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Abstract

Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and
patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral
temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for
determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes
of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate
between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of
volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-
subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were
correctly distinguished from controls, achieving an accuracy of 96 6 2% in both classification schemes. For TLE-N patients,
the accuracy was 86 6 2% based on structural volumes and 91 6 3% using spectral analysis. Structures discriminating
between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they
were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral
substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and
parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was
accurate based on structural volumes in 86 6 4%, and in 94 6 4% with the spectral analysis approach. Unilateral TLE has
imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric
image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing
features like the substantia nigra, warranting further study.
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Introduction

Neurological diseases are frequently characterized by specific

pathomorphological changes that can be observed on magnetic

resonance (MR) images as localized variations in signal intensity or

as changes in the shape and size of individual brain structures.

Temporal lobe epilepsy (TLE) is the most common type of

epilepsy requiring surgical treatment [1]. Distinguishing the

pathological abnormalities underlying TLE is a desirable clinical

capability, as patients with hippocampal sclerosis (HS) have a 60%

chance of becoming seizure free with surgery [1,2].

HS is the most commonly detected abnormality in patients with

medial temporal lobe epilepsy (TLE with hippocampal atrophy,

TLE-HA), observed in around 70% of patients with ‘‘non-

lesional’’ TLE [3]. HS can be detected on MR images and is

characterized by volume loss in T1-weighted images [4–8] in

combination with increased signal on T2-weighted [9,10] and

FLAIR images [11,12]. Aside from the hippocampus, there are

other structures in the brain which are affected in TLE-HA.

Volume reductions have also been reported for the thalamus

[13,14], caudate nucleus and putamen [15], and amygdala [16].

This growing body of evidence shows that TLE-HA is not merely

a focal disease of the hippocampus, but a systemic disease that

affects brain structures both close to and distant from the seizure

focus [17]. Many of the studies cited above were carried out by

manually delineating selected brain structures. This labour-

intensive procedure necessitates a selective approach, which

explains why only a small number of structures have been
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evaluated so far. To reduce the workload and increase

reproducibility (if not necessarily accuracy), several studies have

developed automated or semi-automated methods, using for

example seedpoints or bounding boxes [18–20], voxel-based

morphometry (VBM) [21,22], shape models [23] or atlas-based

segmentation [5,24,25].

VBM is a largely automated whole-brain technique for

characterizing structural brain differences in vivo [26] and the

technique has frequently been used to study patients with epilepsy

[21,27,28].

For detecting focal pathology, VBM and optimised VBM tend

to be insufficiently sensitive, especially when pathomorphological

changes are relatively subtle, as is the case in hippocampal sclerosis

[22,29,30]. Atlas propagation is a method that can be used as a

segmentation method in its own right [25,31] or as a way of

providing prior information for a further segmentation step

[32,33]. Multi-atlas label propagation has been shown to be a

reliable approach for automated detection of hippocampal

sclerosis in individual patients with TLE [5].

It is estimated that in at least 30% of TLE patients, visual and

volumetric evidence of HS as well as abnormalities of T2

relaxation time are absent. We refer to this condition as TLE-N

(MR imaging negative, [34,35]). It is possible that some of these

patients have normal hippocampi, and others may have subtle

hippocampal damage that can not be detected by visual review of

in vivo structural MRI [36]. Various abnormalities have been

described in TLE-N mostly in studies targeting the temporal lobe

only using variety of techniques: regions of interest [37], VBM

[27] or a combination of region-based and voxel-based methods

[38], magnetic resonance spectroscopy [39], positron emission

tomography (PET) with FDG [40], PET with flumazenil (a

GABAA receptor ligand, [41]) and PET with 5-HT1A ligands [42],

SPECT [43,44], T2-weighted images using voxel-based relaxo-

metry and interictal as well as ictal electroencephalography (EEG)

[45]. In contrast to MRI, they are not part of the routine clinical

workup. Recently, there has been interest in MR brain image

classification using pattern recognition methods based on feature

extraction, dimensionality reduction, and classification [46,47].

Machine-learning techniques such as support vector machines

(SVMs) are used with the aim to classify structural or functional

brain images into two groups (e.g. male/female or patient/control,

[38,46,48]). In brief, SVM is a tool that is trained with a sample of

data classified according to a gold standard. These data are

mapped into a higher-dimensional space where a linear separation

is sought. Support vectors are identified in this new space as the

datapoints in each class lying closest to the best separating linear

boundary (hyperplane) between the classes. New datasets can

subsequently be mapped into the same space and classified

depending on which side of the hyperplane they fall. Advantages

of this method are the automatic selection of training examples

that are most informative for the classification; good scalability to

large numbers of possible classifying features; and the possibility of

training classifiers based on small training sets. Classification

methods for the distinction of different TLE patient classes from

one another and controls, but in particular for the lateralization of

the epileptogenic side in cryptogenic TLE-N, based on standard

MRI, would be highly desirable. Automatic classification attempts

in other diseases like Alzheimer’s disease (AD) have largely been

voxel-based; as outlined above, standard voxel-based detection

does not perform well in the case of HA.

