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Abstract

We will examine two topics in this thesis. Firstly we give a result which

improved a bound for a question asking which values the Lebesgue density

of a measurable set in the real line must have (joint work with Toby O'Neil

and Marianna Csörnyei). We also show how this result relates to the results

obtained by others. Secondly, we give several results which indicate when a

Lebesgue measurable function has a random Riemann integral which converges,

in either the weak and strong sense.

A Lebesgue measurable set A, subset of R, has density either 0 or 1 at almost

every point. Here the density at some point x refers to the proportion of a small

ball around x which belongs to A, in the limit as the size of the ball tends to 0.

Suppose that A is not either a nullset, which has density 0 at every single point,

or the complement of a nullset, which similarly has density 1 everywhere. Then

there are certain restrictions on the range of possible values at those exceptional

points where the density is neither 0 nor 1. In particular, it is now known that if

δ < 0.268486 . . ., where the exact value is the positive root of 8δ3 +8δ2 +δ1 = 0,

then there must exist a point at which the density of A is between δ and 1− δ,

and that this does not remain true for any larger value of δ.

This was proved in a recent paper by Ond�rej Kurka. Previous to his work

our result given in this thesis was the best known counterexample. We give the

background to this, construct the counterexample, and discuss Kurka's proof of

the exact bound.

The random Riemann integral is de�ned as follows. Given a Lebesgue mea-
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surable function f : [0, 1] → R and a partition of [0, 1] into disjoint intervals,

we can choose a point belonging to each interval, independently and uniformly

with respect to Lebesgue measure. We then use these random points to form

a Riemann sum, which is itself a random variable. We are interested in know-

ing whether or not this random Riemann sum converges in probability to some

real number. Convergence in probability to r means that the probability that

Riemann sum di�ers from r by more than ε, is less than ε, provided that the

maximum length of an interval in the partition is su�ciently small.

We have previously shown that this type of convergence does take place

provided that f is Lebesgue integrable. In other words, the random Riemann

integral, de�ned as the limit in probability of the random Riemann sums, has

at least the power of the Lebesgue integral. Here we prove that the random

Riemann integral of f does not converge unlesss |f |1−e is integrable for e > 0

arbitrarily small. We also give another, more technical, necessary condition

which applies to functions which are not Lebesgue integrable but are improper

Riemann integrable.

We have also done some work on the question of almost sure convergence.

This works slightly di�erently. We must choose, in advance, a sequence of par-

titions (Pn)∞n=1, with the size of the intervals of Pn tending to zero. We form a

probability space on which we can take random Riemann sums independently

on each partition of the sequence. Almost sure convergence means that the

sequence of random Riemann sums converges to some (unique) limit with prob-

abililty 1 in this space. There are two complementary results; �rstly that almost

sure convergence holds if the function is in Lp and the sequence of partition sizes

is in lp−1 for some p ≥ 1. Secondly, we have a partial converse which only ap-

plies to nonnegative functions, and if the ratio between the lengths smallest and

biggest intervals in each partition is bounded uniformly. This says that if for

some p ≥ 1 f is not in Lp and the partition sizes are not in lp−1, then the

sequence of Riemann sums diverges with probability 1.
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Chapter 1

Introduction

This thesis examines two topics in real analysis and measure theory. The

connection between the two is the Lebesgue density theorem for measurable sets

in R and its analogue for measurable functions. This theorem establishes that

measurable sets and functions can be well approximated, in measure theoretical

terms, by regular sets or functions, for example by open sets and continuous or

even analytic functions.

The �rst part of the thesis is about Lebesgue measure on the real line.

Chapter 2 provides the background on Lebesgue measure and the Lebesgue

integral. The Lebesgue density theorem and Lebesgue di�erentiation theorem

are explained. We remind the reader of these classical results in order to prepare

the way for the later chapters. The �nal section of this chapter places a limit

on the strength of the Lebesgue density theorem. We show here that there is no

bound on the speed of convergence of Lebesgue densities which holds uniformly

for all measurable sets. This is true even if we require bounds that hold not

almost everywhere but only on a set arbitrarily close to full measure. There are

two reasons why we consider this to be important. Firstly we will use this result,

in the second part of the work, to prove that various constructions involving

Riemann sums do not converge. Secondly, we are interested in the question of

which functions are the densities of measurable sets or of measurable functions,
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CHAPTER 1. INTRODUCTION 8

and we hope that understanding the convergence of densities will help with this.

This last question is a fascinating topic which raises many questions. Of

course from a measure-theoretic perspective it is completely solved, since all

measurable functions (and no others) are almost everywhere equal to the Lebes-

gue density of some function, namely themselves. However it appears that lit-

tle is known concerning what topological characterization such densities might

have. In fact, as well as Lebesgue densities, other limiting procedures of critical

importance to analysis give rise to the same functions; for example the (upper,

Césaro) sums of Fourier series. In each case the weak limit is understood per-

fectly and the pointwise limit much less well. Although it might seem to be a

confusion to look at the everywhere (as opposed to almost everywhere) values of

constructions which are �rmly part of measure theory, we believe there may be

interesting facts here to be discovered. We should also remember that measure

theory itself, along with the notions of a.e. and Lp limits, came out of the desire

of analysts originally to understand exactly what functions can be expressed as

limits in this way.

Chapter 3 deals with just a small part of this question. A Lebesgue measur-

able set A has density either 0 or 1 at almost every point. Suppose that A is

not a nullset, which has density 0 at every single point, or the complement of

a nullset, which similarly has density 1 at every point. Then there are certain

restrictions on the values at those exceptional points where the density is neither

0 nor 1. In particular, it is now known that if δ < 0.268486 . . ., where the exact

value is the positive root of 8x3 + 8x2 +x− 1 = 0, then there must exist a point

at which the density of A is between δ and 1 − δ, and that this is not true for

any larger value of δ.

This was proved in a recent paper by Ond�rej Kurka. Previous to this re-

sult, several advances were made, building on work by András Szenes. These

included an improvement to the upper bound which was proved by the author

together with Marianna Csörnyei and Toby O'Neil. To understand our result,

it is necessary to be aware of the reformulation of the problem given by Szenes.
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The proof of Kurka's theorem, which is very complex, also uses notations, con-

cepts and results from Szenes. Therefore we have considered it advisable to give

an exposition of all the work leading up to Kurka's result, and to discuss some

of the ideas involved in that result. We hope that in doing so we have made it

somewhat easier to understand all the literature on this problem.

The second part of the thesis begins with Chapter 4. This chapter provides

the background on Riemann sums, and their use in de�ning integrals of func-

tions on the real line. As well as de�ning and motivating the key notions, and

discussing the classical Riemann, Kurzweil-Henstock and McShane integrals, we

also mention some less well-known integrals which are constructed using Rie-

mann sums. By doing so we hope to highlight which properties of a measurable

function we need to be aware of when we try to prove or disprove the convergence

of Riemann sums in later chapters.

The following chapter de�nes the notion that is central to the second part

of the thesis; the random Riemann integral. The random Riemann integral is

de�ned as follows. Given a Lebesgue measurable function f : [0, 1] → R and

a partition of [0, 1] into disjoint intervals, we can choose a point belonging to

each interval, independently and uniformly with respect to Lebesgue measure.

We then use these random points to form a Riemann sum with the tag point

of each interval being the random point which belongs to it. This Riemann

sum is itself a random variable. We can ask two questions about this random

Riemann sum. Firstly whether or not it converges in probability to some real

number. Convergence in probability to r means that the probability that the

Riemann sum di�ers from r by more than ε, is less than ε, provided that the

partition in question is su�ciently small. Secondly, whether given a sequence of

partitions there is some number to which the random Riemann sums converge

with probability 1. In this case we say that almost sure convergence holds.

In fact, we have previously shown that convergence in probability does hold

if the function f is in L1, and that in this case the limit is the Lebesgue integral

of f . This is an easy consequence of the Lebesgue density theorem that was
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included in the author's MSci thesis. We repeat the proof here for completeness.

Following this, we give several results about the functions and sequences of

partitions for which almost sure convergence holds. In particular, if the sequence

of sizes of the partitions is in `p−1 and the function is in Lp for some value of

p, then the sequence of random Riemann sums converges almost surely. The

limit is the same as for convergence in probability � the Lebesgue integral of

f . We go on to show that this is not a necessary condition. The function can

be much larger than this and convergence may still hold, provided that the sets

where f takes values roughly equal to the reciprocal of the partition sizes are

not too big. We make this statement precise with a theorem giving a necessary

condition for convergence not to hold, and a counterexample where it does hold.

The second part of the chapter returns to the question of convergence in prob-

ability. We prove that the random Riemann sums do not converge in probability

unless |f |1−e is integrable for any e > 0. We also give another, more technical,

necessary condition which applies to functions which are not Lebesgue inte-

grable but are improper Riemann integrable. This last result stands out � most

of the other theorems in the chapter, while apparently concerning functions on

the unit interval, can be adapted to any reasonable probability space. This last

theorem however, uses topological properties of the interval, which means that

in this case we cannot regard the Riemann sums simply as a convenient way of

expressing a result about probability distributions in general.

The next two chapters describe several constructions which are similar to

the random Riemann integral. In Chapter 6 we outline the so-called Mycielski

Riemann sum. Like the random Riemann sum, this is a random variable in

the space of Riemann sums on some function f . Whereas the random Riemann

sum depends on the deterministic choice of a partition, both the intervals and

the sample points of the Mycielski Riemann sum are random. The tag points

are chosen at random in some probability space, here the unit interval, and the

partition of the interval is given by the Voronoi tesselation using these points.

The Voronoi tesselation is a division of a space into regions, each of which
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consists of all the points which are closer to a given member of a �nite set

than to any other member of that set. So the random Mycielski Riemann sum

expresses the e�ect of approximating f(x) by the value of f at the closest point

to x among some �nite collection of sample points. Again we can ask whether

these Riemann sums converge in probability or almost surely. In this chapter

we explain the work of Mycielski and Fremlin on this topic. We also make some

remarks which we believe are relevant to an unsolved problem � whether or not

for all measurable f : [0, 1] → R, the Mycielski step functions converge almost

surely in L1 to f .

Chapter 7 is about the �rst-return integral. The �rst-return integral also

given by a limit of Riemann sums. We take some sequence (xn)n∈N, where the

point set {xn : n ∈ N} is dense in [0, 1]. Given a partition, the tag point of

each interval is the �rst term of (xn) which belongs to that interval. This is the

�rst-return Riemann sum. A function is �rst-return integrable with respect to

a sequence of partitions if the Riemann sums converge almost surely. There are

connections to both the previous chapters. First of all, a necessary condition

for �rst-return integrability is �rst-return recoverability for the same sequence

of partitions. This turns out to be equivalent to pointwise convergence of the

Mycielski step functions. We say something about those sequences and functions

for which �rst-return recovery holds and/or the �rst-return integral converges.

Then we consider the probabilistic versions of both of these notions. This means

that we ask when they hold not for a single sequence, but for almost all sequences

in a natural probability space.

The probabilistic version yield the connection between this chapter and

Chapter 5. In fact for a random sequence in this probability space, the dis-

tribution of the �rst-return Riemann sum on a �xed partition is the same as

that of the random Riemann sum. Therefore some of the results of Chapter 5

can be transferred to this context. Since however we do not have independence

between Riemann sums on di�erent partitions in the sequence, almost sure �rst-

return integrability is not equivalent to random Riemann integrability. In fact,
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we can establish here that random Riemann integrability is stronger than �rst-

return integrability, which is stronger than Mycielski integrability. The chapter

ends with a section on the Kie�er-Stanojevi¢ integral, a special case of the prob-

abilistic �rst-return integral, for which it is straightforward to prove almost sure

convergence.

These three chapters all involve the Lebesgue density theorem. In several

cases convergence in probability can be proved quickly by using this theorem.

Measurable functions are approximately continuous close to almost every point.

If we have some stochastic method of choosing tag points, this ensures that

we do not pick those points for which approximate continuity does not hold.

We then obtain convergence of the integral, under weaker conditions on the

partitions that those required for the Kurzweil-Henstock or McShane integrals.

We can then consider the almost sure convergence of each of these Riemann

sum constructions as a statement similar to but stronger than the conclusion

of the Lebesgue density theorem. The exact construction will determine what

type of function we need for almost sure convergence not to hold. In some cases

a function of a particular size is required, elsewhere a bounded function with

su�ciently slowly converging densities, as was shown to exist in Chapter 2, is

enough.

Finally in Chapter 8, we describe the author's joint work with Togo Nishiura

on another problem. This concerns permutations of the unit interval, or func-

tions from [0, 1] to [0, 1] which act as translations on each interval of a partition

of [0, 1]. We are interested here in those measurable functions which are the

almost everywhere pointwise limits of a sequence of such permutations. Our

result shows that these are exactly the measure-preserving functions, and there-

fore that any measurable function can be expressed (to within a Lebesgue null

set) as the composition of such a function with its distribution function. This

work was motivated by the study of random Riemann sums � it lays the way

open for a theory which would give convergence theorems for a general class of

constructions, including all those of Chapters 5, 6 and 7. The �nal section of
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the chapter explains this motivation and gives some suggestions as to how this

could be carried out.



Chapter 2

Lebesgue measure and

integral

In this chapter we remind the reader of some of the basic de�nition and

properties related to Lebesgue measure and the space of Lebesgue measurable

functions. The most important results are the Lebesgue density theorem and the

Lebesgue di�erentiation theorem. These will be used throughout the remainder

of the thesis. The �nal section shows that can be no asymptotic bounds on the

convergence of the Lebesgue density theorem. All the results in this chapter

are classical and well known; except for those of the �nal section. We are not

aware of a reference for the results in the �nal section but they are simple and

undoubtedly already known.

2.1 Preliminaries

2.1.1 Lebesgue measure

We assume that the reader is familiar with the de�nitions of R, of a Lebesgue

measurable set A ⊂ R and the Lebesgue measure of such a set, denoted inter-

changeably by λ(A) or by |A|. `Almost everywhere' always means outside a
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Lebesgue null set and `measurable' means Lebesgue measurable.

We denote the unit interval [0, 1] by I.

2.1.2 The Lebesgue integral

We use the standard de�nitions of a real-valued function on I being Lebesgue

integrable, of its Lebesgue integral and of L1, the space of Lebesgue integrable

functions under Lebesgue equivalence. When we write
∫
f it refers to the

Lebesgue integral on I.

We will use some more general notions of measure and integral, particularly

in the context of probability measures and random variables. See [26] for a guide

to probability theory or [21] and [22] for a reference on all required aspects of

measure theory.

As well as the traditional de�nition of Lp and of Lp convergence for p ≥ 1

we will also use the notion of a weak Lp space.

De�nition 2.1.1 A Lebesgue-measurable function is in weak L1 if

λ({x : |f(x)| > y}) = O(1/y).

The weak L1 norm is

‖ f ‖weak1 := sup
y>0

yλ{x : |f(x)| > y}.

Weak Lp is de�ned analogously. Clearly if a function is in weak Lp, it is in

Lp−ε for every ε > 0.

Remark The descriptive de�nition of the Lebesgue integral is the following.

A function f is Lebesgue integrable i� there exists some absolutely continuous

function F such that F ′, the derivative of F , is almost everywhere equal to f .

The function F is called a primitive of f . In fact the inde�nite integral of f ,

de�ned by

F (x) =

∫ x

0

f
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is also a primitive.

The inde�nite integral of a function in L1 is absolutely continuous. The

inde�nite integral of a function in Lp, for 1 < p <∞, is Hölder continuous with

Hölder exponent 1 − 1
p , and as can easily be seen, the inde�nite integral of an

L∞ function is Lipschitz.

2.2 Lebesgue density and derivative

2.2.1 Lebesgue density

De�nition 2.2.1 If A and B are both Lebesgue measurable sets, the relative

measure of A in B, λ(A|B), is de�ned by

λ(A|B) :=
λ(B ∩A)

λ(B)
.

De�nition 2.2.2 If A is a Lebesgue measurable set and x is a point in R, the

upper density of A at x is

d(x,A) := lim sup
ε→0

λ(A|[x− ε, x+ ε])

and similarly the lower density of A at x is

d(x,A) := lim inf
ε→0

λ(A|[x− ε, x+ ε]).

The density of A at x, d(x,A), exists if the lower density and upper density

of A at x are equal, and is equal to their common value.

The Lebesgue density theorem is a fundamental fact about measurable sets.

Theorem 2.2.3 (Lebesgue density theorem) Let A be a Lebesgue measur-

able subset of I. The set of points {x ∈ A : d(x,A) < 1} is Lebesgue null.
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Corollary Let A be a Lebesgue measurable subset of I. The Lebesgue density

of A exists almost everywhere, and it is equal to 1 at almost every point of A,

and to 0 at almost every point of the complement of A �

We refer to points at which the density of A is 1 as density points of A.

2.2.2 The Lebesgue derivative

De�nition 2.2.5 Analogous to Lebesgue density for measurable sets is the

Lebesgue derivative for measurable functions. This is de�ned for locally inte-

grable functions as

Df(x) := lim
|B|→0
B3x

1

|B|

∫
B

f(x),

where B ranges over the intervals which include x. It is the derivative of the

inde�nite integral of f .

The Lebesgue di�erentiation theorem says that this limit exists and is equal to

f(x) for almost every point x. It is a consequence of Hardy's maximal theorem.

Remark We have de�ned the Lebesgue density to be the symmetric density

and the Lebesgue derivative conversely to be the bilateral derivative. The �rst

means that we take limits over intervals centered at x whose length tends to

zero, the second that the limit is over all intervals which contain x, as their

length tends to zero. Clearly we can de�ne both density and derivative in either

of these two ways, and the existence of the bilateral density (derivative) will

imply the existence of the symmetric density (derivative).

In fact, Theorem 2.2.3 could also be proved for the bilateral Lebesgue density.

In what follows, we give properties of the bilateral Lebesgue derivative, since

these are strong enough to imply the corresponding properties of the symmetric

version. However, we persist in using only the symmetric version of the density,

since it is the subject of the next chapter.

Remark If A is a measurable set, an application of Lebesgue density theorem

for both A and I\A shows that this theorem is true for the indicator function
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χA, which is 1 on A and 0 on the complement of A.

Theorem 2.2.8 (Lebesgue di�erentiation theorem) For all f ∈ L1, Df(x)

exists and is equal to f(x) for almost every x.

De�nition 2.2.9 The Hardy-Littlewood maximal operator is the operator given

by

Mf(x) := sup
B3x

1

|B|

∫
B

f(x).

Here B ranges over the set of intervals containing x. The operator maps inte-

grable functions R→ R to measurable functions R→ R.

Theorem 2.2.10 (Hardy's maximal theorem) If f is in L1, then Mf is

in weak L1 and

λ({z : Mf(z) > x}) ≤
c
∫
f

x

for all x and some absolute constant c.

We can express this theorem by saying that M is of weak type (1, 1) � it is

continuous from L1 to weak L1.

Proof (Lebesgue di�erentiation theorem). Since f ∈ L1, there exists a continu-

ous function g such that
∫
|f − g| < ε. Let c > 0. We wish to estimate the size

of the set of points x on which:

lim
r→0

sup
B3x
|B|<r

∣∣∣∣ 1

|B|

∫
B

f − f(x)

∣∣∣∣ > c. (2.1)

We can estimate this by the union of the sets

x : lim
r→0

sup
B3x
|B|<r

∣∣∣∣ 1

|B|

∫
(f − g)

∣∣∣∣ > c

3

 =: A1,

x : lim
r→0

sup
B3x
|B|<r

∣∣∣∣ 1

|B|

∫
g − g(x)

∣∣∣∣ > c

3

 =: A2
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and {
x : |f(x)− g(x)| > c

3

}
=: A3.

By Markov's inequality the third set has measure at most 3
c

∫
|f − g| ≤ 3ε

c .

The second set is empty since g is continuous, and the �rst set is contained

within {
x : sup

B3x

1

|B|

∫
|f − g| > c

3

}
which by Hardy's maximal theorem has measure at most c

′ ∫ |f−g|
c
3

≤ 3c′ε
c , where

c′ is the constant from the theorem. Therefore the set of points for which (2.1)

holds has measure in O(ε) as ε→ 0. Since c is arbitrary this proves that

∣∣∣∣ 1

|B|

∫
B

f − f(x)

∣∣∣∣→ 0 as |B| → 0

for almost every x. �

There is an Lp version of the maximal theorem for 1 < p < ∞ which says

that Mf is in Lp if f is in Lp. This leads naturally to a version of the Lebesgue

di�erentiation theorem, which says that if f is in Lp, Df converges in Lp to f .

However neither the maximal theorem nor the Lebesgue di�erentiation theorem

hold for the L1 norm.

In fact, for functions de�ned on the whole line R, a counterexample is simply

any nonnegative function, which is not almost everywhere 0. If
∫
A
f = c > 0 for

some bounded set A, say |x| < D for x ∈ A, then Mf(x) > c
2y , for x such that

B(x, y) ⊃ A, and so
∫
RMf(x) ≥

∫
R

c′

x+D . For functions on I however, it turns

out that Mf is integrable i� f(x) log(|f(x)|) is integrable.(1)

The necessity of this condition is shown by the example of a nonnegative

decreasing function, where

∫ 1

ε

Mf(x) ≥
∫ 1

ε

1

2x

∫ x

0

f(t)dtdx = −1

2
log ε

∫ ε

0

f(t)dt− 1

2

∫ 1

ε

log(x)f(x)dx

(1)This is exactly the condition that the entropy of f is �nite. This space of functions is
sometimes called L log(L).
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by integration by parts. Since both terms are positive, both must be �nite

in the limit as ε → 0, and their sum is clearly estimated from below by

− 1
2

∫ 1

0
log(x)f(x).

We can see that the condition that log(x)f(x) must be integrable is equiva-

lent to f(x) log(f(x)) being integrable for this class of functions. Consider that

f(x) = 1
x · a(x), where a(x)→ 0 as x→ 0, and we can assume that convergence

of a(x) to 0 is slower than any positive power of x, since otherwise f would be

in Lp. So

log(f(x)) = − log(x) + log(a(x))

and log(a(x)) = o(log(x)), and so
∫

log(x)f(x) and
∫

log(f(x))f(x) are compa-

rable.

To give at least a suggestion of why the condition is su�cient, we remind

that the original proof of the maximal theorem relies on the fact that expressions

such as ∫ 1

0

1

x

∫ x

0

f(t)dtdx

are maximized for f decreasing, and that the proof of this fact is essentially

combinatorial. Hardy and Littlewood's proof is given in [27]. The above remarks

are based on the explanation in [38].

2.2.3 Slowly converging densities

We know that the density of a set at almost every point of that set must

converge to 1. However, it is possible for this convergence to be very slow, in

fact as slow as we like.

Lemma 2.2.11 Suppose that (xn)n∈N is a sequence of real numbers in I tending

to 0. We can �nd a Lebesgue measurable set A ⊂ I with λ(A) > 0 such that for

every x ∈ A, we have

1− λ(A|B(x, 1/n)) > xn

for all but �nitely many n.
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Proof. We can assume without loss of generality that (xn) is a decreasing se-

quence. Let (xn) be such a sequence of real numbers. We will de�ne A as a

so-called fat Cantor set, one which has positive Lebesgue measure. Choose a se-

quence of integers (an) such that
∑∞
i=1

1
ai

is �nite, this means that
∏∞
i=1(1− 1

ai
)

is strictly between 0 and 1.

Let [0, 1] be the only interval of the zeroth stage of our construction, and set

A0 := I, B0 := {I}. The nth stage will be described by the set An :=
⋃
I∈Bn I,

with Bn a �nite collection of non-overlapping closed intervals contained in I. For

every n, each interval in Bn will be a proper subset of some interval in Bn−1,

this will mean that An ⊂ An−1. So An is a decreasing sequence and A will be

its intersection.

At the nth stage of our construction, we divide each interval from Bn−1

into Mnan pieces of equal length. The sequence of natural numbers Mn will be

determined later. Counting from the left, all of these pieces except every athn

one, will belong to the collection of intervals Bn. The set Bn will consist of all

the intervals so selected, for every interval in Bn−1. The measure of An will

therefore be λ(An) = an−1
an

λ(An−1) and the measure of the limiting set of the

procedure will be

λ(A) =

∞∏
i=1

(1− 1

ai
).

We will call the length of each interval in Bn

ln =
1∏n

i=1 anMn
.

For convenience, we can equivalently express A as the intersection of the

nondecreasing sequence of sets
⋂∞
i=1A

∗
i , where

A∗i :=

Mn
ln−1

−1⋃
j=0

[(anj)ln, (anj + an − 1)ln] .

Note that for all n, An =
⋂n
i=1A

∗
i , which implies of course that An ⊂ A∗n.
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Now suppose that we take a point x ∈ A and examine a ball around x of

radius d. We want to �nd some n(d) so that d is at least as big as ln but smaller

than ln−1. This is always possible since the sequence (ln) is decreasing.

We will show that there exists a sequence (Cn)n∈N with Cn < 1 for all n,

such that for any x and any d, λ(A|B(x, d)) is less than Cn(d).

It is clear that

λ(A|B(x, d)) ≤ λ(An+1|B(x, d)) ≤ λ(A∗n+1|B(x, d)).

The set A∗n+1 consists of connected components of length (an+1 − 1)ln+1 sep-

arated by connected components of its complement each of length ln+1. The

relative measure λ(A∗n+1|B(x, d)) can be no more than

1− K − 1

K

1

an+1

where K is the number of connected components of A∗n+1 which B(x, d) in-

tersects. We know that K ≥ 2Mn+1 by virtue of the fact that 2d is at least

2ln = 2Mn+1an+1ln+1. Provided that Mn > 4 for all n, we have K > 8 and so

we can take

Cn = 1− 7

8an+1

and we have seen that λ(A|B(x, d)) ≤ Cn.

Now our proof is complete provided that we can choose the sequence (Mn)

to make sure that

Cn < 1− xk (2.2)

whenever
1

k
< ln−1

or equivalently whenever

k >

n−1∏
i=1

aiMi. (2.3)

We can guarantee this for n = 2 by choosing k1 so big that 1 − xk1 is bigger
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than C2, and then choosing M1 big enough that a1M1 is at least k1. This will

mean that (2.3) only holds for values of k so big that (2.2) is also true.

We can continue this procedure for k2, k3 etc. At each step we can �nd a

value of k for which Cn+1 is smaller than 1− xk, since 1− xk tends to 1. Then

we can increase Mn (which is completely unrestricted, except that it must be

greater than 4) to make the right hand side of (2.3) large enough that we only

must consider at least that value of k and none smaller. �

We should clarify that this condition on densities converging slowly is enough

to imply a much more general condition.

