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Abstract 

Prion diseases are fatal transmissible neurodegenerative disorders characterized 

by spongiform changes, neuronal loss, reactive astrocytosis, and deposition of disease 

associated prion protein (PrP).  

Our aim was to investigate ―clinical target areas‖ for prion disease, responsible 

for disease onset, progression, and the clinical phenotype, using PrP overexpressing 

MloxP and PrP depleted NFH-Cre/MloxP transgenic mouse lines.  

Upon infection with different prion strains NFH-Cre/MloxP mice have 

significantly longer survival than MloxP mice (first set of experiments:  Me7, ~29 weeks 

vs. ~17 weeks; Mouse-adapted BSE , ~33 weeks vs. ~20 weeks; second set of 

experiments:  RML, ~35 weeks vs.12 weeks; Me7 ~29 weeks, vs. ~17 weeks; MRC2 

~31 weeks vs. ~22 week.  

As we found that the first pathological changes in the brains of Me7 and Mouse–

adapted BSE infected mice are localized in the brainstem, and clinical signs of prion 

disease point to brainstem failure, we quantitatively scored spongiosis, abnormal PrP 

accumulation and astrogliosis at early and late stage of disease in specific brainstem 

nuclei of RML and Me7 infected MloxP and NFH-Cre/MloxP mice. The first target 

areas showing abnormal PrP accumulation and gliosis in both prion infections are the 

locus coeruleus (LC), the nucleus of the solitary tract (NTS) and the pre-Bötzinger 

complex (PBC). 

We then studied the pathology progression, scoring prion pathology in these and 

other brainstem nuclei of infected MloxP and NFH-Cre/MloxP mice in the course of the 

disease. We show that neural degeneration in the LC, NTS, and PBC correlate with 

clinical signs characteristic of terminally ill mice. We therefore propose that these areas 

are potential clinical target areas of prion disease. 

We also studied the spatial and temporal characteristics of Cre-mediated 

recombination. With immunohistochemistry in reporter mice, we estimated that in the 

LC, NTS, and PBC, Cre-mediated recombination is 60% or lower, and this can explain 

why mice proceed to terminal stage of the disease. In NFH-Cre/MloxP mice we found 
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that recombination is a progressive event and in the hippocampus it is complete by 5 

weeks post-natally, differently from previous data. 

Finally, we produced anti PrP RNAi –encoding lentivirus which could be used as 

focal therapy in the clinical target areas we propose. 
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1 Introduction 

1.1 Prions and prion disease 

Prion diseases are transmissible neurodegenerative disorders affecting animals 

and humans. They are also known as transmissible spongiform encephalopathies (TSE), 

as they can be transmitted in the same species or between species via different routes of 

infection. According to the protein only hypothesis, the pathogenic event leading to 

prion disease is associated with a conformational rearrangement of the normal cellular 

prion protein, PrP
C
 (C for cellular), to an abnormally folded isoform, PrP

Sc
 (Sc for 

Scrapie, the TSE affecting sheep) (Prusiner, 1982). At the histopathological level, prion 

affected brains show typical neuropathological features, like spongiform vacuolation, 

marked neuronal loss, astrogliosis and microglial proliferation, and accumulation of the 

disease-associated isoform of the prion protein.  

1.1.1 Prion diseases in animals 

The first transmissible spongiform encephalopathy (TSE) was seen in Europe in 

the 18
th 

century. It affected sheep and was denominated ―scrapie‖, due to the 

predominant symptom of sheep scraping themselves. Since then, a variety of prion 

diseases have been described in other animals, including chronic wasting disease of deer 

and elk, transmissible mink encephalopathy, BSE in cattle, and feline transmissible 

encephalopathies. 

1.1.1.1 Scrapie 

Scrapie naturally occurs in sheep and goats: affected animals show loss of co-

ordination, an uncontrollable urge to itch, excitability and progressive paralysis resulting 

in death. The neuropathological hallmarks of scrapie include global neuronal loss and 

cytoplasmic vacuolation, typical spongiform degeneration characterizing the TSEs 

(Foster et al., 2001). In the 19
th

 century transmissibility studies were unsuccessful, due 

to failure to recognize the long incubation periods. First successful transmission was 

achieved in 1939, by inoculating scrapie into goats (Cuillé and Chelle, 1936), and 

further confirmation of the disease transmissibility were obtained accidentally when 

lymphoid tissue used to vaccinate sheep against louping ill virus caused scrapie in the 
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inoculated sheep (Gordon, 1946). Since then, scrapie has been transmitted 

experimentally into other species including laboratory mice (Chandler, 1961) but has 

never been proven to be a risk to human health (reviewed in (Brown and Bradley, 

1998)).  

1.1.1.2 Chronic wasting disease 

Chronic wasting disease (CWD) is a prion disease of deer (Williams and Young, 

1980), elk (Williams and Young, 1982), and moose (Baeten et al., 2007), occurring 

predominantly in North America. Clinical signs of CWD are non-specific and subtle in 

early phase of disease and commonly include weight loss and behavioural changes. 

Pathogenesis studies have revealed deposition of PrP
Sc

 both in the central nervous 

system (CNS) and extraneural tissues (lymphoid tissue, pancreas, skeletal muscle). 

CWD was first recognized in captive animals in Colorado, but epidemiological studies 

showed widespread occurrence of CWD both in farmed and free-ranging cervids in a 

number of other US States and in Canada. Horizontal transmission (Miller and 

Williams, 2003), potentially through excreta contaminating the environment, has led to a 

surge in CWD research, focused on understanding species susceptibility, transmission 

and pathogenesis, spatial epidemiology, diagnostic tools, strains, and cervid PrP 

structure, thanks to the generation of transgenic mice susceptible to CWD (Browning et 

al., 2004). To date, transmission to human has not been observed. 

1.1.1.3 Transmissible mink encephalopathy 

Transmissible mink encephalopathy (TME) has been described in captive 

animals mainly in the USA, and is believed to be transmitted by feeding animal tissues 

from scrapie-infected sheep or TSE-infected cattle (Marsh, 1992). Successful 

experimental transmission has been reported in hamsters (Kimberlin and Marsh, 1975) 

and similarities between TME and BSE in a mouse model have been noted (Baron et al., 

2007), but TME is not considered related to BSE in cattle. 

1.1.1.4 BSE 

Bovine spongiform encephalopathy (BSE) or ―mad cow disease‖ as it is 

colloquially known, was first observed in the UK in 1986 reviewed in (Smith and 
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Bradley, 2003). Source of contamination has been identified to be meat and bone meal 

(MBM), a high protein supplement, originating from tissue waste from various species, 

fed to young calves. Since the first appearance, approximately 180,000 cattle have 

developed the disease (Anderson et al., 1996; Ghani et al., 2003; Ghani et al., 2002). 

Furthermore, several cases appeared in zoo ungulates (Kirkwood et al., 1990), house 

cats (Wyatt et al., 1991) and zoo felines (Kirkwood and Cunningham, 1994) presumably 

from feeding of bone meal.  

The initial hypothesis for the transmission route was that BSE may have arisen 

from scrapie infected sheep carcasses rendered into MBM ( meat and bone meal) 

(Wilesmith et al., 1988; Wilesmith et al., 1991; Smith and Bradley, 2003). However, the 

BSE strain is molecularly and biologically different to the strain causing scrapie, 

arguing against this hypothesis (Bruce et al., 1994). An alternative hypothesis is that a 

sporadic case of BSE arose by chance in cows and initiated the epidemic (Weissmann 

and Aguzzi, 1997). 

In 1988 the first control measures were applied and ruminant carcasses were 

banned in cattle fed in the UK. Some BSE cases were still identified after the ban, and 

the emergence of variant CJD in 1996 (Will et al., 1996; Collinge and Rossor, 1996) 

urged re-enforcement of the ban. Other European countries enforced the 1996 UK ban in 

2001.  

1.1.2 Human prion diseases 

Human prion diseases can be classified according to their aetiology as sporadic, 

inherited or acquired.  

Historically, they have been categorized as the clinicopathological syndromes of 

Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), 

fatal familial insomnia (FFI) and kuru; they are all potentially transmissible. These 

disorders are rare, affecting one to two people per million world-wide per annum 

(Collinge, 2005), but are considered of great interest because of their unique biology and 

for the threat to public health that the BSE epizootic could represent. 

Genetic susceptibility for the development of prion disease is conferred by a 

polymorphism at amino acid residue 129 of the prion protein [which encodes 
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methionine (M) or valine (V)]. Methionine homozygotes (codon 129MM) are at a 

slightly higher risk of developing prion disease, maybe due to the increased propensity 

of PrP to form PrP
Sc

-like structures, as shown in vitro (Tahiri-Alaoui et al., 2004). 

Heterozygosity (codon 129MV) is believed to confer resistance by inhibiting 

homologous PrP protein-protein interactions (Palmer et al., 1991). 

1.1.2.1 Sporadic CJD 

Sporadic CJD (sCJD) represents around 85% of all human prion diseases. It is a 

rapidly progressive multifocal dementia: the initial symptoms in about a third of the 

cases are fatigue, sleep disorders and decreased appetite; behavioural and cognitive 

symptoms in another third of the patients, and a final third have focal signs such as 

visual loss, cerebellar ataxia, aphasia and motor deficit (Johnson, 2005). Men and 

woman are affected equally, with age at onset of 60 years (Brown et al., 1994), and a 

mean duration of 5 months, and 90% of the patients are dead within a year (Johnson and 

Gibbs, Jr., 1998). Characteristic MRI patterns, with changes in the basal ganglia, 

electroencephalogram (EEG) readings, showing synchronized biphasic or triphasic 

sharp-wave complexes, and elevation of 14-3-3 protein in the cerebrospinal fluid (CSF) 

are diagnostic tools for sCJD (Steinhoff et al., 2004; Tschampa et al., 2005) but none of 

them are 100% specific or sensitive. Therefore, definitive diagnosis is confirmed in vivo 

by brain biopsies (carried out to exclude other tractable CNS disorders such as 

vasculitis) or more commonly by post-mortem examination. The salient pathological 

findings are deposition of abnormal PrP and variable spongiform changes of the CNS 

grey matter and the spinal cord. The aetiology of sCJD is uncertain: sporadic generation 

of abnormally folded prion protein can result from spontaneous mutation in the prion 

gene (PRNP) (Brown et al., 1987; Collinge, 1997), or random misfolding of prion 

protein, as a rare stochastic event resulting in a cascade of prion protein misfolding into 

the pathogenic isoform (Collinge, 1997). Homozygosity at codon 129 of human prion 

protein increases susceptibility to sCJD (Mead, 2006). 
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1.1.2.2 Inherited prion diseases 

Inherited prion diseases represent 15% of prion diseases, distributed into three 

principal phenotypes, familial CJD (fCJD), GSS syndrome and FFI. The diagnosis of 

these diseases requires a combination of clinical features, a family history consistent 

with autosomal dominant inheritance and a prion protein gene (PRNP) disease-causing 

mutation. Clinical features include various combinations of adult-onset neurological 

signs and symptoms like dementia, psychiatric symptoms, myoclonus and brainstem 

related disturbances (autonomic, visual and movement impairment). Neuropathology 

varies considerably, depends on the mutation and can even vary between patients with 

the same mutation (Chapman et al., 1993; Barbanti et al., 1996; Wadsworth et al., 2006). 

It can consist of spongiform degeneration and astrogliosis in the cortex and deep nuclei 

in fCJD; multiple amyloid plaques in GSS; neuronal loss and astrogliosis in the 

thalamus and the inferior olivary nucleus in FFI (DeArmond and Prusiner, 1997). 

Over thirty distinct mutations have been documented (Mead, 2006), consisting of 

three types: point mutations leading to amino acid substitutions, premature stop codons, 

and insertion of octapeptide repeats within an unstable region rich in proline, glycine, 

and glutamine (OPRI). It is still unclear how mutations in the PRNP gene can lead to the 

disease. It has been hypothesized that thermodynamic changes may favour the transition 

to the disease-associated prion isoform or that subtle structural differences in the mutant 

proteins may affect inter-molecular signalling in various ways (Riek et al., 1998; 

Swietnicki et al., 1998).   

1.1.2.3 Acquired prion diseases 

1.1.2.3.1 Kuru 

Kuru was the first identified acquired prion disease, emerging in the 1950s in the 

Eastern Highlands of Papua New Guinea among people of the Fore linguistic group 

(Mead et al., 2003). In 1959, Hadlow suggested similarity between kuru and scrapie in 

epidemiology, clinical signs and pathology (Hadlow, 1959). Following his observation, 

Gajdusek and colleagues succeeded in transmission of ―kuru like syndrome‖ to 

chimpanzee inoculated with brains tissue of kuru patient, after an incubation period of 
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18-21 months (Gajdusek et al., 1967). Kuru predominantly affected woman and children 

practicing ritual cannibalism as a bereavement ceremony. The epidemic is thought to 

have begun when an individual with sCJD was consumed at one of these rituals. In the 

late 1950s the Australian government banned endocannibalism, effectively stopping 

kuru transmission. Clinically, kuru is a progressive cerebellar ataxia (Collinge et al., 

2008), with cognitive changes occurring just in advance stages (Zigas and Gajdusek, 

1957; Hornabrook, 1968). Disease onset ranges from 5 to 60 years, and its duration can 

last from 3 months to 3 years (Collinge et al., 2008). Kuru incubation periods vary, from 

as little as 4.5 years to over 50 years (Collinge et al., 2006). Neuropathology is 

characterized by spongiform changes and PrP
Sc

 plaques (Alpers, 1987). The genotype of 

residue 129 has a profound effect on the incubation period and susceptibility to kuru: the 

MM genotype has the shortest incubation period (Lee et al., 2001), followed by VV 

homozygotes and MV heterozygotes, whose incubation times has been reported to be 

>50 years (Collinge et al., 2006). Recently the 127V polymorphism has been shown to 

be an acquired prion disease resistance factor selected during the kuru epidemic. 

Variants at codons 127 and 129 of PRNP are believed to represent the population 

genetic response to an epidemic of prion disease (Mead et al., 2009b). 

1.1.2.3.2 Iatrogenic CJD 

The reported routes of transmission of iatrogenic CJD have been implantation of 

dura mater grafts, treatment with human growth hormone derived from the pituitary 

glands of human cadavers, corneal transplants and use of contaminated neurosurgical 

instruments (Brown et al., 1992; Brown et al., 2000) and EEG electrodes (Bernoulli et 

al., 1977; Masters et al., 1979; Bernoulli, 1980). Since 1985, over 100 cases of iCJD 

have occurred after neurosurgical use of human cadaveric dura mater (Brown et al., 

2000). In 1985, the occurrence of CJD in human growth hormone recipients (Koch et 

al., 1985; Gibbs et al., 1985; Powell-Jackson et al., 1985) provided evidence of 

transmission of CJD via human growth hormone, because of the discrepancy between 

the young age of the patients and the one usually observed in CJD. After that, the 

product was withdrawn in most countries, but over 130 young adults have developed 

iCJD 30 years after discontinuing the injections (Brown et al., 2000), with such a long 
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incubation period probably due to the peripheral route of inoculation. The initial 

presentation is characterized by progressive cerebellar syndrome, while other features, 

like dementia, develop late. The resemblance to kuru clinical progression may be due to 

the common peripheral route of infection (Will, 2003; Wadsworth and Collinge, 2007). 

The codon 129 genotype has been proved to be linked to susceptibility and incubation 

period (Collinge et al., 1991; Huillard d'Aignaux et al., 1999). 

1.1.2.3.3 Variant CJD 

Concerns about transmission of BSE to humans arose following a report in 1995 

of cases of apparent sCJD in unusually young people in the UK (Britton et al., 1995; 

Bateman et al., 1995; Tabrizi et al., 1996). More cases manifested the following year, 

leading to the recognition of a new clinicopathological type of human prion disease, 

denominated ‗variant‘ CJD (vCJD) (Will et al., 1996). The link between BSE and vCJD, 

suspected on the basis of the epidemiology, was then supported by experimental data on 

strain typing. sCJD and vCJD prion strains have a different SDS-PAGE migration 

pattern following limited proteinase K digestion. Analysis of vCJD samples showed a 

pattern different from the other forms of CJD known hitherto. This new pattern was 

designated type 4 (or type 2b according to an alternative classification by Gambetti, 

reviewed in (Kovacs and Budka, 2009)) and proved to be the same as BSE (Collinge et 

al., 1996). Furthermore, transmission studies in transgenic and wild type mice confirmed 

that vCJD is caused by the same strain causing BSE in cattle (Hill et al., 1997; Bruce et 

al., 1997). This raised the possibility of a major epidemic occurring in the UK and other 

countries as a result of dietary exposure to BSE prions (Collinge, 1999; Ghani et al., 

2003). Another serious threat to public health was feared for the iatrogenic exposure of 

pre-clinical vCJD via medical and surgical procedures (Collinge, 1999; Peden et al., 

2005).  

By July 2010, 173 cases of vCJD have been reported in the UK (de Marco et al., 

2010). Recently, a large-scale immunohistochemical examination for lymphoreticular 

prion protein in tonsil specimens, collected in Britain, predicted a prevalence of disease-

related prion protein in the British population of 109 per million (de Marco et al., 2010) 
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Clinical manifestation of vCJD is characterised predominantly by psychiatric 

disturbances (Spencer et al., 2002). Individuals initially present with progressive 

cerebellar symptoms and then develop dementia. Age of onset ranges between 16-51 

years and disease duration varies from 9-35 months (Knight, 2006). Characteristic 

neuropathological features are widespread spongiosis, gliosis and neuronal loss. PrP
Sc

-

positive ‗florid amyloid plaques‘ are present in high numbers both in the cerebrum and 

cerebellum (Will et al., 1996), and are different from the ones seen in kuru because they 

are surrounded by vacuoles (Alpers, 1987). Unlike other human prion diseases, PrP
Sc 

is 

also present in non-CNS tissues (Wadsworth et al., 2001; Peden et al., 2006; Wadsworth 

et al., 2007). 

Until recently, all vCJD cases documented had been homozygous for methionine 

at PRNP codon 129 (Collinge et al., 1996). However, in 2009 the clinical diagnosis of 

vCJD was made in an heterozygous subject (Kaski et al., 2009), and it is believed that 

more cases may be found, probably with prolonged incubation time. In mice prion 

disease susceptibility and incubation periods are known to be affected by other genetic 

loci (Stephenson et al., 2000; Lloyd et al., 2001; Lloyd et al., 2002; Lloyd et al., 2009). 

Recently, two novel candidate loci, RARB and STMN2, have been identified as potential 

vCJD risk factors in a genome-wide association study (Mead et al., 2009a). 

1.1.3 Nature of the infective agent and protein-only hypothesis 

First observations of resistance of sheep scrapie to formaldehyde were obtained 

in the 1940s (Gordon, 1946). The original assumption of viral origin of the infectious 

agent was challenged 20 years later, when Alper first hypothesized that the infectious 

agent was devoid of nucleic acid (Alper et al., 1967), after the demonstration of 

resistance to inactivation of infectivity by ultraviolet irradiation and high temperature 

(Alper et al., 1966). These observations led Griffith to propose in 1967 that a protein 

alone could be an infectious agent (Griffith, 1967), challenging one of the central 

dogmas of biology. The scepticism of the scientific community was partially overcome 

years later, when Prusiner and co-workers achieved considerable purification of the 

scrapie agent, and found that its physicochemical properties were typical of proteins and 

inconsistent with nucleic acid. Prusiner coined the term ‗prion‘ (proteinaceous infectious 
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particle),―small proteinaceous infective particles that resist inactivation by procedures 

which modify nucleic acids‖ (Prusiner, 1982). Shortly after, a scrapie-associated protein 

which correlated with infectivity was isolated from infected hamster brain (McKinley et 

al., 1983). This protein was found to be aggregated, highly insoluble in non-ionic 

detergents and partially protease resistant and was designated PrP 
27-30

 for its molecular 

mass of 27 – 30kDa.  

1.1.3.1 Prion protein gene  

Determination of the amino acid sequence of the prion protein co-purifying with 

scrapie infectivity led to recovery of cDNA clones from scrapie infected Syrian hamster 

and murine brain libraries. PrP mRNA was found to be the product of a host gene, called 

Prnp, expressed equally in infected and uninfected animals (Oesch et al., 1985; 

Chesebro et al., 1985). The normal product of the gene was defined as PrP
C
 (from 

‗Cellular‘ isoform of the protein) and it became clear that PrP
27-30 

was derived from a 

larger molecule of 33-35 KDa, designated as PrP
Sc

 (from the ‗Scrapie‘ isoform of the 

protein). The two isoforms PrP
C
 and PrP

Sc
 have the same primary structure but differ in 

their secondary and tertiary structure, which affect their physicochemical properties. The 

identification of these isoforms led Prusiner to update and elaborate the protein-only 

model of infectivity originally proposed by Griffith, providing a model by which prions 

could ‗replicate‘ and be infectious (Prusiner, 1989).  

The PrP gene is a single copy gene consisting of two (or three, differentially 

spliced) exons in hamster (Basler et al., 1986) and human (Puckett et al., 1991), and 

three exons in mice (Westaway et al., 1994). Human PRNP has been mapped to the 

short arm of chromosome 20 and the mouse Prnp gene has been mapped to the 

homologous murine chromosome 21 (Sparkes et al., 1986). In all species examined, the 

open reading frame is contained entirely in the last exon (Kretzschmar et al., 1986b; 

Puckett et al., 1991) and encodes 253-257 amino acids (254 in the mouse). The primary 

sequence of PrP includes a hydrophobic signal sequence consisting of 22-24 C-terminal 

amino acids (22 in the mouse) which is cleaved off when the GPI anchor is added.  



33 

 

1.1.3.2 Structural characteristics of PrP
C
 and PrP

Sc 
 

It is now widely recognized that PrP
Sc

 is derived from PrP
C
 (Borchelt et al., 

1990) and no covalent differences between PrP
C 

and PrP
Sc

 have been demonstrated 

(Caughey and Raymond, 1991). Expression of recombinant PrP in E.coli allowed 

determination of the three dimensional conformation of the cellular form by NMR 

spectroscopy (Riek et al., 1996). The mature PrP
C 

consists of an N-terminal region of 

about 100 amino acids, which is unstructured when the isolated molecule is in solution, 

and a C-terminal domain of around 100 amino acids, composed of three α-helices and a 

short anti parallel β-sheet (PrP
C
 structure will be discussed in further details in 

paragraph 1.1.4). The N-terminal region contains a series of highly conserved 

octapeptide repeats which are implicated in copper binding (Brown et al., 1997a) and 

may play a role in the normal protein functions (Brown, 1999; Pauly and Harris, 1998).  

The structure of PrP
Sc 

has not yet been determined, because material extracted 

from affected brains is highly aggregated, detergent insoluble and not suitable for high 

resolution structural studies. However, Fourier Transform Infrared Spectroscopy (FTIR) 

and circular dichroism studies have demonstrated that PrP
Sc

 is rich in β-sheet (Gasset et 

al., 1993; Pan et al., 1993). PrP
Sc

 contains ~43% beta sheet and 34% alpha helix, while 

PrP
C
 contains only 3% beta sheet (Pan et al., 1993). From this observation, it has been 

suggested that the infective process results from a switch from the predominantly alpha-

helical PrP
C
 to the predominantly beta sheet PrP

Sc
 (Caughey et al., 1991; Gasset et al., 

1993; Pan et al., 1993). 

The PrP
Sc

 protease-resistant core has been shown to re-arrange into amyloid 

rods, which stain with Congo red, and show birefringence, typical of amyloids (Prusiner 

et al., 1983). 

1.1.3.3 Models of prion conversion and replication  

Two main models have been proposed for the prion conversion process. The first 

is commonly known as the ―heterodimer model‖, or the ―template directed conversion 

model‖ in which PrP
Sc 

binds PrP
C
 and acts as a template, forcing refolding of PrP

C
 

(Prusiner, 1991). 
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The second is known as ―nucleated or seed polymerization model‖ (Come et al., 

1993). This model postulates that PrP fluctuates between a dominant native state (PrP
C
) 

and a series of minor conformations. One or a set of minor conformations can associate 

in a supra-molecular structure made up of misfolded monomers (PrP
Sc

). Experiments 

with β-PrP, a recombinant protein mimicking PrP
Sc

, showed that β-PrP aggregation 

occurs slowly until a critical size is reached and the misfolded proteins form a stable 

‗seed‘ structure. Once a stable seed is formed, further recruitment of misfolded PrP or β-

PrP monomers can occur as an irreversible process driven thermodynamically by 

intermolecular interactions. This second mechanism could explain all three aetiologies 

of human prion disease: initiation of the pathogenic self-propagating conversion reaction 

may be induced following exposure to a ‗seed‘ of aggregated misfolded monomers 

following prion inoculation (acquired), as a rare stochastic conformational change 

(sporadic), or as an inevitable result of expression of a pathogenic mutant PrP
C 

form, 

prone to form misfolded monomers (inherited) (Collinge, 2005). It still remains to be 

confirmed if such alternative protein conformational states are enough to adopt PrP
Sc

 

conformation and cause prion disease alone, or other cellular cofactors are needed 

(Figure 1.1). 
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Conversion of PrP
C
 to PrP

Sc
 has been achieved in cell-free systems in vitro but 

infectivity of the de novo generated PrP
Sc

 could not be established (Kocisko et al., 1995; 

Kocisko et al., 1994; Hill et al., 1999). The development of a more sophisticated in vitro 

conversion technique called Protein Misfolding Cyclical Amplification (PMCA) 

(Castilla et al., 2005) has allowed much more efficient replication and detection of PrP
Sc

 

and has helped to demonstrate that infectious material can be produced in a cell-free 

system, which when inoculated into mice leads to scrapie-like disease (Bruce et al., 

1994; Supattapone, 2004). Additionally, synthetic prions that polymerise into fibrils in 

vitro have also been shown to be infectious in vivo (Legname et al., 2004).  

 

Figure 1.1 Models for prion conversion 
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According to the ‗heterodimer‘ or ‗template directed conversion model‘ (top panel), PrPSc binds PrPC and 

acts as a template, catalysing the refolding of PrPC into PrPSc. According to the ‗seed polymerization 

model‘ (bottom panel), PrP fluctuates between a dominant native state (PrPC) and a series of minor 

conformations. One or a set of minor conformations can associate in a supra-molecular structure made of 

misfolded monomers (PrPSc). Monomer association occurs slowly until a critical size is reached and the 

misfolded proteins form a stable ‗seed‘ structure. From this point, further recruitment of misfolded PrP 

can occur rapidly, as an irreversible process driven thermodynamically by intermolecular interactions. 

Adapted from an illustration of Prof. Sebastian Brandner. 

 

1.1.3.4 Prion strains and transmission barriers 

Prions exist as distinct isolates or strains. Prion strains can be propagated in lines 

of inbred mice and maintain their biological properties, with distinct incubation time and 

neuropathology (Bruce et al., 1992). Strains are not believed to be encoded by 

differences in primary structure, as they can be serially propagated in inbred mice with 

the same Prnp genotype, and can be re-isolated in mice after passage in intermediate 

species with different PrP primary structure (Bruce et al., 1994).  

Because of the lack of a nucleic acid, the protein-only hypothesis faces the 

challenge to explain how a single peptide chain can encode multiple disease phenotypes. 

Some strains show biochemical difference in the propagated PrP
Sc

. For example, two 

TME prion strains, hyper (HY) and drowsy (DY), produce different PrP
Sc

 fragment 

sizes, upon limited proteolysis (Bessen and Marsh, 1994). Distinct human PrP
Sc

 types 

have been identified by proteolytic fragment size and glycoform ratios, following 

proteinase K digestion (Peretz et al., 2001). These biochemical properties can imprint 

their characteristic on the recipient PrP: studies with human isolates in transgenic mice 

showed that PrP
Sc

 fragment sizes following proteinase K digestion, and ratios of the 

three principle glycosylated isoforms are maintained. Also, the characteristic molecular 

signature of the BSE prion strain is maintained in experimental transmissions and across 

several mammalian species, including humans (Collinge et al., 1996). Differential 

proteinase K digestion kinetics (Kuczius and Groschup, 1999), thermal or chaotrope 

denaturation curves, conformation-dependent immunoassay (Safar et al., 1998; Safar et 

al., 2000), metal binding (Wadsworth et al., 1999), and the propagation of strain 
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associated biochemical characteristics from in vitro produced prions (Kocisko et al., 

1994; Bessen et al., 1995; Castilla et al., 2005) provide further evidence that distinct 

prion strains are associated with different conformational states of PrP. On the opposite 

side of the coin is the concept of ―species barrier‖ or ―transmission barrier‖: 

transmission of prion diseases between different mammalian species is generally less 

efficient than within the same specie. Early studies hypothesized that the ‗barrier‘ 

resides in the PrP primary structure; for example, transgenic mice expressing hamster 

PrP, unlike wild-type mice, are highly susceptible to Sc237 hamster prions (Prusiner et 

al., 1990). However, it is now clear that prion strain type also affects the ease of 

transmission from one species to another. The most obvious example is the transmission 

study of human prion disease. It has proven difficult to transmit classical CJD prions to 

conventional mice, whereas transgenic mice expressing human PrP in the absence of 

mouse PrP completely lack the species barrier (Hill et al., 1997; Collinge et al., 1995b). 

However, vCJD prions transmit much more readily to wild-type mice, whereas 

transmission to humanized mice is inefficient, despite having a PrP primary structure 

identical to that of the classical CJD (Hill et al., 1997). ―Transmission barrier‖ has been 

proposed as a more appropriate term than ―species barrier‖, because two strains 

propagated in the same host may have completely different barriers when propagated in 

another species.  

To unify the concept of strains and transmission barrier, the ―conformational 

selection model‖ has been postulated (Collinge, 1999). This states that the number of 

PrP
Sc

 types or strains in mammalian prion disease is limited by thermodynamic stability 

and the need to replicate at a rate above that of clearance naturally occurring in vivo. 

Ease of transmission from one species to another will thus depend on the overlap 

between the permissible conformations for PrP
Sc

 derived from the donor species, and 

those of the host species; two species with no permissible PrP
Sc

 conformations in 

common would have a larger barrier to transmission. Therefore, in this model, host PrP 

primary structure influences which of the possible PrP
Sc

 types are thermodynamically 

favoured with respect to conformation, and kinetically selected during propagation, and 

the transmission barrier is determined by the degree of overlap between the subset of 

PrP
Sc

 types allowed in the host and donor species (Figure 1.2). 
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The conformational selection model can also accommodate the well-known 

phenomenon of ―strain mutation‖ (Bruce, 1993). Strain mutation occurs when a strain 

does not ―breed true‖ upon passage in a new host and generates a distinct strain. This 

phenomenon may occur when the host and donor have different or identical primary 

structure, suggesting that modifier loci have an effect on strain selection (Asante et al., 

2002; Lloyd et al., 2004).  

In line with the conformational selection hypothesis, strain mutation can be seen 

as the selection of a novel PrP
Sc

 conformer as a result of host PrP
C
 not being able to 

adopt the donor PrP
Sc

 conformation. In this scenario, two possibilities can be 

hypothesized: a strain can exist as a molecular clone and strain mutation generates a 

distinct PrP
Sc

 type; or strains consist of an ‗ensemble‘ of molecular species, where one 

PrP
Sc

 type is preferentially propagated by its usual host (Figure 1.3). However, an 

alternative host may select a less populous subspecies in the ensemble, because 

propagation of this subspecies is more favoured in the new environment, giving rise to a 

strain shift. The second hypothesis has been favoured, given the high degree of 

molecular diversity observed in prion isolates (Collinge and Clarke, 2007).  
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Figure 1.2 The conformational selection model explains the phenomenon of transmission barrier 

Each PrP primary structure is compatible with a subset of PrPSc conformation. Ease of transmission from 

the donor species to the host species depends on the overlap between the permissible conformations for 

PrPSc derived from the donor species, and those of the host species. Two species with no permissible PrPSc 

conformations in common have a larger barrier to transmission. Adapted from (Collinge and Clarke, 

2007). 
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Figure 1.3 Strain shift or mutation 

Strain mutation occurs when a novel PrPSc conformer is selected as the host PrPC cannot adopt the donor 

PrPSc conformation. Two models, not mutually exclusive, can explain this phenomenon. A. In a clonal 

strain, a direct strain mutation causes a different PrPSc type. B. A strain consisting of  an ensemble of 

molecular species breeds true when it is propagated in a host that preferentially propagates the dominant  

PrPSc  type (Host A), but may change in a host that selectively propagates a minor component of the 

ensemble ( Host B), generating a mutant strain . Adapted from (Collinge and Clarke, 2007) 

 

1.1.4 Cellular prion protein 

1.1.4.1 Prion protein structure 

Prion protein is a highly conserved glycoprotein. In human it is encoded on the 

short arm of chromosome 20, and in mice on chromosome 21 (Sparkes et al., 1986). 

Human PrP
C
 is translated as a 253 amino acid polypeptide containing at both termini 

two signal sequences. In the endoplasmic reticulum (ER) the protein undergoes post-

translational modification. The N-terminal signal peptide is cleaved off during 

processing and PrP
C
 can be variably glycosylated at two asparagine residues, resulting 

in un-, mono-, or diglycosylated species (Haraguchi et al., 1989). The C-terminus is 

removed upon attachment of the glycosylphosphatidylinositol (GPI) moiety (Basler et 

al., 1986; Stahl et al., 1987; Turk et al., 1988). In the mature peptide, the N-terminus is 

basic and unstructured, while the C-terminus forms a domain with three α-helices and a 

short anti-parallel β-sheet (Knaus et al., 2001; Eghiaian et al., 2004; Haire et al., 2004). 
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Within this domain, the two cysteins form an internal disulphide bond. Structural 

information about the N-terminal segment of PrP
C
 is incomplete. This region contains 

five octapeptide repeats that constitute the major Cu
2+

 binding site (Hornshaw et al., 

1995). Additional Cu
2+

 binding sites are localized outside the octapeptide repeat 

(Jackson et al., 2001). Mutations in the N-terminal segment of PrP have been identified 

as the cause of some human prion diseases, raising the possibility that it may be an 

important factor in some PrP
Sc

 conformations and disease manifestation (Hill et al., 

2006; Mead, 2006; Mead et al., 2006). 

The middle of the protein is a highly conserved hydrophobic region, whose 

function is still debated: historically, contrasting reports disputed its function as a 

transmembrane domain (Lopez et al., 1990; Stahl et al., 1990) (Figure 1.4). Further 

studies have demonstrated that peptides from this region can span membranes and 

suggested that this could occur during cellular trafficking (Forloni et al., 1993; Glover et 

al., 2001). Because small peptides from this region can adopt an apoptosis-inducing 

conformation, it has been suggested that the hydrophobic domain may be an important 

part of an infectious prion (Forloni et al., 1993; Gasset et al., 1992). Recently, a stress 

protective function has been proposed for this hydrophobic domain (Rambold et al., 

2008), because of the propensity of the domain to promote dimer formation and the 

relationship between dimerization and stress-protective activity.  
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Figure 1.4 Linear and three-dimensional structure of human PrP 

Human PrP comprises an N-terminus and C-terminus signal peptide (in white); an octapeptide region (in 

grey) a hydrophobic domain (in green); the α-helices (red). A disulphide bond is formed between the 

cystins in α2 and α3. Two potential glycosylation sites are localized in α2 and the linker between α2 and 

α3. Adapted from (Jackson and Clarke, 2000). 

1.1.4.2 PrP
C
 localization and trafficking 

After processing in the ER and Golgi apparatus, mature PrP
C 

is bound to the cell 

surface by the GPI anchor (Stahl et al., 1987). At the cell surface PrP
C
 constitutively 

cycles between plasma membrane and early endosomes (Shyng et al., 1993). Different 

hypotheses on the pathways of internalization have been suggested. The main pathway 

of internalization seems to depend on clathrin-mediated endocytosis: PrP
C
 may bind, 

through a basic amino acid motif in the N-terminal region to a transmembrane protein 

containing a localization signal for coated pits (Shyng et al., 1994; Sunyach et al., 2003). 

Because of the presence of PrP clusters in caveolae or caveolae domains, a caveolae-

mediated endocytic pathway has been proposed (Vey et al., 1996; Peters et al., 2003). 

However, as caveolae do not occur in mammalian neurons (Morris et al., 2006), these 
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observations are not relevant to trafficking in neurons. Another proposed mechanism of 

PrP
C
 internalisation involves lipid rafts. Rafts are constituted by sphingolipids and 

cholesterol molecules that form a platform for the attachment of membrane proteins 

(Simons and Ikonen, 1997). It has been shown that in neurons PrP
C
 associates with lipid 

rafts, and leaves the rafts to traverse the detergent-soluble (non-raft) membrane. PrP
C
 

then enters coated pits for endocytosis, and cycles back to the cell surface via the 

perinuclear sorting compartments (Sunyach et al., 2003). 

1.1.4.3 PrP expression during development in the nervous system  

PrP expression is tightly regulated throughout development and post-natally in 

both a temporal and region-specific manner. In the developing embryo, in situ 

hybridisation experiments reported expression of PrP from 13.5 days in the brain, spinal 

cord, in the peripheral nervous system and in ganglia and nerve trunks of the autonomic 

nervous system (Manson et al., 1992). 

Initial in situ hybridization studies indicated that in the adult, PrP expression was 

restricted to neuronal cells (Kretzschmar et al., 1986a), but subsequently it has also been 

shown in astrocytes (Moser et al., 1995), in other glial cells, and in ependymal cells in 

the rat (Verghese-Nikolakaki et al., 1999). 

PrP mRNA levels have been shown to increase in the early postnatal days in 

hamster and mouse (McKinley et al., 1988; Lazarini et al., 1991; Mobley et al., 1988). 

Regional differences include early post-natal expression in the brainstem and neocortex, 

intermediate expression in the hippocampus and thalamus, and delayed expression in the 

basal forebrain (Mobley et al., 1988). High PrP
C
 expression is also found in the 

parasympathetic, the enteric nervous system, and the neuroendocrine system (Ford et al., 

2002). Outside the central nervous system, PrP
C
 expression is also detected on 

lymphocytes (Cashman et al., 1990) and on follicular dendritic cells(McBride et al., 

1992). 

1.1.4.4 PrP
C
 physiological function  

Despite a conspicuous number of studies on prion cell biology, PrP
C
 function 

remains elusive. Hypotheses on PrP
C
 functions have been based on its localization and 
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on its interactors (Westergard et al., 2007; Nieznanski, 2010). For example, a role in cell 

adhesion has been proposed because PrP
C
 is located at the cell surface and it gets 

recycled between the plasma membrane and the endocytic compartments. The observed 

interaction of PrP
C
 and neuronal adhesion molecules supports this hypothesis (Schmitt-

Ulms et al., 2001). 

A putative role in cell signalling has been suggested by the demonstration that 

PrP
C
 binds to stress-inducible protein 1 (STI1) and mediates neuro-protection through a 

cAMP/PKA signalling pathway (Zanata et al., 2002). Moreover, antibody-mediated 

cross-linking of PrP
C
 triggers signal transduction through the non-receptor tyrosine 

kinase Fyn (Mouillet-Richard et al., 2000). PrP
C
 also interacts directly with proteins 

involved in signalling pathways, like Grb2, Synapsin, and Pint1 (Spielhaupter and 

Schatzl, 2001).  

Additional roles in synaptogenesis (Kanaani et al., 2005), copper homeostasis 

(Vassallo and Herms, 2003) and neuroprotection (Kuwahara et al., 2000; Roucou et al., 

2005; Khosravani et al., 2008) have also been suggested. Recently, PrP
C
 has been shown 

to act as a functional receptor for Aβ oligomers in brain slices (Lauren et al., 2009), 

raising the possibility of crosstalk between prion and Alzheimer‘s disease. 

To shed light on PrP
C
 function, different knock out mouse models have been 

generated. In the first knockout line produced, Prnp
0/0 

mice (named ‗Zurich I‘) (Bueler 

et al., 1992), codons 4 to 187 of the Prnp open reading frame (ORF) were replaced by a 

cassette encoding the Neomycin phosphotransferase selection gene cassette (―Neo-

Cassette‖). In the second line, designated Prnp
-/- 

(Manson et al., 1994), the ORF was 

interrupted by the Neo-Cassette. The two lines were derived in different genetic 

backgrounds, neither expressed detectable PrP
C
, and surprisingly both were 

developmentally and phenotypically grossly normal (Bueler et al., 1992) . It was 

therefore hypothesized that PrP is either not an essential protein or functional 

compensation was occurring during development.  

The creation of a conditional, adult-onset Prnp knockout mouse (Mallucci et al., 

2002) circumvented this possibility. Adult-onset Prnp knockout mice were created by 

crossing mice carrying a ‗floxed‘ Prnp gene on a Prnp
0/0

 background with Prnp
0/0 

mice 

expressing Cre recombinase under the control of the neurofilament heavy chain (NFH) 
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promoter. In these mice, the NFH promoter became active at around 9 - 10 weeks of 

age, leading to Cre-mediated excision of the Prnp transgene in neuronal cells. The mice 

remained healthy following ablation of neuronal PrP
C
, confirming the limited effects of 

loss of PrP function found in previous models. Mallucci‘s mouse model will be 

discussed in further detail in the following chapters of this thesis.  

Three lines of PrP knockout mice, created by deletions beyond the ORF, 

spanning the 5‘splice acceptor site, developed a neurodegenerative phenotype (Moore et 

al., 1999; Sakaguchi et al., 1996; Rossi et al., 2001), but this was shown to result from 

expression of the downstream Prnd gene, encoding the doppel protein (Dpl) (Flechsig et 

al., 2003; Rossi et al., 2001). Further intensive studies on the first knockout mice have 

shown some subtle neurophysiological and metabolic abnormalities. Both synaptic 

function (Collinge et al., 1994; Manson et al., 1995) and intrinsic features of 

hippocampal cells (Colling et al., 1996; Mallucci et al., 2002) have been shown to be 

altered upon loss of PrP expression. Furthermore, altered circadian rhythms and sleep 

disturbance have been reported in PrP null mice (Tobler et al., 1996), an interesting 

finding in light of the sleep disturbances characteristic of FFI. 

