target in the 

surgical treatment of the disease. Through the current understanding of the functional alterations of the basal 

ganglia-thalamo-cortical circuitry in Parkinsonism (Figure 1-3), scientists have generally accepted an hypothesis 

that explains such behaviour of the STN (Obeso et al., 1997). The decrease of the dopaminergic nigrostriatal 

input to the striatum is believed to increase the striatal inhibition of GPi/SNr (direct pathway). On the other 

hand, it leads to an increased inhibition of the GPe and subsequent reduction of the inhibitory effect of the GPe 

on the STN, resulting in hyperactivity of the STN and exaggerated excitation of the GPi and SNr by the STN 

(indirect pathway). Therefore, dopamine depletion leads to unbalanced regulation of the basal ganglia output. It 

is thought that the weakened inhibition of GPi/SNr by the striatum via the direct pathway is compounded by the 

increased excitation of STN upon GPi/SNr, leading to increased inhibition of the brainstem and thalamus and 
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consequent reduction of thalamo-cortical activation. Although STN may be the preferred target for DBS, it is 

still not fully clear which is the structure (or structures) responsible for Parkinsonian symptoms. 

1.6 OSCILLATORY ACTIVITY IN THE BASAL GANGLIA 

Along with the exaggerated tonic output, other major physiological irregularities in the Parkinsonian 

basal ganglia have been shown: phasic oscillations and excessive synchrony is considered to be characteristic of 

PD. Hurtado et al. in 1999, by studying the tremor-related neural activity in the GPi of one awake patient during 

a stereotaxic pallidotomy surgery, introduced the concept that the basal ganglia may be composed of several 

independent oscillating circuits (Hurtado et al., 1999). Since then, the development of functional neurosurgery, 

in particular DBS, has allowed several teams to record directly from the human basal ganglia. These data 

provided a better understanding of the network dynamics and the real impact of dopamine depletion in the basal 

ganglia-thalamo-cortical circuitry. Recordings can be made intraoperatively, where microelectrodes are used to 

record from single cells and local field potentials (LFP) in the selected target, or postoperatively, where LFPs 

can be recorded from the implanted DBS electrodes while their leads are externalized. Around 7 days after the 

surgery, these DBS macroelectrodes are connected to the subcutaneous stimulator (Brown and Williams, 2005). 

 Brown et al. (2001) recorded LFPs from macroelectrodes in GPi and STN of 4 PD patients without 

tremor, at rest and while performing isometric contraction of the wrist extensors. The patients performed the 

task while OFF and ON levodopa. They showed that, without dopamine replacement medication, the power 

within GPi and STN and the coherence between these nuclei was increased at frequencies lower than 30 Hz. 

After the administration of levodopa, these patients presented a reduction of the low-frequency activity in these 

nuclei and an increase of higher frequency oscillations at around 70 Hz. In other studies, the same group 

confirmed these results and, by calculating the coherence and phase between LFPs recorded in STN and GPi 

and cortical EEGs of Parkinsonian patients, showed that the cerebral cortex drives the basal ganglia at 

frequencies <30 Hz (Marsden et al., 2001) and that in the presence of dopaminergic activity over the higher 

frequencies, STN drives the cortex, in particular the SMA (Williams et al., 2002). The recordings were 
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conducted while patients were OFF and ON the dopamine precursor levodopa, at rest and/or while performing a 

tonic extension of the wrist contralateral to the implanted DBS macroelectrode. Levy et al. (2002) also observed 

beta frequency (13-30 Hz) oscillations in LFPs of 14 pairs of STN cells of 8 PD patients, as well as its reduction 

by dopaminergic medication treatment. Additionally, they showed that these beta oscillations decreased during a 

‘chest-to-target’ reaching movement. Levy et al. further suggested that the firing of STN neurons can be 

synchronized by 15-30 Hz cortical beta frequency oscillatory activity, and that this synchronization contributes 

to the pathology seen in PD patients. Based on these findings showing coupling between basal ganglia and 

cortical activity, Brown (2003) classified low frequency oscillations (3-10 Hz), predominately seen at 

Parkinsonian rest and action tremor, and beta frequency oscillations as antikinetic whereas oscillations >60 Hz 

as prokinetic. 

The beta frequency oscillations seen in the LFPs in the STN of Parkinsonian patients during rest were 

also seen by Amirnovin et al. in the activity of single cells, as well as its significant decrease during movement. 

They performed STN microelectrode recordings of 184 cells, including 47 pairs simultaneously recorded, from 

11 PD patients OFF medication while carrying out visually guided movements –patients were required to direct 

a cursor to one of four targets on a monitor with the help of a joystick – during DBS surgery. Additionally, they 

observed a large increase in the firing rates of STN (Amirnovin et al., 2004). Alonso-Frech et al. (2006) studied 

STN LFPs from 14 PD patients and detected high correlation between low-frequency oscillations and symptoms 

of dyskinesia. In addition to the characteristic oscillations seen in PD while OFF and ON medication as 

described in previous studies, they found an increment of 72.6% in the oscillations in the 4-10 Hz band in the 11 

PD patients who presented dyskinesias while ON levodopa. More recently, a study analysed the background 

oscillations and spike trains of microelectrode recordings from 39 PD patients at rest while OFF 

antiparkinsonian medication (Moran et al., 2008). They noted that the 231 STN cells oscillated mainly in two 

bands: the tremor frequency band that they defined as 3-10 Hz, and what they called the high frequency band (8-

20 Hz). They found that the neurons that fired at the latter frequencies tended to oscillate for longer periods and 

always coherently with their background. On the other hand, neurons firing at the tremor frequencies oscillated 

more episodically and only half were coherent with their background. Moran et al. suggested that the two 

neuronal populations were the outcome of different oscillatory drives deriving from different local functional 

neuronal organizations. 

The beta frequency oscillations seen in the basal ganglia of PD patients OFF medication, as well as their 

suppression as the patient prepares or initiates voluntary movement and when under antiparkinsonian 
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medication, are very consistent findings in numerous studies (Brown et al., 2001; Marsden et al., 2001; Levy et 

al., 2002; Williams et al., 2002; Williams et al., 2003; Amirnovin et al., 2004; Kuhn et al., 2004b; Williams et 

al., 2005; Alonso-Frech et al., 2006; Moran et al., 2008). Nevertheless, it is still poorly understood which 

physiological and dynamical mechanisms are behind these abnormal oscillatory activities and network 

differences in PD. Also the question of whether these oscillations are directly responsible for the anomalous 

motor response in patients is still under discussion. In the absence of recordings in the healthy human basal 

ganglia at rest and during voluntary movement, the use of animal PD models has been of high importance. 

Besides the MPTP model, used mainly in monkeys, the toxin-induced 6-hydroxydopamine (6-OHDA) PD 

model usually applied to rats has been an important tool to study the basal ganglia-thalamo-cortical network 

(Pan and Walters, 1988; Burbaud et al., 1995; Magill et al., 2001; Sharott et al., 2005b; Mallet et al., 2008a; 

Mallet et al., 2008b; Avila et al., 2010). 

1.7 6-HYDROXYDOPAMINE ANIMAL MODEL 

Urban Ungerstedt in the late sixties observed that unilaterally injecting 6-OHDA into the dopamine cell 

bodies of the substantia nigra, and the subsequent depletion of the nigro-striatal dopamine system, produced a 

marked motor asymmetry in rats (Ungerstedt, 1968). This unilateral-lesion technique has since been the most 

commonly used animal model of hemi-Parkinsonism, being highly selective and reproducible (Ungerstedt and 

Arbuthnott, 1970). At rest, rats with a unilateral 6-OHDA lesion, exhibited postural asymmetry and when under 

direct or indirect dopamine agonists revealed a turning behaviour (Ungerstedt, 1976). Therefore, the most 

commonly used assessment of the success and extent of the lesioning is the drug-induced rotation test: if the 

unilaterally 6-OHDA lesioned rat is challenged with indirect dopamine receptors agonists, that produce 

dopamine release from intact nigrostriatal terminals, the animal will rotate ipsilaterally (away from the intact 

side of the brain); on the other hand, if a direct dopamine receptor agonist is administered, the lesioned rat will 

rotate towards the intact side of the brain. Studies have shown a positive correlation between rotational rates and 

the extent of depletion of dopaminergic cells in the SNc or depletion of striatal dopamine (Schmidt et al., 1982; 

Carman et al., 1991; Hudson et al., 1993; Schwarting and Huston, 1996b; Mallet et al., 2008b). When the 6-
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OHDA neurotoxin is injected at the origin of the nigrostriatal dopamine bundle (medial forebrain bundle), it 

leads to an extensive dopamine depletion (>97%), modelling a very advanced stage of PD. In contrast, injecting 

the neurotoxin in the terminal field of the nigrostriatal pathway generates a partial lesion with a slower 

progression. This latter model of PD is appropriate to study the effects of neuronal protective interventions 

(Sauer and Oertel, 1994; Kirik et al., 1998). 

Like in human and non-human primate studies, several firing rate and activity pattern irregularities have 

been found in the basal ganglia of 6-OHDA-lesioned rats (Pan and Walters, 1988; Hollerman and Grace, 1992; 

Kreiss et al., 1997; Vila et al., 2000). Interestingly, Burbaud et al. (1995) observed, in dopamine-depleted rats 

under urethane anaesthesia, a substantial increase in the firing rate and burst pattern of unit cell activity in the 

SNr, which was corrected by an STN lesion. Additionally, they showed that the STN lesion decreased 

apomorphine-induced rotational behaviour in the lesioned animals. Other studies have also found excessive beta 

frequency oscillations in rats treated with 6-OHDA. Sharott et al. (2005b) investigated the LFP activity in the 

frontal cortex and STN of awake rats and showed a significant increase of the beta frequency oscillatory activity 

in both structures in the animals with lesions of midbrain dopamine neurons, in comparison with the healthy 

rats. As observed in PD patients (Brown et al., 2001), these exaggerated beta frequency oscillations were 

suppressed when the lesioned animals were challenged with the dopamine agonist apomorphine, increasing the 

coherence between STN and cortex at gamma frequencies. Mallet et al. (2008a; 2008b) observed that chronic 

disruption of dopamine transmission is responsible for abnormal beta frequency oscillations in the GPe, STN 

and motor cortex of urethane-anesthetized rats. More recently, Avila et al. (2010) recorded unit and LFP activity 

in the SNr and EMG activity from the scapularis muscle while rats walked on a rotary treadmill. They observed 

that in the SNr of rats with unilateral lesion of the medial forebrain bundle, low beta frequency (12-25 Hz) 

oscillations decreased during locomotion (in comparison to inattentive rest), while high beta frequency (25-40 

Hz) oscillations increased. 

In addition to the beta and gamma band oscillations, slow-wave activity (~1 Hz) was shown to be present 

in anaesthetised 6-OHDA-lesioned rats. A few studies have pointed out the relevance of cortical input to the 

basal ganglia in lesioned animals, and showed how the synchronous slow-wave activities seen in STN and GPe 

or in SNr are intimately coupled to the rhythmical cortical activity (Magill et al., 2000, 2001; Belluscio et al., 

2003). Magill et al. observed significant changes in the dynamics of the STN-GPe network in 6-OHDA 

midbrain lesioned rodents (under isoflurane/urethane anaesthesia) and the suppression of their low-frequency 

oscillations after ipsilateral cortical ablation. In light of these results, the authors suggested that the abnormal 
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rate and pattern of activity in the STN-GPe network is related to the state of activation of the cortex (Magill et 

al., 2000, 2001). Gradinaru et al. (2009) also showed the importance of cortical input to STN. In a breakthrough 

optogenetics study, they optically stimulated selective M1 layer V neurons with projections to the STN and 

observed large improvements in the Parkinsonian symptoms of the 6-OHDA rats. Moreover, ultra-slow rhythms 

(<0.5 Hz) were observed in several basal ganglia nuclei of awake rats and were not altered after 6-OHDA lesion 

(Ruskin et al., 1999b; Ruskin et al., 1999a; Allers et al., 2000). How these rhythms relate to motor control in 

healthy or PD pathophysiology is still poorly understood. 

Although there are significant differences between human Parkinsonian patients and unilateral 6-OHDA 

lesioned rodents, this animal model of PD has been shown to replicate many of the typical network dynamics 

seen in the basal ganglia-thalamo-cortical circuits of primates. Even though intuitively the MPTP lesioning of 

non-human primates would be expected to be a better model of human PD, the frequency of synchronization of 

the excessive oscillatory activity is higher in the 6-OHDA model than in the MPTP model, and closer to the 

frequency observed in PD patients (Hammond et al., 2007). 

1.8 INFORMATION THEORETIC MODELS APPLIED TO NEURAL CODING 

Notwithstanding the contribution to our understanding of the basal ganglia network from numerous 

clinical and experimental studies made during the past century, it is important to point out the continuous 

development of computational modelling approaches to investigate the behaviour of such circuits in the last few 

decades. Although information theoretic methods have been often used to study a variety of brain areas (Bialek 

et al., 1991; Theunissen and Miller, 1991; Berry et al., 1997; Reich et al., 2001; Averbeck and Lee, 2006; 

Montani et al., 2007; Shew et al., 2011), only a few studies of neural coding in the basal ganglia by means of 

these techniques have emerged (Darbin et al., 2006; Dorval et al., 2008; chapter 3, Cruz et al., 2009; Lafreniere-

Roula et al., 2010; Lim et al., 2010; chapter 4, Cruz et al., 2011). 

Information theory was developed in the 1940’s by Claude E. Shannon as a mathematical framework for 

quantifying information transmission in communication systems and to find fundamental limits on signal 
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processing operations (Shannon, 1948). Information theoretic models allow us to quantify the maximum 

potential information content carried by the neural response and thereby characterize the coding performance of 

a system. Entropy is the measure of the transmitted information or variability. The entropy of spike trains sets an 

upper limit of how much information they could offer about sensory and other inputs (measured in bits/s) or 

gives a measure of how optimally the system codes these (measured in bits/spike) (Rieke et al., 1997). 

Mackay and McCulloch in 1952 published the first work using information theory to study neural 

coding. They presented a theoretical model that estimated the entropy of spike trains and the limits on 

information transmission of spiking neurons. The spike trains were divided into discrete bins and mapped into a 

digit binary number: if in a given time bin a spike occurred, it was represented as a ‘1’, if no spike occurred, as a 

‘0’. Since then, many studies have applied similar frameworks to study neural coding using data from single cell 

recordings, mainly from the visual, sensory and auditory systems. These areas have been preferentially chosen 

since they allow the quantification of the information transmission in small networks in response to a stimulus in 

more controlled environments. Bialek et al. (1991) characterized the neural code of one movement-sensitive 

neuron in the fly visual system, showing that it approaches optimal real-time computation. Also Theunissen and 

Miller (1991) studied 6 wind-sensitive primary interneurons of the cricket cercal sensory system, showing that 

these were able to encode information about wind direction which corresponded to an average directional 

accuracy of between 4.7 and 7.7 degrees. In the visual system of tiger salamanders and rabbits, it was shown 

that firing events enclosing single spikes or bursts of spikes in the retinal ganglion cells happened precisely 

enough to transmit distinct packets of visual information, suggesting that they may compose the fundamental 

symbols in the neural code of the retina (Berry et al., 1997). Reich et al. (2001) estimated the information rates 

in groups of V1 cells of anesthetized monkeys. They found that contrast-specific information varies across 

neurons but has low correlation with the stimulus type, and that spatiotemporal pattern-specific information 

rates strongly depend on the type of stimulus and neuron – that is simple or complex cells. However, an 

important question for the understanding of neuronal processing is to which extent correlations reflect 

redundancy (e.g., in input or overlap of tuning curves) or synergistic interactions. In a more recent study, 

Montani et al. (2007) were able to answer this question for pairs of neurons in the primary visual cortex of 

monkeys by means of an information component analysis. They studied the effect of stimulus-dependent 

synchrony on neural coding of direction and contrast. They found that for direction coding the extra information 

that resulted from the high synergy provided by visual stimulus-dependent synchrony counterbalanced the 

redundancy. Yet, for contrast coding the redundancy was predominant. 
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The majority of studies using information theory methods have looked at the neural response to a 

stimulus. However, it has been shown, based on data recorded from motion sensitive neurons of the fly visual 

system, that the information conveyed in neural spiking events can be measured independently of assumptions 

about the structure of the neural code (Strong et al., 1998; Brenner et al., 2000). Other key studies have 

compared the structure of correlated activity within pairs and larger populations of neurons. Due to limitations 

on collecting large amounts of data when performing in vivo single cell recordings, pair-wise correlations have 

been often used in an attempt to characterize the interactions within entire networks. Schneidman et al., based 

on the Ising model (Glauber, 1963), calculated the maximum entropy for cross-correlations up to 10 

simultaneously recorded retinal ganglian cells from tiger salamanders and guinea pigs. They showed that the 

weak pair-wise correlations found in the data presented “strikingly accurate but non-trivial prediction of the 

collective effects”, explaining near 90% of the network interactions (Schneidman et al., 2006). Another study 

using a maximum entropy model, this time in the primate retina, showed similar results: approximately 98-99% 

of the multi-neuron synchrony in the network was predictable by pair-wise correlations (Shlens et al., 2006). It 

also has been shown that correlations may increase or decrease the amount of information encoded by neural 

populations (Averbeck et al., 2006). Although correlations are often present in neural activity and therefore have 

been extensively studied, their role is not yet fully understood. 

In more recent decades, new contributions to Shannon's information theory allowed the development of 

techniques that have helped shed light on the functioning of biological systems such as neural networks. Hans 

Marko, a telecommunications engineer from Germany, applied Shannon's mutual information to random objects 

with causal structures and generalized the standard information theory to a bidirectional communication theory 

(Marko, 1966). This communication theory was first applied to study the behaviour of monkeys. Marko and 

colleagues showed that, based on the information flow between the animals, it was possible to distinguish a 

dominant from a subordinate monkey (Marko, 1973). This notion of directed information, where the source is 

dependent on the feedback information it receives, was later expanded by Massey and others (Massey, 1990; 

Schreiber, 2000; Tatikonda and Mitter, 2009). Schreiber (2000) reformalized the concept of directed 

information flow from one system evolving in time to another by introducing a measure of information he called 

transfer entropy. Unlike the standard Shannon’s mutual information, the transfer entropy identifies asymmetrical 

interactions and differentiates between emitting and receiving channels (see Appendix D for details). Barnett et 

al. (2009) have shown that, under Gaussian assumptions, transfer entropy as defined by Schreiber is equivalent 

to Granger causality. Recent studies investigating neural systems, mainly cortical networks, have applied the 
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transfer entropy tool to a large variety of data, such as recordings from single and multi-unit neural activity 

(Gourevitch and Eggermont, 2007; Garofalo et al., 2009; Besserve et al., 2010; Buehlmann and Deco, 2010), 

electroencephalogram (EEG) (Chavez et al., 2003; Sabesan et al., 2009) or magnetic resonance imaging 

(Hinrichs et al., 2006; Lizier et al., 2011). 

Only recently information theory was used to investigate neural pattern structures in the basal ganglia. 

Darbin and colleagues have investigated the temporal organization of several basal ganglia nuclei, not using 

Shannon's entropy, but a different entropy estimation tool called approximate entropy (ApEn) (Pincus, 1995). 

This ApEn model quantifies complexity and irregularity in temporal structures (in arbitrary units) by looking at 

the pattern of interspike intervals (ISI). Darbin et al. (2006) recorded the activity of single cells in the STN, GPe 

and GPi of two awake Rhesus monkeys and compared the ApEn values calculated from the original 124 spike 

trains against the ApEn obtained after shuffling the dataset. The authors identified an increase of ApEn – or 

irregularity – after shuffling the data, what led them to conclude that the spiking activity in the STN, GPe and 

GPi had a temporal organization which was broken down by the randomization. More recently, the same 

analysis was done on intra-operatively recorded single cells from the GPe, GPi and STN nuclei of PD patients 

undergoing DBS surgery (Lim et al., 2010). After the randomization of the 15 spike trains from each nucleus 

(45 cells in total), the ApEn values also increased in 80% of the data, compared to the ApEn of the original data, 

confirming the existence of non-linear temporal organizations in the GPe, GPi and STN of PD patients. 

Moreover, the authors could not find a significant difference between the ApEn values in the three nuclei, 

contrary to what had been found in the previous study (Darbin et al., 2006). In another study (Lafreniere-Roula 

et al., 2010), the same measure of statistical irregularity (ApEn) was calculated based on the activity of 8 STN 

cells recorded from 7 PD patients while undergoing DBS surgery. The recordings were done with the patient at 

rest, before and after subcutaneous administration of apomorphine. Although there were no significant 

differences in the firing rates of both populations, they reported a decrease of the entropy after apomorphine 

treatment associated, in some of the neurons, with a more bursty activity. The authors claim their results support 

the hypothesis that antiparkinsonian therapies operate by reducing the complexity of neural activity in the basal 

ganglia. Interestingly, the results in this study (chapter 5) argue the opposite. It is shown that the administration 

of apomorphine in dopamine depleted rats under anaesthesia increases the entropy in the GPe, restoring it to 

levels similar to those estimated in control animals. 

The ApEn has been a popular metric in biomedical and clinical studies, due to its ease of use, but also 

due to its low requirements regarding the quality of the data. The method has been shown to be applicable on 
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small data sets with relatively low signal to noise ratio and to be robust to outliers (Pincus, 1991; Pincus, 1995). 

It has been shown, however, that the application of ApEn statistics has important limitations which should be 

taken in account when applied. First, as Pincus and others have pointed out (Goldberger et al., 1994; Pincus and 

Goldberger, 1994; Pincus, 1995; Richman and Moorman, 2000), the ApEn introduces a bias towards higher 

similarity in the time series. To measure the complexity of the data, the ApEn method compares patterns within 

the time-series; it calculates the natural logarithm of the likelihood that the similarity between two patterns is 

above a certain threshold (r) for a determined length (m) of the sequences being compared. A higher likelihood 

that sequences of m data samples that are considered similar remain similar when the segment length increases 

to m+1 observations, means a higher degree of regularity or predictability in the time series, and therefore the 

ApEn will present lower values. To make sure that the individual probabilities for each pattern are defined, that 

is to avoid the occurrence of log(0), the ApEn algorithm matches each pattern with itself. This procedure, when 

applied to finite datasets, introduces a bias in the ApEn estimations toward lower values. A second central 

limitation of ApEn is the sensitivity of the model to the necessary a priori specification of the parameters m and 

r. Pincus (1991), based on the analysis of slow dynamic signals such as heart rate, recommended r to be in the 

range of 0.1-0.2 times the standard deviation of the signal and suggested m = 2 to ensure reasonable estimates of 

ApEn. These values have been widely used in studies applying ApEn in ECG, EEG or endocrine variability 

analysis (Hartman et al., 1994; Bruhn et al., 2000; Burioka et al., 2005; Hu et al., 2008). It has been shown, 

however, that for the analysis of faster dynamic signals, such as neuronal activity, the recommend values can 

lead to incorrect conclusions (Castiglioni and Di Rienzo, 2008; Lu et al., 2008). The study by Lafreniere-Roula 

et al (2010) applied the ApEn metrics using values in the range suggested by Pincus (m = 2 and r = 0.15 of the 

standard deviation of the ISI distribution) to assess the effect of apomorphine in the statistical irregularity of 

STN single cell activity in PD patients. The fact that the authors did not consider any of the limitations outlined 

above intrinsic to the ApEn model, may contribute to the contrast between their conclusions and what we 

observed in this study. 

Dorval et al. (2008) analysed the firing pattern entropy in the activity of single neurons in the GPe, GPi 

and motor thalamus of two MPTP treated monkeys while under STN DBS. Looking at the probability 

distribution of ISIs to estimate the entropy (measured in bits/spike), they found that at low frequency stimulation 

(2 Hz), the entropy decreased while at high frequency stimulation (around 136 Hz), the entropy increased in all 

three structures. The authors suggested that clinically efficient high frequency stimulation of STN improves 

motor impairments in PD by regularizing the pattern of activity throughout the basal ganglia-thalamic pathways. 
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1.9 OUR INFORMATION THEORETIC APPROACH  

Despite the major advances in our understanding of PD, and in the techniques used to further investigate 

the many features of the disease, the origins of the pathological patterns of neural activity seen throughout the 

basal ganglia-thalamo-cortical circuitry are still uncertain. For the improvement and optimization of the existing 

therapies to treat PD (or even the development of new ones), it is essential to acquire a deep understanding of 

these abnormal network behaviours and their causes. In the present study we proposed innovative logistic 

regression models (chapter 2) to estimate the network entropy of neural activity in the GPe of rats before and 

after treatment with 6-OHDA, and quantified the upper bound of information coding capacity in this nucleus. 

We examined the individual contributions of dynamical features (firing rates, oscillations, and synchrony) to the 

changes in network entropy after dopamine depletion (chapter 3, Cruz et al., 2009). Additionally, we 

investigated the impact of dopamine depletion on the functional connectivity between the STN and GPe (and 

also between two sub-populations of GPe neurons) by estimating the bidirectional information transmission 

between both nuclei (chapter 4, Cruz et al., 2011). We also looked at the effects of apomorphine on the coding 

capacity in the GPe of dopamine depleted rats (chapter 5). 

The main hypotheses tested in this study were: 

 The motor impairment in PD results from poor information processing in the basal ganglia. 

 Therefore, we predicted that GPe networks would have lower coding capacities in the Parkinsonian 

animals than in control. 

 We expected that the excessive beta frequency oscillations, known to be present in the GPe of the 

6-OHDA lesioned rats like in patients (Brown et al., 2001; Magill et al., 2006a; Mallet et al., 2008a), 

would have a strong impact on the decrease of the coding capacity due to the correlation found 

between the desynchronization of this abnormal activity and movement execution (Levy et al., 2002; 

Amirnovin et al., 2004; Kuhn et al., 2004b). 

 Since the clinical features of PD tend to improve when treated with dopamine replacement therapies, 

 based on our previous hypothesis, we were expecting to find an increase in the coding capacity 

of the GPe when the 6-OHDA rats were challenged with apomorphine. 

In the following chapters we take you through our analysis and discuss such hypotheses.  
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2 THE MODEL 

2.1 ABSTRACT 

Spike trains tend to behave as point processes, i.e. a collection of points, where each point is associated 

with a random variable. Thus we developed a point process model, based on the spike times of single neurons, 

to study the coding capacity (i.e. entropy) in the external globus pallidus (GPe) network. Within a probabilistic 

framework, we estimated the impact of spiking history in one or more neurons on current spiking probability. 

This study of the temporal dependence allowed us to assess the levels of randomness of the neural activity, and 

therefore to measure its entropy. Within this framework we were then able to study the relative impact of 

different dynamical components (such as rates, auto and cross-correlations) known to deviate in the 

Parkinsonian basal ganglia. 

In this chapter we present the methods used in the studies in chapters 3, 4 and 5. We describe and derive 

in detail the logistic regression model adopted to calculate the conditional probabilities in order to estimate the 

entropy of the neural networks. Additionally, we present a study on different optimization algorithms and model 

selection methods that allowed us to determine the most appropriate methods to process our dataset. We have 

found that the cross-validated early stopping method performed better when fitting our data in contrast to the 

iteratively reweighted least squares algorithm. Also, we used the Bayesian information criterion, as opposed to 

the Akaike information criterion, for model selection. 
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Figure 2-1. Relation between the entropy and the 

probability of occurrence of a “successful” event. The 

entropy is higher when the uncertainty is also higher. 
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2.2 INTRODUCTION 

Neurons have the essential function of transmitting information through the brain. It is reasonable to 

assume that evolution has made this task efficient, temporally precise, and low noise. How the nervous system 

transmits information has been extensively debated over the last decades. Information theory, as an effective 

means of quantifying the uncertainty of stimulus-response functions in neural coding, was proposed several 

decades ago. MacKay and McCulloch (1952) were the first to apply the principles of information theory laid 

down by Shannon (1948) – which allowed the understanding and 

quantification of information transmission in communication 

systems – to a nerve cell. They have shown that in theory, neurons 

were able to transmit vast quantities of information and have 

proposed limits for the maximum volume of information that can 

be relayed by a nerve cell. Since then, this mathematical 

framework has been widely applied to investigate the neural 

response functions throughout several different regions of the 

brain (Bialek et al., 1991; Theunissen and Miller, 1991; Berry et 

al., 1997; Reich et al., 2001; Averbeck and Lee, 2006; Montani et 

al., 2007; Shew et al., 2011). However, only a few studies have used Shannon information theory to explore the 

representation and transmission of information in the basal ganglia (Dorval et al., 2008; chapter 3, Cruz et al., 

2009; chapter 4, Cruz et al., 2011), and still much research is needed to fully understand its mechanisms in 

health and disease.  