Proposition 2.2.12 If (ak)k∈N and (dk)k∈N are two sequences of positive num-

bers tending to 0, then we can �nd a Lebesgue measurable set A ⊂ I such that

for every point x ∈ A, and for all but �nitely many values of k, we have

a > ak =⇒ 1− λ(A|B(x, a)) > dk. (2.4)

Proof. First we may reorder the an without loss of generality to be decreasing.

Now we may also assume the dn are decreasing. This is because if for a pair of

natural numbers i > j we have ai < aj but di > dj then the condition given by

the pair aj , dj is redundant.

We wish to �nd a sequence (bn)n∈N so that if λ(A|B(x, 1
n )) > bn for all n

then the condition (2.4) holds for all k. We do so as follows. Take a natural

number n, and de�ne cn to be

cn := max

{
dk : [ak, ak−1] ∩

[
1

n+ 1
,

1

n

]
6= ∅
}
.

This means that if λ(A|B(x, r)) > cn for all r in the interval
[

1
n+1 ,

1
n

]
, then

λ(A|B(x, r)) > dk also holds on this interval for all k such that ak ≤ r.

We will de�ne bn+1 := n+1
n cn for n ∈ N (and set b1 := b2). First observe

that cn → 0 and therefore also bn → 0. Secondly that each cn corresponds to

only a �nite number of lower bounds dk, therefore if the density fails to exceed
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cn on [ 1
n+1 ,

1
n ] for only �nitely many values of n, then the condition (2.4) also

only fails for �nitely many values of k. So if we can show that

λ(A|B(x,
1

n+ 1
)) > bn+1 =⇒ λ(A|B(x, r)) > cn for all r ∈

[
1

n+ 1
,

1

n

]

then we are done.

This is obvious; the measure of A ∩ B(x, r) must exceed the measure of

A ∩B(x, 1
n+1 ) if r ∈

[
1

n+1 ,
1
n

]
. This means that

λ(A|B(x, 1
n+1 ))

n+ 1
≤ rλ(A|B(x, r)) ≤ 1

n
λ(A|B(x, r)) (2.5)

and

λ(A|B(x,
1

n+ 1
)) ≤ n+ 1

n
λ(A|B(x, r))

as required. �

Remark The density of a measurable set A in small intervals, considered as a

function of two variables x and r

KA(x, r) :=
1

2r
λ (A ∩ [x− r, x+ r]) (2.6)

satis�es two types of relations which restrict how fast its values can change as

x and r change. Both of these are straightforward consequences of the fact that

Lebesgue measure is nonnegative on any set.

Firstly if we �x r then KA(x, r) is Lipschitz in x, with the value of the

Lipschitz constant depending on the value of r. Secondly there are the bounds

like that of (2.5), where we keep x �xed and consider changes in r. These are

slightly more complicated. If KA(x, r0) = c, then for r < r0 we have

KA(x, r) ∈
[
1 +

c− r0
r

,
r0c

r

]
(2.7)

and similarly for r > r0. Since the derivatives of r0cr and c
r −

r0
r are bounded,
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close to r0 the graph of the function is contained in a cone through (r0,KA(x, r0)).

However the function is not necessarily Lipschitz.

It seems plausible that from these two relations we could draw conclusions

about the space of possible functions K(x, r). This could lead to information

about the set of functions which are the Lebesgue densities of some measurable

set, the preoccupation of the next chapter. (The next chapter does not explicitly

use any such techniques.)



Chapter 3

Exceptional densities

This chapter discusses the determination of the constant δH , de�ned at the

end of the �rst section. Proposition 3.4.2, the work of the author together with

M. Csörnyei and T. O'Neil, gave an upper bound for this constant. The exact

value of δH is now known, and we felt it would be worthwhile to place our result

in this context by giving a brief exposition of the background and of the new

result.

3.1 Basic properties

Let A be a Lebesgue measurable subset of R. In this chapter we will look at

the lower density d(x,A), upper density d(x,A) and density d(x,A) of A at x,

all given in De�nition 2.2.2, considered as functions of x. All three take values

in [0, 1]; the �rst two are de�ned on R and the third on some subset of R.

If A is a nullset, then all three functions are identically 0 on R. Similarly

if A is of full measure, then the densities are 1 everywhere. We shall call a

measurable set a nontrivial subset of R if neither of these cases hold.

We can express the density of a measurable set as the symmetric derivative

of some function, the inde�nite integral of χA.

De�nition 3.1.1 Suppose that f is a function R → R. Given x ∈ R, we say

26
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that f ′s is the symmetric derivative of f at x if for h close to 0

f(x+ h)− f(x− h) = 2f ′s(x)h+ o(h).

To discuss the symmetric derivative, it will be helpful to de�ne the Dini

derivatives.

De�nition 3.1.2 The four Dini derivatives of f are given by

D+f(x) = lim sup
h→0,h>0

f(x+ h)− f(x)

h

D−f(x) = lim sup
h→0,h<0

f(x+ h)− f(x)

h

D+f(x) = lim inf
h→0,h>0

f(x+ h)− f(x)

h

D−f(x) = lim inf
h→0,h<0

f(x+ h)− f(x)

h

If D+f = D+f then their common value is the right-sided derivative of f .

Similarly if D−f = D−f this is the left-sided derivative. If both left- and right-

sided derivatives exist then the symmetric derivative is equal to their arithmetic

mean.

De�nition 3.1.3 The upper symmetric derivative of f at x is

f ′s(x) := lim sup
h→0

f(x+ h)− f(x− h)

2h
.

The lower symmetric derivative is

f ′s(x) := lim inf
h→0

f(x+ h)− f(x− h)

2h
.

Of course f ′s(x) ≤ f ′s(x) ≤ f ′s(x). An easy calculation shows that

f ′s(x) ≤ 1

2

(
D−f(x) +D+f(x)

)
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and

f ′s(x) ≥ 1

2
(D+f(x) +D−f(x)) .

Symmetric derivatives have been extensively studied and possess many im-

portant properties analogous to those of the usual derivative. We are interested

in an extremely special case where the function in question F (x) :=
∫ x
0
χA has

symmetric derivative equal to either 0 or 1 at almost every point of R.

The functions F ′(x) = d(x, a) and F
′
(x) = d(x,A) take the values 0 and

1 almost everywhere, therefore neither can be continuous. We will use the

notation

d(x, r,A) := λ(A|B(x− r, x+ r)).

The fact that the Lebesgue density of A is not necessarily continuous means

that d(x, r, A) does not converge uniformly in x as r → 0.

A simple example is when A is the union of disjoint intervals, with only

�nitely many in any bounded set. Then all three densities are equal everywhere,

and equal to 0 or 1 nearly everywhere, with 1
2 on the remaining points. This

density is not Darboux and we do not know if it is possible for the density of a

nontrivial set to be Darboux.

In the following we examine a property of the set of (upper, lower) densities

which was proved by O. Kurka in [33]. We will recap the work leading up to his

proof, which we will then discuss brie�y.

By an abuse of notation, we will say that d(x,A) ∈ I for I ⊂ I an interval

exactly when d(x,A) ∈ I and d(x,A) ∈ I. This includes the case where d(x,A)

is unde�ned.

Theorem 3.1.4 Let δK be the real positive solution to the polynomial equation

8x3 + 8x2 + x = 1. (3.1)

(The value of δk is roughly 0.26849 . . .)

Then
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(I) If δ > δK , there exists some nontrivial set A so that d(x,A) 6∈ [δ, 1 − δ]

for all x ∈ R.

(II) If δ < δK then for any nontrivial set A there is a point x ∈ R such that

d(x,A) ∈ [δ, 1− δ].

There can be only one number for which both (I) and (II) hold. If ζ ∈ [0, 12 ],

then we will say that U(ζ) holds if

∀δ > ζ, ∃ nontrivial A s.t. d(x,A) 6∈ [δ, 1− δ] ∀x ∈ R

and that L(ζ) holds if

∀δ < ζ, ∀ nontrivial A, ∃x ∈ R s. t. d(x,A) ∈ [δ, 1− δ].

If we de�ne δH to be the supremum of those x for which L(x) holds, equiv-

alently the in�mum of those x for which U(x) holds, then we can rephrase

Theorem 3.1.4 by saying that

δH = δK .

3.2 The lower bound δ = 1
4

Before Kurka's proof of this theorem, several authors proved results giving

upper or lower bounds for δH , in other words they proved that U(x) or L(y)

hold, for various constants x > δK and y < δK . The �rst of these results was

given by Kolyada in [31]. He proved that L( 1
4 ) and also that U(

√
17−3
4 ). We

will obtain the �rst of these, that 1
4 ≤ δH , from a generalization by the author

which was not previously published.

Lemma 3.2.1 Let A be a nontrivial set, and t ∈ (0, 1) be any constant. There

exists a point of R such that d(x,A) ∈ [ t2 ,
t+1
2 ].

This will follow from a lemma about symmetric derivatives of Lipschitz func-

tions.
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Lemma 3.2.2 Suppose that f is Lipschitz with coe�cient M , and that f
′
s and

f ′
s
are the upper and lower symmetric derivatives of f respectively. Suppose

that a, b, m and n are real numbers with a < b and m < n. If f
′
s(a) > m and

f ′
s
(b) < n, then for every ε > 0 and every u ∈ (m,n) there exists a point c in

(a− ε, b+ ε) at which f
′
s(c) ≤ u+M

2 and f ′
s
(c) ≥ u−M

2 .

Proof. Assume without loss of generality that ε < b−a. If the upper symmetric

derivative of f at a is greater than m, then we can �nd a positive number δa < ε

such that f(a + δa) − f(a − δa) > 2mδa. Similarly, if f ′
s
(b) < n, then we can

�nd a δb with 0 < δb < ε such that f(b + δb) − f(b − δb) < 2nδb. Now de�ne

h(x) := δa + x−a
b−a (δb − δa) for x ∈ [a, b], further de�ne

g(x) :=
f(x+ h(x))− f(x− h(x))

2h(x)
,

for x in the interval [a, b]. We know that g(a) > m and that g(b) < n, further-

more g is continuous. So g(ξ) = u for some ξ ∈ (a, b), in other words

f(ξ + h(ξ))− f(ξ − h(ξ)) = 2uh(ξ)

and since h(ξ) < max(δa, δb) < ε we know that

[ξ − h(ξ), ξ + h(ξ)] ⊂ (a− ε, b+ ε).

Now, the function k de�ned by k(x) := f(x)−f(ξ−h(ξ))−u(x−ξ+h(ξ)) is

0 at ξ−h(ξ) and at ξ+h(ξ). It has either a local minimum or a local maximum

at some point of (ξ − h(ξ), ξ + h(ξ)). Suppose that c is such a point and that it

is a maximum.
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Then for all y ∈ (c− d, c) for some small d > 0 we have that

k(y) ≤ k(c)

f(y)− uy ≤ f(c)− uc

f(y)− f(c) ≤ u(y − c).

Therefore D−f(c) ≥ u. Since D+f(c) ≥ −M by the Lipschitz condition we

have that f ′s ≥ u−M
2 . If we consider that for y ∈ (c, c + d) we similarly have

f(y) − f(c) ≤ u(y − c) it is easy to see that D+f(c) ≤ u and therefore that

f ′s(c) ≤ u+M
2 .

If c is a local minimum, we proceed the same way to show that D−f(c) ≤ u

and D+f(c) ≥ u and to draw the same conclusion. �

Proof (Lemma 3.2.1). Let u := t
2 + 1

4 . Note that t ∈ (0, 1) implies u ∈ (0, 1).

Since A is nontrivial, there exist points a and b such that d(a,A) = 1, d(b, A) =

0. Assume that a < b. If we de�ne f by

f(x) :=


λ(A ∩ (0, x))− x

2 x ≥ 0

−λ(A ∩ (x, 0))− x
2 x < 0

then f is Lipschitz with constant 1
2 , and f

′(a) = 1
2 , f

′(b) = − 1
2 . So by Lemma

3.2.2 since u − 1
2 is between − 1

2 and 1
2 there is some point c such that f ′s(c) ≥

u− 1
2−

1
4 and f

′
s(c) ≤ u− 1

2+ 1
4 . This implies immediately that d(c, A) ≥ u− 1

4 = t
2

and d(c, A) ≤ u+ 1
4 = t+1

2 as required. �

Corollary If A is a nontrivial set then there exists a point x ∈ R such that

d(x,A) ∈ [ 14 ,
3
4 ]. �

Remark Given a density point of A and a density point of its complement we

can require that the point x lies in between the two. This is clear from the proof

since if d(x,A) = 1 and d(y,A) = 0 then there exists a density point of A and

a density point of R\A contained in (x, y).
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Remark We can interpret Lemma 3.2.2 as a very weak Darboux property for

the symmetric derivative, which holds even when the symmetric derivative does

not exist everywhere on R. Note that although it appears to follow from a

Darboux-like property for the left or right derivatives, these are not Darboux

even if they exist everywhere.

3.3 Szenes' and Kurka's reductions

In this section we give the demonstrations by Szenes in [39] and Kurka in

[32], [33] that the question of determining δH can be reduced to either of two

other questions, which both concern related properties of �nite collections of

intervals.

De�nition 3.3.1 Given some δ ∈ (0, 12 ), an S-con�guration for δ (for con�g-

uration in the sense of Szenes) is a set C consisting of �nitely many disjoint

intervals contained within the unit interval, for which the following property

holds.

De�ne C∗ := (−∞, 0]∪C. Given any endpoint(1) x of C∗, there exists some

positive number r(x) such that

d(x, r(x), C∗) 6∈ (δ, 1− δ).

It is clear that if C is an S-con�guration for some δ, it is also an S-con�guration

for all larger numbers.

Proposition 3.3.2 The in�mum of those δ for which some S-con�guration ex-

ists is δH .

Proof. We prove this in two stages.

Suppose that A is a nontrivial set such that d(x,A) 6∈ (δ, 1−δ) for all x ∈ R.

We will show that given any small ε > 0 we can �nd an S-con�guration for δ+ε.

(1)We could equally say, �Given any real number x�, since of course any real number which
is not an endpoint is the center of some ball on which C∗ has either full or empty measure
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Choose some point a with d(a,A) > 1−δ and some point b with d(b, A) < δ.

Since both A and its complement have positive measure this must be possible.

By taking an a�ne image of A if necessary, assume without loss of generality

that a = 0 and b = 1. If we de�ne

A∗ := (−∞, 0] ∪ (A ∩ (0, 1]),

it remains true for A∗ as for A that d(x,A∗) 6∈ (δ, 1 − δ) for all x ∈ R. We

can see this since every negative number is now a density point, every number

greater than 1 is now a density point of the complement, and the density at

every point of (0, 1) is unchanged. Lastly, the density at 0 can only increase and

the density at 1 can only decrease in going from A to A∗.

For each point x in [0, 1], �nd some radius r(x) such that A∗ has relative

measure either less than δ + ε
3 or greater than 1− δ − ε

3 in B(x, r(x)).

If the relative measure of some set E in a ball B(s0, t) is d(s0, t, E), then for

all s we have

|d(s0, t, E)− d(s, t, E)| ≤ |s0 − s|
2t

.

This is because

d(s0, t, E)−d(s, t, E) =
1

2t
(λ(E ∩B(s0, t))− λ(E ∩B(s, t))) ≤ 1

2t
λ(E∩[s0+t, s+t])

and likewise

d(s, t, E)−d(s0, t, E) =
1

2t
(λ(E ∩B(s, t))− λ(E ∩B(s0, t))) =

1

2t
λ(E∩[s−t, s0−t]).

So observe that for y in the interval (x− 2r(x)ε
3 , x+ 2r(x)ε

3 ) we have

|d(y, r(x), A∗)− d(x, r(x), A∗)| ≤ 2r(x)ε

6r(x)
=
ε

3

and so d(y, r(x), A∗) 6∈ (δ + 2ε
3 , 1 − δ −

2ε
3 ). We can �nd a �nite collection of

points {xi : 1 ≤ i ≤ k} so that the balls B(x, 2r(x)ε3 ) cover the compact set [0, 1].
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Then set r to be the minimum of r(xi) and set r∗(x) to be r(xi) for one of the

i for which x ∈ B(xi,
2r(xi)ε

3 ). Now we know that for all x ∈ [0, 1]

d(x, r∗(x), A) 6∈ (δ +
2ε

3
, 1− δ − 2ε

3
).

Choose C to be some �nite collection of intervals contained in [0, 1] such

that

λ((C4A) ∩ [0, 1]) <
2

3
rε.

This means that the relative measures of C ∪ (−∞, 0] and A∗ on any interval of

length more than 2r will di�er by no more than ε
3 . This proves the claim.

Now we turn to the other part of the proof; the claim that if we have an

S-con�guration for δ and ε > 0 is given then we can �nd a nontrivial set with

d(x,A) 6∈ (δ + ε, 1− δ − ε) for all x in R.

We call C the S-con�guration in question. We write A0 := (−∞, 0]∪C. We

will de�ne an increasing series of measurable sets (An)n∈N and then show that

U(δ + ε) holds for their union.

For each endpoint of A0 we have some radius r(x) given by De�nition 3.3.1,

so that the relative measure of A0 on the ball B(x, r(x)) is not contained in

(δ, 1−δ). Furthermore, if x ∈ ∂A0 is such a point, and y is a point in B(x, εr(x)2 )

then the relative measure of A0 on B(y, r(x)) will not be contained in (δ+ ε
2 , 1−

δ − ε
2 ). Setting m := min{r(x) : x ∈ ∂A0} we call B(x, εm2 ) the `good region'

around the point x.

Let us write ∂L for the set of left endpoints of A0 and ∂R for the set of right

endpoints. Then we can de�ne

An+1 := A0 ∪
⋃
x∈∂L

(−α(An ∩ [0, 1]) + x) ∪
⋃
x∈∂R

(α(An ∩ [0, 1]) + x).

Here α is a constant 0 < α� ε which we will determine later. The sets An are

increasing in n and we take their union to be the set A.

Let k be the number of endpoints of A0.
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We choose α so that the following four conditions will be satis�ed

• The set A\A0 is made up of several pieces, each an a�ne copy of A∩ [0, 1],

one for each endpoint of A0. Each piece lies within α
1−α of the correspond-

ing endpoint. We need to ensure that the whole piece is contained within

the `good region' around that endpoint. This gives us

α

1− α
<
εm

2
.

• We want to treat each piece of A\A0 as an a�ne copy of A itself. A piece

belongs to an interval [y, z] which is a connected component of [0, 1]\A.

Suppose that the piece corresponds to the endpoint y. We want to make

sure that for any x which belongs to this piece, B(x, r(v)) does not overlap

with (y+z2 , z). Here v can be any endpoint of A0. So we require

α

1− α
+ αM <

m1

2

where M := max{r(x) : x ∈ ∂A0} and m1 is the minimum length of an

interval of the complement of C.

• Now suppose that (u, y) is an interval of A0 and x is in the piece of A\A0

associated with y. We need that B(x, αr(v)) + (u, y) for any v ∈ ∂A0. So

αM < m2

where m2 is the minimum length of an interval of C.

• Finally we want to make sure that the total measure of A\A0 is less than

εm
2 . So

kα

1− kα
<
εm

2
.

Clearly we can �nd some positive α which meets all of these.

Now we have seen that for each point x in the `good region' around an
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endpoint y of A0, we have d(x, r(y), A0) 6∈ (δ + ε
2 , 1− δ −

ε
2 ). We know by the

�rst condition on α that each point of ∂A lies inside such a good region. By the

fourth we see that for all such points we also have d(x, r(y), A) 6∈ (δ+ε, 1−δ−ε).

We now look at the points of A\A1 and apply an identical argument. Next

to each endpoint of A1 there is a piece of A\A1, which is the a�ne image under

a contraction by α of a piece of A\A0. If the corresponding endpoint of A0 was

y, then we use the radius αr(y) for all points of the good region around the

endpoint of A1. By the second and third conditions, the relative measure of A

on balls of this size is the same as for balls of radius r(y) in the good region

around y. As before we know that the union of such good regions contains the

whole of ∂A.

It is clear that we can repeat this argument for A\An for any n ∈ N. So

for every point x of ∂A we can �nd a sequence of radii, αnr(yn) such that

B(x, αnr(yn)) is not contained in (δ + ε, 1− δ − ε). This proves the theorem.�

Two upper bounds for δH were given as examples of S-con�gurations, in [39]

and [10]. We will however give Kurka's further reduction of the problem, then

explain the upper bounds in his language.

De�nition 3.3.3 A K-con�guration for δ, or con�guration in the sense of

Kurka, is a �nite collection of intervals G contained in [0, 1], with the following

properties.

1. For every endpoint x of G + Z, there exists some radius R(x) such that

d(x,R(x), G+ Z) is not contained in (δ, 1− δ).

2. There exists a collection of intervals (In)n∈N, each centered at an endpoint

of G+ Z, whose union covers R, such that λ(G+ Z|In) > 1− δ for all n.

3. For all b ∈ R, there exist u and v, u < b < v such that d(u, r,G + Z ∩

(−∞, b]) ∈ (δ, 1− δ) and d(v, r,G+ Z ∩ [b,∞)) ∈ (δ, 1− δ) for all r > 0.

4. There do not exist any two points a and b such that (a, b)∩ (G+Z) is the

a�ne image of an S-con�guration.
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For every δ ∈ (0, 12 ) we can �nd a K-con�guration, since we can take G to

have measure greater than 1 − δ so that conditions 1 and 2 are satis�ed by

taking large enough intervals. Then we can ensure that the endpoints of G+ Z

are su�ciently close together that any b in condition 3 lies close to one of them.

Then it will be seen that no portion of R can be mapped a�nely onto [0, 1] to

form an S-con�guration, since if x was the supremum of this S-con�guration

than any ball around x would have relative measure close to 1
2 .

In fact we are interested in the existence of good K-con�gurations for δ �

those which have Lebesgue measure less than 4δ2

1−2δ . This distinction is only

important if 4δ2

1−2δ < 1 − δ, since otherwise the considerations of the previous

paragraph apply. We will assume this inequality in the remainder of this section.

Kurka showed in his �rst paper on the question, [32], that the in�mum of

δ for which S-con�gurations exist is equal to the in�mum of δ for which good

K-con�gurations exist. We are going to sketch the proof of this reduction of the

question of densities to the question of the existence of good K-con�gurations.

The details can be found in [32] which uses notation and results from [39], or in

[33], an almost identical approach which is self-contained.

Proposition 3.3.4 Suppose that δ is given and that there exists some good

K-con�guration G. Then for any ε > 0 there is some S-con�guration for δ + ε.

This direction is straightforward; in fact it would be uncomplicated to combine

the following with the corresponding direction of Proposition 3.3.2 to prove

directly that

∃ a good K-con�guration for δ =⇒ U(δ).

Proof. Let δ, G and ε be given. Call (cn)n∈N the endpoints of G+ Z; to each

corresponds a positive number R(cn) such that d(cn, R(cn), G+Z) is either less

than δ or greater than 1− δ. We know that R is covered by intervals on which

G + Z has relative measure at least 1 − δ, therefore by Lemma 6 of [39] (see

Lemma 3.5.1 below), G must have measure at least 1−δ
1+δ . Using the same lemma,

it is not possible for R, nor any half-line in R, to be covered by intervals on all
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of which G+ Z has relative measure less than δ.

We should observe that R(cn) has some maximum over all n ∈ N, call it

RM . This is because G has measure between 1−δ
1+δ and 4δ2

1−2δ , therefore between

δ and 1− δ. So G+ Z has relative measure between δ and 1− δ in su�ciently

large intervals.

So choose some large integer M , and choose two points a, b ∈ R, such that

b− a > M , and such that neither a nor b is contained in any ball B(cn, R(cn))

on which the relative measure of G+ Z is less than δ. There might however be

some collection of cn ∈ (a, b) for which cn − R(cn) < a and with the relative

measure of G+Z on B(cn, R(cn)) greater than 1− δ. If M is at least 2RM then

this collection is nonempty, since by Property 4 of De�nition 3.3.3 there must

exists some cn > a such that B(cn, R(cn)) contains a. Let a′ be de�ned as the

minimum of cn − R(cn) for all of these. Likewise set b′ to be the maximum of

cn + R(cn) for those cn ∈ (a, b) with balls B(cn, R(cn)) that overlap (b,∞), on

each of which necessarily the relative measure of G+ Z is greater than 1− δ.

Now the set Ga,b := [a′, a]∪(G∩(a, b))∪ [b, b′] is such that if x is an endpoint

of G+ Z contained with (a, b), then B(x,R(x)) ⊂ [a′, b′] and d(x,R(x), Ga,b) is

not contained in (δ, 1− δ).

For simplicity we set γ := 2δ and λ := λ(G). Observe that since G is a good

K-con�guration, we have λ ≤ γ2

1−γ .

De�ne α := 1
γ+λ . Since

λ >
1− δ
1 + δ

> 1− 2δ

this is less than 1. Since both γ and λ are less than 1, it is more than 1
2 . Let ψ

be the a�ne mapping that sends a′ to m := 1−α and b′ to 1. Note that m < 1
2 .

The S-con�guration is given by the image ψ(Ga,b) =: C. We will check that it is

an S-con�guration for δ + ε. All the endpoints contained strictly between ψ(a)

and ψ(b) have radii with the correct relative measures, since they were preserved

by the a�ne mapping. There remain at most �ve endpoints, 0, m, ψ(a), ψ(b)
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and 1. (At most �ve and not �ve since ψ(a) and ψ(b) might not be endpoints of

ψ(Ga,b).) We will set radii r(0) = r(1) = r(ψ(b)) = 1 and r(m) = r(ψ(a)) = α.

First of all we see that B(0, 1) ⊃ B(m,α) and B(0, 1)\B(m,α) ⊂ (−∞, 0].

So if we show that the relative measure of C∪(−∞, 0] in the latter ball is greater

that 1− δ, the same will hold for the former ball. We shall show then, that the

relative measures in the ball B(m,α) and B(ψ(a), α) are large, and the relative

measures in B(1, 1) and B(ψ(b), 1) are small.

Also note that the di�erences |d(ψ(a), α, C∪(−∞, 0])−d(m,α,C∪(−∞, 0])|

and |d(ψ(b), 1, C ∪ (−∞, 0])− d(1, 1, C ∪ (−∞, 0])| are both O( 1
M ). This follows

from |ψ(a)−m| and |ψ(b)− 1| also being O( 1
M ). Furthermore λ(C ∩ (m, 1)) =

αλ+O( 1
M ). We will consider it enough to show that d(m,α,C∗∪(−∞, 0]) > 1−δ

and that d(1, 1, C∗∪(−∞, 0]) < δ, for C∗ some set contained in (m, 1) of measure

exactly αλ. We leave to the reader the limiting argument which proves that for

large M we can obtain the correct relative measures in all four balls for the

actual set C, provided that we accept δ + ε in place of δ.