We have previously shown that the predecessor method for

multi-atlas propagation and label fusion [25] was able to correctly

identify hippocampal atrophy as one element of unilateral HS [5],

and Ð importantly Ð correctly identify contralateral hippocampi

as being of normal volume. In this work we use MAPER (Òmulti-

atlas propagation with enhanced registrationÓ, [49]), an auto-

matic brain segmentation method based on multiple atlases [50]

that is better suited to the automatical segmentation of

pathological MRIs [49,51] and was previously shown to work

very well in normal human brain images and patients with TLE

and AD [49]. A structure selection technique using a kernel based

class separability criterion is performed to identify the structures

that most readily discriminate between pairs of subject groups

(patient/control; TLE-HA/TLE-N; left/right TLE). In this study

the term ‘‘structure selection’’ is equivalent to ‘‘feature selection’’

in the context of pattern recognition, where the features are the

structural volumes adjusted for intracranial volume (ICV). Once

the most relevant structures have been ranked and selected,

classification is completed using a suitable machine learning

method. Two classification procedures based on selected struc-

tural volumes and morphological similarity are used for

classification. In the first procedure, a supervised classification

method (SVM) is applied to the structural volumes adjusted for

ICV. The accuracy of this classification scheme is dependent on

the group separability provided by each structure’s volume. We

demonstrate that, as expected the accuracy of this classification

scheme decreases when control and patient classes are not well

separated by their structural volumes. This problem most affected

the separation of the TLE-N and control groups. To address it, we

derived pairwise measures of morphological similarity between

subjects using the differences in volume between corresponding

selected structures.

Materials and Methods

Experiment Overview
An overview of the three-stage analysis is shown in Figure 1. To

assess the classification accuracy of the proposed methods, five

experiments were performed:

N Experiment 1 – TLE-HA vs. control: classification of TLE-HA

subjects versus control subjects.

N Experiment 2 – TLE-HA_R vs. TLE-HA_L: lateralization of

the site of seizure onset in the TLE-HA group.

N Experiment 3 – TLE-HA vs. TLE-N: classification of TLE-HA

subjects versus TLE-N subjects.

N Experiment 4 – TLE-N vs. control: classification of TLE-N

subjects versus control subjects.

N Experiment 5 – TLE-N_R vs. TLE-N_L: lateralization of the

site of seizure onset in the TLE-N group.

Experiments #1, 2, 3, and 4 are designed to assess the

performance of the method. Clinically, experiment #1 corre-

sponds to a clinically important screening situation (TLE-HA

patients are managed differently from those without HA, see

discussion in [5], and experiment #5 addresses the clinically

important question of lateralization in the absence of MRI

changes.

Subjects
Demographic features of the population, details of image

acquisition and clinical characteristics are summarized in Table 1.

The patient group consisted of 80 subjects with clinical and

neurophysiological characteristics of TLE, whose MR images and

clinical details were obtained from the database of the National

Society for Epilepsy. The database record contained a consensus

diagnosis based on visual assessment of the MR images by two

Automatic TLE Classification and Lateralization
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experienced neuroradiologists with a special interest in epileptol-

ogy. Sets of T1-weighted images from five groups were used in this

study. Sets of T1-weighted images from five groups were used in

this study.

Group 1:60 patients had visually detected unilateral HA (TLE-

HA, median age of 39 years, mean age 6 SD 39 6 12 years, 29

women). All patients had unilateral HS on expert visual MRI

assessment, including hippocampal quantification (volume loss on

T1-weighted and intensity change on T2-relaxometry) when

judged necessary by the two neuroradiologists [52,53]. HA was

always ipsilateral to the site of seizure origin as determined by

combinations of history, semiology, interictal and ictal EEG and

neuropsychological assessment. 27 patients had right HA, and 33

had left HA.

Group 2:20 patients had normal MRI scans (TLE-N, median

age of 38 years, 36 6 10 years, 9 women).

Group 3:28 healthy individuals (median age of 31 years, 32 6

11 years, 14 women), scanned on the same 3T scanner as the

patients, were included in this study.

Group 4 (Atlases): 30 subjects (median age of 31 years, 31 6 8

years, 15 women) whose MRIs had been manually segmented into

83 anatomical structures [50,54].

Group 5: To test the ability of the proposed method of

distinguishing patients with TLE from controls, nine images of

subjects affected by TLE-HA were considered as the test group.

T1-weighted MRIs of this patient group had been acquired at the

National Society for Epilepsy in Chalfont St Peter, United

Kingdom. Acquisition and demographical details have been

previously published [5]. Demographics are summarised in

Table 1. Acquisition details were identical to those used for the

atlas images.

T1-weighted atlas images and Group 5 were acquired on a 1.5

Tesla GE Signa Echospeed scanner at the National Society for

Epilepsy. A coronal T1-weighted 3D volume was obtained using

an inversion recovery prepared fast spoiled gradient recall

sequence (GE), TE/TR/NEX 4.2 ms (fat and water in phase)/

15.5 ms/1, time of inversion (TI) 450 ms, flip angle 20u, yielding

124 slices of 1.5 mm thickness with a field of view of 18624 cm for

a 1926256 matrix, covering the whole brain with voxel sizes of

0.937560.937561.5 mm. Images were resliced to create isotropic

voxels of 0.937560.937560.9375 mm3 using windowed sinc

interpolation to preserve the native resolution.

T1-weighted images for patients and control subjects were

collected on a 3T GE scanner using FSPGR, TE/TR/NEX

3 ms/8 ms/1, time of inversion (TI) 450 ms, flip angle 20u,
yielding 170 slices of 1.1 mm thickness with a field of view of

18624 cm for a 2566256 matrix, covering the whole brain with

reconstructed voxel sizes of 0.937560.937561.1 mm3.

Figure 1. The analysis pipeline of the proposed classification scheme. MAPER: multi-atlas propagation with enhanced registration; RBF:
radial basis function; SVM: support vector machine.
doi:10.1371/journal.pone.0033096.g001

Table 1. Demographic features of the group of patients with temporal lobe epilepsy (TLE), controls and atlas images. Median
(range) of Age and Age at onset is reported.