Metabolically, reduced Cu
2+/

Zn
2+

-dependant superoxide dismutase (SOD) 

activity has been reported in vivo in Prnp
0/0

 mice and neurons derived from these mice 

exhibit increased vulnerability to oxidative stress in vitro (Brown et al., 1997b). These 

studies suggested a role for PrP in neuroprotection from oxidative stress. The neuro-

protective role for PrP
C
 was further supported by the observation that serum-deprivation 

induced apoptosis is significantly higher in cultured Prnp
0/0 

cells (Kuwahara et al., 

1999), and PrP
C
 protects human primary neurons (Bounhar et al., 2001) and yeast (Li 

and Harris, 2005) against Bax-mediated cell death.  

Another abnormality that suggested a function for PrP
C
 is associated to neuronal 

nitric oxide synthase (nNOS) metabolism: in Prnp
0/0 

mice nNOS is mislocalised and its 

activity is reduced compared to wild type mice. Since PrP
C 

and nNOS are both 

associated with lipid rafts in wild type animals, it has been suggested that PrP
C
 targets 

nNOS to the cholesterol-rich microdomains (Keshet et al., 1999). 

Recently, ablation of PrP
C
 in neurons has been shown to trigger chronic 

demyelinating polyneuropathy. This phenotype could be suppressed by PrP
C
 neuronal 
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expression, but not in Schwann cells, therefore suggesting an important role of neuronal 

PrP
C
 for myelin maintenance (Bremer et al., 2010). 

1.1.5 Prion mediated neurotoxicity 

Although the role played by PrP
C
, PrP

Sc
 and the conversion mechanism in 

neurotoxicity have been extensively studied, the molecular basis of prion-mediated 

neurotoxicity is still poorly understood. Indeed, the nature of the neurotoxic species is 

still under debate. 

1.1.5.1 The role of PrP
C
 in prion disease  

As previously discussed, the physiological role of PrP
C
 has still not been 

clarified. Nevertheless, the loss of a critical PrP function has been proposed as a possible 

mechanism by which PrP
Sc

 formation might result in neurodegeneration (Hetz et al., 

2003a). However, the lack of a clear cut phenotype in the knockout mice (Bueler et al., 

1992; Manson et al., 1994; Mallucci et al., 2002) strongly argues against this hypothesis. 

The role of abnormal PrP
C
 processing in prion pathology is also under debate. It 

has been shown that PrP
C
-null primary neurones in vitro are more sensitive to oxidative 

stress (Brown et al., 1997b) and the exposure of cells to the synthetic peptide PrP106–

126, used as a model for PrP
Sc

 (Forloni et al., 1993), results in microglial activation and 

the production of reactive oxygen species (ROS) (Combs et al., 1999). Also, in Prnp-

null mice the expression of N-terminally truncated PrP
C
 has been shown to induce rapid 

degeneration of cerebellar neurones, which can be rescued by co-expression of wild type 

PrP
C 

(Shmerling et al., 1998). The N-terminal region has been proposed to have 

cytoprotective activity, as an N-terminally truncated PrP
C
 mutant has been shown to 

activate Bax-dependent and independent cell death pathways, (Li et al., 2007). 

Abnormal PrP
C
 trafficking has been proposed to have a role in prion mediated 

neurotoxicity. Most PrP
C
 molecules are anchored to the membrane by the GPI moiety, 

but a small fraction can be cytosolic. Following inefficient translocation in the ER, PrP 

can assume two transmembrane topologies, CtmPrP- C transmembrane PrP with an 

extracellular C-terminus, and NtmPrP- N transmembrane PrP with an extracellular N-

terminus (Hegde et al., 1998). In the former, the N terminus is exposed to the cytosol 
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and the C-terminus is in the ER lumen, whereas in the latter the N-terminus is inside the 

ER and the C-terminus faces the cytosol. In healthy organisms these forms do not 

exceed 10% of total PrP, but in TSEs they may constitute up to 30%. Mutations in the 

hydrophobic domain cause increased generation of CtmPrP, like GSS linked P105L and 

A117V (Hegde et al., 1998; Kim and Hegde, 2002). Other PrP mutants, associated with 

FFI and CJD, D177N may be miss-targeted to the cytosol as a result of retrograde 

transport from the ER (Ma and Lindquist, 2001). Generally, the quality control within 

the cell would trigger degradation of cytosolic PrP
C
 by the ubiquitin-proteasome system. 

However, PrP
Sc

 has been shown to inhibit the proteosome (Kristiansen et al., 2007) and 

inhibition of proteosome activity leads to protein accumulation in the cytosol (Ma and 

Lindquist, 2001; Ma et al., 2002). Cytoplasmic PrP
C
 aggregates are not toxic 

themselves, but mutants lacking the signal sequence and the GPI anchor remain in the 

cytoplasm and can cause neurodegeneration both in vivo and in vitro (Ma et al., 2002).  

1.1.5.2 PrP
Sc

 neurotoxicity 

PrP
Sc

 itself has been proposed as the toxic species. This hypothesis comes from 

the spatial correlation of PrP
Sc

 aggregates and the most damaged areas in prion disease, 

and from in vitro experiments showing that both full-length PrP
Sc

 (Hetz et al., 2003b) 

and shorter PrP peptides are toxic to primary neuronal cultures (Forloni et al., 1993).  

However, the idea that neurodegeneration is caused by formation of PrP
Sc

 is 

strongly challenged by studies showing that PrP
C
-null tissue remains healthy and free of 

pathology when exposed to PrP
Sc

 (Brandner et al., 1996; Mallucci et al., 2003). 

Despite the fact that PrP
Sc

 accumulation correlates with neurodegeneration and 

prion disease manifestation, there are circumstances in which prion disease occurs in the 

absence of detectable PrP
Sc

 accumulation or abundant PrP
Sc 

deposition is observed in 

absence of neurodegeneration. For example, PrP
Sc

 levels are barely detectable in brain 

homogenates from FFI patients and transgenic FFI mice (Collinge et al., 1995a). Also, 

mice inoculated with BSE prions exhibit neuronal death, without detectable PrP
Sc

 

(Lasmézas et al., 1997). In contrast, accumulation of PrP
Sc

 in the absence of any 

spongiform degeneration has been reported in a single GSS patient (Piccardo et al., 

2007). Moreover, inoculation of a patient‘s brain homogenate to recipient mice resulted 
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in almost complete absence of disease transmission, although PrP-amyloid deposition 

was elicited in some of the inoculated mice. 

Neurotoxicity due to PrP
Sc

 is also hard to prove in light of subclinical infection, 

where high levels of PrP
Sc

 accumulate in the absence of clinical symptoms (Hill et al., 

2000; Hill and Collinge, 2003b; Hill and Collinge, 2003a). 

1.1.5.3 Lessons from adult PrP knockout mice 

It has been suggested that the conversion to a toxic species must occur in 

neurons to be pathogenic (Mallucci et al., 2003).  

Mallucci et al. showed the effect of neuronal PrP
C
 depletion on the course of 

disease and on neuropathological change, in animals with established prion disease. 

Two lines of transgenic mice were used (tg 46 and tg37). They express PrP
C
 from a 

MloxP transgene at ~1 and ~3x wild type levels on a Prnp null background. After 

intracerebral inoculation with Rocky Mountain Laboratory (RML) prions these animals 

succumb to scrapie ~12 and ~18 weeks post inoculation. To test the effect of PrP 

depletion during prion disease, these transgenic mice were crossed with NFH-Cre mice, 

expressing the enzyme Cre recombinase under control of Neurofilament Heavy Chain 

promoter. In the double transgenic NFH-Cre/MloxP mice, PrP is normally expressed in 

neuronal and non-neuronal cells until ~10 -12 week of age. The Neurofilament promoter 

activated at 10-12 weeks of age, thus activating the Cre recombinase in neurons, which 

mediates genomic recombination resulting in loss of sequence located within the two 

loxP sites (Figure 1.5) 

NFH-Cre/MloxP (tg 37/63) mice were inoculated with RML prions at 3 or 4 

weeks of age, and prion replication and CNS infection proceeded normally until Cre-

mediated PrP depletion occurred. Control MloxP (tg37) mice were inoculated in 

parallel. In double transgenic animals, neuronal PrP
C
 depletion prevented progression to 

clinical disease and resulted in long term survival of the infected animals. While control 

animals succumbed to scrapie ~18 (tg46) and ~12 (tg37) weeks post infection, NFH-

Cre/tg37 and NFH-Cre/tg46 remained asymptomatic >57 wpi and >58 wpi respectively 

(Figure 1.6). Neuropathologically, scrapie-infected control animals (tg37) showed 

degeneration of hippocampal CA1 and CA3 neurons from 10 wpi, severe neuronal loss 
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by 12 wpi and shrinkage of the entire hippocampus. Asymptomatic prion-infected 

animals with PrP
C
 depletion were protected from neuronal loss up to 48 weeks post 

inoculation. One hallmark of the RML prion strain is spongiosis and early spongiform 

changes were present both in control tg37 and double transgenic tg37/63 (NFH-

Cre/MloxP) mice at 8wpi, but not in mice with Cre-mediated neuronal PrP
C
 depletion 

examined as early as 10 wpi, or up to 48 wpi (Figure 1.7). To allow more time for 

development of pathology before PrP
C
 depletion, the double transgenic animals were 

inoculated at one week of age. Under these conditions, neuropathological changes 

occurring at 8 wpi were reversed after Cre expression at ~ 10 wpi. However, PrP
Sc 

accumulation progressed over a prolonged period of observation, reflecting prion 

replication in glial cells, where Cre is not expressed. Even though abnormal PrP 

continued to accumulate, NFH-Cre mice did not develop symptoms of prion disease. 

In conclusion, this study demonstrated that arresting neuronal conversion of PrP
C
 

to PrP
Sc

, by depleting the former, prevents the progression from pre-clinical to clinical 

infection. Also, adult neuronal PrP
C
 depletion reverses early neurodegenerative changes 

caused by the RML prion strain and protected against neuronal loss, despite continued 

prion replication and PrP
Sc

 deposition.  
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Figure 1.5 Schematic drawing of PrP Cre-mediated recombination in NFH-Cre/MloxP mice 

MloxP mice encode the MloxP construct, containing the floxed murine PrP (MoPrP) coding region 

between two loxP sites. In NFH-Cre/MloxP mice, Cre expression mediates the excision of MloxP PrP 

sequences between the two lox P sites.  

 

 

Figure 1.6 Increased survival in RML inoculated NFH-Cre/MloxP mice after Cre-mediated 

neuronal PrP depletion 

MloxP and NFH-Cre/MloxP mice were inoculated at ~3, 4 weeks of age. Around ~8 weeks post 

inoculation (wpi), Cre-mediated recombination occurred in NFH-Cre/MloxP mice. MloxP mice 

succumbed to prion infection at ~12 and ~ 16 wpi (respectively tg37 and tg 46), while NFH-Cre/MloxP 

mice remain asymptomatic by 52 wpi. Figure from (Mallucci et al., 2003). 
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Figure 1.7 Progression of prion pathology in the hippocampus of RML inoculated MloxP (tg37) 

and NFH-Cre/MloxP (NFH-Cre/tg37) mice 

Sections were stained with haematoxylin and eosin (H&E) and immunostained with an anti-GFAP 

antibody for detection of astrocytosis and with ICSM35 antibody for PrPSc deposition. Panel B and D 

show severe loss of CA1 to CA3 neurons (arrows) and shrinkage of the entire hippocampus (B) in 

terminally ill tg37 mice. No neuronal loss was seen in asymptomatic prion-infected mice with Cre-

mediated PrPC depletion up to 48 wpi (panel J, K, and L). In NFH-Cre/tg37 mice, early spongiosis was 

seen at 8 wpi (C and M), but was not seen at 12, 26, and 48 wpi (N, O, and P), despite continued PrPSc 

accumulation and gliosis (R to T and V to X). Scale bar = 80 µm in C, D, and M to P; =320 µm in all 

the other panels. Picture taken from (Mallucci et al., 2003). 

 

1.1.5.4 The concept of the “toxic species” 

It is clear that the major pathological changes in prion disease do not result from 

loss of PrP
C
. Indeed, it is believed that the major pathological changes in prion disease 

do not result from PrP
C
 loss of function and PrP

Sc
 does not cause neurotoxicity directly 

but exhibits its toxicity only where PrP
C
 is also expressed (Brandner et al., 1996). It has 

therefore been suggested that a neurotoxic intermediate is formed during the conversion 

reaction (Hill et al., 2000; Hill and Collinge, 2003a). This intermediate has been termed 

PrP
L
, for ‗lethal‘ and it is believed to acquire a transient structure or conformation in the 

process of conversion between PrP
C
 and PrP

Sc
.  
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This model had been further optimized to accommodate the apparent split 

between the identity of the propagating infectious agent and toxic species (see for 

review (Collinge and Clarke, 2007). Four steps are envisaged in the process of PrP
Sc

 

formation:  

 

 

The formation of classical intermediates is not catalysed by end products: the 

relative levels of toxicity and infectivity are determined by the ratio of the initial rate of 

conversion (k1) to the rate of maturation (k2). This model can explain also subclinical 

infection: a relatively slow rate of initial conversion (k1) would keep the level of PrP
L
 

low, because its rate of loss through maturation (k2) would be prevailing. Thus, a large 

amount of PrP
Sc

 or infectivity would build up, but with little or completly no toxicity 

(Collinge and Clarke, 2007). Experimental evidence recently provided support for the 

model suggesting uncoupling of prion infectivity and toxicity (Sandberg et al., 2011). 

Mice expressing different levels of PrP
C
 were inoculated with the same dose of RML 

prions, and the prion titre in their brains was compared at different time points. It was 

found that prion propagation occurs in two distinct phases. In phase 1, prions propagated 

exponentially until a defined limit titre is reached. After this point, there is a pathway 

switch and phase 2 is constituted by an infectivity plateau that continues until the onset 

of clinical disease. The production of toxic species occurs in phase 2 and is linearly 

dependent on PrP
C
 expression levels; therefore length of this phase is inversely 

proportional to PrP
C
 expression level. In Sandberg‘s study, maximal prion titre was 

reached long before clinical signs in conventional mice with wild type PrP
C
 expression, 

suggesting that toxic species do not accumulate until infectivity saturates and clinical 

signs occur once the toxic threshold is crossed. These data can easily be accommodated 

in the PrP
L
 general model: Production of PrP

L
 is proportional to PrP

C
 concentration and 

clinical onset occurs when PrP
L
 reaches a toxic threshold (Sandberg et al., 2011) (Figure 

1.8). Other alternative models have been hypothesized to explain the split between 

infectivity and toxicity: for example, fission of infectious particles may stop; leading to 
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further growth but no increase in number of infectious particles; or a key cellular 

component may be depleted.  

 

 

Figure 1.8 Model of prion infectivity and toxicity 

Mice expressing different levels of PrPC (Tg20, eight-fold wild type PrPC expression level; Prnp +/+, wild 

type PrPC expression level; Prnp +/-, 50% PrPC expression level) were inoculated with the same dose of 

RML prions, and the prion titre in their brains was compared at different time points. It was found that 

prion propagation occurs in two distinct phases. In phase 1, prions propagated exponentially (solid line) 

until a limiting titre of prion is attained, independent of PrPC expression level. After this point, there is a 

pathway switch and in phase 2 (dotted line) toxic species are produced, linearly dependent on PrPC 

expression levels. Toxic species do not accumulate until infectivity saturates and clinical signs occur once 

the toxic threshold is crossed. Figure from (Sandberg et al., 2011).  

1.1.5.5 Mechanism for prion-mediated neurodegeneration 

As no specific histopathological marker for PrP
L
 exists, the identity of the toxic 

species is still unknown. Therefore, the production of a toxic species is indirectly 

visualized by variable accumulation of abnormal prion protein aggregates following the 

PrP
C
 to PrP

Sc
 conversion event. Different types of abnormal PrP accumulation are 

detected by immunohistochemical methods. These deposits are highly variable in 

intensity, pattern, (synaptic deposition or formation of coarse granular deposits) and 

distribution within the CNS (Reiniger et al., 2011) . These differences are strain-

dependent. Therefore, abnormal deposition pattern, in conjunction with spongiform 

changes and glial activation patterns are used to characterize different prion strains. 
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Spongiform changes are the most typical alteration induced by prion diseases. 

The name ―spongiform encephalopathies‖ comes indeed from the vacuolation observed 

in the affected brains: small, round or oval vacuoles in the brain tissue, give the tissue a 

typical sponge appearance. The degree of the spongiform changes can vary significantly 

even within the same brain. Although it is the most typical manifestation of prion 

disease, its significance is still unclear, and different scenarios have been proposed: It 

may arise from abnormal membrane permeability and increased water content in the 

neurons(Kovacs and Budka, 2008); from autophagy (Liberski et al., 2004; Liberski, 

2004); or due to production of abnormal PrP within the lysosomal compartment, which 

would cause disruption of the lysosomal membrane, destruction of the neuronal 

cytoskeleton and initiation of vacuolation (Laszlo et al., 1992). TSE-infected mink of 

the Chediak-Higashi genotype, with abnormalities in membrane-bound organelles, 

manifest no vacuolation (Marsh et al., 1976), therefore supporting last hypothesis on 

spongiosis generation. 

Another typical manifestation used to characterise prion diseases is widespread 

glial activation within the brain. Histopathologically, this can be confirmed with 

antibodies against glial fibrillar acidic protein (GFAP) to visualise reactive astrocytes. 

However, the contribution of inflammation to brain dysfunction is still unclear. Upon 

accumulation of PrP
Sc

 deposits, microglia get activated and are attracted to the site of 

injury (Williams et al., 1994). It is still under debate if glial activation is triggered by 

PrP
Sc

 accumulation directly or by the neurodegenerative changes in neurons upon prion 

replication, and if inflammation is the cause or the consequence of neuronal 

degeneration. Expression profiling showed up-regulation of inflammatory genes upon 

PrP
Sc

 accumulation in the brain before neuronal damage (Hwang et al., 2009). 

Moreover, neuropathology time course studies showed astrocytes and microglia 

activation weeks before neuronal loss, coinciding with the first changes in neuronal 

morphology (Perry et al., 2002; Eikelenboom et al., 2002). In vitro experiments proved 

that neurotoxic activity of the aggregated PrP fragment is enhanced in the presence of 

microglia (Brown et al., 1996; Bate et al., 2002). Alternatively, activated microglia 

could play a positive role in removing PrP
Sc

 deposits and slowing down the progression 

of the disease (McHattie et al., 1999). 
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Other neuropathological changes typical of prion diseases are synaptic alteration 

and neuronal loss. However, the molecular mechanisms underlying these 

neurodegenerative pathways are still not completely understood, as well as their 

temporal sequence in the affected brain areas. Synaptic dysfunction is considered one of 

the first events of neurodegeneration. The process of prion conversion is believed to 

impact on the integrity and functionality of the synaptic structure. Various evidences 

point to this direction. For example, in a mouse model of prion infection, synaptic 

alteration appeared concomitantly with PrP
Sc

 deposition and behavioural changes like 

impairment of burrowing, glucose consumption and increase open field activity months 

before neuronal loss (Cunningham et al., 2003). Also, in the Cre-mediated adult knock 

out model mice, synaptic impairment was reported as the first manifestation of the 

disease (Mallucci et al., 2007). At early stage of the disease, PrP
Sc

 has been shown to 

accumulate in the lipid rafts, detaching caveolin and synaptophysin at this site. This may 

lead to impaired synaptic activity (Russelakis-Carneiro et al., 2004). Dendritic loss 

follows synaptic dysfunctions. This mechanism has been proposed to be due to changes 

in the expression and cleavage of Notch-1(Ishikura et al., 2005). Although spongiform 

changes and abnormal PrP accumulation are the typical hallmarks of prion pathology, 

neuronal loss is believed to be the ultimate cause of chronic brain deterioration and fatal 

outcome of prion disease. Neuronal death is a prominent feature of prion diseases and 

there is a good correlation between the type of clinical symptoms observed in each 

disease and the brain region exhibiting the greatest extent of cell death (Budka, 2003). 

Two main pathways have been implicated in neuronal loss, autophagy and apoptosis. 

Autophagy is an intracellular degradation system: cellular organelles with 

proteins are sequestered in the ―autophagosome‖, a double layered vesicle. Once in the 

cytoplasm the autophagosome fuses with the lysosome and forms the 

―autophagolysosome‖. Lysosomal hydrolysis can degrade the content of the 

autophagolysosome. It has been proposed that autophagy is a protective mechanism by 

which the cell fights the diseases through digestion of misfolded aggregates (Moreau et 

al., 2010). 

Apoptosis is programmed cell death, executed by ―caspases‖, a large family of 

cysteine proteases. Apoptosis may be triggered by mitochondrial stress or ER stress. In 
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prion disease both pathways may be activated. Apoptosis induced by aggregated PrP 

peptide fragments or cytosolic PrP proceeds via the mitochondrial pathway (O'Donovan 

et al., 2001; Hachiya et al., 2005). However, neither Bax deletion or Bcl-2 

overexpression decreases neuronal death in prion infection (Coulpier et al., 2006; Steele 

et al., 2007) 

Alternatively, chronic ER stress results in activation of ER-resident caspases that 

in turn cleave and activate downstream caspases. Neurons exposed to PrP
Sc

 exhibit 

extensive ER stress, resulting in release of calcium and activation of the UPR (Hetz and 

Soto, 2006). Up-regulation of ER-resident caspases has been observed in vitro, in brains 

of prion infected mice and in sCJD and vCJD (Hetz et al., 2003b; Hetz et al., 2003b). 

Another proposed mechanism by which ER stress leads to neurodegeneration is the 

disruption of Calcium homeostasis, with release of Calcium from the ER (Hetz et al., 

2003b; Florio et al., 1996). Increased Calcium in the cytoplasm deregulates downstream 

calcium-dependent phosphatases Calcineurin (CaN) activity. It has been shown that 

CaN activation is implicated in neuronal death induced by PrP
Sc

 and synthetic peptides 

(Agostinho and Oliveira, 2003). Moreover, CaN activity increases in the brains at the 

beginning of the symptomatic phase (Mukherjee et al., 2010). 

1.1.5.6 The concept of clinical target areas 

Early studies in the 70s and the 80s focussed on the effect of different route of 

infection on clinical phase of prion disease. It was reported that scrapie replication phase 

in the brain was shorter after peripheral intraperitoneal (i.p.) infection rather than direct 

intracerebral infection (i.c.) in the anterior brain (Kimberlin and Walker, 1983; 

Kimberlin and Walker, 1986; Kimberlin and Walker, 1982). This observation led to the 

proposal that the development of clinical prion disease depends on infection spreading, 

replicating, and producing cell dysfunction and cell death in specific ―clinical target 

areas‖. Further investigations proved that intraspinal injection (i.s.) produced shorter 

incubation time than i.c (Kimberlin et al., 1987). Comparison of the vacuolar lesion 

profiles produced at clinical stage showed that both i.c. and i.s. route of injection 

directly initiate a local infection at their respective sites and the location of these sites 

determines the length of incubation. Moreover, the distribution of vacuoles was similar 
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for the three routes of infection, but severity of the lesion profiles was different; they 

were more severe i.c. than i.p. and i.s. This difference was attributed to the duration of 

the scrapie replication phase in the brain, in agreement with conclusions from other 

studies which showed that the severity of lesions in a given area is limited by the time 

available before the host dies (Cole and Kimberlin, 1985; Bruce and Dickinson, 1985). 

An important corollary to these observations is the speculation that the duration 

of the neural phase of scrapie pathogenesis is determined by the complexity of the 

pathways between the injection site and the postulated clinical target areas in which 

scrapie should replicate for the disease to develop (Kimberlin et al., 1987). 

Different approaches have been used to evaluate the brain regions that could be 

the clinical target areas of prion disease and many studies have pointed to the brainstem 

as an important area. 

For example, analysis on the route of transport of the TME strain Hyper (HY), 

following injection in the sciatic nerve in hamsters, showed that it can spread by 

retrograde transport along specific motor pathways of the spinal cord. As a result, the 

infection targets brain regions that control vestibular and motor function, like the lateral 

vestibular nucleus in the brainstem and the cerebellum. In this experimental model, the 

specific targeting of prion pathology to brain nuclei with a functional role in 

coordination, balance and motor activity was considered responsible for the early onset 

of clinical signs (Bartz et al., 2002). More recently, a histopathological comparison 

between PrP overexpressing Tga20 mice (also known as Tg20) and wild type C57BL/6 

inoculated with three prion strains (RML, Me7 and 22L) showed that abnormal PrP 

accumulation was lower in the overexpressing mice compared to the wild type in all the 

brain regions except for brainstem and thalamus. This implied that one or both of these 

structures may be clinical target areas of prion disease, and that abnormal PrP 

accumulation in the other brain regions did not progress because the clinical target areas 

were already impaired and determined the clinical disease (Karapetyan et al., 2009). 
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1.1.6 Therapeutic strategies in prion disease 

The uncertainties about the identity of the prion neurotoxic species and the 

possible mechanisms of neurodegeneration have been an obstacle to the development of 

a successful therapeutic strategy against prion disease.  

Although the recent development of a prototype blood test for diagnosis of vCJD 

in symptomatic individuals could pave the way to diagnosis of asymptomatic vCJD 

prion infections(Edgeworth et al., 2011), diagnosis is not currently possible without 

clinical manifestation, resulting in a short window of time for therapeutic intervention.  

Despite numerous attempts, no therapy is available and to date prion diseases 

remain fatal. However, a number of proof-of-principles studies have shown that therapy 

for prion disease is an achievable goal. Possible stages for interruption of prion 

formation could target PrP
C
, PrP

Sc
 or the process of conversion between the two 

isoforms. 

Compounds that are able to reduce PrP
Sc

 accumulation in prion infected cells 

include Congo red, polyanionic compounds, amphotericin B, porphyrins and 

Quinacrine. In vivo use of these molecules has been disappointing, showing only small 

increases in the incubation period in animal models (reviewed in (Trevitt and Collinge, 

2006).  

However, a compound that binds PrP
Sc

 is likely to be specific for a particular 

strain or conformation, and blocking the propagation of a major component of the strain 

ensemble would just result in a sub-strain becoming dominant. Moreover, the currently 

available cell lines for screening are susceptible to mouse prions but not human prions, 

and PrP
Sc

 reduction could be triggered by off-site effects linked to the specific cell lines, 

rather than a genuine PrP
Sc

 reduction. 

The Quinacrine study is an example of the obstacles to turn compounds into 

actual therapy: while it can cure prion infected cells in the nanomolar range, in vivo data 

showed no increase in survival time in infected mice (Collins et al., 2002; Doh-ura et al., 

2004); NMR studies showed no interaction with PrP at a physiologically relevant 

concentration (Vogtherr et al., 2003) and no efficacy has been shown in human trials  

(Collinge et al., 2009). 
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Other compounds, such as branched polyamines (Supattapone et al., 1999) and a 

tyrosine kinase inhibitor (Ertmer et al., 2004) are able to enhance the endogenous 

clearance of PrP
Sc

 in vitro. However, as they do not prevent de novo formation of PrP
Sc

, 

they would only have therapeutic value if the formation of a toxic species occurs 

downstream of PrP
Sc 

production.  

As prions cannot propagate in the absence of PrP
C
 (Bueler et al., 1993; Brandner 

et al., 1996), and it has been hypothesized that infectivity and neurotoxicity can be 

uncoupled and mediated by different molecular species (Collinge and Clarke, 2007), 

stabilizing PrP
C
 in order to prevent the conversion process is another therapeutic 

strategy.  

High throughput screening of a large library of compounds has been set up to 

identify high quality drug-like molecules for their property of stabilizing PrP
C
 in vitro 

(Nicoll and Collinge, 2009). As these compounds are not licensed drugs, before any 

clinical trials can be undertaken, eventual hits will need extensive in vivo testing for 

toxicological and pharmacokinetic properties. 

Proof of principle for the PrP
C
 stabilizing strategy is provided by another class of 

therapeutic agents, PrP antibodies. Antibodies against several PrP epitopes have been 

shown to inhibit PrP
Sc

 replication in vitro and transgenic mice expressing anti-PrP µ 

chains are protected against peripheral prion infection ( reviewed in (Trevitt and 

Collinge, 2006). Passive immunization with anti-PrP monoclonal antibodies has been 

proven to reduce PrP
Sc

 accumulation and prion infectivity in the spleen of peripherally 

infected mice, even when antibodies were given at the point of maximal PrP
Sc

 

accumulation. In addition, treated animals survived 300 days more than untreated 

animals. Since antibodies do not cross the blood brain barriers, no effect was seen in 

intracerebrally infected mice (White et al., 2003). However, in a different study, when 

administered intracerebrally, anti-PrP antibodies have been shown to cause severe 

neuronal apoptosis (Solforosi et al., 2004), suggesting further investigations are needed 

to determine the consequences of PrP binding in the CNS. 

Active immunization is limited by immunotolerance to PrP, which is highly 

expressed in the immune system, and studies aiming to overcome this problem have 

shown just modest effects (Sigurdsson et al., 2002; Schwarz et al., 2003).  
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A way to circumvent the handicap represented by the inability of antibodies to 

cross the blood brain barrier in passive immunization, and the host tolerance in active 

immunization, is to combine active and passive immunotherapy. Anti-PrP scFv (single-

chain variable fragment) has been shown to be able to reduce proteinase K-resistant PrP 

in infected cells. Brain delivery of anti-PrP scFv through peripheral treatment has been 

envisaged by use of recombinant adeno-associated virus or lentivirus as a delivery 

system (Campana et al., 2009). However, to date no in vivo experiments have shown the 

effect of this double approach in an experimental model of prion disease. 

The demonstration that removing neuronal PrP
C
 in adult mice is harmless 

(Mallucci et al., 2002) and prevents prion disease progression in an established prion 

infection (Mallucci et al., 2003) has set the basis for a therapeutic approach based on the 

removal or elimination of PrP
C
. 

Potential treatments aimed at removing PrP
C
 for direct therapeutic possibilities in 

humans must be achieved using extrinsic means. The RNA interference (RNAi) 

technology offers opportunities to realize therapeutic gene silencing in vivo. 

1.1.6.1 RNA interference 

RNA interference (RNAi) is a sequence-specific mechanism for post-

transcriptional gene silencing naturally occurring in eukaryotes, initiated by a double-

stranded RNA (dsRNA), either exogenously introduced into the cell, or endogenously 

encoded as microRNAs (miRNAs).  

The process of RNAi can be divided into an initiation step and an effector step. 

In the initiation step, Dicer, a cytoplasmic ribonuclease, recognizes the exogenously 

introduced dsRNA and cleaves it into 21–23 nucleotides (nt) sequences, called short 

interfering RNAs (siRNAs) (Zamore et al., 2000). In the effector step, both siRNAs and 

miRNAs interact with RISC, a multi-protein RNA-induced silencing complex. The 

siRNA duplex is unwound and the strand which is least thermodynamically stable 

within the 5‘ antisense region is loaded into RISC (Khvorova et al., 2003), becoming the 

―guide‖ for locating complementary target mRNAs within the cell (Martinez et al., 

2002) (Figure 1.9). 
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The homology between the guide strand and the mRNA controls whether RISC 

initiates endonucleolytic activity or translational arrest of the target mRNA. SiRNAs 

have a higher degree of homology and therefore mediate degradation of target mRNAs, 

whereas miRNAs silence gene expression through translational repression, as the target 

mRNA is not perfectly complementary. The other strand, denominated ―passenger‖, is 

not incorporated into RISC and get cleaved by RISC itself (Matranga et al., 2005; Rand 

et al., 2005).  

Cleavage of both the passenger strand and the target mRNA is due to the 

endonuclease Slicer. Slicer has been shown to be a highly conserved protein called 

Argonaute 2 (Ago-2) (Liu et al., 2004; Song et al., 2004).  

To use RNAi as a biological tool, siRNA duplexes can be synthesized and 

introduced for direct loading into RISC. Otherwise, recombinant vectors can be used to 

obtain stable, long-term expression of interfering RNA sequences. SiRNA duplexes are 

advantageous because they can bypass the cellular defence mechanisms for recognition 

of long viral dsRNA. On the other hand, unmodified siRNAs are unstable in vivo and 

cannot cross the blood-brain-barrier (White and Mallucci, 2009) 

To be used in conjunction with recombinant vectors, siRNAs are expressed as 

short hairpin RNAs (shRNAs). ShRNAs are duplexes of 19 – 29 nt, corresponding to 

the sense and antisense strands of a ‗traditional‘ siRNA, separated by a short loop 

sequence. Once transcribed within the cell by an endogenous RNA Polymerase, Dicer 

recognises the shRNAs, and cleaves off the loop region to generate a functional siRNA 

(Meister and Tuschl, 2004). 
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Figure 1.9 The process of RNAi 

The process of RNAi can be divided into an initiation step and an effector step. In the initiation step, 

Dicer, a cytoplasmic ribonuclease, recognizes the exogenously introduced dsRNA and cleaves it into 21–

23 nucleotides (nt) sequences, called short interfering RNAs (siRNAs). In the effector step, the siRNAs 

interact with RISC, a multi-protein RNA-induced silencing complex. RISC unwinds the siRNA and loads 

the strand which is the least thermodynamically stable within 5‘ antisense region. This strand becomes the 

―guide‖ for locating complementary target mRNAs within the cell. Once the mRNA is degraded, RISC is 

released. Adapted from (Rutz and Scheffold, 2004) 

1.1.6.2 RNAi in the treatment of neurodegenerative diseases 

Different recombinant viruses, including retroviruses, adenoviruses, adeno-

associated viruses, and herpes-simplex viruses can be used for efficient delivery of 

shRNA-expressing vectors to neuronal cells in vivo. Lentiviruses, a member of the 

retrovirus family, are a common choice for expression of shRNA in the CNS (Naldini et 

al., 1996; Blomer et al., 1997), because of their ability to transduce and integrate into the 

genome of post-mitotic cells such as neurons.  
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Recently virally mediated RNAi has been used successfully as a therapeutic 

treatment in models of a number of different neurodegenerative diseases, including 

mouse models of spinocerebellar ataxia, (Xia et al., 2004), Huntington disease (Harper 

et al., 2005) (Rodriguez-Lebron et al., 2005), Alzheimer‘s disease (Singer et al., 2005), 

and Amyotrophic lateral sclerosis (ALS) (Raoul et al., 2005). These studies suggested 

that virally mediated RNAi against PrP could be a useful therapeutic approach in prion 

disease. 

1.2 The brainstem and its main functions 

The brainstem is located between the higher centres of the central nervous 

system and the spinal cord. It is anatomically divided into mid brain, pons and medulla, 

(Figure 1.10) and is critically important for motor and autonomic control.  

 

 

 

Figure 1.10 The human brainstem 

The human brainstem is localized between the cerebrum and the spinal cord and it is anatomically divided 

into mid brain, pons and medulla. 

 

The midbrain connects the forebrain to the rest of the brainstem. Some major 

regions in the midbrain are: the cerebral peduncles, which anchor the rest of the brain to 

the brainstem; the tegmentum, with the red nucleus, origin of the rubrospinal tract; the 

substantia nigra, a motor centre whose degeneration leads to muscle tremors in 

Parkinson Disease; the tectum, consisting of the superior colliculus and inferior 

colliculus, involved in visual and hear attention; the medial lemniscus, that carries 
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sensory information from the lower nuclei of the brainstem to the thalamus. In the 

midbrain are also located the nuclei of two cranial nerves that control eye movements: 

cranial nerve III (oculomotor) and IV (trochlear). 

The pons in humans appears as an anterior protuberance rostral to the medulla. 

In rodents it is contiguous to the midbrain, with the latero-dorsal tegmental nucleus 

spanning the midbrain and the pons tegmentum. The pons white matter includes tracts 

conducting signals from the forebrain to the cerebellum and medulla and tracts that 

carry sensory information to the thalamus. The nucleus of the motor and sensory part of 

the cranial nerve V (trigeminal) is located in the pons. Pontine nuclei are involved in 

relaying signals from the forebrain to the cerebellum and in control of autonomic 

functions like sleep, hearing, equilibrium, taste, eye movement, facial expression and 

sensation, swallowing, bladder control and posture and respiration. 

Although the functional role of the pons in the generation and control of 

respiratory rhythm and pattern is not fully understood, the pontine regions have been 

shown to interact with the medullary compartments and these interactions modulate 

respiratory network activity and control of respiratory phase transition (Cohen, 1979; 

Okazaki et al., 2002; Cohen and Shaw, 2004; Ezure, 2004; Ezure and Tanaka, 2006; 

Dutschmann and Herbert, 2006; Alheid and McCrimmon, 2008). 

Pontine connections are critical for coordinating the activity of expiratory 

muscles and upper airway musculature during expiration and expression and regulation 

of post inspiratory activity (Dutschmann and Herbert, 2006). 

Of particular interest for the control of autonomic function are the locus 

coeruleus (LC), and the pontine respiratory group (PRG), constituted by the Kölliker-

Fuse nucleus and the parabrachial complex, composed by the lateral parabrachial 

nucleus (LPN) and medial parabrachial nucleus (MPN). The LC is implicated in control 

of homeostatic functions (Svensson and Thoren, 1979; Bhaskaran and Freed, 1988), 

sleep (Aston-Jones and Bloom, 1981), circadian regulation of arousal and performance 

(Aston-Jones et al., 2001), control of breathing (Oyamada et al., 1998; Fabris et al., 

1999; Biancardi et al., 2008), with central respiratory network activity (Coates et al., 

1993; Biancardi et al., 2008) and chemosensitive signalling (Elam et al., 1981; Filosa et 

al., 2002). The LC is also involved in cardiovascular function (Sved and Felsten, 1987). 

http://en.wikipedia.org/wiki/Thalamus
http://en.wikipedia.org/wiki/K%C3%B6lliker-Fuse_nucleus
http://en.wikipedia.org/wiki/K%C3%B6lliker-Fuse_nucleus
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The caudal border of the pons can be located at the intersection of the caudal 

edge of the cerebellar peduncles and the dorsal surface of the brainstem. The nucleus of 

the VII nerve (facial nerve) marks the beginning of the medulla. Three nerve tracts are 

located in the medulla. The cortico-spinal tract is constituted by nerve fibres that carry 

motor signals from the cerebrum to the spinal cord, to stimulate skeletal muscles. Two 

more nerve groups, the gracile fasciculus and cuneate fasciculus carry sensory signals 

from the spinal cord to the brain. In addition, many of the medulla‘s sensory and motor 

functions are mediated through the last four cranial nerves, which begin or terminate 

here: cranial nerves IX (glossopharyngeal), X (vagus), XI (accessory), and XII 

(hypoglossal). 

Historically, different parts of the medulla have been regionalized according to 

their role in regulating main body functions like motor control, cardiovascular and 

respiratory activity. Control of excitability of limb motor neurons used to be attributed 

to the vestibular nuclei (Kuypers, 1981); other nuclei that can be considered to be 

involved in motor control are the nucleus prepositus hypoglossi, known to be a neural 

integrator of horizontal eye movements and also involved in postural balance control 

(Seo et al., 2004); and the olive, which sends climbing fibres to the cerebellum, 

contributing to the cerebellar motor coordination and learning executed by the Purkinje 

cells (McKay et al., 2007). 

The cardiovascular system has been thought to be mainly regulated through 

neurons located in the nucleus of the solitary tract (NTS) and parts of the medullary 

reticular formation, known as rostral ventro-lateral medulla (Loewy and Spyer, 1990). 

The heart has an internal pacemaker and goes on beating even if all nerves to it are 

detached. However the NTS and the RVLM are involved in the regulation of blood 

pressure
1
 and vasomotor tone

2
.The NTS is the site of afferent baro

3
- and 

                                                

1 The force that the blood exerts against a vessel wall (Saladin, 2004). 

 

2 Constant nervous stimulation of the muscles of the blood vessels needed to maintain a resting level of 

contraction (Saladin, 2004). 
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chemoreceptors
4
 fibres (Mifflin, 1992; Mifflin, 1993; Paton et al., 2001; Andresen and 

Peters, 2008) and the RVLM is the so called ―vasomotor centre‖ of the medulla 

(Lindgren, 1961), which exerts sympathetic control over blood vessels throughout the 

body, integrating three autonomic reflexes—baroreflexes
5
, chemoreflexes

6
, and the 

medullary ischemic reflex
7
.  

The circuitry responsible for generating and shaping the respiratory pattern, as 

well as transmitting this pattern to the motor neurons controlling the respiratory muscles 

was located in the ventro-lateral portion of the NTS and ventro-lateral reticular 

formation (Feldman, 1986). Specifically, in the ventral reticular formation, nuclei 

involved in the respiratory rhythm generation pattern (Richter and Spyer, 2001) and 

modulation are organized in the so called ―ventral respiratory column‖. This continuous 

region starts in the pons with the PRG and continues in the brainstem with the 

retrotrapezoid nucleus/parafacial respiratory group, the Bötzinger complex and  the Pre-

Bötzinger complex (PBC) (Figure 1.11) (Bianchi et al., 1995; Richter and Spyer, 2001; 

                                                                                                                                          
3 Stretch receptors detecting changes in blood pressure. When the BP rises, the baroreceptors‘ signalling 

rate rises. This input inhibits the sympathetic cardiac and vasomotor neurons, reduces sympathetic tone, 
and excites the vagal fibres to the heart, causing a reduction in the heart rate and cardiac output and in the 

blood pressure. Baroreflexes are important chiefly in short-term regulation of BP, for example in adapting 

to changes in posture (Saladin, 2004). 

 

4 Receptors detecting changes in blood pH and concentrations of O2 and CO2. Located within small 

organs called aortic bodies and carotid bodies and in particular sites in the brainstem (Saladin, 2004). 

 

5 Autonomic, negative feedback response to changes in blood pressure, detected by baroreceptors 

(Saladin, 2004) 

 

6 Autonomic response to changes in blood pH and concentrations of O2 and CO2. The primary role of 
chemoreflexes is to adjust respiration to changes in blood chemistry, but they have a secondary role in 

stimulating vasomotion. Hypoxemia (O2 deficiency), hypercapnia (CO2 excess), and acidosis (low blood 

pH) stimulate the chemoreceptors and act through the vasomotor centre to cause widespread 

vasoconstriction. This increases overall BP, thus increasing the perfusion of the lungs and the rate of gas 

exchange (Saladin, 2004). 