The calculations are now straightforward. The measure of B(1, 1) ∩ C∗ is

αλ =
λ

γ + λ
.

We require this to be less than 2δ = γ and this is true because

λ <
γ2

1− γ
.

Furthermore the measure of the complement of B(m,α)\(C∗ ∪ (−∞, 0]) is

1− αλ =
γ

γ + λ
= αγ

and this last term is 2δα as required. �

Proposition 3.3.5 Suppose that δ is given and that there is some S-con�guration

C for δ. Then there is some good K-con�guration for δ.
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Proof (outline). Let δ and C be given. Moreover suppose that C consists of the

lowest number of intervals of any S-con�guration for δ. Let C∗ be C ∪ (−∞, 0]

as usual.

Szenes showed in [39] several properties of the S-con�guration with a minimal

number of intervals which we will use here.

Lemma 3.3.6 (Lemma 7 of [39]) If x is an endpoint of C in [0, 12 ] and if

d(x, r, C∗) = 1 − δ, where r is the maximal radius for which this holds, then

either B(x, r) ⊆ [0, 1] or [0, 1] ⊆ B(x, r). Likewise x is an endpoint of C in

[ 12 , 1] and d(x, r, C∗) = δ, where r is the maximal radius for which this holds,

then either B(x, r) ⊆ [0, 1] or [0, 1] ⊆ B(x, r).

To show this (we consider only the �rst statement), assume that for some x it

is not true. This means that x < r < 1 − x, where r is the maximal radius

such that C∗ has relative measure at least 1 − δ in B(x, r). We could then

take C ∩ [0, x+ r] to be an S-con�guration for δ, one containing fewer intervals

than C. The reason this is possible is that if any ball B(y, ry) contains relative

measure of C∗ of at least 1− δ, and y + ry > x+ r, then we could increase the

radius around x by y + ry − (x+ r), keeping the relative measure above 1− δ.

This contradicts r being maximal. So the assumption x < r < 1−x contradicts

the number of intervals in C being minimal.

Now, let vB := max{x ∈ ∂C ∩ [0, 12 ] : d(x, r, C∗) ≥ 1− δ for some r ≥ 1− x}

and vW := min{x ∈ ∂C ∩ [ 12 , 1] : d(x, r, C∗) ≤ δ for some r ≥ x}. Now if

x ∈ ∂C ∩ (vB , vW ) and d(x, r, C∗) > 1 − δ for some r, let r(x) be the radius

for which d(x, r(x), C∗) is maximal. De�ne SB1 to be the union of B(x, r(x))

for such points, and SB the set formed by adjoining to SB1 all the intervals of

C which it overlaps. If x is any other point in ∂C ∩ (vB , vW ), then let r(x) be

such that d(x, r(x), C∗) is minimal (and necessarily below δ). De�ne SW1 to be

the union of B(x, r(x)) for such points, and SW the set formed by adjoining to

SB1 all the intervals of [0, 1]\C which it overlaps.

Kurka proved the following using Szenes' Lemma 12 and Corollary 13:
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Lemma 3.3.7 (Lemma 1.2 of [32]) Both of SB and SW are intervals and

one contains the other.

The proof relies on showing that if a component of SB and a component of

SW overlap, but neither contains the other, then (an a�ne image of) the place

where they overlap forms an S-con�guration, which must contain fewer intervals

than C.

Suppose without loss of generality then that SB ⊃ SW . We take a �nal

result from Szenes' analysis of minimal S-con�gurations.

Lemma 3.3.8 (Lemma 8 of [39]) If ρ := λ(C) then

1− ρ
2(1− vB)

≤ δ and ρ

2vW
≤ δ.

The �rst inequality is true since there is a ball of radius (1−vB), which contains

all of [0, 1], and in which [0, 1]\C has relative measure less than δ. The second

is analogous.

We obtain from this that ρ < 2δ, and that vW − vB ≥ 1
2δ − 1. From this we

see that the relative measure of C∗ in (vB , vW ) is no more than 4δ2

1−2δ .

To construct the K-con�guration, we will choose points q ∈ (inf SB, vB), p

and p′ in (vB , vW ) with p < p′ and q′ ∈ (vW , supSB), and let the set E be

given by

E := (q, p] ∪ (C ∩ (p, p′)) ∪ [p′, q).

The points p and p′ are chosen so that if x ∈ (vB , vW ) has a radius r(x) with

d(x, r(x), C∗) ≤ δ, then B(x, r(x)) ⊆ [p, p′]. Hence the relative measure of E in

the same ball will also be less than δ. The points q and q′ are chosen so that if

on the other hand x ∈ (vW , vB) has a radius with d(x, r(x), C∗) ≥ 1 − δ then

d(x, r′(x), E) ≥ 1 − δ will also hold, where r′(x) := min{r(x), x − q, q′ − x}.

We do this modi�cation of C∗ ∩ SB to obtain E in order that vB and vW

should not be endpoints any longer. This will mean that we can transplant

E into another construction, with all the endpoints keeping their correct radii
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and relative measures, since all relevant balls are contained in [q, q′]. We skip

the exact construction of q, p, p′ and q′ as well as the proof that the relative

measure of E in ( q+p2 , p
′+q′

2 ) is less than 4δ2

1−2δ . These are given in Section 1 of

[32] and in slightly changed form in Section 3 of [33]. Of course the proof of the

latter relies on the relative measure of C∗ in (vB , vW ) also being less than 4δ2

1−2δ .

We should also observe that these constructions are valid only for δ in a

limited range. However this range includes the best known upper and lower

bounds for δH prior to Kurka's work, and so the construction works for all

values of δ which we could practically require.

It is now possible to de�ne G. Let φ1 be the a�ne map that sends q+p
2 to 0

and p′+q′

2 to 1
2 , and φ2 the a�ne map that sends p′+q′

2 to 1
2 and q+p

2 to 1. Then

g := φ1

(
E ∩

(
q + p

2
,
p′ + q′

2

))
∪ φ2

(
E ∩

(
q + p

2
,
p′ + q′

2

))
.

If β is the common ratio of these contractions, then the intervals of G+Z which

contain points of Z or Z+ 1
2 are of length β(p−q) and β(q′−p′) respectively. For

each endpoint of G+Z, we can take the radius of the corresponding endpoint of

E, scaled by β, to satisfy Property 1 of De�nition 3.3.3. The fact that Property

2 is satis�ed for G follows from the corresponding property for (vB , vW ).

To prove the remaining two properties of a K-con�guration, we consider the

following. Suppose that Property 4 is false, and that (G+Z)∩ (a, b) =: Ga,b is

an S-con�guration (after an a�ne transformation). If (a, b) is contained in some

interval of the form (n2 ,
n+1
2 ) for integer n, then Ga,b contains fewer intervals

than any S-con�guration, which is a contradiction.

So (a, b) contains n
2 for some n ∈ Z. It is possible to show that either (a, n2 )

or (n2 , b) is also the a�ne image of a S-con�guration. This is because, if a radius

around an endpoint of (−∞, b]∪Ga,b was such that the relative measure of this

set was more than 1−δ, then the same will be true for (−∞, n2 ]∪Ga,b. If on the

other hand for some endpoint there was a ball on which the relative measure

was less than δ, it can be shown that this ball does not contain n
2 . This last
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fact follows from the choice of p, q, p′ and q′ and the related property of E.

So we have demonstrated that there exists some other (a�ne copy of a) S-

con�guration, which contains one fewer half-integer point than (a, b). Since we

showed that every S-con�guration must contain such a point, this is a contra-

diction.

Property 3 is proved in an identical manner. This completes the proof of the

proposition. �

3.4 Three upper bounds

Having proved the equivalence of the existence of good K-con�gurations for

δ with U(δ) in the previous section, it is now simple to give the three successive

upper bounds on δH from [39], [10] and [32].

Proposition 3.4.1 (Szenes' upper bound) If δ > 0.2719 . . . then U(δ) holds.

The exact value is the positive solution to 8δ3 + 4δ2 + 2δ − 1 = 0.

Proof. The corresponding K-con�guration is given by G := [0, s2 ) ∪ (1 − s
2 , 1]

where s := 1
1+2δ . This is a good K-con�guration for all δ such that

1

1 + 2δ
<

4δ2

1− 2δ

which gives us that

8δ3 + 4δ2 + 2δ > 1.

For all endpoints of G+ Z we take the radius s. Since 1−s
s = 2δ, Condition

1 is true. Since the balls in question cover R, so is Condition 2. The other

two conditions can be checked easily by seeing that each ball is the only one

centered on that point which has the correct relative measure, and each ball

contains another endpoint to the left and one to the right. So if we were to take

a set of the form (G + Z)\(a,−∞), there would be at least one endpoint with

no appropriate radius. �
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Proposition 3.4.2 (Csörnyei, Grahl and O'Neil's upper bound) If δ >

0.27107 . . . then U(δ) holds.

The exact value is the positive solution to 2δ3 + 2δ2 + 3δ − 1 = 0.

Proof. Let α := 1−δ
2+δ and β := 4δ−1

4+2δ . We have

3α+ 2β =
3− 3δ

2 + δ
+

4δ − 1

2 + δ
= 1.

Since δ > 0.27107 > 1
4 , we know that β is positive.

The K-con�guration is G := [0, α]∪ [α+β, 2α+β]. The complement of G in

[0, 1] consists of two intervals, one of length β and one of length 1− (2α+ β) =

α + β. If an endpoint of G + Z is contiguous to an interval of R\(G + Z) of

length α+ β, its radius is given by 2α+ β. The ball of this radius will contain

three intervals of G+ Z, each of length α, and we see that

3α

2(2α+ β)
=

3α

1 + α
=

3− 3δ

3
= 1− δ

as required. In case x is an endpoint of the other intervals of R\(G+ Z), those

of length β, then we take the ball around x of radius α. This ball contains only

that one interval of length β from the complement of G + Z. So we need only

that
β

2α
=

4δ − 1

4− 4δ
≤ δ

to establish Condition 1. This is true if δ ≤ 1
2 .

Condition 2 follows immediately from the lengths of the balls given. The

other two conditions follow in the same way as the previous proof.

The measure of G is 2α = 2−2δ
2+δ . This is less than

4δ2

1−2δ if

2δ3 + 2δ2 + 3δ > 1. �

Proposition 3.4.3 (Kurka's upper bound) If δ > δK then U(δ).
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Proof. To build the con�guration, we de�ne four lengths:

α :=
1 + 2δ − 4δ2

4 + 12δ

β :=
8δ2

4 + 12δ

φ :=
4δ

4 + 12δ

ψ :=
2

4 + 12δ

Note that 2α+ β + 2φ+ ψ = 1. The set G consists of the intervals

[0, α] ∪ [α+ β, 2α+ β] ∪ [1− φ− ψ, 1− φ],

of lengths α, α and ψ respectively, and [0, 1]\G is made up of three intervals, of

lengths β, φ and φ from left to right.

The radii at endpoints of G are as follows:

r(0) = r(2α+ β) := 2α+ β = φ+ ψ

r(1− φ− ψ) = r(1− φ) := ψ

r(α) = r(β) := α

with radii at all other endpoints given by that of the equivalent point modulo

1. To check Condition 1 it su�ces to check that

β ≤ 2δα

which is implied by 1− 4δ2 > 2, or 2δ < 0.618 . . ., that

φ ≤ 2δψ

which is in fact true with equality, and that

φ+ β ≤ 2δ(φ+ ψ)
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which is also true with equality, following from the previous inequality and the

fact that β = 2δψ.

As above, the other three conditions can be proved by simple arguments.

When the measure ofG, 2−8δ2
4+12δ , is less than

4δ2

1−2δ we have a good K-con�guration.

This is equivalent to saying that δ is greater than the positive solution of (3.1),

which yields the correct upper bound. �

Remark We believe that certain aspects of this example suggest why it is in

fact optimal. The optimality was established using a complicated argument

about K-con�gurations which is discussed in the next section. However, the

following argument may provide some intuition as well as leading, if correct, to

a simpler proof.

Choose an interval I ∈ R\(G+ Z) which is as large as any other connected

component of R\(G + Z). De�ne ρ := |I|. In the previous example we would

have ρ = φ. This interval I must be contained in some ball in which G + Z

has relative measure 1 − δ. Call this ball Bmax, and assume that |Bmax| ≤ 1,

otherwise we could rede�ne G to be 1
2 (G∪G+1) and thus reduce Bmax by half.

It might be possible to show that Bmax covers all of (some rotated copy of) G,

otherwise we could remove the parts of G which lie outside Bmax, rescale, and

somehow obtain a K-con�guration of smaller measure(2). So suppose that G is

contained within a ball of length 1− σ = |Bmax| on which its relative measure

is at least 1− δ. The minimum possible measure of G is then (1− δ)(1− σ).

Now, σ ≤ ρ by de�nition of ρ. In the previous example both ρ and σ are

given by φ. If we could prove that it is not possible for ρ to take up a greater

proportion of Bmax than φ
1−φ , we would have shown that the previous example

is optimal.

Suppose then that I, the largest interval of [0, 1]\G, is bigger than in the

previous example. At the endpoint of I which is the center of Bmax, we still

have a possibility of �nding a radius to satisfy Condition 1, since the relevant

(2)For example, a procedure like this would yield Kurka's G from that of Csörnyei, Grahl
and O'Neil.
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inequality for Kurka's G is not sharp. That is to say

λ(I|Bmax) =
φ

1− φ
=

4δ

4 + 8δ
< δ.

However at the other endpoint of I, a ball of radius Bmax
2 would overlap with

the interval [0, 1]\Bmax (or an equivalent set modulo 1), which is contained in

R\(G+Z). This would mean that this ball had relative measure of G+Z strictly

less than in Bmax. This would suggest that the example is not optimal as it

implies λ(G+Z|Bmax) > 1− δ. If we exclude this possibility, the largest radius

possible would seem to be Bmax
2 − ρ. But for there to exist a ball of this radius,

containing an interval of length ρ from [0, 1]\G, and in which G has relative

measure at least 1− δ, we need

ρ ≤ 2δ(
|Bmax|

2
− ρ) = δ(1− ρ− 2ρ).

This yields ρ = 1
1+3δ , or exactly φ in Kurka's G.

This argument obviously relies on several assumptions which may be false

or very di�cult to prove. However we feel that it may be possible to complete

these steps either as consequences of properties of K-con�gurations given in [33]

or independently, and that this may lead to a proof of Kurka's result δH = δK

which is much simpler than that of [33].

3.5 Kurka's lower bound

Before [32], the best lower bound for δH was given in [39]. If we rephrase

his result in the language of Kurka's papers, Szenes proved that the measure of

a K-con�guration for δ must be at least 1−δ
1+δ . Therefore it is only possible for a

good K-con�guration to exist for δ if

1− δ
1 + δ

≤ 4δ2

1− 2δ
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or

4δ3 + 2δ2 + 3δ > 1 (3.2)

(assuming that 0 < δ < 1
2 ). This gives L(0.2629 . . .) with the exact value being

the positive root of 4x3 + 2x2 + 3x − 1. The proof of this lower bound on the

measure of K-con�gurations is easy:

Lemma 3.5.1 (Lemma 6 of [39]) Suppose that {Ik : 1 ≤ k ≤ n} is a col-

lection of intervals whose union is another interval I, and that B ⊂ I is a

measurable set. Let δ be some constant 0 < δ < 1
2 . If λ(B|Ii) > 1 − δ for all i

then λ(B|I) > 1−δ
1+δ .

This result immediately yields the fact that K-con�gurations measure at least

1−δ
1+δ and thence Szenes' lower bound.

Proof. By removing intervals from the set if necessary, we may assume without

loss of generality that no interval is contained in the union of all the others.

This means that we can number the intervals in increasing order of their left

endpoints, and their right endpoints will be in the same order. So let Ik :=

[ak, bk] where ak < ak+1 and bk < bk+1. Here we assume for simplicity that the

intervals are closed.

Each interval is made up of three regions: one which overlaps the left neigh-

bour (if there is one), one consisting of points which belong only to that interval,

and one overlapping the right interval, if any. Either of the overlapping parts

may be empty or consist of a single point. LetW be the union of the overlapping

parts and U be the union of the unique parts. By summing

λ(B ∩ Ii) > (1− δ)λ(Ii)

over all i we obtain

λ(B ∩ U) + 2λ(B ∩W ) > (1− δ) (λ(U) + 2λ(W ))
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since each overlapping part appears twice in the sum. From this we obtain

λ(B ∩ U) + 2λ(B ∩W )− (1− δ)λ(W ) > (1− δ) (λ(U) + λ(W ))

λ(B ∩ U) + (1 + δ)λ(B ∩W ) > (1− δ) (λ(U) + λ(W ))

(1 + δ) (λ(B ∩ U) + λ(B ∩W )) > (1− δ) (λ(U) + λ(W ))

(1 + δ)λ(B ∩ I) > (1− δ)λ(I)

as required. �

In this last calculation we used only that λ(B ∩W ) ≤ λ(W ) and that λ(B ∩

U) ≥ 0. In fact the optimal case is given when B is exactly W (to within a

nullset). So Ii contains a portion of length δ|Ii| which does not belong to any

other interval, or to B, and the remainder of Ii, which overlaps Ii−1 or Ii+1, is

contained in B.

Szenes suggested that his bound for δH could be improved on since neither his

con�guration nor Kurka's is covered with an arbitrary set of intervals. Rather,

we need there to be one of these intervals centered about each endpoint. It is

not possible in the optimal case for the previous lemma to make sure that each

point of the boundary of B is the center of some interval Ii.

Were it not for Condition 4 in the de�nition of a K-con�guration, we could

place a small a�ne copy of some S-con�guration close to each point of ∂B

as in the proof of Proposition 3.3.2. This would allow us to choose a small

interval centered about the point of ∂B on which B has su�ciently high relative

measure. Thus each endpoint would be the center of some ball B for which

λ(G|B) 6∈ (δ, 1− δ).

So Kurka uses the special quality of a K-con�guration and of the set of

intervals which satisfy Condition 2 in De�nition 3.3.3, to raise Szenes' lower

bound on the measure of a K-con�guration.

Proposition 3.5.2 (Proposition 6.8 of [33]) Any K-con�guration for δ has
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measure no less than

(1− δ)(1 + 2δ)

1 + 3δ
.

This yields both the lower bound L(δK) and and thence the correct value δH =

δK .

The proof of this proposition given in [33] is very complicated. We only give

an indication of the method by quoting an intermediary result.

Lemma 3.5.3 (Lemma 5.1 of [33]) If G is a K-con�guration, write H :=

G+Z. We call r0 a minimal radius for x if d(x, r0, H) = 1− δ and d(x, r,H) <

1 − δ for all r < r0. If (u,w) is some interval with λ(H|(u,w)) < 1−δ
2 , then

there is some point a with r(a) a minimal radius, such that B(a, r(a)) ⊃ (u,w),

and for each point v ∈ (u,w) there is a point bv, with a minimal radius r(bv),

such that B(bv, r(bv)) ⊃ (v, w) and

b− a ≥ u− v − 2

1− δ
λ(H ∩ (v, u)). (3.3)

To establish this result, we consider that each point x in the complement

of H is covered by both of two balls, B(y, r(y)) and B(z, r(z)), where y <

x < z and r(y), r(z) are both minimal. We can choose s ∈ (u,w) to be a

point such that λ(H|(s, s′)) is less than 1 − 2δ for all s′ ∈ (s, w). Then if

a < s, and r(a) is a minimal radius for a, B(a, r(a)) must contain w if it

contains s. This is because otherwise λ(H|(s, a+ r(a))) < 1− 2δ, which implies

λ(H|B(a, r(a))\B(a, s−a)) < 1− δ and so r(a) cannot be minimal. Arguments

like these allow us to show that B(a, r(a)) ⊃ (u,w). We also �nd a point

t ∈ (v, w) such that λ(H|(t′, t)) < 1 − 2δ if t′ ∈ (v, t), a point b > t and a

minimal radius r(b) for b so that B(b, r(b)) ⊃ (v, w). The equation (3.3) will

follow from the choice of s and t.

Having proved Lemma 3.5.3, Kurka goes on to show how this implies Propo-

sition 3.5.2. This is a much more complicated version of the proof of Lemma

3.5.1, which establishes that for the measure of a K-con�guration to be close

to the minimum possible, intervals on which the relative measure of H is less



CHAPTER 3. EXCEPTIONAL DENSITIES 51

than 1 − 2δ must not be too rare. Each such interval implies the existence of

two intervals Ia and Ib, on both of which H has relative measure at least 1− δ.

However, unlike the optimal case in Lemma 3.5.1, H has low relative measure

where these two overlap, and high relative measure in the parts unique to each.

This will allow us to eventually reach the improved lower bound of Proposition

3.5.2.



Chapter 4

Riemann sums

This chapter de�nes Riemann sums and brie�y describes some notions based

on them which are relevant to Chapters 5, 6 and 7.

4.1 Notation

De�nition 4.1.1 A partition of an interval I is a �nite collection of nonde-

generate intervals P = {Ik : 1 ≤ k ≤ n} such that any two members of P are

disjoint, except possibly for a shared endpoint (non-overlapping), and such that

I =
⋃
J∈P

J . (4.1)

We refer to a partition of I simply as a partition. The size of a partition, written

|P|, is the length of its longest element.

De�nition 4.1.2 A tagged partition of an interval I is a �nite collection of

ordered pairs T = {(tk, Ik) : 1 ≤ k ≤ n} such that each tk ∈ I and {Ik : 1 ≤

k ≤ n} is a partition of I.

As before we refer to a tagged partition of I simply as a tagged partition. Given

a tagged partition T = {(tk, Ik) : 1 ≤ k ≤ n}, the partition {Ik : 1 ≤ k ≤ n} is

52
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referred to as its underlying partition. The size of a tagged partition is the size

of its underlying partition.

For each interval I in the underlying partition of a tagged partition, its tag

or tag point is the unique point t such that (t, I) is in the tagged partition.

De�nition 4.1.3 Suppose that f is a function I → R and that T is a tagged

partition. The Riemann sum of f on T is given by

∑
T
f :=

∑
(t,I)∈T

f(t)|I| (4.2)

De�nition 4.1.4 A gauge is a function I→ R+. If g is a gauge, we say that a

tagged partition T is smaller than g if, for every (t, I) belonging to T , we have

|I| ≤ g(t). (4.3)

Thus it is equivalent to say that the size of a tagged partition is smaller than δ

and to say that the tagged partition is smaller than the gauge cδ, where cδ is

the constant function cδ(x) := δ.

The notion of Riemann sum gives rise to the Riemann integral. The de�ni-

tion and the important properties of this integral are widely known.

4.2 The Kurzweil-Henstock integral

The Kurzweil-Henstock integral was discovered by Kurzweil and its most

important properties were elaborated by Henstock in [28].

De�nition 4.2.1 A function f isKurzweil-Henstock integrable orKH-integrable

and M is its Kurzweil-Henstock integral i� for every ε > 0, there exists a gauge

function δ(x) such that ∣∣∣∑
T
f −M

∣∣∣ < ε (4.4)

holds for any tagged partition T smaller than δ(x) and with the inclusion con-

dition.
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For this de�nition to be meaningful, we must be able to show that for any

gauge function δ, we can �nd a tagged partition smaller than δ and with the

inclusion condition. The proof of this is essentially a reworking of the proof of

the Heine-Borel theorem for the unit interval.

The KH-integral of f on I is written as KH

∫
f , and as with the Lebesgue

integral, the KH-integral of f on a measurable set E ⊂ I is de�ned as

KH

∫
E

f := KH

∫
χEf .

There are several important theorems on the Kurzweil-Henstock integral

which we state without proof. The proofs can be found for example in [23].

Theorem 4.2.2 (Extends Lebesgue integral) Let f be a Lebesgue integrable

function. Then f is KH-integrable and the KH-integral of f equals the Lebesgue

integral of f .

Thus the KH-integral is at least as powerful as the Lebesgue integral. Its

main advantage over the Lebesgue integral is that every derivative can be inte-

grated.

Theorem 4.2.3 (Fundamental Theorem of Calculus) Suppose that f is dif-

ferentiable at every point of I. Then f ′ is KH-integrable and the inde�nite in-

tegral of f ′, KH
∫ x
0
f ′, equals f(x) + c for all x ∈ I, for some constant c .

Remark The opposite of the theorem can be proved with only the Lebesgue

integral. Suppose that F (x) de�ned by
∫ x
0
f is di�erentiable on I. Then F ′(x) =

f(x) almost everywhere on I.

Remark It is not possible to prove the Fundamental Theorem for functions f

which are only almost everywhere di�erentiable, as the celebrated counterex-

ample known as the Cantor staircase shows.

We can prove both the two previous theorems directly, using in either case

a regularity property of the functions in question. For Lebesgue integrable
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functions it is the Lebesgue di�erentiation theorem, and for derivatives the fact

that for every x,

F (x)− F (x+ h)− hf(x) = o(h) as h→ 0.

The limits are not uniform in x in either case, which motivates the use of a

gauge function, chosen to re�ect the asymptotic behavior of the o( 1
h ) term for

a given x.

Whereas some functions cannot be integrated using proper Riemann or

Lebesgue integration, and require the de�nition of an improper integral, this

is never necessary for the KH-integral.

In fact, the following theorem tells us that the improper KH-integral is equiv-

alent to the KH-integral.

Theorem 4.2.6 Suppose that f is KH-integrable on (ε, 1] for all ε > 0, and

that

lim
ε→0

KH

∫
(ε,1]

f (4.5)

exists. Then f is KH-integrable on [0, 1] and

KH

∫
I
f = lim

ε→0
KH

∫
(ε,1]

f . (4.6)

Like the Lebesgue integral, the inde�nite KH-integral is continuous. Fur-

thermore, the Henstock lemma, a technical lemma which is very important in

proving some of the above properties of the integral, shows that if a function is

KH-integrable on I, then it is KH-integrable on every subinterval of I. (Unlike

the Lebesgue integral, it isn't true that the integrability is inherited by every

measurable subset of I.) These two facts provide a converse to the previous

theorem: if we know the KH-integral of f on I, then we know that KH
∫ 1

ε
f exists

for all ε ∈ (0, 1], and that its limit as ε→ 0 is KH
∫
f .

The inde�nite Lebesgue integral is absolutely continuous, but the inde�nite

KH integral is not. It is however, ACG∗, which gives the descriptive de�nition of
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the Denjoy integral, equivalent to the Kurzweil-Henstock integral. A function is

AC∗ on some subset S of the domain, if for every set of intervals with endpoints

in S, of total length δ, the variation of f on those intervals is at most ε(δ), for

some function ε(δ) which tends to 0 as δ tends to 0. For f to be ACG∗ on some

set E means that there is a countable collection of sets whose union is E, on

each of which f is AC∗.

