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Abstract

Bandit games consist of single-state environments in which an agent must sequentially

choose actions to take, for which rewards are given. The objective being to maximise

the cumulated reward, the agent naturally seeks to build a model of the relationship

between actions and rewards. The agent must both choose uncertain actions in order

to improve its model (exploration), and actions that are believed to yield high rewards

according to the model (exploitation). The choice of an action to take is called a play

of an arm of the bandit, and the total number of plays may or may not be known in

advance.

Algorithms designed to handle the exploration-exploitation dilemma were initially

motivated by problems with rather small numbers of actions. But the ideas they were

based on have been extended to cases where the number of actions to choose from is

much larger than the maximum possible number of plays. Several problems fall into this

setting, such as information retrieval with relevance feedback, where the system must

learn what a user is looking for while serving relevant documents often enough, but

also global optimisation, where the search for an optimum is done by selecting where

to acquire potentially expensive samples of a target function. All have in common the

search of large spaces.

In this thesis, we focus on an algorithm based on the Gaussian Processes proba-

bilistic model, often used in Bayesian optimisation, and the Upper Confidence Bound

action-selection heuristic that is popular in bandit algorithms. In addition to demon-

strating the advantages of the GP-UCB algorithm on an image retrieval problem, we

show how it can be adapted in order to search tree-structured spaces. We provide an

efficient implementation, theoretical guarantees on the algorithm’s performance, and

empirical evidence that it handles large branching factors better than previous bandit-

based algorithms, on synthetic trees.
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1
Introduction

1.1 Motivation

The present work finds its motivation in problems where one must navigate a large

search space in order to find an element of that space that is of interest. An everyday

example is that of recommender systems on the internet: they must search a library

of items in order to find those that will be of interest to a given user. For instance,

Amazon.com recommends items to buy to each of its users individually, based on their

purchase history; Last.fm creates a personalised radio station based on a user’s listening

habits. In both cases, the interest in an item is measured by the reaction of the user (a

purchase or a click on a “Like” button). We can formalise the recommendation problem

by assuming the existence of a function f that maps a representation of a user and of an

item to a number that quantifies the interest of the user for the item. The recommender

system makes noisy observations of f at each interaction with a user, and uses these

observations in order to figure out the areas of the search space where f has high values.

15



1.1. Motivation 16

In optimisation tasks, one also needs to find regions of the search space where an

unknown function f is high, as the objective is to find the maximum of f . This task falls

into the class of problems we consider: the “interest” for an element x of the search

space is measured by f(x). Finding the maximum of a function requires building a

model of it through repeated observations. We may choose to observe f values in areas

of high uncertainty of the model, in order to improve it (exploration), or in areas where

the model predicts high values (exploitation). We say that a space is large when its

cardinality is large compared to the maximum possible number of elements for which

we can make observations. Other examples from the same class of problems include:

Operations Research problems (such as scheduling), in which the search space is a set

of solutions to a combinatorial problem, and the interest for a solution is measured by

its cost; Decision Processes, in which one makes a sequence of decisions and receives a

sum of reward values for each of them; Games, as an application where decisions are

moves in a game.

Multi-armed bandit problems are a simple model of the exploration and exploitation

dilemma. They take their name from an analogy with slot machines in casinos: one

must allocate coins, one at a time, to slot machines, in order to maximise the cumulative

payoff in the end of the process (also called the reward). It is assumed that, throughout

the process, the mean payoffs of the different slot machines are constant. The problem

becomes to find the machine with highest mean payoff, so that we lock on to that

machine and get the maximum expected payoff from then on. When allocating a coin

to a slot machine, we say that we pull or that we play an arm of the bandit. The

difficulty in this type of problem does not come from the number of elements in the

search space (here we can make observations for each arm at least once) but from the

high variability of the payoff: we need many plays of each machine to estimate its mean

payoff accurately.

If this sounds as a rather unrealistic problem to tackle in practise, consider the

following problem (described on the Wikipedia page for the Gittins index1):

We can take two examples from a developing sector, such as from electricity

generating technologies: wind power and wave power. If we are presented

with the two technologies when they are both proposed as ideas we cannot

1http://en.wikipedia.org/wiki/Gittins_index

http://en.wikipedia.org/wiki/Gittins_index


1.1. Motivation 17

say which will be better in the long run as we have no data, as yet, to base

our judgments on. It would be easy to say that wave power would be too

problematic to develop as it seems easier to put up lots of wind turbines

than to make the long floating generators, tow them out to sea and lay the

cables necessary.

If we were to make a judgment call at that early time in development we

could be condemning one technology to being put on the shelf and the other

would be developed and put into operation. If we develop both technologies

we would be able to make a judgment call on each by comparing the progress

of each technology at a set time interval such as every three months. The

decisions we make about investment in the next stage would be based on those

results.

In the example above, allocating capital to one of the technologies can be seen as a

play of a bandit problem. Allocating capital to get more data is exploration, whereas

allocating capital to further develop a technology that is thought to be better is ex-

ploitation. Exploration aims at reducing the model’s uncertainty, exploitation consists

in making decisions according to the model. The study of bandit problems did not

actually originate in capital or resource allocation problems, but in medical trials. N

drugs are proposed to cure a disease and they are supposed to each have the same effect

on all patients. The success of a drug can be seen as a Bernoulli random variable char-

acterised by a fixed, unknown mean value. The objective is to heal as many patients as

possible, i.e. the cumulative reward is the number of healed patients.