No Group 1 TLE-HA Group 2 TLE-N Group 3 Controls Group 4 Atlases Group 5 TLE-HA*

60 20 28 30 9

Sex (female) 29 9 14 15 5

Age (years) 39 (19–66) 38 (23–53) 31 (19–55) 31 (20–54) 38 (22–49)

Right 27 9 – – 5

Left 33 11 – – 4

Field strength (T) 3 3 3 1.5 1.5

Age at onset 7.5 (0.5–31) 14.5 (1–32) NA NA 5 (1–23)

Febrile seizures 22 1 NA NA 5

Family history of epilepsy 19{ 4{ NA NA –**

TLE-HA: TLE patients with visually diagnosed hippocampal atrophy, TLE-N: TLE patients with normal MRI, TLE-HA.
*: TLE patients with visually diagnosed hippocampal atrophy from [5].
{: information missing for 9 subjects.
{: information missing for 1 subject.
**: information missing for this group.
doi:10.1371/journal.pone.0033096.t001
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The groups in the various experiments did not differ

significantly in terms of gender; there were some small age

differences in Experiment 1 (see Results Section). As expected,

there was a difference between TLE-HA and TLE-N in terms of

age at onset (7.5 years vs 14.5 years, Mann-Whitney U test p ,

0.05).

Approval for scanning the controls had been obtained from the

Joint Ethics Committee of The Institute of Neurology and the

NHNN (National Hospital for Neurology and Neurosurgery), and

written informed consent obtained prior to scanning. Post-

processing of anonymised scan data that had been acquired for

clinical purposes did not require individual consent from the

individuals who had been scanned.

Automatic Segmentation
The MAPER was used to automatically delineate 83 regions of

interest (ROI) in every brain. Twenty of these paired structures are

located in the temporal lobes; 24 in the frontal lobes; six in the

parietal lobes; six in the occipital lobes; three in the posterior fossa;

six in the insula and cingulate gyri. Thirteen are central structures

and five ventricular regions. A full list of ROIs is available in [54]

and in the Supporting information (Text S1).

MR images were preprocessed using tools from the FSL suite

(Version 4.1, [55]). Preprocessing of the atlas, control and TLE

sets consisted of brain extraction and bias correction using ‘‘BET’’

and ‘‘FAST’’. The parameters used in the brain extraction step

were tuned for each dataset, and those which resulted in the best

strip (as judged visually removal of scalp, skull, CSF and dura with

preservation of brain tissue) were used. Tissue probability maps for

each subject for each of the main classes: grey matter (GM), white

matter (WM) and cerebrospinal fluid (CSF) were generated using

FSL FAST. The tissue class maps were treated as inputs to a

multichannel registration. Atlas and target images were aligned

using rigid, affine and coarse non-rigid (20 mm control point

spacing) registration using a free-form deformation model based

on B-splines [56] and optimizing cross-correlation over all three

tissues (channels) simultaneously. The resulting transformation was

used as the starting point for a more detailed non-rigid registration

of the MR intensity images using normalized mutual information

as the similarity criterion with the same parameters as described in

[25]. Non-rigid registration is performed at control point spacings

of 10 mm, 5 mm and 2.5 mm. These steps are carried out using

each of the 30 atlases in turn, resulting in 30 segmentations per

target brain, which are subsequently combined using vote-rule

decision fusion [57]. Figure 2 shows the segmentation results on a

TLE-HA subject.

Atlases of the whole brain had been manually drawn on 1.5T

MR images, whereas all the patients and controls studied had been

scanned at 3T. This difference in field strength might bias the

segmentation results. We performed a set of experiments (Figure 3)

with intermediate target images acquired either at 1.5T or 3T to

assess the influence of field strength for segmentation accuracy:

Firstly, the 30 atlas datasets scanned at 1.5T were randomly

divided into three groups of ten (A1, A2 and A3). A1 datasets were

used to anatomically segment A2 images with MAPER, resulting

in automatically labeled images (A2secondary). These secondary atlas

datasets were then used to segment the A3 images with MAPER.

Secondly, A1 datasets were used to anatomically segment ten

randomly selected 3T images from the control set (group C) with

MAPER. The resulting ten secondarily labeled group C datasets

were then used to anatomically segment the A3 images with

MAPER.

At the end of this procedure, there were three sets of anatomical

segmentations for A3 images: two automatically generated either

via 1.5T or 3T secondary atlases, and one manual gold standard

segmentation. The region-by-region overlap of the two automat-

ically generated anatomical segmentations with the manual A3

segmentations was then assessed.

Hippocampal volumes and other brain structural measurements

may vary with head size, thus head size is a confound for between-

subject comparisons. Normalization by intracranial volume

reduced variability in volume measurements of nearly all brain

regions to a greater extent than did normalization by other

methods [58]. As a correction factor for interindividual variations

of head size, the total ICV was measured therefore using an

automated and robust method, Reverse MNI Brain Mask (RBM,

[59]), where a standard mask in MNI space derived from tissue

probability maps is warped to each image in native space using the

inverse of the normalizing transformation. To identify each

region’s grey matter portion, probabilistic GM maps were

thresholded at 50% probability for each subject. Voxels above

the threshold are counted for estimating the volume of grey matter

within the identified structures. Structures that either contain no

GM (ventricles, corpus callosum) or contain GM that is typically

misclassified as having # 50% probability of GM with current

tissue segmentation algorithms (caudate nucleus, nucleus accum-

bens, pallidum, putamen, substantia nigra, thalamus and brain-

stem) were excluded from this masking procedure. All volume

measurements (18 full structures plus 65 grey-matter portions)

were normalized by ICV.