The fact that every everywhere di�erentiable function is ACG∗ yields The-

orem 4.2.3. This can be proved by taking for each n the set En of points where

the derivative is between −n and n. The function is AC∗ on each of these.

4.3 Extending the Riemann integral

Due to the ubiquity and the simplicity of the Riemann integral, there are

several constructions which extend its power without requiring the more com-

plicated notions used in the Lebesgue or Kurzweil-Henstock integral.

De�nition 4.3.1 (Improper Riemann integral) Suppose that for every nat-

ural number n there exists some �nite union of intervals Fn ( I, such that

Fn ⊆ Fm if n < m, and so that the limit
⋃∞
n Fn = I\{x1, . . . , xk} for some

�nite collection of points x1, . . . , xk. Let f be a function which is Riemann in-

tegrable on each of the sets Fn. If the limit limn→∞ R

∫
Fn
f exists, and does not

depend on the choice of the sets Fn, then this limit is the improper Riemann

integral of f.

An example of an improper Riemann integrable function is an unbounded

monotone function which is in L1.

It is easy to see that every improperly Riemann integrable function is also

Kurzweil-Henstock integrable. The paper [7] showed that an improper Riemann

integral is equivalent to a Kurzweil-Henstock integral, if the set of possible gauge

functions is restricted to those functions which are continuous outside some �nite

set of points.
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However there do exist functions which are not Lebesgue integrable, but

which are improperly Riemann integrable.

De�nition 4.3.2 (Essential Riemann integral) We de�ne the essential Rie-

mann integral of f to be the Riemann integral of any function which is Lebesgue

equivalent (almost everywhere equal) to f .

To see that the essential Riemann integral is well-de�ned, we need to check that

any two functions which are both Riemann integrable, and almost everywhere

equal, have the same Riemann integral. This is a simple consequence of the

fact that the Riemann integral is equal to the Lebesgue integral, in the case

that both exist. We refer to the set of functions that are Lebesgue equivalent

to some Riemann integrable function as RI∗.

The Pollard-Getchell integral is another simple variant of the Riemann inte-

gral. The following description is based on that given in [28] (Chapter 1 section

5).

De�nition 4.3.3 (Pollard-Getchell integral) A real number M is the Pol-

lard-Getchell integral of f if for every ε > 0 there exists some partition P0

such that |
∑
T f −M | < ε whenever T is a tagged partition with the inclusion

condition whose underlying partition is a re�nement of P0.

Since a re�nement of a partition with size δ has size at most δ, we can see

that all Riemann integrable functions are Pollard-Getchell integrable. It is also

clear to see that it is at least as strong as the improper Riemann integral. For

any partition P0 there exists a gauge function g such that all re�nements of P0

are smaller than g. This means that Pollard-Getchell integrable functions are

Kurzweil-Henstock integrable and that their Pollard-Getchell integral is equal

to their Kurzweil-Henstock integral.
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4.4 Further gauge integrals

4.4.1 The McShane integral

The McShane integral is very similar to the Kurzweil-Henstock integral. It

is in fact a restriction of that, designed so that if f is integrable then |f | will be

too. This will mean that it is equivalent to the Lebesgue integral. The de�nition

was �rst given in [34], and it is discussed in both [23] and [40].

De�nition 4.4.1 (McShane integral) A function f is McShane integrable

and M is its McShane integral i� for every ε > 0, there exists a gauge function

δ(x) such that ∣∣∣∑
T
f −M

∣∣∣ < ε (4.7)

holds for any tagged partition T smaller than δ(x).

The only di�erence between this and the de�nition of the KH-integral is that

here the partitions do not need to have the inclusion condition. It is clear

that the set of functions which are McShane integrable is a subset of the set of

Kurzweil-Henstock integrable functions.

The e�ect of the lack of the inclusion condition is not immediately obvious,

however it can be seen through the following remark.

Remark Suppose that we have two tagged partitions T0 and T1 both of which

are smaller than some gauge function δ(x). We can �nd a tagged partition T

which is also smaller than δ(x) and which is a re�nement of both T0 and T1,

and we can choose the tags of T so that each one is a tag of either T0 or T1. To

be precise, we will require that if (t, I) belongs to T , then there is some interval

I ′ ⊃ I so that (t, I ′) belongs to either T0 or T1.

The partition T can for example consist of all the sets from

{X ∩ Y : X ∈ P (T0), Y ∈ P (T1)}

which are nondegenerate intervals, where P (T ) denotes the underlying partition
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of T . For each such interval, contained within an interval from T0 and one

from T1, we can take the tag from one or the other as its tag. If we had

to restrict ourselves to partitions with the inclusion condition, this would not

be possible as we have no guarantee that either tag point would belong to the

interval. We can use this to show that that McShane integrability is inherited by

measurable subsets. From this it is clear that the McShane integrable functions

are absolutely integrable. So both the McShane integrable functions and the

Lebesgue integrable functions are subspaces of the Kurzweil-Henstock integrable

functions, such that if f is f is integrable then so is |f |. The following theorem

can therefore be proved by showing that the positive KH-integrable functions

are both Lebesgue integrable and McShane integrable.

Proposition 4.4.3 A function f is McShane integrable if and only if it is

Lebesgue integrable, and in the case that they exist, both integrals are the same.

The way in which the inclusion condition makes the behavior of Riemann

sums regular for less well-behaved functions is shown by the following result,

taken from [7]:

Proposition 4.4.4 A function f is improper Lebesgue integrable if and only if

there exists some �nite set A ⊂ I and for every ε > 0 there exists some gauge

δ(x) so that for every tagged partition T of I smaller than δ(x) and with the

inclusion condition holding on A, we have

|
∑
T
f − KH

∫
f | < ε.

Here �the inclusion condition holding on A� means that if (t, I) is a member of

the tagged partition, t ∈ A implies t ∈ I.

In fact the original de�nition of the Denjoy integral, bears resemblance to an

improper Lebesgue integral. The Denjoy integral, equivalent to the Kurzweil-

Henstock integral, is something of a generalization of improper integration. In

e�ect this allows limits of the Lebesgue integral to be taken on a much wider
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range of subsets than the improper integral.

4.4.2 The C-integral

The following construction was �rst given by Bongiorno in [1], although its

de�ning quality was proved by Bongiorno, DiPiazza and Preiss in [6]. The

descriptive de�nition of an equivalent integral was �rst given in [8]. Based on

the usage in these papers we refer to it as the C-integral. It imposes a new

restriction on the tagged partitions which we will accept in our Riemann sums.

De�nition 4.4.5 With ε a positive real number, we say that a tagged partition

T has the ε-proximity condition if

∑
(t,I)∈T

dist(t, I) <
1

ε
.

It is clear that partitions with the inclusion condition have the ε-proximity

condition for all positive ε. Thus the C-integral is stronger than the McShane

integral and weaker than the Kurzweil-Henstock integral. So it is unnecessary

to say what the value of the C-integral is and we simply de�ne what it means

to be C-integrable.

De�nition 4.4.6 A function f is C-integrable if for every ε > 0 there exists a

gauge function δ(x) such that

|
∑
T
f − KH

∫
f | < ε

for all partitions T which are smaller than δ(x) and which have the ε-proximity

condition.

Proposition 4.4.7 A measurable function f is C-integrable i� it is the sum of

a Lebesgue integrable function and a derivative.

It is trivial that a Lebesgue integrable function is C-integrable, and straight-

forward to see why a derivative is C-integrable. Suppose that f = F ′ for F some



CHAPTER 4. RIEMANN SUMS 61

di�erentiable function on I. Given a point x ∈ I, �rstly we can �nd a value δ(x)

such that for any interval I = (a, b) in (x− δ(x), x+ δ(x)), we have

F (b)− F (a) =

∫ b

a

f = F ′(x) + e

where |e| is small. But in addition to this, we can make sure that e = o(d(x, I)).

Summing over all intervals in the partition would give us exactly that the ε-

proximity condition is required for the Riemann sums to converge.

The proof of the converse is more involved and is given in [6].

Remark As is suggested by the de�nition of the ε-proximity condition, given

a gauge function we can �nd a partition of I smaller than that gauge such that

∑
dist(t, I)

is as large as we want. Suppose that φ(x) is a decreasing function such that

limx→0+ f(x) = +∞. We can make a (ε, φ)-condition on partition sizes by

replacing the bound 1
ε in the de�nition by φ(x). In fact any integral de�ned

using such a variant proximity condition would be equivalent to the C-integral,

with the choice of φ a�ecting only the choice of the gauge functions.

Additional properties of the C-integral are given in [2] and in [3], which

discuss its primitives and prove several convergence theorems.



Chapter 5

Random Riemann integrals

In this chapter we introduce the random Riemann integral. In the �rst

section, we give the de�nition of the random Riemann sum of a function on a

partition. This is a random variable in the space of Riemann sums of f . We show

the easy result that if f is Lebesgue integrable these random variables converge

in probability as the size of the partitions goes to 0. This property we will refer to

as weak random Riemann integrability. In the second section we consider almost

sure convergence of random Riemann sums. This will depend on the sequence

of partitions taken, and is referred to as random Riemann integrability with

respect to a sequence. We prove that if f is in Lp and the sequence of partition

sizes is in `p−1 then this holds. We go on to give a partial converse, as well as a

counterexample that shows that this is not the exact necessary condition. The

third section gives two classes of not Lebesgue integrable functions which are

not weakly random Riemann integrable. The proof depends on a lemma which

is proved slightly di�erently for either class. The result is suggestive that the

set of weakly random Riemann integrable functions may be exactly L1.

62
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5.1 Basics

Let a partition P of I be given, and suppose it contains n intervals (Ik)nk=1.

For each k let tk be a random variable distributed uniformly on Ik, independently

of all tj , j 6= k. The partition

TP := {(tk, Ik) : 1 ≤ k ≤ n}

is a random variable in the space of tagged partitions on I with the inclusion

condition whose underlying partition is P.

De�nition 5.1.1 We de�ne the random Riemann sum of f on P to be the

Riemann sum of f on TP ,

ΣPf :=

n∑
k=1

|Ik|f(tk),

which is a random variable in R if f is an almost everywhere �nite Lebesgue

measurable function.

It is clear that the random Riemann sum of f is linear in f , and that if f ≥ g

almost everywhere then ΣPf ≥ ΣPg almost surely.

De�nition 5.1.2 We say that f is weakly random Riemann integrable and that

M is its random Riemann integral if for all ε > 0 there exists a δ such that

|P| < δ =⇒ P(|ΣPf −M | > ε) < ε.

This is to say that we have convergence in probability of the random Riemann

sum on P to M , as the size of P tends to 0.

Our �rst and easiest task is to show that the weak random Riemann integral

extends the Riemann integral, in the following sense.

Lemma 5.1.3 If f is a Riemann integrable function, then it is weakly random



CHAPTER 5. RANDOM RIEMANN INTEGRALS 64

Riemann integrable, and then the random Riemann integral of f is equal to the

Riemann integral of f .

Proof. This is obvious since ΣPf is a random variable supported on the set of

Riemann sums of f on all tagged partitions with the inclusion condition, whose

underlying partition is P. �

We expect this lemma to hold for every reasonable construction of a random

variable involving Riemann sums of f .

The following lemma will be used to prove that if we can approximate a

function in L1 by random Riemann integrable functions then that function too is

random Riemann integrable. In later chapters we will see further constructions

involving stochastic Riemann sums. Where we require their convergence in

probability an analogous property will usually be immediate. However it does

not necessarily follow in the case of almost sure convergence.

Lemma 5.1.4 Let ε > 0 be given. There exists δ such that

∫
|f | < δ =⇒ P(|ΣPf | > ε) < ε

for any partition P.

Proof. The expectation of ΣPf is

E(ΣPf) =

n∑
k=1

|Ik|Ef(tk) =

n∑
k=1

∫
Ik

f =

∫
f.

Since(1)

|ΣPf | = |ΣPf+ − ΣPf
−|

≤ ΣPf
+ + ΣPf

−

= ΣP |f |

(1)The function f+ is the positive part of f , f+(x) := max(f(x), 0). Similarly the negative
part of f is f− := max(−f(x), 0).
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we have that

|EΣPf | ≤ E
n∑
k=1

∫
Ik

|f | =
∫
|f |.

Therefore by Chebyshev's inequality P(|ΣPf | > ε) <
∫
|f |
ε as required. �

We can now show that the weak random Riemann integral extends the

Lebesgue integral.

Theorem 5.1.5 If f is Lebesgue integrable, then it is weakly random Riemann

integrable, and the two integrals are equal.

Proof. We can write f as the sum of two function

f = g + h

where g is Riemann integrable, and
∫
|h| is less than ε

3 , and (using Lemma 5.1.4)

also so small that P(|ΣPh| > ε
3 ) < ε

3 for any partition P.

Since g is Riemann integrable there exists a δ such that if |P| < δ then

|ΣPg −
∫
g| < ε

3 . Putting these together yields that

P(|ΣPf −
∫
f | > ε) ≤ P(|ΣPg −

∫
g| > ε

3
) + P(|ΣPh−

∫
h| > 2ε

3

≤ 0 + P(|ΣPh| >
ε

3

≤ ε

3
≤ ε

for all partitions smaller than δ, as required. �

5.2 The random Riemann integral

Suppose that (Pn)n∈N is a sequence of partitions. It will be useful to write

(|Pn|) to denote the sequence of sizes of the partitions (Pn). Suppose that we

take random Riemann sums on ¶n for each n, distributed exactly as before, and

the distribution of each is independent of all others. If I is an interval of Pn we

call its tag points tI,n.
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De�nition 5.2.1 A function f is strongly random Riemann integrable, or just

random Riemann integrable with respect to (Pn)n∈N, where (Pn) is a sequence

of partitions of I, if the sequence of random variables (ΣPnf) converges almost

surely.

Remark Suppose that ΣPnf converges almost surely to some real number.

Then it converges in probability as well, with the same limit. So we do not

study the value of the strong random Riemann integral, but only whether or

not it converges.

The �rst result gives us a condition when we do have almost sure conver-

gence. Its su�ciency was �rst proved in [24].

Theorem 5.2.3 Suppose that p > 1. Let f be a measurable function in Lp and

let (Pn) be a sequence of partitions with the sequence of partition sizes (|Pn|) in

`p−1. Then f is strongly random Riemann integrable with respect to (Pn).

Proof. First suppose that 1 < p ≤ 2. For each n ∈ N, we de�ne fn as follows.

On each interval of Pn, fn is constant and has the same integral as f on that

interval. That is, if x ∈ I ∈ Pn, then

fn(x) :=
1

|I|

∫
I

f

Further de�ne gn by gn(x) := f(x)− fn(x) for all x ∈ I and n ∈ N.

It is easy to see that ΣPnfn is constant and equal to
∫
f with certainty for

each n ∈ N. We know that ΣPnf = ΣPnfn + ΣPngn, and so it is enough to

show that ΣPngn → 0 almost surely.

We will use the fact that
∫
|gn|p is bounded by a constant that does not

depend on n. In fact each fn is dominated by Mf , the Hardy-Littlewood

maximal operator of f (see De�nition 2.2.9). We know that
∫

(Mf)p is �nite if∫
|f |p is, and so by the triangle inequality in Lp,

∫
|gn|p is at most

((∫
|f |p

) 1
p

+

(∫
|fn|p

) 1
p

)p
≤ 2p

∫
(Mf)p =: c <∞.
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Write XI,n := |I|gn(tI,n). Then ΣPngn =
∑
I∈Pn XI,n. Note that

EXI,n =

∫
I

gn =

∫
I

f − fn = 0,

therefore also E(ΣPngn) = 0.

We use a lemma on sums of random variables with expectation 0.

Lemma 5.2.4 If {Xj: 1 ≤ j ≤ n} is a �nite collection of independent random

variables with expectation 0, and 1 < p ≤ 2, then

E (|
k∑
j=1

Xj |p) ≤ 2

k∑
j=1

E(|Xj |p).

This is a consequence of a second lemma:

Lemma 5.2.5 If x and y are real numbers, and 1 < p ≤ 2, then

|x+ y|p ≤ |x|p + 2|y|p + py|x|p−1 sign(x).

Proof (Lemma 5.2.5). To prove this lemma it is su�cient to prove it for x = 1,

in other words that

|1 + y|p ≤ 1 + 2|y|p + py (5.1)

for all y ∈ R and all 1 < p ≤ 2. If p = 2 the inequality holds trivially, so assume

1 < p < 2. De�ne

G(y) :=
|1 + y|p − 1− py

|y|p
.



CHAPTER 5. RANDOM RIEMANN INTEGRALS 68

Straightforward calculation shows us that

G(−1) = p− 1

lim
y→0−

G(y) = 0

lim
y→0+

G(y) = 0

lim
y→∞

G(y) = 1

lim
y→−∞

G(y) = 1

and that the derivative of G is nonzero on (−1, 0) and (0,∞). This means that

G(x) is bounded by p− 1 on (−1, 0) and by 1 on (0,∞).

For y < −1, let us set for convenience z := −y, and de�ne G∗(z) := G(y).

The function is given by

G∗(z) =
(z − 1)p − 1 + pz

zp

and we can see that as z → ∞, this tends to 1. Assume that it attains a

maximum for 1 < z, then the location of this maximum would be given by

d

dz
G∗(z) = pz(−1−p)

(
z + z(z − 1)p−1 + 1− (z − 1)p − pz

)
= 0

or equivalently

(z − 1)p − 1 + pz = z + z(z − 1)p−1.

This means that the function G∗(z) has the value

z + z(z − 1)p−1

zp
=

1

zp−1
+

(z − 1)p−1

zp−1

at its maximum if there is one, and this is clearly less than 2 since both sum-

mands on the right hand side are less than 1. We have shown that G(y) < 2 for

all y and all 1 < p < 2 and this proves (5.1). �
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Proof (Lemma 5.2.4). We use induction, noting that the inequality is trivial

for n = 1. Assume that for the collection Xj , 1 ≤ j ≤ k of independent random

variables, each with expectation 0, we have

E

∣∣∣∣∣∣
k∑
j=1

Xj

∣∣∣∣∣∣
p ≤ 2

k∑
j=1

E(|Xj |p).

Then setting x =
∑k
j=1Xj and y = Xk+1 in Lemma 5.2.5, we obtain

∣∣∣∣∣∣
k+1∑
j=1

Xj

∣∣∣∣∣∣
p

≤

∣∣∣∣∣∣
k∑
j=1

Xj

∣∣∣∣∣∣
p

+ 2|Xk+1|p + pXk+1

∣∣∣∣∣∣
k∑
j=1

Xj

∣∣∣∣∣∣
p−1

sign(

k∑
j=1

Xj).

Now if we take expectations of each term, we can use the fact that the last term

has expectation 0. This is true because

E

pXk+1

∣∣∣∣∣∣
k∑
j=1

Xj

∣∣∣∣∣∣
p−1

sign(

k∑
j=1

Xj)

 = EXk+1 ·E

p
∣∣∣∣∣∣
k∑
j=1

Xj

∣∣∣∣∣∣
p−1

sign(

k∑
j=1

Xj)


by independence, and EXk+1 is 0. So using the induction step we obtain

E

∣∣∣∣∣∣
k+1∑
j=1

Xj

∣∣∣∣∣∣
p

≤ E

∣∣∣∣∣∣
k∑
j=1

Xj

∣∣∣∣∣∣
p

+ 2E|Xk+1|p

≤ 2

k∑
j=1

E(|Xj |p) + 2E|Xk+1|p

= 2

k+1∑
j=1

E(|Xj |p)

as required. �

By this lemma and since EXI,n = 0, we have the inequality

E

(∣∣∣∣∣ ∑
I∈Pn

XI,n

∣∣∣∣∣
p)
≤ 2

∑
I∈Pn

E (|XI,n|p) . (5.2)
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Now ∑
I∈Pn

E(|XI,n|p) ≤ |Pn|p−1
∫
|gn|p (5.3)

which can be seen simply by expanding each component of the sum on the left

hand side as E|gn(tI,n)|p|I|p. So by (5.2) and the choice of (Pn) with (|Pn|) ∈

`p−1, we have

∞∑
n=1

E

(∣∣∣∣∣ ∑
I∈Pn

XI,n

∣∣∣∣∣
p)
≤ 2

∞∑
n=1

|Pn|p−1
∫
|gn|p ≤ 2c

∞∑
n=1

|Pn|p−1 < +∞.

An application of Markov's inequality tells us that

∞∑
n=1

P

(∣∣∣∣∣ ∑
I∈Pn

XI,n

∣∣∣∣∣ > ε

)
≤ 1

εp

∞∑
n=1

E

(∣∣∣∣∣ ∑
I∈Pn

XI,n

∣∣∣∣∣
p)

< +∞

for all positive ε. This property is called complete convergence of
∑
I XI,n to

0. By the Borel-Cantelli lemma it implies almost sure convergence to the same

limit.

Now suppose that p > 2. For each n ∈ N we write f as a sum f = f∗n + f∗∗n .

Here we de�ne

f∗n :=


f if |f | < |Pn|

−1
p ,

0 otherwise

and de�ne f∗∗n := f−f∗n. Since f is in Lp,
∫
f∗∗n → 0 and

∫
f∗n →

∫
f as n→∞.

We will use two lemmas. The �rst was proved by Evans and Humke in Theo-

rem 2 of [18]. Their proof of the result for the random �rst-return Riemann sum

applies equally to our random Riemann sum, which is identically distributed.

See Chapter 7 for details of the random �rst-return Riemann sum.

Lemma 5.2.6 Suppose that f is a measurable function on I with |f | < M .

Then for any partition P and any m ∈ N, we have

∣∣∣∣∣E
(∫

f − ΣPf

)2m
∣∣∣∣∣ ≤ c ·M2m|P|m,
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where c depends only on m.

Proof. We can express
∫
f − ΣPf as the sum

∑
Ik∈P

(

∫
Ik

f − |Ik|f(tIk)).

Since E|I|f(tI) is
∫
I
f this is a sum of random variables with mean 0. Moreover

each is independent of all the others. Let us write them as

Fk :=

∫
Ik

f − |Ik|f(tIk)

for 1 ≤ k ≤ n. The expected value of the 2mth power of their sum is given by

E

(∑
k

Fk

)2m

= E
∑
j1 6=1
j2 6=1
...

jn 6=1∑
k jk=2m

∏
k

F jkk . (5.4)

This is because if we take a product where one of the Fk is taken to the power

1, then the expectation of this will be 0:

E

(
F1

n∏
k=2

F jkk

)
= EF1E

n∏
k=2

F jkk = 0.

We are going to show that the right hand side is less than

E

(∑
k

F 2
k

)m
.

Let Zn,m be the set of indices given on the right hand side of 5.4, that is to

say the family {(j1, . . . , jn) :
∑
k jk = 2m, jk 6= 1∀k}. For i ∈ {0, 1, . . . , bm3 c}

let Zn,m,i be the subset of Zn,m which has exactly 2i odd terms. We can show

that (
2i

i

)
#Zn,m,i ≤

(
m

i

)(
m− i
i

)
#Zn,m,0. (5.5)
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This is a counting argument; we can form a mapping

φ :

(
2i

i

)
× Zn,m,i → Zn,m,0

by considering the element of
(
2i
i

)
to be a subset of the odd terms of (j1, . . . , jn).

We increment all the odd terms in this subset by 1 and decrement all other odd

terms by 1. We can extend the mapping to be

φ∗
(

2i

i

)
× Zn,m,i →

(
m

i

)
×
(
m− i
i

)
× Zn,m,0

by setting the element of
(
m
i

)
to be the subset of the nonzero terms which

were increased and the element of
(
m−i
i

)
to be the subset of those remaining

terms which were decreased. (There are fewer than m nonzero terms.) This

is an injection since we can map (S, S′, (j1, . . . , jn)) back into
(
2i
i

)
× Zn,m,i by

reversing the increments and decrements, and considering S to be a subset of

S ∪ S′. It is not a surjection as there are strictly fewer than m nonzero terms,

and because if jk = 2 for k in the set to be decremented, the image under the

inverse map will not be in Zn,m,i.

Now this implies that

(
2i

i

) ∑
Zn,m,i

∏
k

F jkk ≤
(
m

i

)(
m− i
i

) ∑
Zn,m,0

∏
k

F jkk .

Here we used (5.5) as well as the fact that 2ab ≤ a2 + b2. The latter means

that when we replaced F jkk F jll by alternately F jk+1
k F jl−1l and F jk−1k F jl+1

l we

did not make the sum smaller.

So using the identity
(
m
2i

)(
2i
i

)
=
(
m
i

)(
m−i
i

)
,

∑
Zn,m

∏
k

F jkk ≤
bm3 c∑
i=0

(
m

2i

) ∑
Zn,m,0

∏
k

F jkk
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The right hand side is less than

2m
∑
Zn,m,0

∏
k

F jkk .

If we write Un,m for the sets of indices (i1, i2, . . . , in) where
∑n
k=1 ik = m, the

sum can also be expressed as

∑
Un,m

∏
k

F 2ik
k . (5.6)

The terms of this sum correspond to a (small) subset of the terms of

(∑
k

F 2
k

)m
=

∑
(a1,a2,...,am)
∈{1,...,n}m

∏
h

F 2
ah
. (5.7)

In fact, each term of (5.6) appears at least once and at most m! times in (5.7).

So since 2m < m!,

∑
Zn,m

∏
k

F jkk ≤ 2m
∑
Zn,m,0

∏
k

F jkk ≤ 2m

(∑
k

F 2
k

)m
.

Now, each Fk is bounded by 2M |IK | whereM is the bound on |f |. Therefore

(∑
k

F 2
k

)m
≤ 22mM2m

(∑
k

|Ik|2
)m

.

It remains to see that

∑
k

|Ik|2 ≤ |P|
∑
k

|Ik| = |P|

and we have

E

(∑
k

Fk

)2m

≤ 23mM2m|P|m

as required. �
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Now, choose an integer m > p−1
1− 2

p

. Since |f∗n| < |Pn|
−1
p , we have that

E

(∣∣∣∣∫ f∗n − ΣPnf
∗
n

∣∣∣∣2m
)
≤ c|Pn|

−2m
p |Pn|m = c|Pn|m(1− 2

p ).

Since (|Pn|) ∈ `p−1, and by the choice of m, this expectation has �nite sum over

n. As before then, this means that ΣPnf
∗
n converges completely and almost

surely to limn→∞
∫
f∗n =

∫
f .