 

7 Autonomic response to a drop in perfusion of the brain. Within seconds, the cardiac and vasomotor 

centres of the medulla oblongata send sympathetic signals to the heart and blood vessels to induce an 

increase in heart rate and contraction force and widespread vasoconstriction. These actions raise the blood 

pressure and, ideally, restore normal perfusion of the brain (Saladin, 2004).  
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Feldman et al., 2003; Feldman and Del Negro, 2006; Smith et al., 2007; Spyer and 

Gourine, 2009). The exact mechanism by which interconnected brainstem respiratory 

neurons orchestrate the respiratory control is still under debate. Main questions are if the 

rhythm is generated from a discrete group of pacemaker neurons or results from 

integrated activity of diffuse networks of inspiratory and expiratory neurons that excite 

and inhibit each other (Nicholls and Paton, 2009). The PBC has been regarded as the 

kernel of rhythm generation (Smith et al., 1991). 

A growing body of evidence suggests that functions controlled by the medulla 

are so connected that it is not possible to segregate autonomic and somatic regions. For 

example, the vestibular nuclei have projections to the nucleus of the solitary tract, the 

medullar reticular formation and the parabrachial nucleus in the pons (Balaban and 

Beryozkin, 1994; Yates et al., 1994; Yates et al., 1995; Balaban, 1996; Porter and 

Balaban, 1997; Stocker et al., 1997); they contribute to cardiovascular and respiratory 

regulation during movement and changes of posture (Yates et al., 2002; Yates et al., 

2003); portion of medial and inferior vestibular nuclei have been shown to mediate 

autonomic responses and the afferent pathways from brainstem and spinal cord to these 

regions of the vestibular nuclei have been identified (Jian et al., 2005). Moreover, 

regions controlling cardiovascular and respiratory activity are juxtaposed and 

interwoven so that it is still an open question if the same neurons participate in both 

activities (Nicholls and Paton, 2009), considering also that neuromodulators within a 

particular region of the brainstem affect the cardiovascular system by acting 

concomitantly on breathing and vice versa (Coddou et al., 2009; Pilowsky et al., 2009). 
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Figure 1.11 Respiratory regions in the brainstem  

A. Parasagittal section of rat brainstem stained with in neutral red stain, at the level of NA, VRG, nucleus 

of the 7th nerve, and lateral pons. B. Schematic diagram of the spatial arrangement of respiratory-related 

structures in the brainstem. Vertical dashed lines indicate different levels, which delineate rostral extent of 

reduced preparations (solid horizontal lines with arrows) usually adopted in experimental approaches. 

―Medullary preparations‖, obtained after transections through various rostral-caudal levels of the facial 

nucleus or rostral boundary of Bötzinger; ―pre- Bötzinger preparation‖, after transection at rostral 

boundary of pre- Bötzinger Complex; ―rVRG preparation‖, after transection at rostral boundary of rVRG. 

List of abbreviation: 5, V or trigeminal nucleus; 7n, VII or facial nerve; cVRG, caudal VRG; KF, 

Kolliker-Fuse nucleus; LPB, lateral parabrachial nucleus; MPB, medial parabrachial nucleus; RTN, 

retrotrapezoid nucleus; scp, superior cerebellar peduncle; SO, superior olive. Figure from (Smith et al., 

2007). 
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1.2.1.1 The brainstem in prion disease 

Prion disease-related pathology in the brainstem has been reported for different 

experimental and naturally occurring prion diseases. In hamsters, orally infected with 

263K prions, the first target areas of prion pathology are the dorsal motor nucleus of the 

vagus nerve and the NTS. In this model system, for the first time the spread of infection 

was reported to occur via the vagus nerve rather than along the spinal cord (Beekes et 

al., 1998). In a murine model of BSE, early vulnerability of the central serotonergic 

system, located in the brainstem, was supported by behavioural and anatomical-

pathological observation (Vidal et al., 2009). Recently, in BSE affected cattle, PrP27-30 

has been found both in the rostral brainstem, and in the obex, where the fourth ventricle 

narrows to became the central canal of the spinal cord. Therefore this study suggested 

that these areas could be useful specimens for a BSE surveillance program (Polak and 

Zmudzinski, 2011). Moreover, in BSE infected cattle, spongiform lesions and abnormal 

PrP accumulation was reported in the auditory brainstem nuclei and associated with 

clinical dysfunction of the auditory system. These findings could be used for ante-

mortem BSE diagnosis. For human prion disease, sCJD associated neuropathological 

abnormalities in the brainstem were considered a late event in the disease 

progression(Masters and Richardson, 1978). However, more recently a study on 33 

sCJD patients with clinical signs suggestive of brainstem involvement challenged this 

view (Iwasaki et al., 2005). The authors found brainstem atrophy in the pontine base 

was evident in patients with diseases of prolonged duration. Neuronal loss, prominent in 

the pons, and pyramidal tract degeneration affected some but not all the patients with 

prolonged disease. The motor nuclei of pons and medulla, the motor nucleus of the 

vagal nerve and the locus coeruleus were preserved from neuronal loss, but slight to 

mild gliosis was identified in some of the patients with prolonged disease. Although PrP 

deposition showed a granular and diffuse pattern, it was not associated with disease 

duration or neuronal degeneration until late stage and was mainly localized in the 

pontine nucleus, the inferior olivary nucleus, substantia nigra and quadrigeminal body, 

whereas many patients showed mild deposition in the motor nuclei of the brainstem and 

the locus coeruleus. The authors concluded that PrP deposition occurred as an early 
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event in sCJD, however, as signs suggestive of brainstem impairment may result from 

pathologic involvement of basal ganglia and cerebral cortex, this study failed to evaluate 

the relationship between clinical signs and pathology in the brainstem (Iwasaki et al., 

2005). 

1.3 Thesis hypotheses 

We hypothesised that prion disease onset and progression is due to prion 

pathology and neurodegeneration in specific nuclei in the brainstem, fundamental for 

survival. The brainstem is responsible for the control of autonomic functions, and 

autonomic failure is observed both in humans and in animal models of prion disease. 

We set out to characterise the identity of these brainstem nuclei, and therefore identify 

the ‗clinical target areas of prion disease‘.  

Previous studies have shown that PrP conditional knock-out mice survived long 

term to RML inoculation and were protected against neuronal loss and behavioural 

changes. We first hypothesized that upon other prion inoculations (Me7 and Mouse-

adapted BSE) NFH-Cre/MloxP mice would survive long term compared to non-depleted 

MloxP mice (chapter 3), and that this effect would be due to Cre-mediated depletion of 

PrP in specific vital brainstem nuclei. 

However, Cre-mediated depletion in Me7 and Mouse-adapted BSE inoculated 

NFH-Cre/MloxP mice did not produce a long term survival comparable to previous 

published data in RML inoculated NFH-Cre/MloxP mice, and we revised our 

hypothesis. Specifically, we considered that the different outcome may be due to 

different tropism of different prion strains, and that neuronal PrP depletion does not 

protect one or more areas responsible for disease onset and progression in Me7 and 

Mouse-adapted BSE inoculation to the same extent as in RML inoculation.  

We envisaged two different scenario: we hypothesised that clinical target areas 

may be the last regions accumulating abnormal prion protein and neurodegenerative 

changes (chapter 4), or the first regions affected by prion accumulation, effectively 

being rate-limiting in the disease progression (chapter 5). In chapter 4 we challenged the 

‗last target areas hypothesis‘, by comparing the pathology in the late stage RML and 

Me7 inoculated MloxP and NFH-Cre/MloxP mice; in chapter 5 we investigated the ‗first 
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target areas hypothesis‘ by comparing prion pathology in RML and Me7 inoculated 

MloxP and NFH-Cre/MloxP mice at early asymptomatic stage of prion infection. 

In our experiments NFH-Cre/MloxP mice did not survive RML inoculation as 

previously published (cf. chapter 5 and Mallucci et al. 2002). This discrepancy led us to 

hypothesise that the pattern of Cre expression in the NFH-Cre expressing line had 

changed over time and that recombination in the double transgenic line did not occur in 

the proposed clinical target areas with sufficient efficacy to stop the disease progression. 

These hypotheses are investigated in chapter 6. 

Finally, chapter 7 describes the production of lentivirus encoding shRNA against 

PrP, exploring the hypothesis that an extrinsic tool for focal knock-down of PrP in select 

brain areas could protect against prion-mediated neurodegeneration. 

1.4 Aims of the thesis 

Identification of clinical target areas of prion disease in mouse models: 

 To characterize the pathology progression in brains of MloxP and NFH-

Cre/MloxP mice infected with Me7 and Mouse-adapted BSE prion strains. 

 To characterize and compare the end-stage lesion profile in the brainstem of 

RML and Me7 infected MloxP and NFH-Cre/MloxP mice. 

 To characterize and compare the first areas of prion pathology in the brainstem 

of RML and Me7 infected MloxP and NFH-Cre/MloxP mice. 

 

Characterisation of the NFH-Cre/MloxP mouse model: 

 To characterize Cre-mediated recombination in NFH-Cre/MloxP mouse model 

and its effect on the incubation time upon prion infection. 

 

Therapeutic approach to prion disease: 

 To reproduce lentivirus encoding shRNA against PrP to be used as an extrinsic 

tool for focal knock-down of PrP in selected brain areas 
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1.5 Outline of the thesis 

 In chapter 3 we describe experiments that were designed to characterise 

prion pathology in brains of MloxP and NFH-Cre/MloxP mice infected with Me7 

and Mouse-adapted BSE prion strains. We compare these newly acquired data 

with existing data, published by Mallucci et al (Mallucci et al., 2003). At this 

stage only Me7 and mouse-adapted BSE inoculations were carried out. An 

unexpected outcome prompted us to review, and ultimately repeat the RML 

inoculations of MloxP and NFH-Cre/MloxP mice (chapter 4). We formulate two 

hypotheses on clinical target areas of prion disease, the ―first target areas‖ 

hypothesis and the ―last target areas‖ hypothesis. 

 In chapter 4, we analyse the survival of RML, Me7 and MRC2 (slightly 

modified mouse-adapted BSE strain) inoculated MloxP and NFH-Cre/MloxP mice 

and describe a detailed histopathological characterisation of the end stage prion 

pathology in the brainstem of RML and Me7 inoculated MloxP and NFH-

Cre/MloxP mice. These experiments highlighted a discrepancy to the original data 

of Mallucci, in that RML inoculated NFH-Cre/MloxP mice no longer survived 

>52 weeks but succumbed to disease after 35 weeks. This discrepancy prevented 

us from testing a specific aspect of the anatomical target areas hypothesis (late 

target areas scenario) as RML, Me7, and MRC2 inoculation all succumbed to 

prion disease and RML and Me7 inoculated mice had extensive prion deposition 

in the brain stem.  

 In chapter 5, we then addressed a second scenario of the target area 

hypothesis by examining early stage pathology in the brainstem. Here we describe 

that RML and Me7 show identical target areas at early stage. In addition, a 

detailed account of the pathology of the disease progression in these target areas is 

provided. We find that the target areas show severe pathology at end stage and 

therefore support the scenario of ―clinical target area‖ being the first target of 

prion pathology.  

 In chapter 6 we set out to understand the discrepancy between the 

original data (i.e. long survival of RML inoculated NFH-Cre/MloxP mice, as 
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described in the introduction and chapter 3) and the current results, (i.e. short 

survival of these mice). We analysed the time course of Cre-mediated 

recombination in the brain both NFH-Cre/MloxP mice using both NFH-

Cre/MloxP mice and a reporter strain and discovered that the recombination 

pattern has changed over time and this explains the different results.    

 Chapter 7 describes a different, complementary approach to PrP 

depletion, using a lentivirus to express shRNA.  
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2 Materials and methods 

2.1 Mice 

All animal work, including prion inoculation and mice culling, conformed to the 

United Kingdom regulations and institutional guidelines and was performed under 

Home Office project license (70/6454). 

MloxP and NFH-Cre/MloxP transgenic mice were generated as described in 

(Mallucci et al., 2002) on a Prnp
0/0 

background so that all PrP expression is from the PrP 

(MloxP) transgene. The genetic background is predominantly FVB after ten generations 

of backcrossing. All animals were hemizygous for one or both transgenes (MloxP alone 

or also with NFH-Cre). 

ROSA26 mice supplied as homozygous were crossed to homozygous NFH-Cre mice, so 

to obtain mice hemizygous for both transgenes (LacZ and NFH-Cre). 

Mice were housed in a temperature- and light-controlled room with 12 hrs. light/dark 

cycles in groups of four to six mice. All mice had unlimited access to food and water.  

2.1.1 Genotyping 

Mice were assessed for the presence of transgenes by ear biopsies which were 

used for DNA extraction and subsequent analysis by polymerase chain reaction (PCR). 

2.1.2 Prion inoculation 

Prion inoculation of mice was performed by designated staff, according to 

established local protocols. One week old mice were anaesthetised with isofluorane in 

an inhalation chamber until pinch reflexes were absent. They were then inoculated with 

20µl of 1% brain homogenate of either Me7 (I6302), Mouse-adapted BSE (I873), RML 

(I8700), Me7 (I9458), MRC2 (I9467) (in PBS) using a 1ml insulin syringe and a 26-

gauge hypodermic needle inserted 3-4 mm into the right parietal lobe. Mice were 

allowed to recover in a cage placed on a heated pad prior to being replaced in their home 

cage. 

2.1.2.1 Prion inoculum preparation and titration 

Prion inocula were prepared by Dr Jonathan Wadsworth. 
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Me7 (I6302), Mouse-adapted BSE (I873), RML (I8700), Me7 (I9458), MRC2 

(I9467) prion inocula were prepared as a 10% (w/v) brain homogenate in Dulbecco‘s 

phosphate buffered saline lacking Ca2+ or Mg2+ ions (D-PBS). RML (I8700), Me7 

(I9458) and MRC2 (I9467) were titred by bioassay in Tg20 mice; RML titration was 

performed by Dr Malin Sandberg. To obtain the titre of stock 10% Me7 (I9458) and 

stock 10% MRC2 (I9467), new 2ml aliquot of I9458 or I9467 10% PBS stock brain 

homogenate were thawed and passed through an orange (25G) syringe and needle. For 

each titration, the 10% homogenate was serially diluted 10-1, 10-2, 10-3, 10-4, 10-5, 10-

6, 10-7, and 10-8. The first 10 fold dilution used sterile Dulbecco‘s PBS lacking Ca2+ 

and Mg2+ ions (D-PBS) as diluent (0.5ml of 10% homogenate I9458 or I9467 plus 

4.5ml D-PBS). Subsequent dilutions were made using 1% normal CD1 brain in D-PBS 

as diluent. The dilution series was generated by serial transfer of 100µl into 900µl 1% 

CD1 brain homogenate. 1% normal CD1 brain homogenate was prepared from a stock 

of 10% normal CD1 brain homogenate diluted in D-PBS and passaged through an 

orange (25G) syringe and needle (2 ml 10% normal CD1 brain homogenate plus 18ml 

D-PBS). Each dilution was passed through an orange (25G) syringe needle at each step 

and frozen as a single aliquot at -80 ºC. 

For each dilution, 6 Tg20 mice (~ 6 weeks old) were intracerebrally inoculated 

with 30µl of inoculum. 

Prion titres were calculated using the Reed–Meunch formula:  

LD50 = log10 dilution above 50% - (I x log h) 

where 

LD50 = median lethal dose, to kill half of the experimental population 

I = (% scrapie-sick in the group above 50% - 50%) / (% scrapie-sick in the group 

above 50%) - (% scrapie-sick in the group below 50%) 

h = the dilution factor (in this case 10) 

 

I8700 titre= 8.2 Log LD50 /g brain; 

I9458 titre= 9 Log LD50 / g brain; 

I9467=8 Log LD50/ g brain. 
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2.1.3 Diagnosis of scrapie symptoms 

Mice were examined daily for appearance of scrapie symptoms or other illness.  

Early indicators of prion disease include erect ears, rigid tail, piloerection, and 

ungroomed appearance, slight hunched posture, and clasping of hind limbs when lifted; 

confirmatory signs include ataxia, generalized tremor, impaired breathing activity, loss 

of righting reflex, or limb paralysis. Animals were culled as soon as clinical prion 

disease was confirmed or if they showed signs of distress or loss of up to 20% of body 

weight. All symptoms were recorded on videotape prior to culling of the animal. 

2.1.4 Removal of brains and embryos 

Terminally scrapie-sick animals or animals sick for other reasons were culled 

and the brains removed according to local safety regulations in a class I cabinet within 

the secure pathogen-free mouse facility. Brains to be analysed histologically were fixed 

either in formalin buffer or 4% PFA; brains to be used for PCR and qPCR were snap 

frozen and different brain areas dissected for DNA extraction. Embryos were dissected 

by designated staff, and processed for histology or molecular analysis (PCR, qPCR).  

2.2 Immunohistochemistry 

2.2.1 β-galactosidase staining assay 

Brains were fixed in formalin (Pioneer Research) for 30min at room temperature 

(RT), cut sagittally and then incubated for a further 30min in formalin. The brains were 

then permeabilised, by shaking for 2hrs in permeabilisation buffer, consisting of β-gal 

staining solution (10mM Phosphate buffer, pH= 7-7.2, [Fisher Chemicals], 150mM 

NaCl [Fisher Chemicals], 1mM MgCl2 [Sigma], 3.3mM K4Fe(CN)63H2O [Sigma], 

3.3mM K3Fe(CN)6 [Sigma]), 1% MgCl2 [Sigma], 0.02% Igepal (Fluka BioChemika) 

and 0.0 1% Sodium Deoxycholate (Sigma). The brains were then incubated overnight at 

37°C with shaking in ‗permeabilisation‘ buffer and 1% X-Gal (Merck) (dissolved in 

N,N-dimethylformamide [Sigma]). X-Gal is cleaved by β-galactosidase expressed by 

the LacZ gene yielding galactose and 5-bromo-4-chloro-3-hydroxyindole. This 

compound is then oxidized into 5,5'-dibromo-4,4'-dichloro-indigo, an insoluble blue 
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product. The brains were photographed using a Nikon Coolpix 995 camera mounted on 

a Zeiss Stemi SV11 microscope to record the pattern of β-galactosidase staining. 

2.2.2 Preparation of paraffin blocks 

Brains from time-culled and terminally ill mice were fixed in 10% buffered 

formal saline (BFS). Brains were cut in three pieces, corresponding to frontal, medial, 

and caudal brain and every piece was separately processed and embedded in paraffin 

wax by the MRC Prion Unit histology support team. Serial coronal sections from the 

most caudal block, corresponding to the brainstem, were cut at a nominal thickness of 

3µm, placed on to Super-frost slides and allowed to dry at 37°C for a minimum of 2 

hours, before they were transferred to a 60°C oven for another 2 hours. 

2.2.3 Pre-treatment prior to immunostaining: Re-hydration and de-hydration of 

wax embedded sections 

Wax embedded sections were re-hydrated prior to staining and then de-hydrated 

after staining. For the re-hydration process, wax was removed by sequential transfer of 

the sections into 3 separate xylene solutions. They were placed in the first xylene 

solution for 5 minutes and then the other two for 2 minutes each. The sections were then 

transferred to 100% ethanol for 2 minutes followed by 2 minutes in 100%, 90% and 

70% ethanol respectively. The samples were then rinsed with tap water. For de-

hydration of stained sections before mounting onto slides, the opposite procedure was 

carried out: the sections were incubated for 2 minutes in each of a series of increasing 

ethanol concentrations (70%, 90%, 100%, 100%) and then placed into xylene solution 

for a further 2 minutes. 

2.2.4 Immunostaining of paraffin-embedded sections 

Sections from prion infected mice were stained with haematoxylin and eosin and 

immunostained with ICSM35 and anti-GFAP antibody to assess spongiosis, abnormal 

PrP accumulation, and gliosis respectively. 

Selected sections were also stained with anti-NK1 receptor and anti-tyrosine 

hydroxylase antibody to identify the pre-Bötzinger complex and the locus coeruleus.   
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To confirm Cre-mediated recombination in NFH-Cre/ROSA 26 mice, selected 

sections were stained with anti-β galactosidase antibody. 

Immunostaining was carried out on a on a Ventana automated 

immunohistochemical staining machine using a basic diaminobenzidine detection 

system according to the manufacturer‘s instructions (Ventana Medical Systems, Tucson, 

AZ). Stained sections were dehydrated and mounted with Pertex, a xylene-based 

mounting medium.  

2.2.4.1 Haematoxylin and Eosin staining 

To assess spongiosis, sections were stained with haematoxylin and eosin. Re-

hydrated sections were immersed in haematoxylin for 5 minutes and then rinsed with tap 

water. They were then placed into a solution of 1% acid alcohol (1% concentrated HCl 

in 100% ethanol) for 20 seconds to differentiate nuclear size and rinsed again with cold 

running water. They were then immersed in eosin (0.5% aqueous solution) for 20 

seconds and washed with cold running water. The sections were de-hydrated and 

mounted with Pertex. 

2.2.4.2 Immunostaining with the PrP-specific antibody ICSM35 

To assess abnormal PrP accumulation, re-hydrated brain sections were pre-

treated in 1xTris-EDTA buffer at high pressure for 5 minutes followed by 5 minutes at 

low pressure. To facilitate detection of PrPSc, the sections were immersed in 98% 

formic acid for 5 minutes. On the Ventana automated immunohistochemical staining 

machine, sections were incubated for 16 minutes with a low concentration of protease 

(iView/Ventana Medical Systems), incubated in Superblock for 10 min, then exposed to 

ICSM35 (1μg/mL; D-Gen) for 32 minutes at a concentration of 1:3000, followed by 

biotinylated anti-mouse IgG secondary antibody (SA-HRP; iView); colour was 

developed with 3,3‘- diaminobenzidine tetrahydrochloride (iView). The sections were 

dehydrated and mounted with Pertex. 
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2.2.4.3 Immunostaining for the astroglial marker GFAP 

To assess gliosis, re-hydrated brain sections were pre-treated by heating in the 

microwave for 25 minutes in 1xTris-EDTA solution and then rinsed with tap water 

before automated immunostaining. Sections were incubated in the primary rabbit anti-

GFAP antibody (Dako/Z0334) for 32 minutes at a concentration of 1:1,000, followed by 

biotinylated anti mouse IgG secondary antibody (SA-HRP; iView); colour was 

developed with 3,3- diaminobenzidine tetrahydrochloride (iView). The sections were 

dehydrated and mounted with Pertex. 

2.2.4.4 Immunostaining for NK1 -receptor 

To confirm the identity of the pre-Bötzinger complex, re-hydrated sections were 

heat pre-treated in cell conditioning buffer (SCC, 95°C for 24 minutes) on the Ventana 

machine and immunostained with Rabbit polyclonal anti -NK1 receptor, (Pierce PA1-

32229) for 2 hours at a concentration of 1:200. Specific swine anti-rabbit secondary 

antibody (Dako/E0353) was used at a concentration of 1:200, and colour developed with 

3, 3‘- diaminobenzidine tetrahydrochloride (iView). The sections were dehydrated and 

mounted with Pertex. 

2.2.4.5 Immunostaining for β- galactosidase 

To investigate the efficacy of Cre-mediated recombination, sections from 

NFH/Cre-ROSA26 mice were assessed for β-galactosidase expression. Re-hydrated 

sections were pre-treated as for GFAP staining but immunostained with anti-β 

galactosidase antibody (Millipore AB1211-5MG) for 2 hours at concentration of 1:100. 

Specific swine anti- rabbit secondary antibody (Dako/E0353) was used at concentration 

of 1:200, and colour developed with 3, 3‘- diaminobenzidine tetrahydrochloride 

(iView). The sections were dehydrated and mounted with Pertex. 

2.2.4.6 Immunostaining for tyrosine hydroxylase 

To assess the level of expression of tyrosine hydroxylase in the locus coeruleus 

of MloxP and NFH/Cre-MloxP mice, re-hydrated sections were pre-treated as for GFAP 

staining and immunostained with anti- tyrosine hydroxylase antibody (Abcam, ab111) 
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for 32 minutes at 42°C, at concentration 1:2000, followed by biotinylated anti-mouse 

IgG secondary antibody (SA-HRP; iView), and colour developed with 3,3- 

diaminobenzidine tetrahydrochloride (iView). The sections were dehydrated and 

mounted with Pertex. 

2.2.5 Neuropathological analysis 

Sections of brains from time-culled and end stage clinically sick mice were 

examined blind. Identification of brainstem nuclei was carried out by using comparable 

tables of the Paxinos and Franklyn mouse atlas (Paxinos and Franklin, 2004), based on 

stereotaxic coordinates. 

Spongiosis, abnormal PrP deposition and gliosis were evaluated semi-

quantitatively, on a scale from 0 to 3. Pictures were taken with a ColorView II digital 

camera (www.soft-imaging.de) mounted on a ZEISS Axioplan microscope and 

composed with Adobe Photoshop. 

2.3 Techniques involving nucleic acids 

2.3.1 Extraction of DNA from tails, ear biopsies, brain samples, and embryos. 

Tails and ears biopsies were provided by the Animal Facility. Brain samples and 

embryos were dissected as in paragraph 2.1.4. Samples were transfer to new Eppendorf 

tubes and submerged in 0.5ml of lysis buffer (50 mM Tris-HCl pH=8 [Sigma]; 100 mM 

EDTA pH=8 (Fluka BioChemika); 100mM NaCl (Fisher Chemicals), 1% SDS 

(BioChemika) containing 20µl of Proteinase K (Roche) at 20mg/ml of Proteinase K 

(Roche) and digested for at least 2 hours or overnight at 55°C, shaking at 500 rpm. After 

digestion, 160µl of Protein Precipitate Solution (Promega) was added to each sample. 

Samples were vortexed to ensure complete mixing, incubated on ice for 5 minutes, to 

allow separation of phases, and spun at 13000 rpm for 5 minutes. The supernatant was 

then transferred to fresh Eppendorf tubes and 490 µl of Isopropanol (Fisher Chemicals) 

was added to precipitate DNA. The samples were centrifuged for 5 min at ≥13000 rpm 

and the supernatant discarded. The pellet was washed in 200µl of 70% Ethanol (Fisher 

Chemicals) and the samples spun down at 13000 rpm for 5 minutes. The supernatant 

http://www.soft-imaging.de/
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was discarded and the DNA pellets air-dried for 10 minutes. The DNA was resuspended 

in 50-200 µl of TE buffer, (10mM TrisHCl: 1mM EDTA), pH=7.5. 

2.3.2 Polymerase chain reaction 

PCR reactions were performed in a 25 l reaction volume in autoclaved 

microfuge tubes. All PCR primers were obtained from MWG Biotech and dissolved in 

sterile water to a concentration of 100pmol/µl. 2x MangoMix (Bioline, BIO-25044) 

ready to use pre-optimized reaction mix, containing  MangoTaq™ DNA Polymerase, 

dNTPs, red and orange, reference dyes and Mg2+ (final concentration 2.5mM) was 

used, according to the manufacturer specifications. 1µl of DNA sample was dissolved in 

24µl of mastermix. All PCRs had a common initial heating phase of 94°C for 5 minutes 

and a final elongation step of 72°C for 10 minutes. The PCR products were stored at 

4°C or at -20°C for longer periods of time. 

LoxP PCR ( MloxP and NFH/Cre-MloxP mice genotyping) 

Primers:  Lox forward (B): 5'-TTG GTT AGG GTA GCG GTA CAT-3' 

Lox reverse (D): 5'-ATC AGT CAT CAT GGC GAA CCT-3' 

band size =   490bp  

RBforward:  5'-AAT AGA GGC ACT CCC TTC AC-3' 

RBreverse:   5'-GGT AAG CCC TTG ACC TAA AA-3' 

Expected band size=  340bp 

Master Mix: Mango Mix x2 =  12.5µl 

Primers* =  1µl  * (B+D: Rbf+Rbr= 5:7) 

H2O =     10.5µl 

DNA=   1µl 

Cycle conditions 

Denaturing  94°C 45‘‘ 

Annealing  57°C 60‘‘  

Extension  72°C 1‘30‘‘ 

33 cycles 

Cre PCR (genotyping of NFH-Cre mice) 

Primers:  454:    5'-TCG ACC ATG CCC AAG AAG AAG-3' 
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455:   5'-ACG TTT TCT TTT TCG GAT CCG CCG CAT-3' 

Expected band size = 450 bp 

98:   5'-GAT CTA TGT GAG TGC GAG GCT AGC-3' 

99:   5'-TCA AAC CAG ATG GCA CTG AAG ACT-3' 

Expected band size = 100bp 

Mix:  Mango Mix x2 =  12.5µl 

Primers* (5:3)  =  1µl  * (454+455:98+99=5:3) 

H2O =    10.5µl 

DNA =   1µl 

Cycle conditions 

Denaturing 94°C 45‘‘ 

Annealing 57.8°C 50‘‘  

Extension 72°C 1‘30‘‘ 

29 cycles 

CosTet PCR (recombination within the MoPrP transgene in NFH-Cre/MloxP 

mice) 

Primers:  CosSHa F:   5‘- GCT GTC AAG GAA TAG GCC TG-3‘  

CosSHa R:  5‘- AGA GCT ACG GTG GAT AAC C-3‘ 

Expected band sizes= 1150 or 300bp, depending on occurrence of 

recombination 

Mix: Mango Mix x2 =   12.5µl 

Primers =   1 µl   

H2O =    10.5 µl 

DNA=    1 µl (100ng) 

Cycle conditions 

Denaturing 94°C 45‘‘ 

Annealing 62°C 1‘  

Extension 72°C 1‘ 
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2.3.3 Real time polymerase chain reaction (qPCR) 

Real-time PCR was carried out on a 7500 Fast Real-time PCR System (Applied 

Biosystems) in a total volume of 25µl, using 100ng of genomic DNA template and 2x 

TaqMan gene expression master mix (ABI, 4369016). Primers and probe were designed 

using the Primer Express 3.0 Sequence software. Primers were supplied by MWG 

Biotech, dissolved in sterile water at a concentration of 100pmol/µl; the 6-FAM 

TaqMan MGB probe supplied by Applied Biosystems dissolved in sterile water was 

aliquoted to avoid repeated freeze and thawing. Taqman Rodent GAPDH control 

reagent (Tamra-Vic probe, 4008313, ABI) was used within the reaction as an 

endogenous control according to the manufacturer‘s instructions. Standard curves were 

derived for both probes and used to calculate the quantity of gene-specific DNA in the 

reaction. Reactions were carried out in 96 well-plates in quintuplicate. Controls without 

DNA were included in every plate. 

Primers: qMloxP 5‘: 5‘-TCA TTT TGC AGA TGA GTC GA GAT-3‘ 

  qMloxP 3‘: 5‘-CAC AAG AAC GAG GAA GTA CAA GCA-3‘ 

Probe:  qMloxP: 5‘-TAC ATT ATA CGA AGT TAT CTC GAC-3‘ 

Mix:   Gene Expression Mix x2 =  12.5µl 

Primers mix (10µM each) = 1µl  

Probe (10µM)  =   1µl  

GADPH =    0.75µl 

H2O =     0.25µl 

DNA (10ng)  =   10µl 

Cycle conditions 

Segment 1 50°C 2‘ 

Segment 2 95°C 10‘ 

Segment 3 (40 replicates) 95°C 15‘‘  

      60°C 1‘ 

2.3.4 Plasmid DNA minipreps 

Qiagen miniprep kits were used to perform preparation of up to 20µg of high 

purity plasmid DNA, according to the manufacturer‘s protocol (Qiagen QIAprep 
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Miniprep Handbook, 2004). Briefly, 1 - 5ml of overnight LB culture containing 

selective antibiotic was centrifuged for 15 minutes at 4 C at 6000g. The supernatant was 

discarded and the bacterial pellet resuspended completely in 250µl buffer P1. The cells 

were lysed by addition of 250µl buffer P2 at room temperature for 5 minutes. 350µl 

chilled buffer P3 was added to precipitate DNA. The tubes were mixed immediately for 

10 times to avoid localised precipitation. The lysate was centrifuged at 13,000rpm for 10 

minutes, and the supernatant applied to a QIAprep spin column. To bind the plasmid 

DNA, the column was centrifuged at 13,000rpm for 1 minute and the flow-through 

discarded. Trace nuclease activity was removed by washing the column with 500µl 

Buffer PB and centrifugation as before for 1 minute. 750µl Buffer PE containing ethanol 

was added and the column centrifuged for 1 minute to remove remaining impurities. The 

flow-through was discarded and the column re-centrifuged at 13,000rpm for 1 minute to 

remove residual ethanol. The column was placed into a clean 1.5ml tube and 30 - 50µl 

of Buffer EB was added to the centre of the membrane. The column was incubated at 

room temperature for 1 minute before centrifuging at 13,000rpm for a final minute to 

elute the purified plasmid DNA. 

2.3.5 Maxipreps of plasmid DNA 

Qiagen maxiprep kits were used to prepare up to 1 mg of high purity plasmid 

DNA, under the manufacturer‘s instruction (Qiagen HiSpeed Plasmid Purification 

Handbook, 2001). The purification protocol is based on a modified alkaline lysis method 

followed by binding of plasmid DNA to an anion-exchange resin under suitable low salt 

and pH conditions. 250ml of saturated LB culture was centrifuged for 15 minutes at 4°C 

at 6000g to obtain the bacterial pellet. Following removal of the supernatant, the pellet 

was resuspended in 10ml buffer P1 containing 100µg/ml of RNAse A. 10ml buffer P2, 

containing NaOH-SDS, was added to lyse the cells. The tubes were thoroughly mixed 

and incubated at room temperature for 5 minutes. The SDS disrupts cell membranes 

releasing DNA and proteins which are then denatured by the NaOH. 10ml chilled 

neutralisation buffer P3 containing potassium acetate was added. The lysates were 

inverted 10 times and immediately poured into the barrel of a QIAfilter cartridge. 

Incubation at room temperature for 10 minutes allowed the precipitated material to form 
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a layer on top of the solution, preventing clogging of the filter. During this time, 10ml 

equilibration buffer QBT was added to a HiSpeed Maxi Tip and allowed to drain 

through the column by gravity flow. The cap was removed from the QIAfilter outlet and 

the plunger inserted to filter the lysate into the equilibrated Maxi Tip. The cleared lysate 

entered the anion-exchange resin by gravity and plasmid DNA was bound to the resin. 

60 ml of buffer QC was used to remove contaminants. 15 ml of high salt elution buffer 

EB was then added to elute the DNA off the resin. To precipitate the DNA, 0.7 volumes 

of isopropanol was added to the eluted DNA and incubated for 5 minutes at room 

temperature. The eluate/isopropanol mixture was transferred into a 30ml syringe 

attached to a QIAprecipitator Maxi Module. Insertion of the plunger into the syringe 

forced the mixture through the QIAprecipitator which traps the precipitated DNA. 2ml 

of 70% ethanol was added to the syringe and forced through the QIAprecipitator to wash 

the DNA. Finally, a new 5ml syringe was attached to the QIAprecipitator and the 

purified plasmid DNA was eluted by the addition of 1ml TE.  

2.3.6 Spectroscopic measurement of DNA 

Nucleic acid concentrations were determined by spectroscopic analysis on a 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies). The pedestal was 

cleaned with dH2O before measurement of a 1µl blank. 1.5µl samples of unknown 

DNA concentration were then measured and the 260/280 absorbance determined for 

assessment of nucleic acid purity. Samples with a ratio of ~1.8 were considered 

sufficiently pure.  

2.3.7 Restriction enzyme digestion 

DNA digestion by specific restriction enzymes (endonucleases) was performed 

using 1-5 units of enzyme per g of plasmid DNA at 37 C for a minimum of 1 hour. 

Restriction enzymes (New England Biolabs) were used with appropriate 10x NEB 

buffers giving optimal salt and pH conditions for the reaction. The volume of enzyme 

used was less than 1/10th of the total reaction volume to prevent inhibition of the 

enzyme by high glycerol concentration.  
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2.3.8 Ligation of DNA 

USB T4 DNA ligase was used for all ligation reactions of DNA fragments. 

Ligation reactions were set up using a wide range of molar ratios of insert DNA: vector 

DNA from 0.5:1 to 100:1.  

Routine controls were performed to check the efficiency of ligation by re-

ligating the cut vector alone, and to check complete digestion of the vector by omitting 

T4 DNA ligase.  

Vector DNA, insert DNA and ddH2O to a total volume of 15 l were added to a 

microfuge tube. The mixture was placed on ice and 1 l (1-3U/ l) T4 DNA ligase and 

1.5 l 10x ligase buffer (10mM MgCl2, 1mM ATP, 50mM Tris-HCl pH 7.5, 10mM 

DTT, and 25 g /ml BSA) were added. Ligation was performed at room temperature for 

30 minutes or overnight at 16°C. 

2.3.9 Transformation of DNA into E.coli 

100 l competent cells were thawed on wet ice and mixed with 1 - 10 l ligation 

mix in a chilled 1.5ml microfuge tube. The mixture was incubated on ice for 30 minutes. 

The cells were heat-shocked by incubation in a 42 C waterbath for 90 seconds, then 

transferred back to ice for a further 2minutes. 900 l LB medium was added and the 

suspension was incubated at 37 C, with shaking at 225rpm for 1 hour to allow the cells 

to recover. The cells were pelleted by centrifugation at 4,000rpm for 5 minutes and 

resuspended in 100µl LB medium before spreading onto LB Agar plates with the 

appropriate antibiotic selection. 

To select transformants, the cells plated on LB Agar medium were incubated 

overnight at 37°C. Colonies evident the following day were picked with a pipette tip and 

incubated overnight in 5ml of LB containing the appropriate selective antibiotic at 37°C, 

225rpm. Cultures were used fresh or stored at 4 C for several days before use in small 

or large-scale DNA preparation.  
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2.3.10 Agarose gel electrophoresis 

DNA fragments were separated according to size by electrophoresis through 

agarose gels. 

A 1% agarose mini-gel was made by heating 1.5g of electrophoresis-grade 

agarose (Invitrogen) in 150ml of 1x TAE buffer in a microwave oven until it dissolved. 

The gel was cooled to approximately 50°C and ethidium bromide solution (10mg/ml) 

was added to a final concentration 0.02% v/v. The molten gel was then poured into a gel 

tray fitted with the appropriate comb(s) (Hybaid). Gel sizes varied (mini, midi and maxi) 

according to number of samples to be loaded and the fragment separation required. 

DNA samples were mixed with 1/10th volume of 10x loading buffer (containing 

Bromophenol Blue as a tracking dye). The samples were loaded into individual wells of 

the gel. A molecular weight marker was also loaded on each gel to allow determination 

of DNA fragment sizes by comparison. Electrophoresis was performed in appropriate 

tanks (Hybaid) containing 1x TAE buffer at 2.5-5V/cm until the fragments were 

adequately separated. 

DNA was visualised by examining the gel on a BioRad Gel Doc 1000 imaging 

system under UV light. Gels were photographed and analysed using Quantity One 

software (version 4.5.1, BioRad).  

2.3.11 Extraction of DNA from agarose gel 

DNA was electrophoresed on an agarose gel as described above. The gel was 

placed on a 302nm UV transilluminator (UV products Ltd) and the desired band of 

DNA excised using a clean scalpel blade. All DNA extractions from agarose were 

performed using the QIAquick Gel Extraction Kit (QIAGEN) according to 

manufacturer‘s instructions. This kit solubilises the agarose and passes it through a mini 

column containing a silica membrane. The DNA binds to the membrane in a salt and 

pH-dependent manner and any contaminants pass through. The DNA can then be 

washed with ethanol-containing buffer to remove the salt and eluted using a higher pH 

buffer. The gel slice was weighed in a 1.5ml tube and 3 volumes of Solubilisation and 

Binding Buffer QG was added. If the slice weighed over 400mg, it was split into 2 equal 

parts and extracted separately to avoid overloading a single column. The agarose was 
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solubilised by heating it in Buffer QG at 50°C for 10 minutes and vortexing every 2 - 3 

minutes. 1 gel volume of isopropanol was added to the sample and mixed by vortexing 

briefly. The sample was then loaded onto a QIAquick column in a 2ml collection tube 

and centrifuged for 1 minute at 13,000 rpm to bind the DNA to the membrane. To 

remove any traces of agarose, 0.5 ml of Buffer QG was applied to the column; it was re-

centrifuged for 1 minute at 13,000rpm. The DNA was washed and any salts removed by 

adding 0.75ml of the ethanol-containing Buffer PE before centrifuging at 13,000rpm for 

1 minute. The flow-through was discarded and the column centrifuged again at 13,000 

rpm for 1 minute to remove residual ethanol which may interfere with downstream 

applications. To elute the DNA, the column was placed in a fresh 1.5ml tube and 50µl of 

Buffer EB was added. The column was incubated at room temperature for 1 minute to 

allow the increased pH to elute the DNA off the silica membrane. The purified DNA 

was collected by centrifugation at 13,000 rpm for 1 minute. 

2.3.12 DNA Sequencing  

Purified DNA was resuspended in TE buffer pH 7.5 at 50ng/ l and sequenced 

using an ABI 377 automated sequencer with sequencing primers at 2pmol/ l. All DNA 

sequencing was performed by G. Adamson. 

2.4 Cell culture 

All media and solutions were bought pre-sterilised, and sterile plastic ware was 

used. All procedures, including preparation of media, were performed in a laminar flow 

tissue culture hood. Water-baths and incubators were cleaned and sterilised regularly. 

All solutions and media were pre-warmed to 37 C prior to use. 

2.4.1 Propagation of N2A cells 

N2A cells were maintained in OptiMEM  (Invitrogen) containing HEPES buffer, 

2400mg/l sodium bicarbonate, hypoxanthine, thymidine, sodium pyruvate, L-glutamine, 

trace elements, growth factors, and phenol red reduced to 1.1 mg/l, supplemented with 

10% v/v foetal calf serum (FCS) (Invitrogen), and 50U/ml each of penicillin and 

streptomycin (Sigma), in vented plastic flasks (NUNC, Fisher Scientific) in a humidified 
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incubator, in an atmosphere of 5-7% CO2 at 37 C. The medium was changed every 3 

days, and cells were seeded 1:3-1:8 every 5-7 days or when they had reached 85% 

confluence. To seed the N2A cells, all medium was aspirated from the flask or dish, 

fresh growth medium was added and the cells were gently pipetted up and down until a 

homogenous suspension was attained and then diluted as necessary in fresh medium and 

transferred to a new flask.  