Although we are not interested in such problems, we will see that the techniques

used in multi-armed bandit problems in order to balance exploration and exploitation

have been used successfully in problems where the number of arms is much larger than

the maximum possible number of plays, such as image retrieval in large databases. Such

problems are referred to as many-armed bandit problems. In order to deal with a large

number of arms, we need arms to be related to one another, so that an observation made

about one arm can also provide information regarding other arms. Despite differences

in terminology, strong parallels have been made with global optimisation techniques.

The recent use of Gaussian Processes as a regression tool and a probabilistic model of

the smoothness of the function that maps arm representations to mean-reward values
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is where the bandits and Bayesian optimisation communities have met.

In many applications, the spaces to be searched are particularly large but have

a tree structure that make them relatively easy to navigate. Each element is a leaf

or, equivalently, a path down the tree. We can summarise the learnings gained from

observations about paths that share nodes in common, by storing statistics at the last

node they have in common. When searching the space, we start from the root and make

a rather small number of decisions (equal to the depth of the tree) on the next child

node to move to, based on the statistics of all the child nodes. We can consider each of

these decisions as a multi-armed bandit problem. There are as many bandit problems

as there are interior nodes, and the number of arms is given by the branching factor.

This strategy has been used in Artificial Intelligence for Games, where we look for

sequences of moves from the current state of the game to a final state in which the game

is won. For computational reasons, we do not usually get to explore all leaves of the

game tree. Instead, we generate a stochastic reward by rolling out the game randomly

and receiving +1 when winning, 0 otherwise. Bandit-based approaches to tree search

are responsible for significant progress in AI for the game of Go (Gelly and Wang, 2006),

in which the number of available moves at each turn is about 5 times greater than in

Chess, on average.

Searching trees with large branching factors is computationally challenging. It re-

quires efficiently selecting branches to explore based on their estimated potential (i.e.

how good the rewards can be at the leaves) and the uncertainty in the estimates. High

depths can be unattainable due to lack of computation time. A tree search algorithm

should not waste time exploring sub-optimal branches too frequently, while still explor-

ing them enough in order not to miss the optimal branch because of high noise in the

observations (as in game tree search). For this, multi-armed bandit algorithms can be

used at each node of the tree in order to guide the selection of branches to explore.

In this work, however, we are interested in applying many-armed bandit algorithms

to the search of trees that have large branching factors. Instead of viewing tree search as

a sequence of multi-armed bandit problems, we view it as a single many-armed bandit

problem in which information can be shared between paths that have nodes in common.
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1.2 Outline and contributions

The contributions of this work concern many-armed bandit algorithms that make use

of Gaussian Processes to model dependencies between arms, and are designed to focus

the exploration of large spaces. In order to present these contributions, this thesis is

organised as follows:

• Chapter 2 provides background information on bandits, tree search, and Gaussian

Processes. It also contains a review of some related work on techniques that deal

with dependencies between arms, on Bayesian optimisation, and on the application

of tree search algorithms to the problem of planning in Markov Decision Processes.

• Chapter 3 is divided in two. Section 3.1 presents original work, comprising a

formulation of the Gaussian Process Upper Confidence Bound algorithm (GP-

UCB) – also referred to as the Gaussian Process Bandits algorithm (GPB) – and

an analysis of its computational complexity. The algorithm was first introduced by

Dorard, Glowacka, and Shawe-Taylor (2009) and empirical results were obtained

by Glowacka et al. (2009). To the best of our knowledge, we were the first to

apply Gaussian Processes to bandit problems. Srinivas et al. (2010) subsequently

provided a regret analysis of GPB, and their contribution is reviewed in Section

3.2.

More specifically, the original work presented in this chapter consists of:

– The formulation of the GPB algorithm, in Section 3.1.1. We also make

connections with the well-known UCB1 and LinRel algorithms.

– A computational analysis of GPB and LinRel, in Section 3.1.2, along with

optimisations based on original online computation “tricks” that reduce the

algorithms’ theoretical complexity.

– Additional details to the work of Srinivas et al., in Section 3.2.

• Chapter 4 (new work) discusses the application of GPB to tree search. The

resulting algorithm, GPTS, considers tree paths as arms of a bandit problem.

We show how the algorithm can be efficiently implemented, even when the tree is

very large. We provide a computational analysis of GPTS, theoretical guarantees
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on its performance, and we compare it to related algorithms (UCT, BAST and

OLOP).

• Chapter 5 (new work) describes a new open source toolbox, “Bats”, for pro-

gramming with bandits and tree search algorithms in Matlab. We designed and

used the toolbox to provide empirical observations of the performance of GPB on

an Information Retrieval task, and to study how the performance of GPTS was

affected by the parameters of synthetic trees it was applied to (branching factor,

depth, smoothness of the target).

• Chapter 6 concludes this work and offers ideas for future work.