To deal with the random Riemann sums of f∗∗n , we have a second lemma,

an standard result about random variables.

Lemma 5.2.7 Let p > 1 and suppose that Xk, 1 ≤ k ≤ n, are independent

random variables such that E|Xk|p < +∞ for all k. Denote
∑n
k=1Xk by S.

Then

E|S|p ≤ max

{
2p
∑
k

E|Xk|p, 2p
2

(∑
k

E|Xk|

)p}
.

This result is given in [26]. We omit the proof.

Now, we apply this lemma to the random variables X∗∗I,n, which are de�ned

analogously to XI,n as the summands of the random Riemann sum, this time

for the functions f∗∗n . They satisfy the conditions of the lemma, and we �nd

that

E |(ΣPnf∗∗n )
p| = E

∣∣∣∣∣∑
I

X∗∗I,n

∣∣∣∣∣
p

≤ cmax

(∑
I

E|X∗∗I,n|p,

(∑
I

E|X∗∗I,n|

)p)
,

where c is some constant. We wish to show that the left hand side is smaller

than c′ · |Pn|p−1 for some other constant c′. Obviously we can do this by �nding

a bound of this form for each of the terms of the maximum on the right hand

side.

Firstly we know that

∑
I

E(|X∗∗I,n|p) ≤ |Pn|p−1
∫
|f∗∗n |p,

which can be proved in the same way as (5.3). Since f∗∗n → 0 in Lp,
∫
|f∗∗n |p
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is bounded over all n, and so we can take c1 := c · max{|f∗∗n |p, n ∈ N} as the

appropriate constant.

Now consider (
∑
I E|X∗∗I,n|)p. We have that

∑
I E|X∗∗I,n| ≤

∫
|f∗∗n |. Either

|f∗∗n | = 0 or |f∗∗n | > |Pn|
−1
p , and so

∫
|f∗∗n | ≤ |Pn|

p−1
p

∫
|f∗∗n |p.

Therefore (∑
I

E|X∗∗n |

)p
≤ |Pn|p−1

(∫
|f∗∗n |p

)p
.

So we can take c2 := c · (max{
∫
|f∗∗n |p, n ∈ N})p. Then if c′ := max(c1, c2), we

have

E|(ΣPnf∗∗)p| ≤ c′|Pn|p−1.

This means that
∞∑
n=1

E|(ΣPnf∗∗)p| < +∞,

and as before, this proves that ΣPnf
∗∗
n → 0 almost surely as n→∞. �

We have a partial converse to this theorem. This depends on f being non-

negative, and on two further conditions, other than the conditions that f /∈ Lp

and (|Pn|) /∈ `p−1 for some p. The �rst of these is that we will only deal with

sequences of partitions for which the ratio between the lengths of the largest

and smallest intervals in each partition is bounded.

In fact if we seek a necessary and su�cient condition for f to be random

Riemann integrable with respect to (Pn)∞n=1, we have to be content with a

condition which bounds both the minimum and maximum size of intervals in

Pn. If we use the standard de�nition of the size of a partition, we can �nd

functions which are random Riemann integrable with respect to (Pn)n∈N, for

Pn of any size, by choosing Pn with one large interval, in a region where f is

well-behaved, and all other intervals of Pn much smaller.
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On the other hand, we can �nd a sequence (Pn)n∈N where the minimum

size of intervals in Pn is as small as we like, so that no non-constant f is

random Riemann integrable with respect to (Pn), by taking one interval which

is included in every Pn, on which the distribution of f(tI) will not converge.

The second condition relates the growth of f to the sequence of partition sizes

(|Pn|)n∈N. It tries to avoid that for all c > 0, the measure of {x : f(x) > c
|Pn|}

is small for most n. We can see both conditions in the following lemma.

Lemma 5.2.8 Suppose that p > 1, that d > 0, and that f is a nonnegative

function in L1. Further suppose that (δn)∞n=1 is a sequence of positive numbers

tending to 0 and for some A > 0, B > 1, C > 0, the set J of n ∈ N for which

λ ({x : f(x) > Zn}) > CZ−pn for some Zn ∈
(
A

δn
,
AB

δn

)
(5.8)

is such that
∑
n∈J δ

p−1
n = +∞. Let (Pn) be a sequence of partitions with δn <

|I| < Mδn for all I ∈ Pn and all n ∈ N, for some M > 0. Then there exists

some ε > 0 with |ΣPnf −
∫
f | > ε for in�nitely many n, almost surely.

To prove this we need a simple lemma about probabilities.

Lemma 5.2.9 Suppose that {Ak : 1 ≤ k ≤ n} is a �nite collection of indepen-

dent events, such that
n∑
k=1

P(Ak) ≤ 1.

Then the probability of
⋃n
k=1An is at least half of

∑n
k=1 P(Ak).

Proof (Lemma 5.2.9). De�ne S to be the sum of the probabilities of the events

Ak,

S :=

n∑
k=1

P(Ak)

and further de�ne

ak :=
P(Ak)

S
, ∀1 ≤ k ≤ n.
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Using independence, we obtain

P

(
n⋂
k=1

ACk

)
=

n∏
k=1

(1− P(Ak))

=

n∏
k=1

(1− akS).

Since
∑
k ak = 1, we use the well known fact that if we �x the sum of several

positive variables, their product is maximised when they are all equal.

n∏
k=1

(1− akS) ≤ (1− S

n
)n

This last expression is monotonically increasing in n for n ≥ S, and is bounded

above by its limit e−S , which is less than 1− S
2 for S ∈ [0, 1]. So

P

(
n⋂
k=1

ACk

)
< 1− S

2

and

P

(
n⋃
k=1

Ak

)
>
S

2

as required. �

Proof (Lemma 5.2.8). Assume without loss of generality that (5.8) holds for

all n ∈ N. Suppose that A, B, C and M are as in the statement of the lemma,

and (Zn)n∈N is the sequence such that Zn ∈
(
A
δn
, ABδn

)
,

λ ({x : f(x) > Zn}) > CZ−pn , ∀n ∈ N. (5.9)

Also without loss of generality assume that
∫
f < A

4 , by subtracting a Rie-

mann integrable function from f if necessary. Trivially, the Riemann integrable

function will be random Riemann integrable so we can neglect it. Since the

Riemann integrable function is bounded, say by N , assume that 1
δn

> N
2 for
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all n. We can see that (5.9) still holds with C
2 in place of C since we will have

C
2 Z
−p
n < C(Z−pn −N). By changing the values of C we keep the statement as

given.

Now choose some ε ∈ (4
∫
f,A). Fix n ∈ N. For each I ∈ Pn, let KI be the

set {x ∈ I : |I|f(x) > A}. We know that

KI ⊇ {x ∈ I : δnf(x) > A} ⊇ {x : f(x) > Zn}

and so

λ

( ⋃
I∈Pn

KI

)
≥ λ {x ∈ I : f(x) > Zn} ≥ CZ−pn .

Since for each I such that KI 6= ∅

P (tI,n ∈ KI) =
λ(KI)

|I|
≥ λ(KI)

Mδn

where tI,n is the random tag point in the interval I ∈ Pn, we have

∑
I∈Pn

P (tI ∈ KI) ≥
∑
λ(KI)

Mδn
≥ CZ−pn

Mδn
≥ Cδpn
MδnApBp

= C ′δp−1

where C ′ only depends on A, B, C and M .

Let q := min(1, C ′δp−1n ). We can choose a set of intervals J ⊂ Pn such that

q/2 ≤
∑
I∈J P(tI ∈ KI) ≤ 1. Then, using Lemma 5.2.9, we know that

P(∃I ∈ J : tI ∈ KI) >
q

4
= min( 1

4 , c
′′δp−1n ). (5.10)

Now de�ne

Xn :=
∑
I∈J

f(tI)|I| and Yn := ΣPnf −Xn =
∑
I 6∈J

f(tI)|I|.

From (5.10), and using the fact that f and therefore Xn is nonnegative, we
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know that

P(Xn > ε) ≥ P(∃I ∈ J : |I|f(tI) > ε)

≥ P(∃I ∈ J : tI ∈ KI)

≥ min( 1
4 , c
′′δp−1n ).

As for Yn, ∣∣∣Yn − ∫ f
∣∣∣ ≤ |Yn|+ ∣∣∣∫ f

∣∣∣.
So,

E
∣∣∣Yn − ∫ f

∣∣∣ ≤ EYn + E
(∫

f
)

≤
∑
I 6∈J

∫
I

f +

∫
f

≤ 2

∫
f .

Using Chebyshev's inequality, this tells us that

P

(∣∣∣Yn − ∫ f
∣∣∣ > ε

2

)
≤

2
∫
f

ε/2
=

4
∫
f

ε
=: e < 1,

where e does not depend on n, by choice of ε.

Now,

P

(∣∣∣ΣPnf − ∫ f
∣∣∣ > ε

2

)
≥ P

(
Xn + Yn >

∫
f +

ε

2

)
≥ P

(
Xn > ε ∧ Yn >

∫
f − ε

2

)
.

The two events in the �nal line are independent, since Xn and Yn depend only

on the points from disjoint subsets of Pn (and the subsets in question are chosen
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deterministically). So

P

(∣∣∣ΣPnf − ∫ f
∣∣∣ ≥ ε

2

)
≥ P(Xn > ε)P

(
Yn >

∫
f − ε

2

)
≥ min( 1−e

4 , c′′′δp−1n ).

Since
∑
n∈N δ

p−1
n =∞,

∑
n∈N

P

(∣∣∣ΣPnf − ∫ f
∣∣∣ > ε

2

)
=∞

also, and therefore
∣∣ΣPnf − ∫ f ∣∣ > ε/2 holds for in�nitely many values of n,

almost surely. �

We draw some consequences from this lemma, �rst giving a de�nition which

expresses one of the restrictions on the partition sequence.

De�nition 5.2.10 We de�ne a globally regular sequence of partitions, in imper-

fect analogy with Pfe�er's regular partition (see [36]), as a sequence of partitions

(Pn)n∈N such that
maxI∈Pn |I|
minI∈Pn |I|

< M

holds for some positive number M , and for every n.

Proposition 5.2.11 For every nonnegative function which is not in Lp−d,

where p > 1 and d > 0, there is some globally regular sequence of partitions

(Pn)n∈N with sequence of sizes in `p−1 so that ΣPnf does not converge almost

surely.

Proof. This is true because if
∫
fp−d = +∞, then there is a constant C and a

sequence Mn →∞ such that

λ {x : f(x) > Mn} > CM
−(p− δ2 )
n

for all n ∈ N.
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We can de�ne (δn)n∈N to be a sequence consisting only of elements from

{ 1
Mn

: n ∈ N}. We take these in order, and repeat each enough times so that∑
δp−1n < +∞ and

∑
δp−1−dn = +∞. Then f and (δn) will satisfy the conditions

of Lemma 5.2.8.

Proposition 5.2.12 If p > 1 and f is such that

{x : f(x) > z} > cz
1
p

for all large enough z, and for some c > 0, and (Pn)n∈N is any globally regular

sequence of partitions with
∑
n∈N |Pn|p−1 = +∞, then ΣPnf does not converge

almost surely.

Note that f is a function which just fails to be in Lp but which may be in weak

Lp. (See De�nition 2.1.1.)

Proof. This is obvious since for any value of δn we know that (5.8) holds. �

We summarize the previous results, all corollaries of Lemma 5.2.8, by say-

ing that if we assume nonnegativity of functions, global regularity of partition

sequences, and the correct growth orders of both, then every function has a

sequence of partitions for which its random Riemann sums do not converge

strongly, and there exist functions which do not have convergence for any se-

quences of partitions. We should note that no attempt has been made to show

either convergence or lack of convergence in any cases where the supremum

of those p for which f ∈ Lp is exactly equal to the in�mum of p for which

(|Pn|) ∈ `p−1, but that supremum and in�mum are not both attained, either

here or to the best of our knowledge anywhere else.

We arrived at Lemma 5.2.8 in attempting to prove the result we conjectured:

that for any function in Lp−d and any globally regular sequence of partitions

with sizes not in `p, strong convergence does not take place. In fact this is

not true, as the following counterexample will show. Therefore, although the

condition (5.8) may seem unnatural, it cannot be eliminated altogether.
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Proposition 5.2.13 For each p > 1 and each d ∈ (0, p − 1) there exists some

function which is in L1 but not in Lp−d, and a sequence (δn)n∈N 6∈ `p−1, such

that for any sequence of partitions (Pn)n∈N where δn
M < |I| < Mδn for some

M > 1 and all I ∈ Pn, n ∈ N, we have that f is strongly random Riemann

integrable with respect to (Pn).

Let p and d be given. Choose a natural number k > 2p. For all n ∈ N, de�ne

fn :=


2
kn

2 on (2−ak
(n+1)

, 2−ak
n

]

0 elsewhere
,

where a := p−d
2 , and de�ne f :=

∑
n∈N fn. It is easy to see that f ∈ L1 since

∫
fn < 2

kn

2 2−
(p−d)kn

2 = b(k
n)

where b = 2
1−(p−d)

2 < 1, and that f 6∈ Lp−d because

∫
fp−d =

∑
n∈N

∫
fp−dn >

∑
n∈N

1

2
2−ak

n

2
p−d
2 kn =

∑
n∈N

1

2

since the fn have disjoint supports.

Now de�ne am := 2−k
m

and choose (δn)n∈N to be the sequence consisting of

am repeated Qm times for each m, taken in order, where Qm := 2(p−1)k
m

. This

means that

Qma
p−1
m = 2−(p−1)k

m

2(p−1)k
m

= 1

and so (δn) 6∈ `p−1. Here we take a slight shortcut by de�ning Qm to not

necessarily be an integer. In practise we should take the nearest integer to Qm

as de�ned for the number of repetitions of a term am in the sequence. In fact

it takes very little e�ort to check that this makes a di�erence which becomes

vanishingly small very quickly in all subsequent calculations, and never a�ects

convergence.

Now suppose that M > 1 is given, and that (Pn) is a sequence of partitions
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with the sizes of all intervals satisfying the condition in the statement.

We will handle separately the leftmost interval of each partition Pn and all

other intervals. For each n we call this leftmost interval Jn and its random tag

point tn. We refer to the two parts of the random Riemann sum by Xn :=

|Jn|f(tn) for the leftmost interval and Yn := ΣPnf −Xn for the rest.

Fix some m ∈ N, assuming that it is large enough for both 2−ak
m+1

<

1
M 2−k

m

and 1
22−ak

m−1

> M2−k
m

to hold, and choose n ∈ N with δn = am. The

�rst inequality means that [0, 2−ak
m+1

] ⊆ Jn since the length of Jn is at least

1
M 2−k

m

. The second means that since 2−ak
m−1 − 2−ak

m

> 1
22−ak

m−1

> |I| for

all I ∈ Pn, each interval of Pn except Jn contains at most one point from the

set {2−akj : j ∈ N}.

We deal with the intervals to the right of Jn �rst. The last observation

implies that on each of these intervals f is either constant or piecewise constant

with a single jump discontinuity. In the former case f(tI)|I| =
∫
I
f with cer-

tainty, in the latter case |f(tI)− 1
|I|
∫
I
f | is bounded by the size of the jump. So

the total discrepancy between Yn and the integral of f on I\Jn is at most the

maximal interval length, that is to say M2−k
m

, multiplied by the sum of the

sizes of the jumps. Since f is monotone decreasing and f(1) = 0, that latter is

the value of f at the rightmost point of Jn, or 2
km−1

2 .

We have shown that with certainty the di�erence between the random Rie-

mann sum and the Lebesgue integral on the complement of Jn is bounded by

M2
km−1

2 −km which of course tends to 0 for large m or large n.

Now we would like to show that Xn −
∫
Jn
f

a.s.−−→ 0. Since f is integrable,∫
Jn
f → 0 as n→∞. So it will be enough to show that Xn

a.s.−−→ 0. Fix some ε >

0, and consider the probability P(|Xn| > ε) = P(Xn > ε). For Xn = f(tn)|Jn|

to be greater than ε, we would need f(tn) to be at least ε
|Jn| >

1
M ε2k

m

. For

large m this will be much bigger than 2
km

2 and so in fact f will have to be at

least 2
km+1

2 . The piece of I on which this holds has length 2−ak
(m+1)

, therefore
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the probability that f(tn) > ε
|Jn| is

2−ak
(m+1)

|Jn|
< M2−ak

(m+1)

2k
m

.

The sum of this probability over all values of n for which δn = am is

QmM2−ak
(m+1)

2k
m

= M2(p−1)k
m

2−ak
(m+1)

2k
m

= M2k
m(p−1−( p−d2 )k+1)

= M2k
m(p−( p−d2 )k).

Since k > 2p, the exponent is less than kmp(1−p+d) < 0, and so the probability

that Xn > ε is summable over all n ∈ N. As we have seen before, this is enough

to prove that Xn, and therefore also ΣPnf −
∫
f , converge to 0 almost surely.�

Remark The results above extend those results of Kahane in [29] and Pruss in

[37]. They considered only the sequence of partitions

Pn :=

{
(
j

n
,
j + 1

n
) : 0 ≤ j < n

}

and proved that all functions in L2 are strongly random Riemann integrable

with respect to this sequence, and all functions which are not in L2 are not.

Theorem 5.2.3 implies a weaker version of the �rst part of this. In fact, it

tells us that all functions in L2+ε are strongly random Riemann integrable with

respect to this sequence. Proposition 5.2.13 shows that we cannot �nd the same

generalization of the other direction. However, the results of this section may

lead to a di�erent generalization of the necessary condition for convergence.

5.3 The weak random Riemann integral

The main result of this section establishes that all the functions in two classes

of not Lebesgue integrable functions are not weakly random Riemann integrable.
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The �rst lemma simply allows us to �nd a collection of intervals contained in I

on which the random Riemann sums do not converge weakly, in order to prove

that it is not weakly random Riemann integrable on the whole of I. In other

words it is a Henstock lemma for the weak random Riemann integral, proving

that integrability is inherited by subintervals.

Lemma 5.3.1 If f is a function and A is a �nite union of intervals in I, then

a partition P of A such that for all M ∈ R,

P
(∣∣ΣPf −M)

∣∣ > ε
)
> ε,

can be extended to a partition P ′ of I with |P ′| ≤ |P| so that

P(|ΣP′(f)−M | > ε) > ε

also holds for any M ∈ R.

Proof. Let P be such a partition of A. We extend the partition arbitrarily to

a partition P ′ of I, of size at most |P|. If for some M

P(|ΣP′(f)−M | > ε) ≤ ε

then since the distributions of ΣPf and ΣP′\Pf are independent, we would have

P
(∣∣ΣPf −M − ΣP′\Pf

∣∣ > ε|B (P ′\P)
)
≤ ε

where B(P ′\P) is the σ-algebra generated by ΣP′\P(f |I\A).

This means that if x is an element of the measure space formed by projecting

ΩP′ onto B(P ′\P), then

P(|ΣP(f |A)−M − c| > ε|x) < ε
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and therefore by independence

P(|ΣP(f |A)−M − c| > ε) < ε

for some c which depends on x but not onM . Since c does not depend onM , by

�xing x and taking arbitrary M , M − c is arbitrary. This is a contradiction. �

Corollary If f is weakly random Riemann integrable on I then it is weakly

random Riemann integrable on any subinterval of I. �

Proof. Lemma 5.3.1 shows that if f is not weakly random Riemann integrable

on A then it is not weakly random Riemann integrable on I. �

Here we give a lemma on the �rst set of functions which we will prove not

to be weakly random Riemann integrable, those which are measurable but not

in L1−ε for some positive ε. For technical reasons we exclude here those which

have large growth concentrated close to some point. They are also not weakly

random Riemann integrable, but for them this will be proved using a di�erent

lemma.

De�nition 5.3.3 A function f has the left endpoint weak L1 condition on an

interval (a, b), if f restricted to (a, a + ε) is in weak L1 for some ε > 0. The

right endpoint weak L1 condition is symmetric. We say that f has the endpoint

weak L1 condition on (a, b) if it has both the right and the left conditions.

Lemma 5.3.4 Suppose that A0 is an interval of I, on which
∫
A0
|f |1−ε = +∞

for some positive ε, and n is some positive integer. Suppose further that f has

the endpoint weak L1 condition on every subinterval of A0.
(2) Then we can �nd

a positive constant M , and two disjoint subsets of A0: a �nite union of closed

(2)The examiner, Prof. M. Laczkovich, pointed out that this condition would imply that f
is weak L1 on A0. So in fact this lemma and the following one are redundant, as is case (i) in
Theorem 5.3.8. Lemmas 5.3.6 and 5.3.7, and case (ii) of the Theorem are su�cient to prove
that any function which is not weak L1, is not weakly random Riemann integrable. We have
left the obsolete material as is since this is the version which was approved by the examiners.
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intervals S :=
⋃k
i=1 Ii, each of length l > 1

M , with

λ({x ∈ S : |f(x)| > M}) > l

5n

and

λ({x ∈ S : |f(x)| > 3M

4
}) < 2l

n
,

and an open interval A1, for which
∫
A1
|f |1−ε = +∞.

Lemma 5.3.5 If A ⊆ I is a measurable set and f is Lebesgue measurable on A

with
∫
A
|f |1−ε = +∞ for some positive ε, then given any two positive numbers

M0 and r, we can �nd M > M0 such that

Mλ({x ∈ A : |f(x)| > M}) > r (5.11)

and

λ

({
x ∈ A : |f(x)| > 3M

4

})
< 2λ({x ∈ A : |f(x)| > M}). (5.12)

Proof (Lemma 5.3.5). To show this, de�ne

L(x) := λ({θ ∈ A : |f(θ)|1−ε/2 > x}).

For any number a > 0 and for any y, we can �nd x > y with

xL(x) > a and L(x) > 1
2L(x2 ). (5.13)

Indeed, suppose that this were not the case; choose some a > 0 and some y such

that for all x > y, either xL(x) ≤ a or L(x) ≤ 1
2L(x2 ).

We claim that 2kyL(2ky) ≤ max{a, yL(y)} for all k ≥ 0. This can be proved

by induction, since if it does not hold for some k, then

2kyL(2ky) > max{a, yL(y)} ≥ a,
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which implies 2kyL(2ky) ≤ 2k−1yL(2k−1y), and therefore it does not hold for

k − 1 either. However it is trivially true for k = 0.

Since L is decreasing, we thus have

∀z ≥ y : zL(z) ≤ 2 max{a, yL(y)},

and so L(x) ∈ O(1/x) as n → ∞. This would mean that |f |1−ε/2 is in Lp for

all p < 1, which contradicts the fact that |f |1−ε is not in L1.

Now set y =: M
1− ε2
0 and a large enough that ay

ε
2−ε > r. Take x > y with

xL(x) > a and L(x) > 1
2L(x2 ). This means that

xλ({θ ∈ A : |f(θ)|1−ε/2 > x}) > a

x
1

1−ε/2 · x−
ε

2−ελ
({
θ ∈ A : |f(θ)| > x

1
1−ε/2

})
> a

x
1

1−ε/2λ
({
θ ∈ A : |f(θ)| > x

1
1−ε/2

})
> ax

ε
2−ε > r.

Here we used that ε < 2, in order that x
ε

2−ε should be greater than y
ε

2−ε ,

without loss of generality.

If we set M := x1/(1−ε/2), then M > M0 and M satis�es (5.11). To check

that M satis�es (5.12), we use the fact that L(x) > 1
2L(x2 ), and assuming

without loss of generality that ε < 1/2,

2ε/(2−ε) < 21/3 <
3

2
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which means that

λ

({
θ ∈ A : |f(θ)| > 3M

4

})
≤ λ

({
θ ∈ A : |f(θ)| > M

2
· 2ε/(2−ε)

})
= λ

({
θ ∈ A : |f(θ)| > x

1
1−ε/2

2
· 2ε/(2−ε)

})

= λ

({
θ ∈ A : |f(θ)| >

(x
2

) 1
1−ε/2

})
= L

(x
2

)
≤ 2L(x)

= 2λ({θ ∈ A : |f(θ)| > M}). �

Proof (Lemma 5.3.4). Write the interval A0 as (a, b). Since f has the endpoint

weak L1 condition on A0, there must exist some δ > 0 such that

∫ b−δ

a+δ

|f |1−ε = +∞.

De�ne A := (a+ δ, b− δ).

Choose M ′ so big that

λ({x ∈ A : |f(x)| > M ′}) < δ

2n
.

Using Lemma 5.3.5, we can �nd M1 > M ′ such that

M1λ({x ∈ A : |f(x)| > M1}) > 1 (5.14)

and

λ({x ∈ A : |f(x)| > 3M1

4
}) < 2λ({x ∈ A : |f(x)| > M1}). (5.15)

Write the set {x ∈ A : |f(x)| > M1} =: F1.
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Suppose that either

λ({x ∈ (a+ δ − 2n|F1|, a+ δ) : |f(x)| > 3M1

4
}) (5.16)

or

λ({x ∈ (b− δ, b− δ + 2n|F1|) : |f(x)| > 3M1

4
}) (5.17)

is bigger than |F1| (which implies it is bigger than 1
M1

). Then using Lemma

5.3.5 again, �nd M2 > 2M1 such that (5.14) and (5.15) hold for M2.

We continue this process until we �nd an Mj for which both (5.14) and

(5.15) hold, and for which (5.16) and (5.17) are smaller than |Fj |. We must

eventually �nd such an Mj since otherwise either (5.16) or (5.17) is bigger than

1
Mk

for arbitrarily large values of k, which would mean that the endpoint weak

L1 condition fails for one of (a, a+δ) or (b−δ, b). So setM := Mj and FM := Fj .

Choose some point c such that

λ(FM ∩ (−∞, c)) = λ(FM ∩ (c,∞)).

Call A ∩ (−∞, c) =: AL and A ∩ [c,∞) =: AR. The union of AL and AR is A,

and so at least one of

∫
AL

|f |1−ε = +∞ or
∫
AR

|f |1−ε = +∞.

So choose A1 to be one of AL or AR, on which |f |1−ε is not integrable, and

call the other one A∗. Suppose without loss of generality that A∗ = AR. Let

l := 2n|FM |, noting that l > 2n
M > 1

M , and de�ne the set S as the collection

of intervals {(c + jl, c + (j + 1)l] : 0 ≤ j ≤ k}, where k ∈ N is chosen so that

b− δ ∈ (c+ kl, c+ (k + 1)l].
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Since

|FM | = λ({x ∈ A : |f(x)| > M})

≤ λ({x ∈ A : |f(x)| > M ′})

≤ δ

2n
,

S is contained in A0\A1, because l = 2n|FM | < δ by choice of M ′.