When an accurate number of cells had to be seeded they were lifted as usual, a 

500µl aliquot was stained with trypan blue and cells counted using a haemocytometer 

(Hausser Scientific Company) on a phase microscope, prior to seeding into fresh flasks 

with an appropriate volume of medium. 

2.4.2 Propagation of HEK293 cells 

Cells were propagated in growth medium consisting of Dulbecco‘s Modified 

Eagle Medium (DMEM) High Glucose containing 4500 mg/l D-glucose and 4mM L-

glutamine (Gibco BRL), supplemented with 10% v/v foetal calf serum 

(FCS)(Invitrogen), 50U/ml each of penicillin and streptomycin (Sigma) and 50 mg/ml 

Geneticin® (Gibco BRL) to maintain expression of the large T antigen. They were 

maintained in vented tissue culture flasks (NUNC, Fisher Scientific) in a humidified 

incubator, in an atmosphere of 5-7% CO2 at 37 C. The medium was changed every 3 

days, and cells were seeded 1:10 2 times a week or when they had reached 85% 

confluence. To seed the cells, old medium was aspirated off, the cells were rinsed with 

sterile PBS and trypsin-EDTA 1x solution (0.05% trypsin, 0.5mM EDTA) (Gibco BRL) 

was added sufficient to cover the cell monolayer. The flask was placed at 37 C for 2-5 

minutes until the cells detached, and an excess volume of growth medium was added, 

inhibiting further activity of the trypsin. The cell suspension was aspirated, and placed 

in a polypropylene tube (Falcon) and centrifuged at 1500g for 5 minutes. The 

supernatant was discarded and the cell pellet was resuspended in fresh growth medium, 

taking care to avoid clumping of the cells and transferred to a fresh flask.  

When an accurate number of cells had to be seeded they were lifted as usual, 

500µl aliquot was stained with trypan blue and counted using a haemocytometer 
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(Hausser Scientific Company) on a phase microscope, prior to seeding into fresh flasks 

with an appropriate volume of medium. 

2.4.3 Cryopreservation of cells 

Low passage cells which were 85% confluent were harvested as above. After 

centrifugation, the cell pellet was placed on ice and resuspended in DMEM with 20% 

FCS and 10% DMSO, at a final concentration of 1 x 10
6 

cells
 
/ml. 1.5ml aliquots were 

frozen at -20 C and then stored overnight at -70 C before transfer to liquid nitrogen for 

long term storage. When reanimating frozen cells for experimental use, they were 

rapidly thawed at 37 C and diluted in nine volumes of fresh media. The suspension was 

then centrifuged at 1000g for 5 minutes, the supernatant discarded and the cells 

resuspended in fresh media and seeded in flasks or dishes. 

2.5 Lentiviral procedure 

2.5.1 Design and preparation of shRNA insert oligonucleotides 

To convert siRNA sequences into the required format for expression as shRNA 

molecules from the pLL3.7 lentivector, a stem and loop sequence was designed and 

appropriate restriction enzyme sequence added at the 5‘ and 3‘ ends. 

The design of oligonucleotide shRNA-Cl8 is shown below. All shRNA 

oligonucleotides were designed likewise. 

siRNA sequence =  TAGGAGATCTTGACTCTGA 

 addition of  the loop sequence to end- TTCAAGAGA 

TAGGAGATCTTGACTCTGATTCAAGAGA 

 addition of the reverse complement to end 

TAGGAGATCTTGACTCTGATTCAAGAGATCAGAGTCAAGATCTCCTA 

 addition of the terminator sequence 

TAGGAGATCTTGACTCTGATTCAAGAGATCAGAGTCAAGATCTCCTATTTTTTC 

 creation of the antisense strand 
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TAGGAGATCTTGACTCTGATTCAAGAGATCAGAGTCAAGATCTCCTATTTTTT 

ATCCTCTAGAACTGAGACTAAGTTCTCTAGTCTCAGTTCTAGAGGATAAAAAA 

 addition of restriction HpaI (5‘) and Xho I (3‘) restriction enzyme sequence  

5’- AACTAGGAGATCTTGACTCTGATTCAAGAGATCAGAGTCAAGATCTCCTATTTTTTC-3’ 

3’-TTGATCCTCTAGAACTGAGACTAAGTTCTCTAGTCTCAGTTCTAGAGGATAAAAAAGAGCT-5’ 

All oligonucleotides were obtained from MWG Biotech and resuspended in ddH2O. 

2.5.2 Annealing of oligonucleotides 

60pmol of sense and antisense oligonucleotides were added to 48µl Annealing 

Buffer (Xeragon) and denatured by heating to 95°C for 10 minutes. The temperature 

was reduced to 70°C and then every 10 minutes it was reduced by 10°C (70°- 60°-50°- 

40°) and then allowed to cool gradually to room temperature overnight to promote 

annealing of complementary oligonucleotides.  

2.5.3 Recombinant lentivirus production 

The lentiviral production protocol used was provided by Prof Greg Towers and 

required 6 days per preparation. 

Day 1-seed  HEK293 cells: cells were seeded by splitting a confluent plate 1:4, 

approximately 24 hours before transfection into a 100mm plate with 8 ml complete 

media and incubated at 37°C in 5% CO2. 

Day 2-transfection: DNA was diluted in a 1.5ml Eppendorf tube to a total 

volume of 15µl with TE pH 8.0 

1 µg p8.91 (gag-pol expression vector) 

1 µg pMDG2 (VSV-G expression vector) 

1.5 µg pLL3.7 DNA (lentiviral vector) 

For each transfection mix, 200µl of OptiMEM (Invitrogen 51985-026) were 

added to a second Eppendorf tube and 10µl of Fugene (1988387/1815075 Roche 

Diagnostic) were added to the centre of the tube without touching the sides. The mixture 

was mixed, by flicking. DNA was then added to the OptiMEM Fugene mix and flicked 

once again. The Eppendorf was then left at room temperature for 15 minutes and in this 

time the plated cells were fed fresh complete pre-warmed medium. After 15 minutes, the 
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OptiMEM/Fugene mix was added to the cells drop wise and the plates swirled to ensure 

complete mixing. The cultures were incubated at 37°C. 

Day 3-media change: approximately 24 hours following the transfection, the 

medium containing the transfection mix was replaced with 10 ml of fresh complete 

medium. 

Day 5, 6-virus collection: the lentivirus containing supernatant was harvested at 

48 and 72 hours after media change. The medium was collected in a 10 ml syringe 

(SZR-150-052C Fisher) and filtered through a 0.45 M filter (Nalgene Syringe filters 

513-1902 VWR). The supernatant was stored at -80°C. 

2.5.4 Transduction of HEK293 cells 

A serial dilution method was used to determine the titre of each lentivirus. 2 x 

10
5
 HEK293 cells were plated in each well of a 6 well plate and incubated overnight. 

The following day, the lentiviral stock was thawed and serial dilutions prepared in 1 ml 

of complete culture medium. Polybrene was added at a final concentration of 8µg/µl to 

neutralise the charge of the plasma membrane and promote interaction with the virus. 

The culture media was removed from the cells and the viral dilutions added. One well 

received polybrene only to control for its effects on the cells. The plates were incubated 

at 37°C overnight and the culture medium replaced the following day. Four days post-

transduction, the cells were examined for GFP expression by fluorescence microscopy 

and harvested for FACS analysis. 

2.5.5 Determination of lentiviral titre 

Cells were harvested as usual and washed in 5ml PBS, spun at 1500rpm for 5min 

at 4°C twice. The total number of cells was then determined. Cells were resuspended at 

a density of 1x10
6
cells/100µl and transferred to FACS tubes (Becton-Dickinson). The 

cells that received polybrene only were used as a negative control to gate for living 

GFP-negative cells. GFP-positive cells in the transduced samples were detected in FL1 

and their proportion determined by gating. At least 20,000 cells were analysed. FACS 

analysis was carried out using an LSRII flow cytometer (BD Biosciences) with FloJo 
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software (Tree Star Inc., Ashland, Oregon, USA), or a Beckman Coulter Cytomics 

FC500 Flow Cytometer (MCP System) using CXP Software. 

2.5.6 Measurement of PrP knockdown 

N2A cells were harvested, washed, and resuspended in a correct volume for a 

final density of 1x10
6
cells/100µl as previously described. 100µl of cells were transferred 

to an Eppendorf and spun at 1500rpm for 5min at 4°C. The supernatant was removed, 

and cells resuspended in 100µl of primary antibody ICSM18 at final concentration of 

5µg/ml. 

Cells were incubated on ice for 20-30 minutes, and then spun at 1500 rpm for 5 

minutes at 4°C. The supernatant was removed carefully, without disturbing the cell 

pellet, and cells were washed twice in PBS, by sedimenting at 1500 rpm for 5 min at 

4°C. Cells were resuspended in 100µl of secondary antibody PE-Goat anti-mouse (BD 

Pharmnigen, 550589), diluted 1:50 in PBS and incubated on ice for 30 min. 100µl PBS 

was added and cells were spun at 1500rpm for 5min at 4°C. Cell pellet was resuspended 

in 500 µl of PBS. Data were collected using Beckman Coulter Cytomics FC500 Flow 

Cytometer (MCP System) and analysed using CXP software. Background fluorescence 

was measured using cells stained with secondary antibody only. 
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3 Effect of Cre-mediated recombination in Me7 and Mouse-adapted 

BSE prion infected mice 

3.1 Background 

The protective effect of neuronal PrP
C
 depletion on the course of disease in mice 

with established prion disease has been investigated in a milestone work from Mallucci 

et al. (Mallucci et al., 2003). 

This study has been described in detail in paragraph 1.1.5.3. Briefly, it 

demonstrated that arresting neuronal conversion of PrP
C
 to PrP

Sc 
by depleting the former 

prevents the progression from pre-clinical to clinical infection and it suggested that the 

generation of a toxic species must take place in neurons to be pathogenic. Also, adult 

neuronal PrP
C
 depletion reversed early neurodegenerative changes caused by the RML 

prion strain and protected against neuronal loss, despite continued prion replication and 

PrP
Sc

 deposition.  

3.2 Aims  

 To assess the effect of Cre-mediated PrP recombination on survival in mice 

infected with prion strains other than RML 

 To follow the progression of prion pathology in the brains of prion infected 

MloxP and NFH-Cre/MloxP mice 

3.3 Experimental setup 

In order to minimise incubation times, MloxP tg37 rather than tg 46, and NFH-

Cre/tg37 rather than NFH-Cre/tg46 were used in all of the following experiments, as 

tg37 mice express PrP
C
 at higher levels. Therefore, from now on I will refer to tg37 as 

MloxP and NFH-Cre/tg37 as NFH-Cre/MloxP. 

To take advantage of the window for reversing prion pathology, MloxP and 

NFH-Cre/MloxP mice were inoculated with Mouse adapted-BSE and Me7 prions at one 

week of age. The Mouse-adapted BSE inoculum (I874) was derived from a pool of five 

natural BSE affected brainstems sub-passaged twice in C57 BL/6 mice (Lloyd et al., 
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2004). The mouse adapted scrapie strain Me7 has been extensively studied for prion 

related hippocampal damage.  

For each group a statistically significant number of animals were culled at 

different time points for histopathological analysis. Sagittal sections were stained with 

haematoxylin and eosin (H&E) to follow progression of spongiosis, and ICSM 35 

antibody for abnormal PrP deposition. Furthermore, for each group, a significant 

number of animals were used to study survival. 

I joined this project when it was already started: the experimental set up was 

planned by Prof. Giovanna Mallucci and her team. Prion inoculation and mice culling 

were carried out at the animal house facility by specialized personnel. The MRC Prion 

Unit histopathology support group performed the histology. I took over from Prof 

Mallucci‘s team for the histopathological analysis that I carried out with the help of 

Jackie Linehan and Prof. Sebastian Brandner. 

3.4 Results 

3.4.1 Extended survival of prion infected NFH-Cre/MloxP mice 

PrP
C
 depletion increased survival in double transgenic NFH-Cre/MloxP mice for 

both prion inoculations.  

MloxP control mice succumb to the Me7 prion strain at ~17 wpi (n=6) whereas 

mice that have undergone neuronal PrP
C
 depletion developed signs of scrapie at ~29 wpi 

(n=9), p value <0.0005 (Figure 3.1 A). 

Upon Mouse-adapted BSE infection, MloxP mice succumbed in ~20 wpi (n=7) 

but mice with neuronal PrP
C
 depletion survived up to ~33 wpi (n=10), p value <0.0005 

(Figure 3.1 B). 
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Figure 3.1 Increased survival in prion infected NFH-Cre/MloxP mice after Cre-mediated neuronal 

PrP depletion 

A. Mice were inoculated with Me7 prions at one week of age. MloxP mice (blue line) succumbed to the 

infection at ~17 wpi (n=6); NFH-Cre/MloxP mice (red line), undergoing PrPC depletion developed signs 

of scrapie at ~29 wpi (n=9), p value <0.0005. B. Mice were inoculated with mouse-adapted BSE prions at 

one week of age. MloxP mice (blue line) succumbed in ~20 wpi (n=7) but mice with PrPC depletion (red 

line) survived up to ~33 wpi (n=10), p value <0.0005. 

 

3.4.2 Time course of prion pathology in mice infected with Me7 prion strains  

Abnormal PrP deposition in Me7 inoculated MloxP mice was first found at 8 

wpi, localized in the thalamus and the brainstem; by 10 wpi deposition was observed in 

the cortex and hippocampus and became more intense in the thalamus and brainstem. 

Prion accumulation continued for the following four weeks, eventually spreading to 

cerebellum by 16 wpi. At end stage of the disease, (~17 wpi) abnormal PrP 

accumulation was widespread in all brain areas.  

In NFH-Cre/MloxP mice, the pattern of PrP deposition at 8 wpi was similar to 

that observed in MloxP mice, but at 10 wpi the abnormal PrP deposition was milder. By 

12 wpi, prion deposition mimicked that observed in MloxP mice, with intense staining 

in the thalamus and brainstem. From this time point, the pattern differed from the 
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MloxP: at ~16 wpi deposition had spread to cerebellum, striatum and cortex, but the 

thalamic nuclei, which were the first area of accumulation, and the hippocampus were 

spared. The areas of maximal deposition were already established by 20 wpi: cortex, 

caudo-putamen, frontal thalamus, posterior hippocampus, brainstem and cerebellum. At 

the end stage of disease (~29 wpi) frontal hippocampus and ventral thalamic nuclei 

showed milder abnormal accumulation compared to end stage MloxP mice (Figure 3.2 

A). 

Spongiosis in Me7 inoculated MloxP mice was not as severe as in RML infected 

animals. It was first localized at 10 wpi in the thalamus and caudate nucleus. By 12 wpi 

it targeted the hippocampus and by end stage it affected all the brain areas. The Me7 

prion pathology in MloxP mice did not involve hippocampal neuronal loss, unlike RML 

infection in the same mouse model (Mallucci et al., 2003). Neuronal loss was found just 

in one of the analysed mice. 

Spongiosis in Me7 infected NFH-Cre/MloxP mice differed slightly from that 

observed in control animals. It was first found at ~12 weeks post inoculation in the 

thalamus and cortex. By 20 wpi, the whole brain was mildly spongiotic; with no 

particular area being specially targeted (Figure 3.2 B). As spongiosis is not a strong 

hallmark of the Me7 prion strain, in the MloxP model it was not possible to use this 

paradigm to compare with the rescuing effect on spongiosis previously seen in RML 

infected NFH-Cre/MloxP mice (Mallucci et al., 2003). 

At ~28 wpi, in NFH-Cre/MloxP mice, cerebellar pathology emerged. Neuronal 

loss, localized to the granular layer of cerebellum, was observed. Layers F11.9-12 were 

affected the most. No cerebellar pathology was observed in MloxP mice at the end stage 

of the disease (Figure 3.3). 
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Figure 3.2 Progression of prion pathology in Me7 inoculated MloxP and NFH-Cre/MloxP mice 

Me7 inoculated MloxP and NFH-Cre/MloxP mice were time culled at different times post infection (wpi). 3 brains per group were analysed. 

A. Representative progression of abnormal PrP deposition: in Me7 inoculated MloxP mice it was first found at 8 wpi, in the thalamus and the brainstem; by 10 

wpi it spread to the cortex and hippocampus and became more intense in the thalamus and brainstem; by 16 wpi it interested the cerebellum. At end stage of the 

disease, (~17 wpi) abnormal PrP accumulation was widespread in all brain areas, with maximal intensity in the thalamus and brainstem. In NFH-Cre/MloxP 

mice, the pattern of PrP deposition at 8 wpi was similar to that observed in MloxP mice, but at 10 wpi the abnormal PrP deposition was milder. At 12 wpi, 
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intense staining was localized in the thalamus and brainstem; at ~16 wpi deposition spread to cerebellum, striatum and cortex, but the thalamic nuclei, which 

were the first area of accumulation, and the hippocampus were spared. At 20 wpi the areas of maximal accumulation were: cortex, caudo-putamen, frontal 

thalamus, posterior hippocampus, brainstem and cerebellum. At the end stage of disease frontal hippocampus and ventral thalamic nuclei showed milder 

abnormal accumulation compare to end stage MloxP mice. 

Brains have been stained with ICSM 35 antibody, scale bar= 1.7 mm for brains labelled with *; 2.2 mm for all the other brains.  

B. Representative progression of spongiosis: Brains have been stained with H&E and a schematic of the results has been drawn. 

In Me7 inoculated MloxP mice spongiosis was first localized at 10 wpi in the thalamus and caudate nucleus. By 12 wpi it targeted the hippocampus and by end 

stage it involved all the brain areas. Neuronal loss was found in just one of the analysed samples. Spongiosis in Me7 infected NFH-Cre/MloxP mice was first 

found at ~12 weeks post inoculation in the thalamus and cortex, it spread to the hippocampus and by 20 wpi, the whole brain was mildly spongiotic, with no 

particular area being specially targeted. At 28 wpi, the cerebellum was severely affected. The yellow line delimits the cerebellar foliae most affected. 
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Figure 3.3 Cerebellar pathology in end-stage Me7 inoculated NFH-Cre/MloxP mice 

A. Cerebellar foliae are not spongiotic in MloxP mice at the end-stage of Me7 infection 

B. layers F11.9-12 in the cerebellum of NFH-Cre/MloxP mice are highly spongiotic, and also show 

neuronal loss and shrinkage of the tissue. Brains have been stained with H&E, scale bar = 435 μm 
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3.4.3 Time course of prion pathology in mice infected with Mouse-adapted BSE 

prion strain 

In MloxP mice infected with Mouse-adapted BSE, deposition of abnormal PrP 

started at 8 wpi in the thalamus, hippocampus and brainstem and its intensity was 

constant for the following 4 weeks. At 16 wpi, abnormal deposition of PrP reached the 

cortex and the striatum and at the end stage of the disease (~20wpi) the areas of 

maximal accumulation were the brainstem and striatum.  

NFH-Cre/MloxP mice accumulated abnormal PrP at 10 wpi in dorsal thalamic 

nuclei and brainstem. By 12 wpi, fronto-dorsal thalamus staining was more intense; 

prion accumulation had also spread to dorsal hippocampus, leaving the frontal 

hippocampus spared, as already observed in Me7 mice. Abnormal PrP accumulation 

reached the striatum at 16 wpi, as in control animals. From this time, the pattern of 

accumulation was established, with focal areas in brainstem and striatum until ~28 wpi. 

In the last 4 weeks, (28-33 wpi) prion accumulation spread to the cortex and cerebellum. 

The degree of accumulation in the first targeted areas was constant during this period. 

The only areas that were spared were frontal hippocampus and ventral thalamus. Indeed, 

in the thalamus abnormal PrP accumulation occurred as a peculiar ring shape ( Figure 

3.4 A) 

Hippocampal neuronal loss and spongiosis was not a neuropathological feature 

of this prion strain in our experimental model. Mild spongiosis was localized in the 

areas of prion accumulation (brainstem, ventral thalamus and ventral striatum) at the end 

stage of the disease. 

In NFH-Cre/MloxP mice, the progression of spongiosis was similar to that in 

MloxP mice, being localized to the brainstem, ventral thalamus and ventral striatum at 

16 wpi. In one sample it appeared earlier in the disease (12 wpi) and was widespread in 

the cortex, hippocampus, thalamus, and striatum. At 24 wpi spongiosis was also 

localized in the dorsal thalamus and cortex. From this time point until end stage of the 

disease, spongiosis was localized in the same areas affected by prion accumulation, 

keeping the cerebellum intact (Figure 3.4 B). 



102 

 

 
Figure 3.4 Progression of prion pathology in mouse-adapted BSE inoculated MloxP and NFH-Cre/MloxP mice 

Mouse-adapted BSE inoculated MloxP and NFH-Cre/MloxP mice were time culled at different times post infection (wpi). 3 brains per group were analysed. 

No brain was available for NFH-Cre/MloxP mice at 8wpi.The star * indicates that just one brain out of 3 had the represented phenotype; the other two 

resembled the previous time point. 

A. Representative progression of abnormal PrP deposition: in Mouse-adapted BSE MloxP inoculated mice started at 8 wpi in thalamus, hippocampus and 

brainstem. At 16 wpi, abnormal deposition of PrP reached the cortex and the striatum and at the end stage of the disease (~20wpi) the areas of maximal 
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accumulation were the brainstem and striatum. In NFH-Cre/MloxP mice abnormal PrP accumulation was found at 10 wpi in dorsal thalamic nuclei and 

brainstem. By 12 wpi, deposition was intense in the thalamus and dorsal hippocampus, whereas the frontal hippocampus was spared. Abnormal PrP 

accumulation reached the striatum at 16 wpi, as in MloxP mice. From this time, the pattern of accumulation was established, with focal areas in the brainstem 

and striatum until ~28 wpi. In the last 4 weeks, (28-33 wpi) prion accumulation spread to the cortex and cerebellum. The degree of accumulation in the first 

targeted areas was constant during this period. The only areas spared from abnormal PrP accumulation were frontal hippocampus and ventral thalamus, where 

abnormal PrP accumulation occurred as a peculiar ring shape. Brains have been stained with ICSM 35 antibody, scale bar= 2.2mm.  

B. Representative progression of spongiosis: Brains have been stained with H&E and a schematic of the results drawn. In MloxP mice mild spongiosis was 

localized to the areas of prion accumulation (brainstem, ventral thalamus and ventral striatum) from 16 wpi. In NFH-Cre/MloxP mice, spongiosis appeared at 

12 wpi in one sample, indicated with a star, and was widespread in the cortex, hippocampus, thalamus, and striatum. At 16 wpi it localized to the brainstem, 

ventral thalamus and ventral striatum. At 24 wpi spongiosis was localized also in the dorsal thalamus and cortex. From this time point until end stage of the 

disease, spongiosis was localized in the same areas affected by prion accumulation, keeping the cerebellum intact. 

 
 

 

  



 

104 

 

3.5 Discussion 

The survival data in this pilot experiment showed a clear difference in the 

effect of neuronal PrP
C
 depletion in the course of different prion infections. Indeed, 

loss of neuronal PrP was effective in delaying progression of the disease after both 

Me7 and Mouse-adapted BSE prion inoculation, but it did not completely protect as 

previously observed for RML infection (Mallucci et al., 2003). In addition, some 

important observations were made both for neuropathology and the survival of 

infected animals.  

First, it is important to consider that different prion strains have different 

lesion profiles. Indeed, the hippocampus, which was the main area analysed in 

Mallucci‘s experiment, is a prominent site for prion accumulation in Me7 but not in 

Mouse-adapted BSE inoculated mice. Second, the rescue effect of prion pathology 

observed in the hippocampus of RML infected animals is not seen in the Me7 

infection. In this case, spongiosis in the hippocampus of double transgenic animals 

appears later in the disease (16 wpi vs. 12 wpi in control animals) but then remained 

constant as the disease progressed. This could be due to a miss-coupling of the 

kinetics of Cre recombination and prion pathology targeting the hippocampus.  

Other areas appear to be a common target for Me7 and Mouse-adapted BSE 

prions, like thalamus and brainstem. Even in these areas, a slowing of the disease 

progression, with later appearance of spongiosis is the only effect of PrP
C
 depletion 

and no rescue of pathology was observed. It is also noticeable how recombination 

affects abnormal PrP deposition: recombination is known to occur with higher 

efficiency in areas enriched in neurons (Mallucci et al., 2002), like hippocampus and 

thalamus, and indeed the thalamus in both Me7 and Mouse-adapted BSE infection 

and the hippocampus in Me7 infection were cleared of abnormal PrP accumulation. 

The slowing of the disease progression is in accordance with the increased 

survival of NFH-Cre/MloxP mice. In contrast with RML infection, Me7 and Mouse-

adapted BSE infected mice did not survive long term asymptomatically. We 

reasoned that the different lesion profile could be responsible for this outcome and 

that neuronal PrP
C
 recombination do not protect one or more areas responsible for 

the onset of disease in Me7 and Mouse-adapted BSE to the same extent as in RML 

infection.  
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Specific anatomical target areas, ―clinical target areas‖, have been 

hypothesized to be responsible for disease onset, progression and the clinical 

phenotype (Kimberlin and Walker, 1983; Kimberlin and Walker, 1986; Kimberlin et 

al., 1987). 

We suggest that a comparison of end stage infected MloxP and NFH-

Cre/MloxP mice and asymptomatic RML infected NFH-Cre/MloxP mice, could 

facilitate identifying these anatomical and functional target areas. Two scenarios 

could be hypothesized: ―clinical target areas" responsible for the fatal outcome of the 

disease could be either the very first regions to be affected and become rate-liming in 

the disease progression or, alternatively, the target areas are the last regions to start 

accumulating abnormal prion protein. 

In the first scenario, the clinical target areas are the first sites of prion 

accumulation and pathology, both in MloxP and NFH-Cre/MloxP mice. Comparison 

of the published data (i.e. RML inoculated NFH-Cre/MloxP mice survive for > 52 

weeks) with the data obtained here (i.e. Me7 inoculated NFH-Cre/MloxP mice 

survive ~ 28 weeks), would allow the conclusion that the difference of incubation 

time is due to the different involvement of the anatomic target areas. It must be 

assumed, that such a difference is caused by the different kinetics of the prion 

accumulation, for example that Me7 accumulates faster than RML in a specific 

areas. In the context of our model of neuronal depletion, the colonisation of an area 

with prions may precede the recombination event, causing a clinical phenotype.  

In the second scenario (last target area), the clinical target areas can be 

identified by comparing late stage RML inoculated NFH-Cre/MloxP mice with end 

stage NFH-Cre/MloxP mice inoculated with Me7 or Mouse-adapted BSE. In this 

scenario, mice would be able to survive the infection in a pre-clinical stage- i.e. 

accumulating prions without developing clinical showing signs of prion disease, 

until the colonisation of the critical target areas that cause a fatal outcome. 

Therefore, clinical target areas of prion pathology should be distinguishable at the 

end stage of the disease in the MloxP mice infected with any prion strains, and in the 

late stage NFH-Cre/MloxP mice infected with prions strains that still develop clinical 

prion disease, but these areas should be partially or totally spared from prion 

pathology in RML infected NFH-Cre/MloxP mice surviving long term.  
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In order to further investigate and validate these hypotheses, a new 

experiment was set up. The results are described in the following chapters. 

3.6 Summary 

It was previously shown that Cre-mediated neuronal PrP
C
 depletion in RML 

infection reversed early spongiform changes, prevented progression to clinical 

disease, despite the accumulation of extra-neuronal PrP
Sc 

(Mallucci et al., 2003). 

Here we showed that the effect of neuronal PrP
C
 depletion is different with 

different prion strains. Upon Me7 and Mouse-adapted BSE inoculation, depleted 

mice survive longer than non-depleted mice but still develop clinical symptoms; 

however the prion pathology progressed more slowly but it was not rescued upon 

depletion of neuronal PrP by recombination. We speculate that the difference may be 

due to the cross-talk between Cre-mediated recombination and areas preferentially 

targeted by prion pathology, the so called ―clinical target areas‖ (Kimberlin and 

Walker, 1983; Kimberlin and Walker, 1986; Kimberlin et al., 1987). Basically, Cre-

mediated recombination could occur in one or more clinical target areas before they 

are targeted by the RML induced prion pathology, but not Me7 or Mouse-adapted 

BSE related prion pathology. Therefore, Cre-mediated recombination prevents 

progression to clinical disease in RML but not in Me7 or Mouse-adapted BSE 

infection. To evaluate which are the clinical target areas and if they are first or last 

areas affected in the course of a given infection, a new experiment was set up which 

is described in the following chapter. 
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4 Prion pathology in the brainstem of RML and Me7 MloxP and 

NFH-Cre/MloxP infected mice 

4.1 Introduction 

The idea of specific anatomical target areas preferentially affected in prion 

disease is not new (Kimberlin and Walker, 1983). According to the ―clinical target 

areas‖ hypothesis, specific vital brain regions are targets of prion pathology and 

determine clinical onset in prion-infected animals. More recent studies have 

supported the hypothesis that specific vital brain regions may be preferentially 

affected, and have rejected the hypothesis that generalised high level of PrP
Sc

 in the 

central nervous system is the reason for accelerated pathogenesis and disease 

(Karapetyan et al., 2009). 

MloxP and NFH-Cre/MloxP infected mice are useful tools to further 

investigate the hypothesis of clinical target areas in prion disease. In the previous 

chapter we described that NFH-Cre/MloxP mice, which in previous studies showed 

resistance to clinical disease following RML prion inoculation, were not resistant to 

inoculation with other prion strains. Me7 and Mouse-adapted BSE inoculated NFH-

Cre/MloxP mice survived significantly longer than their respective PrP 

overexpressing MloxP mice, but still succumbed to prion disease. We therefore 

reasoned that, comparing the brain areas affected by prion pathology in terminally ill 

MloxP mice, terminally ill NFH-Cre/MloxP mice and resistant RML inoculated 

NFH-Cre/MloxP mice, may enable us to pin-point the vital areas in which Cre-

mediated recombination prevents prion pathology.  

Terminally ill prion infected mice usually show signs of tremor, balance 

control and gait impairment in conjunction with impaired respiratory rate. The 

brainstem is the centre of control of vital activities, such as cardiovascular and 

respiratory functions. Moreover, some anatomical regions in the brainstem (so-called 

nuclei) in this heterogeneous area also supervise motor control. Therefore, we 

reasoned that a detailed analysis of the brainstem nuclei would reveal important 

information on ―clinical target areas‖ of prion disease. 

Work from Iwasaki et al. examined the brainstem of 33 sCJD patients 

(Iwasaki et al., 2005), looking for a connection between clinical symptoms 

suggestive of brainstem involvement and brainstem pathology. Brainstem atrophy, 
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neuronal loss, pyramidal tract degeneration and PrP deposition were reported 

particularly in patients with prolonged disease, but the authors hypothesized that 

abnormal PrP deposition in the brainstem occurs in the early stage of the sCJD 

disease process. However, this study showed high variability and failed to determine 

a correlation between clinical signs and brainstem lesions. The authors suggested 

that a conclusive evaluation of the connection between clinical signs and brainstem 

impairment is difficult because the same symptoms could derive from overlapping 

involvement of basal ganglia or cortex (Iwasaki et al., 2005).  

Therefore, a controlled and reproducible system, such as an animal model 

could circumvent the problem of variability of clinical signs in patients and the 

variable distribution of pathological features in human samples.  

The organization of the brainstem has been described as a segregation 

between nuclei involved in motor control and neuronal populations implicated in the 

control of homeostatic activity (Brodal, 1981). This model of brainstem circuitry, 

based on segregation between activities, generally attributes the control of skeletal 

muscle contraction to the medial pontine and reticular formation and the vestibular 

nuclei, and the regulation of respiration and blood pressure to areas such as the 

nucleus of the solitary tract and the lateral medullary reticular formation (Yates and 

Stocker, 1998). Although this segregation has proven to be inaccurate (Yates et al., 

2002; Yates et al., 2003), we used it as an approximate approach to investigate the 

involvement of the brainstem in prion pathology, and analysed different brainstem 

nuclei as involved in motor or autonomic control. 

In this chapter I will discuss our study, which aims at the identification of the 

brainstem nuclei in transgenic mice that show the most significant prion-related 

pathology and the characterisation of disease progression. 

4.2 Aims  

 To assess the effect of Cre-mediated recombination of the Prnp gene on the 

survival of mice infected with RML, Me7 and MRC2 prions 

 To identify the brainstem nuclei affected by prion pathology in MloxP mice 

inoculated with each of the three prion strains 
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 To follow the disease progression in PrP-depleted mice, by evaluating the 

brainstem nuclei affected by prion pathology in NFH-Cre/MloxP mice at a 

time when non-recombined MloxP mice were terminally ill.  

 To evaluate the prion pathology in the brainstem nuclei at the end-stage of 

prion disease in NFH-Cre/MloxP mice inoculated with each of the three prion 

strains. 

4.3 Experimental set up 

MloxP and NFH-Cre/MloxP mice were inoculated when one week-old with 

the RML, Me7 or MRC2 prion strains. The inoculum was 1% brain homogenate, 

designated as I9900 (1% RML I8700), I 9459 (1% Me7 I9458), I 9468 (1% MRC2 

9467). 

The MRC2 strain was derived from Mouse–adapted BSE inoculum, 

subpassaged in SJL mice. It is a selected strain rather than an intermediate passage 

and has been characterised previously (Lloyd et al., 2004). For each group, a 

statistically significant number of animals were used to analyse survival and to 

analyse their brains histopathologically. Furthermore, RML, Me7 or MRC2 

inoculated NFH-Cre/MloxP mice were culled at the time when the respective (non-

recombined) MloxP mice were terminally ill, and their brains analysed 

histologically. An additional group of NFH-Cre/MloxP mice was inoculated and it 

was planned to cull at 50 wpi for direct comparison with the experiment performed 

by Mallucci (Figure 4.1). 

For each group, three animals were used for pathological analysis. Brains 

were fixed, cut coronally into three pieces and processed for paraffin embedding. 

The block corresponding to the brainstem was sectioned with the microtome by the 

support team of the histology core facility at the MRC Prion Unit in serial sections 

and levels. Eight sections were collected for histology at each level. Sections were 

stained with haematoxylin and eosin (H&E) to assess spongiform changes, ICSM 35 

antibody for abnormal prion protein deposition and anti-GFAP antibody to visualise 

reactive astrocytes and to assess astrogliosis. Sections were analysed microscopically 

and areas of interest were compared with landmarks in the Paxinos Mouse Brain 

Atlas and Allen Mouse Atlas (Paxinos and Franklin, 2004; Lein et al., 2007). Degree 
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of spongiosis, abnormal PrP deposition and gliosis were evaluated semi-

quantitatively. 

A detailed histological analysis was carried out on RML and Me7 inoculated 

brains. 

 

Figure 4.1 Description of the experimental plan 

MloxP and NFH-Cre/MloxP mice were inoculated when one week old with RML, Me7 or MRC2 

brain homogenate. Differential survival upon Cre-mediated recombination was to be estimated 

comparing terminal MloxP mice (blue arrow) and terminal NFH-Cre/MloxP mice (red arrow) 

incubation time. Because previous studies showed RML inoculated NFH-Cre/MloxP mice to be 

resistant to prion infection, RML inoculated NFH-Cre/MloxP mice were to be culled at the end of the 

experiment. For histopathological analysis, brains were to be collected form terminally ill MloxP and 

NFH-Cre/MloxP mice, and NFH-Cre/MloxP mice culled at the time when the MloxP mice were 

terminal, respectively, 12 wpi for RML inoculation, 16 wpi for Me7 inoculation and 20 wpi for 

MRC2 inoculation. An extra group of RML inoculated NFH-Cre/MloxP mice to be culled at 50 wpi 

was set up for a direct comparison with results reported by Mallucci et al.  
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4.4 Results 

4.4.1 Effect on survival  

In keeping with previous studies (Mallucci et al., 2003), RML inoculated 

MloxP control mice succumbed to prion disease after approximately 12 weeks 

(n=10). Surprisingly, the recombined NFH-Cre/MloxP mice did not survive for more 

than 57 weeks but became terminally ill ~35 wpi, (n=18) with the first animal dying 

at 30 wpi and the last at 38 wpi (Figure 4.2 A).  

Me7 prion infected MloxP mice succumbed to disease at ~17 weeks (n=9) 

whereas the PrP
C
 depleted mice developed signs of scrapie at ~29 weeks (n=9) p 

value <0.0005, consistently with previous observations (cf. chapter 3) (Figure 4.2 B). 

MRC2 infected MloxP mice succumbed after ~22 weeks (n=12) but PrP
C
 

depleted mice survived ~31 weeks (n=14; p <0.0005) (Figure 4.2 C), with an 

incubation time longer than for Mouse-adapted BSE (cf. chapter 3). 

4.4.2 Histopathology in the brainstem of prion infected animals 

The pathological phenotype in the brainstem was examined for RML and 

Me7 prion strains. The semiquantitative evaluation included degree of spongiosis, 

abnormal PrP deposition and gliosis, using a scoring system ranging from non-

existent (0) to severe (3). Spongiosis was scored as mild (= 1), intermediate (= 2) or 

severe (= 3), taking into account the ratio between vacuoles and healthy tissue in a 

given nucleus; gliosis was scored as mild (= 1), intermediate (= 2) or severe (= 3), 

taking into account the proportion of GFAP positive cells and the intensity of GFAP 

staining. PrP deposition was identified as synaptic or coarse, granular. The first 

appears as fine abnormal PrP deposition at the synapses and was scored as mild (= 

1), intermediate (= 2) or strong (= 3) according to the intensity of deposition; the 

second is characterized by coarser granular deposition of abnormal PrP, and was 

scored according to the granular appearance as mild (= 1), intermediate (= 2) or 

dense (= 3) (Figure 4.3). 

The analysis particularly focused on pontine and medullary nuclei involved 

in gait and balance (vestibular nuclei, prepositus nucleus, olive) and autonomic 

activity (locus coeruleus, tegmental nuclei, parabrachial nucleus, gigantocellular 

reticular nucleus, nucleus of the solitary tract, ventro-lateral reticular medulla, pre-
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Bötzinger complex). A schematic representation of their position is shown in Figure 

4.4. 

In addition to the brainstem, the cerebellum was included in the analysis, as it 

is connected to the brainstem through the olivo-cerebellar pathways.   

 

 

Figure 4.2 Survival curves of RML, Me7 and MRC2 inoculated MloxP and NFH-Cre/MloxP 

mice 

A. Mice were inoculated with RML prions when one week of age. MloxP mice (blue line) became 

terminally ill at ~12wpi (n=10). In contrast to previous experiments, the recombined NFH-Cre/MloxP 

mice (red line) were not resistant to prion inoculation, and were terminally ill in ~ 35 weeks (n=18), 

showing a significant increase in the incubation time, p value <0.0005.  

B. Mice were inoculated with Me7 prions when one week of age. MloxP mice (blue line) succumbed 

to Me7 prions at ~17 weeks (n=9); NFH-Cre/MloxP mice, were terminal at ~29 weeks (n=9) (red 

line) p value <0.0005, in accordance with previous results reported in chapter 3. 
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C. Mice were inoculated with MRC2 prions when one week of age. MloxP mice (blue line) 

succumbed in ~22 weeks (n=12), but NFH-Cre/MloxP mice, with PrPC depletion survived ~31weeks 

(n=14), p value <0.0005. 

 

 

 

Figure 4.3 Scoring system used to evaluate prion pathology in the brainstem of prion inoculated 

animals 

Spongiosis was scored considering the ratio between healthy tissue and vacuoles in a given nucleus, 

observed by H&E staining, as mild = 1 (A), intermediate = 2 (B)  or severe = 3(C). 

Abnormal PrP accumulation was scored according to synaptic density of abnormal PrP deposits (D, E, 

F) or granularity (G, H, I), as observed by ICSM 35 antibody staining. Synaptic density was scored as 

mild (D), intermediate = 2 (E) or strong = 3 (F); granularity was scored as mild = 1 (G), intermediate 

= 2 (H) or dense = 3 (I). Gliosis was scored taking into account proportion of reactive cells and the 

intensity of GFAP staining, as mild = 1 (J), intermediate = 2 (K) or severe = 3 (L). 
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Figure 4.4 Location of the brainstem nuclei 

The scheme has been adapted from the Paxinos Mouse Brain Atlas.  

A = -5.34 mm from Bregma; B = - 6.00 mm from Bregma; C= - 6.84 mm from Bregma; D = -7.32 

mm from Bregma. 

List of abbreviations: 

PBN = parabrachial nuclei; TN = tegmental nuclei; LC= locus coeruleus; VN= vestibular nuclei; 

PR N= prepositus nucleus; 4 V = forth ventricle; NTS= nucleus of the solitary tract; Sp5= spinal 

nucleus of the V nerve; VLRM= ventro-lateral reticular medulla; Amb= nucleus ambiguous; PBC= 

pre-Bötzinger complex; ROb = raphe obscurus; 10 N= nucleus of the X nerve; 12N= nucleus of the 

XII nerve. 

 

 

4.4.2.1 Brainstem pathology in RML inoculated MloxP mice at the end stage of prion 

disease 

The pathological findings in the brainstem of RML infected MloxP mice 

were consistent. Spongiosis ranged between mild in the tegmental nuclei, locus 
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coeruleus and parabrachial nucleus, to intermediate in the vestibular and prepositus 

nuclei.  

The pattern of abnormal PrP deposition was synaptic, with widespread 

staining ranging from mild in the autonomic centres, gigantocellular reticular 

nucleus, nucleus of the solitary tract, ventro-lateral medulla, and pre-Bötzinger 

complex, intermediate in the motor control areas (vestibular, prepositus nuclei) and 

autonomic areas (tegmental and parabrachial nuclei), to severe in the locus coeruleus 

and the olive. 

Gliosis did not always correspond to the abnormal PrP deposition, as the 

areas with severe abnormal PrP deposition (such as tegmental nucleus, parabrachial 

nucleus and the locus coeruleus) showed relatively mild reactive gliosis, whereas 

other motor control areas, such as vestibular nucleus, prepositus nucleus and olive 

showed more severe gliosis. 