To analyse the changes in the dynamics of the basal ganglia-cortical circuit that result from dopamine 

depletion in Parkinson’s disease (PD), we estimated and compared the information capacity of the globus 

pallidus external segment (GPe) and the connectivity between the GPe and subthalamic nucleus (STN) in 

control and Parkinsonian animals. To delimit how much information can be transmitted between neurons, we 

used a probabilistic model to estimate the entropy in the network. The entropy places an upper bound on the 

information contained in a network, based on the uncertainty in a random variable. As shown in Figure 2-1, if 

the probability of the occurrence of an event r is 0 or 1, there is no uncertainty in the prediction of its response, 

and therefore the entropy related to that event is zero. If in the extreme case of P(r = 1) = 0.5, the uncertainty is 
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maximum and the entropy will take the highest value of 1 bit. The entropy (H) is a measure of coding capacity 

and when associated with a discrete response r is defined as 

       .PlogP)1( 2 rrrH
r

 
 

In a neural network, if several neurons are coding the same information, for example if they are firing 

synchronously, or with the same pattern in time, there will be redundancy in the information processed. 

Additionally, it will be possible to an extent, to predict their activity based on their past events or the activity of 

other neurons. Thus, the higher the predictability of the activity of the neurons (e.g. based on consistent spike 

timing, patterns of activity, clustering, etc.), the lower is the entropy (i.e. the coding capacity) in the network. A 

network has maximum entropy when the activity of all neurons is unrelated, meaning that no redundant 

information is being coded. The entropy can express the upper limit of the amount of information that can be 

coded (or transmitted) when measured in bits/second. Alternatively, when measured in bits/spike, entropy 

represents how optimal is the processing of the information (Rieke et al., 1997). Our analysis focused on the 

former approach.  

Next, we describe the mathematical grounds of the methods we used to calculate the entropy in the 

neural network. We also present a comparison between the performances of some techniques which we 

extensively tested. 

2.3 MATERIALS AND METHODS 

2.3.1 DATA COLLECTION  

Experimental procedures were carried out on adult, male Sprague-Dawley rats (Charles River, Margate, 

UK), and were conducted in accordance with the Animals (Scientific Procedures) Act, 1986 (UK). The 

experimental proceedings were conducted by our collaborators Drs. Nicolas Mallet and Peter Magill at the MRC 

Anatomical Neuropharmacology Unit, University of Oxford. The electrophysiological dataset on which this 

study was based has been published previously (Mallet et al., 2008a). 
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2.3.2 6-HYDROXYDOPAMINE LESIONS OF DOPAMINE NEURONS 

Unilateral 6-OHDA lesions were carried out as described previously (Mallet et al., 2008a; Mallet et al., 

2008b). Selective loss of dopaminergic neurons was attained by injecting 6-OHDA stereotactically into the 

region adjacent to the medial substancia nigra (Perese et al., 1989; Przedborski et al., 1995). Twenty five 

minutes before the injection of 6-OHDA, all animals received a bolus of desipramine (25 mg/kg, i.p.; Sigma) to 

minimize the uptake of 6-OHDA by noradrenergic neurons (Schwarting and Huston, 1996b). Anaesthesia was 

induced and maintained with isoflurane. The neurotoxin 6-OHDA (hydrochloride salt; Sigma) was dissolved 

immediately before use in ice-cold 0.9% w/v NaCl solution containing 0.02% w/v ascorbate to a final 

concentration of 4 mg/ml. Then 3 μl of 6-OHDA solution was injected adjacent to the medial substantia nigra 

(4.5 mm posterior and 1.2 mm lateral of bregma, and 7.9 mm ventral to the dura (Paxinos and Watson, 1986). 

The extent of the dopamine lesion was assessed 14 or 15 days after 6-OHDA injection by challenge with 

apomorphine (0.05 mg/kg, s.c.; Sigma; Schwarting and Huston, 1996a). The lesion was considered successful in 

those animals that made ≥80 net contraversive rotations in 20 min. Note that the emergence of exaggerated beta 

oscillations after 6-OHDA lesions is not dependent on apomorphine (Sharott et al., 2005b). Electrophysiological 

recordings were carried out ipsilateral to 6-OHDA lesions in anesthetized rats 21-45 days after surgery, when 

pathophysiological changes in the basal ganglia are likely to have levelled out near their maxima (Vila et al., 

2000). 

2.3.3 ELECTROPHYSIOLOGICAL RECORDINGS 

Electrophysiological recordings were made in the GPe and STN of 16 dopamine-intact control rats (288-

412 g) and 23 Parkinsonian rats (6-hydroxydopamine-lesioned, 285-470 g at the time of recording). See Table 

A-1 in the Appendix for a summary of the dataset. Anaesthesia was induced with 4% v/v isoflurane (Isoflo™, 

Schering- Plough Ltd., Welwyn Garden City, UK) in O2, and maintained with urethane (1.3 g/kg, i.p.; ethyl 

carbamate, Sigma, Poole, UK), and supplemental doses of ketamine (30 mg/kg, i.p.; Ketaset™, Willows 

Francis, Crawley, UK) and xylazine (3 mg/kg, i.p.; Rompun™, Bayer, Germany). All wound margins were 

infiltrated with the local anesthetic, bupivacaine (0.75% w/v; Astra). Animals were then placed in a stereotaxic 

frame (Kopf). Body temperature was maintained at 37 ± 0.5°C using a homeothermic heating device (Harvard 

Apparatus). Electrocorticograms (ECoGs), electrocardiographic activity and respiration rate were monitored 
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constantly to ensure the animals’ well being (Magill et al., 2006b). The ECoG was recorded via a 1 mm 

diameter steel screw juxtaposed to the dura mater above the right frontal (somatic sensory-motor) cortex [4.5 

mm anterior and 2.0 mm lateral of bregma (Paxinos and Watson, 1986)], and was referenced against another 

screw implanted in the skull above the ipsilateral cerebellar hemisphere. Raw ECoG was bandpass filtered 

(0.3-1500 Hz, -3 dB limits) and amplified (2000×; DPA-2FS filter/amplifier; Scientifica) before acquisition. 

Extracellular recordings of unit activity and local field potentials (LFPs) in the GPe were simultaneously made 

using “silicon probes” (NeuroNexus Technologies). Each probe had two vertical arrays of 16 recording contacts 

(Figure 2-2). The arrays were separated by 500 µm, and, along each array, the recording contacts were separated 

by 100 µm. Each contact had an impedance of 0.9–1.3 MΩ (measured at 1000 Hz) and an area of ~400 µm
2
. 

The same probe was used throughout these experiments, but it was cleaned after each experiment in a 

proteolytic enzyme solution (Magill et al., 2006b). This was sufficient to ensure that contact impedances and 

recording performance were not altered by probe use and reuse. Monopolar probe signals were recorded using 

high impedance unity-gain operational amplifiers (Advanced LinCMOS; Texas Instruments) and were 

referenced against a screw implanted above the contralateral cerebellar hemisphere. Probes were advanced into 

the brain under stereotaxic control (Paxinos and Watson, 1986), at an angle of 15° to the vertical to maximize 

the spread of recording contacts across the GPe. After initial amplification, extracellular signals were further 

amplified (1000×) and low-pass filtered (0–6000 Hz) using programmable differential amplifiers (Lynx-8; 

Neuralynx). The ECoG and probe signals were each sampled at 17.9 kHz using a Power1401 Analog-Digital 

converter and a PC running Spike2 acquisition and analysis software (Cambridge Electronic Design). 

 The GPe was easily distinguished from the striatum in which characteristically low levels of unit 

activity were observed (Mallet et al., 2005; Mallet et al., 2006). Recording locations were additionally verified 

after the experiments using standard histological procedures (Magill et al., 2006b). In some experiments, we 

simultaneously recorded activity in STN and GPe. Unit activity and LFPs were recorded in the STN using 

silicon probes (as above), or more commonly, using glass electrodes. In the latter case, extracellular recordings 

of action potentials of STN neurons were made using 15–25 MΩ glass electrodes (tip diameter ~1.5 µm), which 

contained saline solution (0.5 M NaCl) and Neurobiotin (1.5% w/v, Vector Laboratories). Electrode signals 

were amplified (10×) through the active bridge circuitry of an Axoprobe-1A amplifier (Molecular Devices), 

ACcoupled, amplified a further 100× and bandpass filtered at 300–5000 Hz (DPA-2FS; Scientifica), and finally, 

sampled as for probe signals (see above). The STN was initially identified by comparison of recorded unit 

activity with the known characteristic discharges of STN neurons in urethane anesthesia (Magill et al., 2001). 
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Moreover, the recording of activity evoked by bipolar electrical stimulation of the ipsilateral frontal cortex 

allowed unequivocal targeting of the STN during experiments (Magill et al., 2004). 

 Cortical activation was defined according to ECoG recorded simultaneously with unit activity (Mallet 

et al., 2008a). Activity was recorded, first, during slow-wave activity (SWA), which accompanies deep 

anesthesia and is similar to activity observed during natural sleep, and second, during episodes of spontaneous 

“cortical activation,” which contain patterns of activity that are more analogous to those observed during the 

awake, behaving state (Steriade, 2000). Cortical activation was occasionally elicited by pinching the hindpaw 

for 15 s with serrated forceps that were driven by a standard pneumatic pressure, as described previously 

(Magill et al., 2006b). Note that we did not analyze neuronal activity recorded concurrently with the sensory 

stimuli. Because the analyzed activity was recorded at least several minutes after the cessation of the brief pinch 

stimulus, it was also considered as spontaneous. The animals did not exhibit either a marked change in the 

electrocardiogram or respiration rate, and did not exhibit a hindpaw withdrawal reflex, in response to the pinch. 

Moreover, withdrawal reflexes were not present during episodes of prolonged cortical activation, thus indicating 

anesthesia was adequate throughout recordings. The data analysed in this study consisted of recordings of 100 

seconds of the activity of unit cells during episodes of this spontaneous activated cortical state, which under 

anaesthesia has been associated with the promotion of coherent beta rhythms in the basal ganglia-thalamo-

cortical circuit (Magill et al., 2000). Yet, it is essential to keep in mind that, due to the differences between its 

physiological properties, the activity patterns of the anesthetized and unanaesthetized animals can only be 

 

Figure 2-2. Experimental setup. A. Cortical activity (ECoG) and single cell activity were simultaneously recorded in the GPe and STN, 

using silicon probes. Recordings from STN will be analyzed in chapter 4. B. Scheme of a 32-contact silicon probe including size and 

distances between contact electrodes. 

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Contact #

100 mm

500 mm

413 mm2

32-contact silicon probe

Shank 1 Shank 2

Same Shank (1 vs. 1 or 2 vs. 2)

different Shank (1 vs. 2)

A B 



 

45 

compared at a qualitative level. Nevertheless, the urethane-anesthetized animal still serves as a useful model for 

assessing ensemble dynamics within the basal ganglia (Magill et al., 2006b). In 6-hydroxydopamine (6-OHDA)-

lesioned animals, exaggerated beta oscillations emerge in cortico-basal ganglia circuits during activated brain 

states (Mallet et al., 2008a; Mallet et al., 2008b). As we will discuss in detail in the next chapter, this beta 

frequency oscillatory mimicked important activity patterns observed in the basal ganglia structures of 

unmedicated, awake PD patients (Brown et al., 2001). 

2.4 MODEL 

According to the classical rate model of the basal ganglia organization, the abnormal firing rates detected 

in several basal ganglia nuclei of PD patients and Parkinsonian animals were believed to be responsible for the 

motor symptoms in PD (Albin et al., 1989; Alexander and Crutcher, 1990; Chevalier and Deniau, 1990; 

DeLong, 1990; Gerfen et al., 1990; Parent, 1990). More recently, other dynamical factors in the basal ganglia, 

such as excessive beta frequency oscillation and synchrony, have been shown to have implications in the motor 

complications of the disease (Brown et al., 2001; Goldberg et al., 2004; Moran et al., 2008; Kuhn et al., 2009). 

In order to investigate the individual effect of these features on the differences of the coding capacity between 

the control and lesioned rats, we estimated the entropy of different characteristics of the spike trains in the GPe 

network. All algorithms and tools used in this study were implemented in Matlab (The MathWorks, Natick, 

MA). 

The entropy rate of a spike train, a stochastic process we denote as {si}, is defined by 
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when the limit exists. For strongly stationary processes, the entropy rate can also be defined as 
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While the definition in Equation 2 provides the average entropy per symbol, Equation 3 defines the entropy of 

the random variable si,t conditioned on the past variables si,1,..., si,t-1; they represent different concepts of entropy 

rate. For a stationary process, both limits Hrate(si ) and H’rate(si ) exist and coincide. Cover and Thomas (1991) 

proved it by first showing that H’rate(si ) < ∞. Considering that conditioning decreases entropy 

),...,|(),...,|()4( 2,,1,1,,1, ititiititi sssHsssH   , 

and that for a stationary stochastic process {si} the conditional probability is unchanged for any time shift 
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the H(si,t | si,t-1, ..., si,1) is a non-negative decreasing time series and therefore the limit of the conditional entropy 

H’rate(si ) exists. Then the authors make use of the simple theorem Cesàro Mean, which states that if a sequence 

of numbers an converges to a value (an → a), the sequence bn, with  
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converges to the same value (bn → a). By way of the chain rule of entropy, we have 
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Therefore, from Cesàro's theorem, where H(si,t | si,t-1, ..., si,1) corresponds to the series an and the right hand-side 

of Equation 7 corresponds to bn, both entropy rate definitions from Equations 2 and 3 converge to a common 

limit, that is Hrate(si ) = H’rate(si ). 

A stochastic process X(t) is said to be strictly stationary if X(t) and X(t+h) have the same statistics for 

any h; that is, the statistical characteristics of the process are invariant to a shift in the origin. Biological data is 

characteristically not strictly stationary. Nevertheless, under certain conditions, the statistical properties of 

biological time series (e.g., spike trains) can exhibit very slow or small-scale variations requiring other forms of 

stationarity to be assumed. Less stringently, a sequence of random variables X(t) is called covariance stationary 

or wide-sense stationary if its mean and variance are time-invariant and the autocovariance between a term Xt 

and another term Xt+h depends only on the time difference (h) and not on their individual locations. While a 

strictly stationary process imposes restrictions on the whole distribution, the covariance stationarity imposes 

restrictions on the first and second moments.  
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The data analysed in the current study was recorded from brain areas of rats during urethane anaesthesia. 

This reduced the effects of cognitive and motor stimuli. However it may introduce variation in the neural 

activity. In a point process like spike data, second order stationarity implies that the mean and variance of firing 

rates are independent of time and that the autocovariance is shift invariant. To investigate the level of 

stationarity of our spike data, first we calculated, for each spike train si binned into T bins of 5 ms, the mean 

firing rates vector { hti,s  } given by 
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where h is number of bins of the sliding window with origin in t. Next, we obtained the centred processes 

{Δsi,t+h}, given by the difference 
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with  S ¯i denoting the mean firing rate of spike train si. To minimize the effect of arbitrarily choosing the width h, 

we repeated the analysis for different lag sizes (h taking the values 1, 3, 5, 10, 15, 20, 25, 30, 40 and 50 ms, for 

spike trains with 100 ms duration). To verify if the expected value E[Δsi,t+h] is equal to zero, we calculated each 

centred process Δsi,t+h. We observed that for all spike trains recorded in the GPe, the data in the Δsi,t+h 

distributions were fluctuating around zero with mean ± SD of (0.08 ± 6.80)×10-3 Hz in controls and (0.03 ± 

6.41)×10-3 Hz in lesioned animals. Therefore, the spike trains presented a strong first order stationarity. Similar 

results were obtained in STN cells, with (-0.70 ± 0.83)×10-3 Hz in controls and (-0.22 ± 9.05)×10-3 Hz in 

lesioned animals. In Figures E-1A,B and E-2A,B (Appendix E) we show that the mean of Δsi,t+h for different 

lags h was steadily close to zero, but the standard deviations decreased for larger lags. 

Second, we estimated the second central moment of our individual time series by calculating the 

autocovariance given by 
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So, by taking the mean product of the firing rates of the time process and its duplicate shifted by a lag h, for 

different initial positions t0, we could characterize the time interdependency of our spike trains. A covariant 

stationary possess is dependent on the length of the lag h, but should not vary with the origin t0. To test the 

stationarity of our data, we calculated the variance of the distributions of the autocovariance computed for each 
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t0 (with fixed h) and then averaged it across spike trains (Figures E-1C,D and E-2C,D, Appendix E). We 

observed that the autocovariance tended to fluctuate around zero, with mean ± SD − averaged through all cells 

and all lags h − of (0.03 ± 4.94)×10-4 Hz in control and (0.07 ± 2.19)×10-4 Hz in lesioned animals for GPe 

cells, and (0.03 ± 0.20)×10-3 Hz in control and (-0.04 ± 0.42)×10-3 Hz in lesioned for STN cells. The results, 

therefore, suggest a robust covariance stationarity of the spike train data used in this study, for both GPe and 

STN networks. Note that, time invariant autocovariances implies that all the random variables in the sequence 

have the same variance defined by 
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After analysing the stationarity of the firing rates in each spike train, we tested if the observed power 

spectrum would persist sufficiently constant throughout the spike train (auto spectrum) and the correlated 

activity between pairs of neurons (cross spectrum). Therefore, we partitioned the spike trains (or pair of spike 

trains) into K segments of length ∆t. For each segment the auto and cross spectra were computed and compared 

to the power in the whole signal again using the central process 
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that is the difference between the power spectrum in each section k (k = 1,...,K) and the mean power spectrum of 

the K sections, with ∆t = 20s and K = 5. Figure E-3 (Appendix E) shows the average central auto power 

spectrum ΔPow(si, Δtk), normalized to the difference between maximum and minimum power values of each 

section ∆tk, across all GPe and STN spike trains. In all cases, the difference in the spectral power fluctuated 

around zero, indicative of a stationary process, although with higher variation (standard deviations 2 to 3 fold 

larger) in the auto spectra than the cross spectra. Given the wide-sense stationarity of our data, we used for our 

estimations the definition of entropy as in Equation 3. 

The first step was to discretize the data: the 100 second spike trains from each individual neuron were 

binned with a bin width of 5 milliseconds. The robustness of the selected bin length relative to double spiking 

occurrences was tested. In Figure 2-3 is shown an example of a given population set, where si,1:t refers to the 

activity of neuron i during the interval 1 to t bins, and N is the number of simultaneously recorded cells. 

We then estimated the entropy of the activity of individual neurons based on its past temporal patterns. 

Furthermore, we studied the joint entropy of pairs and ensembles of neurons. Similarly, if we disregard the 
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temporal factor in Equation 3 and consider s as a vector over an ensemble of neurons, the joint entropy of an 

ensemble of N simultaneously recorded cells is given by 
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Therefore, in order to obtain the joint entropy of the ensemble, we have to estimate the entropy of each neuron 

conditioned on all the other neurons of the population as well as the past activity of the same neuron. In this 

study we first analyzed the entropy of pairs of neurons and then of ensembles with different sizes. 

Besides the matter concerning the interpretation of entropy and information transfer or their analytical 

computation, there are other complex statistical challenges that must be addressed in order to estimate such 

measures from restricted data sets. A classical and widely used methodology for estimation of information in 

spike trains ‒ known as the "direct method" ‒ was introduced by de Ruyter van Steveninck, Strong, Bialek and 

colleagues (de Ruyter van Steveninck et al., 1997; Strong et al., 1998). It uses a relatively assumption free 

approach whose implementation is conceptually close to Shannon's theory. To calculate entropy as defined in 

Equation 1 using the "direct method" one divides the discretized spike trains (with bin width ΔT) into segments 

or words of constant length L for which the probability distributions are estimated based on the number of 

 

Figure 2-3. Representation of a population of simultaneously recorded neurons, where the spike trains were divided in 5 ms bins. The 

prediction of a spike occurring in neuron i at instant t, si,t = 1, was calculated conditioned on the firing rate of neuron i; or, in addition to the 

firing rate, the temporal patterns of the past bins from neuron i, and/or from one or more neurons jn, n=1,...,N-1. 
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observations of each word in the experimental data. The method then estimates the information from the 

difference between the marginal and conditional entropies of the response. In theory, the direct approach yields 

a very accurate measurement of information, provided that an adequate amount of data is accessible, given that 

it does not make prior assumptions about the nature of the stimulus or the distribution of the spike patterns. 

However, the space of all possible spike patterns can often be sampled only partially due to electrophysiological 

and experimental considerations. For a true and accurate estimate of information, 2
L/ΔT

 possible patterns have to 

be sampled enough times. The effects of undersampling due to limited sample sizes introduces considerable 

variance and bias dependent on the number of occurrence probabilities that should be determined and the total 

number of observations. Although debiasing techniques are applicable, they are often powerless if many pattern 

sequences are never sampled, leading to unreliable entropy estimates. The "direct method" can be suitable, 

however, to study very constrained environments, such as the visual system or insect neural systems, where the 

stimulus responses are highly reproducible. That is not the case in the neural activity of basal ganglia networks. 

To overcome sampling and bias limitations due to finite set of observations, we proposed a more sophisticated 

estimator ‒ a logistic regression approach ‒ which, although it is not exempt from a priori assumptions (see 

below), uses model selection methods to detect optimal order of parameters to compute conditional probabilities 

for entropy estimations. 

The logistic regression method is used for prediction of the probability of occurrence of an event. 

Belonging to a class of models known as Generalized Linear Models, it describes the relationship between 

explanatory variables and a discrete response output, modelling how the probability of an event may be affected 

by one or more of these variables. The logistic regression approach makes very few assumptions about the data 

(Christensen, 1997) and it is related to the "direct" and "maximum entropy" methods (Christensen, 1997; Strong 

et al., 1998; Averbeck and Lee, 2006; Schneidman et al., 2006). 

The logistic regression model predicted the posterior probability that a spike occurred at instant t, 

conditioned on the past history of spiking of the cell under consideration, as well as the history of other 

simultaneously recorded cells. The model can be formalized in the following way 
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P(si,t| si,1:t, sj1,1:t, ... , sjN-1,1:t) specifies the posterior probability of occurrence of a spike si,t=1, in neuron i at instant 

t, given the responses in previous time bins of cell i, and/or other cells j (Figure 2-3). The logistic regression 

http://en.wikipedia.org/wiki/Probability
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coefficient ak1 represents the effects of a spike from neuron i fired in bin t-k1 on the probability of the same 

neuron i to fire at bin t. Analogously, bj, j=1,…,N-1, characterize the effects of spikes from other neurons j on 

the probability of neuron i to spike at time t (Figure 2-3). K1 and K2,j variables represent the optimal number of 

time lags used in the prediction condition which are dynamically estimated (see below). The link function g is 

the logistic transform 







e
g

1

1
)()15(   

The model applied the logistic function to a linear combination of the observed ensemble neural activity, S, in 

order to calculate the entropy in the prediction of spike si,t. Four versions of the model from Equation 14 were fit 

(Table 2-1). Each version was based on different components of the activity of that same neuron i, and/or from 

other cells in the population set, jk. Therefore, the four models examined the effects of different factors of the 

ensemble response on the entropy. 

The ‘Rate’ model incorporated only the firing rate effect, thus in Equation 14 only the a0 term was 

considered. The second model, which we named ‘Auto’, in addition to the a0 term, included the effect of the 

autocorrelations on the entropy. The autocorrelations consider the lagged bins from the same neuron i. The 

‘Cross’ model characterized, besides the rate, the effect of cross-correlations on the entropy by taking into 

account the lagged and zero lag bins of one or more neighbouring neurons. In Equation 14, it included the terms 

a0 and bj,, j=1,..., N-1. The last model – the ‘Full’ model – combined all the effects, including all a and b terms 

(Figure 2-4).  

Dealing with a binary classification problem (either a spike or not a spike), we assumed our random 

variables followed a Bernoulli distribution (Truccolo et al., 2005); therefore, we regarded our output variable 

si,t{0,1} as a Bernoulli random variable with parameter θ. Next we will show that the logistic function is the 

Model Conditional probability Coefficients 

‘Rate’ )( ,tisP  
0a  

‘Auto’ )|( :1,, titi ssP  
11 ,...,0

1
Kkak   

‘Cross’ ),...,|( :1,:1,, 11 tjtjti N
sssP



 
220 ,...,0

2
Kkba k   

‘Full’ ),...,,|( :1,:1,:1,, 11 tjtjtiti N
ssssP



 
2,12,1 ,...,0

21
Kkba kk   

Table 2-1. Parameters included in the calculus of the conditional probability from Equation 14 for the ‘Rate’, ‘Auto’, ‘Cross’ and ‘Full’ 

models  

 



 

52 

canonical link for the Bernoulli distribution. This fact explains our choice of the logistic regression to predict the 

probability of the output variable si,t taking the value of 1 for each input S, where S = { si,1:t, sj1,1:t, ... , sjN-1,1:t} is 

the spike train dataset. Having in mind that the binary classification has a conditional expectation μ(S, θ) 

equivalent to the posterior probability P(si,t =1 | S, θ), 
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we can write the Bernoulli distribution for an univariate binary random variable with mean μ in the following 

way 

  ti,ti, s1s
),(1),()P()17(


 mm SSti,s . 

A general representation of an exponential family is given by the following probability density function 

 (   )   ( )   {   ( )- ( )},  

where h(x) is called the base density, η is the natural parameter, T(x) is a sufficient statistic and A(η) a 

 

Figure 2-4. Examples of selected number of lagged terms that best fit each model’s prediction if a spike will occur at zero lag bin of neuron i, 

based on pairs of neurons. A. For the ‘Rate’ model, only the a0 coefficient is considered. B. The ‘Auto’ model uses the rate effect plus the past 

events of neuron i. C. The ‘Cross’ model takes in account the rate effect (neuron i) and the lagged bins of neuron j1. D. All the rate, auto and 

cross effects are considered in the ‘Full’ model. 
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normalization factor. The choice of T(x) and h(x) determines the member of the exponential family. If we take 

the exponential of the logarithm of the original distribution from Equation 18, the Bernoulli distribution can be 

rewritten in the exponential family form 
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Thus, from Equation 19, we can depict the Bernoulli distribution as an exponential family distribution with 













m

m


1
log)20(

 

ti,ti, ss )T()21(  

   m eA  1log1log)()22(
 

1)h()23( ti,s
 

From Equation 20 we infer that μ and η are alternative parameterizations to the Bernoulli distribution, where the 

conditional expectation μ(S, θ) depends on S via the inner product η(S, θ) 
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By inverting Equation 20 we obtain the logistic function 
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Therefore, we have shown that the log-odds and logistic function are, respectively, the natural parameter and 

canonical link function of the Bernoulli distribution expressed as a member of the exponential family. 

Equation 24 represents the set of parameters selected as being a compromise between the optimal 

description of the information contained in the spike trains and the model complexity. This parameter system is 

linear and represents the correlations within the neural data. The autocorrelations are associated with 

coefficients ak and the cross-correlations with the coefficients bk, from Equations 14 and 24. These correlations 
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are the input of the link function g(η) (Equation 14). It is this logistic function which introduces a nonlinearity in 

our model. 

2.4.1 PARAMETER ESTIMATION 

To find the parameter vectors that best fit our data we maximized the log-likelihood of the data given the 

parameters. This vector takes the form θ = {a0, a1,..., aK1, b0, b1,..., bK2} for the ‘Full’ model and combines 

subsets of those parameters for the reduced models (see Table 2-1). The training set for the estimation is the 

spike train sequence S = { si,1:t, sj1,1:t, ... , sjN-1,1:t} used above. 

The likelihood, which indicates how probable the training dataset is for various settings of vector θ, can 

be written as a product of T probability density functions fθ(S)  


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if we assume the data is independent and identically distributed. The variable T indicates the size of the dataset. 

In our model, the likelihood can be formulated by the product of the T Bernoulli probabilities given by 
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As we have shown in Equation 16, the conditional expectation μ(S,θ) is equivalent to the posterior probability 

P(si,t=1 | S, θ) (for ease of notation, we will simply refer to the probability of success P(si,t=1 | S, θ) as 

P(si,t |  S,θ)). Having that in mind and applying the logarithm to the previous equation, we get the desired log-

likelihood measure in the following form 
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The maximum of this expression can be found numerically using various optimization algorithms. We 

implemented and compared the performance of two of these possible algorithms: the iteratively reweighted least 

squares algorithm (IRLS) and the cross-validated early stopping algorithm (ES). 
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The IRLS is an iterative nonlinear method which solves a weighted least-squares problem at each 

regression step; the regression coefficients are estimated and the observations are re-weighted, being the new 

weights calculated based on the predictions of the variable of interest. The fitting procedure is repeated until 

convergence. The function we want to optimize is the log-likelihood of our model given in Equation 28. 