It remains to check two things. Firstly that

λ({x ∈ S : |f(x)| > M}) =
l

4n
≥ l

5n
,

which is true by the choice of l, and because S contains half of FM by measure.

Secondly that

λ({x ∈ S : |f(x)| > 3M

4
}) < 2l

n

which follows from the facts that

λ({x ∈ A : |f(x)| > 3M

4
}) ≤ 2|FM | =

l

n

by (5.15) and the de�nition of l, and that

λ({x ∈ S ∩ (b− δ, b) : |f(x)| > 3M

4
}) ≤ |FM | =

l

2n
,

which follows from (5.16), (5.17) and the choice of M . �

This was the �rst condition which implies nonconvergence of the weak ran-

dom Riemann integral. Now we deal with the other class of functions; those

which do not have the endpoint weak L1 condition.

Lemma 5.3.6 Suppose that f does not have the left endpoint weak L1 condition

on I. Let ε0 be a point in (0, 1], and n some positive integer. We can �nd

ε1 ∈ (0, ε0), a positive number M , and S ⊆ [ε1, ε0), a disjoint union of intervals
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{Ii : 1 ≤ i ≤ k}, each of length l > 1
M , with

λ({x ∈ S : |f(x)| > M}) > l

5n
(5.18)

and

λ({x ∈ S : |f(x)| > 3M

4
}) < 2l

n
. (5.19)

Note that the conclusion of this lemma is the same as that of Lemma 5.3.4,

with interval A0 replaced by the interval [0, ε0) and the interval A1 replaced by

[0, ε1), on which the failure of the left endpoint weak L1 condition is preserved

just as the condition �f not in L1−ε� is preserved in Lemma 5.3.4. As with

Lemma 5.3.4, we start the proof by proving a lemma purely about the growth

of the function f , analogous to Lemma 5.3.5 and with a similar proof.

Lemma 5.3.7 Suppose that f is not in weak L1. Then for all y > 0 we can

�nd x ≥ y with

xλ({z : |f(z)| > x}) > 1

and

λ({z : |f(z)| > x}) > 1

2
λ({z : |f(z)| > x

2
}).

Proof. Write L(x) := λ({z : |f(z)| > x}). Suppose that the lemma is not true,

and let y be such that for all x > y either

xL(x) < 1, or L(x) ≤ 1

2
L(
x

2
). (5.20)

By induction,

2kyL(2ky) ≤ max{1, yL(y)}

for all k ≥ 0. The statement is trivially true for k = 0. Suppose it does not

hold for k, then 2kL(2ky) > 1 and therefore

2kyL(2ky) ≤ 2k−1yL(2k−1y)



CHAPTER 5. RANDOM RIEMANN INTEGRALS 93

by (5.20) and so it does not hold for k − 1 either. So in fact it holds for all k.

Since L(x) is decreasing, we have

xL(x) ≤ 2 max{1, yL(y)} for all x ≥ y.

This contradicts f not being in weak L1. �

Proof (Lemma 5.3.6). Choose M0 large enough that

λ({z < ε0 : |f(z)| > M0}) <
ε0

20n
. (5.21)

Since f restricted to [0, ε0) is not in weak L1, we can use Lemma 5.3.7 to �nd

M > M0 so that

Mλ({z < ε0 : |f(z)| > M}) > 1 (5.22)

and

λ({z < ε0 : |f(z)| > M}) > 1

2
λ({z < ε0 : |f(z)| > M

2
}) (5.23)

Choose 0 < ε1 <
ε0
5 so that both these inequalities still hold with �ε1 < z <

ε0� in place of �z < ε0�.

We de�ne

l0 := 4nλ({ε1 < z < ε0 : |f(z)| > M}).

Since by (5.21), l0 < ε0
5 , 4l0 < ε0 − ε1, by the choice of ε1. De�ne

l :=
ε0 − ε1⌊
ε0−ε1
l0

⌋
and observe that whereas l0 divides a possibly fractional number of times into

ε0 − ε1, l has an integer multiple, at least 4, equal to ε0 − ε1. So we let S be

the partition of [ε1, ε0) into intervals all of length l.

By the choice of l0, and from (5.22), we have that l0 > 4n
M > 1

M and so

l > 1
M also. Since l must be less than 5l0

4 and again by the de�nition of l0, we
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have (5.18). It remains to check (5.19), this follows from (5.23)

λ({x ∈ S : |f(x)| > 3M

4
}) < λ({x ∈ S : |f(x)| > M

2
})

< 2λ({x ∈ S : |f(x)| > M})

=
l0
2n

<
2l

n

since l is clearly at least as large as l0. �

Theorem 5.3.8 If f is such that either

(i) f is not in L1−ε for some ε > 0, or

(ii) f does not have the endpoint weak L1 condition on some subinterval of I,

then f is not weakly random Riemann integrable.(3)

Again we will use a basic lemma on �nite collections of random events.

Lemma 5.3.9 Suppose that 0 < a < b < 1 and that (Ek)nk=1 is a �nite collec-

tion of independent random events, with a ≤
∑n
k=1 P(EK) ≤ b. The probability

of the event �Ek holds for exactly one value of k between 1 and n� is at least

a(1− b).

Proof (Lemma 5.3.9). The probability of the event �exactly one of Ek� can be

expressed as:
n∑
k=1

P(Ek ∩
⋂
j 6=k

ECj ).

(3)Case (ii) implies (i) � this leads to a simpler proof of a slightly stronger theorem. See the
footnote attached to the statement of Lemma 5.3.4.
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We obtain

n∑
k=1

P(Ek)
∏
j 6=k

(1− P(Ej)) ≥
n∑
k=1

P(Ek)(1−
∑
j 6=k

P(Ej))

≥
n∑
k=1

P(Ek)

1−
∑
j

P(Ej)


≥ a(1− b)

where the �rst step is given by the independence of the Ek, the second is a basic

inequality, and the rest is obvious. �

Proof (Theorem 5.3.8). Suppose that both (i) and (ii) hold for f . Then we will

prove the result for f using (ii). So we can assume that either (ii) holds, or (i)

holds and (ii) does not hold for any subinterval. We refer to the second case as

case (i').

If case (ii) holds, then we will show that f is not weakly random Riemann

integrable on the subinterval in question, which proves that it is not weakly

random Riemann integrable on I by Lemma 5.3.1. So assume without loss of

generality that f does not have the left endpoint weak L1 condition on I.

In the �rst stage of the proof, we will construct a `pseudopartition'(4), an

in�nite collection of non-overlapping intervals contained in I. We do this by

induction.

Let E0 be the interval [0, 1). At the kth stage, we apply Lemma 5.3.4 or

Lemma 5.3.6 in case (i') or case (ii) respectively, setting the interval Ek to be

either A0 or [0, ε0), and using n = k.

We add the intervals of S given by the relevant lemma to our pseudopartition,

and let Ek+1 be the interval A1 in case (i') or [0, ε1) in case (ii). We call the
(4)The term pseudopartition has been used in [5] and [12] to refer to a collection of in�nitely

many non-overlapping intervals which cover I, where only �nitely many intervals are to the
right of any non-zero point. The purpose of a pseudopartition is that, given any desired par-
tition size, we can take �nitely many intervals of less than that size from the pseudopartition,
and use them to form a partition. We extend this notation to refer to any in�nite collection
of intervals which partition I, and from which we intend to form partitions, each containing
some �nite subset.
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number M from the lemma in question, Mk.

This construction will yield a collection of disjoint intervals {Jn,j : n ∈ N, 1 ≤

j ≤ rn}, where Jn,j is the jth interval from those added at the nth stage, and

rn is the number of intervals added at that stage; and a sequence of positive

numbers (Mk)∞k=1. From this point on we no longer need to distinguish between

the cases (i') and (ii).

De�ne mn := |Jn,j |, which does not depend on j. We know that mn >
1
Mn

for every n, and that

λ({x ∈ Sn : |f(x)| > Mn}) >
mn

5n

and

λ({x ∈ Sn : |f(x)| > 3Mn

4
}) < 2mn

n
,

where Sn :=
⋃rn
j=1 Jn,j .

This means that if tn,j is chosen uniformly from Jn,j then

rn∑
j=1

P(|f(tn,j)| > Mn) >
1

5n

and
rn∑
j=1

P (|f(tn,j) | <
3Mn

4
) > 1− 2

n
.

We also observe that Mn|Jn,j | > 1.

Let δ > 0 be given and choose N > 904, big enough that mn < δ for all

n > N . This must be possible since
⋃
n

⋃
j Jn,j is a disjoint union of intervals

whose measure is at most 1.

Now choose m > N so that

1

904
≤

m∑
n=N

∑
j

λ({x ∈ Jn,j : |f(x)| > Mn})
λ(Jn,j)

<
3

904
.

Since the inner sum of the middle expression is between 1
5n and 2

n ≤
2

904
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this is always possible. Let the partition P of [0, 1] consist of the intervals⋃m
n=N

⋃rn
j=1 Jn,j and any other intervals, each of length at most δ, whose non-

overlapping union is the rest of I. P has size at most δ.

We can write the random Riemann sum of P as

ΣP(f) =

m∑
n=N

rn∑
j=1

f(tn,j)mn +

q∑
k=1

f(t∗k)|J∗k |

where tn,j are distributed uniformly on Jn,j , and t∗k on J∗k , the remaining inter-

vals of P.

In the following an event always refers to a measurable subset of the proba-

bility space on which the random Riemann sum is distributed. We estimate the

probability of the event

{∃!q, l, N ≤ q ≤ m, 1 ≤ l ≤ rq such that |f(tq,l)| > Mq}.

If we rename the events {|f(tn,j)| > Mn}, for N ≤ n ≤ m and 1 ≤ j ≤ rn

as {Bk, 1 ≤ k ≤ s}, where k = j +
∑n−1
i=N ri and s :=

∑m
i=N ri, then we can

describe this event as

P(Bk for exactly one k)

which by Lemma 5.3.9 is at least 901
9042 since by construction

∑s
k=1 P(Bk) is

between 1
904 and 3

904 .

Now also rename the events {|f(tn,j)| < 3M
4 }, N ≤ n ≤ m, 1 ≤ j ≤

rn, to be called Ck for 1 ≤ k ≤ s, where k and s are as before. The event

{not Ck for at least 2 values of k} has probability at most

s∑
k=1

s∑
k′=1
k′ 6=k

(1− P(Ck))(1− P(Ck′)) ≤

[
s∑

k=1

(1− P(Ck))

]2

≤
(

30

904

)2

=
900

9042
,
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since

1− P(Ck) = P(|f(tn,j)| >
3Mn

4
)

≤ 10P(|f(tn,j)| > Mn)

= 10P(Bk)

and
∑s
k=1 P(Bk) ≤ 3

904 . So P({Bk for exactly one k, and Ck for all other k}),

being no less than the di�erence between the probabilities of these two events,

is at least 1
9042 .

We have established that with probability greater than some positive con-

stant, namely 1
87216 , |f(tn,j)| will be greater than Mn for exactly one value of n

and of j, and smaller than | 3Mn

4 | for all other pairs of values.

For each 1 ≤ k ≤ s, we divide the set
(
− 3Mn

4 , 3Mn

4

]
, where n is such that∑n−1

i=N ri < k ≤
∑n
i=N ri, into intervals of equal length

Ek,j :=

(
−3Mn

4
+

3(j − 1)Mn

2zk
,−3Mn

4
+

3jMn

2zk

]
,

for 1 ≤ j ≤ zk. Here zk ∈ N is chosen large enough that 3Mn

2zk
< 1

8sMn
.

This allows us to de�neDα1,α2,...,αs :=
⋂s
k=1{f(tk) ∈ Ek,αk} for 1 ≤ αk ≤ zk

(where of course tk = tn,j if k =
∑n−1
i=1 ri + j, 1 ≤ j ≤ rn). Then we have

z1⊔
k1=1

z2⊔
k2=1

· · ·
zs⊔
ks=1

Dk1,...,ks =

s⋂
k=1

Ck =: D.

Here
⊔

denotes a disjoint union. We also de�ne

F kα1,...,αk−1,αk+1,...,αs
:= Bk ∩

s⋂
i=1
i 6=k

{f(ti) ⊂ Ei,αi}



CHAPTER 5. RANDOM RIEMANN INTEGRALS 99

for which

F k := {Bk and Ci for i 6= k}

=

z1⊔
α1=1

· · ·
zk−1⊔

αk−1=1

zk+1⊔
αk+1=1

· · ·
zs⊔

αs=1

F kα1,...,αk−1,αk+1,...,αs

holds.

Further de�ne for 1 ≤ j ≤ zk

Tk,j := P(f(tk) ∈ Ek,j |Ck) =
P(f(tk) ∈ Ek,j)

P(Ck)

noting that
∑zk
j=1 Tk,j = 1. We will de�ne a measure-preserving mapping φ :⋃s

k=1 F
k → D as follows. We divide each F kα1,...,αk−1,αk+1,...,αs

, where 1 ≤ k ≤ s

and 1 ≤ αi ≤ zi for all 1 ≤ i ≤ s, i 6= k, into disjoint sets F̃ kα1,...,αk−1,αk,αk+1,...,αs

for 1 ≤ αk ≤ zk. We do this arbitrarily, with the condition that the division is

made in the ratio Tk,1 : Tk,s : . . . : Tk,zk , i.e.

P(F̃ kα1,...,αk−1,αk,αk+1,...,αs
) = Tk,j · P(F kα1,...,αk−1,αk+1,...,αs

).

Now we de�ne φ �F̃kα1,...,αs
to be an arbitrary measure preserving bijection

onto some subset of Dα1,...,αs which is disjoint from the images of F̃ kα1,...,αs for

all other k. We can do this provided that

s∑
k=1

P(F̃ kα1,...,αs) ≤ P(Dα1,...,αs) (5.24)

But

P(F̃ kα1,...,αk−1,j,αk+1,...,αs
) =

P(f(x) ∈ Ek,j)
P(Ck)

P(F kα1,...,αk−1,αk+1,...,αs
)

=
P(f(x) ∈ Ek,j)

P(Ck)
P(Bk)

s∏
i=1
i 6=k

P(f(ti) ∈ Ei,αi)

=
P(Bk)

P(Ck)
P(Dα1,...,αs)
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and this implies (5.24) since

s∑
k=1

P(Bk)

P(Ck)
≤
∑s
k=1 P (Bk)

1− 30
904

≤ 3

874
≤ 1.

So we can construct φ as desired.

Note that if x ∈ F̃ kα1,...,αs , where k = j +
∑n−1
i=N ri, 1 ≤ j ≤ rn then

|f(tn,j)| · |Jn,j | �{x}> Mn · |Jn,j |

where ��{x}� means that the random variable is evaluated for the point x of the

probability space; whereas

|f(tn,j)| · |Jn,j | �{φ(x)}<
3Mn

4
· |Jn,j |.

Since Mn|Jn,j | > 1, we have that

∣∣(f(tn,j)|Jn,j | �{x}
)
−
(
f(tn,j)|Jn,j | �{φ(x)}

)∣∣ > 1

4
.

Furthermore, for all other pairs n, j it must be the case that f(tn,j) is in the

same interval Ek,j for both x and φ(x) and so

∣∣(f(tn,j)|Jn,j | �{x}
)
−
(
f(tn,j)|Jn,j | �{φ(x)}

)∣∣ ≤ |Jn,j | 1

8smn
=

1

8s
.

Hence ∣∣Σ∗P(f) �{x} −Σ∗P(f) �{φ(x)}
∣∣ ≥ 1

4
− (s− 1)

1

8s
≥ 1

8
,

where Σ∗P(f) =
∑
n,j f(tn,j)|Jn,j | = ΣP(f)−

∑q
k=1 f(t∗k)|J∗k |.

So, given an interval of width less that 1
8 , Σ∗P(f) lies in that interval in at

most one of the cases x, φ(x). In particular, since φ is de�ned everywhere on

s⊔
k=1

F k = {Bk for exactly one value of k, and Ck for all other values},
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which has probability at least 1
9042 , and since the image of φ has the same

probability, there can be no Z for which

P(|Σ∗P(f)− Z| < 1

16
) <

1

9042

holds.

By Lemma 5.3.1, if this holds for Σ∗P(f), the random Riemann sum on⋃
n,j Jn,j , it also holds for the random Riemann sum on P, ΣP(f). Since |P| < δ

and δ is arbitrary, this proves that f is not random Riemann integrable. �



Chapter 6

Mycielski approximation and

Riemann sums

6.1 Notation

De�nition 6.1.1 Suppose we have a set S consisting of k distinct points from

the unit interval I,

S := {xi : 1 ≤ i ≤ k}.

For each i, 1 ≤ i ≤ k, de�ne ISi to be the interval consisting of those points of I

which are closer to xi than to any other point of S. The division of I into such

intervals is known as a Voronoi tesselation, and the sets ISi are called Voronoi

cells. They cover the whole of I except for k−1 points which are tied for closest

point. We can form the tagged partition

T S := {(xi, ISi ) : 1 ≤ i ≤ k}.

This tagged partition has the inclusion condition. The nearest neighbour Rie-

mann sum is the Riemann sum on this tagged partition.

102
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Now suppose that we have a random variable X, which is distributed on Ω,

the space of sequences of points in I. The elements of X are (Xk)k∈N, each of

which is distributed uniformly on I, and is independent of all the others. In

what follows we shall consider only that subset Ω∗, of full measure in Ω, for

which no two of the Xk are equal, and such that their image set {Xn : n ∈ N}

is dense in I.

Set Sn to be the set {Xk : 1 ≤ k ≤ n}, and construct the intervals ISni for

1 ≤ i ≤ n and the tagged partition T Sn . We will refer to the former as Ini

and the latter as T n. Both are functions of the random variable X and so are

random variables in their own right. In particular, T n is a random variable in

the space of tagged partitions. Unlike the random variables distributed on this

space that we have seen in the previous chapter, its underlying partition is also

a random variable.

De�nition 6.1.2 Now we take some function f and we construct for each n,

the Riemann sum random variable

Σ̃n(f) :=
∑
T n

f =

n∑
i=1

f(Xi)|Ini |.

We call this the Mycielski random Riemann sum. We also de�ne the step func-

tion on the same random tagged partition

fn(x) := f(Xi) if x ∈ Ini

setting it as the left or right limit arbitrarily at those points which do not belong

to any Ini . We refer to this random variable as the Mycielski step function of f .

The reason for de�ning this step function is so that we can distinguish be-

tween convergence of the Mycielski random Riemann sum Σ̃n(f) to
∫
f and

convergence in L1 of fn to f . Of course the latter implies the former.

These de�nitions are a special case of a general construction which requires

only a measure on a metric space. This was suggested in [35] and is discussed
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at length in [20]. In fact we could modify the de�nition of the intervals Ini , by

using some other metric to form the Voronoi tesselation, and we could use some

other measure than Lebesgue measure, both for the distribution of the points

in Ω and in place of |Ini | in the Riemann sum.(1) Fremlin gives in [20] several

pairs of metric and measure whose behaviour is considerably more pathological

than that which we study here.

6.2 Basic results

Proposition 6.2.1 For every f and all ε > 0, there exists n0 ∈ N such that

P(

∫
|f − fn| > ε) < ε

for all n > n0, where fn is the nth Mycielski step function of f .

This is proved in [35] as Theorem 1. The proof is identical to that of Theorem

5.1.5.

Suppose that we refer to the index of the nearest point to x among Sn =

{Xk : 1 ≤ k ≤ n} as Gn(x). In other words x is closer to XGn(x) than to Xj

for any j 6= Gn(x), and x is contained within InGn(x). This de�nes, for each

x ∈ I, a sequence of points (XGn(x))
∞
n=1. The limit of this sequence is x, and

it consists of elements of (Xn), each repeated 1 or more times. If we remove

these repetitions, and assuming that x 6∈ {Xk : k ∈ N}, we have a subsequence

of (Xn), call it (An(x))n∈N. We can describe this as the points of (Xn) which

are closer to x than any previous term of (Xn).

We de�ne the functions

f◦n(x) := f(An(x))

(1)We could also use two di�erent measures, one for the distribution of the random points,
and one in place of length in the Riemann sums. This variant, which is di�erent to that above
only when the second measure is not absolutely continuous with respect to the �rst, has not
to our knowledge been considered before.
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and examine their convergence to f . We call the function f◦n(x) the Mycielski

pseudo-step function.(2) As we will see this function can also be called the nth

�rst-return recovery function of f (depending on the trajectory (Xn)). This

name will be explained in the next chapter.

Proposition 6.2.2 If f is Lebesgue integrable, the Césaro sum of f◦n,

F ◦n(x) :=
1

n

n∑
k=1

f◦n(x)

converges almost surely in L1 to f .

This is Theorem 2 in [35].

Proposition 6.2.3 There exists a bounded function f and a set A ⊂ I of posi-

tive measure such that f◦n(x) does not converge to f(x) for every x in A.

This proposition will be proved in the next chapter, in the context of the

�rst-return recovery of f . Section 7.1 makes clear the identity between these

functions and their de�nition in the language of �rst-return points, and Section

7.3 gives the construction of f and discusses counterexamples to this proposition

in general.

Corollary There exists some bounded function f such that the Mycielski step

functions fn do not converge to f for any x in a set of positive measure. �

6.3 Almost sure convergence in L1

We can summarise the results of the previous section by saying that the

Mycielski step functions converge in probability to f both pointwise and in L1,

but do not almost surely converge pointwise. This section examines almost sure

L1 convergence.

(2)By analogy with �pseudo-partition�: there is a decomposition of I into countably many
intervals together with a set of isolated points, and the function is constant on each of the
intervals.
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Proposition 6.3.1 If f is in Lp for some p > 2, then then Mycielski step

functions fn converge in L1 to f almost surely.

This was proved by Fremlin as Theorem 7I of [20]. It is also worth noting that

Theorem 3A and its Corollary 3B, together with Proposition 7A, all in the same

work, give a more straightforward proof of the same statement, in the case that

f is in L∞.

The remainder of this chapter is devoted to some remarks which may suggest

a way towards showing that L1 convergence of fn to f holds for some larger

class of functions. These are inspired by the author's attempts to prove his

conjecture as follows.

Conjecture 6.3.2 If f is in L1 log(L), then the Mycielski step functions fn

converge in L1 to f almost surely.

Remark We can make two simpli�cations to the de�nition of the Fremlin-

Mycielski integral. Firstly we can replace the �nearest neighbour random sum�

with the � leftmost neighbour Riemann sum�. This means that if we order

the points {Xk : 1 ≤ k ≤ n} as {Xσ(k) : 1 ≤ k ≤ n}, where i < j im-

plies Xσ(i) < Xσ(j), then the intervals of the partition are given by [0, Xσ(1)],

(Xσ(k−1), Xσ(k)] for 1 < k < n and (Xσ(n−1), 1]. The nearest neighbour Rie-

mann sum is the arithmetic mean of the leftmost neighbour random sum and

the rightmost neighbour Riemann sum, therefore it converges almost surely if

they both do.

Remark Secondly, it is slightly simpler to look at either �nearest neighbours�

or �leftmost (rightmost) neighbours� not on I but on S, the circle obtained by

identifying the endpoints of I. So if xi is the smallest among the points, and

xj is the largest, we let the left endpoint of the interval Ii be
xi−xj+1

2 in the

case of nearest neighbours, xi in the case of leftmost neighbours, or xj in the

case of rightmost neighbours, rather than 0. This means that we can treat all

points in a similar manner, rather than the smallest and largest among the tag

points di�erently from all other points. Since the size of the set of points which



CHAPTER 6. MYCIELSKI APPROXIMATION 107

are moved from one partition interval to another by this change, tends to zero

for large k, this does not a�ect the limiting behavior of the Riemann sums. We

now have a construction which is translation-invariant.

Remark Darling gave in [15] a method permitting the exact determination of

the expected value of the lengths of the partition intervals, or of the sum of any

function of their lengths.

Theorem 6.3.6 Suppose that (Xi)
n
i=1 are n points distributed uniformly and

independently of one another on I. Reorder them as (Xji)
n
i=1 where

Xj1 ≤ Xj2 ≤ · · · ≤ Xjn

or without loss of generality

Xj1 < Xj2 < · · · < Xjn

since any equality holds only with probability 0. Let {li : 1 ≤ i ≤ n − 1} be

de�ned by li = Xi+1−Xi, the length of the intervals in the �leftmost neighbour�

partition.

Then if h is a measurable function de�ned on [0, 1],

E(

n−1∑
i=1

h(li)) =
1

n(n− 1)

∫ 1

0

h(t)(1− t)ndt.

An attempt to apply this directly to prove the conjecture above fails as

follows: If we de�ned the �length� of each interval in the nth Mycielski random

Riemann sum to be 1
n , than the Riemann sum would reduce to the average of

n points taken uniformly and independently from the distribution of f#λ. This

is the so-called `pullback' measure of the Lebesgue measure by f , and is de�ned

by

f#λ(A) := λ(f−1[A])

where A is a (Borel) measurable subset of R. By the strong law of large numbers
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this converges almost surely to Ef#λ =
∫
f . Obviously this would di�er from

the actual Riemann sum, however if the sum of the defects
∑
I

∣∣|I| − 1
n

∣∣, taken
over all intervals I were to become vanishingly small for large n, this would

indicate that the di�erence between the Riemann sum and the simple average

also becomes small for bounded f .

However, the expected number of intervals of length greater than 1
n tends

to n
e , and their total length has expectation tending to 2

e . Therefore the total

di�erence between the actual lengths and 1
n , given by

∑
|I|> 1

n

(
|I| − 1

n

)
+
∑
|I|< 1

n

(
1

n
− |I|

)
= 2

∑
|I|> 1

n

(
|I| − 1

n

)

→ 2

(
2

e
− n

e

1

n

)

remains close to 2
e for arbitrarily large n.

Remark This problem has some similarities to the question which was an-

swered in Chapter 8. Both are part of a class of problems which we can express

like this: For what functions f , and what sequences hn of functions mapping I

into itself, converging in some sense to idI, do we have convergence (pointwise

a.e., in measure, in L1, etc) of f ◦ hn to f? (In fact, many questions on the

convergence of Riemann sums can be formulated like this.)

As expressed this is extremely general. In fact, it seems clear that we must

choose the sequence (hn) to be some very natural sequence, or else taken from an

extremely restricted space of functions, to have any chance of f ◦hn converging

at all.

In the present case the functions hn are neither bijective nor measure-

preserving, both of which should make the link between convergence of hn and

of f ◦hn stronger. However, it may be possible to use the regularity of hn, which

is monotone and constant on an open ball around nearly every point, and the

fact that |hn(x)− x| is a monotone sequence for all x ∈ I.