The cerebellum in these animals was less spongiotic than all the brainstem 

nuclei analysed, and it showed mild abnormal PrP accumulation and very mild 

reactive gliosis (Figure 4.5; Table 4.1).  

4.4.2.2 Brainstem pathology in RML inoculated NFH-MloxP culled at 12 wpi 

Prion-related pathology at 12 wpi was markedly different in clinically healthy 

PrP depleted animals compared to non-recombined MloxP mice which were terminal 

at that time. 

In PrP depleted mice, spongiosis was almost completely absent, with only the 

locus coeruleus being mildly affected. This nucleus showed the most severe 

accumulation of abnormal PrP. Abnormal PrP deposition in RML-infected NFH-

MloxP was patchy, and coarse granular, rather than synaptic. Other nuclei with 

marked PrP deposition were the parabrachial and tegmental nuclei, followed by 

gigantocellular nucleus, the nucleus of the solitary tract and the olive. Gliosis 

correlated best with abnormal deposition in the locus coeruleus and the nucleus of 

the solitary tract, where it was intermediate, but was variable in the other nuclei.  

The cerebellum showed a very mild pathology (spongiosis, gliosis and PrP 

deposition) (Figure 4.6; Table 4.1). 
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4.4.2.3 Brainstem pathology in RML inoculated NFH-MloxP mice at end stage of 

prion disease 

Terminally ill NFH-MloxP mice showed an overall pathology that was 

significantly different from that of RML infected MloxP mice. The gigantocellular 

reticular nucleus, ventro-lateral reticular medulla and the pre-Bötzinger complex 

were mildly spongiotic, while the other nuclei varied from intermediate to severe 

spongiosis, with the locus coeruleus being the most affected area. Also the 

cerebellum showed severe spongiosis, which is interpreted as a consequence of the 

prolonged incubation time, as it is not seen in terminally ill RML infected MloxP 

mice at 12wpi. The abnormal prion protein deposition in NFH-MloxP mice appeared 

different from that observed in MloxP mice, in that the majority of the brainstem was 

spared from PrP deposition with only a few patchy granules appearing, probably as a 

result of the removal of neuronal PrP through Cre-mediated recombination. 

Interestingly, areas with the highest scores were the locus coeruleus, the nucleus of 

the solitary tract and, outside the brainstem, the cerebellum (Figure 4.7, Table 4.1). 

For the first time, we also observed accumulation in the tracts of the cranial nerves 

(Figure 4.8 A), within the perivascular Virchow-Robin spaces and in the brain 

parenchyma directly surrounding them (Figure 4.8 B). As this was absent in shorter 

surviving RML infected MloxP mice, it can be ascribed to a secondary effect of the 

prolonged incubation time. The distribution of gliosis in the different nuclei matched 

the abnormal PrP accumulation (Figure 4.7, Table 4.1).  
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Figure 4.5 Brainstem pathology in RML inoculated MloxP mice at end stage of prion disease 
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Brain sections of RML inoculated MloxP mice were stained with haematoxylin and eosin (H&E) (A, E, I, M) and immunostained with ICSM35 antibody for 

PrPSc deposition (B, F, J, N) and an anti-GFAP antibody for detection of astrocytosis (C, G, K, O). In D, H, L, P a schematic representation of abnormal PrP 

deposition (red) and spongiosis (blue) of the brainstem nuclei analysed is shown. Gliosis mimicked the abnormal PrP schematic unless otherwise stated. 

Spongiosis was intermediate in the vestibular (E,I,H,L) and prepositus (E,H) nuclei and mild in tegmental nuclei (E, H), locus coeruleus and parabrachial 

nucleus(A,D) and cerebellum (A,E,I,M,D,H,L,P). PrP deposition was severe in the locus coeruleus (B,D) and the olive (N,P); intermediate in the vestibular (F,J, 

H,L) prepositus ( F, H); tegmental and parabrachial nuclei (B,D) , and mild in the gigantocellular reticular nucleus , nucleus of the solitary tract, ventro-lateral 

medulla, and pre-Bötzinger complex (J, L, N, P) and cerebellum (B,F,J,N,D,H,L,P). Gliosis was intermediate in vestibular nucleus (G), prepositus nucleus(G) 

and olive (O) and mild//intermediate in the tegmental nuclei (C), parabrachial nucleus (C) and the locus coeruleus(C), the nucleus of the solitary tract, ventro-

lateral medulla and pre-Bötzinger complex (K,O). 

Scale bar= 4mm; Abbreviations: PBN = parabrachial nuclei; TN = tegmental nuclei; LC= locus coeruleus; VN= vestibular nuclei; 

PR N= prepositus nucleus; 4 V = forth ventricle; VN= vestibular nuclei; NTS= nucleus of the solitary tract; Sp5= Spinal nucleus of the V nerve; VLRM= ventro-

lateral reticular medulla; Amb= nucleus ambiguous; PBC= pre-Bötzinger complex; ROb = raphe obscurus; 10 N= nucleus of the X nerve; 12 N= nucleus of the 

XII nerve. 
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Figure 4.6 Brainstem pathology of RML inoculated NFH-MloxP mice at 12 wpi 
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Brain sections of RML inoculated NFH-Cre/MloxP mice culled at 12 wpi were stained with haematoxylin and eosin (H&E) (A, E, I, M) and immunostained with 

ICSM35 antibody for PrPSc deposition (B, F, J, N) and an anti-GFAP antibody for detection of astrocytosis (C, G, K, O). In D, H, L, P a schematic representation 

of abnormal PrP deposition (red) and spongiosis (blue) of the brainstem nuclei analysed is shown. Gliosis mimicked the abnormal PrP schematic unless 

otherwise stated. 

Spongiosis was almost completely absent everywhere, but it was mild in the locus coeruleus (A, D). This nucleus was also the one with the most severe abnormal 

PrP accumulation (B, D). Other nuclei affected by abnormal deposition were the tegmental and the parabrachial nuclei (B, D) and mildly the gigantocellular 

nucleus, the nucleus of the solitary tract and the olive (J, N L, F). Gliosis correlated with abnormal deposition in some nuclei like the locus coeruleus (C) and the 

nucleus of the solitary tract (K) while in the other nuclei it was less evident. 

The cerebellum showed a very mild pathology in respect of all the three parameters, as evident in all the pictures of the panel. 

Scale bar= 4mm; Abbreviations: PBN = parabrachial nuclei; TN = tegmental nuclei; LC= locus coeruleus; VN= vestibular nuclei; 

PR N= prepositus nucleus; 4 V = forth ventricle; VN= vestibular nuclei; NTS= nucleus of the solitary tract; Sp5= Spinal nucleus of the V nerve; VLRM= ventro-

lateral reticular medulla; Amb= nucleus ambiguous; PBC= pre-Bötzinger complex; ROb = raphe obscurus; 10 N= nucleus of the X nerve; 12 N= nucleus of the 

XII nerve. 
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Figure 4.7 Brainstem pathology of RML inoculated NFH-MloxP mice at end stage of prion disease 
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Brain sections of RML inoculated NFH-Cre/MloxP mice culled at 12 wpi mice were stained with haematoxylin and eosin (H&E) (A, E, I, M) and immunostained 

with ICSM35 antibody for PrPSc deposition (B, F, J, N) and an anti-GFAP antibody for detection of astrocytosis (C, G, K, O). In D, H, L, P a schematic 

representation of abnormal PrP deposition (red) and spongiosis (blue) of the brainstem nuclei analysed is shown. Gliosis mimicked the abnormal PrP schematic 

unless otherwise stated. 

Spongiosis was spread in all the brainstem nuclei analysed, most severe in the locus coeruleus (A,D) the nucleus of the solitary tract (I,M,L,P) and the cerebellum 

(A,E,I,M,D,H,L,P),severe/ intermediate in the parabrachial (A,D), vestibular and prepositus nuclei (E,H), tegmental nuclei (A,D)  and olive (I,M,L,P)  and mild 

in gigantocellular reticular nucleus, ventro-lateral reticular medulla and the pre-Bötzinger complex (I,M,L, P). The majority of the brainstem was spared from 

deposition, with just few patchy granules and areas with the maximal scores were the locus coeruleus (B, D), the nucleus of the solitary tract (J, N, L, P) and, 

outside the brainstem, the cerebellum  (B,F, J,N,D,H,L,P).The distribution of  gliosis in the different nuclei mimicked the abnormal PrP accumulation (C ,G, K, 

O, D, H, L ,P). 

Scale bar= 4mm; Abbreviations: PBN = parabrachial nuclei; TN = tegmental nuclei; LC= locus coeruleus; VN= vestibular nuclei; 

PR N= prepositus nucleus; 4 V = forth ventricle; VN= vestibular nuclei; NTS= nucleus of the solitary tract; Sp5= Spinal nucleus of the V nerve; VLRM= ventro-

lateral reticular medulla; Amb= nucleus ambiguous; PBC= pre-Bötzinger complex; ROb = raphe obscurus; 10 N= nucleus of the X nerve; 12 N= nucleus of the 

XII nerve. 
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Figure 4.8 Granular PrP deposition in RML inoculated NFH-Cre/MloxP mice  

In RML inoculated NFH-Cre/MloxP mice PrP deposition was also found in areas spared in RML 

inoculated MloxP mice, like the tracts of the cranial nerves (A) and the Virchow-Robin spaces (B), 

suggesting that the prolonged survival allows the spread of prions in areas not primarily targeted by 

the infection. 

Scale bar = 60 µm. 
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4.4.2.4 Brainstem pathology in Me7 inoculated MloxP mice at end stage of prion 

disease 

Because many prion strains elicit a strain-specific pathological phenotype, 

the histopathological features of terminally ill Me7 inoculated MloxP mice were 

different from those of end stage RML inoculated MloxP. All scored nuclei showed 

high degree of spongiosis, ranging from intermediate in the pre-Bötzinger complex 

to severe in the locus coeruleus, the tegmental and parabrachial nuclei, and slightly 

less in the nucleus of the solitary tract and vestibular and prepositus nuclei. 

Abnormal PrP deposition was both synaptic and granular and it correlated well with 

spongiosis, with strong deposition in the vestibular and prepositus nucleus, locus 

coeruleus, tegmental and parabrachial nuclei, nucleus of the solitary tract. Among 

the motor control areas, the olive showed severe accumulation. As an exception, the 

pre-Bötzinger complex, which was just mildly spongiotic, showed severe abnormal 

PrP accumulation. The reactive astrogliosis was uniformly distributed, ranging from 

intermediate to severe. 

As observed in the pilot experiment of Me7 inoculation in MloxP mice 

(chapter 3) and in RML infected MloxP mice, the cerebellum was not among the 

most severely affected areas. Abnormal PrP deposition was scored lowest among all 

the examined areas, and spongiosis and gliosis were intermediate (Figure 4.9, table 

4.1). 

4.4.2.5 Brainstem pathology in Me7 inoculated NFH-Cre/MloxP mice culled at 16 

wpi 

PrP depletion significantly reduced pathological changes in brainstem nuclei 

of Me7 infected NFH-Cre/MloxP mice at 16 wpi. Spongiosis was reduced and 

scored as mild throughout, with the exception of the locus coeruleus with 

intermediate score. This was also the only nucleus with intermediate levels of PrP 

accumulation, followed by the olive, the gigantocellular nucleus and the nucleus of 

the solitary tract. The pre-Bötzinger complex was the nucleus in which the effect of 

PrP depletion was more evident: PrP accumulation was scored as severe in MloxP 

mice and NFH-Cre/MloxP mice showed just mild accumulation. The locus coeruleus 

exhibited the (relatively) strongest gliosis (intermediate), followed by the nucleus of 

the solitary tract. In the cerebellum, pathology was very mild, confirming the 
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previous observation that this area of the brain is not one of the first targets of prion 

deposition and pathology. (Figure 4.10; Table 4.1) 

4.4.2.6 Brainstem pathology in Me7 inoculated NFH-Cre/MloxP mice at the end-

stage of prion disease 

Marked spongiosis in the brainstem of these mice was a consistent feature, 

albeit slightly less that in terminally ill, undepleted mice. The most affected nucleus 

was the locus coeruleus with strong spongiosis, prion protein deposition and reactive 

astrogliosis. As observed in RML inoculated NFH-Cre/MloxP mice at end stage, the 

nucleus of the solitary tract and the cerebellum showed severe deposition, while the 

other nuclei ranged from mild (pre-Bötzinger complex) to intermediate, confirming 

an overall protection of prion deposition (probably due to Cre-mediated 

recombination) (Figure 4.11; Table 4.1). PrP accumulation in the tracts of the cranial 

nerves and in the Virchow-Robin spaces was also observed, similar to that in RML 

infected NFH-Cre/MloxP mice (Figure 4.12). Gliosis was congruent to abnormal PrP 

accumulation. It was generally intermediate, milder in the pre-Bötzinger complex 

and gigantocellular nucleus and most severe in the cerebellum and locus coeruleus 

(Figure 4.11; Table 4.1). 
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Figure 4.9 Brainstem pathology in Me7 inoculated MloxP mice at end stage of prion disease 
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Brain sections of Me7 inoculated MloxP mice were stained with haematoxylin and eosin (H&E) (A, E, I, M) and immunostained with ICSM35 antibody for PrPSc 

deposition (B, F, J, N) and an anti-GFAP antibody for detection of astrocytosis (C, G, K, O). In D, H, L, P a schematic representation of abnormal PrP deposition 

(red) and spongiosis (blue) of the brainstem nuclei analysed is shown. All the scored nuclei showed high degree of spongiosis: severe in the locus coeruleus (A, 

D), the tegmental and parabrachial nuclei (A, D), the vestibular and prepositus nuclei (E, I, H, L) and the nucleus of the solitary tract (I, M, L, P), and 

intermediate in the pre-Bötzinger complex, ventro-lateral reticular medulla and olive (I, M, L, P). Abnormal PrP deposition correlated with spongiosis, being 

more severe in nuclei where spongiosis was also severe, like locus coeruleus (B, D), tegmental and parabrachial nuclei (B, D), vestibular (F, H), nucleus of the 

solitary tract (J, N, L, P). The pre-Bötzinger complex, which was just mildly spongiotic, showed severe abnormal PrP accumulation (J, N, L, P). The reactive 

astrogliosis was uniformly distributed (C, G, K, O, D, H, L, P). 

Scale bar= 4mm; Abbreviations: PBN = parabrachial nuclei; TN = tegmental nuclei; LC= locus coeruleus; VN= vestibular nuclei; 

PR N= prepositus nucleus; 4 V = forth ventricle; VN= vestibular nuclei; NTS= nucleus of the solitary tract; Sp5= Spinal nucleus of the V nerve; VLRM= ventro-

lateral reticular medulla; Amb= nucleus ambiguous; PBC= pre-Bötzinger complex; ROb = raphe obscurus; 10 N= nucleus of the X nerve; 12N= nucleus of the 

XII nerve. 
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Figure 4.10 Brainstem pathology of Me7 inoculated NFH-MloxP mice at 16 wpi  

Brain sections of Me7 inoculated MloxP mice were stained with haematoxylin and eosin (H&E) (A, E, I, M) and immunostained with ICSM35 antibody for PrPSc 
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deposition (B, F, J, N) and an anti-GFAP antibody for detection of astrocytosis (C, G, K, O). In D, H, L, P a schematic representation of abnormal PrP deposition 

(red) and spongiosis (blue) of the brainstem nuclei analysed is shown. Spongiosis was reduced everywhere compared to Me7 inoculated MloxP mice at end stage 

of prion disease: all the other nuclei analysed were mildly spongiotic (A, E, I, M, D, H, L, P) the only nucleus showing intermediate level of spongiosis was the 

locus coeruleus (A, D). Abnormal PrP accumulation was more intense in the locus coeruleus (B,D), nucleus of the solitary tract (J, N, L, P) and olive (N, O) 

followed by the parabrachial and tegmental nuclei (B, D), vestibular and prepositus nuclei (F, H) and gigantocelluar reticular nucleus (J, L). Deposition was mild 

in the pre-Bötzinger complex and ventro-later reticular medulla (J, N, L, P). The distribution of  gliosis in the different nuclei mimicked the abnormal PrP 

accumulation (C, G, K, O, D, H, L, P) 

In the cerebellum, spongiosis, abnormal accumulation and gliosis were very mild. 

Scale bar= 4mm;  Abbreviations: PBN = parabrachial nuclei; TN = tegmental nuclei; LC= locus coeruleus; VN= vestibular nuclei; 

PR N= prepositus nucleus; 4 V = forth ventricle; VN= vestibular nuclei; NTS= nucleus of the solitary tract; Sp5= Spinal nucleus of the V nerve; VLRM= ventro-

lateral reticular medulla; Amb= nucleus ambiguous; PBC= pre-Bötzinger complex; ROb = raphe obscurus; 10 N= nucleus of the X nerve; 12N= nucleus of the 

XII nerve. 

 

 

 

 

 



 

130 

 

 

Figure 4.11 Brainstem pathology of Me7 inoculated NFH-MloxP mice at end stage of prion disease 



 

131 

 

Brain sections of Me7 inoculated NFH-Cre/MloxP mice were stained with haematoxylin and eosin (H&E) (A, E, I, M) and immunostained with ICSM35 

antibody for abnormal PrP deposition (B, F, J, N) and an anti-GFAP antibody for detection of astrocytosis (C, G, K, O). In D, H, L, P a schematic representation 

of abnormal PrP deposition (red) and spongiosis (blue) of the brainstem nuclei analysed is shown. 

Spongiosis was severe in the locus coeruleus (A, D), parabrachial nuclei (A, D) and nucleus of the solitary tract; (I, M, L, P); severe/intermediate in the tegmental 

nuclei (A, D), vestibular nuclei (E, H), prepositus nucleus (E, H), and cerebellum (A, E, I, M, D, H, L, D, P) and intermediate in the gigantocellular nucleus (I, 

L), ventro-lateral medulla and olive (M, P). It was mild in the pre-Bötzinger complex (I, M, L, P). The locus coeruleus had also the high degree of abnormal PrP 

accumulation (B, D), with the cerebellum (B, F, J, N, D, H, L, P) and the nucleus of the solitary tract (J, N, L, P). PrP deposition was intermediate in the 

tegmental (B, D), parabrachial (B, D), vestibular (F, H) and prepositus nuclei (F, H), and in the olive ( N, P); and mild in the gigantocellular nucleus (J, L), 

ventro-lateral reticular medulla and pre-Bötzinger complex (N, P). 

Gliosis was occurred in the same areas of abnormal PrP accumulation and ranged from mild in the pre-Bötzinger complex (K, O) and gigantocellular nucleus (K) 

to severe in the cerebellum (C, G, K, O) and locus coeruleus (C). 

Scale bar= 4mm; Abbreviations: PBN = parabrachial nuclei; TN = tegmental nuclei; LC= locus coeruleus; VN= vestibular nuclei; 

PR N= prepositus nucleus; 4 V = forth ventricle; VN= vestibular nuclei; NTS= nucleus of the solitary tract; Sp5= Spinal nucleus of the V nerve; VLRM= ventro-

lateral reticular medulla; Amb= nucleus ambiguous; PBC= pre-Bötzinger complex; ROb = raphe obscurus; 10 N= nucleus of the X nerve; 12N= nucleus of the 

XII nerve. 
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Figure 4.12 Diffuse PrP deposition in Me7 inoculated NFH-Cre/MloxP mice  

In Me7 inoculated NFH-Cre/MloxP mice PrP deposition was found also in the tracts of the cranial 

nerves (A) and the Virchow-Robin spaces (B). This characteristic deposition was previously found in 

RML inoculated NFH-Cre/MloxP mice, and highlighted the similarity in the lesion profiles of RML 

and Me7 inoculated NFH-Cre/MloxP mice. Scale bar = 60 µm. 
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Table 4.1 Scoring of brainstem nuclei pathology  

Sections spanning the area of interest were stained with haematoxylin and eosin to follow progression 

of spongiosis, ICSM 35 antibody for abnormal PrP deposition and anti-GFAP antibody to follow 

gliosis progression. Sections were analysed microscopically and degree of spongiosis, abnormal PrP 

deposition and gliosis in different brainstem nuclei were evaluated, using a scoring system ranging 

 motor control autonomic activity

V N PR N Olive CRBM T N L C PBN Gig NTS VLRM PBC

spongiosis 2.0 2.0 1.5 1.1 1.3 1.4 1.3 1.5 1.7 1.5 1.3

abnormal PrP 2.0 2.3 3.0 1.0 2.0 3.0 1.7 1.5 1.3 1.3 1.5

gliosis 2.0 2.3 2.0 0.7 0.8 1.0 0.6 1.5 0.5 1.5 1.3

 motor control autonomic activity

V N PR N Olive CRBM T N L C PBN Gig NTS VLRM PBC

spongiosis 0.0 0.0 0.2 0.0 0.0 0.7 0.3 0.2 0.0 0.0 0.0

abnormal PrP 1.0 1.5 1.2 1.0 1.7 2.5 1.7 1.0 0.8 1.0 0.5

gliosis 0.5 1.0 1.0 1.0 0.8 0.8 0.8 1.0 1.0 0.8 1.0

 motor control autonomic activity

V N PR N Olive CRBM T N L C PBN Gig NTS VLRM PBC

spongiosis 2.6 2.5 2.5 2.8 2.1 3.0 2.6 1.0 2.8 1.0 1.1

abnormal PrP 1.9 2.3 1.5 3.0 2.3 3.0 2.3 1.0 3.0 0.8 1.4

gliosis 2.0 2.4 2.0 3.0 1.9 3.0 2.0 1.3 2.6 1.5 1.2

 motor control autonomic activity

V N PR N Olive CRBM T N L C PBN Gig NTS VLRM PBC

spongiosis 2.8 2.8 2.2 2.0 3.0 3.0 3.0 2.3 2.8 2.2 1.8

abnormal PrP 2.8 2.8 3.0 1.8 2.8 3.0 2.8 2.2 3.0 2.2 3.0

gliosis 2.3 2.7 2.5 2.0 2.3 2.7 2.0 2.0 2.3 2.0 2.3

 motor control autonomic activity

V N PR N Olive CRBM T N L C PBN Gig NTS VLRM PBC

spongiosis 0.8 1.0 0.7 0.7 1.3 2.0 1.5 0.7 1.0 0.7 0.5

abnormal PrP 1.3 1.3 2.3 0.5 1.8 2.5 1.7 1.3 2.3 0.7 1.0

gliosis 0.5 1.3 0.7 0.5 1.5 2.0 1.0 1.2 1.8 1.3 1.2

 motor control autonomic activity

V N PR N Olive CRBM T N L C PBN Gig NTS VLRM PBC

spongiosis 2.5 2.8 2.0 2.5 2.5 3.0 2.8 1.8 2.7 2.0 1.2

abnormal PrP 1.8 1.8 2.0 3.0 2.3 3.0 2.3 1.2 3.0 1.2 1.3

gliosis 1.8 2.0 2.5 2.2 2.0 2.8 2.3 1.5 2.8 1.8 1.2

End-stage Me7 infected NFH-Cre/MloxP mice

End-stage RML infected MloxP mice

RML infected NFH-Cre/MloxP mice time culled at 12 wpi

End-stage RML infected NFH-Cre/MloxP mice

End-stage Me7 infected MloxP mice

Me7 infected NFH-Cre/MloxP mice time culled at 16 wpi
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from non-existent (0) to maximum (3). For every group, a minimum of 3 brains were analysed and 

their scores averaged. 
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4.4.3 Comparison of end stage pathology after Me7 and RML infection of 

NFH-Cre/MloxP mice: selection of a new strain? 

Individual prion strains have different incubation times and show distinct 

pathology upon inoculation. As shown so far, RML and Me7 inoculated MloxP mice 

showed distinct pathology. Yet, in RML or Me7 infected NFH-Cre/MloxP mice, 

abnormal PrP deposition in the analysed coronal levels showed similarities both for 

phenotype of deposition and affected nuclei. (i) In both cases the phenotype of PrP 

accumulation was granular rather than synaptic; (ii) the most affected nuclei were the 

locus coeruleus, the nucleus of the solitary tract, and the cerebellum; (iii) in both 

infections, abnormal deposition was also observed in the cranial nerves and 

Virchow-Robin spaces. The observation that inoculations with the two different 

prion strains generate perfectly super imposable phenotypes suggested that depletion 

of neuronal PrP in the NFH-Cre/MloxP line may have selected a specific strain that 

might not have been the dominant species in the prion inoculum ensemble, in line 

with the strain selection model described in paragraph 1.1.3.4. The phenotype of 

these two infections is indeed different from the respective undepleted controls 

(RML in MloxP mice and Me7 in MloxP).  

Strain selection is a phenomenon that can occur upon passaging of an 

inefficiently propagating strain in a new host, resulting in a new, distinct strain 

(Bruce, 1993). It can occur upon inter-species transmission, because the PrP 

sequence of the host is different from that of the  inoculum, or in intra-species 

transmission, suggesting an effect of modifier loci on strain selection (Lloyd et al., 

2004). Recently, Li e al. showed how environmental modifications can affect strain 

selection pressure and favour an otherwise rare strain. The changes determining the 

strain shift were shown to be the host or chemical selection. The prion conformer 

dominating a brain-adapted prion ensemble replicated less rapidly than a cell-

adapted form, once passaged from brain to susceptible cells. However, when the 

cell-adapted ensemble was returned to brain, the brain-adapted form became 

dominant again. Similarly the use of an inhibitor achieved selection for a resistant 

sub-strain, whereas, in its absence, the susceptible sub-strain outgrew its resistant 

counterpart (Li et al., 2010).  
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To test the hypothesis that passaging prion strains in neuronal PrP-depleted 

NFH-Cre/MloxP mice resulted in the selection of a new strain from the ensemble, a 

small scale experiment was set up. We planned to test this hypothesis both in mice 

and cells. Firstly, we planned to compare the survival and the lesion profile of mice 

injected with the original RML inoculum and mice injected with inoculum derived 

from RML passaged in NFH-Cre/MloxP mice; we also  planned to use the two 

inocula in the scrapie cell assay (SCA) in PK1 cells (Klohn et al., 2003), as these 

cells allow propagation of RML prions but not of other prion strains. 

4.4.3.1 Experimental setup  

One brain from a terminally ill RML inoculated NFH-Cre/MloxP mouse was 

used to generate a 10% brain homogenate (I10716) to be used for infection. 1% of 

I10716, designated I10717, and the same RML brain homogenate used in the 

infection of MloxP and NFH-Cre/MloxP (I9900) were injected into 6 Tg20 

overexpressing mice (Fischer et al., 1996) and 6 FVB wild type mice. A graphical 

representation of the experiment is shown in Figure 4.13. The PrP overexpressing 

Tg20 line was chosen because of its reduced incubation time. The wild-type mice 

have the same genetic background as the two transgenic lines used in the previous 

analysis (MloxP and NFH-Cre/MloxP). Mice were kept under observation from the 

first appearance of scrapie signs and culled when terminally ill. Their brains were 

taken for histopathology, fixed in BFS, and embedded in three pieces, to obtain 

coronal sections as described in 4.3. 

At the time of writing this thesis, the only results available so far are mouse 

survival data. Future work will be needed to analyse the pathology profiles and to 

perform the SCA. 

4.4.3.2 Different survival in I 9900 and I 10717 inoculated Tg20 overexpressing mice 

but not in FVB wild type  

Tg20 overexpressing mice inoculated with subpassaged RML prions survived 

shorter than Tg20 mice inoculated with the original RML prion inoculum (56 +/- 3 

days vs. 61 +/- 2 days; n=6, p<0.004 ). Wild type mice inoculated with subpassaged 

RML or original RML prion inoculum showed no difference in the incubation time 

(175+/- 8 days vs. 171 +/- 8 days; n=5) (Figure 4.14). 
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Figure 4.13 Is NFH-Cre/MloxP mouse line selecting a new strain? Description of the 

experimental plan 

Abnormal PrP deposition in different coronal levels showed striking similarities in RML or Me7 

inoculated NFH-Cre/MloxP mice both for phenotype of deposition and nuclei affected. This 

observation suggested that depletion of neuronal PrP in the NFH-Cre/MloxP line may have selected a 

new specific strain, not the previous dominant species in the prion inocula ensemble. To test the 

hypothesis that  passaging of prion strains in neuronal depleted mice results in the selection of a new 

strain, we planned to compare the survival and the lesion profile of mice injected with the original 

RML inoculum ( I9900) and mice injected with inoculum derived from RML passaged in NFH-

Cre/MloxP mice (I 10717). 

PrP overexpressing Tg20 and wild type FVB mice were inoculated with I9900 and I 10717. Mice 

were kept under observation from the first appearance of scrapie signs and culled when terminally ill 

and their brains were prepared for histopathological analysis. 
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Figure 4.14 Different survival in I 9900 and I 10717 inoculated Tg20 overexpressing mice but 

not in FVB wild type  

6 Tg20 PrP over expressing mice were inoculated with the original RML inoculum (I9900) and 6 

Tg20 PrP over expressing mice were inoculated with RML subpassaged in NFH-Cre/MloxP mice 

(I17017). I 17017 inoculated Tg20 mice survived less than I9900 Tg 20 inoculated mice (56 +/- 3 

days vs. 61 +/- 2 days; n=6, p< 0.004 ).  

5 wild type FVB mice, inoculated with I9900 and 5 wild type FVB mice, inoculated with 17017 

showed no difference in the incubation time (175+/- 8 days vs. 171 +/- 8 days;). 

The discrepancy between the two results suggests that the RML inoculum is under a different strain 

selection in PrP overexpressing and wild type mice, however, histopathological analysis and further 

studies are required for conclusive results. 
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4.5 Discussion 

Clinical target areas are defined as specific anatomical and functional areas 

of the CNS that are targets of prion infection and pathology, and therefore are 

thought to cause the clinical phenotype (Kimberlin and Walker, 1983). We 

hypothesised that these areas are either the first or the last targets of prion pathology.  

In the ―first target area‖ scenario, an area that first accumulates toxic species 

would be rate limiting in the disease process. This area would have to be relatively 

tolerant to a continuous accumulation of prion toxicity and would cause neurological 

dysfunction when high levels of toxicity exceed a critical threshold, manifesting as 

clinical phenotype. Conceptually different would be the ―last target area hypothesis‖. 

In this case, a generalised widespread accumulation of ―toxic species‖ in the context 

of prion disease would occur in the CNS. This widespread accumulation would not 

cause clinical impairment, until it localizes in vital areas. Therefore, the last areas 

that become functionally impaired would be the target areas, the impairment of 

which would cause the clinical symptoms. These areas would be relatively sensitive 

to prion accumulation compared to surrounding structures. 

A previous study had shown that RML inoculated NFH-Cre/MloxP mice, 

undergoing adult neuronal PrP depletion through Cre-mediated recombination, are 

resistant to prion infection. Even though infected mice accumulated abnormal PrP in 

non-recombined cells, they did not succumb to the disease (Mallucci et al., 2003). 

Here we have shown that neuronal depletion of PrP in adult NFH-Cre/MloxP mice 

inoculated with Me7 and Mouse–adapted BSE slowed down the disease progression 

but these mice eventually succumbed to prion infection.  

We approached the hypothesis that clinical target areas are the last targets, by 

comparing the difference in pathology between RML and other prion strains (Me7 

and MRC2, the strain derived by passaging Mouse-adapted BSE in SJL mice), at the 

end stage of prion disease. We hypothesized that the clinical target areas could be 

one or more nuclei localized in the brainstem for the following reasons: First, its 

nuclei are in control of essential body functions, such as motor control, generation of 

the respiratory rhythm and regulation of the blood pressure. Second, the clinical 

signs that define an experimental mouse as terminally ill are suggestive of brainstem 

malfunction affecting both motor control (unsteady gate, tremor and ataxia), and 

respiratory control (abnormal breathing rate). Notably, in human prion disease, a 
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detailed analysis relating clinical signs suggestive of brainstem function impairment 

to histopathology is compromised because such clinical signs may mask the 

involvement of basal ganglia and cortex.  

We inoculated RML, Me7 or MRC2 prion strains into MloxP mice, 

overexpressing PrP and NFH-Cre/MloxP mice that undergo neuronal Cre-mediated 

recombination and loss of PrP expression.  

Our intention was to compare the pathology of terminally ill RML, Me7 or 

MRC2 infected MloxP mice, terminally ill Me7 or MRC2 infected NFH-Cre/MloxP 

mice and long term surviving RML infected NFH-Cre/MloxP mice and look at 

brainstem nuclei in RML infected NFH-Cre/MloxP mice that were protected from 

prion-mediated toxicity. These areas would have represented the clinical target areas 

in prion disease, because their absence or reduced pathology would have been 

sufficient to protect RML inoculated NFH-Cre/MloxP mice from progression to a 

clinical stage.  

In contrast to previous studies, NFH-Cre/MloxP mice showed clinical signs 

of prion disease after ~35 weeks and ultimately succumbed to prion disease. These 

mice behaved like Me7 or MRC2 infected NFH-Cre/MloxP mice in that they 

survived significantly longer than their MloxP counterparts, but still developed 

clinical signs and succumbed to the disease (Figure 4.2). There are a number of 

possibilities to explain the discrepancy between the data reported here and that 

published previously by Mallucci et al. (Mallucci et al., 2003). Most important are 

the inocula and the inoculated mouse line. According to the most recent theory on 

prion strains, every strain exists as an ensemble and the cross-talk with the host 

environment defines which prion species will be successfully propagated (Collinge 

and Clarke, 2007). Although in both cases an RML inoculum was used, the two 

inocula came from different brain homogenates. This difference did not affect the 

incubation time in MloxP mice, which was ~12 weeks for both inocula, but may 

have had an effect in neuronal PrP depleted NFH-Cre/MloxP mice.  

The second possibility is a change occurring in the transgenic mouse lines. 

NFH-Cre/MloxP mice are the result of a cross between PrP overexpressing MloxP 

mice and recombinase-Cre expressing NFH-Cre mice. It has previously been 

reported that Cre-mediated recombination in NFH-Cre/MloxP mice occurs at 9 

weeks of age and it affects the entire neuronal population (Mallucci et al., 2002). The 
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Mallucci study was carried out almost ten years ago, and since then the Cre- 

expressing mice (NFH-Cre) have been continuously bred under a strict genotyping 

regime. The possibility of a change in the efficacy or pattern of Cre expression has 

been reported in other studies (Turlo et al., 2010). In light of the discrepancy 

between these results and those obtained previously for survival of RML infected 

NFH-Cre/MloxP mice, a change in the Cre expression pattern, selected by accident 

through continuous breeding cannot be excluded. 

Since the original premise of the experiment had changed, we were unable to 

approach our original question as planned. Nevertheless, our pathological analysis 

showed some characteristics of the end stage prion pathology in MloxP and NFH-

Cre/MloxP mice.  

Our first observation was the different pathology of RML or Me7 infected 

MloxP mice.  

Every strain has a define lesion profile and the first obvious difference 

between RML and Me7 infected MloxP brain was the phenotype of abnormal PrP 

accumulation, synaptic in RML and granular in Me7 inoculated mice. The overall 

degree of spongiosis, abnormal accumulation and gliosis was stronger in Me7 

infected MloxP mice, but the incubation time was greater for these mice than for 

RML infected MloxP mice. Moreover, in RML infected MloxP mice the pathology 

was more heterogeneous, ranging from mild to severe, whereas in Me7 infected 

MloxP mice prion pathology was severe in the majority of the scored nuclei (Figure 

4.5 and 4.9).  

Data obtained from RML or Me7 infected NFH-Cre/MloxP mice showed the 

significant effect of PrP depletion on disease progression. RML and Me7 infected 

NFH-Cre/MloxP mice, time culled when the MloxP ―counterparts‖ manifested 

terminal disease (i.e. at 12 wpi for RML and at 16 wpi for Me7), showed mild 

pathology (Figure 4.6 and 4.10). The locus coeruleus was the only nucleus to show 

intermediate abnormal PrP accumulation at 12 wpi in RML infected NFH-

Cre/MloxP mice and at 16 wpi in Me7 infected NFH-Cre/MloxP mice. As an effect 

of Cre-mediated recombination, we would have expected absence or significantly 

reduced prion deposition in areas whose cells underwent PrP depletion. The neuronal 

deposition of PrP in the locus coeruleus suggests that recombination was not as 

efficient as in the other brainstem areas. The prion deposition pattern in RML 
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infected NFH-Cre/MloxP mice was granular, similar to that in Me7 infected NFH-

Cre/MloxP mice. In addition to the locus coeruleus, in Me7 infected NFH-

Cre/MloxP mice culled at 16 wpi, the nucleus of the solitary tract showed abnormal 

PrP accumulation. Spongiosis and gliosis in these two nuclei were less prominent 

than abnormal PrP deposition in the Me7 infected mice, and almost non-existent in 

RML infected NFH-Cre/MloxP mice (Figure 4.6 and 4.10).  

Despite the general differences of pathological features between terminally ill 

Me7 and RML, infected NFH-Cre/MloxP showed a surprisingly similar pattern of 

prion protein deposition (Figure 4.7 and 4.11). Both inocula caused strong 

spongiosis, gliosis and prion protein deposition in the locus coeruleus and the 

nucleus of the solitary tract (involved in autonomic activity) whereas the nuclei 

involved in the motor control (vestibular nucleus, prepositus nucleus and olive) 

showed reduced abnormal accumulation compared to the MloxP mice and similar 

spongiosis and gliosis. Clearly, in these last nuclei (vestibular, prepositus and olive), 

recombination is efficient in reducing availability of the PrP substrate for conversion 

in disease-associated PrP accumulation. However, a contribution due to clearance of 

abnormal PrP cannot be excluded at this stage but it could not be further investigated 

in this project. No recovery of spongiosis in the brainstem of NFH-Cre/MloxP mice 

was observed, highlighting the difference with the Mallucci‘s study on recovery of 

spongiform degeneration in the hippocampus of NFH-Cre/MloxP RML inoculated 

mice.  

It is interesting to note how prolonged incubation time allowed spreading of 

the pathology to areas that are not normally affected in MloxP mice. In both RML 

and Me7 infected NFH-Cre/MloxP mice, abnormal PrP deposition, spongiosis and 

gliosis were found in the cerebellum, and for the first time abnormal PrP 

accumulation in the tracts of the cranial nerves, in the Virchow-Robin spaces and in 

the brain parenchyma surrounding them was observed (Figure 4.8 and 4.12).  

Analysis of RML infection in MloxP and NFH-Cre/MloxP mice showed that 

the phenotype of the prion pathology was different in these two mouse lines, with 

prion accumulation shifting from synaptic to granular. Because the overall 

characteristic of prion pathology in RML infected NFH-Cre/MloxP mice was very 

similar to that of Me7 infected NFH-Cre/MloxP mice, we reasoned that the change 

of prion deposition phenotype could be explained by a strain shift or strain selection. 
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To test the strain selection hypothesis, we inoculated RML and RML passaged in 

NFH-Cre/MloxP mice into mice overexpressing PrP (Tg20) and wild-type mice 

(FVB).  

The preliminary data showed here are not conclusive. In PrP overexpressing 

Tg20 mice, the two inocula gave rise to different incubation times (Figure 4.14). 

However, detailed neuropathology is needed to evaluate the phenotype of PrP 

deposition and determine if overall prion pathology is the same. Intriguingly, there 

was no difference in incubation time in wild type mice (Figure 4.14). The 

discrepancy between PrP overexpressing and wild type mice suggests a number of 

possibilities, considering that a strain is defined by the cross-talk between the prion 

inoculum and the host. The kinetics of prion propagation and clearance need to be 

considered, as well as the targeted areas in which propagation occurs. The 

hypothetical new strain enriched in the NFH-Cre/MloxP mice may be favoured in 

Tg20 overexpressing mice but not in wild type mice because the kinetics of 

propagation in the target areas are different. Another hypothesis is that the original 

RML ensemble undergoes different selective pressure in NFH-Cre/MloxP, Tg20 or 

FVB mice. In both cases, the pathological analysis and comparison between RML 

and RML subpassaged in NFH-Cre/MloxP infected MloxP, NFH/Cre-MloxP, Tg20 

and FVB mice would shed the light on these two hypotheses. On the other hand, the 

in vitro approach, using the scrapie cell assay could be a relatively easy tool to test if 

there is a difference between the two inocula. If a strain shift has occurred, a 

consequence of this phenomenon is that, although RML and Me7 cannot be 

considered the same strain in NFH-Cre/MloxP mice because of the difference in the 

incubation time, the 12 wpi time culled RML infected NFH-Cre/MloxP mice can be 

considered informative as an earlier time point in the progression of the Me7 

infection, in light of the high degree of similarity among the end stage pathologies 

for these prion strains. 

In conclusion, the analysis of the lesion profiles of RML and Me7 infected 

MloxP and NFH-Cre/MloxP mice did not highlight any nuclei that could be defined 

as clinical target areas. 

In NFH-Cre/MloxP mice, Cre-mediated recombination reduced the level of 

abnormal PrP deposition almost everywhere, except in the locus coeruleus, the 

nucleus of the solitary tract and the cerebellum. The locus coeruleus and the nucleus 
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of the solitary tract were also severely affected by prion pathology in MloxP mice; 

therefore they seem to be interesting candidates as critical target areas. In the 

vestibular nuclei, the depletion reduced the amount of abnormal PrP accumulation, 

but not the spongiform changes. The locus coeruleus and the nucleus of the solitary 

tract are involved in the control of autonomic function, while the vestibular nuclei 

are historically classified as the centre for the motor control. However, more recent 

studies have suggested an involvement in autonomic regulation. These nuclei, 

therefore, also seem to be potential candidates for critical functional areas for the 

clinical phenotype. 

However, because RML infected NFH-Cre/MloxP mice reached a clinical 

stage, by comparison with terminally ill mice, we could not evaluate the spared areas 

that could represent clinical target areas of prion disease. 

Because a clinical target area could be an area targeted early by the pathology 

and could represent the centre from which the pathology spreads to other regions, we 

decided to investigate which are the early targets of prion infection in the brainstem. 