• Appendix A provides mathematical results taken from the literature and used in

this work, as well as proofs of lemmas given in the background review of Chapter

2.

Summaries are given at the beginning of each chapter, thus providing a summary for

the whole thesis.



2
Background and literature review

The background review presented in this chapter introduces three main concepts: the

stochastic bandit problem, the Gaussian Processes (GP) framework, and bandit-based

tree search techniques.

Firstly, we formalise the assumptions that characterise the stochastic bandit prob-

lem and we define different measures of performance of a bandit algorithm. We give

relationships between these measures and the regret, defined as the expected difference

between the best possible cumulative reward and the cumulative reward of the algo-

rithm at time T . After a brief look at the first approaches to bandit games, we focus on

a particular class of frequentist algorithms that achieve asymptotically optimal regret

growth rate (in the square root of T ) and are computationally tractable for finitely many

armed bandits – namely the Upper Confidence Bound algorithms. These algorithms es-

tablish confidence intervals at each time step for the mean-reward values, and always

choose to play the arm with highest upper confidence bound. We give an overview of

21
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the regret analysis of one such algorithm, UCB1. We then review LinRel, a UCB-

type algorithm that makes use of arm feature descriptions, looks for linear relationships

between these and the observed rewards, and establishes pseudo-confidence intervals

for the reward values. We also review the extension of this algorithm to non-linear

arm-reward relationships through the use of kernel Ridge Regression (kRR).

Secondly, we present the Gaussian Processes Bayesian regression model that will

be at the core of GPB, the UCB-type bandit algorithm that we propose in Chapter 3

as an alternative to LinRel. Roughly, this model expresses a prior belief that similar

inputs are likely to yield similar outputs. Similarity is modelled by a kernel/covariance

function on the inputs. GPs, as a probabilistic model, allow us to model uncertainty,

and to update our belief of what the target f may be after we have observed input-

output pairs – it has to come relatively close to the sample values (we are only off

because of the noise in the observations) but at the same time it has to agree with the

level of smoothness dictated by the prior covariance function. In addition to creating

a “statistical picture” of f , encoded in the posterior mean, the GP framework gives

us error bars for this picture, through the posterior variance. We show that the GP

posterior can be expressed in closed form, and also that the Bayesian framework enables

us to perform Maximum Likelihood model selection in order to estimate the potential

parameters of the covariance function.

Thirdly, we motivate the use of bandit algorithms for problems where the target

function f is defined on tree leaves, i.e. for tree search problems – in particular, those

with large branching factors that make it crucial to explore branches efficiently. We

present the “many-bandits” approach, based on the use of bandit instances at each

node that decide which branches to explore. The Bandit Algorithm for Smooth Trees

(BAST) builds confidence intervals at all nodes for the maximum reward values that

can be attained from these nodes, and adapts to different levels of smoothness of the

target function. This approach has sparked significant interest since a special case of

BAST, Upper Confidence Trees (UCT), was successfully applied to the Go game tree

search and outperformed classical Branch-and-bound approaches used in Chess tree

search (such as alpha-beta search, see Gelly, 2007). We mention how BAST has been

extended to the problem of planning in Markov Decision Processes, in which a decision

maker must take actions sequentially and may have a large number of actions to choose
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from. Later, in Chapter 4, we will see how GPB can be applied to tree search and how

it can provide a useful alternative to BAST.

The background review is followed by a literature review of some related work on

Bayesian optimisation (based on GPs), on continuum-armed bandit algorithms and on

their application to global optimisation.
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2.1 The stochastic bandit problem

2.1.1 Problem statement

The multi-armed bandit problem is a simple model of the tradeoff between exploration

and exploitation. In an analogy with a slot machine, known as a one-armed bandit, but

with multiple arms, a player receives a reward when pulling (or ‘playing’) an arm selected

from a finite set of arms. In the stochastic bandit scenario, the reward is modelled as

a sample from a fixed probability distribution associated to the chosen arm. This is

in contrast with the ‘restless’ bandit problem in which the distributions are allowed to

change through time, and with the adversarial setting in which the sequence of reward

values for each arm are chosen by an adversary (see Bubeck, 2010, and the references

therein for an overview of the different types of bandit problems).

The objective of the player is to maximise the collected reward sum (or ‘cumulative

reward’) through iterative plays of the bandit. A good policy to choose arms to play

requires optimally balancing the learning of the probability distributions and the ex-

ploitation of arms which have been learnt as having high expected rewards. Real-world

applications are varied and include for instance advertisement on the web, where pulling

an arm corresponds to placing an ad on a given webpage, and rewards are visitor clicks.

Formulation It is assumed that there is a fixed number of arms N , that the reward

obtained when playing arm i is a sample from a distribution Pi, unknown to the player,

and that successive plays of arm i yield identically and independently distributed (iid)

rewards. A stochastic bandit problem is thus characterised by a set of probability

distributions (Pi)1≤i≤N . The vector of means of these distributions is notated f =

(f(1), . . . , f(N)) where f(i) = EPi. As the number of arms is finite (and usually smaller

than the number of experiments allowed), it is possible to explore all the possible options

(arms) a certain number of times, thus building empirical averages µt(i) estimating f(i)

for all i at time step t, i.e. after t plays of the bandit, and to exploit arms with high

averages.