Considering that 
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which are derivatives of Equations 20 and 25, respectively, we can calculate the gradient of the log-likelihood 

function. The vector of its partial derivatives with respect to its parameters, is given by 
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Taking another derivative, we obtain the Hessian matrix HlogL 
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where the weight matrix W is a diagonal matrix of the variances of the Bernoulli random variables si,t, that is 

W = diag{ μ1(1- μ1), μ2(1- μ2) ,…, μT(1- μT) }.  
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The IRLS performs a Newton-Raphson optimization in each iteration. The Newton-Raphson algorithm is 

a numerical method which computes iteratively the Jacobian linearization of the function around an initial guess 

point. It uses this linearization to move closer to the nearest zero and therefore seeks the roots of the function. It 

takes the form 
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Substituting the results from Equations 31 and 32 in the Newton-Raphson algorithm from Equation 29 we 

obtain the function 
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We defined the convergence termination criteria for this algorithm as |θ
(m+1)

- θ
(m)

| < ε, where ε = 10
-10

. 

The second algorithm we tested was a version of the IRLS algorithm, similar to the adaptive filter or least 

mean-squares algorithm used for fitting linear regression. Additionally, we used the cross-validation and early 

stopping rule to fit the model. This optimization method estimates updated values for the parameter vector θ 

through the solution of the regression given by 
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where the learning rate parameter ρ was calculated as the ratio 

 9.0)36(   

with λ as the maximum eigenvalue of the product of the training data matrices S
T 

S. 

Cross-validated early stopping can be used to prevent overtraining during the estimation of the prediction 

error, and to find an estimator with optimal generalization performance. Cross-validation divides the sample 

data into two sub-samples: the training set and the validation set. The training set is used for learning; it fits the 

model by updating the regression weights. During this calibration, the generalization error of the network is 

estimated by a prediction error which is the average error on the validation sample. This sample is used to 

estimate the expected discrepancy for the fitted model, monitoring the generalization error during training. 

It has been shown that the ratio of cross-validation singled out as the training set has no significant 

impact on the prediction error (Wang et al., 2005). We used 2-fold cross-validation, partitioning the original 100 
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second spike trains in two sub-samples of 50 seconds each. Equation 34 was iterated on the training set and the 

log-likelihood (Equation 28) was estimated on the validation set. The training was stopped at the minimum of 

the validation set error, which is when the change in the log-likelihood was below a criterion given by 

5

)1(

)()1(

10)37( 








m

mm

ll

llll
. 

In general, this early stopping rule is used to avoid over-fitting. In our case, since the size of our data was 

overwhelmingly greater than the number of parameters of our model, there was no need to control over-fitting 

and therefore, we could apply the early stopping rule to obtain convergence.  

2.4.2 MODEL SELECTION 

An increase in model complexity implies a higher adaption to more intricate data structures. However, 

we may observe an overfitting, meaning that the ability of the model to generalize beyond the fitting data is 

lower. In contrast, decreasing the number of parameters may result in underfitting, where the model does not 

follow the right trend in the data. Several selection methods can be used to try to find a compromise between 

these two situations and decide which model better captures the true data distribution. 

We estimated the optimal number of lagged terms for either the auto or cross correlations, K1 and K2j 

(Equation 14), respectively for each neuron or pair/ensemble of neurons. This was done by first calculating the 

log-likelihood of 30 different models with K lagged terms, where K=1, K=2, ..., K=30; and second applying a 

selection method to choose the optimal number of lags. We compared the performance of two selection 

methods: Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both methods 

carry out the fitting by maximization of a log-likelihood function. 

Kullback and Leibler developed an information measure based on Shannon’s definition of information 

(Kullback and Leibler, 1951). Later, Akaike defined a relationship between the Kullback-Leibler information 

and the maximum likelihood estimation method (Akaike, 1973). The AIC selects the model which minimizes 

the loss of information by choosing the one with maximum AIC value. It is defined as 

kllkAIC )()38( , 
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where k is the number of parameters included in the model. It minimizes the Kullback-Leibler divergence 

between the analysed model and the real distribution.  

The BIC is an extension of the Bayesian method proposed by Schwarz (1978) and although it is very 

similar to AIC, it is derived from a different perspective. It is intended to select a model that maximizes the 

posterior probability. The BIC measure is computed as 

)log(2)()39( TkllkBIC  , 

where T is the number of data points available for estimating the model. Again, the optimal number of lags was 

determined by maximizing this function. 

2.4.3 ENTROPY 

Further, we used information theory tools to pursue our quest for the probability of neuron i to spike at 

time t, conditioned on our data S and parameters vector θ. After fitting the model, we could calculate the 

uncertainty associated with the discrete response si,t. That uncertainty is a measure of entropy (H). Because of 

our Bernoulli distribution, one can use a binary function to calculate H 
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The entropy was calculated for each of the pairs and ensemble of neurons using the four models from Table 2-1, 

for healthy and lesioned subjects. Since there was a large disparity between the number of parameters in our 

model (< 30) and the quantity of data available (~ 20,000 bins), we did not have to perform a bias correction on 

our entropy estimates (see Table A-1 in the Appendix). 

To study the effects of individual factors on the entropy change, which we called delta entropy (ΔH), we 

used the following formula 
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This equation defines delta entropy for the ‘Full’ model. Introducing only the auto terms or cross terms, we were 

able to describe the effect on the entropy of these terms, separately. Essentially, the delta entropy eliminates the 
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effect of the firing rate in each of the ‘Cross’, ‘Auto’ and ‘Full’ models. In a broader perspective, we can say 

that delta entropy is a normalized mutual information measure. 

2.4.4 FREQUENCY DOMAIN ANALYSIS 

The auto-spectra and cross-spectra were calculated through a Fast Fourier Transform on non-overlapping 

blocks with 500 points length. The power spectrum was determined as an average between all the segments 

from each cell over the interval [0,100] Hz. 

2.5 RESULTS 

To test our model, we used a data from recordings in the GPe of 16 intact and 23 6-hydroxidopamine (6-

OHDA) unilaterally lesioned animals (Table A-1 in the Appendix). The dataset consisted of 27 ensembles of 

simultaneously recorded neurons for control animals and 56 for lesioned animals. With a mean of 5.4 cells per 

ensemble for controls and 8.2 cells for lesioned, the total number of cells recorded amounted to 143 in control 

and 459 in lesioned. The number of pairs simultaneously recorded in control animals was 507 and in lesioned 

animals was 2086 (Table A-1). 

The spike trains from each single cell recording were binned in 5 ms bins, a trade-off between temporal 

precision and computational efficiency. To guarantee that no information was being lost, we checked for the 

occurrence of double spikes. Multiple spikes were found in less than 0.4% of the bins in control and less than 

0.2% of the bins in lesioned animals. Also, we tested the effect of a smaller bin size. We found that the 

estimated entropy distributions for normal and lesioned animals were very similar using 5 ms or 2 ms bin sizes. 
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2.5.1 PARAMETER ESTIMATION: IRLS VERSUS ES 

We estimated the model parameters using the IRLS and the ES optimization methods that maximized the 

log-likelihood of our data, using fixed initial conditions, and compared their performances. Unfortunately, the 

IRLS algorithm applied to our model did not consistently converge. The percentage of IRLS convergent cases 

was 68.3% (99 of 145 neurons) for the control and 57.7% (265 of 459 neurons) for lesioned data. The algorithm 

failed to converge due to ill-conditioning of the covariance matrix of lagged spikes, that is, it was not possible to 

invert the matrix S
T
WS (see Equation 34) in at least one of the iterations. To overcome this problem we tried a 

different version of the IRLS method: an on-line learning algorithm, related to the least mean squares algorithm, 

which uses cross-validation and early stopping methods (ES). The parameter updates were given by Equation 

35. The training was stopped at the maximum of validation set error calculated according to Equation 37. The 

 

Figure 2-5. Comparison between the entropy calculated using the ES and the IRLS algorithms in pairs of neurons for which this last 

converged. This analysis was done under the four different models that characterize the effect of the different factors on the entropy in 

control and lesioned animals. A. Firing rates. B. Autocorrelations. C. Cross-correlations. D. Autocorrelations and cross-correlations (‘Full’ 

model). 
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learning process was stopped before it reached the optimal solution on the training set, avoiding over fitting. 

This algorithm always converged for our neural data. 

Figure 2-5 and Figure 2-6 show a comparison between the entropy estimates for pairs of neurons, using 

both IRLS and ES iterative algorithms. For this analysis we used only the data for which the IRLS algorithm 

converged. The scatter plots in Figure 2-5 show that the values of entropy estimates were very similar when 

calculated with both methods. 

Comparing the control and lesioned 

entropies, both figures show that the 

entropy was lower for lesioned than 

for control animals. Also, the 

entropy values estimated with the 

parameters calculated using the ES 

algorithm were typically larger than 

the ones calculated with the IRLS 

algorithm. This effect was larger in 

the ‘Auto’ and ‘Full’ models for the 

lesioned data. Since for the ‘Rate’ 

and ‘Cross’ models the effect was 

smaller, the auto terms may be 

reinforcing this result. As it will be 

shown below, on average, the 

number of parameters (K) used in 

the ‘Auto’ and ‘Full’ models was 

generally higher than in the ‘Rate’ 

and ‘Cross’ models. This difference 

in behaviours between the IRLS and 

ES algorithms in respect to the 

number of parameters of the model 

is explained by the fact that the ES 

algorithm was cross validated. By 

 

Figure 2-6. Distribution of the difference on the entropy estimated by means of the 

ES and the IRLS algorithms for each model. A. ‘Rate’ model. B. ‘Auto’ model. C. 

‘Cross’ model. D. ‘Full’ model. 
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means of the ES algorithm, the difference in entropy between control and lesioned animals was smaller than 

with the IRLS method. Thus, the ES algorithm provides a more conservative estimate of the entropy differences 

which will be used in our analysis.  

The IRLS algorithm converged quickly, reaching an appropriate solution with a well-suited number of 

iterations which translated in a good temporal performance. Yet, as we discussed previously, due to ill-

conditioning, it converged for only about half of the cases. On the contrary, the ES algorithm always converged, 

but it required a high number of iterations to converge what results in very long processing time.  

Therefore, due to the poor convergence of the IRLS algorithm and the more conservative characteristics 

of the ES method in face of our dataset, we elected the ES algorithm to further analyse our data. The results 

presented in the rest of the document were obtained using the ES algorithm. 

2.5.2 MODEL SELECTION: AIC VERSUS BIC 

In order to estimate the time interval over which a spike train is correlated with itself or between pairs of 

 

Figure 2-7. Example of AIC (dashed) and BIC (solid) curves calculated for a pair of neurons from a lesioned animal, under the ‘Auto’ 

and ‘Cross’ models. A. Autocorrelations. B. Cross-correlations. The ‘♦’ signals the maximum of the function, indicating the selected 

optimal number of lags. Note the BIC axis on the left and the AIC axis on the right side of the panels. 
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neurons, we determined the optimized number of lagged terms for auto or cross correlations (K1 and K2 

variables in Equation 14). To investigate the model selection technique that better performed on our data, we 

compared the results obtained with the AIC and the BIC. Considering a collection of 30 models, varying the 

number of parameters from one to thirty, we calculated both AIC and BIC measures of the goodness of fit of 

each estimated statistical model.  

Figure 2-7 shows a typical example of an AIC and BIC curves calculated for the ‘Auto’ and ‘Cross’ 

(pair-wise correlation) models for GPe neurons from a lesioned animal. In the upper panel, where the selection 

methods were applied to the ‘Auto’ model, the maximum value of both AIC and BIC curves were at K1 = 8 and 

K1 = 7, respectively. Although the selected optimal number of parameters did not significantly differ in this 

case, we can see that the AIC curve flattened after reaching its maximum and the BIC line showed a more 

prominent peak. Therefore, the shape of the AIC curve, in comparison with the BIC curve, indicated less 

precision in the determination of the optimal number of lagged time bins. In the lower panel of Figure 2-7, 

 

Figure 2-8. Distributions of the optimal number of lags, selected with AIC and BIC, for healthy and lesioned populations. A. Effects of 

autocorrelations. B. Effects of cross-correlations. C. Both auto and cross-correlations effects. 
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where is shown the results for the ‘Cross’ model, both curves presented a clear maximum for K2 = 6 and K2 = 3, 

respectively. In both ‘Auto’ and ‘Cross’ cases, BIC was more conservative in the selection of the number of 

parameters. This was true in the particular case from Figure 2-7, but also for most of the dataset, both in control 

and lesioned animals. We compared the number of time lags selected by AIC and BIC for all neurons (and pairs 

of neurons) from control and lesioned animals for the ‘Auto’, ‘Cross’ and ‘Full’ models (‘the ‘Rate’ model is 

not history-dependent) (Figure 2-8).  

We observed that the estimated number of parameters for the autocorrelations (Figure 2-8A) and cross-

correlations (Figure 2-8B) was overall higher with the AIC, in comparison to the BIC, for either the control or 

the lesioned animals. The combination of both auto and cross-correlation effects, within the ‘Full’ model (Figure 

2-8C), showed also that the BIC was more conservative.  

 

Figure 2-9. Scatter plots of the entropy in pairs of control and lesioned neurons, calculated using the optimal number of parameters selected 

under the AIC and BIC on the four models. A. Firing rate model. B. Auto model. C. ‘Cross’ model. D. ‘Full’ model. 
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Next, we directly examined the effect of either the AIC or BIC on the entropy estimation. We calculated 

the entropy with each of the four models – ‘Rate’, ‘Auto’, ‘Cross’ and ‘Full’ – using the number of lagged time 

bins selected by the AIC or the BIC methods (Figure 2-9). Comparing the entropy values for pairs of neurons 

obtained with both AIC and BIC methods, we found no substantial difference for any of the four models, either 

for control or lesioned animals. Therefore, the choice between the two methods in order to determine the 

number of lagged time bins that were necessary in the model did not have much impact on our entropy 

estimates. 

2.6 DISCUSSION 

In order to investigate the effects that changes in network dynamics, caused by dopamine depletion, had 

on the entropy of the GPe and STN-GPe networks of intact and 6-OHDA lesioned rats, we used a logistic 

regression model. This model allowed us to evaluate the relative impact of the changes in network dynamics on 

the entropy, by applying four different models which gave us estimates of the effect of rate, auto and cross-

correlations on the entropy of the spike trains for the control and lesioned groups.  

To fit the parameters from the different models, we maximized the log-likelihood of the data. In the quest 

to find the most suitable iterative method to dynamically estimate the number of parameters of our model, we 

tested two different algorithms. The main advantage of the IRLS method is that, being based on the Newton-

Raphson algorithm, it is second-order and therefore requires a low number of iterations to reach a solution of 

suitable precision -- meaning a fast convergence. Thus, the processing time for IRLS was very satisfactory. On 

the other hand, the IRLS algorithm converged for slightly over half of the pairs of neurons, both for lesioned and 

control animals. This nonsystematic convergence of the IRLS algorithm was a consequence of ill-conditioning 

of the covariance matrix. To bypass this difficulty, we repeated the maximization of the log-likelihood of the 

data by means of an on-line version of the IRLS algorithm: the ES algorithm. This method converged in all 

cases, but at the cost of a high total number of iterations. Therefore, the algorithm exhibited a very poor 

temporal performance. 



 

66 

Our analysis of the network entropy in the basal ganglia was based on a comparison between the network 

entropies of intact and lesioned animals. We have shown that the estimated entropy for lesioned animals is 

lower than for control animals. In addition, the entropy estimated values through the IRLS algorithm were lower 

than by means of the ES algorithm. Therefore, by estimating the model parameters applying the ES algorithm, 

the difference between the entropy estimates in control and lesioned animals was lower than when calculated 

with the IRLS method. This fact assured us that the ES algorithm was more conservative and therefore would 

not introduce a bias on our comparison. 

Comparing the overall performance between both algorithms, the ES has shown to have better global 

convergence for our data and similar, but slightly more conservative, values for the entropy estimation than the 

IRLS. Despite these advantages over the IRLS algorithm, the ES had a much lower performance in terms of 

computation time. Weighting the pros and cons of each method, it was clear that the ES algorithm was more 

favourable for our purpose. 

Additionally, to investigate which model selection method best explained our data, we tested and 

compared two criterions: AIC and BIC. We have shown that the entropy measures did not significantly differ 

when estimated using one or the other method. This was true for all the different models we studied (‘Rate’, 

‘Auto’, ‘Cross’ and ‘Full’ models), as well for control and lesioned animals. To elect the criterion that would 

provide more accurate results and better adapt to our model, we looked into their behaviours and properties. The 

AIC and BIC functions provide an estimate of the test error curve as the number of parameters increases. We 

analyzed their typical curve shapes and found that the BIC curves presented a more reliable selection of the 

optimized number of parameters. 

Some studies have shown that the AIC has a tendency to lean towards models with higher number of 

parameters than the true model (Harvey, 1993; Kass and Raftery, 1995). It is also known that, although both 

AIC and BIC penalize complexity, tending to select simple models with good fitting and a minimum number of 

parameters, in general that effect is stronger in BIC when a large number of trials are available. Although the 

optimal number of lagged time bins selected using either method was similar, the results revealed that also in 

this case AIC typically opted for models with slightly higher number of parameters in comparison with the 

models selected using BIC. Therefore, the extension in time of the auto and cross-correlations were on average 

higher for AIC, for control and lesioned animals. The Bayesian criterion was more conservative than the AIC, 

thus selecting slightly less complex models. Looking at the AIC and BIC penalty terms (Equations 37 and 38), 

we can see that when log(T) is greater than 2, where T is the number of bins that are available for estimating the 
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model, BIC will penalize more the model complexity. Therefore, the more conservative behaviour of the BIC 

compared with the AIC is explained by the fact that T in this study is higher than e
2
.  

For modest models, with small datasets, the AIC is usually recommended over the BIC as a selection 

criterion. The reason is that, in those conditions, BIC typically leads to underfitting due to its tendency to 

suggest excessively parsimonious models. For larger datasets it was demonstrated that the probability of the 

AIC erroneously selecting an over parameterized model does not tend to zero and therefore the AIC is 

“dimensionally inconsistent” (Kashyap, 1980). On the other hand, the BIC is “dimensionally consistent”: given 

a family of models, the probability of selecting the true model is one as the dataset increases in size. Its 

penalizing term (Equation 39) is more severe on over parameterized models than the one from AIC, and 

subsequently tends to select the best fitting model, for large datasets. Since AIC naturally tends to be more 

liberal on favouring extra parameters than the BIC, it can be beneficial in cases where it is preferred an upper 

limit of the number of parameters and high certainty that the true model is included. Yet, the over generosity of 

the AIC towards spare parameters can be a source of errors. Due to a higher consistency property of BIC, 

Nychka et al. (1992) suggested that one should opt for the BIC as an alternative to the AIC, what is in agreement 

with our results. 

2.7 CONCLUSIONS 

In this chapter we describe our information theory approach to be used in the study of GPe and STN-GPe 

networks in healthy and 6-OHDA lesioned rats. We detailed, as well as compared, several of the methods used 

to calculate the uncertainty of the systems. We have shown that the ES algorithm was preferable to the IRLS 

algorithm; it presented full convergence for our dataset, in contrast with the IRLS algorithm which converged 

for just over half the cases; additionally, the ES algorithm presented more conservative values on the entropy 

estimation. We also showed that the BIC was a better solution to our model selection problem since it presented 

higher accuracy and was more conservative than the AIC, which tends to select over parameterized models 

when faced with large datasets. Nevertheless, the entropy estimates were similar using either method. 
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3 THE EFFECTS OF DOPAMINE DEPLETION ON NETWORK ENTROPY IN 

THE EXTERNAL GLOBUS PALLIDUS 

3.1 ABSTRACT  

Dopamine depletion in cortical-basal ganglia circuits in Parkinson’s disease (PD) grossly disturbs 

movement and cognition. Classic models relate Parkinsonian dysfunction to changes in firing rates of basal 

ganglia neurons. However, disturbances in other dynamics of neural activity are also common. Taking both 

inappropriate firing rates and other dynamics into account, and determining how changes in the properties of 

these neural circuits that occur during PD impact on information coding, is thus imperative. Here, we examined 

in vivo network dynamics in the external globus pallidus (GPe) of rats before and after chronic dopamine 

depletion. Dopamine depletion led to decreases in the firing rates of GPe neurons and increases in synchronized 

network oscillations in the beta frequency (13-30 Hz) band.  

Using logistic regression models we determined the combined and separate impacts of these factors on 

network entropy, a measure of the upper bound of information coding capacity. Importantly, changes in these 

features in dopamine-depleted rats led to a significant decrease in GPe network entropy. Changes in firing rates 

had the largest impact on entropy, with changes in synchrony also decreasing entropy at the network level. 

Changes in autocorrelations tended to off-set these effects as autocorrelations decreased entropy more in the 

control animals. Thus, it is possible that reduced information coding capacity within basal ganglia networks may 

contribute to the behavioural deficits accompanying PD. 
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3.2 INTRODUCTION  

How does dopamine depletion in cortico-basal ganglia circuits in Parkinson’s disease (PD) induce gross 

dysfunction in motor control and cognition? An early and influential model, which we will refer to as the ‘Rate’ 

model, of the neural basis of the behavioural deficits seen in PD, proposed that dopamine has opposing effects 

on direct and indirect pathways through the basal ganglia (Albin et al., 1989; DeLong, 1990). This model 

suggested that differential rate changes in these two pathways in PD ultimately leads to an over inhibition of 

basal ganglia targets, resulting in decreased cortical activity and movements. However, there are several 

findings which are inconsistent with the rate model.  

For example, the direct/indirect distinction on which the model is based is no longer clearly defined as 

additional pathways linking the BG nuclei have been discovered (Parent and De Bellefeuille, 1983; Kincaid et 

al., 1991; Parent and Hazrati, 1995) and there is less segregation between D1 and D2 receptors in the pathways 

than was first thought (Surmeier et al., 1996; Aizman et al., 2000). Furthermore, electrophysiological recordings 

in cortico-basal ganglia circuits in PD and its animal models have shown that chronic dopamine depletion is 

commonly associated with alterations in the firing patterns of neurons, which may occur in the absence of, or in 

tandem with, changes in firing rates. Notably, recordings from electrodes implanted in unmedicated patients 

with PD have identified beta-frequency oscillations (13-30 Hz) in several basal ganglia nuclei (Brown et al., 

2001; Levy et al., 2002; Williams et al., 2002; Brown, 2003) and similar oscillations have also been seen in 

primates treated with MPTP (Nini et al., 1995; Raz et al., 1996; Bergman et al., 1998; Raz et al., 2000; Raz et 

al., 2001; Goldberg et al., 2004) and rats treated with 6-hydroxydopamine (6-OHDA) (Sharott et al., 2005b; 

Mallet et al., 2008a; Mallet et al., 2008b; Degos et al., 2009), both of which are important models of PD. These 

oscillations are stronger when patients are OFF their dopamine replacement medication and are reduced when 

patients prepare movements (Brown et al., 2001; Levy et al., 2002; Williams et al., 2002; Williams et al., 2003; 

Kuhn et al., 2004b; Brown and Williams, 2005; Williams et al., 2005). These data suggest that beta-frequency 

oscillations may detrimentally affect information coding in the basal ganglia. Thus, disturbances in firing rates, 

oscillations and synchronization may be detrimental to information processing in the basal ganglia and underlie 

the behavioural deficits seen in PD. To investigate this hypothesis further we estimated the entropy in the GPe 

of control (dopamine intact) and Parkinsonian (6-OHDA lesioned) rats. Chronic dopamine depletion in this 

model of PD caused changes in firing rates, autocorrelations (oscillations) and cross-correlations (synchrony). 
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Using logistic regression models to define the network entropy of the spike trains we determined the collective 

impact of these three features as well as the relative impact of each feature when considered separately. 

3.3 METHODS 

3.3.1 DATA COLLECTION  

Experimental procedures were carried out on adult, male Sprague-Dawley rats (Charles River, Margate, 

UK), and were conducted in accordance with the Animals (Scientific Procedures) Act, 1986 (UK). The dataset 

described in this paper has been published previously (Mallet et al., 2008a; Mallet et al., 2008b) and the 6-

OHDA lesioning and electrophysiological recording procedures have been described in chapter 2 (section 2.3.2 

and 0, respectively). Electrophysiological recordings were made in 16 dopamine-intact control rats and 23 6-

OHDA-lesioned rats. See Table A-1 in the Appendix for a summary of the dataset used in this study. 

3.3.2 MODEL  

Scripts to carry out the analyses are available from the authors on request. We wanted to estimate the 

entropy in the network neural responses, as reflected by single-unit activity recorded across ensembles. The 

entropy provides an upper bound on the amount of information that can be carried by a population of neurons, 

and we assume that the relative amount of information in the basal ganglia is related to how well these nuclei (or 

a single nucleus therein) can represent movements or cognition. To estimate the entropy, we first have to 

estimate the probability distribution of spiking for neurons in the network. If we analyze neural responses using 

small time bins, the spikes can be treated as all or none events. In this case we can represent them as categorical 

0’s and 1’s and build a classification model which attempts to predict whether a neuron will (1) or will not (0) 

fire a spike in each time bin as a function of its past firing and the firing of other neurons. If we can effectively 

predict whether or not a neuron will or will not fire a spike in the next time bin, the actual response in that time 

provides us with relatively little information. Although there are a number of ways to approach this estimation 
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problem, the one that makes the least assumptions is the logistic regression model (Christensen, 1997). This 

approach is related to the direct and maximum entropy approaches which are known as multinomial or loglinear 

models in statistics (Christensen, 1997; Strong et al., 1998; Averbeck and Lee, 2006; Schneidman et al., 2006). 

Once this model has been estimated on the data, it can be used to directly estimate the entropy of the spike train, 

using the approach outlined below.  

We estimated the entropy rate of the spike trains in the GPe network for both the control and the lesioned 

rats. The entropy rate, H, of a stationary stochastic process, S, is given by  

 (1)  ),...,|(lim)( 1,1,, ititi
t

i sssHsH 


 . 

Having shown the stationary properties of the data, we estimated the entropy of the spike trains 

conditioned on their past. Additionally, we were interested in the joint entropy of the population of neurons. 

Thus, s in Equation 1 is a vector over an ensemble of neurons. Ignoring the temporal component to simplify 

notation, the joint entropy of an ensemble of N simultaneously recorded neurons can be factored as 
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To begin the analysis we discretised the spike trains at a bin width of 5 ms, which represented a trade-off 

between temporal resolution and computational efficiency. Each bin was a Bernoulli random variable with a 

value of 0 or 1, and if more than one spike occurred, it was only counted as a single spike. At this bin width 

<0.4% of the bins in the control animals and <0.2% of the bins in the lesioned animals contained two spikes. We 

also analyzed a subset of our data (~100 GPe neuron pairs from lesioned and control animals) with a bin width 

of 2 ms and found results which were consistent with what was found at 5 ms (data not shown).  

After the spike trains were discretised we fit logistic regression models to estimate the conditional 

probabilities of a spike in each bin. This model is given as  
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P(si,t| si,1:t, sj1,1:t, ... , sjN-1,1:t) specifies the posterior probability of occurrence of a spike si,t=1, in neuron i at time t, 

given the response of neuron i in previous time bins, and/or other neurons j in previous time bins. The variables 

a and bj, j=1,…, N-1, are coefficients which are estimated as described below. K1 and K2,j, represent the number 
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of time lags used. For the analyses reported in Figure 2-3, Figure 2-4 and Figure 2-5, N=1, i.e. we carried out 

the analyses while conditioning on only one other neuron. We refer to these as pair-wise analyses. For the 

subsequent plots we included all neurons simultaneously recorded, and thus N equalled the number of neurons 

in the ensemble. The model parameters were optimized for each neuron as described below. The link function g 

was the logistic transform  

 (4)  
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Four versions of the model from Equation 3 were fit which allowed us to examine the effects of different 

features of the ensemble response on the network entropy. The first model (the ‘Rate’ model) included only the 

a0 term and characterized only the effect of the firing rate on the entropy. All subsequent models included the a0 

term as well as additional terms. The second model (‘Auto’) included the lagged bins from the same neuron and 

estimated the effect of autocorrelations, that is, oscillations at the single-cell level, on the entropy. The third 

model (‘Cross’) included the lagged and zero lag bins from one or more additional neurons, but not the lagged 

bins from the same neuron and estimated the effect of cross-correlations, that is, synchrony between pairs of 

neurons, on the entropy. The final model (‘Full’) included all of three terms (rate, autocorrelation, and cross-

correlation).  