Structure Selection
We use the set of 83 structural volumes from each MR image as

a sparse description of the brain morphology of each subject.

Some structures will be affected by TLE to a lesser extent, or not at

all, and will thus be less useful for classification. We therefore

sought to identify the most effective structures in order to obtain a

suitable final classifier. To achieve this, we used a class separability

criterion to rank the structures. The higher the value of the class

Figure 2. Example segmentation result using MAPER. Coronal
section through the T1-weighted 3D MR image of a subject with left
hippocampal sclerosis. The left of the subject is shown on the right of
the image. Note the clear difference between the atrophic left and
normal sized right hippocampus. Other volumetric differences relevant
for automatic classification are invisible on visual inspection.
doi:10.1371/journal.pone.0033096.g002
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separability criterion of a structure, the more the structure

contributes to discriminating the two classes.

In this study we employed a kernel-based class separability

criterion as proposed in [60] using the procedure described in

Supporting Information (Text S2). The advantage of this criterion

over more conventional criteria such as the Bhattacharyya

distance, Kullback-Leibler divergence, and Matusita distance

[61] is that no assumption is made regarding the conditional

probability densities of features (volumes of structures). Further-

more, it is applicable to linearly non-separable data and is

informative when a class contains few samples. For selecting D

structures from M = 83, D # M, we used the Best Individual N

(BIN) technique [60]. In BIN, the class separability criterion (see

Eq. 4 in Text S2) is individually applied to each of the features and

those with the largest values are selected.

Spectral Clustering Approach for Classification
The morphological similarity of corresponding structures

between pairs of subjects can be used for group classification.

Spectral analysis is a technique which converts pairwise measures

of similarity between subjects into per-subject features to which

standard classification or clustering techniques can be applied.

For brevity, we omit a full description of spectral clustering;

details are available in Supporting Information (Text S3) and

more general description in [62]. At a high level, spectral

clustering employs the following four steps:

N Construct a complete, undirected graph where the nodes are

subjects and the edges are weighted by pairwise morphological

similarity between the subjects.

N Define the Laplacian matrix of the graph and generate feature

vectors from the eigenvectors of this matrix.

N Cluster the features using conventional classification algo-

rithms to assign group membership to each subject.

In this work, we used the volumetric difference described by the

Gaussian similarity function W (i,j)~exp({(xi{xj)
2=2c2),

where c is a constant of value 2 as obtained empirically in [63]

and variables xi and xj correspond to the normalized volumes of a

particular structure in subjects i and j, respectively. The volumes of

corresponding selected structures over N subjects were trans-

formed to z-scores, z’1, . . . ,z’N by subtracting the mean and

dividing by the standard deviation. For a general description on

this use of the Gaussian form as a neighbourhood or similarity

function, see [62,64], where it is described as a heat kernel.

Separate Laplacian matrices L1, . . . ,LD are constructed for the D

structures identified by structure selection. The feature data from

separate Laplacian matrices are then combined to create the N 6
kD feature matrix, with each row corresponding to a feature

extracted for a subject. Since ours is considered a two class

problem, we chose k = 2 as suggested in [62]. We then employed

a linear SVM model for learning to classify within the constructed

feature space.

SVM-Based Classification
A support vector machine (SVM) is an example of a supervised

binary classification method [65].

The key concept of SVM is the use of hyperplanes to define

decision boundaries separating between data points of different

classes. SVMs are able to handle both simple, linear, classification

tasks, as well as more complex, i.e. nonlinear, classification

problems. The idea behind SVMs is to map the original data

points from the input space to a high-dimensional, feature space

such that the classification problem becomes simpler in the feature

space. The mapping is done by a suitably chosen kernel function.

The use of SVM involves two basic steps, namely training and

testing. Training an SVM involves feeding labelled data to the

SVM, thus forming a finite training set. The separation learned

from the training data can then be applied to the testing data.

SVMs were used in two ways in this work: first, a nonlinear

SVM using a radial basis function (RBF) was applied to the ranked

selected structural volumes directly. Second, a linear SVM was

applied to feature data derived from spectral analysis of

similarities.

For each experiment (TLE-HA vs. control, TLE-N vs. control

and TLE-HA vs. TLE-N) two classifiers were trained. The

posterior probabilities were computed using i) the classifier trained

by the selected structures of TLE-HA_L and control subjects and

Figure 3. The flowchart of the experiments on assessing the potential bias resulting from the difference in field strength between
atlas images and segmentation targets. A1, A2 and A3: groups of ten subjects from the 30 atlas datasets scanned at 1.5T. group C: ten randomly
selected 3T images from the control set. Middle column top row: A1 datasets were used to anatomically segment A2 images with MAPER, resulting in
automatically labeled images (A2secondary). These secondary atlas datasets were then used to segment the A3 images with MAPER. Middle column
bottom row: A1 datasets used to segment group C with MAPER. The resulting ten secondarily labeled group C datasets were then used to
anatomically segment the A3 images with MAPER. Last column: three sets of anatomical segmentations for A3 images: two automatically generated
either via 1.5T or 3T secondary atlases, and one manual gold standard segmentation.
doi:10.1371/journal.pone.0033096.g003
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ii) the classifier trained by the selected structures of TLE-HA_R

and control subjects. A corresponding approach was used for

classifying TLE-N vs control subjects and TLE-HA vs. TLE-N.