Notations Once a policy has been chosen, we denote by (Iτ )τ the stochastic process

that corresponds to the sequence of chosen arms at all time steps (these are random
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variables because the policy is based on the observed rewards, which are stochastic, and

the policy can be stochastic itself). We denote by (iτ )τ a realisation of (Iτ )τ , and by

(yτ )τ the sequence of observed rewards. By definition of f and the fact that rewards are

iid, we can write yτ = f(iτ )+ ετ where (ετ )τ is a martingale difference sequence that we

call the noise sequence. The set of observations Dt = {(i1, y1), . . . , (it, yt)} up to time t

is called the training data set . We write I = {1, . . . , N}, It = {i1, . . . , it} for the set of

training data input indices, and yt for the vector of concatenated reward observations.

We thus have, by definition:

µt(i) = ÊPi =
1

ν(i, t)

∑
τ=1...t s.t. iτ=i

yτ (2.1)

where ν(i, t) is the number of plays of arm i up to time t. We write µt =

(µt(1), . . . , µt(N)). As the number of times we play the same arm i grows, we ex-

pect our reward estimates µt to improve and to get closer to f . The policy is the set of

rules that determine which arm is played at each time step.

2.1.1.1 Performance measures for bandit algorithms

The optimal arm selection policy/strategy S∗, i.e. the policy that yields maximum

expected cumulative reward, would consist in selecting arm i∗ = argmaxi{fi} to play

at each iteration. We write f∗ = fi∗ . The expected cumulative reward of S∗ at time T

(after T iterations) is Tf∗. The performance of a policy S is assessed by the analysis of

its expected cumulative regret at time T , defined as the difference between the expected

cumulative reward of S∗ and S at time T . Note that S∗ is unknown to the agent, and

therefore the agent can only attempt to bound the regret based on assumptions on f .

The regret can only be computed if we have access to the f∗ value for the function f

that is used by the environment.

We define the immediate regret at time step t as:

rt = f∗ − E fIt

where the expectation is taken with respect to the random drawing of the arms (fIt is

a random variable because of the index It). The expected cumulative regret RT , also

called regret , is defined as:

RT =

T∑
t=1

rt



2.1. The stochastic bandit problem 26

We can also consider a performance measure based on the observed reward values, which

will depend on the realisation of (It)t, and which we call the empirical regret :

r′t = f∗ − yt

R′T =
T∑
t=1

r′t

It can be shown that |RT −R′T | scales in O(
√
T ) with high probability. This is thanks

to Azuma’s inequality (A.7) applied to the martingale difference sequence Yτ = Rτ−R′τ
for τ from 1 to T (see Coquelin and Munos, 2007b, for details).

As we will see in the following, bandit algorithms can be applied as a way to focus

exploration in optimisation problems. In that case, it is not the cumulative regret we

are ultimately interested in, but the simple regret , defined as the expected difference

between f∗ and fJT where JT is the arm recommended by the algorithm after T ex-

ploration rounds. One way to recommend an arm is to take JT = i with probability

ν(i, T )/T , in which case the simple regret is equal to 1
TRT . An algorithm is said to be

no-regret when this quantity tends to 0 when T tends to infinity.

In the rest of this work, we will focus on bounds on the expected regret, which can

then be used to derive other regret bounds (with high probability). A regret bound is

said to be problem-specific when it involves constants that are specific to the current

bandit problem, such as the sub-optimality values of arms:

∆i = f∗ − f(i)

Problem-independent bounds, however, do not involve such quantities and hold uni-

formly over the space of bandit problems with N arms (regardless of the arms’ mean-

reward values). The bounds also hold uniformly over time.

We are especially interested in the growth rate of these bounds in time, and in the

dependency of constants on the size N of the bandit problem.

2.1.1.2 First approaches

The mean-reward estimates defined in Equation (2.1) improve when the number of

training data points t increases. A good policy should balance the improvement of

these estimates with the exploitation of arms with high empirical means , which are
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considered likely to give good rewards. A first approach to reach a good balance is the

epsilon-greedy policy which consists in fixing ε and either choosing actions randomly

with probability ε, or choosing actions greedily otherwise. As the number of iterations

increases, our empirical estimates improve and it becomes more important to exploit

than to explore. In order to reflect this, we can choose ε to be a decreasing function of

the number of iterations. However, a disadvantage of this strategy is that it does not

adapt its exploration to the problem at hand and to the relative values of the arms’

average rewards. For certain arms, it does not seem necessary to refine reward estimates

much, if, based on previous observations, we can be fairly confident that these arms are

not the best. Auer et al. (2002) report that epsilon-greedy can be made competitive

with other algorithms in practise, when tuning ε to the problem at hand, but there is no

known automated way to obtain good results without prior knowledge of the problem.