3.3.3 PARAMETER ESTIMATION  

Model parameters were fit by maximizing the likelihood of the data given the model parameters. The 

log-likelihood (ll) for our model was given by 
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where θ is the parameter vector, which for the ‘Full’ model and pairs of neurons was θ = {a0, a1, . . ., aK, b0, . . ., 

bK}. For the reduced models only subsets of these parameters and variables were included. We use {sm} as 

shorthand to indicate the set of lagged variables appropriate to the corresponding model. So, for example, for the 

‘Auto’ model, sm = {si,t-1, . . ., si,t−K1}, for the ‘Cross’ model sm = {sj,t, . . ., sj,t − K2}, the ‘Full’ model would be the 

union of these, etc.  
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This equation can be maximized using the iteratively re-weighted least squares algorithm (IRLS, Hastie 

et al., 2001). However, we found that this algorithm did not always converge, because of ill-conditioning of the 

covariance matrix of lagged spikes (chapter 2). To alleviate this problem, we used an on-line version of the 

IRLS algorithm, similar to the adaptive filter or least-mean-squares algorithm used for fitting linear regression 

(Ljung, 1999). The parameter updates at iteration l for this algorithm are given by  
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In this case sm is the vector of spikes being used for prediction at the corresponding time step for the 

model, containing either auto or cross terms. We fit this model using the early stopping rule. To do this the 

dataset was split in half, and Equation 6 was iterated on one half of the data and the log-likelihood (Equation 5) 

was estimated on the other half of the data. Iteration was stopped when the change in the log-likelihood was 

below a criterion value given by  
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Normally the early stopping rule is used to control for over-fitting and in this case one looks for a minima 

of the log likelihood. However, because we had far more data than parameters in our model the log likelihood 

reached a plateau and we used a small change in this plateau as our estimate of convergence.  

3.3.4 MODEL SELECTION  

The number of lagged terms for either the auto or cross-correlation, K1 and K2,j, had to be estimated. To 

do this we estimated models with 1 to 30 lagged terms (i.e. K=1, K=2, . . ., K=30), and used model selection 

techniques to determine the optimal number of lags (also see Figure 2-3). We found that our entropy estimates 

were not strongly dependent on the number of lags used, as long as we used enough lags. The number of 

relevant lags is an interesting quantity by itself, however, as it provides information about the time scale of the 

correlations in the data. Thus, if correlations extend over a longer period of time, more lags will be necessary to 

capture them. To estimate the optimal number of lags we used the Bayesian Information Criteria (BIC). This is 

given by  

(8)  )ln(2)( TkllkBIC   
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where k is the number of parameters in the model, and T is the amount of data available for estimating the 

model. The optimal number of lags was determined by maximizing the BIC function. We also examined entropy 

estimates using Akaike’s Information Criterion (AIC). Although the number of lagged terms was always larger, 

because AIC penalizes with -2k instead of –kln(T), the actual entropy estimates were statistically 

indistinguishable. 

3.3.5 ENTROPY 

Once the model was optimized and fit, the entropy of the spike train was estimated by calculating 

(9)  
 


T

t s

mtimtimi ssss
T

ssH
1

1

0

,2, }){,|(Plog}){,|(P
1

}){|( 

 

Because our models had very few parameters (on average <15) compared with the quantity of data 

available (~20,000 bins), and because we were using a cross-validated estimator, we did not have to correct for 

bias in our entropy estimate. More specifically, because our model uses cross validation it generates an upper 

bound on the entropy and therefore we would not under-estimate the entropy (Efron and Tibshirani, 1998). 

We also compared entropy estimates with and without cross-validation and found that they were highly 

similar. We also estimated the change (decrease) in entropy, or H, when we included additional sets of 

parameters in the model. For the ‘Full’ model this was defined as 

(10)  
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By including only the auto or cross terms, we can estimate the separate effects of these factors on the 

entropy. 

3.3.6 HIGHER-ORDER TERMS 

To investigate the presence of higher-order effects on the prediction of the spikes, second order terms 

were added to the model from Equation 3 
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The ‘Auto’, ‘Cross’ and ‘Full’ models were recomputed using the estimated parameters from the first 

order model from Equation 3 for the ensemble of neurons. For each ensemble of neurons, we compared the 

maximum BIC value (BICm) for the ensemble of neurons (BICens) and the BIC obtained with the additional 

higher-order terms (BIChot)  

 (12)  )()( mhotmensm kBICkBICBIC  . 

3.3.7 POPULATION MODEL 

We also developed a model which estimated the impact of pair-wise correlations on the entropy at the 

population level (see Appendix B for details). The effects at the population level cannot be measured directly, as 

hundreds of neurons would have to be recorded simultaneously. This would also require prohibitively large 

datasets to get accurate entropy estimates. Estimates can be made, however, by making various assumptions. 

The model uses boot-strap estimates of population covariance matrices in conjunction with a linear-nonlinear 

estimator (consistent with our logistic regression model) to estimate the entropy in an arbitrarily large 

population.  

3.3.8 MIXED MODEL ANALYSIS 

We also used a linear mixed model (also known as a random effects model) to assess effects of dopamine 

lesion on our various entropy parameters. This model was fit using the Mixed function in SPSS (v. 14) with a 

fixed effect of lesion and a random effect of subject. We also carried out a related analysis, by first calculating 

the average value of each entropy statistic (i.e. entropy based on ‘Rate’, ‘Auto’, ‘Cross’ or ‘Full’ models) for 

each animal and then doing t-tests between the distributions of these average statistics for lesioned and control 

animals. Results were similar to the random effects models. We report results only for the random effects model 

(referred to simply as ANOVA in the text). 
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3.4 RESULTS 

The reported results were derived from ensembles of GPe neurons simultaneously recorded in either 

dopamine-intact control rats or 6-OHDA-lesioned rats. In the control rats we recorded 27 ensembles which had 

a total of 143 single units and 507 pairs of neurons. In the lesioned rats we recorded 56 ensembles which had a 

total of 459 single units and 2086 pairs of neurons. Ensembles were defined as a given set of simultaneously 

recorded GPe neurons. The ensembles analyzed here contained up to 19 neurons. The average ensemble size for 

the control rats was 5.4 neurons and for lesioned rats it was 8.2.  

Chronic dopamine depletion caused by 6-OHDA lesions of midbrain dopamine neurons was associated 

with substantial changes in the dynamics of neural activity within the GPe network. Specifically, the mean firing 

rate of GPe neurons was significantly reduced in the lesioned animals (Figure 3-1A), there was a small relative 

increase in the single-neuron oscillations (i.e., autocorrelations) at ~20 Hz (Figure 3-1C), and a larger increase 

in the relative synchrony of GPe neuron pairs (i.e., cross-correlations) at ~20 Hz (Figure 3-1D). These latter 

changes also led to a large increase in the coherence between neuron pairs, with a peak in coherence at ~20 Hz 

(Figure 3-1B). Thus multiple features of the GPe neuron activity were affected in the Parkinsonian animals. 

While it is clear that oscillations are present, and oscillations (correlations) can only decrease entropy, it is not 

clear how large the effect will be, especially relative to the change in rates and the change in autocorrelations. 

Therefore we will compare the size of the effects.  

Because these changes in network dynamics have been reported in detail previously (Mallet et al., 

2008a), our primary goal here was to examine the effect of these changes on the entropy in the GPe network. To 

calculate the entropy we fit a logistic regression model. By incorporating different sets of parameters in the 

model, we examined the separate effects of firing rates, oscillations (autocorrelations) and synchrony (cross-

correlations) on the entropy and determined which of these three features of the network response to dopamine 

depletion most impacted on entropy.  

We began by determining the number of lagged time bins that were necessary in the model. This is an 

estimate of the time interval over which a spike train is correlated with itself (oscillations) or between pairs of 

neurons (synchrony), and time bins that were not necessary are bins which had a statistically negligible 

contribution. We found that the effect of the autocorrelations rarely extended beyond ~15 bins (75 ms) for either 
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the control or the lesioned animals (Figure 3-2A). The effect of the cross-correlations, however, rarely went 

beyond about 6 bins (30 ms) for the lesioned animals, and never went beyond 1 bin (0 time lag, synchronous 

spikes) for the normal animals (Figure 3-2B). In fact, for the control animals 99.3% of the pairs did not have a 

significant synchronous term and for the lesioned animals > 80% did not (Figure 3-2B). Therefore, the 

correlation time was much shorter between neurons than within the spike trains of a single neuron, and this 

effect was more dramatic for the control animals than it was for the lesioned animals. The number of parameters 

for the ‘Full’ model was then the sum of the number for the ‘Auto’ and cross models (Figure 3-2C).  

 

  

 

Figure 3-1. Comparison of GPe network dynamics in 6-OHDA-lesioned and control rats. A. Mean ± SE firing rates of all neurons. Difference 

significant at p-value <0.01. B. Mean coherence for all pairs of neurons. C. Mean autocorrelation for all neurons. D. Mean cross-correlation for 

all neurons. 
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3.4.1 EFFECTS OF RATES, AUTOCORRELATIONS AND PAIR-WISE CROSS-

CORRELATIONS ON ENTROPY 

Next, we examined the difference in entropy between control and lesioned animals generating four 

versions of our logistic regression model that took into account the following features of neuronal activity: (1) 

only the firing rates; (2) the firing rates and the autocorrelations; (3) the firing rates and the cross-correlations 

(note for all entropy estimates we included at least 1 bin of cross-correlation); or (4) all three features (i.e. the 

rates, autocorrelations and the cross-correlations). The fourth ‘Full’ model gives an estimate of the entropy in 

the network as it accounts for all factors that can reduce the entropy in spike trains. (Note that we use the term 

‘factor’ here and henceforth to refer to the entire set of parameters that represent either the auto or cross effects.) 

Importantly, however, in the first analyses we only estimated entropy while conditioning on one other neuron, 

i.e. we considered pair-wise and not ensemble 

entropy. Below we will present results from an 

expanded model which takes into account all 

simultaneously recorded neurons (referred to as 

the ensemble), and ultimately an entire population 

of neurons.  

We found that the GPe network entropy 

was lower in the lesioned animals as compared to 

control animals for all four models (Figure 3-3A-

D). Furthermore, in all four cases, the distributions 

were significantly different between control and 

lesioned rats (2-way ANOVA with lesion as a 

fixed effect and subject as a random effect, p<0.05 

on fixed effect). Firing rate differences, without 

considering any temporal dynamics, had a large 

effect on the difference in entropy (Figure 3-3A). 

This is to be expected when using a bin size of 5 

ms to analyze neurons firing at <100 Hz, as was 

the case here. If only firing rates are considered, 

 

Figure 3-2. Optimal number of lags for auto (K1) and cross (K2) 

correlations. A. Optimal number of lagged time bins (5 ms each), 

selected with BIC for autocorrelations in lesioned and control 

ensembles. B. Same for cross-correlations. C. Total of auto and 

cross-correlations. 
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then a firing rate of 100 Hz results in a spike in half the bins, i.e. the probability of a spike in each bin is 0.5. 

When only two outcomes are possible (0 or 1 spike per bin), the entropy is maximal when the probability of the 

outcome is 0.5 and thus, the entropy in our case is maximal at 100 Hz and falls off monotonically as the firing 

rate decreases below this. Therefore, significantly decreasing firing rates across a population of GPe cells will 

necessarily decrease the network entropy, given the firing rate distribution. Adding the autocorrelations to the 

‘Rate’ model, however, decreased the difference in entropy between the lesioned and control animals (Figure 

3-3B), and as such, the autocorrelations 

seemed to reduce the entropy more in the 

control animals, a point which we will return 

to below. Next we examined the effect of 

cross-correlations, that is, synchrony at the 

level of pairs of neurons. The cross-

correlations appeared to have a minimal 

effect, as the entropy distributions for the 

model with this factor were similar to the 

distributions for the model with only the rate 

factor (Figure 3-3C). Finally, the ‘Full’ 

model, which took into account all three 

factors, was similar to the autocorrelation 

model, which also showed that the synchrony 

factor had a minimal effect for pairs of 

neurons (Figure 3-3D).  

To directly determine the effect of 

either the autocorrelation or cross-correlation 

factor on the entropy, we next examined how 

much the entropy was decreased (delta 

entropy, ΔH) when either of these factors was 

added to the ‘Rate’ model. These effects are 

implicit in the results shown in Figure 3-3. 

Consistent with those results, delta entropy 

 

Figure 3-3. Comparison of GPe network entropy in lesioned and control 

rats under each of the four models. A. Entropy (H) when considering 

only firing rates. B. Entropy when autocorrelations are added to the rate 

model. C. Entropy when cross-correlations are added to the rate model. 

D. Entropy in the ‘Full’ model, which takes into account firing rates, 

autocorrelations and cross-correlations. 
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was larger for the control animals than for 

the lesioned animals when the 

autocorrelation factor was considered 

(Figure 3-4A). In contrast, when the cross-

correlation factor was considered, delta 

entropy values were small for both the 

control and the lesioned animals, and as 

such, synchrony between pairs of neurons 

contributed minimally to reducing the 

overall network entropy (Figure 3-4B). 

Finally, the ‘Full’ model was similar to the 

‘Auto’ model, because most of the change 

in entropy came from the auto factor in the 

‘Full’ model (Figure 3-4C). 

Entropy rate, i.e. entropy per second, 

as we calculated here, gives an estimate of 

the information capacity of the network and 

bounds how well the network can represent 

time-varying behaviours, for example movements. Entropy per spike is a less direct measure of how well the 

network can code dynamic behaviours because it has to be multiplied by the spike rate to get an estimate of the 

information capacity per unit time. However, although entropy per spike is ultimately not the more relevant 

metric for understanding the coding capacity of the network, it is interesting from a theoretical, efficiency point 

of view (Rieke et al., 1995), particularly because the spike rates were lower in the lesioned animals, and the 

effects of the autocorrelations were larger in the control animals. We thus tested whether the entropy per spike 

(rather than per bin or per second) was similar in the two GPe networks. We found that the entropy per spike 

was actually lower in the controls as compared to lesioned animals.  

As such, each individual spike of each GPe neuron carried more information in the lesioned animals 

(Figure 3-5). Based on these analyses we can now ask -- which of these changes in network dynamics 

contributed most to the decreased entropy observed in the GPe in lesioned animals? For this we calculated the 

proportional effects of each of the three factors; changes in rates, changes in autocorrelations and changes in 

 

Figure 3-4. Decreases in entropy (or delta entropy, ΔH) when additional 

parameter sets (‘factors’) are included in the models. All changes are with 

respect to model which includes only rates. A. Delta entropy for 

autocorrelations. B. Delta entropy for cross-correlations. C. Delta entropy for 

‘Full’ model with auto and cross-correlations. 
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cross-correlations. We found that the effects were 1.84, −0.88 and 0.04, for rates, autocorrelations and cross-

correlations, respectively. In other words, the changes in firing rates had the largest effect (decreased entropy), 

the changes in autocorrelations actually made the entropy of the control and lesioned networks more similar (but 

affected entropy to a lesser degree than rate), and the changes in cross-correlations had the smallest effect (but 

also decreased entropy). Up until now we have only considered the effects of synchronous activity at the level of 

pairs of neurons. Below we extend these analyses to larger ensembles of simultaneously recorded neurons, as 

well as to the whole population of GPe neurons.  

3.4.2 ENSEMBLE ENTROPY 

The previous analyses examined the effects of cross-correlations and thus, only considered the effects 

between pairs of neurons. It is possible that these effects on network entropy may become larger if the entire 

ensemble of simultaneously recorded neurons is considered. To address this, we compared the entropy when the 

effects of only one other neuron were being considered (pairs) to the entropy when the entire ensemble of 

simultaneously recorded neurons were being considered, where an ensemble is the set of simultaneously 

recorded neurons. We found that, in general, including all of the neurons in an ensemble had a minimal 

additional effect on reducing the entropy (Figure 3-6A,B). The effect was slightly larger in the lesioned animals 

than it was in the control animals (Figure 3-6B), consistent with the fact that the (pair-wise) cross-correlation 

effect was slightly larger in lesioned animals as well (Figure 3-4B) and the fact that very few neuron pairs in 

controls had a significant synchronous term.  

  

 

0 1 2 3 4 5 6 7 8 9

x 10
-3

0

0.1

0.2

0.3

P
ro

p
o

rt
io

n

Entropy per Spike     [bits/spike]

Control

Lesioned

‘Full’

Figure 3-5. Entropy per spike of ‘Full’ model. Data 

for all GPe neurons is shown but entropy rate (entropy 

per spike) for each neuron was divided by the average 

firing rate of that neuron.  

 



 

82 

3.4.3 HIGHER-ORDER EFFECTS 

Another important way that our model can be extended is to consider higher-order effects. Specifically, 

similar to measuring cross-correlations linearly, we have only been considering the effects of a single bin of 

neural activity in the model. It is possible that patterns of spikes across two bins, either within the spike trains of 

a single neuron, or between pairs of neurons were important. To examine this we estimated models which 

included pair-wise interactions either from the lagged time bins of a single neuron, or pair-wise interactions 

between neurons in ensembles (see methods). We found that, in all cases, including these terms did not improve 

the model fit (BIC > 0). Thus, there was no statistically supportable evidence in our data that quadratic terms 

were important.  

3.4.4 MODELING EFFECTS AT THE POPULATION LEVEL  

In the preceding analyses, we have found only modest effects of cross-correlations between neurons on 

the network entropy. To some extent, this is to be expected, as theoretical studies show that the effects of 

correlations tend to be small in pairs of neurons, whereas they can be large in networks of neurons (Narayanan 

et al., 2005; Averbeck et al., 2006). It is currently not feasible to record from or estimate the entropy in hundreds 

 

Figure 3-6. Comparison of ensemble and pair-wise entropy. A. Scatter plot of entropy in pairs (Hpairs) and entropy in corresponding 

ensemble (Hens). Each ensemble is plotted against all of the pairs into which it can be broken down. Points on the diagonal show no 

additional effect of additional neurons in the ensemble. B. Distribution of differences between entropy in pairs and entropy in 

corresponding ensemble. 
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or thousands of neurons. It is possible, however, to estimate the effects of correlations in large populations of 

neurons, using estimates of pair-wise correlations across the population and a model of the population which 

makes certain assumptions. As such, we can estimate how large the effects of cross-correlations would be at the 

level of the entire GPe neuron population.  

We carried out this analysis in two steps. First, we showed that our model predicted correlation values in 

small ensembles of ≤12 simultaneously recorded neurons (Figure 3-7A). Although we had a few larger 

ensembles we were not able to subsample enough different ensembles of >12 neurons to derive reliable 

estimates. We randomly selected 400 recorded ensembles of various sizes and calculated the change (decrease) 

in entropy (delta entropy) as a function of ensemble size. We then used our model to predict average delta 

entropy values using information about pair-wise correlations between recorded neurons. We found a close 

correspondence between our model and the data (Figure 3-7A). Thus, for small ensembles, our model closely 

predicted delta entropy. 

Next, we used the measured values of correlations between pairs of neurons to generate a population 

covariance matrix, for populations of various sizes, and examined how delta entropy scaled with the size of the 

population. We found that, although delta entropy rises steeply up to a population size of about 100 neurons, it 

flattens after that, and saturates at a value of ~0.021 on average for the GPe neuron population in the lesioned 

animals and ~0.011 for the control population (Figure 3-7B). Thus, the effects of cross-correlations at the 

population level remain somewhat modest when compared to either autocorrelations or firing rates but they are 

much larger than they are in pairs.  

 

Figure 3-7. Decrease in entropy (delta entropy, ΔH) as function of ensemble size and model prediction. A. Average delta entropy in 400 

random ensembles of simultaneously recorded neurons of each size (thin lines; error bars are ±1 SEM) and model predictions (thick lines). 

B. Predicted delta entropy as a function of ensemble size for large populations. 
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Similar to the analysis carried out above for pairs of neurons, we can examine the relative contribution of 

each factor to decreasing the entropy using our network estimates. In this case we found that the effects were 

1.838, −0.882 and 0.051, for rates, autocorrelations and cross-correlations, respectively. Thus while there is a 

large increase in the effect of correlations at the population level, it is still small compared to the other effects.  

3.5 DISCUSSION  

We examined the effects of changes in activity dynamics brought about by chronic dopamine depletion 

on the entropy in the GPe network. Our analyses showed that network entropy and thus, information coding 

capacity, was significantly reduced in the lesioned animals as compared to controls. This reduction in entropy 

arose chiefly because of decreases in GPe neuron firing rates, although increases in cross-correlations 

(synchrony) between neurons also significantly contributed. Interestingly, the autocorrelations in GPe were 

more structured in control animals and actually decreased the entropy more in these animals than it did in the 

lesioned ones. As with previous studies (Petersen et al., 2001; Averbeck and Lee, 2006) and consistent with 

theoretical predictions (Shamir and Sompolinsky, 2004; Averbeck et al., 2006), the effects of cross-correlations 

were limited at the level of pairs of neurons. However, the effects of synchronized activities were larger at the 

network level (Narayanan et al., 2005; Averbeck et al., 2006). 

Classical theories of basal ganglia dysfunction in movement disorders have suggested that decreases in 

neural activity in the GPe, which is part of the indirect pathway, would contribute to movement deficits (Albin 

et al., 1989; DeLong, 1990). Consistent with this idea we did find that the spike rates of GPe neurons were 

decreased. We have, however, taken a different perspective on this decrease in firing rates. We have examined 

the effect of this decrease on the entropy in the network, and therefore we have assumed that the decrease in 

firing rates changes the ability of the population to code information. An advantage of using information theory 

to examine these effects is that it allows us to compare, within a single analytical framework, the effects of 

changes in rates to the effects brought about by changes in other activity dynamics, such as cross-correlations 

and autocorrelations. The classical theory has no way of accounting for how changes in activity dynamics other 
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than firing rates influence behaviour, because it assumes that the total activity of a nucleus somehow relates to 

whether a specific movement will be executed.  

Implicit in our approach is the idea that activity patterns within the GPe code information. Thus, we are 

assuming that neurons within the basal ganglia have tuning functions (Boussaoud and Kermadi, 1997), similar 

to cortical and thalamic neurons (Georgopoulos et al., 1982), such that the activity of single neurons varies in a 

continuous way with some underlying task variable, such as force or direction (Pasquereau et al., 2007). Thus, 

the activity of an individual neuron would not accurately code information about movements. Rather, the 

activity across a population of neurons would code that information. Simply increasing or decreasing firing rates 

in the population would not necessarily affect the movement being encoded. From this point of view, the 

entropy of the network constrains how well the network can code information, and it is these coding constraints 

that might lead to movement difficulties.  

The exaggerated beta frequency synchronization seen in the cross-correlations in the GPe in our animal 

model is similar to that which has been recorded in the STN, which is reciprocally connected with GPe, in 

patients with PD (Levy et al., 2002; Williams et al., 2002; Brown, 2003). These studies have shown that beta 

activity was stronger when the patients were OFF dopamine replacement medication (Brown et al., 2001; 

Williams et al., 2002), that the oscillatory activity decreased during movements or movement preparation (Levy 

et al., 2002; Kuhn et al., 2004b; Brown and Williams, 2005; Williams et al., 2005), and that this decrease was 

facilitated if patients were on dopamine medication (Doyle et al., 2005). Taken together, this work suggests that 

dopamine desynchronizes beta activity in basal ganglia networks, and this desynchronization may be important 

for action initiation. From the point of view of information coding, the beta-frequency synchronization might 

constrain the ability of the network to represent or encode movements. Thus our finding is consistent with 

recordings in PD patients with movement difficulties. That said, the excessive synchronization in GPe is 

concomitant with decreased firing rates therein and so, most probably, changes in both these features of activity 

are important.  

A key consideration of our study is that we analyzed GPe activity recorded in anesthetized animals. We 

assume that the entropy changes occurring under anaesthesia are also relevant for the GPe in the awake, 

behaving animal. There is good evidence to support the extrapolation of our findings to the unanaesthetized 

state. First, the beta synchronization we have analyzed occurs in both anesthetized and awake 6-OHDA-lesioned 

rats (Sharott et al., 2005b; Mallet et al., 2008a; Mallet et al., 2008b; Degos et al., 2009). Moreover, we restricted 

our analysis to the GPe activity present during a spontaneous activated brain state, which mimics that 
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accompanying the alert behaviours in which beta oscillations are most prominent in PD patients and lesioned 

rats (Sharott et al., 2005b; Mallet et al., 2008a; Urrestarazu et al., 2009). In addition, other studies have shown 

that network dynamics in the undriven state are similar to those in the driven state. For example, studies of 

primary visual cortices in anesthetized animals have shown that V1 neurons dynamically drift through states that 

are similar to those seen when the system is driven (Kenet et al., 2003), and neural activity patterns are largely 

due to intrinsic dynamics as opposed to sensory inputs (Fiser et al., 2004). Thus, the entropy in the GPe network 

during behaviour may be similar to the entropy during rest. Second, the network dynamics we define here are 

probably the result of plasticity in the network as they only appear several days after dopamine neurons are 

lesioned (Degos et al., 2009). Thus, disturbed activities in the anesthetized state are likely due to underlying 

changes in the microcircuit, and therefore may still be present in the awake state and the entropy reductions we 

have shown will likely pertain to behaving animals. However, because synchronized beta oscillations are 

dynamic phenomena, which fluctuate in time as a function of dopamine and behaviour (Kuhn et al., 2004a; 

Doyle et al., 2005), it would still be of interest to test in the future whether and how network entropy changes 

during specific phases of a movement.  

The results of functional surgical procedures for PD also have bearing on our coding hypothesis. Focal 

lesions of the STN or internal pallidus have positive therapeutic effects on the motor symptoms of PD. 

However, the information coding capacity of the lesioned nuclei must decrease because the number of available 

neurons is reduced. Moreover, therapeutic high-frequency stimulation (HFS) of the STN also reduces the 

entropy per spike of single neurons in pallidus and thalamus in Parkinsonian monkeys (Dorval et al., 2008). 

However, although HFS decreased GPe bits per spike, it also increased firing rates (Dorval et al., 2008). 

Because of this rate change, and because extrapolating single-neuron entropy calculated in bits/spike to the 

network level (calculated here in bits per second) is not straightforward (see Figure 3-5), it is unclear whether or 

not the overall GPe network entropy is decreased with HFS. Regardless, one implication of the functional 

surgical procedures is that some aspects of synchronisation are not captured by our single-nucleus estimation of 

information coding restriction, and demand consideration of the extended cortico- basal ganglia circuit. Indeed, 

synchronisation limits the local information coding space but is also influential over subsequent stages of 

processing. Moreover, ‘downstream’ responses to the deleterious effects of synchronisation might exhibit 

frequency tuning, such that not all frequencies are equivalent across the coding space (Eusebio et al., 2008). 

Although we can estimate the upper limit of information coding capacity we do not know what aspects of the 

information coding space may be more influential or more deleterious to targets. Nevertheless, the use of 
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information theory provides us with a starting point and an analytical framework with which to evaluate the 

separate and combined effects of firing rate, oscillations and synchronization in the basal ganglia. The single-

cell and network mechanisms underlying the emergence of these changes in GPe are largely unknown but 

deranged afferent activity is likely to play an important role. Excessively synchronized rhythmic ‘drive’ from 

the STN in lesioned animals is a good candidate substrate for the increased synchronization observed in GPe 

(Mallet et al., 2008a). However, because STN neurons are hyperactive during Parkinsonian beta oscillations 

(Mallet et al., 2008b), the most parsimonious explanation for the depressed firing rates in GPe is that the 

network receives an inappropriately strong inhibition from striatum after dopamine loss (Mallet et al., 2006). 

Lesion-induced alterations in the intrinsic ‘pacemaking’ properties of GPe neurons (Surmeier et al., 2005) might 

well bring about the changes in their firing regularity (autocorrelations). An important issue for future research 

is thus to understand which changes in microcircuit properties give rise to the decreased firing rates and 

increased synchronization. Microcircuit properties have to change somewhere, to give rise to the changes in 

dynamics, as the dynamics are a function of the microcircuit. One powerful way to explore the changes in 

microcircuit properties responsible for the changes in dynamics will be to build realistic spiking-neuron network 

models of this system, and examine the changes in the model network that could give rise to the changes seen in 

the network in vivo. The basal ganglia should be a fruitful place to apply such techniques, because so much is 

known about the microcircuitry (Smith et al., 1998).  

3.6 CONCLUSIONS  

Our analyses have shown that there are changes in firing rates, single-cell oscillations and synchrony in the GPe 

when dopamine is chronically depleted, as in PD. We used information theory techniques to show how these 

changes in network dynamics lead to changes in the entropy of the system and found that there is significantly 

less entropy in the Parkinsonian GPe network. Thus our results are consistent with the general hypothesis that 

changes in network dynamics lead to changes in entropy of the GPe network, and it is this impaired ability of 

the network to code information that may contribute to motor and cognitive deficits in disorders like PD.   