There are two concerns in using SVM. First, the parameter of

the RBF kernel and slack variable are not known beforehand,

consequently a model selection or a parameter search process

must be performed [66]. The goal is to set the parameters such

that the classifier can accurately predict unknown data (i.e. testing

data). Second, there is no prior information about the optimal

number of structures that grants the best average correct

classification rate. A common way to identify the optimal

parameters and number of structures is cross-validation. There-

fore, we set a grid search on the RBF kernel parameter, the slack

variable and the number of structures using leave-one-out cross-

validation. We used the SVM algorithm implemented by the

LibSVM package, an integrated software for support vector

classification (www.csie.ntu.edu.tw/̃cjlin/libsvm).

Statistical Analysis
Pearson correlation coefficients were used to evaluate rela-

tionships between hippocampal volumes and ICV. The signifi-

cance level for all analyses was set at p , 0.05. Means were

compared with the Student’s t-test, and medians were compared

with the Mann-Whitney U test. The data were analyzed using

SPSS Version 16 for Microsoft Windows (SPSS Inc., Chicago,

IL, USA).

To evaluate the performance of different classification methods,

we used a 10-fold cross-validation strategy. The classification

accuracy (for measuring the proportion of subjects correctly

classified among the whole population), as well as the sensitivity

and the specificity were computed. The entire set of subjects were

partitioned into 10 equal subsets. At each iteration, the subject

samples within one subset were selected as the testing samples, and

all remaining subject samples (the other 9 subsets) were used for

training the classifier. This process was repeated 10 times

independently to avoid possible bias resulting from random

differences between the testing and the training set. The average

accuracy, sensitivity and specificity of classification resulting from

the 10 6 10 runs are reported. To evaluate the performance of

classifiers in Experiment 5, which contains 20 subjects, five-fold

cross-validation was used. Five-fold cross-validation randomly

divided the data into five groups of approximately equal size. Here

four groups were used as training set, and one group was used as

testing set. This was done five times, each time rotating the data in

the training and testing sets, resulting in five performance results

computed on the individual groups, which were averaged. The

cross-validation was repeated ten times, with different composition

of the cross-validation groups.

The statistical significance of the classification rates was

estimated using permutation testing. This assesses the statistical

significance of the classifier by estimating the probability of

obtaining the observed classification performance under the null

hypothesis that the classifier cannot learn to predict labels based

on the given training set [67]. In this approach, the clinical

labels for the subjects are permuted and a full leave-one-out

cross validation is carried out using a classifier based on the top

ranked structures. The classification rate associated with the

permutation is then calculated. The permutation procedure was

repeated 10,000 times to estimate the distribution of classifica-

tion rates. This distribution was then used to estimate the

significance of the classification rate observed with the original

unpermuted labels. For each experiment a separate permutation

test was carried out.

Results

To investigate the effect of age on regional volume and

consequently on the classification results, the age differences

between groups in each experiment were studied using the Mann-

Whitney U test. There was a small but significant age difference

for Experiment 1 (TLE-HA vs. control) when considering controls

(median 31 years) and all subjects in the TLE-HA group (median

age 39, p = 0.036). However, this age difference was not

significant between controls and either TLE-HA R (p = 0.059) or

TLE-HA L (p = 0.069). There were no significant age differences

between any of the groups in Experiments 2–5 (p 0.1–0.8).

The experiments on assessing the potential bias resulting from

the difference in field strength between atlas images and

segmentation targets showed the overlaps based on the atlas (A2)

as intermediates are slightly larger than overlap based on the 3T

controls (C) as intermediates (1.05% 6 4.6, mean 6 SD).

The mean and standard deviation of the intracranial volume (p

value as compared with controls), in cm3 for the control group was

14836160. For the TLE-HA group it was 13876128 (p , 0.05),

and for the TLE-N group 14236150 (p . 0.1).

Hippocampal volumes were correlated with ICV in all subjects,

and a significant correlation was present in all subgroups (TLE-

HA: rright~0:34, rleft~0:44, TLE-N: rright~0:76, rleft~0:72,

control: rright~0:7, rleft~0:7, all pv0:001).

We did not observe a correlation between hippocampal volumes

and age, probably because the age range was narrow in all groups.

The correlation of the classification-relevant brain structures with

age for patients and controls is reported in the Supporting

information (Text S4). There was no significant effect of gender on

ICV-adjusted structural volumes (pw0:1). Figure 4 shows the

normalized, grey-matter masked ipsilateral and contralateral

hippocampal volumes of the TLE-HA, TLE-N and control

groups. The coefficients of variation for all regions and groups is

available in the Supporting information (Text S5).

Structure Selection
Table 2 and 3 show the top-ranked structures after applying the

structure selection method, as well as the ability of each individual

structure to separate the TLE-HA and TLE-N group from the

control group assessed on a leave-one-out basis using SVM-RBF.

The effect of combining these top-ranked structures is also shown.

By introducing other structures (e.g. amygdala, anterior orbital

gyrus, anterior temporal lobe lateral part), all TLE-HA subjects

with left sided seizure focus can be distinguished from the control

subjects. All TLE-HA subjects with a right sided seizure focus are

separated from controls by including parahippocampal gyrus,

thalamus, and anterior orbital gyrus. Table 2 shows that the

discrimination ability of the individual structures ipsilateral to the

epileptogenic focus is smaller than that of the hippocampus in both

groups and aggregating top-ranked structures ipsilateral to the

epileptogenic focus yielded 100% sensitivity. The automatically

selected structures in the TLE-N group ( Table 3 ) are mainly

ipsilateral to the presumed seizure focus, and largely orbitofronto-

temporal.