Gittins and Jones (1979) proposed another approach, based on Bayesian theory and

some further assumptions on the reward distributions. It consists in computing indices,

for all arms and at each time step, and always playing the arm with highest index. The

Gittins index for arm i at time t is defined as the maximum expected sum of rewards,

from time t until the end of the bandit game, that can be attained when starting from

arm It+1 = i. Gittins and Jones proved this policy was optimal, and Tsitsiklis (2002)

later gave a simpler proof of this result. We thus see that in the Bayesian probabilistic

approach, playing optimally is a computational problem.1 The algorithms that we

study in this work consider instead the statistical problem of achieving low regret, as a

relaxation of the problem of finding the optimal playing strategy, and focus on finding

computationally efficient solutions which do not lose asymptotically in comparison with

the optimal strategy.

2.1.2 Upper Confidence Bound algorithms

2.1.2.1 Arm selection

A popular policy for balancing exploration and exploitation in bandit problems consists

in applying the so-called Optimism in the Face of Uncertainty (OFU) principle. First of

all, reward estimates µt(i) and uncertainty measures σt(i) are maintained for each arm.

1This can be very long or even intractable, but in the case of Bernoulli reward distributions the

computations can be performed exactly and efficiently for modest values of T .
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We write σt = (σt(1), . . . , σt(N)). µt(i) is usually the empirical average of the rewards

observed for i. The expression for σt(i) is chosen along with a positive and monotonic

factor βt, so that the probability that f(i) is outside of its confidence interval of the

form [µt(i)−
√
βtσt(i);µt(i) +

√
βtσt(i)] drops quickly in time. The random quantities

considered here are µt(i) and σt(i), whereas f is fixed.

The OFU principle states that the arm to be played at each time step is the one for

which the upper bound of the confidence interval is the highest. As with the epsilon-

greedy algorithm, we want to decrease the amount of exploration in time, but when we

do decide to explore, we should rather explore promising arms rather than any arm. We

define the upper confidence function at time t as ft = µt+
√
βtσt. Each implementation

of the OFU principle will specify its own expression for µt, βt, σt, but will always pick

at any time step the arm that maximises the upper confidence function.

UCB1 The UCB1 algorithm which implements the OFU principle has been shown by

Auer et al. (2002) to achieve optimal regret growth-rate for problems with independent

arms. The setting here is agnostic as no assumption is made on the nature of the

reward distributions, other than the fact that they have bounded support (and so can

be transformed into a problem with support in [0, 1]). UCB1 takes µt to be the empirical

average, and:

βt = 2 log(t) (2.2)

σ2
t (i) =

1

ν(i, t)
(2.3)

It proceeds as follows:

• Initialisation:

– Play each arm once

– Define µN and σN from observed data (i1, y1), . . . , (iN , yN )

– t = N

• Loop:

– Play it+1 = argmax1≤i≤N ft(i) and break ties arbitrarily

– Get reward yt+1, which defines µt+1 and σt+1

– t = t+ 1
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Confidence intervals Under the assumption that the support of the Pi reward dis-

tributions is in [0, 1], Hoeffding’s inequality (A.8) bounds the probability that, given the

number of times n that arm i has been played, the empirical average µt(i) goes further

away from the true expectation f(i) than a given distance:

P(f(i) ≥ µt(i) + ε) = P(f(i) ≤ µt(i)− ε) ≤ exp(−2ε2n) (2.4)

Applying this with ε =
√
βtσt(i), the probability of the upper confidence bound being

below f(i) is:

∀i,P(f(i) ≥ µt(i) +
√
βtσt(i)) ≤ t

−4 (2.5)

By symmetry, the same holds for the probability of being below the lower confidence

bound.

Interpretation The arm selection problem can be seen as an active learning prob-

lem, as we are able to decide which data we want to observe. By selecting arms with

highest upper confidence bound, we want to learn f values accurately when we esti-

mate that they can be potentially high, and we do not care much if our estimates are

inaccurate as long as we are confident that the true function values are low. βt bal-

ances exploration and exploitation: the bigger it is, the more it favours points with

high σt(i) (exploration), while if βt = 0, the algorithm is greedy and is thus only doing

exploitation. For this reason, we say that ft is the sum of an exploitation term (the

reward estimate µt(i)), and an exploration term (the uncertainty measure σt(i)) times

a confidence term βt . By having βt grow with time, we ensure that asymptotically we

will continue to play even the worst performing arms. Also note that the bigger βt, the

wider the confidence intervals and the more likely rewards are within their confidence

intervals.

Note that we can also relate the immediate regret to the confidence width. If all f

values are within their confidence intervals:

f(i∗) ≤ ft(i
∗)

≤ ft(it+1) by definition of it+1

f(i∗)− f(it+1) ≤
√
βtσt(it+1) + µt(it+1)− f(it+1)

and thus:

rt+1 ≤ 2
√
βtσt(it+1) (2.6)

We thus see that reducing the uncertainty of our predictions has an effect on the regret.



2.1. The stochastic bandit problem 30

Translating and scaling rewards Rewards are usually taken in [0, 1] in the bandit

literature, but it may be more convenient to have output spaces centred around 0 (when

dealing with probabilistic models, for instance), and the rewards may take values in a

wider range (as in Section 2.4.2 for instance). We assume that the expression for µt is

linear in yt and that the expression for σt does not involve the observed y values, which

will be the case for all algorithms considered in this work. We thus see that translating

rewards does not affect the order of the ft values, hence it does not affect the algorithm,

but if we scale rewards by a factor a, we should scale βt by a2.