A detailed investigation of lesion profiles at early stage of the disease both in RML 

and Me7 infected MloxP and NFH-Cre/MloxP mice was set up and is the topic of 

chapter 5. 

Moreover, a more detailed analysis of recombination in every brainstem 

nuclei was required to further evaluate which nuclei undergoes efficient 

recombination, and how recombination affects prion pathology. The investigation of 

spatial and temporal characteristics of Cre-mediated recombination is the topic of 

chapter 6. 

4.6 Summary 

In this chapter we investigated if clinical target areas are the last targeted 

areas in course of prion infection by comparing MloxP and NFH-Cre/MloxP mice 

infected with RML, Me7 or MRC2 prion strains. In contrast with a previous study, 

we found that in all three inoculations, NFH-Cre/MloxP PrP depleted mice have a 

prolonged survival compared to their MloxP counterpart (35 wpi vs. 12 wpi for 

RML, 28 wpi vs. 16 for Me7 and 32 vs. 20 wpi for MRC2); however RML infected 

NFH-Cre/MloxP mice were not resistant to prion infection, as previously observed. 

This difference could be due to a change in the expression pattern of Cre 
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recombinase in NFH-Cre/MloxP mice. Further investigations on the temporal and 

spatial characteristic of Cre mediated recombination are reported in chapter 6. 

Because RML infected NFH-Cre/MloxP developed signs of clinical disease, 

we could not use the comparison between terminally ill MloxP and surviving 

recombined NFH-Cre/MloxP mice to identify clinical target areas for prion disease. 

Nevertheless, we collected data on pathology in Me7 and RML infected end-stage 

MloxP and recombined NFH-Cre/MloxP mice and NFH-Cre/MloxP mice time-culled 

at time when the MloxP mice were terminal. We scored nuclei involved in motor and 

autonomic control and looked for areas that are severely affected both in RML and 

Me7 infected MloxP and NFH-Cre/MloxP mice.  

We found that:  

 The locus coeruleus is the nucleus whose pathology is consistently severe 

across the various infections analysed; 

  Prolonged incubation time allows a re-distribution of prion pathology in 

infected NFH-Cre/MloxP mice, with areas not otherwise targeted in the 

control mice.  

 NFH-Cre/MloxP mice have a similar pathology phenotype in RML or Me7 

infection and we hypothesized a shift of strains. We tested this hypothesis by 

passaging the original RML inoculum used and the inoculum derived from 

the brain of a NFH-Cre/MloxP mouse infected with RML in overexpressing 

Tg20 and wild type FVB mice, but the results shown here are not fully 

conclusive and further work is required. 

 

To investigate if clinical areas could be the first target areas in prion 

infection, we describe the pathology profile at early time points RML or Me7 

infected mice in the following chapter. 
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5 First target areas of prion pathology 

5.1 Introduction 

―Clinical target areas‖ for prion disease are defined as areas of the brain 

where prion infection spreads and produces cell dysfunction leading to clinical 

manifestation of the disease (Kimberlin and Walker, 1983; Kimberlin and Walker, 

1986; Kimberlin et al., 1987). The actual identity of these target areas remains 

speculative, but it has been suggested that clinical target areas may be located in the 

brainstem. Firstly, the brainstem controls vital functions. Clinical signs indicative of 

brainstem involvement (such as impaired respiration and unsteady balance and gait) 

are typical in experimental models of prion disease. Widespread deposition of PrP
Sc

 

in the brainstem has been reported as an early pathologic event in human sCJD 

(Iwasaki et al., 2005), and in our pilot study described in chapter 3 we found 

accumulation of abnormal PrP in the brainstem of Me7 and Mouse-adapted BSE 

inoculated MloxP and NFH-Cre/MloxP mice very early on in the disease 

progression.  

In chapter 4, we had planned to use the RML or Me7 inoculated MloxP and 

NFH-Cre/MloxP mice to investigate the clinical target areas for prion disease. RML 

inoculated NFH-Cre/MloxP mice have been shown to be resistant to RML infection 

(Mallucci et al., 2003). We had hypothesized that, in NFH-Cre/MloxP mice, Cre-

mediated recombination protected one or more brainstem nuclei from prion 

pathology, and stopped the progression to clinical phenotype, even in presence of 

continuous abnormal PrP accumulation in the remainder of non-recombined cells. 

We had found in our preliminary study, described in chapter 3, that this effect was 

not common to other prion strains, as Me7 or Mouse-adapted BSE inoculated NFH-

Cre/MloxP mice survived longer than their MloxP counterparts but eventually 

developed prion disease. Therefore, our aim was to compare the longer surviving 

RML infected NFH-Cre/MloxP mice with end-stage RML and Me7 infected MloxP 

and Me7 inoculated NFH-Cre/MloxP mice to pinpoint the critical areas that led to 

the clinical phenotype. 

We hypothesised two different scenarios: clinical target areas could be the 

last or the first sites of prion replication.  
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We set up the experiment described in chapter 4 to explore the first 

hypothesis. For this hypothesis to be verified, mice should be able to sustain the 

infection in a pre-clinical stage- i.e. accumulating abnormal PrP without showing 

clinical signs - until the infection reached one or more ―critical areas‖, determining 

their degeneration and causing clinical prion disease. Therefore, clinical areas of 

prion pathology should have been unaffected or less severely affected in 

asymptomatic RML infected NFH-Cre/MloxP mice at the late stage of disease, and 

affected in terminally ill RML infected MloxP mice, Me7 infected MloxP mice and 

Me7 infected NFH-Cre/MloxP mice. 

Surprisingly, we found that RML inoculated NFH-Cre/MloxP mice showed a 

prolonged incubation time but were not resistant to prion disease. Moreover, the 

prion pathology in the brainstem of RML infected NFH-Cre/MloxP mice was very 

similar to the pathology of Me7 infected NFH-Cre/MloxP mice. In contrast, RML or 

Me7 inoculated MloxP mice had different lesion profiles, but the locus coeruleus 

(LC) and the nucleus of the solitary tract (NTS) were found to be the structures of 

abnormal PrP accumulation common to all the end stage phenotypes analysed.  

The unexpected development of clinical signs in ~35 wpi in RML inoculated 

NFH-Cre/MloxP mice led us to change our experimental approach. Therefore, we 

decided to investigate the early stage of prion infection in MloxP and PrP depleted 

NFH-Cre/MloxP mice, looking for the first targets of prion pathology in RML and 

Me7 inoculated mice. 

5.2 Aims  

 To identify the first target areas of prion pathology in experimental models of 

prion disease 

 To follow the disease progression in these areas. 

5.3 Experimental set up 

6 MloxP and 6 NFH-Cre/MloxP mice were inoculated when one week old 

with RML, Me7 or MRC2 prion strains, in the form of 1% inoculum, respectively 

I9900 (1% RML I 8700), I 9459 (1% Me7 I 9458), I 9468 (1% MRC2 I 9467). 

Inoculated mice were culled at an early time point of the disease: RML 

infected mice were culled at 6 wpi, based on previous published data (White et al., 
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2008); Me7 and MRC2 inoculated mice at 8 wpi, based on our observation in 

chapter 3. Because MRC2 is derived from Mouse-adapted BSE prions, we assumed 

early pathology could be present at 8 wpi as observed in the parental strain in chapter 

3. A schematic representation of the experimental setup is illustrated in Figure 5.1.  

Brains were fixed, cut coronally into three pieces and processed for paraffin 

embedding. The block corresponding to the brainstem area of RML and Me7 

infected mice was sliced with the microtome by the support team of histology core 

facility at the MRC Prion Unit. Eight consecutive sections for each level were 

collected and used for histology. Sections were stained with haematoxylin and eosin 

(H&E) to examine the progression of spongiform changes, ICSM 35 antibody for 

abnormal prion protein deposition, and anti-GFAP antibody to visualise reactive 

astrocytes and to assess astrogliosis. Sections were analysed microscopically and 

areas of interest were evaluated by comparison with the Paxinos Mouse Brain Atlas 

and Allen Mouse Atlas (Paxinos and Franklin, 2004; Lein et al., 2007; Lein et al., 

2007). Degree of spongiosis, abnormal PrP deposition and gliosis were evaluated, 

using a semi-quantitative scoring scale. Selected sections were stained with anti-

tyrosine hydroxylase (TH) and anti-Neurokinin 1 (anti-NK1) receptor antibodies, as 

indicated in the results sections. Once the first targeted areas had been evaluated, 

samples from end-stage mice were re-analysed to follow the progression of prion 

associated pathology. 

Due to time constraints it was only possible to carry out the histological 

analysis on the RML and Me7 inoculated brains.  
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Figure 5.1 Description of the experimental plan 

To assess the areas of early pathology in prion inoculated mice, 6 MloxP and 6 NFH-Cre/MloxP mice 

were inoculated at one week of age with RML, Me7 or MRC2 prion strains, and culled at an early 

asymptomatic stage, and their brainstem analysed histopathologically. RML inoculated mice were 

culled at 6 wpi, based on previously published data (White et al., 2008); Me7 inoculated mice were 

culled at 8 wpi, based on our observation described in chapter 3; MRC2 inoculated mice were culled 

at 8 wpi because this strain is derived from Mouse-adapted BSE prions, whose early pathology is 

present at 8 wpi, as described in chapter 3.  
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5.4 Results 

5.4.1 First targeted areas in RML and Me7 inoculated MloxP and NFH-

Cre/MloxP mice  

Analysis of the brainstems of prion infected MloxP and NFH-Cre/MloxP 

mice at an early asymptomatic stage (RML, 6 wpi; Me7, 8 wpi) showed early prion 

pathology in the locus coeruleus (LC), the nucleus of the solitary tract (NTS) and the 

pre-Bötzinger complex (PBC). Early prion pathology in these nuclei manifested as 

deposition of disease-associated prion protein and reactive gliosis. However no 

spongiform changes were observed at this time (Figure 5.2). 

Locus coeruleus 

In MloxP mice at an early, asymptomatic stage of the disease (RML, 6 wpi; 

Me7, 8 wpi), abnormal PrP accumulation in the locus coeruleus (LC) was scored as 

intermediate. As already observed for later stages, in RML inoculated mice the 

abnormal PrP accumulation was of the synaptic type, while in Me7 inoculated mice 

it was granular. Some reactive gliosis was also recognisable in both infections, in the 

absence of spongiosis (Figure 5.3). 

In NFH-Cre/MloxP mice abnormal PrP accumulation was reduced in 

comparison to MloxP mice. In both cases (RML and Me7) abnormal accumulation of 

PrP was granular. RML inoculated mice were culled at 6 wpi, i.e. 7 weeks of age and 

Me7 inoculated mice at 8 wpi, i.e. 9 week of age. At 8 wpi, abnormal PrP deposition 

in NFH-Cre/MloxP mice was reduced compared to the accumulation in MloxP mice, 

suggesting that PrP depletion had occurred, even if was not complete. Abnormal PrP 

deposition was comparable between RML inoculated mice at 6 wpi and Me7 

inoculated mice at 8 wpi. This suggested that the depletion occurred before 6 wpi (7 

weeks of age), and that from 6 wpi to 8 wpi there was no further increase of 

abnormal PrP deposition. Gliosis was present in both RML and Me7 inoculated 

NFH-Cre/MloxP mice, although less diffuse than in MloxP mice. No spongiosis was 

present (Figure 5.4).  

Nucleus of the solitary tract 

In the nucleus of the solitary tract (NTS), prion pathology at the early stage 

was very subtle. In MloxP mice the abnormal accumulation was mild in RML 

inoculated mice and very mild in Me7 inoculated mice, whereas the gliosis was more 
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evident. As for the LC, the tissue did not show any spongiosis. In recombined NFH-

Cre/MloxP mice, while gliosis was comparable to gliosis in MloxP mice, abnormal 

deposition was reduced and no spongiform changes were present (Figure 5.5). 

Pre-Bötzinger complex 

In the ventral medulla, an area characterized by small and medium-sized 

strictly interconnected neurons, showed mild abnormal PrP accumulation both in 

RML and Me7 infected MloxP mice. The anatomical mapping corresponds to the 

pre-Bötzinger complex (PBC). The identity of this nucleus was confirmed by 

staining with anti-NK1 receptor antibody, which specifically labels pre-Bötzinger 

neurones within the brain stem (Gray et al., 1999). The PBC, both in RML and Me7 

infected MloxP mice, showed the same pattern of pathology as the nucleus of the 

solitary tract, with mild prion protein accumulation and gliosis, and absence of 

spongiosis. In the recombined RML inoculated or Me7 inoculated NFH-Cre/MloxP 

mice, abnormal accumulation was less than in the non-recombined MloxP mice. This 

suggested that at an early stage of prion pathology, recombination had occurred in 

this nucleus but it was not completely protective. Gliosis was comparable between 

MloxP and NFH-Cre/MloxP in both RML and Me7 inoculated mice, and spongiosis 

was absent (Figure 5.6).  

The first areas showing prion pathology in RML or Me7 inoculated MloxP 

and NFH-Cre/MloxP mice were the same. We decided to study in further detail the 

progression of pathology in RML and Me7 inoculated mice, by comparing the 

appearance of prion deposition, spongiosis and gliosis in each area of interest in the 

course of the disease. 
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Figure 5.2. Schematic representation of  first targeted areas in the brainstem of RML and Me7 

MloxP and NFH/Cre-MloxP inoculated mice  

Early prion pathology in the brainstems of RML and Me7  inoculated of MloxP and NFH-Cre/MloxP 

mice, time culled at an early asymptomatic stage (RML, 6 wpi; Me7, 8 wpi), manifested with 

deposition of disease-associated prion protein (red/pink) and reactive gliosis (yellow) in the locus 

coeruleus (LC), the nucleus of the solitary tract (NTS) and the pre-Bötzinger complex (PBC). No 



 

153 

 

spongiform changes were observed at this time point. 

The scheme has been adapted from the Paxinos Mouse Brain Atlas. A, B, E, F = -5.34 mm from 

Bregma; C, D, G, H = - 6.84 mm from Bregma. List of abbreviations: PBN = parabrachial nuclei; TN 

= tegmental nuclei; LC= locus coeruleus; VN= vestibular nuclei; 4 V = fourth ventricle; NTS= 

nucleus of the solitary tract; Sp5= spinal nucleus of the V nerve; Amb= nucleus ambiguous; PBC= 

pre-Bötzinger complex; ROb = raphe obscurus. 
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Figure 5. 3 Early prion pathology in the locus coeruleus of RML and Me7 inoculated MloxP 

mice 

RML and Me 7 inoculated MloxP mice were culled at 6 and 8 wpi. Brain sections were 

immunostained with ICSM35 antibody for abnormal PrP deposition (A, D, G, J), anti-GFAP antibody 

for detection of astrocytosis (B, E, H, K), and stained with haematoxylin and eosin (H&E) (C, F, I, L) 

to assess spongiform changes. In the locus coeruleus (LC) of RML and Me7 inoculated MloxP mice, 

abnormal PrP accumulation was intermediate. In RML inoculated mice the phenotype of abnormal 

PrP accumulation was synaptic (A, D), while in Me7 inoculated mice it was granular (G, J). Mild 

reactive gliosis was also recognisable in both RML (B, E) and Me7 (H, K) inoculated MloxP mice, 

but no spongiosis (C, F, I, L). Scale bar= 4 mm in A, B, C, G, H, I; 164 µm in D, E, J, K,; 84 µm in F, 

L. 
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Figure 5.4 Early prion pathology in the locus coeruleus of RML and Me7 inoculated NFH-

Cre/MloxP mice 

RML and Me 7 inoculated NFH-Cre/MloxP mice were culled at 6 and 8 wpi. Brain sections were 

immunostained with ICSM35 antibody for abnormal PrP deposition (A, D, G, J), anti-GFAP antibody 

for detection of astrocytosis (B, E, H, K), and stained with haematoxylin and eosin (H&E) (C, F, I, L) 

to assess spongiform changes. In the locus coeruleus (LC) of RML and Me7 inoculated NFH-

Cre/MloxP mice, abnormal PrP accumulation was mild. In both RML (A, D), and Me7 (G, J) 

inoculated mice the phenotype of abnormal PrP accumulation was granular. Mild reactive gliosis was 

also recognizable in both RML (B, E) and Me7 (H, K) inoculated MloxP mice, but no spongiosis (C, 

F, I, L). Scale bar= 4 mm in A, B, C, G, H, I; 164 µm in D, E, J, K; 84 µm in F, L. 
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Figure 5.5 Early prion pathology in the nucleus of the solitary tract (NTS) of RML and Me7 

inoculated MloxP and NFH-Cre/MloxP mice 

RML and Me7 inoculated MloxP and NFH-Cre/MloxP mice were culled at 6 and 8 wpi. Brain 

sections were immunostained with ICSM35 antibody for abnormal PrP deposition (A, D, G, J), anti-

GFAP antibody for detection of astrocytosis (B, E, H, K), and stained with haematoxylin and eosin 

(H&E) (C, F, I, L) to assess spongiform changes. In RML and Me7 inoculated MloxP mice abnormal 

deposition was mild, with synaptic phenotype in RML infection (A) and granular phenotype in Me7 

infection (D). In RML (G) and Me7 (J) inoculated NFH-Cre/MloxP mice abnormal accumulation was 

milder than in MloxP mice. Gliosis was comparable between RML and Me7 inoculated MloxP and 

NFH-Cre/MloxP mice (B, E, H, K), and no spongiosis was evident (C, F, I, L). Scale bar= 84 µm. 
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Figure 5.6 Early prion pathology in the pre-Bötzinger complex of RML and Me7 inoculated  

MloxP and NFH-Cre/MloxP mice 

RML and Me7 inoculated MloxP and NFH-Cre/MloxP mice were culled at 6 and 8 wpi. Brain 

sections were immunostained with ICSM35 antibody for abnormal PrP deposition (A, E, I, M), anti-

GFAP antibody for detection of astrocytosis (B, F, J, N), stained with haematoxylin and eosin (H&E) 

(C, G, K, O) to assess spongiform changes  and immunostained with anti-NK1 receptor antibody (D, 

H, L, P), a marker for pre-Bötzinger complex neurons. In the ventral medulla, an area characterized 

by neurons strictly connected to each other, showed mild abnormal PrP accumulation both in RML 

and Me7 infected MloxP and NFH-Cre/MloxP mice (A, E, I, M). This area was identified as the PBC 

and the identity was confirmed by immunostaining with anti-NK1 receptor antibody (D, H, L, P). 

Abnormal PrP deposition was mild in MloxP mice (A, E) and very mild in recombined NFH-

Cre/MloxP mice (I, M); gliosis was mild in both MloxP (B, F) and NFH-Cre/MloxP mice (J, N) and 

no spongiform changes were observed (C, G, K, O). Scale bar= 84 µm. 
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5.4.2 Progression of prion pathology in the locus coeruleus of RML inoculated 

MloxP and NFH-Cre/MloxP mice 

As previously mentioned, at 6 wpi the deposition in RML inoculated MloxP 

mice was scored as intermediate, while in the PrP depleted NFH-Cre/MloxP mice it 

was less pronounced. Moreover, already from this early stage the different 

phenotype of abnormal PrP deposition (synaptic in MloxP and granular in NFH-

Cre/MloxP) was evident. At this early time point, gliosis was similar in MloxP and 

NFH-Cre/MloxP mice and spongiosis was absent. At 12 wpi, MloxP mice were 

terminally ill, whereas the NFH-Cre/MloxP mice were asymptomatic and healthy. 

Strong abnormal accumulation was observed in the LC of MloxP mice, while at the 

same time (12 wpi) the recombined NFH-Cre/MloxP mice showed levels of 

accumulation just slightly higher than at 6 wpi. This was probably due to the Cre-

mediated recombination and the depletion of host PrP
C
. Gliosis was stronger in 

NFH-Cre/MloxP mice than in control MloxP mice. Healthy NFH-Cre/MloxP mice 

did not show any spongiform changes, but in MloxP mice small, densely packed 

vacuoles were visible. In terminally ill NFH-Cre/MloxP mice spongiosis and prion 

accumulation were intermediate and severe, comparable to MloxP mice, but gliosis 

was more severe than in MloxP mice (Figure 5.7).  

5.4.3 Progression of prion pathology in the locus coeruleus of Me7 inoculated 

MloxP and NFH-Cre/MloxP mice 

In Me7 infected MloxP mice at 8 wpi the abnormal accumulation in the LC 

was intermediate, while in the NFH-Cre/MloxP mice, it was milder. Gliosis in both 

mouse lines was comparable and no spongiosis was evident at this early time. Me7 

infected MloxP mice were terminally ill at 16 wpi. As discussed in the previous 

chapter, abnormal PrP accumulation was globally strong. At 16 wpi asymptomatic 

NFH-Cre-MloxP mice showed intermediate accumulation. As already documented in 

chapter 4, at 16 wpi the LC showed higher accumulation than the surrounding areas. 

This could be an effect of lower efficacy of PrP depletion, although a less effective 

clearance in this area cannot be excluded. The difference between LC pathology in 

MloxP and NFH-Cre-MloxP mice at 16 wpi was also evident from comparing gliosis 

and spongiosis. The first was stronger in MloxP than NFH-Cre-MloxP mice. 

Spongiosis in MloxP mice was characterized by the presence of large and small 
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confluent vacuoles, whereas in NFH-Cre-MloxP mice only a few large vacuoles 

were recognized. Abnormal PrP accumulation in terminally ill NFH-Cre-MloxP mice 

was severe (see results in Chapter 4), while the surrounding areas were almost spared 

from abnormal PrP accumulation. In contrast, gliosis was strong both in the LC and 

surrounding nuclei. Spongiosis at 28 wpi in terminally ill NFH-Cre-MloxP mice was 

comparable with spongiosis observed in terminally ill MloxP mice at 16 wpi (Figure 

5.8). 

5.4.4 TH staining did not show functional impairment in the locus coeruleus of 

terminally ill mice 

The LC is the major noradrenergic nucleus of the brain. We therefore asked if 

noradrenergic production changed in the course of the disease. To address this 

question, immunohistochemistry for tyrosine hydroxylase (TH) was performed on 

brain slices from time culled and terminally ill RML and Me7 inoculated MloxP and 

NFH-Cre/MloxP mice. The slices were directly adjacent to those used for H&E, 

abnormal PrP and GFAP staining. 

We expected a reduced number of TH-positive cells but could not detect a 

change (Figure 5.9). However, the specimens were not appropriate for this analysis, 

because the levels of the sections were not directly anatomically comparable. To 

appreciate a change, a more thorough stereotaxic cell count is required, but it could 

not be performed on the collected slices, because they did not cover the entire 

volume of the nucleus. This needs to be investigated further in the future.  
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Figure 5.7 Progression of prion pathology in the locus coeruleus of RML inoculated MloxP and 

NFH-Cre/MloxP mice 

Brain slices of the locus coeruleus of RML inoculated MloxP and NFH-Cre/MloxP mice at different 

stages of disease progression were compared. Slices had been immunostained with ICSM35 antibody 

for Abnormal PrP deposition (A, D, G, J, M), anti-GFAP antibody for detection of astrocytosis (B, E, 

H, K, N), and stained with haematoxylin and eosin (H&E) to assess spongiform changes (C, F, I, L, 

O). 

At 6 wpi the deposition in RML inoculated MloxP mice was synaptic and intermediate (A), while in 

depleted NFH-Cre/MloxP mice it was granular and mild (D). At this early time point, gliosis was 

comparable in MloxP and NFH-Cre/MloxP mice (B, E) and spongiosis was absent (C, F). At 12 wpi, 

strong abnormal accumulation was observed in the LC of terminally ill MloxP mice, (G), while at the 

same time (12 wpi) the recombined NFH-Cre/MloxP mice showed levels of accumulation just slightly 

stronger than at 6 wpi (J). This was probably due to the Cre-mediated recombination and the depletion 
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of host PrPC. Gliosis was stronger in NFH-Cre/MloxP (K) mice than in control MloxP mice(H). In 

MloxP mice spongiform changes were characterized by small, dense vacuoles (I), whereas healthy 

NFH-Cre/MloxP mice did not show any spongiform changes (L). In terminally ill NFH-Cre/MloxP 

mice prion accumulation (M) and spongiosis (O) were intermediate and severe, comparably to 

terminally ill MloxP mice (G and E), but gliosis (N) was more severe than in MloxP mice (H). Scale 

bar= 164 µm in A, B, D, E, G ,H M, N; 84 µm in C, F, I, L, O. 
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Figure 5.8 Progression of prion pathology in the locus coeruleus of Me7 inoculated MloxP and 

NFH-Cre/MloxP mice 

Brain slices of the locus coeruleus of Me7 inoculated MloxP and NFH-Cre/MloxP mice at different 

stages of disease progression were compared. Slices had been immunostained with ICSM35 antibody 

for abnormal PrP deposition (A, D, G, J, M), anti-GFAP antibody for detection of astrocytosis (B, E, 

H, K, N), and stained with haematoxylin and eosin (H&E) to assess spongiform changes (C, F, I, L, 

O). 

At 8 wpi the abnormal accumulation in the LC of MloxP was intermediate (A), while in the NFH-Cre-

MloxP mice it was milder (D). Gliosis in both mouse lines was comparable (B, E) and spongiosis was 

absent (C, F). In terminally ill Me7 infected MloxP mice (16 wpi) abnormal PrP accumulation was 

strong in the LC (G) and globally. At 16 wpi asymptomatic NFH-Cre-MloxP mice showed 

intermediate accumulation in the LC (J), higher than in the surrounding areas. Gliosis was stronger in 

MloxP (H) than NFH-Cre-MloxP mice (K). Spongiform changes in MloxP mice were characterized 
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by both large and small confluent vacuoles (I), whereas in NFH-Cre-MloxP mice only a few large 

vacuoles were seldom present (L). Abnormal PrP accumulation in terminally ill NFH-Cre-MloxP 

mice was severe (M), whereas the surrounding areas were almost spared from abnormal PrP 

accumulation. Gliosis was strong both in the LC and surrounding nuclei (N). Spongiosis at 28 wpi in 

terminally ill NFH-Cre-MloxP mice (O) was comparable with spongiosis observed in terminally ill 

MloxP mice at 16 wpi (I). Scale bar= 164 µm in A, B, D, E, G, H M, N; 84 µm in C, F, I, L, O.. 
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Figure 5.9 Anti Tyrosine hydroxylase staining did not show reduced number of positive cells 

with the disease progression 

Noradrenalin is synthesized from tyrosine by Tyrosine Hydroxylase (TH). To assess if noradrenergic 

production changed in the course of the disease TH immunohistochemistry was performed on 

collected brain slices from time culled and terminally ill RML (left) and Me7 (right) inoculated 

MloxP and NFH-Cre/MloxP mice. The slices, directly adjacent to those used for H&E, PrP and GFAP 

staining, were stained with anti-TH antibody. As a control, the LC of uninoculated NFH-Cre/MloxP 

mice was used. We expected a reduced number of TH-positive cells in terminally ill RML and Me7 

inoculated MloxP (E, F) and NFH-Cre/MloxP mice (I, J) compared to early time culled RML and 

Me7 inoculated MloxP (A, B) and NFH-Cre/MloxP (C,D) mice and asymptomatic time culled RML 

and Me7 inoculated NFH-Cre/MloxP  mice (G,H). However, no change was appreciable because the 
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levels were not perfectly comparable (for example cfr A, E, H) and they did not encompass the entire 

volume of the nucleus. A more thorough stereotaxic cell count is required, but it could not be 

performed on the available slices. Scale bar= 84 µm. 

5.4.5 Progression of prion pathology in the nucleus of the solitary tract in 

RML infected MloxP and NFH-Cre/MloxP mice 

In the NTS at 6 wpi, RML inoculated MloxP mice showed mild abnormal 

accumulation and gliosis, whereas NFH-Cre-MloxP mice showed less abnormal PrP 

accumulation but a similar degree of gliosis. By 12 wpi, when MloxP mice were 

terminally ill, the degree of accumulation was intermediate and gliosis was strong. 

Spongiosis in the neuropil was recognizable in small confluent vacuoles. The degree 

of PrP accumulation in healthy NFH-Cre/MloxP mice was comparable, but 

spongiosis had not yet developed, and reactive gliosis was reduced compared both to 

the terminally ill (12 wpi) MloxP mice and 6 wpi culled NFH-Cre/MloxP, as if the 

inflammatory reaction slowed down upon disease progression. In terminally ill NFH-

Cre-MloxP mice, reactive gliosis was similar to that in terminally ill MloxP mice, but 

abnormal PrP accumulation was stronger than in control mice, and was localized in 

specific sub-nuclei. A more detailed study, with stereotaxic cell counting is required 

to unequivocally evaluate which are these areas. Spongiosis in terminally ill NFH-

Cre-MloxP mice was comparable to that in terminally ill MloxP mice, with small 

vacuoles localized in the entire surface of the nucleus (Figure 5.10). 

5.4.6 Progression of prion pathology in the nucleus of the solitary tract in Me7 

inoculated MloxP and NFH-Cre/MloxP mice 

At 8 wpi, in Me7 inoculated mice, granular deposition of abnormal PrP was 

more evident in MloxP than in NFH-Cre/MloxP mice. Nevertheless, gliosis levels 

were comparable in both mouse lines. By 16 wpi, MloxP mice showed a substantial 

worsening of pathology, with severe accumulation, gliosis and spongiosis, with 

small uniformly distributed vacuoles. The corresponding NFH-Cre/MloxP mice 

showed reduced levels of PrP accumulation and gliosis compared to the MloxP mice. 

Spongiosis was mild, with only a few vacuoles seen. At the end stage (28 wpi), 

NFH-Cre/MloxP mice showed strong abnormal PrP deposition and spongiosis. Here, 

the vacuoles were bigger than observed in MloxP mice, and uniformly distributed. 

Gliosis was intense, but reduced compared to terminally ill MloxP mice Figure 5.11. 
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Figure 5.10 Progression of prion pathology in the nucleus of the solitary tract of RML 

inoculated MloxP and NFH-Cre/MloxP mice 

Brain slices from the nucleus of the solitary tract (NTS) of RML inoculated MloxP and NFH-

Cre/MloxP mice at different stages of the disease progression were compared. Slices had been 

immunostained with ICSM35 antibody for abnormal PrP deposition (A, D, G, J, M), anti-GFAP 

antibody for detection of astrocytosis (B, E, H, K, N), and stained with haematoxylin and eosin 

(H&E) to assess spongiform changes (C, F, I, L, O). At 6 wpi, RML inoculated MloxP mice showed 

mild abnormal PrP accumulation (A) and gliosis (B) and no spongiform changes (C). At the same 

early stage, NFH-Cre-MloxP mice showed mild abnormal accumulation (D), comparable gliosis (E) 

and no spongiosis (F). In terminally ill MloxP mice (12 wpi), the degree of accumulation was 

intermediate (G), gliosis was strong (H) and spongiosis was characterized by small confluent vacuoles 

(I). At the same time (12 wpi) the degree of PrP accumulation in healthy NFH-Cre/MloxP mice was 
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comparable (J), reactive gliosis was reduced (K) compared both to  terminally ill (12 wpi) MloxP 

mice (H) and 6 wpi culled NFH-Cre/MloxP (E), as if the inflammatory reaction slowed down upon 

disease progression. In 12 wpi time culled NFH-Cre/MloxP spongiosis was absent (L). In terminally 

ill NFH-Cre-MloxP mice, abnormal PrP accumulation (M) was stronger than observed in terminally 

ill MloxP mice (G) and seemed to be localized in specific sub-nuclei. Reactive gliosis (N) was similar 

to the terminally ill MloxP mice (H). Spongiosis was characterized by small vacuoles localized in the 

entire surface of the nucleus (O) and comparable to spongiosis in terminally ill MloxP mice (I). Scale 

bar= 84 µm. 
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Figure 5.11 Progression of prion pathology in the nucleus of the solitary tract of Me7 inoculated 

MloxP and NFH-Cre/MloxP mice 

Brain slices of the nucleus of the solitary tract (NTS) of Me7 inoculated MloxP and NFH-Cre/MloxP 

mice at different stages of the disease progression were compared. Slices had been immunostained 

with ICSM35 antibody for abnormal PrP deposition (A, D, G, J, M), anti-GFAP antibody for 

detection of astrocytosis (B, E, H, K, N), and stained with haematoxylin and eosin (H&E) to assess 

spongiform changes (C, F, I, L, O). At 8 wpi, in MloxP mice, granular deposition of abnormal PrP 

was mild (A) and even milder in NFH-Cre/MloxP mice (D). Gliosis levels were comparable in both 

mouse lines (B, E) and no spongiform changes were found (C, F). At 16 wpi, terminally ill MloxP 

mice showed diffuse severe abnormal PrP accumulation (G), gliosis (H) and spongiosis characterized 

by small and uniformly distributed vacuoles (I). At 16 wpi healthy NFH-Cre/MloxP mice showed 

reduced levels of PrP accumulation (J) and gliosis (K) compared to the MloxP mice (G, H). 

Spongiosis was mild, but vacuoles were seldom found. At the end stage (28 wpi), NFH-Cre/MloxP 
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mice pathology was characterized by strong abnormal deposition (M) and spongiosis (O), with bigger 

vacuoles than observed in MloxP mice (I), and uniformly distributed. Gliosis was intense (N), but less 

than in terminally ill MloxP mice (H). Scale bar=  84 µm. 
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5.4.7 Progression of prion pathology in the pre-Bötzinger complex (PBC) of 

RML infected MloxP and NFH-Cre/MloxP mice 

In RML infected MloxP mice, the PBC showed mild accumulation and 

gliosis, and absence of spongiosis. In the PBC of RML infected NFH-Cre/MloxP 

mice recombination was not completely protective at 6 wpi. ―Recombined‖ mice 

accumulated PrP, even if very mildly. Upon disease progression, the effect of 

recombination became more significant: at 12 wpi, when RML infected MloxP mice 

were terminally ill and RML infected NFH-Cre/MloxP mice were healthy, abnormal 

PrP accumulation was prominent in the PBC of MloxP mice, at a level comparable to 

the rest of the ventral medulla, whereas in recombined NFH-Cre/MloxP mice, the 

PBC showed reduced accumulation compared to the surrounding areas. Although 

gliosis was comparable between MloxP mice and NFH-Cre/MloxP mice, spongiosis 

was evident in terminally ill MloxP mice but not in healthy NFH-Cre/MloxP mice. 

Terminally ill NFH-Cre/MloxP mice at 35 wpi, showed abnormal PrP accumulation 

in this nucleus, which was reduced in comparison to the surrounding areas, and not 

substantially different from that observed in these mice at 12 wpi. Gliosis was also 

comparable to gliosis in 12 wpi time culled NFH-Cre/MloxP mice; the main 

difference with the earlier time point was in the appearance of spongiosis, with small 

vacuoles affecting the neuronal perykaria (Figure 5.12). 

5.4.8 Progression of prion pathology in the pre-Bötzinger complex of Me7 

infected MloxP and NFH-Cre/MloxP mice 

At 8 wpi, PrP deposition and gliosis in Me7 infected MloxP mice were very 

mild. In ―recombined‖ NFH-Cre/MloxP mice, PrP deposition was reduced compared 

to MloxP mice, but gliosis was comparable. The PBC of terminally ill MloxP mice 

was severely affected by prion deposition, gliosis and spongiosis, in the form of 

small and medium size vacuoles. In contrast, in NFH-Cre/MloxP mice time-culled at 

16 wpi, PrP deposition was mild, and the tissue was not spongiotic, but exhibited 

reactive gliosis. When NFH-Cre/MloxP mice were terminally ill, the effect of PrP 

depletion was still evident, as in this nucleus there was less deposition then in the 

surrounding areas, but it was not complete. The PBC of terminally ill NFH-

Cre/MloxP mice was affected by reactive gliosis and by spongiosis, at a level 

comparable to terminally ill MloxP mice (Figure 5.13).  
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5.4.9 Early pathology in the forebrain of RML infected mice 

To control for prion pathology in the forebrain at an early time point, brain 

slices encompassing the hippocampus and thalamus of five RML inoculated MloxP 

and five NFH-Cre/MloxP mice were stained with anti-PrP antibody. In three out of 

five MloxP mice, abnormal PrP accumulation was localized in the thalamus, as 

previously reported for MloxP mice (White et al., 2008). In two out of five NFH-

Cre/MloxP mice, abnormal PrP accumulation was detected in the thalamus, but not 

elsewhere (Figure 14). The thalamus and the brainstem have been indicated to be 

potential clinical target areas in a study by the group of Weissmann (Li et al., 2010), 

but a more detailed study of the lesion profile at early time points and an accurate 

description of disease progression in the forebrain is required. 
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Figure 5.12 Progression of prion pathology in the pre-Bötzinger complex of RML inoculated 

MloxP and NFH-Cre/MloxP mice 

Brain slices of the pre-Bötzinger complex (PBC) of RML inoculated MloxP and NFH-Cre/MloxP 

mice at different stages of disease progression were compared. To confirm the identity of this group 

of cells, slices were  immunostained with ICSM35 antibody for abnormal PrP deposition (A, E, I, M, 

O), anti-GFAP antibody for detection of astrocytosis (B, F, J, N, R),  haematoxylin and eosin (H&E) 

to assess spongiform changes (C, G, K, O, S) and anti-NK1 receptor antibody (D, H, L, P, T), a 

marker for PBC neurons. In MloxP mice, the PBC showed mild abnormal PrP accumulation (A) and 

gliosis (B), and absence of spongiosis (C). In NFH-Cre/MloxP mice, abnormal PrP accumulation was 

even milder (E), and gliosis (F) was comparable to MloxP mice (B). At 12 wpi, abnormal PrP 

accumulation was prominent in the PBC of terminally ill MloxP mice, at levels comparable to the rest 

of the ventral medulla (I), whereas in recombined NFH-Cre/MloxP mice, the PBC showed reduced 

accumulation compared to the surrounding areas (M). Although gliosis was comparable between 

MloxP mice (J) and NFH-Cre/MloxP mice (N), spongiosis was evident in terminal MloxP mice (K) 

but not in healthy NFH-Cre/MloxP mice (O). In terminally ill NFH-Cre/MloxP mice (35 wpi), 

abnormal PrP accumulation was reduced in the PBC in comparison to the surrounding areas (Q), and 

not substantially different from that observed in these mice at 12 wpi (M). Gliosis (R) was also 
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comparable to gliosis in 12 wpi time culled NFH-Cre/MloxP mice (N).The main difference with the 

earlier time point was the occurrence of spongiform changes, with small vacuoles (S). Scale bar= 84 

µm. 
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Figure 5.13 Progression of prion pathology in the pre-Bötzinger complex of Me7 inoculated 

MloxP and NFH-Cre/MloxP mice 

Brain slices of the pre-Bötzinger complex (PBC) of Me7 inoculated MloxP and NFH-Cre/MloxP mice 

at different stages of disease progression were compared. To confirm the identity of this group of cells 

slices were immunostained with ICSM35 antibody for abnormal PrP deposition (A, E, I, M, O), anti-

GFAP antibody for detection of astrocytosis (B, F, J, N, R), haematoxylin and eosin (H&E) to assess 

spongiform changes (C, G, K, O, S) and anti-NK1 receptor antibody (D, H, L, P, T), a marker for 

PBC neurons. At 8 wpi, PrP deposition (A) and gliosis (B) in the PBC of Me7 infected MloxP mice 

were very mild. In the recombined NFH-Cre/MloxP mice, PrP deposition was reduced (E) compared 

to MloxP mice (A), but gliosis was comparable (F) No spongiform changes were recognizable both in 

MloxP (C) and NFH-Cre/MloxP mice (G). The PBC of terminally ill MloxP mice was severely 

affected by prion deposition (I), and gliosis (J); small and medium size vacuoles were recognizable 

(K). In NFH-Cre/MloxP mice time-culled at 16 wpi PrP deposition was mild (M), reactive gliosis was 

mild (N) and the tissue was not spongiotic (O). In terminally ill  NFH-Cre/MloxP mice (28 wpi), the 

effect of PrP depletion was evident, as in the PBC there was less deposition then in the surrounding 

areas (Q) and reactive gliosis (R) and spongiosis (S) were comparable to that  in terminally ill MloxP 

mice (J, K). Scale bar= 84 µm. 
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Figure 5.14 Early prion pathology in the forebrain of RML inoculated MloxP and NFH-

Cre/MloxP inoculated mice 

Brain slices encompassing the hippocampus and thalamus of five RML inoculated MloxP (A) and five 

NFH-Cre/MloxP mice (B), time culled at 6 wpi, were stained with ICSM 35 to assess abnormal PrP 

deposition in the forebrain. Abnormal PrP accumulation was localized in the thalamus of two out of 

five MloxP (A) and two out of five NFH-Cre/MloxP (B) mice. The thalamus and the brainstem, have 

previously  been suggested to be the potential clinical target areas (Li et al., 2010). Scale bar= 4 mm 
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5.5 Discussion 

The aim of this thesis was to investigate the clinical target areas in prion 

disease. Clinical target areas are regions responsible for the clinical phenotype and 

ultimately for the (fatal) outcome of prion disease. Previously, sub-clinical infection 

has been described in genetically modified mice, undergoing adult neuronal Cre-

mediated PrP deletion (Mallucci et al., 2003). RML infected NFH-Cre/MloxP mice 

were shown not succumb to prion disease, but survived long-term in a sub-clinical 

state, while accumulating extra-neuronal PrP. As described in chapter 3, a repeat 

experiment with different prion strains, did not yield the same results, as Me7 or 

Mouse-adapted BSE inoculated NFH-Cre/MloxP mice survived longer than their 

respective MloxP controls, but developed clinical disease. In light of this difference, 

we used the adult PrP depleted NFH-Cre/MloxP model as tool to investigate the 

clinical target areas of prion disease. 

We hypothesized that the different outcome between RML and other prion 

infections in neuronal PrP depleted mice was that in RML infected NFH-Cre/MloxP 

mice, PrP depletion stopped the disease progression in one or more specific 

anatomical regions (clinical target areas), preventing the progression towards clinical 

phenotype and death. Therefore, by comparing the pathology of subclinical RML 

inoculated NFH-Cre/MloxP mice, terminally ill RML or Me7 inoculated MloxP mice 

and terminally ill Me7 inoculated NFH-Cre/MloxP mice, we could pinpoint the 

clinical target areas for prion disease. 