Hippocampus (right and left) were the most discriminative

structures to define the lateralization of the epileptogenic zone in

the TLE-HA group, sufficient to achieve correct classification in

98% (one patient with TLE-HA_R was not correctly lateralized

using hippocampal volumes alone, with right/left hippocampal

volumes of 1610/1586 mm3). By adding the volumes of the

parahippocampal gyrus to the hippocampal volumes, 100%

lateralization accuracy was achieved.

Automatic TLE Classification and Lateralization
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Figure 4. Hippocampal volumes in patients and controls. Horizontal lines show the medians, boxes indicate interquartile ranges, whiskers
show the minimal and maximal values inside the main data, and lozenges show individual values. Blue, right hippocampi; red, left hippocampi. TLE-
HA, TLE with hippocampal atrophy; TLE-N; TLE with normal MRI on visual inspection. Suffixes _L and _R denote left and right sided seizure focus,
respectively.
doi:10.1371/journal.pone.0033096.g004

Table 2. Top structures ranked by ability to distinguish TLE-HA patients from controls.

Structure
TLE-HA_L Individual
Sensitivity(%)

Combined
Sensitivity(%) Structure

TLE-HA_R Individual
Sensitivity(%)

Combined
Sensitivity(%)

HippocampusL 93 – HippocampusR 92 –

AmygdalaL 75 96 Parahippoc GR 74 92

Ant orbital GL 75 96 ThalamusR 74 96

Ant tmp LL
* 72 100 Ant orbital GR 70 96

Fusiform GL 72 100 Fusiform GR 66 100

ThalamusL 69 100 AmygdalaR 66 100

CerebellumL 66 100 CerebellumR 62 100

Parahippoc GL 63 100 Subcallosal AR 62 100

Med orbital GL 63 100 Ant tmp LR* 62 100

Subscript L/R: Left/Right. A: area, G: gyrus, L: lobe, Ant: anterior, lat: lateral, med: medial, parahippoc: parahippocamapl, tmp: temporal, Ant tmp L*: Anterior temporal
lobe including lateral and medial part.
doi:10.1371/journal.pone.0033096.t002
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The eight top-ranked structures for identifying the side of the

seizure focus in the TLE-N group were: anterior temporal lobe

(middle part, right), anterior temporal lobe (lateral part, left),

lingual gyrus (right), substantia nigra (right and left), caudate

nucleus (left), middle frontal gyrus (left) and nucleus accumbens

(left). The lateralization accuracy achieved with this ensemble was

94%.

Classification Accuracy
The results of the 10-fold cross validation of the various

experiments using two different classification procedures along

with the optimal number of structures presented to each

classification scheme are reported in Table 4. The most important

results in 4 are the correct classification rate for Experiment 4

(TLE-N vs controls, 91 6 3%) and the correct lateralization rate

for Experiment 5 (TLE-N patients, 94 6 4%).

A response curve of model accuracy of the 10-fold cross

validation was built based on the total number of structures

included in the classification procedures for Experiment 1 and 4

(Figure 5). When the full feature set was input to the SVM

(baseline case) for separating TLE-HA group from controls, the

overall accuracy was 89%. As shown in Figure 5, choosing the six

and ten top-ranked structures yielded the best average correct

classification rate for distinguishing TLE-HA subjects from

controls, using classification based on structural volumes and

spectral analysis, respectively. With attribute selection we reached

accuracy levels (96 6 2%) with only 6–10 features out of 83. In the

case of distinguishing the TLE-N group from controls, baseline

accuracy was 81% (all-features case). Figure 5 shows that

aggregation of the 10 top-ranked structures resulted in the best

classification rate when using spectral analysis for separating TLE-

N subjects from controls.

Table 5 also shows discrimination results obtained using

permutation tests on different classification procedures. The

classification rates obtained using morphological similarity (spec-

tral analysis) show greater significance.

When Group 4 (atlases) and Group 5 were combined in a single

data-set as the test group to evaluate the classifier trained using

Group 1 and 3, 100% of patients were correctly assigned to the

appropriate group and 96% of atlases were assigned to the control

group.

Discussion

For many neurological diseases, including TLE, the traditional

approach for computer-aided diagnosis focuses on analyzing single

structures, such as the hippocampus. The hippocampus is a critical

structure of the human limbic system involved in learning and

memory processing. In a recent study, Hammers et al. [5] used an

automated method for segmenting the hippocampus and detecting

hippocampal atrophy in nine subjects with TLE-HA. The method

showed high sensitivity, specificity, test-retest reliability, and strong

convergence between the automated segmentation and manual

tracings of the hippocampus. However, this single structure

volumetry approach relies on the presence of HA for diagnosing

TLE and would not be applicable in TLE subjects whose MR

images appear normal. Other studies of TLE also illustrated that

damage and volume loss are not confined to the hippocampus, but

Table 3. Top structures ranked by ability to distinguish TLE-N patients from controls.

Structure
TLE-N_L Individual
Sensitivity(%) Combined Sensitivity(%) Structure

TLE-N_R Individual
Sensitivity(%) Combined Sensitivity(%)

Substantia nigraL 72 – Ant tmp LR 77 –

Ant orbital GL 63 72 Ant orbital GR 77 77

Straight gyrusR 63 72 Med front GR 66 77

Med orbital GL 63 81 Subgenual fr CL 66 77

Subgenual fr CL 63 81 Substantia nigraR 66 88

Lingual GR 54 81 Straight gyrusR 66 88

Ant tmp L latL 54 90 Inf lat parietal LR 55 88

Subcallosal AR 54 90 Ant orbital GL 55 88

AmygdalaL 54 90 CerebellumR 55 88

CerebellumL 54 90 Lingual GR 55 88

Subscript L/R: Left/Right. A: area, C: cortex, G: gyrus, L: lobe, Ant: anterior, fr: frontal, inf: inferior, lat: lateral, med: medial, tmp: temporal.
doi:10.1371/journal.pone.0033096.t003

Table 4. Sensitivity (Sens), specificity (Spec), accuracy rate (Rate) (all as percentages) and number of selected structures (D) for
different experiments. Key results are shown in bold typeface.