Extensions We can improve the way that we build the confidence intervals when we

know the type of the Pi distributions. For instance, the UCB1-normal algorithm also

proposed by Auer et al. (2002) was devised for the case of Gaussian reward distributions,

and it takes advantage of the extra knowledge on the Pi’s in order to derive tighter

confidence intervals. It is also possible to obtain better intervals when we do not know

the type of these distributions, by taking into account the empirical variance of the

distributions, which is what the UCB-V algorithm does (see Audibert et al., 2009).

2.1.2.2 Overview of the regret analysis

UCB1 achieves a regret with problem-specific upper bound in O(log(T )), and problem-

independent upper bound in Õ(
√
T ), where we write un = Õ(vn) if there exist α, β > 0

such that un ≤ α log(vn)βvn). This matches the lower bound rate of Lai and Robbins

(1985) where they focused on Bernoulli reward distributions.The strategy used to derive

the first bound is all the more interesting as it inspired the regret analyses of other

algorithms mentioned in Sections 2.3.2 and 2.4.1.2. We first rewrite the regret as follows:

RT =
N∑
i=1

∆iEν(i, T ) (2.7)

Hence, we can bound the regret by bounding the expected number of times each arm

has been selected after T rounds. Eν(i, T ) is bounded by li(T ) (arbitrary) plus the sum

over t of probabilities of the event e1(i, t) defined as playing arm i at round t after we

have played it already more than li(T ) times in the past (Lemma 1).

Eν(i, T ) ≤ li(T ) +

+∞∑
t=2

P(e1(i, t))

We want li(T ) to grow with T , and the rest to be bounded by a constant. We expect

that P(e1(i, t)) decreases when li(T ) increases, as the accuracy of the reward estimate
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for i will increase hence it will be easier to see it is a suboptimal arm.

We write Yi,1, Yi,2, . . . the rewards obtained for successive plays of arm i, and Ȳi,n

the average of the n first rewards. In order to determine the rate at which P(e1(i, t))

decreases, we first state Lemma 2 (see proof in Appendix A.2): e1(i, t) implies that

there exist νi and ν∗ such that:

Ȳi,νi +

√
βt
νi
≥ Ȳi∗,ν∗ +

√
βt
ν∗

In that case, Lemma 3 states that if f∗ ≥ f(i)+2
√

βt
νi

, then either f∗ is above its upper

confidence bound or f(i) is below its lower confidence bound – which are events we can

bound the probability of when summing over all possible values that νi and ν∗ can take

(see Inequality 2.5). Therefore, it is all down to having νi ≥ li(T ) high enough so that

this condition is always met. Choosing li(T ) =
⌈

8 log(T )
∆2
i

⌉
, we thus have:

+∞∑
t=2

P(e1(i, t)) ≤
+∞∑
t=2

t−1∑
ν∗=0

t−1∑
νi=li(T )

2t−4

≤ 2
+∞∑
t=2

t2t−4

≤ π2

3

Note that the application of Hoeffding’s inequality requires the number of points in the

empirical average to be fixed. Therefore, we had to consider all the values that νi and

ν∗ could take, so that they became indices instead of random variates.

From this result follows that:

ERT ≤ 8
∑
i 6=i∗

1

∆i
log(T ) + (1 +

π2

3
)

N∑
i=1

∆i (2.8)

In order to get a problem-independent bound, we follow the trick used in the

fourth step of the proof of Theorem 2.2 of Bubeck (2010). We first write ERT =∑
i ∆i

√
Eν(i, T )

√
Eν(i, T ).

• ∆i

√
Eν(i, T ) is bounded by

√
8 log(T ) + 1 + π2

3 (using the fact that ∆i ≤ 1 be-

cause rewards are bounded in [0, 1]) which is an expression that is independent of

i;



2.1. The stochastic bandit problem 32

•
∑

i

√
Eν(i, T ) is bounded by N

√
1
N

∑
i Eν(i, T ) owing to the concavity of the

square root

Using the fact that
∑

i ν(i, T ) = T , we thus have:

ERT ≤
√
N T (8 log(T ) + 1 +

π2

3
) (2.9)

2.1.3 Arm-reward regression

In practise, the arms’ mean reward values are often related to one another and corre-

lations are observed. Arm feature representations can be given, and the mean reward

function f on all arms can be modelled as a function in the feature space. We thus

get, from one play, information about all the other arms, which allows us to deal with

the many-armed bandit problem that we mentioned in Chapter 1. Here, we review the

LinRel approach (Auer, 2003) which represents arms by feature vectors (ai)1≤i≤N and

looks for a linear mapping from a vector-space X to the mean-reward values. We give

an overview of some other approaches in Section 2.4.1.

2.1.3.1 Linear Regression

We start by providing some background on linear regression, which will be used by

LinRel to learn mean rewards as a function of arms’ feature representations.

In our learning setting, we observe (x, y) pairs that we model as samples from a

fixed (but unknown) probability distribution p(x, y). The aim of regression is to find a

functional relationship between the inputs and outputs that are given for us to observe.