 

88 

4 EFFECTS OF DOPAMINE DEPLETION ON INFORMATION FLOW 

BETWEEN THE SUBTHALAMIC NUCLEUS AND EXTERNAL GLOBUS 

PALLIDUS 

4.1 ABSTRACT 

 Abnormal oscillatory synchrony is increasingly acknowledged as a pathophysiological hallmark of 

Parkinson’s disease, but what promotes such activity remains unclear. We used novel, nonlinear time series 

analyses and information theory to capture the effects of dopamine depletion on directed information flow 

within and between the subthalamic nucleus (STN) and external globus pallidus (GPe). We compared neuronal 

activity recorded simultaneously from these nuclei in 6-hydroxydopamine-lesioned Parkinsonian rats with that 

in dopamine-intact control rats. After lesioning, both nuclei displayed pronounced augmentations of beta-

frequency (~20 Hz) oscillations and, critically, information transfer between STN and GPe neurons was 

increased. Furthermore, temporal profiles of the directed information transfer agreed with the neurochemistry of 

these nuclei, being ‘excitatory’ from STN to GPe and ‘inhibitory’ from GPe to STN. Separation of the GPe 

population in lesioned animals into ‘Type-Inactive’ (GP-TI) and ‘Type-Active’ (GP-TA) neurons, according to 

definitive firing preferences, revealed distinct temporal profiles of interaction with STN and each other. The 

profile of GP-TI neurons suggested their output is of greater causal significance than that of GP-TA neurons for 

the reduced activity that periodically punctuates the spiking of STN neurons during beta oscillations. Moreover, 

STN was identified as a key candidate driver for recruiting ensembles of GP-TI neurons but not GP-TA 

neurons. Short-latency interactions between GP-TI and GP-TA neurons suggested mutual inhibition, which 

could rhythmically dampen activity and promote anti-phase firing across the two subpopulations. Results thus 

indicate that information flow around the STN-GPe circuit is exaggerated in Parkinsonism, and further define 

the temporal interactions underpinning this. 
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4.2 INTRODUCTION 

 It is unclear how loss of midbrain dopamine neurons in Parkinson’s disease (PD) disturbs the activities 

of their targets in cortico-basal ganglia circuits, which must ultimately support the observed behavioural deficits. 

Studies in unmedicated patients with PD have shown that beta oscillations (13-30 Hz) often prevail in the cortex 

and basal ganglia (Brown et al., 2001; Levy et al., 2002; Williams et al., 2002; Brown, 2003; Amirnovin et al., 

2004; Alonso-Frech et al., 2006; Moran et al., 2008). These beta oscillations decrease when patients are on 

dopamine replacement medication or when they initiate movements, hinting at their functional significance 

(Brown et al., 2001; Levy et al., 2002; Williams et al., 2002; Williams et al., 2003; Amirnovin et al., 2004; 

Kuhn et al., 2004b; Brown and Williams, 2005). Excessively synchronized beta oscillations also arise in these 

circuits after chronic dopamine depletion in the 6-hydroxydopamine-lesioned rat model of PD (Sharott et al., 

2005b; Mallet et al., 2008a; Mallet et al., 2008b; Degos et al., 2009). Whether these oscillations have a direct 

negative effect on neural representations and the information coding capacity of these circuits (chapter 3, Cruz 

et al., 2009) or only indirectly reflect changes in the underlying computations therein is not clear, and neither are 

the precise changes in microcircuit properties that support them. It is known, however, that excessive beta 

oscillations in this animal model develop over a period of days/weeks following lesions of dopamine neurons 

(Mallet et al., 2008b; Degos et al., 2009), and that they arise in key circuit nodes, such as the subthalamic 

nucleus (STN) and external globus pallidus (GPe). 

 The reciprocally-connected network formed by the glutamatergic neurons of the STN and the 

GABAergic neurons of GPe might be particularly important for generating synchronized oscillations in the 

basal ganglia in PD (Bevan et al., 2002). Indeed, the incidence of oscillatory synchronization between the 

STN/GPe, as measured by standard (linear) cross-correlations between neuron pairs, greatly increases after 

dopamine depletion in animals (Mallet et al., 2008b). However, changes in cross-correlations do not necessarily 

reflect changes in the interactions between these two nuclei. For example, if the autocorrelations (including 

those arising from oscillatory activity) in the GPe changed, the measured cross-correlation would also change, 

even when the influence of the GPe on the STN had not. This is because the cross-correlation is the convolution 

of the autocorrelation function and the transfer function of the system (Papoulis, 1991). Stated another way, 

linear cross-correlations reflect both the changes within each nucleus and the interaction between the nuclei. 

Therefore, cross-correlations do not necessarily best represent the effect of a spike in one nucleus on the 
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probability of a spike in the other nucleus, which is the quantity of interest. Analytical models that are based on 

logistic regression (Truccolo et al., 2005) and mutual information (chapter 3, Cruz et al., 2009) offer some 

advantages in that they can account for the effects of the changes within each nucleus when they assess the 

interactions between nuclei, although they do not unambiguously distinguish between direct (monosynaptic) 

effects and indirect network effects. We have applied these modelling approaches to examine how the 

interactions or ‘directed information flow’ within the STN/GPe network are changed following chronic 

dopamine depletion.  

4.3 METHODS 

4.3.1 DATA COLLECTION 

Experimental procedures were carried out on adult, male Sprague-Dawley rats (Charles River, Margate, 

UK), and were conducted in accordance with the Animals (Scientific Procedures) Act, 1986 (UK). The dataset 

described in this paper has been published previously (Mallet et al., 2008a; Mallet et al., 2008b) and the 6-

OHDA lesioning and electrophysiological recording procedures have been described in chapter 2 (sections 2.3.2 

and 2.3.3, respectively). Electrophysiological recordings were made in 10 dopamine-intact control rats and 18 

Parkinsonian rats (6-hydroxydopamine-lesioned) (Table A-1 in the Appendix).  

4.3.2 MODEL 

 We have previously developed an analytical approach based on log-linear models (Truccolo et al., 

2005; chapters 2 and 3, Cruz et al., 2009) that allows us to characterize the impact of various features of neural 

activity on network entropy, a measure of the upper bound of information coding capacity of a given neural 

population. This modelling approach can be readily extended to describe the directed information flow between 

pairs of neurons in two distinct populations, e.g. STN and GPe. Directed mutual information in this case affords 

an estimate of how well the ‘response’ (i.e. spiking activity) of a neuron in one nucleus can be predicted from 
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the response of a neuron in another nucleus. In effect then, it can give insights into what information can 

potentially be transferred between the two nuclei. Our modelling approach is an example of nonlinear time 

series analysis (Kantz and Schreiber, 2004), and it relates and we do it within the framework of Granger 

Causality (Bollimunta et al., 2009). More specifically, when we estimated the interactions between STN and 

GPe neurons (or between different types of GPe neuron), we used only (Granger) causal activity, which is to say 

that we considered only those effects with non-negative time delays between nuclei. Moreover, when we 

examined the directed information flow between nuclei, we measured the amount of additional information 

about the activity of neuron i at the current time point that can be obtained from neuron j recorded in the other 

nucleus, but only after first accounting for all of the information that can be extracted from the past activity of 

neuron i itself. For example, if neuron i were an intrinsic oscillator, its activity could be accurately predicted 

from its own firing history and thus, the activity of other neurons (j etc.) would not be additionally useful. Thus, 

if we first modelled the effects of neuron i on itself, and then checked how much better we could do by 

including neuron j in the model, we would not find an improvement. However, it should be noted that the model 

affords a conservative estimate of the effects of neuron j on neuron i. It is conservative because the prior history 

of neuron i may have been affected by the history of neuron j, and yet this will also be taken out. But why 

should there be any interaction remaining between neuron j and neuron i after the past activities of both neurons 

are taken into account? In a perfectly-regular system of coupled oscillators, removing the effects of the 

autocorrelation of each oscillator would entirely suppress their cross-correlation. However, if the oscillations 

present in two spike trains are not perfectly regular, the presence of ‘phase slips’ over time will mean that some 

cross-correlation features survive after the autocorrelations have been accounted for. Previous studies have 

confirmed the presence of numerous phase slips in the oscillations within spike trains of basal ganglia neurons 

(Hurtado et al., 2004; Hurtado et al., 2005; Park et al., 2010). Hence, the firing history of either neuron may not 

fully predict their interactions, and this is likely the case for the networks of STN and GPe neurons considered 

here (see below). In short then, with our conservative approach, any effects of neuron j on i do not include past 

influences. Nevertheless, the fact that many of the constituent neurons of the STN-GPe network are intrinsic 

pacemakers (Surmeier et al., 2005) makes this conservative approach important as it discounts the past history 

of a neuron. Our analytical approach thus has advantages over computing standard linear cross-correlations (also 

see section 4.2). However, this approach does make assumptions, despite the fact that it has often been called 

‘direct’ or ‘model free’ (Strong et al., 1998). More specifically, the temporal resolution of the spiking activity 
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(or the bin width for analyses) must be pre-selected, and, the level of interaction between spikes at different 

times must also be selected. The validity of both selections can be tested, to some extent (see chapter 2).  

An analysis flow chart is presented in Figure C-1 in the Appendix. Model fitting began with binning the 

spike time data (point process) at 5 ms, where a bin received a 1 if there were one or more spikes in it or a 0 if 

there were no spikes in it. At this bin size, <0.01% of the bins from STN and GPe neurons had two spikes in 

them. Thus, pairs of spikes in a single bin were very rare. Furthermore, this bin size preserves temporal structure 

up to the 100 Hz Nyquist frequency and therefore it preserves much of the relevant temporal structure of the 

spike trains recorded in the STN and GPe. To assess the validity of this temporal resolution, we carried out pilot 

analyses using smaller bin sizes, and found that results were consistent with those reported here using the 5 ms 

bin size. We also assessed whether including higher-order interactions between spikes at different times 

improved the model, as we did in our previous study (chapter 3, Cruz et al., 2009). We found that these higher-

order interactions did not enhance the model fits. To some extent, however, finding effects of higher-order 

interactions is limited by the amount of data available for fitting the model. So, one can never be sure that 

effects would not be found if more data were available. 

 Following binning of the spike trains, we fit the following model to pairs of spike trains (e.g. one from 

STN, one from GPe):  
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The left hand side, P(si,t|…) is the probability of a spike (s) fired by neuron i in time bin t conditioned on 

the other variables under consideration, which depend on the model used (see below). The variable i represents 

the neuron whose response is being predicted, j represents another neuron (e.g. from the other nucleus), t 

indicates the current time bin, K1 indicates the number of lagged time bins from neuron i that are being used (as 

an ‘auto predictor’) and K2 indicates the number of lagged time bins from neuron j that are being used to predict 

the activity of neuron i (a ‘cross predictor’). The terms ak will be referred to as auto terms, as they model 

nonlinear autocorrelations, and the terms bk will be referred to as cross terms, as they model nonlinear cross-

correlations. The latter are the parameters plotted in Figure 4-5 and Figure 4-7. The values of K1 and K2 were 

optimized individually for each neuron pair using the model selection procedure described below. The sum over 

k2 terms starts at zero, which is to say that we used synchronous spikes for prediction. We have carried out all 

analyses with and without this term, and the results are equivalent. However, we chose to include this term 
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because the propagation time of activity between the STN and GPe can be less than 5 ms (i.e., bin size used 

here) in the adult rat in vivo (Kita et al., 1983; Kita and Kitai, 1991). The function g captures the nonlinearity 

that constrains the prediction of a spike in each bin to be between 0 and 1, i.e. it constrains it to be a probability. 

It is given by the logistic function: 
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 The logistic transform makes Equation 1 nonlinear. However, it is a static nonlinearity, as opposed to a 

dynamic nonlinearity that would be a function of time, or time lags. Because Equation 1 is nonlinear, it differs 

from the linear interactions that are captured by cross-correlations, coherence and other standard time- and 

frequency-domain analyses. 

The parameters of the model were fit by maximizing the likelihood of correctly predicting whether a 

spike did or did not occur in each bin. This parameter estimation method was characterized in chapter 2, section 

2.4.1 and summarized in chapter 3, section 3.3.3. To estimate the optimal number of lags for each model, we 

used the Bayesian Information Criteria (BIC) (chapter 2, section 2.4.2 and chapter 3, section 3.3.4). 

4.3.3 DIRECTED INFORMATION FLOW 

 After the models were optimized for each pair of STN/GPe neurons (or GPe/GPe neurons), we used 

them to estimate the causal mutual information (the directed information flow) between the same pairs. This 

directed information flow, Icausal, is given by: 
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where H(x) is the entropy of the spike train under the corresponding model calculated with the standard equation 

(Cover and Thomas, 1991): 
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In Appendix D, we show how our approach to determine directed information flow closely relates to the 

Transfer Entropy measure proposed by Schreiber (2000) (see chapter 1, section 1.8). 
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4.3.4 DAMPED SINUSOIDS 

 The temporal structures of interactions (lagged parameters for bk) between STN and GPe, and within GPe 

itself, were found to resemble damped beta-frequency profiles (see Figure 4-5). To characterize this more 

specifically, we fit damped sinusoids to the average interaction terms. They were fit by minimizing the squared 

error between the measured parameters and the damped sinusoid, which was given by: 

(9) 
)2cos()( /     ftetr t
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The parameters  are the maximum amplitude, β the damping rate (in seconds) and θ the phase of the cosine 

function (in radians). We report these parameters and the frequency characteristics (f) in Table 4-1 and Table 

4-2. Minimization was done using fminsearch in Matlab. 

4.4 RESULTS 

4.4.1 COMPARISON OF STN-GPE NETWORK DYNAMICS IN CONTROL RATS 

AND PARKINSONIAN RATS 

 Extracellular unit activity was recorded simultaneously from neurons in the STN and GPe in dopamine-

intact control rats and 6-OHDA-lesioned Parkinsonian rats. The dataset was composed of 49 pairs of STN/GPe 

neurons in control animals (10 single neurons in the STN and 49 in the GPe) and 184 pairs of STN/GPe neurons 

in lesioned animals (26 single neurons in the STN and 133 in the GPe). The GPe neurons analyzed in this study 

comprise a subset of the GPe neurons considered in our previous study (chapter 3, Cruz et al., 2009), as here we 

only included those GPe neurons that were simultaneously recorded with at least one STN neuron. In a first set 

of analyses, we considered GPe neurons in control animals as a single population and all GPe neurons in 

lesioned animals as separate population. In a second set of analyses, we split the single GPe population recorded 

in lesioned animals and grouped the neurons according to previously identified cell types (Mallet et al., 2008a).  
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Figure 4-1. Comparison of GPe, GP-TI, GP-TA and STN network dynamics and interactions in dopamine-intact control rats and 6-OHDA-

lesioned Parkinsonian rats. A. Mean firing rates of all STN and GPe neurons in control and lesioned animals. B. Mean auto-spectra for all GPe 

neurons in control and lesioned animals. C. Mean auto-spectra for STN neurons in control and lesioned animals. D. Mean cross-spectra between 

pairs of GPe and STN neurons. E. Mean firing rates of GP-TI neurons and GP-TA neurons in lesioned rats. F. Mean auto-spectra for GP-TI and 

GP-TA neurons in lesioned rats. G. Mean cross-spectra between GP-TI pairs, between GP-TA pairs and between GP-TI/GP-TA pairs of neurons 

in lesioned rats. H. Mean cross-spectra between STN/GP-TI pairs and between STN/GP-TA pairs of neurons in lesioned rats. Asterisks in (A) 

and E indicate significant differences. a.u. = arbitrary units. 

 



 

96 

Specifically, two main types of GPe neuron can be identified in lesioned animals using their distinct firing 

patterns (Mallet et al., 2008a). Type-A GPe neurons (GP-TA neurons, n = 26 STN/GP-TA cell pairs) 

preferentially discharge during the ‘active components’ of cortical slow (~1 Hz) oscillations, whereas Type-I 

GPe neurons (GP-TI neurons, n = 105 STN/GP-TI cell pairs) preferentially discharge during ‘inactive 

components’. This functional dichotomy is preserved, that is GP-TA and GP-TI neurons tend to still fire in 

‘anti-phase’, during the excessive beta oscillations that arise in lesioned animals during activated cortical states 

(Mallet et al., 2008a), as were studied here. Given this functional dichotomy in GPe during excessive beta 

oscillations, it was important to examine whether GP-TA and GP-TI neurons interact differently with STN 

neurons, among themselves or with each other. As reported previously (Mallet et al., 2008a), most GPe cells 

could be considered as GP-TA or GP-TI neurons but, for these secondary analyses, 58 pairs of STN/GPe 

neurons were not included as the GPe cell could not be unambiguously identified as either type. Also, we did 

not similarly split the population of GPe neurons recorded in control rats because, when dopamine is intact, 

most of these cells fire independently of the cortical slow oscillation (Mallet et al., 2008a). See Table A-1 in the 

Appendix for a summary of the dataset used in this study. 

Mean firing rates of STN neurons recorded during activated brain states in control and lesioned animals 

were 13.5 Hz and 30.9 Hz, respectively, whereas the mean firing rates of the whole populations of GPe neurons 

were 32.0 Hz and 17.4 Hz, respectively (Figure 4-1A). Thus, chronic loss of dopamine is associated with a 

significant increase of STN activity (t-test, p<0.001), and a decrease in GPe firing (t-test, p<0.001). When GPe 

neurons recorded in lesioned animals were grouped according to cell type, the mean firing rates of GP-TI 

neurons and GP-TA neurons were 14.5 Hz and 19.7 Hz, respectively (Figure 4-1E, t-test, p<0.001). Dopamine 

depletion also led to increased prevalence of ~20 Hz (beta-frequency) oscillations in the spike trains of single 

neurons in the GPe (Figure 4-1B) and STN (Figure 4-1C) as well as the emergence of a well-defined peak at 

beta frequencies in the average cross-spectra between STN and GPe (Figure 4-1D). The mean auto-spectra of 

GP-TI neurons but not that of GP-TA neurons showed clear beta oscillations (Figure 4-1F). Furthermore, beta 

peaks were seen in the cross-spectra between different cell types in GPe (Figure 4-1G), as well as between STN 

and GP-TI neurons and between STN and GP-TA neurons (Figure 4-1H).  
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4.4.2 PARAMETER ESTIMATION FOR NON-LINEAR MODELS OF SPIKING 

ACTIVITY IN STN-GPE NETWORK 

 The primary goal of this study was to compare directed information flow or transfer between the STN 

and GPe in control and Parkinsonian animals. To this end, we fitted two models to the response of each STN or 

GPe neuron that had been recorded simultaneously with a neuron in the other nucleus. First, we fitted a model 

(‘Auto’) that had only autocorrelation terms. This allowed us to examine how well the response of an individual 

neuron could be estimated from its own spiking history. This model was fit by optimizing (adding) lagged time 

bins until no additional information could be extracted from the response history to predict activity in the current 

time bin. Lags of zero indicate no significant interactions. If correlations extend over a longer period of time, 

more lagged time bins are necessary to capture them. Therefore, the optimal number of lagged time bins that 

provide information about the current activity of a neuron is an estimate of the dependence of current activity on 

past activity, or the correlation length of the spike train. We found that for most STN neurons, in either controls 

or lesioned animals, the number of significant lagged bins was between 5 and 20 (Figure 4-2A). As each bin was 

 

Figure 4-2. Optimal numbers of lags for autocorrelations and cross-correlations. A, B. Autocorrelations for all STN neurons and all GPe 

neurons, respectively, in control and lesioned rats. C. Autocorrelations for distinct cell types, GP-TI and GP-TA neurons, in lesioned animals. 

D, E. Cross-correlations for transfer in direction from GPe to STN (D) and from STN to GPe (E) in control and lesioned rats. F. Cross-

correlations between GP-TI/GP-TI pairs and GP-TA/GP-TA pairs in lesioned rats. G, H. Cross-correlations for transfer in direction from GP-

TA or GP-TI to STN (G) and from STN to GP-TI or GP-TA (H) in lesioned rats. I. Cross-correlations for GP-TI to GP-TA transfer and for GP-

TA to GP-TI transfer in lesioned animals. In all cases, optimal numbers of 5 ms time bins (K1 or K2) were selected with Bayesian Information 

Criteria. Note that lags of zero indicate no significant interactions. 
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5 ms, this meant that the previous 25-100 ms history of a STN neuron’s activity contained information about 

whether the same neuron would fire a spike in the current bin. However, the distributions of lagged bins differed 

significantly for STN neurons in control and lesioned animals (KS-test, p<0.001). Indeed, STN neurons in 

controls had fewer significant interactions than those in lesioned animals, as indicated by a larger proportion of 

lagged bins at zero and thus, fewer lags above zero (Figure 4-2A). The spiking of GPe neurons could be 

accounted for by 5-12 lagged bins in both control and lesioned animals (Figure 4-2B). These distributions of 

lagged bins did not differ between control and lesioned rats (KS-test, p = 0.759). When the single GPe 

population data from lesioned animals was split into GP-TI and GP-TA neurons (Figure 4-2C), it could be seen 

that the number of lagged time bins was similar between these two groups (KS-test, p = 0.184).  

 Following the estimation of the ‘Auto’ model we estimated the ‘Cross’ model, which included the cross 

terms, to account for interactions between STN and GPe, or interactions between pairs of neurons within GPe. 

The first step, similar to the procedure with the ‘Auto’ model, was to estimate the number of significant lagged 

time bins. In all cases, fewer terms were necessary to account for interactions between neurons than were 

necessary to model the autocorrelations for single neurons. When considering interactions between nuclei in 

control animals, there were only two significant interactions (out of a total of 49 pairs) from the GPe to the STN 

(see large proportion of zero lags in Figure 4-2D), and there were no significant interactions from the STN to the 

GPe (Figure 4-2E). In the lesioned animals, however, we found that in about 35% of the STN/GPe pairs, there 

was a significant interaction of at least one bin from both the GPe to the STN (Figure 4-2D) and from the STN 

to the GPe (Figure 4-2E), and the interactions extended to 50-75 ms. Thus, when GPe neurons were not grouped 

according to cell type, interactions between the nuclei were substantially increased (almost ten-fold) after 

dopamine depletion (GPe to STN, KS-test, p<0.001; STN to GPe, KS-test, p<0.001). Within and between GP-TI 

and GP-TA neurons, there were no significant interactions in about 80% of the pairs considered (Figure 4-2F, I). 

In the pairs that had significant interactions, between 2 and 10 lagged bins were significant, showing 

interactions over 10-50 ms. Finally, when STN interactions with either GPe cell type were considered, there 

were no differences in the interactions from GP-TI or GP-TA to the STN (Figure 4-2G, KS-test, p = 0.999) or 

from the STN to either GP-TI or GP-TA (Figure 4-2H, KS-test, p = 0.936). 
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4.4.3 DIRECTED INFORMATION FLOW IN THE STN-GPE NETWORK IN 

CONTROL RATS AND PARKINSONIAN RATS 

 Having examined the time-scales of the interactions, we went on to calculate the directed information 

flow between pairs of simultaneously recorded STN/GPe neurons. We did this by computing the difference in 

entropy, a measure of information coding capacity, between the ‘Auto’ and ‘Full’ models, where the nonlinear 

 

Figure 4-3. Information transfer across the STN-GPe network. Top plot in each panel of this and subsequent figures shows untransformed 

probabilities; bottom is same data re-plotted with log-transform to emphasize the smaller proportions. A. Information transfer from STN to 

GPe in control and lesioned rats. B. Information transfer from STN to GP-TI or GP-TA in lesioned rats. C. Information transfer from GPe to 

STN in control and lesioned rats. D. Information transfer from GP-TI or GP-TA to STN in lesioned rats. GPe neurons were not divided and 

grouped according to cell type in A and C. 
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‘Full’ model contains both the auto- and cross-correlation terms. Thus, this analysis quantifies the additional 

information (reflected as a reduction in entropy) that can be obtained about the responses of a given STN neuron 

(or GPe neuron) using the activity of a paired GPe (STN) neuron, after first taking into account the information 

about the responses of the first STN (GPe) neuron contained in its own spiking history. Critically, this analysis 

is directional, so the information flow can be assessed from the STN to the GPe, as well as from the GPe to the 

STN. Qualitatively, this analysis is similar to examining the amount of extra variance (or increase in R
2
) that one 

would obtain in linear regression, when the cross-terms were included in the model. Thus, it is an estimate of 

how much better spikes in one nucleus can be predicted by spikes in another nucleus. 

We found that there was significantly more directed information flow between nuclei in the lesioned 

animals (Figure 4-3A, C) than in the control animals (STN to GPe, KS-test, p<0.001; GPe to STN, KS-test, 

p = 0.002). Thus, after chronic dopamine depletion, the spike trains of STN neurons could be better predicted 

using the spike trains of GPe neurons, and vice versa. When we split the GPe cell population in lesioned 

animals, we found that 30-40% of STN/GP-TI and STN/GP-TA pairs had significant interactions, but the 

amount of information flow between the STN and GP-TI neurons was similar to that between STN and GP-TA 

neurons, considered in either direction (Figure 4-3B, KS-test, p = 0.504; and Figure 4-3D, KS-test, p = 0.411). 

We carried out hypothesis testing on the likelihood function, not the information flow. The null 

distribution for information flow is not easy to calculate. One could use bootstrap or permutation methods to 

define significance with mutual information, but these were computationally infeasible on our full dataset. 

Significance testing on the likelihood is, however, straightforward. We further found that the directed 

information flow results were largely consistent with the analysis examining the number of significant lagged 

bins in cross-correlations between STN and GPe neurons (see Figure 4-2D, E) computed using the BIC. The 

BIC approach calculates whether adding a specific parameter to the model, in our case the information 

contained in a subsequent bin of the spike train, will decrease the prediction error significantly. Specifically it 

examines whether such decreases in prediction error would occur by chance (or by definition, whether they are 

statistically significant). Also, the BIC method finds the model with the optimal number of bins by weighting 

the increase of predictability versus the cost of extra parameters. Figure 4-4 shows that, in general, the pairs of 

STN and GPe neurons where significant interactions were detected, were the ones that showed non-zero 

information transference in Figure 4-3A, C. Considering significant interactions when the number of BIC 

parameters (K2 in Equation 1) is larger than one (note that K2 = 1, ..., 30), we identified the pairs of neurons 

without significant bins (i.e., K2 = 1) as approximately the ones with near zero estimated directed information 
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flow for STN to GPe (Figure 4-4 A) and GPe to STN (Figure 4-4,B) interactions, in both control and lesioned 

animals. Note also that the first bin in the histograms in Figure 4-4 captures the directed information in the 

lower range of [0, 0.0015] bits/bin, therefore capturing a few pairs of neurons with significant interactions but 

low information transmission.  

In chapter 2, section 2.5.2, we compared the performance between BIC and another parametric model 

selection information-based criterion ‒ the AIC ‒ and concluded that the BIC better described our data. Other 

significance testing methods could have been employed for model selection, in particular non-parametric 

 

Figure 4-4. Relationship between information transfer and the presence of significant STN/GPe interactions for control (blue) and 

lesioned (red) animals. The optimal number of lagged bins in cross-correlations selected through the BIC is denoted as K2 (Equation 1). 

The plots on the right in both panels show the number of pairs of neurons where STN to GPe (A) and GPe to STN (B) significant 

interactions were detected (K2 > 1), and the number of pairs without significant interactions (K2=1). The histograms on the left show the 

distribution of information transfer (as in Figure 4-3A, C) for pairs with and without significant interactions.  
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procedures such as permutation testing, which have the advantage of not making inferences about the 

probability distribution of the data. As a trade-off, however, they present lower power than the parametric tests. 

Therefore, provided that the assumptions about the parameters of the distribution assumed by the parametric 

methods are accurate, these can provide more rigorous estimates.  

4.4.4 TEMPORAL PROFILES OF DIRECTED INFORMATION FLOW IN THE 

STN-GPE NETWORK 

 We next examined the temporal profiles of the interactions between nuclei. The temporal structure can 

be characterized by examining the average value of the lagged parameters for the cross terms (bk) in the model 

 

 

Figure 4-5. Transfer functions between STN and GPe neurons derived from the ‘Full’ model (which includes both auto and cross terms) 

in control rats and lesioned Parkinsonian rats. A. Model parameters for STN neurons and all GPe neurons in control rats, where there is 

little temporal structure to the transfer functions and thus, minimal interactions between nuclei. B. Model parameters for STN neurons and 

all GPe neurons in lesioned rats. Note that short-latency interactions are out of phase. C. Model parameters for STN neurons and only GP-

TA neurons in lesioned animals. Note that STN to GP-TA and GP-TA to STN transfer functions are ‘in phase’ at short latencies. D. Model 

parameters for STN neurons and only GP-TI neurons in lesioned rats. Note that the transfer functions are not in phase at short latencies. 