We decided to focus on the pathological analysis of the brainstem for several 

reasons: (i) the brainstem is critically important for the vital functions of the animal. 

It controls the respiratory and cardiovascular system, ensuring continuous 

modulation of respiration, heart rate and blood pressure and balances external inputs 

such as gravity and movement; (ii) clinical signs suggestive of brainstem 

involvement are typical in experimental models of prion disease and correlation of 

clinical signs deriving from brainstem impairment and brainstem pathology in the 

brainstem of sCJD patient has been reported (Iwasaki et al., 2005); and (iii), our 

study described in chapter 3, showed accumulation of abnormal PrP in the brainstem 

of Me7 and Mouse-adapted BSE inoculated MloxP and NFH-Cre/MloxP mice very 

early on in disease progression.  
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We speculated that clinical target areas could be either the first or the last 

areas affected by prion pathology in the disease progression. In the ―last target areas 

scenario‖, prion disease would start as a generalised widespread accumulation of 

―toxic species‖ in the CNS. This widespread accumulation would not cause clinical 

impairment, until it localizes in the vital areas. Therefore, the clinical symptoms 

would be caused by functional impairment of the last targeted areas. 

In the ―first target areas scenario‖, prion accumulation would start in a region 

critical for specific functions or connections. During disease progression, the 

pathology would eventually spread to secondary target regions. The clinical 

phenotype would be determined when the molecular events, following prion 

inoculation, lead to partial or total impairment of the functions of the first targeted 

area(s). In this scenario, degeneration over time of the first target region(s) 

determines fatal outcome; therefore clinical phenotype could be avoided by reducing 

prion accumulation in the clinical target areas or by blocking or slowing down the 

disease progression in these areas. 

In chapter 4 we explored the ―last target area hypothesis‖, by comparing pre-

clinical longer surviving RML inoculated NFH-Cre/MloxP mice, and end stage 

MloxP mice inoculated with RML or Me7 and NFH-Cre/MloxP mice inoculated 

with Me7. Unexpectedly, the RML infected NFH-Cre/MloxP mice also progressed to 

a clinical phenotype. Although we cannot discard the hypothesis of clinical target 

areas being last areas targeted by prion infection, we cannot use our original 

approach to undertake this investigation since the RML inoculated NFH-Cre/MloxP 

mice also progressed to clinical disease. However, we noticed that both RML and 

Me7 inoculated MloxP and NFH-Cre/MloxP terminally ill mice had severe prion 

pathology in the same brainstem areas, namely the locus coeruleus (LC) and the 

nucleus of the solitary tract (NTS). 

Keeping in mind these results, we investigated the first areas of prion 

pathology in MloxP and NFH-Cre/MloxP mice, at an early stage of prion infection, 

i.e. 6 wpi for RML and 8 wpi for Me7 prions. We first analysed prion pathology in 

Me7 and RML inoculated MloxP mice and found that the same three areas in the 

brainstem were the focus of primary abnormal PrP deposition: the locus coeruleus 

(LC), the nucleus of the solitary tract (NTS) and the pre-Bötzinger complex (PBC) 

(Figure 5.2). A higher level of abnormal PrP deposition was found in the LC, in 
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association with intense gliosis (Figures 5.3). In the NTS and the PBC, both 

abnormal deposition and gliosis were milder (Figures 5.5. and 5.6). In all three areas, 

spongiosis was absent (Figures 5.3, 5.5, 5.6). 

When we compared the pathology profiles of RML or Me7 infected MloxP 

mice with those of RML or Me7 infected NFH-Cre/MloxP mice, we noticed that 

prion pathology was localized in the same areas (i.e. LC, NTS, PBC), although with 

reduced intensity in the recombined mice. At 6 wpi RML infected NFH-Cre/MloxP 

mice and at 8 wpi Me7 infected NFH-Cre/MloxP mice showed reduced, but intense 

abnormal accumulation in the LC and reduced gliosis (Figure 5.4). Although 

abnormal PrP accumulation was reduced in the NTS and the PBC of depleted NFH-

Cre/MloxP mice, no reduction of gliosis was observed (Figures 5.5 and 5.6). 

These data lead to two observations, the first regarding the mouse model 

used, and the second on the pathological steps in the disease progression. (i) MloxP 

mice overexpress PrP from the MloxP transgene ~ 3-4 times wild type level, whilst 

retaining the regional expression pattern (Mallucci et al., 2002). Therefore, the first 

sites of abnormal accumulation in MloxP mice are representative of the wild type 

situation. NFH-Cre/MloxP mice have been shown to undergo Cre-mediated 

recombination in all post mitotic neurons throughout the nervous system at ~10 

weeks of age (Mallucci et al., 2002). We already noticed a discrepancy between our 

results and published data on the sub-clinical state of RML infected NFH-Cre/MloxP 

mice. The reduced abnormal accumulation observed in the LC, NTS and PBC 

suggested that some recombination has already occurred in NFH-Cre/MloxP mice in 

these nuclei at 7 weeks of age (= 6 wpi, the early time point for RML inoculated 

mice). This difference highlighted the need for a more detailed analysis of 

recombination in the animal model, which will be discussed in the next chapter. (ii) 

The pathological steps in the disease progression are characterised by the presence of 

intermediate gliosis in the NTS and PBC, and suggest that reactive gliosis is an early 

event in these two brainstem areas, even if the abnormal accumulation has been 

reduced by recombination.  

We also monitored abnormal accumulation in the forebrain of RML infected 

mice (Figure 5.14) and confirmed that thalamus is another region of early 

accumulation, as reported previously (White et al., 2008). 
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To evaluate how neurodegeneration in brain regions correlates with the 

clinical phase of prion disease, we followed the disease progression in the areas 

targeted by early pathology. As the degrees of abnormal PrP deposition in the 

evaluated areas in terminal MloxP mice and asymptomatic NFH-Cre/MloxP mice (12 

wpi for RML infection and 16 wpi for Me7 infection) were comparable, we 

confirmed once again that PrP
Sc

 is not the toxic species. At 12 wpi and 16 wpi NFH-

Cre/MloxP mice can be considered to be sub-clinical infections (Hill et al., 2000; 

Hill and Collinge, 2003b; Hill and Collinge, 2003a), where accumulation of PrP 

disease associated form does not cause development of clinical symptoms. The 

functional changes that prion toxicity generates in cells and tissue are not clear, nor 

are their temporal sequence. In this chapter we showed that progression of pathology 

in the LC, NTS and PBC of RML and Me7 infected PrP depleted NFH-Cre/MloxP 

mice was slower than in their PrP overexpressing MloxP counterparts, probably due 

to recombination, but in both MloxP and NFH-Cre/MloxP mice and both infections 

spongiosis was first observed when in the clinical phase of the disease (12 and 16 

wpi for MloxP and 35 and 28 wpi for NFH-Cre/MloxP mice), (Figures 5.7, 5.8, 5.10, 

5.11, 5.12, 5.13). The mechanism behind spongiform changes is still under debate: 

spongiosis has been linked to abnormal membrane permeability and increased water 

content in the neurons (Kovacs and Budka, 2008) or to autophagy (Liberski et al., 

2004; Liberski, 2004). However, spongiosis represents the ultimate stage of disease 

progression.  

Neurotoxicity in prion disease is believed to be mediated by a lethal PrP 

species, PrP
L
 (Hill et al., 2000; Hill and Collinge, 2003a), distinct from abnormally 

folded PrP, PrP
Sc

. PrP
L
 formation is catalysed by PrP

Sc
, and PrP

L
 toxic effects occur 

when the PrP
L
 concentration increases above a local threshold (Collinge and Clarke, 

2007). 

It has been shown experimentally that prion infectivity and toxicity occur in 

two separate phases. Phase 1 is a clinically silent exponential phase not rate-limited 

by prion protein concentration, in which the maximal prion titre is reached; and 

phase 2 is constituted by a plateau of infectivity that continues until the onset of 

clinical disease. Phase 2 length is inversely proportional to PrP
C
 expression level. 

PrP
L
 is believed to be produced in the phase 2, proportionally to PrP

C
 concentration. 

Therefore, clinical onset occurs when PrP
L
 reaches a toxic threshold (Sandberg et al., 
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2011). Other alternative scenarios have been hypothesized to explain the split 

between infectivity and toxicity: for example, fission of infectious particles may 

stop, leading to further growth of abnormally folded PrP aggregates but no increase 

in number of infectious particles; or a key cellular component may be depleted 

during phase 2, determining clinical onset.  

Our data can be accommodated in this general model: although in both 

MloxP and NFH-Cre/MloxP mouse lines the LCS, NTS and PBC were the first sites 

of prion replication, we could assume that in overexpressing MloxP mice phase 2 is 

shorter than in depleted mice, where PrP expression level is lower. However when 

PrP
L
 reaches the local threshold in these areas, mice become terminally ill. In an 

alternative scenario, the toxicity event may be impairment at the cellular level in the 

LC, NTS, and PBC. Indeed, LC, NTS and PBC are particularly important for the 

survival of an animal, because of their role in autonomic control. 

Although due to time constraints it was not possible to set up a functional 

study to test functional impairment in these areas correlating with clinical stage of 

prion disease, a literature search supported our view on the vital role of these areas. 

The LC is the largest group of noradrenergic neurons in the central nervous 

system. Noradrenalin or Norepinephrine (NA or NA) is synthesized from tyrosine by 

TH, with formation of L-dihydroxyphenylalanine (L-DOPA). L-DOPA is converted 

to dopamine by L-amino acid decarboxylase and dopamine is transported by the 

vesicular monoamine transporter (VMAT) into synaptic vesicles, where it is 

converted to NA by the dopamine β-hydroxylase (DBH). NA is inactivated through 

pre-synaptic reuptake via a selective transporter (NET) and subsequent metabolism. 

NA acts via three G-protein receptor families, α1, α2, and β. α1 and β are primarily 

localized post-synaptically, with excitatory functions; α2 receptors are both pre- and 

post-synaptic and have inhibitory effects. Synaptic availability of NA is regulated by 

active reuptake via the NET and inhibition of release via presynaptic α2 receptors 

(Benarroch, 2009). It is estimated that ~50% of all the noradrenergic projections in 

the central nervous system originate in the LC and are directed towards the forebrain, 

cerebellum, brainstem and spinal cord.  

Through its wide net of connections, the LC has a fundamental role in control 

of various homeostatic functions (Svensson and Thoren, 1979; Bhaskaran and Freed, 
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1988; Aston-Jones and Bloom, 1981; Aston-Jones et al., 2001), and cognitive 

behaviour. 

In the context of prion disease pathology, the intriguing characteristics are its 

involvement in other neurodegenerative syndromes and its role in the control of 

autonomic functions. In human post mortem studies of Alzheimer Disease, 

degeneration of the LC correlated with the progression and severity of dementia and 

increase of Aβ plaque deposition and neurofibrillary tangle formation (Iversen et al., 

1983; Bondareff et al., 1987; German et al., 1992; Marien et al., 2004). 

Loss of LC neurons has been associated with plasticity changes, in an attempt 

to compensate for the loss of NA content, including increase in TH expression, 

sprouting of dendrites in LC neurons, axonal sprouting and down-regulation of α1D 

and α2C adrenergic receptors in the hippocampus (Szot et al., 2006). In Alzheimer‘s 

Disease mouse models, noradrenalin depletion has been shown to contribute to 

astroglial and microglial activation (Heneka et al., 2006), upregulation of 

inflammatory markers (Pugh et al., 2007) and elevated inducible nitric oxide 

synthase (iNOS) and nitric oxide levels in LC projection areas (Heneka et al., 2002). 

Recently, LC degeneration has been shown to dysregulate adrenergic receptors and 

to exacerbate Aβ-induced neuroinflammation (Jardanhazi-Kurutz et al., 2011).  

In Parkinson‘s disease, (PD) LC neuronal loss (German et al., 1992; Zarow et 

al., 2003; Remy et al., 2005) and morphological alterations of synapses and 

mitochondria have been reported (Baloyannis et al., 2006). Although the significance 

of LC involvement in PD pathology is not clear, some studies suggested that the LC-

NA system may have a role in compensatory mechanisms in early stages of PD. In 

animal models, neurotoxic LC lesions or knockout of the DBH gene results in more 

severe dopaminergic cell loss and motor manifestation, and pharmacologic or 

genetic blockade of NET or administration of the α2 receptor agonist protects 

dopaminergic neurons (reviewed in (Rommelfanger and Weinshenker, 2007). 

Down syndrome (DS) individuals show deficits in contextual learning and 

memory (Pennington et al., 2003). These tasks are hippocampal-based and mediated 

by noradrenergic LC inputs. In a mouse model of DS, dysfunction and degeneration 

of the LC has been shown to be associated with a deficit in contextual learning. 

However, the postsynaptic hippocampal targets were responsive to noradrenergic 
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receptor activation, suggesting that restoring NA transmission could reverse 

cognitive dysfunction (Salehi et al., 2009).  

In order to assess the implication of prion pathology in the LC, we compared 

TH immunoreactivity in the LC of infected mice at end stage and in the course of 

disease progression (Figure 5.9). No change in TH staining was detected; however 

this is most likely due to the way the samples were collected: we used some of the 

sequential sections spanning the LC, collected for the prion pathology analysis. To 

determine the number of TH positive cells throughout the rostral-caudal extent of the 

LC, an un-biased stereological method would have been a better approach. However, 

this would have required a new experiment to collect the appropriate brain slices and 

therefore it was not pursued. Intrigued by the findings on hippocampal impairment 

followed by LC degeneration in the mouse model of DS, we attempted VMAT2 and 

β-adrenergic receptor staining on hippocampal slices, but were unable to optimize a 

working protocol with the antibodies tested.  

The hippocampus is a known target of prion pathology, and rescue of early 

pathology and behavioural changes has been shown through genomic PrP depletion 

(Mallucci et al., 2003; Mallucci et al., 2007), and local knock-down through 

lentiviral-mediated RNAi (White et al., 2008). To discriminate between LC and 

hippocampus driven behavioural impairment would be difficult in the course of 

prion disease. However we have now shown that LC pathology temporally precedes 

hippocampal impairment; therefore it is possible that LC impairment may have a role 

in some of the hippocampal deficits observed in experimental prion disease. Future 

experiments involving focal delivery of anti PrP RNAi in the LC could determine if 

behavioural defects can be rescued.  

The LC is implicated in control of respiration (Oyamada et al., 1998; Fabris 

et al., 1999; Biancardi et al., 2008) and cardiovascular function (Sved and Felsten, 

1987). Specifically, LC neurons participate to the central respiratory network, 

(Coates et al., 1993) and manifest chemosensitive signalling behaviour (Elam et al., 

1981; Filosa et al., 2002). The LC has also been shown to be pathologically involved 

in Rett syndrome (Taneja et al., 2009), and Multiple system atrophy (MSA) 

(Benarroch et al., 2008). These properties are of particular interest, considering the 

other nuclei that we also identified as clinical target areas of prion disease. 
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The NTS is an extraordinary relay nucleus for integration and modulation of 

autonomic activity. In rats, it has been estimated to contain ~42000 cells, organized 

in different sub-nuclei (Andresen and Kunze, 1994) that contribute both to 

respiratory control and cardiovascular activity. Many NTS neurons have respiratory-

related activity and central respiratory modulation (Weston et al., 2003; Bailey et al., 

2006; Kubin et al., 2006) and respond directly to acid in vitro and detect changes in 

pCO2 in vivo (Dean et al., 1990; Nattie and Li, 2009). NTS also contains neurons 

responding to arterial baroreceptors (Rogers et al., 1993; Paton, 1998; Paton, 1999; 

Zhang and Mifflin, 2000). NTS neurons activated by hypoxia may have a role in 

impaired ventilator response observed in Multiple System Atrophy (MSA) 

(Neubauer and Sunderram, 2004). 

In prion disease, the NTS has also been shown to be one of the first areas of 

prion accumulation in a model of oral infection, via the dorsal motor nucleus of the 

vagal nerve (Beekes et al., 1998; Beekes et al., 1998). Our findings imply that the 

NTS is a particularly vulnerable area for prion pathology not only for the anatomical 

connection to the vagus nerve, but even upon intracranial inoculation. 

PBC neurons are characterized by Neurokinin 1 receptor immunoreactivity 

(Gray et al., 1999). We took advantage of this property to confirm the identity of the 

group of cells showing early abnormal PrP accumulation in the ventral medulla. 

Different studies indicate that the PBC is the centre of respiratory rhythm generation 

(Funk et al., 1993; Smith et al., 1991; Ramirez and Richter, 1996; Rekling and 

Feldman, 1998; Koshiya and Smith, 1999; Smith et al., 1991). In neonatal rat 

isolated brainstem-spinal cord preparations, removal of the PBC abolishes rhythm 

generation, with rhythmicity maintained only if the PBC is present (Smith et al., 

1991). 

The PBC may also contribute to generation of respiratory rhythm in adult 

mammals. After the early reports in adult cats (Connelly et al., 1992; Schwarzacher 

et al., 1995) and rats (Sun et al., 1998), the exact location of the PBC has recently 

been found in human brains (Schwarzacher et al., 2011). In rats, PBC neurons have 

been described as oval, fusiform or multipolar in shape, small to medium size, also 

projecting to the NTS (Onimaru et al., 1995). Impairment of the PBC has been 

shown to occur in Rett Syndrome (Mironov et al., 2009), Sudden Infant Death 
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Syndrome (SIDS) (Pena, 2010) and Multiple System Atrophy (MSA) (Benarroch, 

2007).  

Given the role of these nuclei in control of respiratory and cardiac activity, 

their cellular impairment and neurodegeneration may determine clinical onset; 

therefore the LC, NTS and PBC could be the clinical target areas of prion disease. 

Identification of these nuclei as clinical target areas of prion disease will now enable 

a detailed investigation into the molecular, cellular and neuronal network events that 

could trigger clinical onset of prion disease. 

5.6 Summary 

We have found three areas in the brainstem where prion deposition occurs at 

early time points both in RML and Me7 inoculated MloxP and MloxP/NFH-Cre 

mice: the locus coeruleus, the nucleus of the solitary tract and the pre-Bötzinger 

complex. 

We also followed disease progression in these areas and observed that the 

common trait in terminally ill MloxP and MloxP/NFH-Cre mice was spongiform 

changes in these nuclei.  

Because of their fundamental role in control of respiratory and cardiac 

activity, their cellular impairment and neurodegeneration may determine clinical 

onset. Therefore the LC, NTS and PBC could be the clinical target areas of prion 

disease. Our analysis suggests that the first target areas of prion deposition are 

critical, as their degeneration is responsible for the fatal outcome of prion disease. 

  



 

185 

 

6 Spatial and temporal characteristic of Cre-mediated 

recombination 

6.1 Introduction 

In the previous chapter, the locus coeruleus, the nucleus of the solitary tract 

and the pre-Bötzinger complex were identified as the first brainstem target areas of 

prion pathology in an experimental model of prion disease, and we speculated they 

may represent clinical target areas in prion disease. The experimental model was the 

neuronal PrP depleted NFH-Cre/MloxP mouse line, a thoroughly characterized 

model (Mallucci et al., 2002). These mice are the result of a cross between NFH-Cre 

and MloxP transgenic mice. NFH-Cre mice express the P1 Cre recombinase under 

the control elements of the Neurofilament gene (NFH) (Julien et al., 1988) on a PrP 

null background (FVB PrnP 
0/0

)
 
(Bueler et al., 1992). 

MloxP mice encode the MloxP construct, containing the floxed murine PrP 

(MoPrP) coding region between two loxP sites, on the FVB PrnP 
0/0 

background. 

Mallucci et al. generated lines of MloxP mice designated tg46 and tg37 (Mallucci et 

al., 2002). Tg46 mice express PrP at a level comparable to wild-type, whereas tg37 

mice overexpress PrP ~ 3-4 fold the wild type level. Both lines have the same 

regional pattern of PrP expression as wild-type animals (Sales et al., 1998). Tg46 and 

tg37 were crossed to NFH-Cre mice: in the double transgenic line, when Cre is 

expressed, it mediates the excision of MloxP PrP sequence between the two lox P 

sites. It was shown, using quantitative southern blot analysis on whole brain DNA 

from double transgenic mice (both NFH-Cre/tg46 and NFH-Cre/tg37), that Cre-

mediated deletion of MloxP transgene occurred in the majority, probably all the 

neurons ~10 weeks after birth. Moreover, by crossing Cre-expressing mice with the 

ROSA26 reporter mice (Soriano, 1999), encoding a LacZ transgene that requires Cre 

recombinase for activation, it was shown that LacZ is expressed throughout the 

central and peripheral nervous system, especially in neuron-rich areas, such as 

hippocampus and brainstem. In NFH-Cre/MloxP (NFH-Cre/tg46) mice deletion of 

the MloxP transgene upon Cre activation was confirmed with immunohistochemistry 

on frozen sections of 12-week old mice, throughout cortex, hippocampus, striatum 

and cerebellum. Pre-deletion mice, analysed when <10 weeks of age, exhibited a 

pattern of PrP expression identical to MloxP mice (Mallucci et al., 2002). As 
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discussed in the previous chapters, NFH-Cre/MloxP mice were resistant to RML 

prion infection, even though they accumulated PrP in non-recombined cells. Both 

NFH-Cre/tg 46 and NFH-Cre/tg37 survived RML prion infection for up to 56 weeks, 

whereas tg46 and tg37 MloxP non-recombined controls succumbed to RML prion 

infection within 18 and 12 wpi. In addition, depletion of neuronal PrP reversed early 

spongiform changes and prevented neuronal loss in the hippocampus of NFH-

Cre/tg37 mice (Mallucci et al., 2003). Furthermore, RML infected NFH-Cre/tg37 

mice recovered early behaviour and synaptic impairment in parallel with spongiosis 

reversal (Mallucci et al., 2007).  

When we set out to investigate clinical target areas for prion pathology in the 

brainstem, we decided to use the overexpressing MloxP tg37 and the NFH-Cre/tg37 

mice for comparison with previous studies. However since we had planned to look 

for clinical target areas in the brainstem, a more detailed investigation of 

recombination in every brainstem nucleus was clearly required. Moreover, my 

results presented in chapter 4 showed that the RML infected NFH-Cre/MloxP mice 

were no longer fully protected from clinical disease, but showed a prolonged 

incubation time compared to RML infected MloxP controls. The differences in the 

results between these two studies suggested that a careful examination of timing and 

region specification of Cre-mediated PrP knock-out in NFH-Cre/MloxP mice was 

required. 

6.2 Aims  

 To characterize the timing and regional specificity of Cre-mediated 

recombination in NFH-Cre/MloxP mice. 

6.3 Experimental set up 

To achieve a detailed characterization of the mouse model, two different 

approaches were employed: 

 A histological approach taking advantage of the ROSA26 reporter line to 

localize Cre-mediated recombination in different brain areas as indicated by 

LacZ activation 

 A molecular approach to monitor timing and efficacy of Cre-mediated 

recombination in NFH-Cre/MloxP mice in different brain areas 
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6.4 Results 

6.4.1 Characterization of Cre activation in NFH-Cre/ROSA26 mice  

Homozygous NFH-Cre mice were crossed with homozygous ROSA26 

reporter mice (Soriano, 1999). Thus, every mouse in the litter was hemizygous for 

both the Cre and the LacZ transgenes. 

Expression of the LacZ gene in ROSA reporter mice is repressed by the 

presence of a stop codon, positioned between 2 loxP sites. When Cre recombinase is 

expressed in NFH-Cre/ROSA mice, it interacts with the two loxP sites, mediating 

excision of the stop codon resulting in expression of the product of the LacZ gene, 

the β-galactosidase enzyme (Figure 6. 1).  

Litters of the cross were organized into groups of 5 or more mice to enable 

time culling at embryonic day 15, post-natal day 2, post-natal weeks 1, 2, 5, 9, 13, 

15, 17, 21 and 25. Whole embryos, heads of 2 days old mice and brains of the 

weekly-based time culling mice were fixed. Occurrence of recombination was 

monitored through β-galactosidase staining and immunohistochemistry with anti β-

galactosidase antibody on fixed samples (Figure 6.2).  
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Figure 6.1 Schematic of Cre-mediated recombination in NFH-Cre/ROSA 26 mice 

Expression of the LacZ gene in ROSA26 reporter mice is repressed by the presence of a stop codon, 

positioned between the two loxP sites. Cre recombinase expression mediates excision of the stop 

codon and expression of the product of the LacZ gene, the β-galactosidase enzyme. 
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Figure 6.2 Experimental approach 

Homozygous NFH-Cre and homozygous ROSA26R mice were crossed. Litters were grouped to 5 or 

more mice and analysed at embryonic day 15.5, post-natal day 2, and post-natal weeks 1, 2, 5, 9, 13, 

15, 17, 21 and 25. After fixation, whole embryos, heads of 2 days old mice or brains of the weekly 

time culls were analysed by the β-galactosidase assay and/or by immunohistochemical detection of β-

galactosidase (Time axis not to scale).  
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6.4.1.1 - galactosidase staining assay in NFH-Cre/ROSA26 mice 

LacZ encodes the bacterial enzyme β-galactosidase, which hydrolyses β-

galactosides into monosaccharides.  

β-galactosidase expressing cells can be detected by the β-galactosidase 

staining assay through exposure to the synthetic compound X-gal (5-bromo-4-

chloro-3-indolyl- beta-D-galactopyranoside). β-galactosidase hydrolyses X-gal into 

galactose and 5-bromo-4-chloro-3-hydroxyindole, a blue insoluble compound. 

Therefore, β-galactosidase expressing cells assume a characteristic blue colour. 

Since this was a straightforward and inexpensive procedure, it was used on 

brains from early time points, when no recombination should have taken place 

(Mallucci et al., 2002). Half heads from mice culled at postnatal day 2 (n=9) and half 

brains from mice culled at postnatal week 2 (n=3) were fixed in 4% PFA and 

exposed to X-gal containing solution. However, formation of the blue compound 

was unexpectedly observed in all the stained brains, albeit at different intensities. At 

post-natal day 2, a mouse brain is still developing, and cells are migrating to their 

adult location. For this reason, it was not possible to precisely define in which brain 

areas recombination had occurred (Figure 6.3 A). However, at post-natal week 2, a 

mouse brain is fully formed. A representative sample of the different patterns 

observed is shown in Figure 6.3 B. Recombined areas in the brainstem, the 

hippocampus, the ventral tegmental area, the thalamus were clearly detected. A more 

detailed analysis on areas of recombination could have been attempted, performing 

the β-galactosidase assay on 40 µm slices cut on the microtome. However, trials on 

non-experimental brains, constitutively expressing β-galactosidase, showed a high 

level of variability, probably dependent on the variable time the slices were in 

fixative before the application of X-gal solution. Although many efforts were made 

to optimize the β-galactosidase assay protocol on vibratome sections, a high level of 

reproducibility could not be achieved. Therefore, a more thorough histological study 

based on immunohistochemistry for β-galactosidase was undertaken.  
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Figure 6.3 β-galactosidase assay in NFH-Cre/ROSA26 mice 

β-galactosidase expressing cells can be detected through exposure to the synthetic compound X-gal. 

β-galactosidase hydrolyses X-gal into galactose and 5-bromo-4-chloro-3-hydroxyindole, a blue 

insoluble compound. β-galactosidase expressing cells assume a characteristic blue colour.  

A. Three heads of NFH-Cre/ROSA26 mice (P2) show a widespread expression of β-galactosidase, 

indicating that widespread recombination had occurred. At P2 many structures of the mouse brain are 

still developing and it is not possible to determine precisely in which structures recombination has 

occurred. 

B. Three sagittally dissected brains of NFH-Cre/ROSA26, culled at post natal week 2. The variability 

of the staining indicates a variable efficacy of recombination.  
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6.4.1.2 Immunohistochemistry for β-galactosidase expression 

The other halves of the brains collected at postnatal day 2 were used for 

immunohistochemistry with anti- β-galactosidase antibody. β–galactosidase diffusely 

accumulates in the cytoplasm and typically forms a few intralysosomal dense 

aggregates. In brains from NFH-Cre/ROSA26 mice at postnatal day 2, β-

galactosidase staining was localized in the cerebellum and in the brainstem (Figure 

6.4 panel D and E). In mice the cerebellum is only completely formed at postnatal 

week 1, therefore identity of the cerebellar cells involved in recombination could not 

be defined. Also, the absence of clear anatomical hallmarks in the brainstem sagittal 

section did not allow localization of specific brainstem nuclei. For subsequent time 

points, coronal sections were prepared and analysed. Collected brains were cut into 

three pieces with the same procedure used in chapter 4, and coronal slices were cut 

using the microtome by the support team of the histology core facility at the MRC 

Prion Unit. 

At postnatal week 2, β-galactosidase staining was localized in the thalamus, 

the hippocampus and the brainstem, at the level of the motor nucleus of the 5
th

 nerve, 

showing both punctuate and diffuse staining (Figure 6.4 panels F, G, I). At post-natal 

week 5, β-galactosidase positive cells were localized as previously observed in the 

thalamus, hippocampus and brainstem, and for the first time in the cortex (Figure 6.4 

panels K to N). At post-natal week 9, the areas of recombination were the same as at 

postnatal week 5, but more cells appeared to be involved (Figure 6.4 panels P to S).  

This time course study showed that in NFH-Cre/ROSA26 mice, Cre-

mediated recombination did not occur simultaneously in all brain areas; but the 

efficacy of recombination was low in some areas before 9 weeks of age.  

Results in chapter 5 indicate that first areas of prion pathology at 6 wpi for 

RML (post-natal week 7) and 8 wpi for Me7 (post-natal week 9) were the locus 

coeruleus, the nucleus of the solitary tract and the pre-Bötzinger complex. Thus a 

more detailed analysis of recombination in these areas was performed.  

Through serial coronal sections the exact localization of the mentioned areas 

in NFH-Cre/ROSA26 mice brains at postnatal week 9 was identified. As in Figure 

6.5, β-galactosidase positive cells were present in all the mentioned areas, suggesting 

that Cre was active and recombination was occurring. However, not all the cells 

showed positive staining, indicating that recombination was not 100%. 
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Figure 6.4 Immunohistochemistry for β-galactosidase 

Immunostaining for β-galactosidase shows a diffuse accumulation in the cytoplasm as well as few 

intralysosomal dense aggregates with punctuate staining. In brains from NFH-Cre/ROSA26 mice at 

postnatal day 2, β-galactosidase staining was localized in the brainstem (D) and in the cerebellum (E). 

At postnatal week 2, β-galactosidase staining was localized in hippocampus (F), thalamus (G), and in 

the brainstem (I). At post-natal week 5, β-galactosidase positive cells were detected as previously 

observed in the hippocampus (K), thalamus (L), and in the brainstem (N) and for the first time in the 

cortex (M). At post-natal week 9, the areas of recombination were the same as at postnatal week 5 (P 

to S). Cerebellum from postnatal week 2 (J), 5 (O) and 9 (T) were not available. Scale bar= 84 µm. 

 

 

 

 

Figure 6.5 Immunohistochemistry for β-galactosidase expression  

A. In the locus coeruleus, ca. half of the cells express β-galactosidase, indicating partial 

recombination. In the Nucleus of the solitary tract (B) and in the pre-Bötzinger complex (C), 

recombination was less frequent, but still clearly recognisable. Scale bar= 84 µm. 
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6.4.2 Characterization of Cre activation in NFH-Cre/MloxP mice 

Homozygous NFH-Cre and homozygous MloxP mice were crossed and the 

litters organized into groups of at least 5 mice to be time culled at embryonic day 15, 

post-natal day2, post-natal weeks 1, 2, 5, 9, 13, 15, 17, 21, 25 and 32 (Figure 6.6). 

Embryos, and whole brains were snap–frozen for subsequently analysis. Whole 

brains were dissected into different brain areas (olfactory bulb, hippocampus, 

thalamus, caudate nucleus, mid brain, pons, medulla, cerebellum, cortex). From the 

embryos and the different brain areas, DNA was extracted and analysed.  

6.4.2.1 qPCR on dissected brain areas of NFH-Cre/MloxP mice 

DNA extracted from dissected brain areas from 5 week old NFH-Cre/MloxP 

mice (n=5) were analysed first. 100 ng of DNA from each of the different brain 

regions was amplified by PCR using a set of primers that anneal outside the MloxP 

sites, CosTet5‘ and CosTet3‘. As shown schematically in Figure 6.7, in absence of 

recombination this results in a ~1150 bp band, corresponding to the entire MloxP 

transgene. Upon recombination and deletion of MoPrP, a shorter ~250 bp band is 

produced. However if recombination is not complete, due to the presence of non-

neuronal cells or neurons in which recombination is not 100% complete, both bands 

will be detected. 
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Figure 6.6 Experimental approach 

Homozygous NFH-Cre and homozygous MloxP mice were crossed and the litters organized into 

groups of at least 5 mice to be time culled at embryonic day 15, post-natal day2, post-natal weeks 1, 

2, 5, 9, 13, 15, 17, 21, 25 and 32. Embryos and whole brains were snap–frozen and analysed. Whole 

brains were dissected into different brain areas (olfactory bulb, hippocampus, thalamus, caudate 

nucleus, mid brain, pons, medulla, cerebellum, and cortex). From the embryos and the different brain 

areas, DNA was extracted and analysed.  
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Figure 6.7 Scheme of amplification with Cos tet primers  

The primers CosTet5‘ and CosTet3‘ in absence of recombination amplify a band of ~1150 bp, 

corresponding to the entire MloxP transgene. In presence of Cre recombinase, the primers amplify 

two DNA bands, the first (~1150 bp), corresponding to amplification of DNA from un-recombined 

neurons and non-neuronal cells, and the other of ~250 bp corresponding to amplification of DNA 

from recombined cells.  

In 5 week old NFH-Cre/MloxP mice, the 250 bp band was detected in DNA 

from all the dissected areas, indicating that recombination had occurred. Control 

hippocampal DNA extracted from MloxP mice only yielded the 1150 bp band, 

indicating the absence of recombination (Figure 6.8).  

 

 

Figure 6.8 Amplification with CosTet primers of DNA from different brain dissected areas of 

NFH-Cre/loxP mice culled at post-natal week 5  

ob=olfactory bulb; hc= hippocampus; cd=caudate nucleus; th=thalamus; p=pons; m=medulla; 

cx=cortex; cb=cerebellum. In all areas, the CosTet primers amplify both the high and low molecular 

weight band, indicating the occurrence of recombination. Control hippocampal DNA extracted from 

MloxP mice showed only the higher molecular weight band.  
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To confirm the identity of the low molecular weight band and the specificity 

of the PCR reaction, the 250bp band was sequenced using the CosTet5‘ and 

CosTet3‘ primers. The resulting sequence is shown in Figure 6.9. Recombination 

was found to occur in all brain areas as early as postnatal week 1 and up to post-natal 

week 15 (Table 1). Analysis of whole brain embryos indicated the occurrence of 

recombination at embryonic day 15.5 (Figure 6.10). 

The PCR data confirmed the observations from the NFH-Cre/MloxP mice 

that recombination was occurring earlier, but the greater sensitivity of the PCR 

analysis allowed recombination to be detected in areas not previously detected with 

histology.  

Previous analysis based on Southern blot and histology did not detect Cre-

mediated PrP recombination before ~9~10 weeks in any brain area (Mallucci et al., 

2002) and real time RT-PCR analysis showed 30-40% reduction of the PrP mRNA 

in hippocampus of NFH-Cre/MloxP mice at 9 week of age compared to 6 and 8 

week of age. To further investigate the efficacy of recombination in various brain 

regions at different time points, a quantitative real time PCR (qPCR) was utilized. 

 

 

Figure 6.9 Sequence of the low molecular weight band 

The loxP sequence is highlighted in green.  

 

 



 

198 

 

 

Table 6.1 Recombination in different brain areas at different times of culling 

ob= olfactory bulb; hc= hippocampus; cd=caudate nucleus; th=thalamus; p=pons; m=medulla; 

cx=cortex; cb=cerebellum. 

 

 

 

 

Figure 6.10 Amplification with CosTet primers of DNA from NFH-Cre/MloxP embryos  

DNA from four embryos was amplified with CosTet primers. In all the samples, both high and low 

molecular weight bands were observed, indicating the occurrence of recombination. 

 

6.4.2.1.1 Validation of primers and probes for qPCR 

Since previous studies had focussed on the hippocampus, this analysis was 

started in the hippocampus by using a relative quantification method, which analyses 

changes in gene expression in a given sample relative to a reference sample. 

DNA extracted from 9 weeks old mice was selected as the reference sample 

as by 9 week recombination has been suggested to be complete.  

Since measurement of PrP knock-down, i.e. disappearance of amplified 

signal originating from MloxP PrP DNA, could be biased due to signal derived from 

DNA of non-neuronal cells, where recombination is not thought to occur, a probe 

spanning the recombined sequence at the break point, specific for recombined DNA 
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was used. The ―gene of interest‖ was denominated ―Recombined lox PrP‖ (Rec lox 

PrP). The sequence for primers and probe is shown in Figure 6.11.  

 

 

Figure 6.11 Primers and probe for Rec lox PrP qPCR  

The primers are in blue and the probe is underlined in pink  

 

For analysis of change in gene expression, the ΔΔCt method was used (Livak 

and Schmittgen, 2001). To be able to use the comparative Ct method, a standard 

curve of the gene of interest and the internal control (housekeeping gene) need to 

have comparable efficacy, i.e. the efficacy of amplification should not be dependent 

on the starting DNA concentration of the sample. 

One hippocampal DNA sample from a 9 week old mouse was used to prepare 

serial dilutions of DNA from 100 ng to 6.125 ng, and perform qPCR in quintuplicate 

for every dilution, using GAPDH as housekeeping gene. 

The Rec lox PrP standard curve efficacy obtained with the selected primers 

and probe was not optimal (R= 0.9643). The standard curve efficacy could have been 

improved by changing the primers and probe, but the constraint of the small 

sequence made it impossible. However, the validation experiment showed that the 

efficiency of the standard curves for the gene of interest and for the reference sample 

GAPDH were comparable, as the slope of the curve interpolating the delta Ct in 

function of the logarithm of the DNA concentration was <0.1. 

Therefore the actual experiment was performed with the primers and probe 

that had been designed (Figure 6.12). 
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Figure 6.12 Validation experiment for the use of the comparative Ct method  

Serial dilutions of the DNA sample from the initial concentration of 100ng down to 6.12 ng were 

prepared, and used to perform qPCR in quintuplicate for every dilution, with GAPDH as a 

housekeeping gene. The Rec lox PrP standard curve efficacy obtained with the selected primers and 

probe was not optimal (R= 0.9643), but the standard curves‘ efficacy for the gene of interest and for 

the reference sample GAPDH are comparable, as the slope of the curve interpolating the delta Ct in 

function of the logarithm of the DNA concentration is <0.1 

6.4.2.1.2 qPCR on hippocampus of NFH-Cre/MloxP mice at various time points 

DNA extracted from hippocampal samples from 9 week old mice were 

amplified by qPCR (real time PCR). Since at 9 weeks recombination was considered 

to be the maximal, we assigned the occurrence of recombination at this point an 

arbitrary value of 100%. Next, samples from the hippocampus of 1-, 2-, 5- , 13-, 32- 

weeks old mice were amplified: for every time point, 5 samples were used and tested 

in quadruplicate. In every experiment, 3 MloxP hippocampal samples were used as a 

negative control, and run in triplicate. Recombination was detected as early as 
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postnatal week 1, but it was not complete: at postnatal week 1 recombination was 

occurring with an efficacy equal to 10% of the recombination at 9 weeks of age (p< 

0.001). At postnatal week 2, there was an increase in recombination (40% of the 9 

weeks, p< 0.001), but still not complete. There was no significant difference in 

recombination efficacy between postnatal week 9 and 5, 13 or 32 indicating that in 

the hippocampus, recombination was complete by postnatal week 5 (Figure 6.13). A 

limit of detection of the qPCR cannot be excluded, but time constraints and 

limitation in samples did not permit other strategies with different sets of primers 

and probes to be tested.  
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Figure 6.13 Cre-mediated recombination in the hippocampus of MloxP mice 

DNA hippocampal samples from 9 week old mice was analysed by real time PCR. At 9 weeks the 

recombination was considered the maximal possible, therefore an arbitrary value=100% was assigned 

to the occurrence of recombination at this point.  Samples from the hippocampus of 1-, 2-, 5- , 13-, 

32- weeks old mice were amplified: for every time point, 5 samples were used and tested in 

quadruplicate. In every experiment, 3 MloxP hippocampal samples were used as negative controls, 

run in triplicate. At postnatal week 1 recombination occurred with an efficacy equal to 10% of the 

recombination at 9 weeks of age, p< 0.001. At postnatal week 2, recombination was 40% of the 

recombination at 9 weeks of age, (p< 0.001). There is no significant difference in recombination 

efficacy between postnatal week 9 and 5, 13 or 32. This suggests that in the hippocampus, 

recombination is complete by postnatal week 5.  

 

 

 

 

 

 

 

 

6.5 Discussion 

The Cre/loxP system is widely used to generate conditional knock-out mice, 

for tissue and/or time specific disruption of expression of a target gene. Chosen DNA 

sequences can be flanked by loxP elements, and the enzyme Cre can mediate 

recombination at the loxP sites, leading to excision of the sequence between the two 
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elements. In double transgenic mice, the pattern of Cre expression determines when 

and where the floxed transgene is deleted. The specificity of Cre expression is 

obtained by designing the Cre construct under the control of a defined promoter so 

that the expression occurs exclusively in a cell type where/when the promoter is 

active (Nagy, 2000).  

This system has been used in the Prion Unit to generate conditional PrP 

knock-out mice. Cre/loxP double transgenic mice were obtained by crossing the 

MloxP transgenic mice with the Cre transgenic mice. In the Cre expressing mice, Cre 

expression was under the control of the regulatory elements (promoter, introns and 

flanking sequences) of the neurofilament heavy (NFH) gene (Mallucci et al., 2002). 

The NFH control elements were chosen because of their ability to confer neuron-

specific post-natal expression to murine (Julien et al., 1988), rat (Moskowitz and 

Oblinger, 1995) and human (Lees et al., 1988) NFH genes, and in transgenic mice 

expressing the human NFH transgene (Cote et al., 1993; Cote et al., 1994). 