For simplicity, we assume the existence of a linear relationship: there exists w such

that for any given x, the output is drawn from a unimodal and symmetric distribution

with mean wTx. The latter distribution accounts for the noise that may come from the

observations or from the fact that the true relationship between x and y is not linear.

Our aim is to estimate w from training data Dt = {(x1, y1), . . . , (xt, yt)}, and to make

predictions by computing wTx. We call the regression model parametric because it

involves a parameter vector w.

Least Squares In practise, we can expect that there will not exist w such that for

all t we will have ∀1 ≤ τ ≤ t, yτ = wTxτ (unless the functional is indeed linear and
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is observed without noise). Least Squares consists in looking for w that explains the

past observations well in the sense that it minimises a certain measure of the errors

of the predictions that would be given by w. One way to define this error on Dt is

by taking the sum of squared differences :
∑t

τ=1(yτ − wTxτ )2. We denote by Xt the

concatenation of all vectors of inputs in training data. Finding wt that minimises the

sum of squared differences is a simple optimisation problem which can be solved by

setting the differential of the objective to 0:

d

dw
((yt −XT

t w)T(yt −XT
t w)) = −2(yt −XT

t w)TXT
t

= 0

wt = (XtX
T
t )−1Xtyt

if XtX
T
t is invertible.

We use the µt(x) notation for the regressor wTx. Indeed, the previous definition

of µt given in Equation (2.1) is a special case corresponding to a space X that is the

set of indicator vectors with N components (one component has value equal to one,

the others are all zero): wTx is thus equal to the empirical average of the outputs we

observed when having x in input.

2.1.3.2 Extension to non-linearly transformed feature spaces

If we do not believe f to be a linear function, we can choose to perform linear regression

in a transformed feature space φ(X ) defined by a mapping φ to an n-dimensional space,

such that we believe f to be linear in that space.2 Performing linear regression in the

transformed space is a way to perform non-linear regression in the original space. Thus,

our predictions are now wTφ(x) where wt = (φ(Xt)φ(Xt)
T)−1φ(Xt)yt.

We show that the predictor can be expressed only in terms of inner products in-

volving x and the inputs in training data. For this, we use the fact that A(ATA)−1 =

(AAT)−1A:

φ(x)Tw = φ(x)Tφ(Xt)(φ(Xt)
Tφ(Xt))

−1yt

= (φ(x)Tφ(x1) . . . φ(x)Tφ(xt))


φ(x1)Tφ(x1) . . . φ(x1)Tφ(xt)

...
. . .

...

φ(xt)
Tφ(x1) . . . φ(xt)

Tφ(xt)


−1

yt

2This is only interesting for non-linear mappings.
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Kernels A kernel κ is a function of two variables such that there exists φ such that

∀(x,x′), κ(x,x′) = φ(x)Tφ(x′). The value of κ at (x,x′) is called the kernel product of

x and x′. We write Kt for the matrix of kernel products between the inputs of Dt, and

kt the operator that associates to x the vector of kernel products between x and the

inputs of Dt, so that the regressor associated to our kernel can be written:

µt(x) = kt(x)TK−1
t yt

Remarks

• When κ is a kernel, Kt is a positive semi-definite matrix, and conversely, if Kt is

a positive semi-definite matrix for any t and any set of inputs (xτ )1≤τt, then κ is

a kernel.

• The kernel corresponding to ∀x, φ(x) = x is called the linear kernel (κ(x,x′) =

xTx′) as it leads to linear regression. If we take features that are powers of the

components of x, we can perform polynomial regression. We will say more on the

choice of κ in the next section, where we review the Gaussian Process model for

which the regressor has the same expression. We will give examples of common

kernels for which the associated feature spaces can be infinite dimensional, and

we will see that we do not need to work with an explicit representation of φ(x).

• Predictions can be computed either in the weight-space view, also called the primal,

as the inner product between two vectors of n components (wt and φ(x)), or

they can be computed in the dual as the inner product between two vectors of t

components (kt(x) and K−1
t yt).

2.1.3.3 Regularisation

In kernel regression, we do not control the number of dimensions of the underlying

feature space, and it can actually be much larger than the number of observed data

points. As a consequence, there is a risk of over-fitting the data when simply looking

for a wt vector that brings the least squares error on the training set to 0. This does

not mean that we are learning f accurately. Perhaps the simplest illustration of this

is the existence, for any training set (xτ , yτ )1≤τ≤t, of a polynomial p of degree t such

that ∀τ, p(xτ ) = yτ . If the data was generated from a function f to which noise was
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added, doing this will amount to learning noise, instead of learning a pattern. The least

squares error of a regressor that would know the true f would be strictly positive (due

to the noise), whereas the error of p would be 0.

One solution to this issue consists in penalising w vectors that are too complex,

i.e. that have a high norm. We thus consider a new objective for wt:

wt = argminw

∣∣∣∣∣∣yt −XT
t w
∣∣∣∣∣∣2 + ρ ||w||2

This is called kernel Ridge Regression (kRR). The value for ρ that will provide the best

weight vectors depends on the particular learning problem that is being considered. It

can chosen by cross-validation: we try different splittings of the training data in two

and, for each, we learn from the first subset of the data with different values of ρ and

assign them a score based on the error we measure on the second subset of the data;

the ρ value with lowest overall score is chosen. Values of ρ that are too small or too big

will have high scores.