Dotted lines in each plot are the fits of damped sinusoids to the transfer functions. Positive and negative bk parameters indicate ‘excitatory’ 

and ‘inhibitory’ transfer, respectively. 
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(see Equation1 in the methods). These terms characterize the sign (i.e. positive or negative) and amplitude of the 

effect of a spike in one nucleus on the probability of a spike in the other nucleus at the indicated time lag. We 

found that the parameters in the lesioned animals, but not in the control animals, resembled damped beta-

frequency profiles, with ~50 ms cycle periods and thus, were centred at ~20 Hz (Figure 4-5). Taking into 

account conduction delays of at least a few ms between nuclei and the rise times of post-synaptic potentials 

(Kita et al., 1983; Kita and Kitai, 1991), interactions at short latencies (5-10 ms) are most informative when 

studying the monosynaptic influences of neurons in the STN-GPe network. Importantly then, at similar short 

latencies, the interactions from the STN to the GPe and from the GPe to the STN in lesioned animals were 

clearly out of phase (Figure 4-5B), being ‘excitatory’ (positive bk parameters in Figure 4-5) from the STN to the 

GPe, and ‘inhibitory’ (negative bk parameters) from the GPe to the STN. Thus, considering delays arising from 

propagation and integration, and all recorded neuronal pairs, the parameters that account for interactions 

between nuclei are consistent with the neurochemistry of this reciprocally-connected network. However, when 

GPe neurons were divided according to cell type, we found that the temporal profiles of the GP-TA neurons did 

not reflect the known microcircuitry and neurochemistry in a direct manner, i.e. the interactions from STN to 

GP-TA and from GP-TA to STN were in phase, both being excitatory at short latencies (Figure 4-5C). In 

contrast, the temporal profile of the more numerous GP-TI neurons was similar to the average profile for all GPe 

neurons, i.e. the interactions from STN to GP-TI and from GP-TI to STN were markedly out of phase, being 

excitatory and inhibitory, respectively, at short latencies (Figure 4-5D). Interactions had a similar time scale for 

both the GP-TI and GP-TA cell groups, and in both directions. Thus, bidirectional information transfer between 

STN/GPe was significantly increased by dopamine depletion, and it was primarily the phase that differentiated 

Interacting pairs R2 α 
β 

(s) 

f 

(Hz) 
Θ (radians) 

STN to GPe (controls) 0.99 0.07 0.006 14.2 5.20 

GPe to STN (controls) 0.99 0.11 0.002 187.3 2.37 

STN to GPe (lesioned) 0.98 0.10 0.032 20.2 4.20 

GPe to STN (lesioned) 0.94 0.05 0.048 19.4 2.46 

STN to GP-TA 0.98 0.32 0.023 21.4 -0.41 

STN to GP-TI 0.95 0.18 0.031 20.7 0.63 

GP-TA to STN 0.96 0.26 0.019 16.1 2.28 

GP-TI to STN 0.94 0.16 0.023 21.9 1.88 

Table 4-1. Parameters of damped sinusoids that best fit the transfer functions between STN and GPe neurons. , maximum amplitude; β, 

damping rate; Θ, phase of the cosine function; f, frequency characteristics. Note GP-TA and GP-TI neurons were only defined as such in 

lesioned animals. 
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STN interactions with these two types of GPe neuron. 

The temporal profiles of the interaction parameters in the STN-GPe network of lesioned animals 

resembled damped beta-frequency oscillations. To investigate this issue further, we fitted a damped oscillator 

function (sinusoid) to each set of interaction parameters (Equation 9). A damped sinusoid fit the coefficient data 

in this study well (Table 4-1), at least for data recorded in the lesioned Parkinsonian rats (Figure 4-5B-D, dashed 

lines). 

4.4.5 DIRECTED INFORMATION FLOW AND TEMPORAL INTERACTIONS 

BETWEEN DIFFERENT TYPES OF GPE NEURON 

 In the final analyses we considered the directed information flow between GP-TI and GP-TA neurons. 

This analysis is complimentary to previous analyses we have carried out, in which we estimated the entropy of 

the entire GPe population irrespective of cell type (chapter 3, Cruz et al., 2009). When all recorded neuronal 

pairs were considered, we found significantly more directed information flow between GPe neurons in the 

lesioned rats than in the control rats (Figure 4-6A, KS-test, p<0.001). Interestingly, when GPe neurons in 

lesioned animals were divided according to cell type, there was more information between GP-TI neurons than 

there was between GP-TA neurons (Figure 4-6B, KS-test, p<0.001). However, there were no differences in 

directed information flow between pairs of GP-TI/GP-TA neurons when considering them from both directions 

(Figure 4-6C, KS-test, p = 0.881). The temporal profile of the GP-TI/GP-TI interactions was initially excitatory, 

 

Figure 4-6. Information transfer within the GPe. A. Information transfer between all GPe neurons in control and lesioned rats, irrespective of 

cell type. B. Information transfer between only GP-TI neurons and between only GP-TA neurons in lesioned rats. C. Information transfer from 

GP-TI to GP-TA and from GP-TA to GP-TI neurons in lesioned rats.  
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and oscillated at beta frequencies (Figure 4-7A). Interactions between only GP-TA neurons were also initially 

excitatory, but they did not oscillate as strongly at beta frequencies (Figure 4-7B), consistent with the 

corresponding cross-correlations. Interactions between GP-TI and GP-TA neurons were both inhibitory at short 

latencies, but the GP-TI to GP-TA interaction remained inhibitory over the first 20 ms, whereas the GP-TA to 

GP-TI interaction went immediately to excitatory at a lag of 5 ms (Figure 4-7C, D). Thus, there were differences 

in their temporal profiles, which were reflected in the phase of their interactions. Again, damped oscillator 

functions could be fitted to the temporal profiles of interaction parameters (Table 4-2). Thus, although 

bidirectional information transfer between GPe neurons was significantly increased by dopamine depletion, the 

amount and temporal profile of information transfer depended on the type(s) of GPe neuron. 

  

 

Figure 4-7. Transfer functions between different types of GPe neuron derived from the ‘Full’ model (which includes both auto and cross 

terms) in lesioned Parkinsonian rats. A. Model parameters for pairs of GP-TI neurons. B. Model parameters for pairs of GP-TA neurons. 

C. Model parameters for GP-TI to GP-TA transfer. D. Model parameters for GP-TA to GP-TA transfer. Dotted lines in each plot are the fits 

of damped sinusoids to the transfer functions. 

Interacting pairs R2 α 
β 

(s) 

f 

(Hz) 
Θ (radians) 

GP-TI to GP-TI 
0.94 0.16 0.010 25.0 4.89 

GP-TA to GP-TA 
0.98 0.12 0.020 22.4 6.04 

GP-TI to GP-TA 
0.99 0.16 0.017 15.0 2.24 

GP-TA to GP-TI 
0.99 0.44 0.007 12.2 4.33 

Table 4-2. Parameters of damped sinusoids that best fit the transfer functions within GPe. See Table 4-1 for abbreviations. 
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4.5 DISCUSSION 

 Chronic loss of dopamine from cortico-basal ganglia circuits profoundly alters neuronal activity therein 

and often leads to the emergence of excessively synchronized oscillations, as documented in patients with PD 

(Brown et al., 2001; Levy et al., 2002; Williams et al., 2002; Brown, 2003; Amirnovin et al., 2004; Moran et al., 

2008) and Parkinsonian animals (Nini et al., 1995; Raz et al., 1996; Bergman et al., 1998; Raz et al., 2000; Raz 

et al., 2001; Goldberg et al., 2004; Sharott et al., 2005b; Mallet et al., 2008a; Mallet et al., 2008b; Degos et al., 

2009). The changes in microcircuit properties that give rise to these changes remain to be elucidated, but it is 

possible that altered interactions in the reciprocally-connected network of glutamatergic STN neurons and 

GABAergic GPe neurons contribute to these oscillations. Here we used nonlinear time series analysis and 

information theory techniques to quantitatively assess the interactions between STN and GPe neurons in 6-

OHDA-lesioned Parkinsonian rats and dopamine-intact control rats. This approach allowed us to directly 

estimate changes in the transfer of information from one nucleus (or neuron type) to the other, while controlling 

for potentially confounding changes in activity within an individual nucleus (or neuron), therefore overcoming 

some of the limitations of linear cross-correlations. Our key finding is that bidirectional information transfer 

between STN/GPe, and between different types of GPe neuron, was significantly increased by chronic 

dopamine depletion. Importantly, these augmented causal interactions in the Parkinsonian state reflected an 

underlying network oscillation in the beta-frequency band. 

4.5.1 LIMITATIONS 

 Our analytical approach is innovative and, as such, it was important to explore its utility in a well-

characterized dataset (Mallet et al., 2008a; chapter 3, Cruz et al., 2009), seeking corroboration of previous 

findings (so-called ‘face validity’). Thus, in our first set of analyses, we did not distinguish between types of 

GPe neuron but we could still define internuclear interactions that were independent of activity within nuclei. 

When GPe neurons were considered as a single population, we were able to confirm that model parameters 

correctly reflected the known neurochemistry and microcircuitry of the STN/GPe network. Accordingly, 

‘excitatory’ interactions, presumably mediated by glutamate, dominated information transfer from STN to GPe, 
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and ‘inhibitory’ interactions, presumably mediated by GABA, dominated information transfer from GPe to 

STN. 

One key issue with our approach is the meaning of ‘information transfer’ between nuclei. We define this 

in the information theoretic (statistical) sense, and consider information transfer to occur when a spike in the 

GPe alters the probability of a spike in the STN, and vice versa. The course of this statistical interaction affords 

what we term ‘directionality’, and can be underpinned by both direct and indirect synaptic connections, 

including common inputs (Sharott et al., 2005a). Information transfer, defined as above, will then encompass 

whatever aspects of internuclear interaction represent the physiological means of communication. However, the 

two are not synonymous, and there are features of the dependent activity in one nucleus that may be irrelevant 

for the ‘real’ neural code (whatever this may be).  

4.5.2 NOVEL INSIGHTS 

 The major novel findings were made when we split the population of recorded GPe neurons into two 

different, physiologically-defined subpopulations, namely GP-TI and GP-TA neurons (Mallet et al., 2008a). 

Importantly, we found that only the more numerous GP-TI neurons showed interactions consistent with 

monosynaptic reciprocal connections with STN. Indeed, causal information transfer from GP-TA neurons to 

STN neurons was initially excitatory. This finding is surprising because, although the neurochemistry and 

connections of GP-TA (and GP-TI) neurons have yet to be elucidated, the vast majority of GPe neurons are 

thought to be GABAergic and project to STN (Bevan et al., 1998; Smith et al., 1998). Our results suggest that 

the activity of GP-TI neurons is of greater causal significance than that of GP-TA neurons for the periods of 

reduced activity or quiescence that punctuate the spiking of STN neurons during Parkinsonian beta oscillations 

(Levy et al., 2002; Kuhn et al., 2005; Mallet et al., 2008a; Mallet et al., 2008b). However, precisely-timed inputs 

from GP-TA neurons could still serve to sculpt the intermittent periods of increased activity and bursting 

exhibited by STN neurons. The STN to GP-TA connection was excitatory at very short lags (0-5 ms), which is 

remarkable because the spiking response of GPe neurons to STN neuron discharge should take, on average, 10 

ms to develop (Kita and Kitai, 1991). However, in light of the predicted time course, our analyses also imply 

that STN input to GP-TI neurons is of causal importance for their recruitment into the excessively-synchronized 

GPe ensembles that emerge during beta oscillations. It is unclear why STN and GP-TA neurons should fire so 

close in time but a common extrinsic input, perhaps arising from frontal cortex and/or intralaminar thalamus 
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(Kita, 2007), and/or inhibitory inputs from GP-TI neurons, might underlie this tight temporal coupling. 

Common input, either excitatory or inhibitory, might also explain why causal information transfer between pairs 

of GP-TI neurons or pairs of GP-TA neurons was initially excitatory. For GP-TI neurons, a common driving 

input is likely STN. On the other hand, the short-latency inhibitory interactions between GP-TI/GP-TA pairs 

suggests these cell types inhibit each other, periodically dampening activity and promoting anti-phase firing 

across the two subpopulations. 

4.5.3 WIDER IMPLICATIONS 

 Considerable theoretical work on networks of neurons generating oscillations suggests that, generally 

speaking, oscillations require some sort of excitatory/inhibitory neuronal interaction (see for example, (Cohen et 

al., 1992; Brunel, 2000; Ermentrout and Chow, 2002; Terman et al., 2002)). This can occur within a single 

neuron, between neurons in a network (de Solages et al., 2008) or some combination of these. All of these 

conditions are satisfied in the STN-GPe network. Specifically, most STN and GPe neurons function as 

autonomous pacemakers (Surmeier et al., 2005). Moreover, the dominant STN→GPe/GPe→STN interaction is 

excitatory/inhibitory, providing a possible substrate for oscillatory interactions at the network level. Under 

normal circumstances, some features of the STN-GPe network make synchronized oscillations unlikely. Indeed, 

network-level oscillations can occur in the so-called ‘balanced regime’ (Renart et al., 2004), and the STN-GPe 

network in the dopamine-intact animal is probably not in this regime. A feature of the balanced regime is that 

neurons receive a large amount of balanced excitatory and inhibitory input. Thus, if inhibitory input is strongly 

decreased, the activity in excitatory neurons will become epileptic (Renart et al., 2004). This is not the case in 

the normal STN-GPe circuit though because destruction of GPe leads to only a small increase in STN activity 

(Ryan and Clark, 1992). However, here we show that Parkinsonism is associated with a ten-fold increase in 

causal information transfer in the STN-GPe circuit, arguably bringing it into a balanced state in which 

oscillations may be generated (Holgado et al., 2010). Both increases in the strength of functional coupling 

between nuclei, and decreases in the difference in the intrinsic oscillation frequency between nuclei, can lead to 

phase-locked oscillations in neural responses (Strogatz, 1994; Ermentrout and Chow, 2002). Both effects are 

suggested by our results, in so far that internuclear coupling increased and oscillations of single neurons in STN 

and GPe became matched, with a frequency of ~20 Hz. The resulting tendency to phase-locked oscillations in 

STN-GPe could contribute to resonance phenomena seen in Parkinsonism. Indeed, our model parameters were 



 

109 

well fit by damped oscillators with resonance frequencies of ~20 Hz. Similar patterns of resonance have been 

reported between the STN and cerebral cortex in PD patients (Eusebio et al., 2009). Thus, excessive beta 

oscillations in PD might arise from changes in STN-GPe interactions, without ruling out the possibility that they 

instead may arise elsewhere (outside the STN-GPe circuit), and are then perhaps amplified by the resonance 

properties of the STN-GPe circuit. Overall, these observations suggest that, at the systems level in rodents and 

humans, elements of the cortico-basal ganglia circuit are well described as damped oscillators with beta-band 

resonance in the Parkinsonian state, and that this is true despite the differences between activity conduction 

times in rodents and humans. Our current analysis adds to this by also indicating that such resonance is not 

merely a consequence of the autocorrelation function of individual neurons in Parkinsonism. Beta-band 

resonance is thus a highly-conserved feature of (dys)function in these networks after dopamine loss. 

4.6 CONCLUSIONS 

We have used nonlinear time series analysis to quantify the interactions between the STN and GPe in 

control and Parkinsonian rats. Chronic dopamine depletion changed firing rates and led to strong beta-frequency 

oscillations in the STN-GPe network. This was accompanied by a pronounced increase in bidirectional 

interactions between these nuclei, measured with causal mutual information. This increased strength of 

reciprocal effective coupling may not only contribute to excessive beta synchrony in Parkinsonism but also 

impede information flow and representation within the STN-GPe network and the rest of the basal ganglia. 
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5 APOMORPHINE IMPROVES CODING CAPACITY IN THE BASAL GANGLIA 

NETWORK IN 6-OHDA-LESIONED RATS 

5.1 ABSTRACT 

Chronic dopamine loss in cortical-basal ganglia circuits in Parkinson’s disease (PD) is believed to induce 

disorders of movement and cognition. Apomorphine is indicated in PD, in combination with or as a replacement 

for levodopa, when responses to the latter start inducing dyskinesias and ON-OFF fluctuations. Apomorphine 

therapy in PD stimulates dopamine receptors, and the motor response to apomorphine is indistinguishable from 

that to levodopa. Recordings from deep brain stimulation electrodes in PD patients have shown that dopamine 

depletion in the cortical-basal ganglia circuitry is linked to an increase in beta frequency (13-30 Hz) oscillations 

at the single-cell and neuronal population levels. Previously, we have investigated how the excessive beta 

oscillations, which may contribute to the behavioural deficits seen in PD, decrease information processing in 

these circuits. In the present study we analysed the effects of apomorphine on the network entropy in the 

external globus pallidus (GPe) of dopamine-depleted rats. 

We recorded single-neuron activity from multiple sites in the GPe of control and 6-OHDA-lesioned rats, 

a PD model that shows exaggerated beta oscillations after chronic dopamine loss. Next, apomorphine was 

administered to the lesioned animals. We used a logistic regression model to compare entropy in neural 

ensemble activity between control and lesioned animals both OFF and ON apomorphine. The analysis 

demonstrated that apomorphine induces a substantive increase in the firing rates, and a decrease in oscillations 

and synchrony in unilateral dopamine-depleted animals relative to lesioned animals OFF apomorphine. 

Following apomorphine treatment, the lesioned rats showed an increase in basal ganglia network entropy, 

although still lower than in control animals. Additionally, the amount of information transferred between pairs 

of GPe neurons, which increased after lesioning, decrease after the apomorphine challenge. These findings 

suggest that treatment with apomorphine in PD increases potential coding capacity, which may be related with 

the observed improvement in motor impairment. 
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5.2 INTRODUCTION 

 

It is widely acknowledged that Parkinson’s disease (PD) results from progressive degeneration of 

dopaminergic neurons in the substantia nigra pars compacta (SNc), leading to low levels of dopamine 

throughout the basal ganglia (Bernheim et al., 1973; Kish et al., 1988; German et al., 1989; Goto et al., 1989; 

Schwarting and Huston, 1996b). Apomorphine has a long history as a therapeutic drug and it was the first 

dopamine agonist used in the treatment of Parkinson’s disease (PD). In 1951, Schwab et al. documented for the 

first time the clinical advantages of apomorphine in the control of PD, but when levodopa was discovered to be 

an efficient dopamine replacement therapy for Parkinsonism (Cotzias et al., 1969; Marsden and Parkes, 1977), 

the previous enthusiasm for apomorphine faded. Although levodopa therapy is currently the most widely used 

method to treat Parkinson’s disease, the majority of patients following long-term levodopa treatment exhibit 

complications including the wearing off phenomenon, ON-OFF fluctuations and levodopa induced dyskinesias 

(Marsden and Parkes, 1976; Obeso et al., 2000; Rascol et al., 2000). To overcome some of these adverse side 

effects there has been a renewed interest in the antiparkinsonian properties of apomorphine, along with other 

dopamine agonists like ropinirole, bromocriptine or cabergoline (Pietz et al., 1998; Rascol et al., 2000; Manson 

et al., 2001). The subcutaneous challenges of apomorphine, as a monotherapy or in combination with levodopa, 

have been shown to ameliorate the motor impairments characteristic of the late stages of Parkinson’s disease 

like the motor fluctuations and levodopa-induced dyskinesias (Stibe et al., 1988; Frankel et al., 1990; Colzi et 

al., 1998; Pietz et al., 1998; Ruiz et al., 2008). The subcutaneous injections of apomorphine induce quick relief 

from OFF periods and its effects are potent but short-lived. Continuous pumping of the drug may be an option 

(Cotzias et al., 1970; Colzi et al., 1998; Manson et al., 2001), although reports of extensive skin nodule 

formations at the needle sites often occur. Other adverse secondary effects such as nausea, vomiting, dizziness, 

sleepiness, postural hypertension and neuropsychiatric complications may arise (Cotzias et al., 1970; Colzi et 

al., 1998; Pietz et al., 1998; Ruiz et al., 2008). 

Although remarkable advances have been made in the treatment of PD, how dopamine-depletion affects 

the basal ganglia-thalamo-cortical circuitry is still poorly understood. Changes in the dynamics of these 

networks have been observed in intra- and post-operative recordings of neural activity in the basal ganglia of PD 

patients who underwent deep brain stimulation (DBS) surgery, in particular excessive beta frequency (13-30 Hz) 
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oscillations (Brown et al., 2001; Marsden et al., 2001; Levy et al., 2002; Williams et al., 2002; Williams et al., 

2003; Amirnovin et al., 2004; Kuhn et al., 2004b; Williams et al., 2005; Alonso-Frech et al., 2006; Moran et al., 

2008). These abnormal oscillations tended to disappear when patients were under dopamine replacement 

therapy (Brown et al., 2001; Levy et al., 2002; Alonso-Frech et al., 2006; Moran et al., 2008) or as they initiated 

a motor task (Levy et al., 2002; Amirnovin et al., 2004). Additionally, changes in fire rates have been observed 

in several basal ganglia structures of PD patients (Hutchison et al., 1997; Hutchison et al., 1998; Merello et al., 

1999; Amirnovin et al., 2004), of monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions 

(Filion and Tremblay, 1991; Bergman et al., 1994) and rats with 6-hydroxydopamine (6-OHDA) lesions (Pan 

and Walters, 1988; Hollerman and Grace, 1992; Burbaud et al., 1995; Hassani et al., 1996; Kreiss et al., 1997; 

Vila et al., 2000; Sharott et al., 2005b), where the two latter are animal models of PD. 

We have shown that these dynamical changes impact information capacity in the external globus pallidus 

(GPe) of 6-OHDA lesioned rats, decreasing the network entropy (and therefore the coding capacity) within the 

nucleus in comparison to control animals (chapter 3, Cruz et al., 2009). We found that both the decreased firing 

rates and increased pair-wise synchrony contributed to the decreased network entropy in the lesioned animals, 

although the firing rates had a much stronger impact than the synchrony. The excessive beta frequency 

oscillations were also observed in the GPe, but had a positive effect on the network entropy. We have also 

shown that the GPe and the STN-GPe network in dopamine depleted rats, which also revealed changes in firing 

rates, synchrony and strong beta frequency oscillations, manifested a rise of bidirectional information transfer in 

comparison with controls (chapter 4, Cruz et al., 2011). This increase of interactions might impair the normal 

representation and information flow within and between GPe and STN, and possibly other nuclei of the basal 

ganglia, and this may underlie the motor impairments endured by PD patients. To better understand these 

phenomena, we used a time-series logistic regression model and information theory to study the network 

entropy within the GPe neurons in 6-OHDA lesioned rats under the effect of the non-selective dopamine agonist 

apomorphine, which directly stimulates D1 and D2 receptors and has shown to temporarily restore motor 

function in PD patients (Schwab et al., 1951; Cotzias et al., 1970; Hutchison et al., 1997; Pietz et al., 1998) and 

in Parkinsonian animals (Pollak et al., 1993a; Sharott et al., 2005b). Following evidence from our previous 

results, changes in dopamine levels in the basal ganglia result in variation in network entropy within its nuclei 

which we believe to underlie alterations in motor performance. Therefore, consistent with our expectations, we 

observed an increase of the coding capacity in the GPe and a decrease in the information transfer between its 

neurons in the lesioned animals ON apomorphine in comparison with the lesioned animals in the OFF state. 
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5.3 METHODS 

The experimental and theoretical methods used in this study were described in chapter 2 and chapter 3. 

Therefore, we will not explain them in this chapter. 

5.3.1 DATA COLLECTION 

All the experimental practices performed for this study followed the Animals (Scientific Procedures) Act, 

1986 (UK). The detailed experimental procedures as well part of the electrophysiological data we have used in 

our analysis has been previously published (Mallet et al., 2008a). 

The electrophysiological experiments were conducted in two groups of adult male Sprague-Dawley rats 

(Charles River, Margate, UK). Recordings were performed in a first group comprised of 16 healthy animals and 

in a second group of 8 rats with a severe lesion of SNc neurons (with the neurotoxin 6-hydroxidopamine). In all 

animals of the last group, recordings were performed before and after subcutaneous administration of dopamine 

agonist apomorphine. See Table A-1 in the Appendix for a summary of the dataset used in this study. 

5.4 RESULTS 

In this study we compared the neural activity in the GPe of dopamine-intact control rats and dopamine-

depleted rats with a 6-OHDA lesion, before and after systemic injection of apomorphine (these conditions will 

be referred as OFF and ON apomorphine, respectively). We analysed single unit recordings of 143 GPe cells 

from control animals, 67 GPe cells from lesioned animals, and a subset of 44 cells from the latter set in the 

lesioned animals, but after apomorphine administration. In control animals, we recorded 27 ensembles of 

neurons which resulted in 507 pairs of neurons. In lesioned animals, we recorded from 8 ensembles, from which 

we analysed 317 pairs of neurons before apomorphine and 104 pairs of neurons after apomorphine 
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administration. The ensembles in control animals had an average of 5.4 neurons simultaneously recorded, in the 

lesioned animals OFF apomorphine an average of 8.37 neurons and ON apomorphine an average of 5.5 neurons. 

The largest ensemble included 18 neurons. Part of the dataset used in this study has been considered in a 

previous study (chapter 3, Cruz et al., 2009). 

5.4.1 NETWORK DYNAMICS 

We have shown that dopamine depletion in the 

basal ganglia of rats was accompanied by substantial 

changes in the network dynamics of the GPe (chapter 3, 

Cruz et al., 2009). In this dataset we again observed a 

substantial decrease of the GPe mean firing rates after 

lesion compared with control, from 33.63 ± 1.33Hz (mean 

± SEM) in controls to 15.54 ± 1.10Hz in lesioned animals 

(Figure 5-1A). After subcutaneous apomorphine injection, 

the mean firing rate in the GPe increased considerably to 

29.43 ± 2.82 Hz, a value more similar to control. Although 

the mean firing rate in lesioned animals before 

apomorphine was significantly different from control (1-

way anova, p<0.05), when under apomorphine, the 

difference to control was not significant (1-way anova, p > 

0.05). In the frequency domain, lesioned animals had an 

increase in oscillatory activity at beta frequency which is 

shown in the auto-spectra of Figure 5-1B. This increase 

around 20Hz in the lesioned animals before apomorphine 

compared with control is even more pronounced in the 

pair-wise cross entropy (Figure 5-1C). Yet, the oscillations 

and synchrony at beta frequency disappeared when the 

lesioned animal was challenged with apomorphine (Figure 

5-1B, C). Hence, the changes in the dynamics of the GPe 

 

Figure 5-1. The network dynamical properties and 

interactions in the GPe of dopamine-intact control 

animals and 6-OHDA lesioned animals, before and after 

apomorphine treatment. A. Mean firing rates of the GPe 

neurons (mean ± SEM). Differences were significant at 

p< 0.05 (1-way anova). B, C. Neural activity in the 

frequency domain: mean auto-spectra (B) and mean 

cross-spectra (C) for pairs of GPe neurons. 
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neural activity characteristic of Parkinsonism in the dopamine depleted rats tend to recede following acute 

challenge with apomorphine, when we observe a dynamical behaviour closer to healthy animals. We have 

shown how each of these dynamical changes impacted the information transfer and reduced the coding capacity 

in the GPe network after 6-OHDA lesions, which may underlie the motor impairments seen in PD patients 

(chapter 3, Cruz et al., 2009). To further investigate the effects that different levels of dopamine in the basal 

ganglia have on its coding capacity, we compared the entropy and directed information flow in the GPe network 

in the same three conditions: healthy animals and Parkinsonian animals untreated and treated with the dopamine 

agonist apomorphine. We used logistic regression and information theory to calculate the entropy and 

information transfer between pairs of GPe neurons.  

5.4.2 OPTIMAL NUMBER OF LAGS 

The four models used in this study estimate the entropy of a network by assessing the effect of firing rate 

and spiking history on current spiking probability. The first step of the analysis was binning the spike trains 

from all neurons into 5 ms bins. We then analysed the activity of each individual neuron, which we will refer as 

 

Figure 5-2. The distributions from the optimized number 

of parameters used in each model used to predict the 

response of the current neuron in each time bin. The 

number of parameters expresses the number of lagged 

time bins that carry relevant information for the 

prediction. The models were applied to control (blue) 

and lesioned animals before and after apomorphine 

challenge (red and green, respectively). A. ‘Auto’ model. 

K1 represents the optimized number of significant lagged 

time bins of the current neuron (autocorrelations). B. 

‘Cross’ model. K2 represents the optimized number of 

significant lagged time bins of a second neuron on the 

response of the current neuron (cross-correlations). C. 

‘Full’ model. Note that higher proportion of zero 

parameters means a higher fraction of neurons, or pairs 

of neurons, with no significant interactions. The values 

on the panels represent the (mean ± SEM) of the 

distributions. 
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the current neuron, conditioned on itself or on a second neuron. For each bin, we calculated the probability that 

a spike would be fired in that bin conditioned solely on the firing rate of the current neuron (‘Rate’ model) or in 

conjunction with the past firing history of that same neuron (‘Auto’ model) or of a nearby neuron (‘Cross’ 

model). In the last model – the ‘Full’ model – the posterior probability given by Equation 14 (chapter 2, section 

2.4) was obtained by considering the combination of the information contained in all these terms. The different 

time series models were tools to explore the effects of the individual dynamical factors on the entropy of the 

network. The ‘Auto’ model, which included the firing rate term and autocorrelation terms, allowed us to 

investigate the extent of the effects of the spiking history of a neuron on itself. Analogously, the ‘Cross’ model, 

where along with the firing rate the cross-correlations were considered, allowed us to estimate the influence of a 

second simultaneously recorded neuron on the activity of the current neuron. The ‘Full’ model, by incorporating 

firing rate, auto and cross terms, fully accounted for the past firing pattern of both the current and a 

neighbouring neuron to estimate the response of the former.  