Chapter 7

First-return integrals

7.1 First-return recoverability

In this chapter we refer to a trajectory as a sequence of points from I which

is dense in I. Suppose that such a trajectory t = (tn)n∈N is given.

De�nition 7.1.1 If A is a subinterval of I, the �rst-return point of A with

respect to t is the point rt(A) := tn, where

n = min{k ∈ N : tk ∈ A}.

In other words tn is the �rst point of the sequence t to belong to A. Since [t],

de�ned as {tn : n ∈ N} is dense in I such a point always exists.

De�nition 7.1.2 Let t be a trajectory and x be a point of I. The �rst-return

route of t to x is the sequence de�ned inductively by

yx1 (t) := rt(I) = t1

and for all n ∈ N

yxn+1(t) := rt(B(x, |x− yxn(t)|)),

except in the case where yxn(t) = x, in which case the above de�nition will not

109
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work and we simply let yxn+1(t) := x as well.

So the �rst-return route is a subsequence of t which has the same initial element

as t and such that each subsequent term is the �rst element of t to be strictly

closer to x than the previous term, except in the case where x ∈ [t], in which

case the �rst-return route is eventually constant and equal to x. The �rst-return

route obviously converges to x in all cases.

De�nition 7.1.3 Now, suppose that f is a function I 7→ R (not necessarily

measurable) and that x is a member of I. We say that f is �rst-return recoverable

with respect to t at x if

f(yxn(t))→ f(x) as n→∞.

We say that f is (almost) everywhere �rst-return recoverable w.r.t. t if it is

�rst-return recoverable at x for (almost) every x ∈ I. Alternatively we say that

t (a.e.) recovers f .

Remark Here we see that the functions f◦n de�ned in the previous chapter, for

a �xed sequence X = t, may be de�ned by

f◦n(x) = f(yx,tn ),

and that to say that they converge a.e. pointwise to f is the same as saying that

f is almost everywhere �rst-return recoverable. This explains the name ��rst-

return recovery functions�. While the pointwise limits of the two sequences of

functions, the Mycielski step functions and the �rst-return recovery functions,

are identical, the natural context for discussing the Mycielski step functions is

with the construction based on Voronoi regions in the previous chapter, and

the �rst-return recovery functions are related to �rst-return integration, and so

belong in this chapter.

It is clear that continuous functions are everywhere �rst-return recoverable

with respect to any trajectory. On the other hand, a discontinuous function
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must, for any discontinuity point, have a trajectory w.r.t. to which it is not

recoverable at that point. We are �rst interested in those functions for which

there exists at least one trajectory with respect to which they are everywhere

�rst-return recoverable.

Remark For a function to be (almost) everywhere �rst-return recoverable with

respect to some trajectory is equivalent to saying that for that trajectory the My-

cielski step functions converge pointwise (almost everywhere) to f . Equivalently

the Mycielski pseudo-step functions converge pointwise (almost everywhere) to

f . The �rst characterization immediately yields one direction of the following

proposition.

Proposition 7.1.6 A function f is everywhere �rst-return recoverable w.r.t.

some trajectory t i� it is Baire one.

This was proved in [14]. As pointed out in the previous remark, the very simple

proof of one direction can be deduced from the characterization of the limit in

terms of step functions. The proof that a Baire one function must be everywhere

�rst-return recoverable is longer and is given in [14]

Theorem 7.1.7 A function is almost everywhere �rst-return recoverable w.r.t

some trajectory t i� it is measurable.

Proof. As with the previous proposition one direction, namely that �a.e. �rst-

return recoverable� implies �measurable�, is easy and follows from the character-

ization of a.e. �rst-return recoverable functions as the almost everywhere limit

of step functions

The opposite direction is more complicated. A proof is given in [17] (The-

orem 2.3). The proof relies on the fact, given below as Proposition 7.2.3, that

a �rst-return integrable function must be almost everywhere �rst-return re-

coverable. Since, for example, all bounded Lebesgue measurable functions are

�rst-return integrable, so they are �rst-return recoverable. But recoverability is

a topological property which is unchanged by a homeomorphism of the image
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space, for example left composition by arctan. Thus we can associate all mea-

surable functions to some bounded measurable function, which shows that they

all must be a.e. �rst-return recoverable. �

The paper [13] gives a number of properties of functions closely related to

(everywhere) �rst-return recoverability. These address the fact that, in order

to recover a function with isolated points on its graph, we need to include

the abscissae of these points in our trajectory. We can tighten the notion of

recoverability to �rst-return approachability if the graph of our function does not

have isolated points. This simply means that at each stage of the construction of

the �rst-return route to x we take the next point of the sequence which is closer

to x than the previous elements of the route, and which is not x itself. Something

similar applies for points which are isolated from the right or the left, or points

which are not isolated but which are separated from the set of continuity points.

The paper proves one general theorem and all the characterizations of functions

for which slightly stronger notions than recoverability hold follow from this.

These characterizations are all of subsets of the class of Baire one functions

whose graphs satisfy in addition various topological properties.

7.2 Integrating sequences

We now consider the question of �rst-return integration. This is a proce-

dure based on Riemann sums, which re�ects the values of the function on the

trajectory in question.

De�nition 7.2.1 The �rst-return integral of a function f on a measurable set

A w.r.t. a trajectory t exists and is equal to M i� for every ε > 0 there exists

δ > 0 such that ∣∣∣∣∣∑
I∈P

f(rt(I))|I ∩A| −M

∣∣∣∣∣ < ε

for all partitions P with |P| < δ.
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The �rst thing that we can see about this de�nition is that it only depends

on the restriction of f to the points of t. Therefore the �rst-return integral

alone is extremely weak and it is possible to �nd examples where its value

in no way resembles that of any reasonable integral. We will strengthen the

�rst-return integral in three ways; by requiring it to integrate a function on

all measurable subsets of I, by requiring the trajectory to be one which also

recovers f , or in the next section by looking at integrals which are the same

for almost every trajectory, in a sense which will be made clear. The �rst idea,

to look at integrals on all subsets, motivates the following de�nition. It does

not strengthen the �rst-return integral by very much since of course it is still

sensitive to changing the function on a countable set.

De�nition 7.2.2 If f is Lebesgue integrable and the �rst-return integral of f

w.r.t. t is equal to the Lebesgue integral on every measurable subset of I, we

say that t is a integrating sequence for f , or that t integrates f .

Proposition 7.2.3 If f is in L1, then every trajectory which recovers f almost

everywhere is an integrating sequence for f .

This proposition comes from [17]. However, a better proof can be deduced

from part 3Bc of [19]. Here it is proved that if F ⊂ I is a closed set of positive

measure, no trajectory has both of the two following properties:

1. The �rst-return route to x includes in�nitely many points not in F , for

almost every x (the set Σ′ in section 3B of [19]). This is the same as saying

that t does not recover f at almost all of the points of F .

2. The �rst-return integral of χF with respect to the trajectory is de�ned

and equal to
∫
A
χF = λ(A ∩ F ) for every measurable set A (the set ΣχF

in section 3B of [19]). That is to say, the trajectory integrates χF .

So we can rephrase the statement that the set of trajectories satisfying both

of these is empty as the following lemma.



CHAPTER 7. FIRST-RETURN INTEGRALS 114

Lemma 7.2.4 If f is the characteristic function of a measurable set F , a tra-

jectory which integrates f also recovers f almost everywhere.

While F in [19] is a closed set, this is not necessary for this statement to be

proved.

Proof. Suppose that t integrates f but that there is a set of positive measure A

on which it does not recover f . Assume without loss of generality that A∩F has

positive measure (if not, exchange F with its complement). For every x ∈ A∩F

and every δ there exists some δ′ < δ such that rt(B(x, δ′)) is not in F .

Fix some ε > 0. We can choose δ0 > 0 so that any �rst-return Riemann

sum of f on a partition smaller than δ0 di�ers from the Lebesgue integral by no

more than ε
3 . Now for each x ∈ F ∩ A consider the family of balls with center

x, and with

• radius smaller than δ0
2 .

• the �rst-return point of the ball not in F .

For every x in A ∩ F there exist arbitrarily small balls containing x with these

properties.

Using the Vitali covering lemma, we can �nd a disjoint set of balls B(x, δ(x))

with x ∈ F ∩A, with these two properties, whose union includes all but at most

1
3 of the measure of F ∩A. Hence there is also a �nite subset of this collection

of balls, whose union includes all but at most 1
2 of the measure of F ∩ A. Call

this subset D and its union

D :=
⋃
I∈D

I.

Now, if we take a partition containing all the intervals of D, and any other

intervals with length less than δ0 which cover I\D , the size of the partition will

be less than δ0. The �rst-return integral of f on D with respect to t will be 0,

and since ∫
D

f = λ(D ∩ F ) ≥ 1

2
λ(A ∩ F ),
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it will di�er from the Lebesgue integral on D by at least 1
2λ(A∩F ). But ε was

arbitrary, so by choosing ε less than 1
2λ(A ∩ F ) we have a contradiction. �

Proof (Proposition 7.2.3). Now assume that f has an integrating trajectory t

and assume that this trajectory does not recover f at a set A of positive measure.

Let A+ be the subset of A where

lim sup
n∈N

f(yxn((t))) ≥ f(x).

Without loss of generality we assume this to have positive measure. Then so

does the set Aε, de�ned by

Aε := {x ∈ A : lim sup f(yxn(t)) > f(x) + ε}

for some ε > 0.

We can apply the same construction as in the proof of the preceding lemma,

using the set Aε in place of A ∩ F , except that we add a third condition to the

balls around x, that the radius, call it rx, be chosen such that

∫ x+rx

x−rx
f < 2rx

(
f(x) +

ε

2

)
.

By the Lebesgue density theorem we can always do this, if necessary replacing

Aε by a subset of full measure. Now the �rst-return integral of f on the collection

of balls will be more than ∑
x

2rx(f(x) + ε)

and the Lebesgue integral will be less than

∑
x

2rx

(
f(x) +

ε

2

)

Since
∑
x rx is bounded from below independently of the choice of ε we are

done. �
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A partial converse holds only for bounded functions.

Proposition 7.2.5 If f is bounded and measurable, then every integrating se-

quence for f recovers f almost everywhere.

This lemma was also proved in [17].

The relationship between integrating trajectories and trajectories which re-

cover f was exploited in [17] to show that every measurable function is recov-

erable. We mentioned this is the preceding section, where we stated but did

not prove Theorem 7.1.7. In the remainder of this subsection we will show that

every L1 function has an integrating trajectory, and thus obtain that result as

well as one further consequence.

Proposition 7.2.6 If f is in L1 then f has an integrating sequence.

Remark In [17] it is proved that for f Lebesgue integrable, it is enough for the

�rst-return integral of f w.r.t. to some trajectory to be equal to the Lebesgue

integral on all closed intervals, for the same equality to hold on all measurable

sets. Therefore, it is claimed that the proof in [11] that every L1 function has a

trajectory which yields the Lebesgue integral on every interval, is su�cient to

show that every L1 function has an integrating trajectory. In fact this is not

explicitly proved anywhere in [11]. For the purposes of clarity we outline the

three separate statements which prove the theorem in [17].

• If f is Lebesgue integrable, then there exists a trajectory such that the

�rst-return integral of f on I with respect to that trajectory exists and is

equal to
∫
f . This is the main theorem of [11].

• If f is a measurable function, A ⊂ I is an interval, then for any trajectory

w.r.t. which the �rst-return integral of f on I is equal to the Lebesgue

integral on I, the two integrals will also be equal on A. This is essentially

a Henstock lemma for the �rst-return integral. It is proved as Lemma 2.1

of [9].
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• If the �rst-return integral of f with respect to t is equal to the Lebesgue in-

tegral on all closed intervals, then the two are also equal on all measurable

sets. This is proved in [17] as Lemma 2.3.

Propositions 7.2.6 and 7.2.5 have the obvious corollary that every bounded

function is a.e. recoverable w.r.t. some trajectory. We can say more; as re-

marked already a transformation of f which preserves the topology generated

on I by its preimages preserves recoverability. By combining this argument with

Proposition 7.2.3 we obtain the following statement, which was not given in [17].

Proposition 7.2.8 For every Lebesgue integrable function there is a trajectory

which integrates f and recovers f almost everywhere.

Proof. De�ne g : I 7→ (−π2 ,
π
2 ) by tan(g(x)) = f(x). By Proposition 7.2.6

there exists some trajectory t which integrates g. By Proposition 7.2.5 this

trajectory also recovers f almost everywhere. Since, given a sequence (xn)n∈N,

g(xn) converges to g(x) exactly if f(xn) converges to f(x), this same trajectory

also recovers f . Then by Proposition 7.2.3, t also integrates f . �

7.2.1 Functions not in L1

We now look at the possibility that the �rst-return integral can yield the

KH-integral of a function which is not necessarily Lebesgue integrable. In this

section the term KH-function refers to a (Lebesgue equivalence class containing

a) measurable function which is KH-integrable but not Lebesgue integrable. In

this context we use the expression �integrating sequence� to refer to a trajectory

with respect to which the �rst-return integral of f on [a, b] is equal to KH

∫ b
a
f ,

for all 0 ≤ a < b ≤ 1. We cannot ask for the �rst-return integral to match

the KH-integral on all measurable subsets of I since the KH-integral is not in

general de�ned on all of these.

Remark The results of this section show that these two de�nitions of integrat-

ing sequence can be reconciled. If we de�ne an integrating sequence as one for
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which the �rst-return integral is equal to the KH-integral on all subintervals of

I, then by Lemma 2.1 of [9] and Lemma 2.3 of [17] as mentioned above, where f

is in L1 this is equivalent to the �rst-return integral being equal to the Lebesgue

integral on all measurable subsets of I.

Bongiorno in [5] and [4] �rst constructed an example of a KH-function which

does not have any integrating sequence. His example was adapted by Darji and

Evans in [12], who gave a much larger class of KH-functions with this property.

Bongiorno also asked whether there existed an KH-function for which the �rst-

return integral does equal the KH-integral.

Since it is obviously trivial to �nd a function and a single sequence which

integrates it, he placed two conditions on the integrating sequence. Firstly that

it should also recover the function, and less formally that the sequence should

be considered �natural�. Section 2 of [19] is such a construction.

7.3 Almost sure �rst-return integration

We now turn to the question of which functions are integrated by almost

every sequence, in the sense of the natural probability measure on the space of

sequences previously considered.

As in Chapter 6, Ω is the space of sequences of points in I, and we consider

the natural probability on Ω. Since the support set of a trajectory must be

dense in I, we will consider only the conegligible subset Ω∗ of Ω consisting of

trajectories.

De�nition 7.3.1 A function f is almost surely �rst-return integrable if almost

every trajectory is an integrating trajectory for f .

It will also be useful to consider the analogous property for �rst-return re-

covery.

De�nition 7.3.2 A function f is almost surely, almost everywhere recoverable

if f is recovered almost everywhere by almost every trajectory.
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These two de�nitions, taken with Lemma 7.2.3, divide the set of Lebesgue

integrable functions into 3 classes(1):

(I) f is a.s. �rst-return integrable (and therefore a.s. a.e. recoverable).

(II) f is a.s. a.e. �rst-return recoverable but not a.s. �rst-return integrable.

(III) f is not a.s. a.e. recoverable.

Of course, the Zero-One law applies to both �rst-return recovery and the �rst-

return integral, so a function which is not almost surely recoverable almost

everywhere has some positive set on which the �rst-return recovery sequence

almost surely does not converge to the value of f . Similarly for the �rst-return

Riemann sums, a function which is not almost surely �rst-return integrable, is

almost surely not �rst-return integrable.

Class (I) obviously includes RI*, those functions Lebesgue equivalent to a

Riemann integrable function. It is notable that no other functions have been

shown to belong to (I), and that no functions are known to belong to (II)(2).

Fremlin's construction in 3B of [19] gives an example of a function in class

(III). In fact this example is bounded, the characteristic function of a closed set.

So no condition on the size of f can ensure that it is in classes (I) or (II). In fact,

Fremlin's example is suggestive that a large family of Lebesgue integrable and

indeed bounded functions are in class (III). We rephrase his proof to provide a

su�cient condition for membership of class (III).

Lemma 7.3.3 Suppose that A,B are sets of positive measure A ⊆ B ⊆ I so

that for all x ∈ A there exists a nonnegative, monotone decreasing sequence Dx
n,

such that
∑∞
n=1D

x
n = +∞ and

1− λ
(
B|B

(
x, e−n−

√
2 log logn

))
> Dx

n

(1)If Lemma 7.2.3 can be extended to integrating sequences for KH-functions, that this
decomposition would apply to all measurable functions (de�ning non-KH-integrable functions
to be not almost surely �rst-return integrable). However we cannot exclude the (unlikely)
possibility that there exist KH-functions which are almost surely �rst-return integrable but
not almost surely almost everywhere recoverable.
(2)The functions given by Bongiorno and by Darji and Evans are almost surely almost

everywhere recoverable, and are not almost surely �rst-return integrable. They do not appear
here because they are not in L1.
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for all but �nitely many values of n. Then χB is not a.s. a.e. recoverable.

Proof. Suppose that x ∈ A. We will show that the probability that the �rst-

return route of t ∈ Ω∗ to x recovers f(x) is 0. Using Fubini's theorem on

λ �A ×P, where P is the probability measure on Ω, this is enough to show that

almost every trajectory does not recover f at any point of a set of full measure

in A.

First we estimate from below the speed of convergence of the �rst-return

route to x. In the case where x = 0 (or the symmetric case x = 1), we reason as

follows. Assuming without loss of generality that 0 /∈ [t], the �rst-return route

of t to 0, call it y0n(t), consists of a point A1 distributed uniformly on [0, 1],

followed by a point A2 distributed uniformly on [0, A1] (and independently of

A1), and so on. Writing Y 0
n for the random variable whose value is y0n(t), we

have

Y 0
n =

n∏
i=1

Un

where Un are i.i.d. uniformly on I.

Therefore log y0n = −
∑n
i=1En, where En has an exponential distribution

with mean 1. Write En = 1+Xn, where Xn are i.i.d. with mean 0 and variance

1. Khinchin's law(3) tells us that
∑n
i=1Xn >

√
2n log log n for only �nitely

many values of n, almost surely. So
∣∣Y 0
n − 0

∣∣ = Y 0
n < e−n−

√
2n log logn only

�nitely often almost surely.

To show a similar bound for a general point x ∈ (0, 1), we �rst de�ne

dx = min(x, 1− x) and let Nx be the smallest natural number such that Y xn is

contained in B(x, dx). Now consider the σ-algebra on B(x, dx) generated by the

open balls with center x. Since we are ultimately interested only in |Y xn − x|,

we see that we do not lose any information by considering the distribution of

Y xn restricted to this σ-algebra.

So write W x
n := |Y xn − x|, for n ≥ N , considered as a random variable

on this σ-algebra. There is a natural measure isomorphism from Lebesgue

(3)See for example chapter 8 of [26].
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measure restricted to the �centered� σ-algebra on B(x, dx) to Lebesgue measure

on [0, 2dx] with the usual Borel σ-algebra. Moreover, this isomorphism maps the

joint distribution of (W x
n )∞n=N onto the joint distribution of ( 1

2Y
0
n )∞n=M , where

M is the �rst natural number such that Y 0
M ∈ [0, 2dx]. Further it is easy to see

that N and M are identically distributed and almost surely �nite.

This means that for all x in I, we have that the slightly weaker bound

|Y xn − x| < 2e−n−
√
2n log logn

holds no more than �nitely many times almost surely.

The remainder of the proof is straightforward; suppose that for some x and

some n and m

2e−m−
√
2m log logm ≤W x

n < 2e−(m−1)−
√

2(m−1) log log(m−1).

Since B(x, e−m−
√
2m log logm) contains a proportion of its measure of at least

Dxm
2 of the complement of B, B(x,W x

n ) similarly contains a proportion of no

less than
Dx
m

2

e−m−
√
2m log logm

e−(m−1)−
√

2(m−1) log log(m−1)
,

say no less that Dxm
3 for all but a few m. So the probability that Y xn+1 will not

be contained in B is at least Dxm
3 . Since for all but �nitely many n, m ≤ n and

so Dm(x) > Dn(x), we have that with probability 1, Y xn /∈ B in�nitely often.

Because x ∈ A ⊆ B, this means that χB(Y xn ) does not converge to χB(x)

almost surely. �

It is not di�cult to put this together with Lemma 2.2.11 to prove that a

characteristic function of the desired type does exist.

Proposition 7.3.4 There exists a bounded measurable function which is not

almost surely almost everywhere recoverable.

Proof. Let an be some decreasing sequence with limit 0 and
∑
n∈N an = +∞.
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Lemma 2.2.11 proves the existence of a set H ⊂ I such that for all x ∈ H, and

for all but �nitely many n ∈ N we have

1− λ(H|B(x, δ)) > an

for all δ > e−n−
√
2n log logn. This is clearly enough to imply the condition of

Lemma 7.3.3, taking A = B = H. So χH is not a.s. a.e. recoverable. �

In fact this construction implies that Class (III) is residual in L∞.

Proposition 7.3.5 The set of functions which are almost surely almost every-

where recoverable is nowhere dense in L∞.

Proof. Let f := χH be a function given by 7.3.4. If a is a small positive

number then a · f is equally in Class (III). Take some number r smaller than a
2

and consider the ball in L∞ around a · f of radius r. Every function in this ball

is larger than a− r > a
2 on H and smaller than r < a

2 on I\H. It is impossible

for the limit of the function on a sequence of points in the second set to be equal

to the value of the function at point from the �rst set. Therefore at the set of

points where f is not recovered almost surely, neither will be any function in

this ball.

Now consider an open set E in L∞. Assume that there exists some function

g in E which is almost surely almost everywhere recoverable, otherwise we are

done. Choose a small enough that B(g, 2a) ⊂ E. Then choose r as indicated

above, this will mean that B(g + a · f, r) is also contained in E.

It remains to check that the sum of an almost surely almost everywhere

recoverable function and a not almost surely almost everywhere recoverable

function is not almost surely almost everywhere recoverable. But this is easy to

see since all the relevant limits are additive in the two functions. �

It is not possible for the set of almost sure almost everywhere recoverable

functions to be nowhere dense in L1, because the Riemann integrable functions

are dense.
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7.3.1 Connections to the random Riemann integral

Consider the distribution of trajectories given by the probability measure

on Ω. If we �x some index k ∈ N, then the distribution of tk will naturally be

uniform on I. Furthermore the distribution of tk conditional on it belonging to

some measurable subset of I is likewise uniform on that subset. This allows us to

see that the �rst-return point of some interval I, rt(I), is distributed uniformly

on I, and that if I, J are two intervals, |I ∩ J | = 0, then rt(I) and rt(J) are

independent.

This allows us to see that if we �x some partition P, then the distribution

of the tag points, and hence also of the Riemann sums as a function of t ∈ Ω,

is identical to that given in the de�nition of the random Riemann integral in

Section 5.1.

So some results concerning the random Riemann integral give us information

about almost sure �rst-return integrability. In particular, the convergence of the

weak random Riemann integral for all functions in L1 is a necessary condition

for the convergence of the �rst-return integral almost surely.

However, we must bear in mind that unlike the random Riemann integral,

the distributions of the Riemann sums of the �rst-return integral on two di�erent

partitions are not independent. Since the results on the strong random Riemann

integral in Chapter 5 all depend on the Borel-Cantelli lemma, we see that the

positive results also hold for the dependent case, whereas the negative results

do not.

So the strong convergence of the random Riemann integral (to the Lebesgue

integral) implies that almost surely the �rst-return Riemann sums also converge

to the integral, if we take the same sequence of partitions. However, for a func-

tion to be almost surely �rst-return integrable, we need almost sure convergence

given any sequence of partitions with size tending to 0. In fact there are no pos-

itive results which do not rely on some condition on the speed of convergence

of the partition sizes. So there is no function outside of RI* which we can show

is in Class (I).
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On the other hand the negative results for the random Riemann integral

in Chapter 5 do not hold. So although we can show that for some functions

and some sequences of partitions there is no strong convergence on the ran-

dom Riemann integral, we can not show that the �rst-return Riemann sums

do not converge on the same sequences of partitions, which would exclude such

functions from being almost surely �rst-return integrable.

However those functions for which the random Riemann integral does not

converge weakly, we know are not �rst-return integrable with probability 1. The

following proposition is a direct corollary of Theorem 5.3.8.

Proposition 7.3.6 If f is not in L1−ε for some ε > 0 or f fails to have the

endpoint weak L1 condition on some subinterval of I, then f is not almost surely

�rst-return integrable.

7.4 The Kie�er-Stanojevi¢ integral

We conclude this chapter by mentioning another probabilistic Riemann in-

tegral. The reason for placing it in this chapter is that it is a restriction of

the �rst-return Riemann integral. In fact the distribution of the �rst-return

Riemann sums on a sequence of partitions, each a re�nement of the previous,

is exactly that of the Kie�er-Stanojevi¢ integration procedure. The fact that

all of L1 is Kie�er-Stanojevi¢ integrable, but much of it is not almost surely

�rst-return integrable shows that we cannot approximate �rst-return Riemann

sums on a general sequence of partitions by those on a sequence consisting of

successive re�nements.

The Kie�er-Stanojevi¢ integral was suggested in [30]. As before, a sequence

of partitions is given and a corresponding sequence of tagged partitions (with the

inclusion condition) is de�ned as a random variable. Let (Pi)i∈N be a sequence of

partitions, where each partition is a re�nement of the previous one. This means

that each interval is contained within an interval of the previous partition.

For k ≥ 2, write ψk for the containment mapping from Pk to Pk−1. This
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function maps each interval to the unique one of the previous partition of which

it is a subset. The �rst tagged partition is de�ned by T1 := {(tI , I) : I ∈ P1},

where tI is a random variable distributed on I uniformly and independently of

all other tI . Now suppose that Tk−1 has been de�ned. Let tk−1 : Pk−1 → I be

the mapping which sends each interval in Tk−1 to its tag. For those intervals

I ∈ Pk such that tk−1(ψk(I)) ∈ I, the tag of I in Tk is tk−1(ψk(I)). In other

words those intervals which contain a tag point of the previous partition, have

that point as their tag. For all other intervals, the tag is chosen uniformly in

that interval and independently of all previous choices.

We refer to the nth tagged partition as T KSn , and to the Riemann sum of

f on that partition as ΣKSn f . The Riemann sums are distributed identically to

the �rst-return Riemann sums on the same sequence of partitions.

De�nition 7.4.1 (Kie�er-Stanojevi¢ integral) A function f is Kie�er-Sta-

nojevi¢ integrable and M is its Kie�er-Stanojevi¢ integral in case ΣKSn f con-

verges to M almost surely.