Experiment D Volumetric Spec Sens Rate D Spectral Clustering Spec Sens Rate

TLE-HA vs. Control 6 93 100 96 10 93 100 96

TLE-HA_R vs. TLE-HA_L 4 100 100 100 4 100 100 100

TLE-HA vs. TLE-N 11 80 98 93 12 93 96 96

TLE-N vs. Control 10 97 70 86 10 94 87 91

TLE-N_R vs. TLE-N_L 17 84 87 85 8 98 88 94

doi:10.1371/journal.pone.0033096.t004
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involve the amygdala and parahippocampal regions, and often

extend to extratemporal cortical regions and subcortical structures

as well [27,68–70]. Changes in regions beyond the hippocampus

are subtle and complex and are not easily detectable with standard

MRI techniques. To our knowledge, this is the first study that uses

morphometry of regions covering the entire brain in order to

attempt classification of TLE patients and healthy controls.

We employed an automated anatomical segmentation method

(MAPER) to delineate 83 structures on MR images of patients

diagnosed with TLE and a group of healthy control subjects. The

target images for the MAPER segmentations had been acquired at

3T, while the atlas images were 1.5T, raising the question of bias

due to the field strength difference. We demonstrated that the

method yields equivalent segmentations independent of the field

strength of the target image.

The distinction between TLE-HA and TLE-N was based on the

established routine diagnostic procedure [52,53]. This procedure

consists of visual analysis of all available imaging by very

experienced experts, but does not include routine manual

volumetry or routine T2 measurement which are only performed

in case of doubt. While we therefore cannot provide these data on

an individual basis, our work demonstrates that automatic,

quantitative analysis yields clinically relevant information over

and above that from the routine approach. The predecessor

method for multi-atlas propagation and label fusion [25] was able

to correctly identify hippocampal atrophy as part of unilateral HS

[5], and Ð importantly Ð correctly identify contralateral

hippocampi as being of normal volume. With the current method,

better suited to the automatical segmentation of pathological

MRIs [49,51], we replicate the important finding of presumably

non-epileptogenic hippocampi being correctly identified as

volumetrically normal (see Figure 4), further corroborating the

TLE-N/TLE-HA diagnosis by expert consensus.

Another potential limitation of our study is the lack of

histopathological findings and surgical outcomes. However, the

syndromic distinction between TLE-HA and TLE-N has been

demonstrated repeatedly (e.g. [71,72]) and is replicated by our

classification; the lateralization of the epileptogenic side is clearcut

in unilateral TLE-HA cases and 100% replicated by our

classification; and the veracity of the lateralization in TLE-N

patients supported by the excellent lateralization results with the

automatic method. While seizure-free outcome following surgery

is the ultimate gold standard, we do not think that this standard of

proof is necessary for the present study.

A limitation of our study is the risk of overfitting due to the small

size of the TLE-N group. The problem has been discussed

previously in the context of machine learning from medical

imaging data, e.g. [73]. Hua et al. [74] compared different

classification methods, examining the relationship between feature

numbers and sample size. They describe the peaking phenomenon

as a manifestation of overfitting: at first, the classification accuracy

increases as more features are added, but decreases once a critical

number is surpassed. Hua et al. found that SVM was relatively

robust against this phenomenon, compared to, e.g., linear

discriminant analysis.

We propose two classification methodologies. Both use structure

selection using a kernel-based class separability criterion and rank

Figure 5. Model response curves for Experiment 1 and 4 for two classification schemes. The classifier accuracy was presented using 83
ranked structures, for each classification experiment (baseline case).
doi:10.1371/journal.pone.0033096.g005

Table 5. T-statistic and P-value results of the permutation
test based on different approaches, Volumetric study and
Spectral clustering.

Experiment Volumetric Spectral Clustering

T-statistic p-value T-statistic p-value

TLE-HA vs. Control 5.4381 , 1028 6.0353 , 1028

TLE-HA vs. TLE-N 2.3824 0.0063 4.7691 , 1026

TLE-N vs. Control 2.4071 0.0153 3.7025 0.0012

TLE-HA_R vs. TLE-HA_L 3.4071 , 1029 3.1005 , 1029

TLE-N_R vs. TLE-N_L 2.8071 0.0115 1.1055 0.0011

doi:10.1371/journal.pone.0033096.t005
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the most relevant of 83 regions. Our results indicate that the

selected regions are sufficient to discriminate between different

groups of subjects. The first classification scheme is based on the

structural volumes and a support vector machine (SVM-RBF) used

to distinguish different group of TLE subjects in this study (TLE-

HA, TLE-N) from controls and from each other, and on

lateralization of seizure focus. The second approach uses the

selected structures to produce indicator features based on

morphological similarity information. The linear SVM is then

applied to the resulting features. TLE-N patients with absent or

weak electroclinical lateralizing features pose an important clinical

problem. The ability of the proposed methods to correctly identify

the side of seizure onset in the vast majority of TLE-N patients

(94%) is clinically promising, potentially reducing the need for

invasive intracranial exploration. We conclude that the combina-

tion of spectral analysis and a linear SVM yields higher accuracy

for discriminating healthy subjects from patients than RBF-based

SVMs.