In the ‘Auto’, ‘Cross’ and ‘Full’ models, only the number of time lags (or spike history) which contained 

relevant information to predict more accurately if a spike would occur in the current bin were taken in account. 

In Equation 14 (chapter 2, section 2.4), the number of relevant lags are denoted as K1 for the auto terms and K2 

for the cross terms. They were estimated by means of the BIC and express information about the time scale of 

the correlations in the data. Therefore, if the correlations extend for a large period of time, more lags will be 

necessary to capture the interactions. Otherwise, if there are no interactions between the response of the current 

neuron and the spike history of itself or another neuron, the number of relevant lags will be zero. The histograms 

in Figure 5-2A show the distributions of the selected number of lagged time bins we fit using the ‘Auto’ model 

for each GPe neuron for control, lesioned OFF and lesioned ON apomorphine. We observed that the 

autocorrelation length for control and lesioned OFF apomorphine was concentrated mainly between 4 and 12 

time bins. Each bin had duration of 5 ms, so the relevant interactions extended most frequently 20 to 60 ms into 

the past. Although these distributions did not significantly differ among one another, they both significantly 

differed from the distribution of relevant autocorrelations seen in the lesioned animals under apomorphine (1-

way anova, p<0.05), that mainly extended between 0 and 6 time lags (0-30ms) (Figure 5-2A). Therefore, the 

autocorrelations for the lesioned animals under apomorphine were confined to shorter periods. 

From our estimation of the ‘Cross’ model, we were able to examine the duration of the interactions 

between GPe neurons (Figure 5-2B). Control animals showed almost no significant interactions between GPe 

neurons (99.3% of the data presented no relevant lagged time bins). However, in the lesioned animals OFF 
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apomorphine, 19.4% of pairs had relevant interactions which extended up to 90 ms into the past. The lesioned 

animals ON apomorphine showed only a few interactions between the cells (2.3%) and therefore we found no 

statistical differences to controls (KS-test, p > 0.05). The interactions between GPe neurons that emerged in the 

Parkinsonian state seemed to cease after the animals were challenged with the dopamine agonist. For the ‘Full’ 

model, first the optimized time intervals for the autocorrelations were estimated (K1), then cross lags were added 

and the optimization was done over the sum K1+ K2. Therefore, Figure 5-2C shows a conjugation between the 

‘Auto’ and ‘Cross’ distributions, but not their linear sum. Since there were few cross-interactions, the 

distributions from the ‘Full’ model resembled those from the ‘Auto’ model.  

5.4.3 ENTROPY 

The entropy is the quantification of the 

uncertainty involved in the prediction of an 

event and is a measure of coding capacity. Based 

on the conditional probabilities calculated with 

our four models, we estimated the entropy of the 

GPe network for our three groups. The ‘Rate’ 

model was conditioned only on the firing rate (in 

Equation 14 (chapter 2, section 2.4) represented 

as the term a0) of the current neuron, therefore 

not accounting for the temporal dynamics in the 

network. On the other end, the ‘Full’ model uses 

all dynamical factors of the network which may 

decrease its entropy. Therefore, it gives an 

overall estimation of the entropy in the network. 

We have shown in Cruz et al. (2009) (chapter 3), 

that GPe network entropy estimation in the 

lesioned animals OFF apomorphine is lower 

than in the control animals in the context of all 

four models (1-way anova, p<0.05). In all the 

 

Figure 5-3. Comparison of the entropy under the three conditions (control, 

lesion OFF apomorphine and lesioned ON apomorphine) estimated with 

four different models: A. the ’Rate’ model, which included only the firing 

rates; B. the ’Auto’ model that accounted for the firing rates and 

autocorrelations; C. the ’Cross’ model that included the firing rates and 

cross-correlations D. and the ’Full’ model which combined all these terms. 

The values on the panels are the (mean ± SEM) of the distributions. 
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panels of Figure 5-3 we can also observe that in the lesioned animals after they received an apomorphine 

injection, the entropy increases to values closer to control. For ‘Rate’, ‘Auto’ and ‘Full’ models, the lesioned 

animals ON apomorphine have entropy distributions that were significantly different from the lesioned OFF 

apomorphine (1-way anova, p<0.05), but not from the control (all p>0.05). For the ‘Cross’ model (Figure 

5-3C), all entropy distributions were statistically different from each other (1-way anova, p<0.05). The overall 

values of entropy in the network seem to recover in the GPe to healthy levels when apomorphine is used to 

stimulate D1 and D2 receptor sites, although the increase of dopamine levels appear to have higher influence in 

restoring the firing rates and normal patterns of oscillations than cancelling the abnormal synchrony 

characteristic of the Parkinsonian brain. 

Adding the autocorrelations to the ‘Rate’ model (Figure 5-3A,B) decreased the contrast between the 

entropy distributions from the control and 

lesioned OFF apomorphine and between the 

lesioned animals under the two conditions. Thus, 

the autocorrelations have a different effect on the 

entropy than the firing rates. Additionally, the fact 

that the entropy distributions from the ‘Rate’ 

model and from the ‘Cross’ model look similar 

gives us a first hint that the effect of the cross-

correlations on the network entropy is weak 

(Figure 5-3A,C). Later in the text we will consider 

further evidence of these findings. 

5.4.4 INDIVIDUAL EFFECTS ON 

ENTROPY CHANGE 

We estimated the change in the entropy, 

which we denominated delta entropy (ΔH), when 

we included additional terms in the model. This 

measure removes the effects of the firing rate 

 

Figure 5-4. Delta entropy (ΔH) measures the decrease in entropy when 

additional sets of parameters are inserted in the model. A. Effect of 

autocorrelations. B. Effect of cross-correlations. C. Effect of combined 

auto and cross-correlations. On the right, in each panel, are the 

(mean±SEM) of the distributions. 
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which were considered in the ‘Auto’, ‘Cross’ and ‘Full’ models and allows the identification of the individual 

effects of adding the autocorrelations and/or pair-wise cross-correlations on the entropy. In other words, it 

shows how much uncertainty you can reduce in the prediction of the response of the current cell by considering 

only the spike history of the same cell or from a nearby cell. Larger values of delta entropy indicate that the 

additional terms incorporated in the model (the autocorrelations and/or cross-correlations) have a higher effect 

on (i.e. reduce more) the entropy of the network. Control animals show a higher effect of the autocorrelations 

than for lesioned OFF and ON apomorphine (Figure 5-4A), but a smaller effect for the cross-correlations (Fig. 

4B). Large proportions at lag zero, in particular from control animals, show the small influence of the cross-

correlations between neurons in the overall changes of the network entropy, which is emphasized by the 

similarities between the delta entropy distributions for the ‘Auto’ and ‘Full’ models. The 6-OHDA lesioned 

animals before the treatment presented a significantly higher number of pair-wise interactions than control (KS-

test, p<0.001). After apomorphine injection, they experienced a significant decrease of these interactions to 

values much closer to control, but still statistically different (KS-test, p=0.023) (Figure 5-4B). 

We have shown that rate decreased, and abnormal oscillations and synchrony increased in the GPe 

network after 6-OHDA animal lesioning, leading to entropy (or coding capacity) decreases. Thereafter, when 

the dopamine depleted animals were challenged with apomorphine, these dynamical factors were restored to 

levels closer to healthy animals and the network entropy increased. To understand the nature of the network 

entropy changes, we quantified the extent of the impact of each individual dynamical factor (Figure 5-5). We 

had shown in our previous study (chapter 3, Cruz et al., 2009) that the decrease of the firing rates had a strong 

effect and the increase in synchrony a weak effect on the decrease of the entropy in the GPe of Parkinsonian 

 

Figure 5-5. Individual effect on the GPe 

network entropy changes of the dynamical 

alterations observed on the firing rates, 

oscillations and synchrony after 6-OHDA 

lesioning (in red) and after apomorphine 

challenge (in green). The negative values 

indicate an effect on the decrease of the entropy, 

and positive values on the increase of the 

entropy. 
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rats, while the abnormal oscillations, mainly at beta frequency, contributed to an increase of the entropy (170%, 

12% and 82%, respectively, in Figure 5-5). In the lesioned rats under apomorphine, the raise of the firing rates 

boosted an increase of the network entropy relative to non-treated rats. The reduction of synchrony in the 

animals ON apomorphine seen in Figure 5-3C had little effect on the increase of the entropy. The oscillations 

had again the contrary effect of decreasing the entropy in the network. The lesioned animals under the effect of 

apomorphine showed less pronounced deviations between the contributions of each factor on the entropy change 

(118% for rate, 27% for oscillations and 9% for synchrony) than the 6-OHDA lesion.  

5.4.5 DIRECTED INFORMATION FLOW 

We next analysed the directed information flow between pairs of GPe neurons. To calculate the directed 

information flow we subtracted the entropy under the 'Full' model from the entropy under the 'Auto' model. The 

'Full' model predicts the response of the current neuron accounting first for the firing history of that same neuron 

and second for the firing history of the second neuron. Thus, the directed information flow quantifies the pair-

wise interactions that provide new information in addition to the information given by the past events of the 

current neuron. Although both directed information flow and the entropy calculated with the 'Cross' model 

(Figure 5-3C) consider only cross-correlations, they differ because the 'Cross' model does not look at the 

information contained in the autocorrelations when selecting the cross terms. Thus, the 'Full' model (and 

therefore the directed information flow) in comparison with the 'Cross' model will consider less (or the same) 

pair-wise interactions to be relevant for the prediction of the response of the current neuron. This is the case 

because the information given by the cross-correlations may already be contained in the autocorrelations. This is 

 

Figure 5-6. Distributions of the information transfer between GPe neurons for control and lesioned animals before and after 

apomorphine injection. On the right, the (mean ± SEM) values of each distribution. 
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reflected in the lower estimates of the directed information flow in comparison with the estimates of the ‘Cross’ 

model (note the difference in the scales between Figure 5-6 and Figure 5-3C). This analysis is directional, since 

we can predict the response of one GPe neuron conditioned one another neuron and also the response of that 

other neuron conditioned on the first. 

We found in the lesioned animals OFF apomorphine meaningful transference of information in 55% of 

GPe pairs of neurons, while in the control animals in only 16% and in the lesioned ON apomorphine 40%. The 

lesioned animals OFF apomorphine showed significantly more directed information flow than the control and 

the lesioned animals ON apomorphine (KS-test, p <0.001). The lesioned animals after the apomorphine 

challenge experienced a decrease of the directed information flow to levels closer, but significantly different 

from control (KS-test, p <0.001). 

5.4.6 TEMPORAL PROFILE OF INTERACTIONS 

The whole interactions (ak and bk terms in Equation 14 (chapter 2, section 2.4)) captured by the 'Full' 

model represent a non-linear time-domain transfer function of the system. The last step of our analysis was to 

study the temporal structure of the pair-wise interactions (bk parameters) estimated with this model. The average 

value of the bk parameters characterizes the temporal profile, thus the amplitude and sign, of these interactions.  

We observed that the cross interactions in the lesioned animals OFF apomorphine extended for longer 

periods than control. Additionally, it clearly presented an oscillatory structure at beta frequency, which was not 

present in the control animals, and 'excitatory' interactions (positive sign) at shorter latencies (around 0-10ms). 

 

Figure 5-7. Transfer functions calculated with the ‘Full’ model, describing the temporal structure of the interactions between GPe 

neurons in control and in 6-OHDA lesioned animals, before and after apomorphine (APO) challenge. 
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After apomorphine administration, beta frequency oscillatory activity was not present anymore, as in control. 

In order to investigate the resonance phenomena, which has been observed in the basal ganglia-cortical 

circuits of PD patients (Eusebio et al., 2009) and of 6-OHDA lesioned rats (chapter 4, Cruz et al., 2011), we 

fitted damped sinusoids to the temporal profiles of interactions between pairs of GPe neurons to all our curves. 

The parameters of the fitted curves (dashed lines in Figure 5-7) are described in Table 5-1. A beta frequency 

damped oscillator function fitted the transfer function from the dopamine-depleted animals, with a natural 

frequency in the beta range (around 16 Hz). 

5.5 DISCUSSION 

 A pertinent issue in the study of PD is to determine the factors that affect and how they affect the 

atypical neural activity of the basal ganglia-thalamo-cortical circuitry in this disorder. To address this question 

we used a non-linear logistic regression model and information theory techniques to analyse the coding capacity 

of the GPe network of healthy and hemiparkinsonian rats before and after challenge with non-selective 

dopamine agonist apomorphine.  

We had found in a previous study that the estimated entropy in the GPe network significantly decreased 

after 6-OHDA lesion (chapter 3, Cruz et al., 2009). Following apomorphine administration, the network entropy 

in the lesioned animals increased to levels almost as high as in control animals. This re-establishment of the 

coding capacity in the GPe network of Parkinsonian animals under the dopamine agonist, known to alleviate PD 

 R
2
 α 

β 
[s] 

f 
[Hz] 

Θ 
[radians] 

Control 0.98 0.124 0.008 3.8 10.88 

Lesioned OFF APO 0. 95 0.054 0.043 16.5 6.65 

Lesioned ON APO 0. 97 0.028 0.003 2.8 8.93 

Table 5-1. Parameters that describe the damped sinusoid functions that better fit the temporal profiles of the cross terms of the ‘Full’ 

model: , maximum amplitude; β, damping rate; Θ, phase of the cosine function; f, frequency characteristics. 
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motor symptoms, supports the idea that the information carrying capacity of the neural code in the basal ganglia 

might be correlated with the clinical symptoms of the disorder. Apomorphine, like other dopamine agonists used 

in the treatment of PD, is known to reverse motor deficits in the patients. In several studies, apomorphine has 

been shown to increase the abnormally low firing rates in the Parkinsonian GPe (Filion et al., 1991; Hutchison 

et al., 1997; Boraud et al., 2001). Consistent with these findings, our data shows an increase of the firing rates in 

the lesioned animals after treatment with apomorphine to values similar to healthy controls. Additionally, 

apomorphine has been shown to decrease beta oscillatory activity in cerebral cortex and STN in Parkinsonian 

rats (Sharott et al., 2005b). Our results show that the exaggerated beta oscillatory activity in the Parkinsonian 

basal ganglia is also suppressed in the GPe when challenged with apomorphine. 

Various studies have postulated that the disturbance of the indirect pathway and dynamics in the GPe by 

changes in dopamine levels may be responsible for the motor deficits that accompany PD (Albin et al., 1989; 

DeLong, 1990; Rajput et al., 2008). A comparison between the motor impairment of MTPT treated monkeys 

before and after ablation of GPe has revealed that the disruption of this nucleus aggravated the Parkinsonian 

symptoms (Zhang et al., 2006). The authors also found that the lesion led to a reduction of the therapeutic 

effects of apomorphine and alterations in the neural activity of single GPi cells, suggesting a strong involvement 

of GPe in the pathology and in the restoration of motor performance after dopamine restoration in the brain. 

To examine how dynamics alter in the GPe, with changes in the level of dopamine we have taken a 

different approach. Assuming that PD symptoms are related to interference in information flow within the basal 

ganglia, we investigated the partial contributions of the observed changes in the neural dynamics (like firing 

rates, autocorrelations and cross-correlations) to the GPe network entropy. We found that, like for the decrease 

in the GPe network entropy observed after 6-OHDA lesioning, the change in firing rates was also the factor that 

most contributed to the increase in entropy after the administration of apomorphine. This large influence of the 

firing rate change has been observed in different structures in the Parkinsonian basal ganglia and is in 

accordance with the current model of basal ganglia function (Albin et al., 1989; DeLong, 1990). According to 

this model, the decrease in GPe discharge rates, a consequence of the increased activation of the GABA 

projection from the striatum, disinhibits the subthalamic nucleus (STN). The disinhibition of the STN results in 

an increase in its excitatory drive on the internal globus pallidus (GPi) and a subsequent increase in the firing 

rates in the latter output nucleus. The authors describe these higher discharge rates in the basal ganglia output as 

possibly responsible for the motor deficits of PD, since they result in tonic excessive inhibition of the 

thalamo-cortical projection neurons interfering with their role in motor control. Other studies where GPe and 
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GPi neuron activity were recorded from PD patients or MPTP monkeys treated with apomorphine, have shown a 

clinical improvement highly correlated with the increase and decrease of the frequency rates in GPe and GPi, 

respectively, also in agreement with the current ‘Rate’ model (Hutchison et al., 1997; Boraud et al., 2001).  

 Although the involvement of abnormal firing rates in Parkinsonism has been well studied, it is still not 

clear what the role of the excessive beta synchrony in the basal ganglia in Parkinsonian patients and animals, is 

in the motor dysfunction of the disease (Eusebio and Brown, 2009; Kuhn et al., 2009). Our results show that the 

effect of increased synchrony on the decreased coding capacity in the animals rendered Parkinsonian is more 

than 14 fold less than the effect of the decrease of firing rates in the GPe. Likewise, the decrease of the pair-wise 

synchrony had an impact roughly of the same order in the restoration of the coding capacity induced by the 

apomorphine. These results make us believe that, in PD, the excessive synchronization in the basal ganglia 

activity has much lower influence on the disruption of the information flow in the motor circuit than the 

abnormal firing rates. Theoretical analyses on the validity of pair-wise cross-correlations as a tool for describing 

the synchrony at the network level have shown that weak correlations between pairs of neurons may imply 

higher synchrony at the population level (Shamir and Sompolinsky, 2004; Averbeck et al., 2006). These 

predictions have been corroborated by experimental studies where the effects of noise correlations were slightly 

higher for ensembles of 3 to 8 cells than for pairs of neurons in the supplementary motor area of rhesus monkeys 

(Averbeck and Lee, 2006) and for 10 and more cells from the retinae of larval tiger salamanders and guinea 

pigs, recorded during visual stimulation (Schneidman et al., 2006). Similarly, in a previous study of the GPe 

neural coding in Parkinsonian rats (chapter 3, Cruz et al., 2009), we have calculated the change in entropy as a 

function of ensemble sizes for groups of 3 to 12 simultaneously recorded neurons. We found a slight increase in 

the effect of cross-correlations for larger ensembles. Based on these results, we then extrapolated this relation to 

larger populations up to 500 neurons. Our predictions have shown that there is an increase in the effect of cross-

correlations for ensembles of around 100 neurons in the lesioned animals, which flattens for larger ensemble 

sizes. According to these findings, the effect of the cross-correlation for ensembles of more than 100 neurons in 

the decrease of the GPe entropy in the lesioned rats, although it was higher than for pairs of neurons, was still 

substantially lower than the effect of the firing rates (chapter 3, Cruz et al., 2009). 

The origin and function of the exaggerated oscillatory activity in the beta band frequencies that 

accompany PD is another factor which is still to be fully understood. We have shown that the difference in the 

autocorrelations between control and lesioned animals, which was mostly in the beta frequency band, had the 

opposite influence on the network entropy than firing rates and synchrony. This is because the oscillations 
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contributed more to decreasing the GPe network entropy in the control animals than to decreasing it in the 

lesioned animals. The restoration (or increasing) of the entropy levels after administration of the apomorphine, 

again showed a contrary effect of the autocorrelations compared to firing rates and cross-correlations. 

Specifically, the effect of the autocorrelations on entropy was increased in the Parkinsonian rat after 

administration of apomorphine. The idea that a regularization of neuronal activity in the basal ganglia alleviates 

the manifestations of motor dysfunctions in PD by reducing pathological dynamics in the basal ganglia-thalamo-

cortical circuit is in accordance with the findings by Dorval et al. (2010) that STN DBS at high frequencies 

induces a larger relief of bradykinesia in PD patients in comparison with an irregular stimulation at an identical 

mean frequency.  

We have shown that dopamine depletion decreases the entropy in the network, which again increases to 

levels similar to healthy following activation of D1-like and D2-like dopamine receptors by apomorphine. 

Interestingly, although the coding capacity is almost fully restored in the GPe network, our results show that the 

dopamine agonist seems to eliminate mainly the effects of the decreased firing rate and changes in 

autocorrelations and only partially cancels the change in cross-correlations. Since the change in cross-

correlations was the factor that had the lowest contribution to the overall decrease of the network entropy, the 

impact of its partial restoration didn’t have a strong effect. Additionally we observed an increase of directed 

information transfer between pairs of GPe neurons in the lesioned animals, which was reduced under the 

dopamine agonist.  

5.6 CONCLUSIONS 

Our results confirm that pathophysiological properties characteristic of the disease, such as decreases in 

firing rates, abnormal beta frequency oscillations and increased synchrony in the GPe, are depressed by 

treatment with apomorphine. Through statistical modelling and information theory techniques we observed a 

decrease in the coding capacity in the hemiparkinsonian GPe, and subsequent recovery after apomorphine 

challenge to coding capacity levels very close to the non-lesioned brain. We have shown that firing rates are the 
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strongest factor that affects these changes in the network entropy, followed by abnormal beta oscillations. The 

increase in synchrony showed a low impact on the coding capacity in the lesioned animals, and was only 

partially cancelled by the dopamine agonist. It remains to be proven that the loss of the basal ganglia network’s 

ability to adequately code information is related to the motor and cognitive impairment inherent to PD. 
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6 DISCUSSION 

Disturbances of neuronal dynamics in the basal ganglia in Parkinson’s disease (PD) have been well 

documented in human and animal models. The excessive activity in the beta frequency band (13-30 Hz) has 

been consistently found in the cortex and several sites of the basal ganglia of PD patients (Brown et al., 2001; 

Marsden et al., 2001; Levy et al., 2002; Williams et al., 2002; Moran et al., 2008) and Parkinsonian animals 

(Sharott et al., 2005b; Mallet et al., 2008a; Mallet et al., 2008b). Although the source of these pathological beta 

autocorrelations is unknown, it has been shown that they tend to disappear when movement is initiated, hence 

suggesting their involvement in the motor complications seen in PD (Levy et al., 2002; Amirnovin et al., 2004; 

Kuhn et al., 2004b; Avila et al., 2010). Additionally, other atypical dynamics have been reported in the neural 

activity of the Parkinsonian basal ganglia, such as shifted firing rates and increased levels of cross-correlation 

(Pan and Walters, 1988; Bergman et al., 1994; Burbaud et al., 1995; Hutchison et al., 1997; Magill et al., 2000; 

Raz et al., 2000; Heimer et al., 2002). The study presented in this thesis focuses on understanding how these 

changes in the neural activity, probably resulting from dopamine depletion in the basal ganglia, affect the 

network entropy of the external segment of the globus pallidus (GPe) and its functional connectivity with the 

subthalamic nucleus (STN). 

The past decades witnessed a boost in our knowledge of the anatomy and neurophysiology of the basal 

ganglia, broadly aided by intensive research on motor and non-motor basal ganglia disorders, and leading to the 

emergence of several theories about their architecture and function. Nowadays, the most widely accepted model 

of the basal ganglia is known as the rate model and was put forward by several authors in the late 80’s/early 

90’s (Albin et al., 1989; Alexander and Crutcher, 1990; Chevalier and Deniau, 1990; DeLong, 1990; Gerfen et 

al., 1990; Parent, 1990). It focuses on two pathways with different functions which initiate in distinct 

populations of striatal medium spiny neurons (MSNs) and project to the basal ganglia output. The direct 

pathway stems from MSNs that express D1-like receptors and comprises the putamen GABAergic relay to the 

internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr). The GPi/SNr make up 

the basal ganglia output and when activated disinhibit the thalamic drive to the cortex. The authors suggest that 

this circuit facilitates cortically driven movement. On the other hand, the indirect pathway has its origin in the 

MSNs expressing D2-like receptors and comprises the putamen-GPe and GPe-STN GABAergic projections, and 

the glutamatergic STN-GPi/SNr projection. The activity in this circuit results in inhibition of the motor 

thalamus. The indirect pathway, by decreasing the thalamic input into the motor cortex targets, is believed to 
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restrain undesired and conflicting motor actions. The nigrostriatal tract, by regulating the dopaminergic input, is 

thought to control and balance the activation of both pathways. Decreased dopamine levels in the striatum are 

believed to deactivate MSNs that express D1 receptors, inhibiting the direct pathway and activating the indirect 

pathway, resulting in increased inhibitory basal ganglia output. Higher levels of dopamine will act on D2-

expressing MSNs and will generate the opposite effect. 

The fact that the GPe connects to all structures in the basal ganglia suggests that this nucleus has a 

fundamental role in the information flow in the basal ganglia-thalamo-cortical circuitry. Several studies have 

shown that the neural activity in the GPe is strongly associated with levels of motor activity by consistently 

observing a decrease in its firing rate in hypokinetic disorders and an increase in hyperkinetic disorders, thus 

supporting the basal ganglia classical model from Albin and DeLong (1989). Firing rates in GPe were shown to 

decrease in animals after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MTPT) or 6-hydroxydopamine 

(6-OHDA) lesioning (Miller and Delong, 1988; Filion and Tremblay, 1991; Boraud et al., 1998; Aizman et al., 

2000; Mallet et al., 2008a). Parkinson’s disease patients exhibiting Unified Parkinson's Disease Rating Scale 

(UPDRS) scores indicating high motor deficits were found to have a high increase of the firing rate in GPe when 

challenged with a dopamine replacement treatment (apomorphine) that significantly improved the total motor 

scores (Hutchison et al., 1997). Other studies have shown that a microinjection of a GABA antagonist into the 

pallidus of the rat induces catalepsy and rigidity (Matsui and Kamioka, 1978; Moroni et al., 1978; Scheel-

Kruger, 1983). Following the rate model from Albin and DeLong (1989), these results were explained by an 

increased activity of the indirect pathway: over inhibition of GPe by the striatum, resulting in reduced inhibition 

of STN and over excitation of the GPi/SNR. Consequently, the thalamic neurons were inhibited leading to 

decreased excitation of cortical neurons, and culminating in increased motor output. Turski et al. (1984) have 

shown that, in addition to the injection in the GPe, a simultaneous microinjection of a GABA agonist into the 

SNr of the rat suppressed the symptoms of catalepsy, suggesting that activation of the GABAergic neurons of 

the basal ganglia output prevented the over inhibition of the motor thalamus. Conversely, microinjections of a 

GABA antagonist into GPe generated hyperkinetic movement disorders, such as dyskinesias (Mitchell et al., 

1989). The authors suggest that the blockage of the GABAergic activity in GPe prevented the inhibition of the 

basal ganglia output which failed to inhibit the motor thalamus. Studies in PD patients (Hutchison et al., 1997; 

Lozano et al., 2000) and MPTP treated monkeys (Boraud et al., 2001; Heimer et al., 2002) have detected 

augmented firing rates in the GPe during dopamine replacement treatment, in many cases associated with 

dyskinesias induced by the drug.  
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Although the classical view of the basal ganglia organization has been generally accepted, a number of 

studies have challenged some basic principles of the rate model (Marsden and Obeso, 1994; Heimer et al., 2002; 

Bar-Gad et al., 2003). The classical view of the basal ganglia function suggests that these nuclei play a key role 

in motor action preparation and execution, by regulating the activity in the motor thalamus and subsequent relay 

to its cortical targets. In PD, the degeneration of dopaminergic cells within the substantia nigra pars compacta 

(SNc) and consequent deterioration of the dopaminergic nigra input into the striatum, has been shown to 

increase the basal ganglia output. Under the current model, the resulting high inhibition of the thalamus and of 

its input into the supplementary motor area (SMA) and other cortical motor areas explains the motor 

impairments characteristic of PD, such as akinesia, hypokinesia, bradykinesia, rigidity and tremor. Following 

this model, the ablation of structures, such as the GPi/SNr or the thalamus, should lead to further impairment of 

the voluntary movement of PD patients due to a substantial decrease or total loss of the thalamic drive to the 

cortex. However, clinical evidence from thousands of stereotactic lesions of the GPi and thalamus conducted on 

PD patients hint otherwise (Hoehn and Yahr, 1969; Webster, 1969; Hassler et al., 1979; Speelman, 1991). 