Theorem 7.4.2 If f is in L1 then it is Kie�er-Stanojevi¢ integrable and its

Kie�er-Stanojevi¢ integral is
∫
f .

Proof. The proof of almost sure convergence was �rst given in [30]. It follows

from the Reverse Martingale Convergence Theorem, originally proved in [16].

We simply show that the Kie�er-Stanojevi¢ random sums form a reverse martin-

gale, and from this it follows that convergence in probability implies convergence

almost surely to the same limit. Convergence in probability to the integral of f

can be shown by the argument from Theorem 5.1.5.

To show that ΣKSn f is a reverse martingale, we show that

E(ΣKSn−1(f) � ΣKSn f) = ΣKSn f.

We have that

ΣKSn f :=

an∑
k=1

f(tn,k)|In,k| (7.1)
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and

ΣKSn−1(f) :=

an−1∑
k=1

f(tn−1,k)|In−1,k| (7.2)

where an is the number of elements in T KSn and (In,k, tn,k) is the kth element,

numbered from left to right.

We know that all intervals of the underlying partitions are chosen determin-

istically. Each choice of a tag point is independent of all others, except in the

case of the tag points of two intervals, one of which contains the other.

Therefore each term in (7.2), of the form f(tn−1,j)|In−1,j |, is independent of

all terms in (7.1), except those 1 ≤ k ≤ an for which In,k ⊆ In−1,j . This means

that

E
(
f(tn−1,j) |In−1,j | � ΣKSn f

)
= E

f(tn−1,j) |In−1,j | �
∑

k:In,k⊆In−1,j

f(tn,k)|In,k|


and

E
(
ΣKSn−1(f) � ΣKSn f

)
=

an−1∑
j=1

E

f(tn−1,j) |In−1,j | �
∑

k:In,k⊆In−1,j

f(tn,k)|In,k|


So it su�ces to prove that

E

f(tn−1,j)|In−1,j | �
∑

k:In,k⊆In−1,j

f(tn,k)|In,k|

 = E

 ∑
k:In,k⊆In−1,j

f(tn,k)|In,k|

 .

(7.3)

Now tn−1,j is one of {tn,k : In,k ⊆ In−1,j}. The conditional probability of it be-

ing tn,i for some i ∈ A := {k : In,k ⊆ In−1,j}, conditioned on
∑
k:Ik,n⊆In−1,j

f(tn,k)|In,k|

(or equivalently on {tn,k : k ∈ A}) is given by

P(tn−1,j ∈ In,i) =
|In,i|
|In−1,j |

.
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So the left hand side of (7.3) is equal to

E|In−1,j |
∑
k∈A

|In,k|
|In−1,j |

f(tn,k) = E
∑
k∈A

|In,k| f(tn,k)

as required. �



Chapter 8

Measure preserving

transformations

This chapter deals with permutations of the unit interval, and their e�ect of

composing them with measurable functions de�ned on that interval. Except for

the �nal section which was added later, it is joint work with T. Nishiura and

was adapted from the paper [25].

8.1 Preliminaries

In this chapter we consider a partition of [0, 1) to consist only of half-open

intervals of the form [a, b). The theory could work equally well with a general

partition of I but this would introduce unnecessary technicalities.

De�nition 8.1.1 A function ϕ : [0, 1]→ [0, 1] is called a permutation of a par-

tition Π of [0, 1) if ϕ restricted to I is a translation for each I ∈ Π, and ϕ(1) = 1.

Clearly a permutation is bijective and has the property that the Lebesgue

measures of ϕ(E) and ϕ−1(E) are equal to the Lebesgue measure of E for every

Lebesgue measurable set E ⊂ [0, 1]. The collection of all permutations will be

denoted by P.

128
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The collection of all functions h : [0, 1] → [0, 1] that are almost everywhere

limits of sequences in P will be denoted by H . This is the same as the collection

of functions that are limit in measure of sequences in P.(1)

The collection of partitions of [0, 1) can be used to de�ne another collection

H ′. A function h : [0, 1] → [0, 1] is in H ′ if, for each sequence (Πn)∞n=1 of

partitions of [0, 1) such that |Πn| → 0 as n→∞, there exists a sequence (ϕn)n∈N

where ϕn is a permutation of Πn such that ϕn converges almost everywhere to

h. Obviously, H ′ ⊂ H . It will be shown in Section 8.3 that H = H ′ and

that h ∈ H if and only if h is λ-measurable and λ = h#λ. As mentioned in

chapter 6, this notation denotes a measure de�ned by

f#µ(A) := µ(f−1(A))

where µ is a measure and f is a µ-measurable function.

8.2 Factorization problems

The statement of the proposed factorization problem is the following: Find

a minimal(2) class G of functions g : [0, 1] → R such that for each Lebesgue

measurable function f : [0, 1] → R there is an h in H and a g in G such that

the composition g ◦h : [0, 1]→ R is Lebesgue equivalent to f . Observe that any

collection of functions which includes one representative from each Lebesgue

equivalence class of measurable functions, for example the set B2 of Baire class

2 functions, solves the factorization problem if we drop the condition that the

class be minimal.

We can reformulate the question as follows: Find a minimal class G of func-

tions g : [0, 1]→ [0, 1] having the property that each Borel measurable function

f : [0, 1]→ (0, 1) has corresponding functions h : [0, 1]→ [0, 1] in H and g in G

(1)If a function is the almost everywhere limit of a sequence of functions then it is also their
limit in measure. If a function is the limit in measure of some sequence of functions then it is
the almost everywhere limit of a subsequence.
(2)As usual, we mean minimal in the sense of the partial order ⊂. Of course, a minimal set

need not be unique.



CHAPTER 8. MEASURE PRESERVING TRANSFORMATIONS 130

such that the composition g ◦ h is λ-equivalent to f .

Note that the Lebesgue measurability of f : [0, 1] → R has been replaced

with Borel measurability of f : [0, 1] → (0, 1) and that g : [0, 1] → R has been

replaced by g : [0, 1] → [0, 1]. Clearly there is no loss of generality in mak-

ing these replacements. We shall show that the class G of upper continuous,

nondecreasing functions, with g(0) = limh→0+ g(h) will solve the factorization

problem.

8.3 Characterization of H and H ′

The two collections H and H ′ were introduced to de�ne the factorization

problem. We have already pointed out thatH ′ ⊂ H . We have the following

chacterization.

Theorem 8.3.1 H ′ = H , and h ∈H if and only if h is a Lebesgue measur-

able function such that λ = h#λ.

A Lebesgue measurable function h : [0, 1]→ [0, 1] is said to be measure preserv-

ing(3) if h#λ = λ. Note that λ(h−1(1)) = 0.

The next 2 propositions provide the proof of the theorem.

Proposition 8.3.2 If h ∈H , then h is measure preserving.

Proof. Let ϕn be a sequence of permutations converging in measure to h, and

let εn be such that λ(En) < εn, where En = {x : |ϕn(x) − h(x)| ≥ εn }, with

εn → 0 as n → ∞. For closed sets K in [0, 1] let Kn be the εn-neighborhood

of K. As ϕn−1[K] ⊂ h−1[Kn] ∪ En, it follows that λ(K) ≤ λ(h−1(Kn)) + εn,

whence λ(K) ≤ λ(h−1(K)). Consequently, λ(U) ≤ λ(h−1(U)) for every open

set U in [0, 1]. It now follows that λ(K) = λ(h−1(K)) since λ(h−1([0, 1])) ≤ 1.�

It remains to prove that if h is measure preserving then h ∈H ′. The proof

is a �pigeonhole� argument. That is, a partition Π of pigeons are to be assigned

(3)Here, h need not be bijective; in ergodic theory, �measure preserving� requires that h be
bijective and both h and h−1 be measurable and measure preserving in our sense .
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to a partition Π′ of pigeonholes under certain rules ϕ. The �nal step of the

proof of the characterization will depend on the following modi�ed pigeonhole

lemma.

Lemma 8.3.3 Let Π′ = { I ′i : i = 1, 2, . . . , n } be a partition of [0, 1) and let

{Ki : i = 1, 2, . . . , n } be a disjoint collection of compact sets of [0, 1) such that

λ(I ′i) > λ(Ki) for each i. For all ε > 0, then there is a δ > 0 such that for

each partition Π = { Ij : j = 1, 2, . . . ,m } with |Π| < δ there is a permutation

ϕ : [0, 1]→ [0, 1] of Π such that, for each i,

λ(I ′i)− 2|Π| > λ(ϕ(Hi)) > λ(ϕ(Ki))− ε/n,

where Hi :=
⋃
j{ Ij : ϕ(Ij) ⊂ I ′i and Ij ∩Ki 6= ∅ }.

We should interpret the �rst inequality in the conclusion as saying that the

intervals of the partition which intersect Ki approximate it well in measure,

and the second inequality as saying that most of the points in these intervals

are mapped to I ′i.

Proof. Let γ > 0 be small enough that 0 < 3γ < λ(I ′i)−λ(Ki) and λ(Ui\Ki) <

ε/n for each i, where Ui is the γ-neighborhood of Ki, and such that 3γ is less

than the minimum of the distances between distinct Ki's.

With W (i,Π) =
⋃
{ Ij ∈ Π: Ij ∩Ki 6= ∅ }, observe that λ(I ′i)−λ(W (i,Π)) +

λ
(
W (i,Π) \ Ki

)
= λ(I ′i) − λ(Ki) > 3γ. As λ

(
W (i,Π) \ Ki

)
→ 0 as |Π| → 0,

there is a δ such that 0 < δ < γ and such that λ
(
W (i,Π) \Ki

)
< γ whenever

|Π| < δ. So, if |Π| < δ, then

λ(I ′i)− 2|Π| >
∑
j{λ(Ij) : Ij ∈ Π, Ij ∩Ki 6= ∅ }. (8.1)

Let us construct the required ϕ. Let |Π| < δ. Note that no interval Ij

intersects more than one of the Ki. We separate the intervals Ij into the classes

Bi, which consists of those intervals which intersect Ki, 1 ≤ i ≤ n, and C,

those intervals which do not intersect any Ki. (We distinguish between Bi and
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W (i,Π) =
⋃
Bi
.) Denote

∑
{λ(Ij) : Ij ∈ Bi } by li and index the collection C

as J1, J2, . . . , Jq. Then

∑n
i=1li +

∑q
k=1λ(Jk) = 1.

Assume that the I ′i are numbered in increasing order from left to right, and call

ai the right endpoint of I ′i.

Let us describe the �rst step of the construction of ϕ. As l1 < a1 − |Π|

by (8.1), there is an m1 such that 1 < m1 and
∑m1−1
k=1 λ(Jk) ≤ a1 − l1 <∑m1

k=1 λ(Jk). De�ne a′1 = l1 +
∑m1

k=1 λ(Jk). Let ϕ be a permutation of W (1,Π)

onto [0, l1) and { Jk : k ≤ m1 } onto [l1, a
′
1) with a1 ∈ ϕ(Jm1

).

We now repeat this procedure for B2. We have a1 < a′1 < a′1 + l2 < a2−|Π|,

whence [a′1, a
′
1 + l2) ⊂ [a1, a2), and there is an m2 such that m1 < m2 and∑m2−1

k=m1+1 λ(Jk) ≤ a2 − (a′1 + l2) <
∑m2

k=m1+1 λ(Jk). De�ne a′2 =
∑2
i=1 li +∑m2

k=1 λ(Jk). Let ϕ be a permutation of B2 onto [a′1, a
′
1 + l2) and { Jk : m1 <

k ≤ m2 } onto [a′1 + l2, a
′
2) with a2 ∈ ϕ(Jm2

).

This process continues up to the nth stage, where an−1 ∈ ϕ(Jmn−1
) and

a′n−1 =
∑n−1
i=1 li +

∑mn−1

k=1 λ(Jk) satis�es an−1 < a′n−1 < a′n−1 + ln < 1 − |Π|.

The remainder of the construction of ϕ is left to the reader.

As W (i,Π) \Ki ⊂ Ui \Ki, the construction is completed. �

Proposition 8.3.4 If h : [0, 1]→ [0, 1] is measure preserving, then h ∈H ′.

Proof. Let h : [0, 1]→ [0, 1] be measure preserving and for each m let Π′m be a

partition of [0, 1) such that |Π′m| < 2−m . Denote by nm the number of intervals

in Π′m. Then {h−1(I ′m,i) : I ′m,i ∈ Π′m } and h−1(1) form a decomposition of

[0, 1]. For each I ′m,i, let Km,i be a compact subset of h−1(I ′m,i) such that

λ
(
h−1(I ′m,i) \Km,i

)
< (nm2m)−1.

For each Π′m and ε = 2−m, let δm be δ as provided by the modi�ed pigeonhole

lemma. We may assume δm > δm+1. For each m let

Dm =
⋃
m≤m′

⋃
{h−1(I ′m′,i) \Km′,i : I

′
m′,i ∈ Π′m′ }.
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Note Dm′ ⊂ Dm whenever m′ ≥ m, and λ(Dm) ≤ 2−(m−1). Also, if x /∈ Dm

and m′ > m, then x is in some Km′,i, whence h(x) ∈ I ′m′,i ∈ Π′m′ .

Suppose that Πk is a sequence of partitions such that |Πk| → 0 as k → 0.

Let km be the least k such that |Πk′ | < δm whenever k′ > k. Observe that km

is nondecreasing and converges to +∞. If k ≤ k1, then let ϕk be the identity

function. If km < k ≤ km+1, then let ϕk be as given by the modi�ed pigeonhole

lemma for the partitions Πk and Π′m. Clearly ϕk, k = 1, 2, . . . , is a well de�ned

sequence.

The constructed sequence ϕk will converge almost everywhere to h. Indeed,

let ε > 0 and let m be such that 2−(m−1) < ε. Suppose x /∈ Dm and m′ ≥ m.

Letm′′ and k be such that km′ = km′′ < km′′+1 and km′′+1 ≥ k > km′′ . There is

an Ik,j in Πk such that x ∈ Ik,j ∩Km′′,i for some i. By the modi�ed pigeonhole

lemma, ϕk(Ik,j) ⊂ I ′m′′,i ∈ Π′m′′ . Hence h(x) and ϕk(x) are in the same I ′m′′,i.

As δ(Π′m′′) < 2−m
′′
, |ϕk(x)− h(x)| < 2−m

′′
whenever km′′+1 ≥ k > km′′ . We

infer from this that ϕk converges to h except on a subset of Dm. Hence the set

in which ϕk does not converge to h has measure less than ε. �

It now follows that the collection G of all nondecreasing, upper continuous

functions g : [0, 1]→ [0, 1] with g(0) = limh→0+ g(h) ful�lls the requirements of

the factorization. Indeed, for a Borel measurable function f : [0, 1] → [0, 1] let

g : [0, 1] → [0, 1] be its nondecreasing, upper continuous distribution function

(see the Remark at the end of the next section) that satis�es

g#λ([0, y]) = f#λ([0, y]), y ∈ [0, 1].

A measure-preserving h exists so that f = g ◦h almost everywhere. To see that

G is a minimal class, it is enough to observe that if two nondecreasing, upper

continuous functions g1 and g2 are di�erent, then they either di�er only at 0, or

on a set of positive measure. We have excluded the possibility that they di�er

only at 0 since the functions are left-continuous at 0. Hence there exists some
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r such that

λ({x : g1(x) > r }) 6= λ({x : g2(x) > r }).

So there can be no measure-preserving function h such that g1h = g2 almost

everywhere. Consequently the following theorem yields a positive solution of

the factorization problem.

Theorem 8.3.5 The collection G of functions g : [0, 1] → [0, 1] that are non-

decreasing and upper continuous is a minimal class having the property that

each Borel measurable function f : [0, 1] → (0, 1) has corresponding functions

h : [0, 1] → [0, 1] in H and g in G such that the composition gh is Lebesgue

equivalent to f .

Remark The construction of a nondecreasing function, called a distribution

function or monotone rearrangement, was known to Hardy and Littlewood for

measurable functions de�ned on the open interval (0, 1). That is, for each real-

valued measurable function f on (0, 1), there corresponds a nondecreasing real-

valued function g on (0, 1) that is upper continuous such that λ(f−1((0, y])) =

λ(g−1((0, y])) for every y (see [27, pages 91�92], [41, pages 29�30], and [38, page

272]). As R and (0, 1) are order isomorphic, there is no loss in assuming f and

g map into (0, 1). Indeed, we infer from their result that each Lebesgue measur-

able function f : [0, 1]→ (0, 1) corresponds to a nondecreasing, upper continuous

distribution function g : [0, 1]→ [0, 1] with g−1[{0, 1}] ⊂ {0, 1}. Simply restrict

f to the open interval (0, 1) and adjust the resulting Hardy-Littlewood distribu-

tion function that is de�ned on (0, 1) to the closed interval [0, 1] in the obvious

way.

The factorization problem is posed in the context of almost everywhere con-

vergence of a sequence of permutations to the function h. The following question

remains.

Question. If h is measure preserving then does there exist a Lebesgue equivalent

H such thatH is the everywhere convergent limit of a sequence of permutations?
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Clearly, such an H would be a Baire class 2 function.

8.4 Application to random Riemann sums

The motivation for de�ning the classes H and H ′ and for looking for the

minimal class G that solves the factorization problem, comes from the study of

random Riemann sums. If T is a tagged partition of I, and h is some permutation

of its underlying partition, than the Riemann sums of fh on T and f on h∗(T )

are the same, for any measurable f . Here h∗(T ) is de�ned by

h∗(T ) := {(h(t), h(I)) : (t, I) ∈ T}.

This trivial observation can be extended using Theorem 8.3.5, in order that

we can establish convergence of constructions similar to the random Riemann

integral on some class of functions, just by examining a much more limited class.

Suppose that we have some sequence of tagged partitions, either determin-

istic or stochastic, and that we form for each function in L1 the corresponding

sequence of Riemann sums. Suppose further that this construction is linear

and continuous considered as a function on L1. In other words, we can disre-

gard discrepancies of su�ciently small L1 norm. Assume that the sequence of

partitions has size tending to 0, either with certainty or almost surely. Then

the following theorem suggests that we can exchange limits between Riemann

sums of rearrangements of a function by permutations, and rearrangements of

the Riemann sums on the same partitions (which in many cases might have no

e�ect on the distribution of Riemann sums).

Theorem 8.4.1 If f is a function in L1, and (hn)∞n=1 is a sequence of measure-

preserving bijections of I such that hn → h a.e., then f ◦ hn converges to f ◦ h

in L1.

Proof. First of all it is enough to prove this for a sequence hn which converges

a.e. to the identity on I. This is because we can replace convergence in L1 for
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Lebesgue measure for sequences tending to h with convergence in L1 for the

measure λ#h for sequences tending to id.

Secondly by a common argument the result for f in L1 will follow from the

result for simple functions, which are dense in L1. Therefore it will be enough

to prove the statement for characteristic functions of measurable sets.

So suppose that A ⊂ I is a measurable set and that (hn) is a sequence of

bijective functions from I to I, with the property that λ(D) = λ(hn(D)) for all

n ∈ N, and that for almost every x ∈ I we have hn(x)→ x. Let ε > 0 be given.

Choose some open set E ⊃ A with λ(E\A) < ε. If x ∈ E and xn → x

then f(xn) = 1 for all but �nitely many values of n. Since hn
a.e.−−→ id, then

hn(x) → x for almost every x ∈ E. This means that there is some n ∈ N and

some set E′ ⊂ E with λ(E\E′) < ε such that hn(x) ∈ E for all x in E′.

So the measure of {x ∈ E′ : hn(x) ∈ A} is at least λ(E′)− ε, or λ(E)− 2ε,

and the measure of {x ∈ E′ ∩A : hn(x) ∈ A} is at least λ(A)− 2ε.

Therefore

{x ∈ A : hn(x) /∈ A} < 2ε

for all n ≥ n0 and so, since the image of that set has the same measure,

∫
(f − f ◦ hn)+ < 2ε.

An identical argument shows that
∫

(f − f ◦ hn)− < 2ε and so

∫
|f − f ◦ hn| < 4ε

for all large enough n as required. �

In many cases, including for example the weak random Riemann integral,

the conditions required for this theorem to be useful are met. So we could

prove that the weak random Riemann integral converges for all functions in L1,

provided that we know that it converges for all decreasing functions in L1. Of

course, this is not necessary to prove that the weak random Riemann integral
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converges. However, the technique may allow further results to be proved for

related integration procedures, such as those of chapters 7 and 6.(4)

Note this theorem is not directly applicable to questions of almost sure con-

vergence as in the strong random Riemann integral. This is because L1 conver-

gence of f ◦ hn to f does not imply almost sure convergence of the Riemann

sums on the former to those on the latter. For this to be true we would have to

obtain bounds on the speed of convergence in L1 of rearrangements of f to f .

For a variety of reasons this does not seem to be straightforward.

(4)The so-called distribution functions, which are shown in the previous sections, to be a
minimal class of functions allowing rearrangement to all other functions under maps in H ′,
were �rst constructed by Hardy and Littlewood in their paper [27]. As mentioned in Chapter
2, their interest in such functions was because they maximise certain functionals, such as the
L1 norm of the maximal operator of f . It seems at least plausible that it is possible to obtain
using Hardy and Littlewood's work, similar results to those that we here suggest could follow
from Theorem 8.4.1. In other words, if there exist counterexamples to some convergence
property of Riemann sums, then there must be monotone counterexamples; and this is true
because monotone functions can be rearranged to all other functions, or equivalently because
functions with larger maximal operator have convergence properties at least as bad for these
sums.



Bibliography

[1] B. Bongiorno, Un nuovo integrale per il problema della primitive, Le

Matemiche 51 (1996), 299�313.

[2] , On the C-integral, Proceedings of the AMS Special Session

on Nonabsolute Integration (2000), Available at http://www.emis.de/

proceedings/Toronto2000/.

[3] , On the minimal solution of the problem of primitives, Journal of

Mathematical Analysis and Applications 251 (2000), no. 2, 479 � 487.

[4] , Notes on the �rst-return integral, Real Analysis Exchange confer-

ence proceedings (2007), 45�47.

[5] , On the �rst-return integrals, J. Math. Anal. Appl. 333 (2007),

112�116.

[6] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral

which includes Lebesgue integrable functions and derivatives, J. London

Math. Soc. 62 (2000), 117�126.

[7] D. Bongiorno, Riemann-type de�nition of the improper integrals, Czechoslo-

vak Mathematical Journal 54 (2004), 717�725.

[8] A. Bruckner, R. Fleissner, and J. Foran, The minimal integral which in-

cludes Lebesgue integrable functions and derivatives, Colloq. Math. 50

(1986), 289�293.

138



BIBLIOGRAPHY 139

[9] M. Csörnyei, U. B. Darji, M. J. Evans, and P. D. Humke, First-return

integrals, J. Math. Anal. Appl. 305(2) (2005), 546�559.

[10] M. Csörnyei, J. Grahl, and T. C. O'Neil, Points of middle density in the

real line, submitted.

[11] U. B. Darji and M. J. Evans, A �rst return examination of the Lebesgue

integral, Real Analysis Exchange 27 (2001/2002), 573�582.

[12] , Functions not �rst-return integrable, Journal of Mathematical

Analysis and Applications 347 (2008), 381�390.

[13] U. B. Darji, M. J. Evans, C. Freiling, and R. J. O'Malley, Fine properties

of Baire one functions, Fundamentae Mathematicae 155 (1998), 177�188.

[14] U. B. Darji, M. J. Evans, and R. J. O'Malley, A �rst return characterization

for Baire one functions, Real Analysis Exchange 19(2) (1993), 510�515.

[15] D. A. Darling, On a class of problems related to the random division of an

interval, The Annals of Mathematical Statistics 24 (1953), 239�253.

[16] J. L. Doob, Regularity properties of certain families of chance variables,

Transactions of the American Mathematical Society 47(3) (1940), 455�

486.

[17] M. J. Evans and P. D. Humke, Almost everywhere �rst-return recovery,

Bulletin of the Polish Academy of Sciences, Mathematics 52(2) (2004),

185�195.

[18] , Almost every sequence integrates, Acta Math. Hungar. 117 (2007),

35�39.

[19] D. H. Fremlin, Notes on �rst-return integration, available at http:

//www.essex.ac.uk/maths/staff/fremlin/preprints.htm, Version of

10.11.07.



BIBLIOGRAPHY 140

[20] , Problem GO, available at http://www.essex.ac.uk/maths/

staff/fremlin/problems.htm, Version of 14.10.10.

[21] , Measure theory, vol. 1, Torres Fremlin, 2000.

[22] , Measure theory, second ed., vol. 2, Torres Fremlin, 2010.

[23] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock,

American Mathematical Society, 1994.

[24] J. Grahl, A random approach to the Lebesgue integral, J. Math. Anal. Appl.

340 (2008), 358�365.

[25] J. Grahl and T. Nishiura, A factorization problem, Real Analysis Exchange,

accepted.

[26] A. Gut, Probability: A graduate course, Springer, 2005.

[27] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-

theoretic applications, Acta Math. 54 (1930), 81�116.

[28] R. Henstock, Theory of integration, Butterworths, London, 1963.

[29] C. S. Kahane, Evaluating Lebesgue integrals as the limits of Riemann sums,

Math. Japonica 38 (1993), 1073�1076.

[30] J. C. Kie�er and �. V. Stanojevi¢, The Lebesgue integral as the almost sure

limit of random Riemann sums, Proceedings of the American Mathematical

Society 85 (1982), 389�392.

[31] V. I. Kolyada, On the metric Darboux property, Analysis Math. 9 (1983),

291�312, in Russian.

[32] O. Kurka, Notes on exceptional densities, preprint.

[33] , Optimal quality of exceptional points of the Lebesgue density the-

orem, preprint.



BIBLIOGRAPHY 141

[34] E. J. McShane, A uni�ed theory of integration, American Mathematical

Monthly 80 (1973), 349�359.

[35] J. Mycielski, Learning theorems, unpublished note.

[36] W. F. Pfe�er, The Riemann approach to integration, Cambridge Univ.

Press, 1993.

[37] A. R. Pruss, Randomly sampled Riemann sums and complete convergence

in the law of large numbers for a case without identical distribution, Pro-

ceedings of the American Mathematical Society 124 (1996), 919�929.

[38] E. M. Stein, Singular integrals and di�erentiability properties of functions,

Princeton University Press, 1970.

[39] A. Szenes, Exceptional points for Lebesgue's density theorem in the real

line, preprint.

[40] L. Peng Yee and P. Výborný, The integral: An easy approach after Kurzweil

and Henstock, Cambridge University Press, 2000.

[41] A. Zygmund, Trigonometric Series, second ed., Cambridge University

Press, Cambridge, 1977, (Combined volumes I and II).