Indeed, detailed analysis of NFH-Cre/ROSA26 mice and double transgenic 

NFH-Cre/MloxP mice previously showed Cre expression and subsequent 

recombination occurring in all neuronal cells ~ postnatal week 9-10, as a genuine 

late activation of the transgene (Mallucci et al., 2002). In addition, early prion 

disease pathology and cognitive deficits were reversed in the hippocampus of RML 

infected NFH-Cre/MloxP mice upon recombination at 9 wpi (10 weeks of age), and 

mice that had undergone recombination did not develop clinical prion disease 

(Mallucci et al., 2003; Mallucci et al., 2007). However, repeat experiments of 

inoculating NFH-Cre/MloxP mice with RML prions, yielded different results, in that 

NFH-Cre/MloxP mice were not fully protected from clinical scrapie. 

Moreover, as our data suggested that areas of early prion pathology in the 

brainstem are likely to correspond to clinical target areas of prion disease, it was 

essential to further characterise the timing and efficacy of recombination in these 

areas.  

This was done by histological and molecular biological approaches. We first 

crossed the NFH-Cre line with LacZ ROSA26 reporter mice and studied the spatial 

characteristics and timing of Cre activation. Both, the β-galactosidase histochemical 

assay and the immunohistochemical detection of β-galactosidase showed Cre-

mediated activation as early as 1 week after birth in the ROSA26 reporter mouse line 
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in some but not all brain areas. However, at 9 weeks of age, not all the cells in the 

proposed clinical target areas (the locus coeruleus, the nucleus of the solitary tract 

and the pre-Bötzinger complex) showed immunoreactivity, indicating that not all 

cells in each nucleus underwent recombination. The proportion of recombined cells 

was determined by microscopic observation, but accurate cell counting was not 

possible given the limited number of sections obtained in this experiment. In 

addition, we obtained further quantitative data using a molecular approach directly in 

NFH-Cre/MloxP mice.  

This analysis confirmed the indication of early recombination; it occurred as 

early as embryonic day 15 and also demonstrated a change in efficacy of 

recombination over time. Indeed, we were able to monitor the efficacy of 

recombination in the hippocampus of NFH-Cre/MloxP mice and found that it had 

taken place with low efficacy at postnatal week 1 but was maximal by postnatal 

week 5. Since the focus of this thesis is the brainstem, it would have been desirable 

to have data on this brain area. However, in light of the histology data on ROSA26 

reporter mice, qPCR on medulla samples would probably not have been conclusive: 

not only different brain areas have different timing and efficacy of recombination, 

but different brainstem nuclei may have had different recombination efficiency at 

different times.  

The data shown here demonstrate that temporal and spatial characteristics of 

Cre expression in NFH-Cre mice has shifted over time and was now different from 

published data (Mallucci et al., 2002). However, due to technical limitations of the 

experiments presented here, we cannot describe unequivocally the recombination in 

the brainstem nuclei on which we have focussed our attention in the previous 

chapters. Ideally, one way to circumvent the limits of the analysis presented here 

would be to combine histological and molecular techniques. More specifically, 

different brainstem nuclei of NFH-Cre/MloxP mice could be dissected by laser-

capture microscopy and real time PCR could be performed on the dissected samples. 

This analysis would be an additional, complementary confirmation of the Cre-

mediated recombination. 

Based on published data, the observed early recombination was not expected. 

However, when the NFH-Cre line was generated, premature recombination of the 

MloxP locus had been detected in a single embryo at E15.5. Because transgenes 
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were generally known to show inconsistencies or variations, and to have alterations 

in timing of expression when used to drive Cre-mediated recombination (Hoesche et 

al., 1993; Sauerwald et al., 1990), extensive efforts were made to characterise the 

recombination and since another such early event was not observed, it was discarded 

as random. As the Cre-expressing line that has being continually bred within the 

Prion Unit no longer triggers a late recombination, the original Cre-expressing line 

was re-derived from mouse embryos frozen at the time of the l experiments. 

However, in the re-derived line early recombination was observed (Dr Nick 

Henriquez and Prof. Sebastian Brandner, personal communication) and therefore the 

line has been terminated.  

The change of recombination pattern does not allow a direct comparison with 

the published data on RML infected NFH-Cre/MloxP mice. However, one would 

intuitively expect that an early recombination would result in a better protection from 

prion pathology, in that an earlier and more widespread deletion and results in less 

PrP being available for conversion. In contrast, NFH-Cre/MloxP mice are less 

protected. The detection of partial recombination of the locus coeruleus, the nucleus 

of the solitary tract and the pre-Bötzinger complex supports our postulate on their 

critical role in the progression towards a clinical phenotype. Because recombination 

is not complete in these target areas, prion infected NFH-Cre/MloxP mice do survive 

longer but accumulate abnormal prion protein and hence ultimately develop prion 

disease. 

6.6 Summary 

In conclusion, Cre-mediated recombination in NFH-Cre/MloxP mice 

accumulates over time, and not a genuine late activation, as shown previously 

(Mallucci et al., 2002).  

Using a LacZ reporter mouse line, we found recombination occurring as early 

as postnatal day 2 in the brainstem and the cerebellum. By post-natal week 5, we 

found recombined cells in the cortex, thalamus, hippocampus and brainstem. With 

PCR screening, we found evidence of recombination in brains from 15.5 days old 

embryos and from post-natal week 1 onwards in all the different brain areas analysed 

(olfactory bulb, hippocampus, caudate nucleus, thalamus, cerebellum, mid brain, 

pons, medulla, cortex and cerebellum). Specifically, in the hippocampus of NFH-
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Cre/MloxP mice, low-level recombination is detectable at postnatal week 1 and is 

maximal by post-natal week 5. 

We analysed in greater detail the pattern of recombination in the nuclei 

identified as clinical target areas (i.e. locus coeruleus, the nucleus of the solitary tract 

and the pre-Bötzinger complex). We found that recombination is not complete in 

these nuclei, which explains incomplete protection from prion disease in infected 

NFH-Cre/MloxP mice. 
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7 Lentiviral mediated RNAi against prion protein 

7.1 Introduction 

When I started my PhD, I joined the group led by Prof. Giovanna Mallucci. I 

worked under her supervision on a therapeutic project using lentivirally mediated 

RNA interference (RNAi) to silence PrP
C
 expression in mice, until she moved to the 

MRC Toxicology Unit in Leicester.  

Mallucci‘s group had previously shown that recombination-mediated 

depletion of neuronal PrP
C
 in mice with established prion infection reverses early 

spongiosis, neuronal loss and cognitive deficits and prevents clinical disease 

progression (Mallucci et al., 2003; Mallucci et al., 2007). These studies had validated 

PrP
C
 as a therapeutic target in prion disease, but did not represent a therapeutic 

possibility, given the recombination-mediated mechanism of PrP
C
 depletion. 

Potential treatments to achieve the same effect would require reduction of PrP 

expression through gene silencing. At the time, RNAi had emerged as a powerful 

tool for gene silencing and gene therapy using viral vectors expressing shRNAs had 

been successfully used in various neurodegenerative disorders (Xia et al., 2006; 

Sapru et al., 2006; Gonzalez-Alegre et al., 2005). Moreover, RNAi mediated 

knockdown of PrP expression had been reported in cell systems (Tilly et al., 2003; 

Daude et al., 2003; Pfeifer et al., 2006) and in mice (Pfeifer et al., 2006). 

Under Mallucci‘s supervision, Melanie White had prepared and tested 

shRNA sequences against PrP. In her PhD thesis, siRNA duplexes efficient in 

reducing PrP
C
 expression in vitro and enabling clearance of PrP

Sc
 and infectivity 

from prion-infected cells were described. Moreover, lentiviruses expressing the 

interfering sequences were constructed, and effective reduction of PrP
C
 expression 

both in vitro and in vivo was demonstrated. Stable expression of the interfering RNA 

molecules through lentiviral transduction of the hippocampus in prion infected mice 

reduced local pathology and prolonged animal survival.  

These findings were the starting point for the study that resulted in the 

publication in the Proceedings of the National Academy of Sciences USA ―Single 

treatment with RNAi against prion protein rescues early neuronal dysfunction and 

prolongs survival in mice with prion disease‖, attached at the end of this thesis. In 

the following sections the results presented within the paper are briefly summarised.  
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7.1.1 Single treatment with RNAi against prion protein rescues early neuronal 

dysfunction and prolongs survival in mice with prion disease 

The MW-1 shRNA sequence was cloned in the Lentiviral vector pLL3.7, 

expressing also the reporter protein EGFP, to generate the anti PrP-lentivirus LV-

MW1. A control virus LV-Empty was also generated, which contained no shRNA 

sequence. Transduction of neuronal cell lines was tested and it was confirmed that 

the LV-MW1 virus reduced PrP protein and mRNA (P= 0.0014; Student's t test, two 

tails) (cf. (White et al., 2008) Fig. 1. (A)), whereas the control LV-Empty virus had 

no effect. In vivo, bilateral hippocampal injections of LV-MW1 in wild-type 

uninfected mice reduced PrP mRNA by ~80% of normal values, 2 weeks after 

treatment in whole hippocampi (p< 0.0001; Student's t test, two tails) (cf. (White et 

al., 2008) Fig. 1. (B)). Lentiviruses were then tested in prion-infected mice. Tg37 

mice were intracerebrally injected with RML prions at 1 week of age. Eight weeks 

later, Michael Farmer stereotaxically injected either LV-MW1 or LV-Empty into the 

left and right hippocampus. A third group of mice received no lentivirus (n= 20 for 

each group). All three groups were tested in burrowing and object recognition tasks 

from 7 wpi. Lentiviral RNAi of PrP prevented the loss of burrowing activity seen in 

mice treated with LV-Empty or with no virus and also protected against loss of 

object recognition memory (cf. White et al. 2008 Fig.2).  

Effect of focal lentiviral treatment on survival time was assessed: after a 

localized hippocampal injection, prion-infected mice treated with LV-MW1 survived 

significantly longer than mice treated with LV-Empty or those that received no virus 

(respectively 105 ± 4 days; 88 ± 3; 85 ± 3 days) (cf. White et al. 2008 Fig.3). I 

carried out histopathology on brain slices (cut and stained by the MRC Prion Unit 

histopathology core facility) from these mice.  

7.1.1.1 Neuroprotective effect of lentivirus-mediated PrP knock-down 

Blind scoring was performed on up to nine brains from each group of mice, 

selected at random, and culled when they developed diagnostic clinical signs of 

terminal prion disease. 

Silencing of PrP expression in prion-infected mice was focally 

neuroprotective in the hippocampus: LV-MW1 treated mice showed protection 

http://www.pnas.org/content/105/29/10238.long#F1
http://www.pnas.org/content/105/29/10238.long#F1
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against neuronal loss and reduced spongiform degeneration compared to LV-Empty 

treated mice (Figure 7.1 B and D vs. Figure 7.1 A and C). Moreover, LV-MW1 

treatment reduced PrP
Sc

 deposition compared to LV-Empty treatment (Figure 7.1 F 

vs. Figure 7.1 E). Systematic neuronal counts showed that LV-MW1 treatment 

preserved CA1 pyramidal cells (852 ± 85 neurons compared with 532 ± 24 neurons 

in LV-Empty-treated mice (p= 0.029, Student‘s t-test, two tails) (Figure 7.2 A)). 

Semiquantitative scoring of spongiosis using a scale of 0–3 [indicating a range of 

absent (0) to severe (3) spongiosis] showed that hippocampal spongiform 

degeneration was also significantly less extensive in LV-MW1-treated mice 

compared to LV-Empty treated mice. Animals with RNAi-mediated PrP knockdown 

(n = 9) had a mean spongiosis score of 1.3 ± 0.2 in the hippocampus, representing 

mild spongiosis, compared with a score of 2.7 ± 0.2 (n = 6) in LV-Empty-treated 

mice, consistent with severe spongiform degeneration (p= 0.0007, Student‘s t-test, 

two tails) (Figure 7.2 B). Whole-brain pathology in LV-MW1-treated animals was 

also evaluated. In the thalamus and the cortex apparent reduction of spongiosis and 

PrP
Sc

 deposition was distinguishable, compared with LV-Empty treated mice (Figure 

7.3). However, the morphological differences seen were statistically significant in 

the thalamus but not in the cortex (Table 7.1). 

As no evidence of lentiviral expression was found in tissues beyond the 

injected hippocampus using immunohistochemistry for lentiviral EGFP expression, 

it was reasoned that this reduced pathology could reflect altered prion spread and 

replication in these areas after knockdown of PrP within the hippocampus by 

lentiviral injection.  

 

http://www.pnas.org/content/105/29/10238.long#ref-3
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Figure 7.1 Lentivirally mediated RNAi of PrP expression protects against prion mediated 

neurodegeneration 

LV-MW1 treated hippocampus showed protection against  neuronal loss, reduced spongiform 

degeneration (B and D)  and PrPSc deposition (F) compared to LV-Empty treated hippocampus (A and 

C; E). Scale bar = 500 µm. Adapted from (White et al., 2008) 
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Figure 7.2 Quantitative analysis of LV-MW1 protection against prion mediated 

neurodegeneration 

A. Pyramidal neurons in the CA1 region were systematically counted and confirmed the 

neuroprotective effect of LV-MW1 (P=0.029, Student‘s t test, two tails) (n=6). 

B. Hippocampi of LV-MW1 and LV-Empty treated prion infected mice were semiquantitatively 

scored for spongiosis, using a scale of 0–3 [indicating a range of absent (0) to severe (3) spongiosis]. 

LV-MW1 treated hippocampi showed significantly less spongiosis than LV-Empty treated mice (n=9 

and n=6; P=0.0007, Student‘s t test, two tails). Adapted from (White et al., 2008) 

 

 

 

Table 7.1 Spongiosis and PrP( ICSM35) scoring  in brain of LV-MW1 and LV-Empty treated 

mice 

Significant differences were observed for spongiosis and PrP
Sc

 accumulation in hippocampus and 

thalamus of LV-MW1 and LV-Empty treated mice, but not in the cortex and cerebellum. 

 

 

 

 

 

http://www.pnas.org/content/105/29/10238.long#ref-3
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Figure 7.3 Reduced spongiosis and PrP
Sc

 deposition in brain regions outside the hippocampus 

Cortex, Thalamus and Cerebellum of mice treated with hippocampal bilateral injection LV-MW1 (A 

to D and I to L) and LV-Empty (E to H and M to P) were analysed. Sections were stained with H&E 

for spongiosis (top two rows) and ICSM35 for PrPSc deposition (bottom two rows). LV-MW1 

treatment showed a reduction of spongiosis and PrPSc deposition in the cortex and in the thalamus. 

Scale bar = 5 mm (A, E, I, M); 4 mm (L and P); 1.3 mm (J, K, N, O); 170 µm (B to D and F to H). 

Adapted from (White et al., 2008) 

 

 

 

 

 

 

 

 



 

213 

 

7.1.2 Loss of lentivirus titre  

In conclusion, lentivirus-mediated RNAi against PrP was used as treatment 

of established prion infection in mice. Localized single administration of these 

viruses to the hippocampus prolonged the lifespan of the infected mice, protected 

transduced neurons from degenerating, reduced PrP
Sc

 accumulation, and prevented 

the onset of the first behavioural deficits associated with the disease.  

Subsequently, it was planned to use LV-MW1 to knock-down PrP in other 

areas of the brain. For efficient in vivo knock-down, high titres of virus are required. 

The titre of concentrated virus previously used was estimated to be in the range of 1 - 

5 x 10
8
 TU/ml. To verify the titre of the remaining lentivirus stocks, HEK293 cells 

were infected with 15 µl of concentred LV-MW1 virus. To assess the lentivirus titre, 

the percentage of virus-encoded GFP expressing cells was analysed by flow 

cytometry at the Institute of Child Health by Dr Annika Alexopoulou. No difference 

in GFP fluorescence was detected between LV-MW1 infected cells and control cells, 

treated only with polybrene (Figure 7.4). This analysis suggested that the viral titre 

had decreased, to levels which were unsuitable for injection experiments. Virus 

stocks needed to be generated. 
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Figure 7.4 LV-MW1 lentivirus stock showed loss of titre 

105
 HEK 293 cells were infected with 15 µl of LV-MW1 in presence of 8 µg/ml of polybrene , or just 

with polybrene as control. Three days after infection, cells were collected and analysed for EGFP 

expression with flow cytometry.  

No appreciable green fluorescence was observed in LV-MW1 infected cells (bottom row) compared 

to the polybrene treated control (top row), indicating a significant loss of lentiviral titre. 

 

 

7.1.3 Production of high titre lentivirus for expression of shRNAs directed 

against Prnp 

7.1.3.1 Design of the short hairpin oligonucleotides 

In addition to re-producing the LV-MW1 lentivirus used in the previous 

work, new sequences for short hairpin oligonucleotides against Prnp to be cloned 

into pLL3.7 were designed. In other work within the Unit, Prof. Parmjit Jat and 

Parineeta Arora had designed and tested a number of shRNA sequences for silencing 

PrP expression in PK1 cells and had found that the best candidates for PrP silencing 

were two short sequences located in the 3‘ UTR, namely, shRNA clone 4 (bp 2039-

2059) and 8 (bp 1512-1530). These sequences were used for production of two new 

lentiviruses, named LV-Cl4 and LV-Cl8. 

The short hairpin oligonucleotide inserts were designed to be directionally 

cloned into the Hpa I and Xho I restriction sites of the pLL3.7 lentivector 

downstream of the U6 promoter. In addition to the new sequences, a new version of 
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the sh-MW1 was designed, with 5‘ Hpa I restriction site reconstituted. The 

sequences of the short hairpin inserts were as follows. In blue is the interference 

sequence, followed by the loop in green and the antisense in red. 

 

shRNA clone 4  

sequence: TCTGCATGTACTTCACGTT bp 2039-2059 

5’- AACTCTGCATGTACTTCACGTTTTCAAGAGAAACGTGAAGTACATGCAGATTTTTTC-3’ 

3’– TTGAGACGTACATGAAGTGCAAAAGTTCTCTTTGCACTTCATGTACGTCTAAAAAAGAGCT-5’ 

 

shRNA clone 8  

sequence: TAGGAGATCTTGACTCTGA bp 1512-1530 

5’- AACTAGGAGATCTTGACTCTGATTCAAGAGATCAGAGTCAAGATCTCCTATTTTTTC-3’ 

3’- TTGATCCTCTAGAACTGAGACTAAGTTCTCTAGTCTCAGTTCTAGAGGATAAAAAAGAGCT-5’ 

 

shRNA MW1 new 

5’- AACGTACCGCTACCCTAACCAATTCAAGAGATTGGTTAGGGTAGCGGTACTTTTTTC-3’ 

3’- TTGCATGGCGATGGGATTGGTTAAGTTCTCTAACCAATCCCATCGCCATGAAAAAAGAGCT-5’ 

 

7.1.3.2 Cloning of the sh-RNA in the pLL3.7 lentivector 

The shRNA oligonucleotides were annealed and cloned into the pLL3.7 

lentivector. Ligation reactions were set up using molar ratios of insert DNA: pre-

digested pLL3.7 vector DNA ranging from 2:1 to 10:1. Resultant colonies were 

grown; DNA extracted and sequenced using the primer within the Flap sequence 

upstream of the U6 promoter in pLL3.7: 

Flap sequence primer 

5'-CAGTGCAGGGGAAAGAATAGTAGAC-3' 

Positive clones were grown to produce high quantity DNA of each shRNA 

lentiviral construct.  

7.1.3.3 Triple transfection in HEK 293 cells to produce lentivirus 

To produce lentiviruses, the lentiviral vector plasmid containing the shRNA, 

was transiently co-transfected with two helper plasmids encoding the genes required 

for virus production and packaging into HEK293T cells. The helper plasmids were 
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the packaging vector, p8.91, and the envelope plasmid, pMD2G. The p8.91 plasmid 

encodes the gag and pol genes, required for the viral capsid, nucleocapsid and 

protective matrix and for the enzymatic machinery necessary for replication and 

integration of the lentivirus. The pMD2G plasmid encodes the VSV-G protein, the 

coat protein from the Vesicular Stomatitis Virus, to confer broad tropism to the 

lentivirus.  

The viral titre of the produced viruses was tested in HEK293. Cells were 

infected with serial dilutions of the lentiviruses and the expression of EGFP checked 

by fluorescent microscopy. An indicative relative titre was calculated, estimating 

percentage of EGFP positive cells for each virus in each dilution.  

7.1.3.4 Pilot experiment on knockdown validation 

Equivalent titres of LV-Empty and sh-RNA encoding lentiviruses were tested 

on the N2A mouse neuroblastoma cell line to assess virus efficacy in vitro. Four 

days after infection, cells were collected and stained with the monoclonal antibody 

ICSM 18, directed against PrP codons 144–156. Anti mouse PE-conjugated 

antibody, emitting in the red spectrum, was selected as the secondary antibody to 

avoid overlap with the ―green channel‖ used for GFP fluorescence. Stained cells 

were then analysed with flow cytometry by Dr Sara Monteiro: GFP positive cells 

were gated and mean fluorescence intensity (MFI) in the red channel was used as a 

measure of PrP knockdown. LV-MW1 and LV-MW1new infected cells did not show 

any reduction in the red channel MFI compared to LV-Empty treated cells (Figure 

7.5 A and B). On the other hand, LV-Cl8 and LV-Cl4 infected cells showed a 

reduction of ~10% in red MFI compared to LV-Empty treated cells (Figure 7.5 C 

and D). These data confirmed the two new sequences used to generate LV-Cl8 and 

LV-Cl4 were better targets for PrP knock-down than previously published 

sequences. 
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Figure 7.5 LV-Cl4 and LV-Cl8 are more efficient that LV-MW1 in knocking down PrP in vitro 

In order to test virus efficacy in vitro, equivalent titres of LV-Empty and sh-RNA encoding 

lentiviruses were tested on the N2A mouse neuroblastoma cell line. Four days after infections cells 

were collected and stained, with the ICSM 18 antibody, specific for PrP, followed by Goat anti mouse 

PE-conjugated secondary antibody. GFP positive cells were gated (black area) and mean fluorescence 

intensity (MFI) in the red channel was used as a measure of PrP knockdown, as reduction  red 

fluorescence intensity implies reduced PrP expression on the cell surface.  

A. MFI LV-Empty treated cells= 51%; MFI LV-MW1 treated cells= 51% (grey line); 

B. MFI LV-Empty treated cells =51%; MFI LV-MW1new treated cells= 55% (grey line) 

C. MFI LV-Empty treated cells =51%; MFI LV-Cl8 treated cells= 42% (red line) 

D. MFI LV-Empty treated cells 51%; MFI LV-Cl4 treated cells 42% (red line)  

LV-Cl8 and LV-Cl4 successfully knocked -down PrP expression (C and D) but LV-MW1 and LV-

MW1new did not. 

The flow cytometry was carried out by Dr Sara Monteiro. 

 

7.1.3.5 Titre estimation of produced lentiviruses 

In order to produce a stock of lentiviruses for injection into mice, large scale 

lentivirus production was set up. Before proceeding with lentiviral concentration, the 

titre was calculated for all the collected viruses. Serial dilutions of virus were added 

to fresh HEK293 cells. After four days, cells were analysed with flow cytometry for 

GFP expression by Sara Monteiro and Melania Tangari. The titre was then 

calculated by correcting for the number of cells plated and the viral dilution factor 

using the following equation:  

Titre = (% GFP-positive) x (virus dilution factor) x (number of cells plated) 
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Titres in the range of 2-3 x 10
5
 TU/ml were achieved for each virus. As 

lentiviral concentration by ultracentrifugation can improve the titre ~10
3
 times, the 

obtained titres were considered suitable for subsequent concentration. Lentiviruses 

were concentrated by Michael Farmer in Prof. Greg Tower‘s laboratory at UCL. 

7.1.4 Discussion 

Lentiviral-mediated RNAi against PrP has been used as treatment of 

established prion infection in experimental prion disease. Prion infected mice were 

treated with localized single administration of these viruses to the hippocampus. 

RNAi silencing of PrP expression prolonged the lifespan of infected mice, protected 

transduced neurons from degeneration, reduced PrP
Sc

 accumulation, and prevented 

the onset of the first behavioural deficits associated with prion disease.  

This study is the first step towards the development of a treatment for prion 

disease. PrP
C
 has been validated as a therapeutic target; however, the physiological 

function of PrP
C
 is still under debate, and local PrP

C
 knock-down rather than 

treatments that globally target PrP
C
 seems to be a safer option. In the previous 

chapters, the locus coeruleus, (LC), the nucleus of the solitary tract and the pre-

Bötzinger complex have been described as clinical target areas in experimental prion 

disease. Reducing PrP expression in these target areas at an early stage of the disease 

may be an approach to suppress disease progression in these areas.  

Although the last two nuclei may represent difficult targets for stereotaxic 

injection, we envisage the LC to be an easier target for focal delivery of lentivirus 

encoding shRNAs against PrP. As the lentivirus titre was found to be decreased to 

unsuitable levels for injection experiments, new virus stocks needed to be generated. 

In addition to the original LV-MW1, three more lentiviruses were produced: a new 

version of LV-MW1 and LV-Cl4 and LV-Cl8, whose target interference sequences 

were based on silencing studies in PK1 cells. Preliminary data showed that LV-CL4 

and LV-CL8 give the best knock-down of PrP expression in N2A cells. However, 

due to time constraints, further validations are needed before proceeding to in vivo 

use of the produced lentivirus.   
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7.1.5 Summary 

It has been shown that hippocampal delivery of anti-PrP shRNA expressing 

lentivirus effectively prolonged the lifespan of prion infected mice, protected 

transduced neurons from degenerating, reduced PrP
Sc

 accumulation, and prevented 

the onset of behavioural deficits. 

In order to use this system for focal delivery in clinical target areas outside 

the hippocampus such as locus coeruleus, new lentiviruses were produced, and 

shown to elicit a better knockdown PrP expression in N2A cells. 
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8 Conclusions and future work 

8.1 Thesis summary and conclusions 

The aims of this thesis were to identify the clinical target areas for prion 

disease, to define the timing and spatial characteristics of Cre-mediated 

recombination in the NFH-Cre/MloxP mouse model, and to produce new lentiviruses 

expressing shRNAs against PrP to be used for local PrP knock-down in designated 

brain areas. 

To identify the clinical target areas of prion disease, i.e. areas affected by 

prion pathology which are responsible for clinical manifestation of the disease, we 

focussed on the brainstem: this area controls essential body functions such as motor 

activity, generation of respiratory rhythm and regulation of blood pressure, which are 

often impaired in mouse models of prion disease. Previous work reported that the 

first manifestation of prion disease in RML inoculated MloxP mice occurs in the 

thalamus and brainstem (White et al., 2008) and in human prion disease, widespread 

deposition in the brainstem has been reported as an early pathologic event in sCJD 

(Iwasaki et al., 2005). However, the authors of this study speculated that a 

conclusive evaluation of the relationship between clinical signs and brainstem 

impairment is difficult because the same symptoms could result from overlapping 

involvement of the basal ganglia or the cortex (Iwasaki et al., 2005).  

Using mouse models it is possible to address the variability of human 

pathology and to directly correlate clinical signs and brainstem involvement. 

Therefore we set out to investigate clinical target areas of prion disease using the PrP 

overexpressing MloxP and PrP depleted NFH-Cre/MloxP transgenic mouse lines 

(Mallucci et al., 2002). We first characterized the progression of pathology in the 

brains of PrP overexpressing MloxP and PrP depleted NFH-Cre/MloxP transgenic 

mouse lines inoculated with Me7 and Mouse-adapted BSE prions, and confirmed 

that the brainstem is the first area of prion accumulation for both prion strains, in 

both genetic backgrounds. Then we focussed on the brainstem and analysed the 

progression of pathology in the brainstem nuclei of RML and Me7 inoculated MloxP 

and PrP depleted NFH-Cre/MloxP mice. 

RML infected NFH-Cre/MloxP mice were previously shown to be resistant to 

RML infection (Mallucci et al., 2003). We compared the pathology between pre-
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clinical longer surviving RML infected NFH-Cre/MloxP mice, and end-stage 

infected MloxP (RML and Me7) and NFH-Cre/MloxP (Me7) mice to pinpoint 

critical areas that once reached by the infection led to the clinical phenotype. 

We hypothesized that the clinical target area(s) may be the last one or the 

first one targeted by prion pathology. In the ―last target area scenario‖, a generalised 

widespread accumulation of ―toxic species‖ would occur in the CNS during prion 

disease. This widespread accumulation would not cause clinical impairment, until it 

localizes to vital areas. These vital areas, which are the last areas to become 

functionally impaired, would be the ―clinical target areas‖, and their impairment 

would cause the clinical symptoms. These areas would be relatively sensitive 

(compared to surrounding structures) to prion accumulation. 

We first described the lesion profile in the brainstem nuclei involved in motor 

and autonomic control at end stage of disease upon RML or Me7 inoculation of 

MloxP mice (12 and 16 wpi) and NFH-Cre/MloxP mice (28 and 35wpi). In case 

clinical target areas were those that were targeted last, we should have been able to 

see prion affected nuclei in terminal MloxP mice that were not affected in prion 

resistant NFH/Cre-MloxP mice. However, in our experiments the NFH-Cre/MloxP 

mice were not resistant to prion infection as previously reported and developed prion 

disease albeit after a prolonged incubation time. Lesion profiles at intermediate 

(RML, 12 wpi; Me7, 16 wpi) and end stage of disease (RML, 35 wpi; Me7, 28 wpi) 

in NFH-Cre/MloxP mice were analysed. Since prion pathology was widespread in all 

the analysed brainstem nuclei at terminal stage, no particular nucleus stood out. 

We then explored the hypothesis of clinical target areas being the first target 

areas. In the ―first target area‖ scenario, the area(s) that first accumulates toxic 

species would be rate limiting in the disease process.  These areas would have to be 

relatively tolerant of a continuous accumulation of prion toxicity and would cause 

neurological dysfunction when levels of toxicity exceed a critical threshold. At this 

point mice would manifest the clinical phenotype. 

We focussed on the first areas affected by prion pathology when mice were 

asymptomatic. The brainstem nuclei of RML and Me7 inoculated MloxP and 

NFH/Cre-MloxP mice at early time points (RML, 6 wpi; Me7, 8 wpi) showed that 

the first areas affected by prion pathology were the locus coeruleus (LC), the nucleus 

of the solitary tract (NTS) and the pre-Bötzinger complex (PBC). These areas were 
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then analysed in greater detail in end stage mice. Prion accumulation and spongiosis 

in these first targeted areas was comparable in MloxP and NFH-Cre/MloxP mice, 

although PrP depleted mice survived two (Me7) and three times (RML) longer. 

Because of the vital role of these areas in control of autonomic functions, we suggest 

that degeneration of LC, NTS and PBC is the cause of the clinical symptoms and 

these nuclei may be the clinical target areas of prion disease. 

Previous studies had shown that activation of Cre is a late event in NFH-

Cre/MloxP mice, about 9-10 weeks after birth. NFH-Cre/MloxP had been shown to 

be resistant to prion disease and the effect of PrP depletion in the hippocampal 

pathology of RML infected mice has been previously studied (Mallucci et al., 2003). 

However, as our main focus was the brainstem, and NFH-Cre/MloxP mice 

developed clinical signs of prion pathology, even with a prolonged incubation time, 

we set up a detailed investigation of timing and regional specificity of Cre-mediated 

recombination in double transgenic NFH-Cre/MloxP mice. Cre-mediated 

recombination in NFH-Cre/MloxP mice was found to accumulate over time, and not 

a genuine late activation; recombination was found in embryos and from postnatal 

week 1 in different brain areas (olfactory bulb, hippocampus, caudate nucleus, 

thalamus, cerebellum, mid brain, pons, medulla, cortex and cerebellum). In the 

hippocampus maximal recombination was reached by post natal week 5. We 

analysed in greater detail the pattern of recombination in the nuclei we proposed as 

the clinical target areas in prion disease (LC, NTS and PBC). We found that 

recombination was not complete in these nuclei and this explains a delayed 

susceptibility to prion disease in prion infected NFH-Cre/MloxP mice. 

Finally, new lentiviruses encoding shRNA against PrP were produced. 

Lentivirus-mediated RNAi against PrP has been shown to be an effective treatment 

of established prion infection in experimental prion disease. Lentivirus-mediated 

RNAi of PrP expression in the hippocampus of prion infected mice prolonged their 

lifespan, protected transduced neurons from degeneration, reduced 

PrP
Sc

 accumulation, and prevented the onset of the first behavioural deficits 

associated with the disease (White et al., 2008).  

We produced new lentiviruses, using two new interference shRNA sequences 

and showed that their efficacy in knocking down PrP in vitro was higher than the 

previous published sequences.  
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8.2 Future directions 

8.2.1 Histopathology of MRC2 infected mouse brains and human prion 

disease. 

We have shown that the LC, NTS and PBC are the clinical target areas of 

prion pathology in an experimental model of RML and Me7 prion disease. In the 

course of this project, samples of MRC2 inoculated MloxP and NFH-Cre/MloxP 

mice were also collected at early and late stage of prion infection, but could not be 

analysed due to time constraints. It will now be interesting to screen these samples 

and determine if these areas are targets of prion pathology in MRC2 inoculated 

MloxP and NFH-Cre/MloxP mice. MRC2 is a mouse adapted BSE strain: as vCJD is 

derived from consumption of BSE-contaminated meat, the finding that LC, NTS and 

PBC are clinical target areas in an experimental model of BSE infection would 

suggest these areas may also be critical in human prion diseases. 

Moreover, a detailed analysis of the brainstem lesions has never been 

performed in the UK. The Prion Unit, through the Prion Clinic has access to archived 

brain specimens. Considering the recent localization of PBC in human brains, it 

would be now be possible to perform a systematic histopathological investigation of 

LC, NTS and PBC in samples of vCJD, sCJD or inherited prion diseases. 

8.2.2 Stereotaxic prion injection in clinical target areas 

As a direct consequence of the concept of clinical target areas, the duration of 

the incubation time is believed to be determined by the complexity of the pathways 

between the injection site and the clinical target areas (Kimberlin et al., 1987).  

The current model of prion infection describes a split between prion 

infectivity (phase 1) and toxicity (phase 2) (Sandberg et al., 2011). Prion propagation 

in the brains occurs as a clinically silent exponential phase, not rate-limited by prion 

protein concentration, which reaches a maximal prion titre. Phase 1 is followed by a 

distinct switch to an infectivity plateau phase. The pathway switch leads to the 

production of toxic species, at a rate linearly dependent on PrP
C
 concentration. 

Our data can be integrated into this model: although the LC, NTS and PBC 

are the first targets of prion replication in both MloxP and NFH-Cre/MloxP mice, in 

overexpressing MloxP mice the toxicity phase (phase 2) is shorter than in NFH-
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Cre/MloxP, as in the first mouse line PrP concentration is higher. The shortened 

toxicity phase gives rise to the shorter incubation time in prion infected MloxP mice. 

However in NFH-Cre/MloxP, even though phase 2 is longer, mice become 

terminally ill when toxic species PrP
L
 reaches the local threshold in these areas.  

A further reduction in incubation time could be shown by inoculating the 

mice stereotaxically in the clinical target areas. The stereotaxic inoculation could be 

performed in wild type, MloxP (overexpressing PrP ~3,4 time) and Tg20 

(overexpressing PrP ~7, 8 times) and should show a reduction in the incubation time 

compared to the incubation times reported in Sandberg‘s paper (wild type and Tg20 

mice) and in our work (MloxP mice). This reduction should be proportional to the 

level of PrP expression in the different mouse lines. 

8.2.3 Optimization of PrP knock-out in clinical target areas 

We showed that RML and Me7 prion inoculated NFH-Cre/loxP mice 

survived three and two time longer than RML and Me7 inoculated MloxP mice, but 

still developed clinical symptoms (chapter 4). We also showed that in NFH-Cre/loxP 

mice the Cre-mediated recombination in the clinical target areas was not complete 

(chapter 5). We therefore hypothesize that NFH-Cre/loxP mice were not completely 

protected from prion pathology because of residual PrP expression in the LC, NTS 

and PBC. To prove this hypothesis, we could knock down PrP locally in these 

nuclei. Local knockdown could be achieved by germ-line manipulation or by 

extrinsic tools. Taking advantage of the Cre-lox system, MloxP mice could be cross 

with mice expressing Cre under the control of specific promoters for recombination 

localized in these areas. For example, MloxP mice could be crossed with mice 

expressing Cre under the TH promoter (Gelman et al., 2003) for specific PrP 

knockdown in the LC. 

An alternative, more direct and technically faster approach, could be to 

perform stereotaxic injections of lentivirus encoding shRNAi against PrP in these 

clinical target areas. In chapter 7 we have produced lentiviruses encoding shRNAs 

that target PrP within the 3‘-UTR, and elicit a better PrP knock-down in vitro than 

lentiviruses encoding shRNAs targeting the ORF (White et al., 2008). We could now 

use these viruses in vivo: high titre lentivirus could be injected into the one or more 

proposed clinical target areas of prion infected NFH-Cre/MloxP mice to determine if 
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the incubation time would be prolonged. We could also set up a study on MloxP 

mice and knockdown PrP locally in the clinical target areas. A prolongation of the 

incubation time in MloxP mice treated with shRNAs against PrP just in the clinical 

target areas described here would confirm that these areas are fundamental for prion 

pathogenesis. After a proof of principle experiment, the study could be fine-tuned 

with multiple injections in the clinical target areas to obtain a more extensive 

knockdown; also, different time points could be tested: injection could be done 

during the infective stage to avoid reaching a maximal threshold, or during the 

toxicity stage, to extend the plateau phase.  

8.2.4 Functional impairments in the clinical target areas 

The progression of prion pathology described in this thesis identified the LC, 

the NTS and the PBC as target areas affected early by prion pathology, the 

degeneration of which correlates with the appearance of clinical signs. It will now be 

possible to study in more detail the molecular, cellular and functional impairment in 

these areas after prion inoculation. 

For the LC, the first step would be to characterize the extent of neuronal loss. 

Design-based stereology can be used to quantitatively estimate of the total number of 

tyrosine hydroxylase (TH) positive neurons in the LC of infected mice compared to 

uninfected control. For example, the optical fractionator methods (Lockrow et al., 

2011) uses thick sections and estimates the total number of cells from the number of 

cells sampled with a Systematic Randomly Sampled set of unbiased virtual counting 

spaces for the entire region of interest, with uniform distance between unbiased 

virtual counting spaces in three dimensional directions. We would expect a 

significant reduction of TH positive cells in terminally ill prion infected mice, but we 

cannot exclude some compensatory effect, such as increase in TH mRNA expression 

in the remaining neurons and sprouting of dendrites into peri-LC dendritic zone, as 

observed in human post-mortem studies on dementias related to noradrenergic 

impairments (Szot et al., 2006).  

We could also envisage a time course study to determine at which point post 

inoculation, neuronal loss or increase in TH mRNA occurs in the LC, and how long 

after these changes an infected animal dies. Then, it will be possible to focus on the 

effect of impaired noradrenergic transmission on other brain areas, like the 
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hippocampus. As mentioned in chapter 5, we hypothesized that LC degeneration 

would affect the hippocampus even before manifestation of prion related pathology 

in this areas. As the hippocampal related behaviour has been shown to be impaired in 

prion infected mice and be rescued upon PrP depletion (Mallucci et al., 2007; White 

et al., 2008), a behavioural study would not answer this question. Alternatively, a 

histological approach could be taken. To determine whether changes in the cell 

bodies of LC neurons are linked to changes in hippocampal innervations, 

monoaminergic terminals in the HC could be stained for VMAT2; also, to examine 

whether the postsynaptic targets of LC axons in HC are impaired upon LC 

degeneration, β-adrenergic receptor staining could be performed. 

The three clinical target areas identified here are all involved in 

chemoreception and control of respiration. Their overlapping function requires a 

multiple technique approach to determine different contribution to impairment in 

autonomic functions. As a first step, in vivo studies should be performed to quantify 

impairment of chemoreception or alteration of breathing frequency (Li and Nattie, 

2006).  However, the different contribution of LC, NTS and PBC to these processes 

should then be investigated with other techniques.  

In the prion field, electrophysiological techniques have been used to a limited 

extent, to investigate PrP function within the hippocampus (Mallucci et al., 2002; 

Khosravani et al., 2008; Powell et al., 2008; Rangel et al., 2009) or scrapie related 

hippocampal impairment (Trifilo et al., 2008; Mallucci et al., 2007). 

Electrophysiological measurements could be performed in preparations from prion 

infected mice to quantify the effect of prion pathology on excitability and breathing 

drive in the LC, NTS and PBC. To observe transformation of network behaviour 

upon prion infection, techniques developed for recording from adult brainstem 

preparations could be used (Paton, 1996a; Paton, 1996b; Pickering and Paton, 2006). 

These preparations consist of in situ arterially perfused brainstem-spinal cord blocks, 

with sequential rostral to caudal micro-transection recording cranial and spinal motor 

outflow and compartmental neuronal population activity. The approach is similar to 

the one used in neonatal rat brainstem preparation in vitro that resulted in the original 

discovery of the PBC (Smith et al., 1991), but it is applied to a mature nervous 

system, generating neuronal activity patterns more similar to those in vivo.  
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To study the molecular events underlying prion induced impairments in the 

clinical target areas, it would be interesting to set up ex-vivo organotypic slice 

cultures from LC and PBC susceptible to prion disease. The ex-vivo organotypic 

slice culture approach has the advantage of allowing an in depth molecular analysis 

of neuronal tissue in conditions very similar to those in vivo. Organotypic cerebellar 

slice cultures are susceptible to prions (Falsig and Aguzzi, 2008). As viable LC 

(Hendelman et al., 1982), PBC (Rigatto et al., 2001) and LC and hippocampal co-

cultures (Knopfel et al., 1989) can be obtained from neonatal mice, these systems 

could be used for direct observations of the molecular and network changes in prion 

pathology, upon development of appropriate protocols for prion infection. 

Alternatively, if prion infection were not achievable, acute effects of prions in 

organotypic slice cultures could be studied using recombinant protein mimetics of 

PrPSc, like aggregated β PrP. 
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