Pallidotomy was first introduced as an effective treatment for tremor and rigidity in Parkinson’s disease 

in the early fifties (Guiot and Brion, 1953; Riechert and Wolf, 1953; Spiegel and Wycis, 1954; Narabayashi et 

al., 1956) and thalamotomy a few years later, the latter being identified as more advantageous (Hassler and 

Riechert, 1954; Cooper and Bravo, 1958a). Nowadays, these stereotactic lesions have been for the most part 

replaced by deep brain stimulation (DBS), a less risky and possibly more beneficial procedure. Marsden and 

Obeso (1994) reviewed the account of thousands of such ablative stereotactic surgeries and confirmed that, 

although they produced good results in diminishing tremor and rigidity, the partial or full lesioning of GPi or 

thalamus did not improve or worsen other symptoms of PD, such as akinesia and bradykinesia. This fact led the 

authors to question two main predictions of the rate model. First, that the reduced inhibition of the thalamus 

resulting from GPi ablation does not induce dyskinesia, but rather pallidotomies can treat it (Hughes, 1969; 

Hassler et al., 1979; Laitinen et al., 1992; Baron et al., 1994). Second, according to the model, the suppression 

of the thalamic excitation of the cortex, by elimination of the thalamus, would over facilitate the execution of 

cortically initiated movement and disable the capacity of repressing undesired movements. Therefore, 

thalamotomies would be expected to compromise the motor performance of PD patients. Clinical studies show 

that unilateral and bilateral thalamotomies do not improve akinesia or hypokinesia, nor induce dyskinesia 

(Cooper, 1965; Mundinge, 1965; Selby, 1967; Hoehn and Yahr, 1969; Webster, 1969; Hassler et al., 1979; 

Speelman, 1991). Thus, these results do not comply with the predictions of the rate model.  
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Given the lack of success in finding possible solutions for such paradoxes, Marsden and Obeso (1994) 

argue against the classical view of the basal ganglia as a hierarchical serial processing system, meaning that the 

interruption of the circuit by annihilation of one of its elements should disrupt the balance of the system. The 

authors further suggest, without expanding into details, that the basal ganglia is likely to process information as 

a parallel distributed system, a model of brain computational architecture advocated by McClelland et al (1986) 

and Mesulam (1990). Inspired by neural networks, parallel distributed processing models aim to describe the 

computational processes and information processing as it occurs in the brain. These models are based on the 

assumption that the complexity of the brain and its numerous highly interconnected elements would be 

superfluous in a conventional hierarchical sequential framework, but would be fundamental for a parallel 

distributed network. Although they assume the existence of serial pathways in addition to the parallel distributed 

processing, they state that the information is for the most part not represented locally in dedicated regions, but 

distributed through several brain structures organized collectively. Major components involved in a particular 

function can communicate directly, but also through the mediation of secondary structures, resulting in several 

parallel pathways. In parallel distributed processing, the information processing occurs through interactions and 

propagation of activation among a wide collection of elementary processing units, such as neurons, by 

exchanging, synchronising or comparing activity patterns between excitatory and inhibitory inputs. Cognitive 

processing in the large-scale networks is understood as a competition between different possibilities and 

constraints, where each problem is solved by simultaneously and collectively pursuing multiple scenarios until 

the lowest conflict state is selected and dominates. A higher number of constraints results in increased 

processing speed in parallel distributed processing, but slowed response in serial hierarchical systems. 

Therefore, the former models may be more flexible, and could explain the existence of innumerable connections 

in the brain and its rapid performance. Specifically, in recent years many new connections between several 

structures of the basal ganglia-thalamo-cortical circuit have been discovered, but their role is still obscure. 

Additionally, the parallel distributed processing model can help to explain how the lesion of a central structure, 

which classically would play a key role in a specific neuronal process, can have a relatively mild or partial effect 

on the overall performance, as is the case when GPi or thalamus are damaged and do not result in deficits in the 

voluntary movement of the patient. In contrast to the hierarchical serial models, the parallel distributed models 

would react to the disruption of an essential pathway in the network as a restriction of the architecture of 

information processing and flow, rather than an interruption of a dedicated route towards a planned goal.  
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Our approach in this study is closer to a parallel distributed model, than to the classical theory of basal 

ganglia organization. The latter considers individual nuclei in the basal ganglia-thalamo-cortical circuit as 

“dimmer switches” by assuming that the whole activity of the nucleus will influence the execution of a specific 

movement, modulated by its firing rate. Instead, we assume that patterns of activation of populations of neurons 

within each basal ganglia nucleus encode necessary information that will contribute to the task execution. We 

believe neurons within nuclei have underlying tuning functions, which combine into populations to encode 

specific sensory and behavioural parameters (e.g. motion direction, magnitude, speed or spatial orientation). 

Boussaoud and Kermadi (1997) have recorded single cell activity in the striatum in monkeys during a 

conditional visuomotor task. The authors report that distinct neural subpopulations were activated by different 

visual stimuli and instructed actions, and that a significant number of cells showed combined stimulus and 

movement effects. Pasquereau et al. (2007) monitored the activity of single cells in the striatum and GPi of 

monkeys during a visually guided motor task, with different reward probabilities associated with each target. 

The authors show that ensembles of neurons from both structures dynamically encode motor and cognitive 

variables. Preceding or following an instruction to move, neurons have tuning curves that are regulated 

simultaneously by direction of movement and reward probability. Georgopolous et al. (1982) studied the 

response of single neurons in the motor cortex to different directions of arm movement in monkeys. They 

equally found that the same cells were activated when movements followed different trajectories. This 

intermingling and intersection in the activity of neural populations seems to suggest that neurons are not 

allocated to code specific variables, but rather to work collectively to process information as their tuning curves 

overlap. Therefore, an effective evaluation of the performance of such structures in disease is to measure 

changes in their coding capacity rather than look independently at the variations of their pattern of activity, such 

as firing rates or other dynamical factors. 

 Thus, to evaluate the extent of the impairment of GPe in processing information in Parkinsonism, we 

estimated the difference in network entropies, or coding capacities, of the GPe nucleus in healthy and 6-OHDA 

rats, before and after apomorphine injection. In accordance with our predictions, we found that the coding 

capacity decreased substantially after dopamine depletion and was restored to levels close to healthy brains 

following activation of D1-like and D2-like dopamine receptors by dopamine agonist medication. Therefore, 

these results suggest the dopamine in the basal ganglia may act as a modulator or facilitator of information 

encoding within the basal ganglia nuclei. The damage of dopaminergic pathways, and consequent decay in the 

levels of dopamine, seems to decrease the amount of information that potentially can be processed in the GPe. 
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We believe this contributes to the motor impairment seen in PD. These observations are in agreement with the 

theory of neurocognitive parallel distributed processing by Mesulam, which states that neural networks are 

composed of “anatomically addressed channels for transferring information content and chemically addressed 

pathways for modulating behavioural tone” (Mesulam, 1990).  

Within the information theory framework, our model allowed us to decompose the relative impact of 

changes in individual dynamical factors – alterations in firing rates, auto or cross-correlations occurring due to 

shifted levels of dopamine in the brain – on changes in the coding capacity in the GPe. Our findings have shown 

that the decrease of the firing rates in the GPe of Parkinsonian rats was the factor that most contributed to the 

observed decrease of the coding capacity of this nucleus. Also, the increase in GPe firing rates in lesioned 

animals after apomorphine challenge to values close to control animals, was the component that most assisted 

the consequent restoration of the coding capacity. Like in the current rate theory, our results imply that the large 

variations in firing rates play a key role in the defective functioning of the basal ganglia-thalamo-cortical 

circuitry in Parkinsonism. Yet, within our framework, we also considered the substantial influence of alterations 

in the synchrony and oscillatory properties of the neural activity on the ability of GPe to process information. 

The autocorrelations in the GPe of Parkinsonian animals, differentiable from control animals mainly in the 

predominance of beta frequency rhythms, showed a reasonable effect on the overall entropy in the network 

(although in a lesser degree than rate), but decreased the entropy more in control than in lesioned animals. The 

synchrony was the factor that had less effect in the decrease of the entropy. Although the coding capacity was 

almost fully restored in the GPe network after apomorphine challenge, the dopamine agonist seemed to 

eliminate mainly the effects of the decreased firing rate and excessive beta frequency autocorrelations and only 

partially cancel the effects of cross-correlations. Since cross-correlation was the factor that had a lower 

contribution to the overall decrease of the network entropy, the effect of the incomplete cancelation was not 

significant. Our model of the effect of cross-correlations for larger populations of neurons revealed a higher 

impact on the decrease of the coding capacity in the lesioned animals, but still much smaller than the effect of 

rates and autocorrelations. 

We presented evidence that the pathological oscillatory activity (particularly auto-correlation) in the beta 

range in PD has a significant effect on the information processing capacity in the GPe network in Parkinsonian 

rats. Therefore, we believe that it may underlie the motor impairments intrinsic to the disorder. Nevertheless, the 

mechanisms and origin of these beta rhythms are still not fully understood. Brown (2003) suggests that the 

oscillations in the beta frequencies in PD impede the neural impulses for movement initiation, which would 
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normally travel through the basal ganglia, because they are not able to override the amplified oscillatory state. 

Thus, the reduction of beta rhythms required to initiate voluntary movement is hindered (Kuhn et al., 2004b). 

This theory is supported by the fact that treatment of PD with dopaminergic medication has been shown to 

reduce the beta rhythms in the basal ganglia, while facilitating voluntary movement (Brown et al., 2001; Levy et 

al., 2002; Alonso-Frech et al., 2006). 

Less is understood, though, on the subjects of where and why this beta band oscillatory activity emerges 

in PD. It is not known if the affected neurons tend to oscillate intrinsically at beta frequencies due to a 

combination of external conditions, or if the beta oscillations are a network phenomena, emerging in a particular 

structure or set of structures and propagating throughout the basal ganglia-thalamo-cortical circuit. Earlier 

studies have hinted that the beta oscillations in PD could emerge in the cortex (Levy et al., 2002). More recently 

it has been claimed they could have their origin in the striatum as a product of inhibitory interactions between 

medium spiny neurons (McCarthy et al., 2011). Other studies have suggested that the reciprocally connected 

STN-GPe network could be the source of the idiopathic oscillations. The high coherence found in the beta range 

(Bevan et al., 2002; Mallet et al., 2008a), the fact that the majority of neurons in these nuclei behave as 

autonomous pacemakers (Surmeier et al., 2005) and the excitatory/inhibitory properties of the STN-GPe 

network, make it a potential generator of oscillatory activity (Cohen et al., 1992; Brunel, 2000; Bevan et al., 

2002; Ermentrout and Chow, 2002; Terman et al., 2002; Mallet et al., 2008a). A study in mature organotypic 

cultures of healthy cortex-striatum-STN-GPe, suggested that the STN-GPe network could function as a 

pacemaker, spontaneously generating oscillatory bursting synchronized at delta frequencies. It was shown that 

the GPe bursting activity hyperpolarized STN neurons to an extent that these were capable of bouncing back, 

subsequently driving GPe neural activity and leading to perpetuation of the oscillatory behaviour (Plenz and 

Kitai, 1999). A computational model of the pathological basal ganglia, based on the classical rate theory, 

presented specific scenarios where the STN-GPe network intrinsically oscillated in the beta band, conditioned 

on specific ratios of the connection strengths of the projections (Holgado et al., 2010). However, no clear 

experimental evidence has yet been found that the STN-GPe circuit in Parkinsonism has the dynamics required 

to underlie the beta rhythmicity at network level. The interplay of many factors, such as the degree and strength 

of the connectivity between the excitatory and inhibitory populations, the extent of the interactions with other 

nuclei, intrinsic properties of neurons, spike times, synaptic transmission delays, patterns of activity, among 

others, make it hard to evaluate if the system follows the ‘balanced regime’ that would allow beta oscillations to 

be generated and sustained in the disease state. To stay in this regime, besides the balanced excitation and 
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inhibition interactions, the network nuclei are also required to have a strong coupling between them and 

converging oscillatory frequencies (Renart et al., 2004). The ratio between the synaptic time variables of 

excitatory and inhibitory currents and the balance between excitation/inhibition will determine the frequency of 

the synchronized oscillatory activity (Brunel and Wang, 2003). When under the ‘balance regime’, if the balance 

is broken, resulting in a high excitation or inhibition drive, the system will likely become saturated or silent 

(Renart et al., 2004).  

Ryan and Clark (1992) have recorded extracellular unit activity in the STN of rats, before and after an 

excitotoxic lesions of the GPe. They reported an increase of STN drive after the lesion, but neither a silent nor 

epileptic response was detected. This result indicates that in healthy brains, the STN-GPe is probably not in the 

‘balanced regime’. Our analysis of the functional connectivity between GPe and STN has shown that the 

information transfer between these nuclei increases substantially in both directions (around 10 fold) in the 6-

OHDA animals compared to healthy controls. Additionally, we have shown that the temporal profiles of the 

interactions between STN and GPe develop oscillatory rhythms around the same frequency in the beta range. 

Thus, the stronger coupling and the synchrony of the oscillatory activity observed in the STN-GPe network of 

our Parkinsonian animals support the argument that this system might be in a balanced state and may be 

responsible for the development of the pathological beta frequency oscillations. Nevertheless, these results do 

not exclude other hypothesis such as the beta oscillations are generated elsewhere in the cortical-basal ganglia-

thalamo-cortical circuit and amplified at the level of the STN-GPe network, or are just a product of intrinsic 

oscillatory properties of the neurons. 

The functional impact of augmented information transfer between the STN and GPe in Parkinsonism is a 

key issue, the resolution of which is a challenge since the computational roles of the basal ganglia remain 

obscure. There are many theories of basal ganglia function, including dimensionality reduction (Bar-Gad et al., 

2003), reinforcement learning (Graybiel, 1998), sequential motor control (Marsden and Obeso, 1994), action 

selection (Mink, 1996; Redgrave et al., 1999; Hazy et al., 2007; Houk et al., 2007), and the related hypothesis 

that these circuits are important for automatic execution of well-learned, automated motor plans (Marsden, 

1982; Grillner et al., 2005). Many of these theories, as well as the influential direct/indirect pathways model 

(DeLong, 1990), focus on the sequential, feed-forward connections of basal ganglia-thalamo-cortical circuits. 

As such, they are based on the idea that properly directed information flow through the basal ganglia, and its 

effects on the thalamus and other targets, underpins their function. Although information flow, the transmission 

of information from one nucleus to the next, can be distinguished from information representation (the amount 
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of information embodied within a single nucleus), these concepts are related. Indeed, hindering information flow 

could hinder information representation at the next level in the circuit. In the Parkinsonian state then, the strong 

feed-back loop from STN to GPe may impede this information flow. Alternatively, or in addition, this feedback 

may impede information representation, which is in agreement with our results that dopamine depletion causes a 

substantial decrease in network entropy (i.e. coding capacity) in the GPe. 

For a deep understanding of the STN-GPe network, it is also of interest to consider that the GPe 

population does not behave uniformly in the lesioned basal ganglia. The GPe cells have been divided in two 

subpopulations (the ‘Type-Inactive’ (GP-TI) and the ‘Type-Active’ (GP-TA) that make up around one fifth of 

the population). These neuron types are defined by their preferential discharge during the different phases of 

cortical slow activation (Mallet et al., 2008a). The GP-TA neurons, contrary to what is believed to be the 

tendency in the Parkinsonian basal ganglia, do not tend to oscillate prominently at beta frequencies. Also, lower 

information transfer between GP-TA neurons than between GP-TI neurons, and the fact that both types of 

neurons tend to fire in anti-phase, indicate that these subpopulations may play different roles within the GPe. 

Although no significant difference was found at the level of causal information transfer between either type of 

GPe neuron and STN in either direction, we found that the GP-TA/STN projections in both directions were 

excitatory at short latencies and revelled a tight temporal coupling, suggesting that GP-TA and STN might share 

a common input that GP-TI neurons do not receive. Also it is not clear if the GP-TA neurons yield projections to 

STN, or if these are GABAergic, as it is believed to be the case for the majority of GPe (or GP-TI) cells (Bevan 

et al., 1998; Smith et al., 1998). Such findings raise some questions that defy the current understanding of the 

GPe neural circuits, requiring further research into the neuroanatomy, chemistry, and physiology of these 

different subpopulations of GPe neurons. 

 To reach further understanding of how information processing is hindered in the basal-ganglia-

thalamo-cortical circuit in PD, it would also be of interest, in the future, to expand the present analysis to other 

nuclei and functional interactions within the circuit. This would permit comparing levels of impairment in the 

coding capacity and information transfer within and between different elements of the circuit. It would allow 

one to indentify regions that were more affected by the dopamine depletion characteristic of PD, as well as 

investigate their response to treatment with dopamine agonist drugs.  

Moreover, it would be interesting to apply the current model to analyse, in healthy and Parkinsonian 

awake behaving animals, the response of the basal ganglia network to stimulus and controlled motor tasks. It is 

worth noting that the neural activity analyzed in this study was recorded during urethane anaesthesia, 
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administered intraperitoneally. Urethane has been widely used in animal research – in particular in studies 

involving electrophysiological recordings in the central nervous system – since it provides extended periods of 

anaesthesia and minimal interference in the cardiovascular and respiratory systems (Koblin, 2002). Given in 

appropriate doses, urethane induces skeletal muscle relaxation and preserves a number of reflex responses, but 

has been shown to alter some physiological parameters (Maggi and Meli, 1986; Hara and Harris, 2002). 

Nevertheless, we assumed the extrapolation of our results to the awake state based on several factors we have 

discussed in chapter 3 (Cruz et al., 2009). The advantage in the present study in the analysis of 

electrophysiological data lies in the large amount of data that can be collected in the anesthetized state, both in 

terms of the amount of data recorded for each neuron, and the number of neurons that can be recorded 

simultaneously. Currently, the existing techniques to record in awake rats make it difficult to obtain datasets as 

large as the one we analysed in this study. 

We have shown substantial changes in entropy in the GPe network and in directed information flow in 

the STN-GPe interaction after dopamine depletion, which may contribute to the motor deficits inherent in PD. 

We hypothesise that variation in the coding capacity along with obstruction in the information transfer is also 

present in other structures of the Parkinsonian basal ganglia-thalamo-cortical circuit, which as a whole underlie 

the movement difficulties the PD patients endure. Notwithstanding the huge advances and importance of the 

existing treatments for PD, such as dopamine replacement drugs or DBS, still large improvements have to be 

made in the field, mainly due to strong side effects and temporary effectiveness that underlie these treatments. A 

deeper understanding of the specific mechanisms occurring in the basal ganglia under dopamine depletion 

would allow a more targeted treatment and hopefully improve its efficacy and therefore increase the quality of 

life of PD patients.  
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7 CONCLUSION 

By means of information theory methods and nonlinear time series analysis, we investigated the effects 

that different levels of dopamine in the basal ganglia have on the entropy of GPe and STN-GPe networks. The 

key findings of this study are that chronic dopamine depletion in the basal ganglia led to a substantial decrease 

in the coding capacity of the GPe network, which was restored to levels close to control under the effect of the 

dopamine agonist apomorphine. Alteration in firing rates was the factor that most impacted the changes in the 

GPe network entropy, followed by the presence of excessive oscillations in the beta frequency range and the 

cross-correlation, the latter showing a small effect. We also found that the STN-GPe coupling was higher in the 

lesioned animals and that temporal structures of interactions between both nuclei in either direction were found 

to oscillate at beta frequencies. These results suggest that the disturbances of the dynamical properties at neural 

and network levels that occur in the Parkinsonian state are responsible for preventing the natural information 

processing within the GPe and information flow between STN and GPe. We believe they contribute to the motor 

impairments seen in PD. We also found that the perturbation in the network entropy can be reversed by restoring 

appropriate levels of tonic dopamine agonism in the basal ganglia. 
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APPENDIX 

APPENDIX A 

 # of animals # of cells # of pairs 
# of ensembles  

(> 1 cell) 

CONTROL 

GPe/GPe 

(chapters 2, 3, 4 and 5) 
16 143 507 27 

STN/GPe 
(chapter 4)  

6 
STN: 10 

49 10 

GPe: 49 

LESIONED 

GPe/GPe 
(chapters 2, 3 and 5) 

23 459 2086 56 

STN/GPe 
(chapter 4) 

11 
STN: 26 

184 18 

GPe: 133 

GP-TI/GP-TI 
(chapter 4) 

23 271 2394 52 

GP-TA/GP-TA 
(chapter 4) 

20 59 562 18 

GP-TI/GP-TA 
(chapter 4) 

20 

GP-TI: 160 

340 29 

GP-TA: 60 

STN/GP-TI 
(chapter 4) 

11 

STN: 24 

105 16 
GP-TA: 74 

STN/GP-TA 
(chapter 4) 

8 

STN: 15 

22 8 

GP-TA: 13 

LESIONED (Apomorphine study) 

GPe OFF APO  
(chapter 5) 

8 67 634 8 

GPe ON APO 
(chapter 5) 

8 44 208 8 

Table A-1. Summary of the dataset used in the studies, referenced to each chapter. Single cell activity was simultaneously recorded from 

GPe and STN neurons, from control and 6-OHDA lesioned animals. Additionally, the GPe data set was split in two sub-populations: GP-TI 

and GP-TA (see chapter 4). In the last two rows is the dataset used in the chapter 5 study, where neurons from the GPe of 6-OHDA lesioned 

rats were recorded before (GPe OFF APO) and after (GPe ON APO) treatment with apomorphine (APO).  
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APPENDIX B  

Population model 

In this appendix we present the mathematical details of our population model. We were interested in the 

effects of correlations at the population level. From the data, we directly estimated delta entropy (ΔH) in 

ensembles of ≤ 19 simultaneously recorded neurons. However, the effects of correlations (synchronization) will 

likely be larger at the population level (Averbeck and Lee, 2006). Because we currently do not have techniques 

for either recording from or estimating information in entire populations of neurons, we have to estimate the 

impact of correlations at the population level using model extrapolations. To make this estimate we developed a 

model that is consistent with the results of the empirical analyses. Specifically, we used only measured pair-wise 

covariances to estimate delta entropy at the population level. 

Only linear terms were significant in the logistic regression model; adding the higher-order terms did not 

improve prediction (see Results in chapter 3, section 3.4). Thus, our model was developed by estimating the 

performance of a linear classifier. Derivation of linear classifiers is generally done by making Gaussian 

assumptions on the distribution of the variables used for prediction. Although our individual variables are 

binomial, for large neuronal populations, linear functions of binomial random variables will converge to 

Gaussians, via the central limit theorem (Papoulis, 1991).  

Least squares estimators can be used to find optimal linear classifiers (Duda et al., 2001). Thus, our 

classifier is given by 

 (B1) bsT

i  . 

Here, ηi is an estimate of whether or not a spike occurred (not constrained to lie between 0 and 1 as it is 

in the logistic regression model), the vector s represents the spiking in the set of simultaneously recorded 

neurons, and the vector b is our decision boundary estimated with least squares. It can be shown that, for a 

particular choice of ηi values, the linear decision boundary b will be the same as the Fisher decision boundary 

(Duda et al., 2001). Specifically, if we set 
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where ri is the firing rate of neuron i, it can be shown that b is the Fisher discriminant boundary. We can find b 

and the residual variance of this estimator using standard linear model results 
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Thus to estimate the residual variance, we have to calculate the matrices sC and .ssC  The variance of 

the dependent variable is given by 

(B7) iiii rr /1)1/(12    

Css can be measured directly in the data as this is the covariance matrix between spike trains. Individual 

elements of this matrix are given by 

(B8) )()(, jjiiji ssssC   

The covariance between sj and the ηi is 

(B9) 
2
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ji
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To estimate our classification performance, which can be used to estimate the residual entropy, we have 

to know the difference in the means for the estimates of a spike and no spike, and the variance of the 

distributions about the means generated by our linear estimator. The means can be calculated from 
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The conditional probabilities are given by 
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(B12) jijiji rrCm ,,   

is the second, noncentral moment. Correspondingly we can calculate 
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Finally, the total variance 
2

i can be factored into bias and variance components, which allow us to 

calculate the variance around the mean estimates. Specifically 
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Our classification accuracy is then given by 
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This can be converted to fraction correct classification performance using the error function (Averbeck 

and Lee, 2006) 
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The fraction correct can then be converted to delta entropy.  

 The model was estimated by sampling covariance matrices randomly from the distribution of 

covariance values estimated for all pairs of neurons and then estimating delta entropy for the corresponding 
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population. The average covariance values for the lesioned data were 0.0088, and the average values for the 

control data were 0.0068. This was done 5,000 times, and the results were averaged to give the curves shown in 

Figure 3-7. Firing rates for all neurons were set to 0.125 spikes/bin in the lesion data and 0.325 spikes/bin in the 

control data. Although these rates are slightly higher than the average rates estimated in the data, they give 

average entropy values that match those in the data. Because entropy is a nonlinear function of rate, the average 

rate does not give the average entropy. Thus we could match the rates or the entropy, so we chose to match the 

entropy. 
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APPENDIX C 
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APPENDIX D 

The measure of directed information – both the transfer entropy as defined by Schreiber (2000) and the 

directed information flow we propose in this study – quantifies the statistical coherence between two processes, 

considering the dynamics of the exchange and differentiating the flow in each direction. In this section we will 

compare both approaches. 

In Schreiber (2000), the entropy rate is defined as  

 (D1) 
 

i

k

nn

k

nnI iiPiiPh )|(log),( )(

12

)(

1

,  

where in is the state of time series I at time n and the notation in
(k)

 = (in,…, in-k+1), where k denotes the number of 

conditioning states from the same process I. If we rewrite Equation 9 (chapter 3, section 3.3.5), using the above 

notation, the entropy rate as we defined is given by   
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In Equation D1, the condition entropy for each different pattern that occurs is multiplied by its probability. In 

Equation D2, we represent the conditional entropy over all patterns that do occur and multiply it by their 

probability. Given the definition of expected value 

(D3) ,
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and the Bayes rule, 
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we can write 
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Thus, one can rewrite Equation D2 as
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(D6)  
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showing that both definitions of rate entropy are equivalent. 

Moreover, Schreiber quantifies the transfer entropy as a deviation from the generalized Markov property 

given by 
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where J denotes a second stochastic process with jn
(l)

 = (jn,…, jn-l+1). That is, if a stochastic process does not 

follow the Markov property, then the conditional probability distribution of future states of the process depends 

not only upon the present state, but also on previous states. The transfer entropy expresses the invalidation of 

the assumption of a Markov process, or the assumption that conditioning on jn
(l)

 does not alter the transition 

probabilities of in+1, defined as: 
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Formulating the directed information flow as we define it in Equation 7 (chapter 4, section 4.3.3) ‒ the 

difference between what we call the 'Auto' entropy and the 'Full' entropy ‒, using the entropy definition as in 

Equation D6,  

(D10)  fullautoIJ HHDI 

 

(D11)  

 

 











j i

l

n

k

nn

l

n

k

nn

i

k

nn

k

nn

jiiPjiiP

iiPiiP

),|(log),,(

)|(log),(

)(

1

)(

12

)(

1

)(

1

)(

12

)(

1

.  

Considering that we can obtain the joint distribution P(in+1,in
(k)

) by marginalizing out the variable jn
 (l)

 of the joint 

distribution of in+1, in
(k)

, and jn+1
(l)
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the directed information flow can be defined as 
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Therefore, Equations D9 and D13 show that transfer entropy as defined by Schreiber and the directed 

information flow as defined in this study are formally equivalent, where we use an empirical estimate of 

expected value instead of a sum over a probability distribution. 

Note, however, a slight distinction between both models; Schreiber considers a delay on the information 

transition from process J to I (Equation D8), while we do not. The present study considers the supplementary 

synchronous term jn+1 as it has been shown that the propagation time of interactions between GPe neurons and 

between GPe and STN neurons in the adult rat in vivo can be faster than 5 ms ‒ the bin size used to discretise 

our data (Kita et al., 1983; Kita and Kitai, 1991). 

Barnet et al. (2009) analysed the relationship between the transfer entropy (Schreiber, 2000), an 

information-theoretic method, and the Wiener-Granger causality, an autoregressive model showing that the two 

different approaches for testing causal relationships between time series are equivalent under Gaussian 

conditions. Therefore, as we have shown that the directed information flow considered in this study is 

equivalent to Schreiber's transfer entropy, one can infer that the former approach is also equivalent to the 

Granger causality for Gaussian distributions. 
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APPENDIX E 

  

 

Figure E-1. Characterization of the firing rate properties of the spike trains recorded in the GPe neurons. A, B. Analysis of 

the differences between the mean firing rate in each segment  S ¯
i
,
t+h

  and the mean firing rate of the whole spike train i, 

denoted as Δsi,t+h in Equation 5 (chapter 2; section 2.4). The results are shown as the average ± SD of Δsi,t+h for all T-h 

segments with fixed width h ‒ with T as the total number of bins of each spike train ‒, and across all control (A) and 

lesioned (B) cells for diferent values of h. C, D. Average ± SD of the autocovariance of the mean firing rates across spike 

trains of control (C) and lesioned (D) animals, as a function of the time shift h. 
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Figure E-2. Characterization of the firing rate dynamics along the spike trains of STN neurons in control and lesioned 

animals. Results presented as in Figure E-1. 
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Figure E-3. Analysis of the variance in the frequency domain in (and between pairs of) GPe and STN neurons during the 

course of the recordings. In the upper four panels, the spike trains were partitioned in segments of 20 seconds, in which the 

auto spectrum was computed. The ΔPow was calculated as the difference between the frequency spectrum from each 

segment and the mean spectrum of all 5 segments of each spike train. The results are presented as the average ± SD of all 

ΔPow across all GPe neurons in control (A) and lesioned (B) animals, and across all STN neurons in control (C) and 

lesioned (D) animals. In the lower panels is shown the analysis of the interactions between pairs of STN/GPe neurons in the 

same way as explained above, although cross spectra were computed in segments from both spike trains. 
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