In our study, the overall accuracy of separation of patients with

hippocampal atrophy ipsilateral to the seizure focus (TLE-HA)

from controls was 96% in both classification schemes. Mainly

structures ipsilateral to the epileptogenic side appeared to

distinguish patients from controls, with most of these structures

are located in the temporal and frontal lobes. The most relevant

structures including the ipsilateral hippocampus, parahippocampal

gyrus, amygdala, anterior temporal lobe (lateral and medial part),

orbital gyrus, thalamus and cerebellum. These results are

consistent with those of previous studies of patients with TLE

[13,27,68]. The sensitivity of the method for detecting HA was

100%, replicating and expanding our earlier findings [5] and

suggesting its suitability as a screening tool. To evaluate the

proposed method on an independent dataset, we used the group of

nine subjects with TLE-HA previously described [5] and the 30

subjects on whose MRIs the original atlases were based, all

scanned at 1.5T. All nine TLA-HA were correctly assigned to the

patient group, and correctly lateralized, and 29 out of 30 control

subjects were correctly assigned.

Hippocampal volume reduction is typically the most relevant

measure of lateralization, as it is strongly associated with an

ipsilateral seizure focus. The results we obtained are comparable

or better than previously described classification methods based on

MR images. For example, the accuracy of lateralization in TLE-

HA patients is reported 80% in [75] or 90% when including

structures other than the hippocampus [75,76]. Our classification

method identified the side of the seizure focus in the TLE-HA

group with 100% accuracy using the volumes of hippocampus and

parahippocampal gyri. A classification accuracy of 94% was

achieved in lateralization of the seizure focus in the TLE-N group

based on spectral analysis using volume difference and SVM.

Duchesne et al. [38] reported a maximum of 100% accuracy for

lateralization via T1-weighted MR signal intensity and registration

metrics in a cuboid-shaped ROI centred on the temporal lobes.

This result could be taken to indicate that most of the relevant

information is contained in the temporal lobes. However, by

taking the whole brain into account we were able to additionally

distinguish TLE-N patients from controls with high accuracy

(91%). McDonald et al. [17] performed a linear discriminant

function analysis to distinguish TLE-HA patients from controls

based on hippocampal volumetry, hippocampal asymmetry and a

volumetric combination measure that considers right hippocam-

pus, left hippocampus, left amygdala, and left thalamic volumes.

They achieved their best results using the combination measure,

with accuracy rates of 90% (100% of the controls, 82% of the

TLE-HA). They also correctly identified the side of the seizure

focus in 91% of the TLE-HA patients. A recent atlas selection

method based on greyscale similarity in a dilated hippocampal

ROI [8] achieved much lower lateralization accuracy (74%), as

expected for a single-atlas method [25] and a mixed cohort of

TLE-HA and TLE-N. Other automatic hippocampal segmenta-

tion methods have been developed in the fields of epilepsy and

dementia. Some have good or excellent segmentation performance

even on severely atrophic hippocampi, e.g. [32,33,77–80]. A

recent study using grey matter based segmentation, mean

diffusivity and SVM achieved classification of TLE-HA patients

from contrls (accuracies of 90–97%) and lateralization (accuracy

up to 100%) [81]. These methods are not, however, geared for the

specific challenges posed in the diagnosis and lateralization of

TLE-N. Most structures highlighted as important for classification

in TLE-HA replicate previous results; the main contribution of the

present paper as far as TLE-HA is concerned is the successful

machine learning classification.

Most of the structures automatically selected for TLE-N

classification by the method have face validity. For example, the

structures in Table 3 are mostly ipsilateral to the presumed seizure

focus, and largely orbitofronto-temporal, with the orbitofrontal

region densely connected to the anterior temporal lobe via the

uncinate fasciculus. One structure the importance of which for

automatic classification is at first glance surprising is the ipsilateral

substantia nigra. We, therefore, checked the segmentation of this

region visually, but found no obvious segmentation errors. Even if

the difference we observe between groups was attributable to a

segmentation error, this error would have to occur in one group

more than in another, which is unlikely given the acquisition on

the same scanner with identical protocols, and also would not

explain the importance for lateralisation. Pathophysiologically,

smaller substantia nigra volumes might suggest a diminished

function of the dopaminergic system. This finding integrates well

with established findings on dopamine modulation of seizure

activity [82], as well as recent results showing dopaminergic

deficits using PET in a number of syndromes (e.g. [83–87])

including experimental TLE [88] and clinical TLE [89]. We are

thus showing that automatic image analysis using atlas-based

segmentation reveals systematic findings that are not observed on

visual review of MR images, or with other study designs like voxel-

based morphometry, and that such findings may be clinically

exploitable.

SVM classifiers are binary by design. The classification

problems studied here could be reconsidered as a single multi-

class classification problem. However, the aim of this work has not

been to introduce a novel classification approach, but instead to

use a simple feature combination approach with a readily available

classifier to demonstrate the utility of automatic segmentation and

structure selection for improving classification between two pairs

of diagnostic groups, including clinically relevant distinctions like

right-sided versus left-sided TLE-N. A full consideration of multi-

class classification (which classifies cases into normal and TLE with

type and lateralization information) would be an interesting area

of future research.

We performed an automatic segmentation technique and

classification method on patients with TLE as a test case for the

proposed methodology. Clearly, for other diseases characterized

by morphological changes in the brain, pathomorphological

features may be detected with this approach. The proposed

automated segmentation and classification methodology of MRIs

of TLE patients is sufficiently accurate and robust to warrant

further exploration of its utility. The techniques await validation

on multicentre data, extension to patients with epilepsy other than

Automatic TLE Classification and Lateralization
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TLE, and routine clinical application at the individual patient

level.
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