The solution to this new optimisation problem is:

wt = (XtX
T
t + ρIn)−1Xtyt

which implies:

µt(x) = kt(x)T(Kt + ρIt)
−1yt

We invite the reader to refer to Shawe-Taylor and Cristianini (2004) for a complete

introduction to kernel methods, for a review of their applications to regression and other

Machine Learning problems, and for examples of common kernels.

2.1.3.4 The LinRel algorithm

We write ai for the feature vector of arm i, and we model the mean reward function f

as a linear function in the space of arms X = {a1, . . . ,aN}. We write f as a function

of an arm’s feature representation, or equivalently as a function of an arm’s index:

f(i) = f(ai). Again, the reward support is assumed to be bounded in [−1, 1]. We write

xt = ait so that the training data set is Dt = {(x1, y1), . . . , (xt, yt)}.

LinRel (Auer, 2003) adopts the same policy as UCB1 but defines its confi-

dence intervals differently. µt is chosen to be the kRR regressor determined from
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Dt. Thus, the reward estimate can be written as a weighted sum of previous rewards:

µt(x) = αt(x)Tyt where αt(x)T = kT
t (x)(Kt+ρIt)

−1. σt(x) is taken to be ||αt(x)|| /
√

2

When the horizon T is fixed, βt can be replaced by βT and, because t ≤ T and β is

strictly increasing, the f values will still be within their confidence intervals with high

probability. As a consequence, the confidence term can become a constant that can be

tuned to the problem at hand. Otherwise, Auer proposes to take βt = 2 log(2Nt/δ)

when rewards are bounded in [0, 1].

From one play, we learn about all arms. The reward estimates and uncertainty

measures need to be updated for all arms. While UCB1 needed to play each arm once

in the initialisation phase, in order to define all the σt(i) values, LinRel only needs to

have played one (randomly chosen) arm:

• Initialisation:

– Play i1 chosen randomly

– Get reward y1, which defines µ1 and σ1

– t = 1

• Loop:

– Play it+1 = argmax1≤i≤N ft(i) and break ties arbitrarily

– Get reward yt+1, which defines µt+1 and σt+1

– t = t+ 1

Remarks on theory If the yτ ’s were independent variables and if αt(x) did not

depend on them (through the fact that the observed outputs influence the choice of

inputs), the variance of this estimate would be bounded by σ2
t (x) = ||αt(x)||2 /2, using

the fact that the variance of any random variable bounded in [−1, 1] is at most 1/2.

However, the (yτ )1≤τ≤t are actually not independent since past rewards influence future

choices. This is why Auer devised the SupLinRel algorithm, which calls LinRel as

a subroutine with training sets {(xτ , yτ )τ∈Ψ(t)} where the Ψ(t)’s are designed so that

the (yτ )τ∈Ψ(t) are independent variables. In practise, LinRel performs at least as well

as SupLinRel. Dani et al. (2008) later proved a regret upper-bound in Õ(
√
T ) for a

similar algorithm called ConfidenceBall that does not require X to be finite. In the

following we focus on LinRel.
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2.2 Bayesian regression models

We now introduce a regression method in which our belief on f is formalised with a

probabilistic model, namely the Gaussian Process model. GPs can be seen as probability

distributions over functions that say, roughly, that similar inputs are likely to yield

similar outputs. The similarity between inputs is defined by a kernel/covariance function

(the two terms are equivalent).

We will then be able to introduce, in the next chapter, a new bandit algorithm

based on GP regression, as an alternative to LinRel which is based on kRR. Actually,

we will see that the expression for the GP regressor is the same as for LinRel. The

advantage of probabilistic models is that they model uncertainty in a principled way.

This is useful in order to trade exploration and exploitation based on the uncertainty

of our predictions, but also for other things such as choosing parameters of the model

by maximising the likelihood of the observations.

We refer the reader to Bishop (2006) for a complete introduction to probabilistic

models in Machine Learning, and to Rasmussen and Williams (2006) for more informa-

tion on the Gaussian Processes model.

2.2.1 Parametric models

2.2.1.1 Bayesian learning theory

As we saw previously, we see input-output observations as realisations of random vari-

ables. Furthermore, we make assumptions on the nature of the probability distribution

of the output conditioned on the input, with density notated p(y|x) for a realisation

(x, y) of the input-output pair of random variables (we do not need to make assump-

tions on the marginal distribution of inputs, p(x), in order to make predictions). These

models are said to be generative as they provide an explanation on how the data was

generated, in the form of a probability distribution we could draw data from. In the

case of parametric models, the two random variables are assumed to depend on an

additional random variable, so that we can write:

p(y|x) =

∫
w
p(y|x,w)p(w)dw
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where p(y|x,w) is fixed by the model and w is called the parameter of the model.

Ultimately, we are interested in making predictions on unseen data, i.e. in mapping

a new input x given by the real world to a predicted output ypred. This can be done by

taking the most likely value of y:

ypred = argmaxy p(y|x)

The latter distribution is called the marginal likelihood . When it is unimodal and not

skewed, the most likely output coincides with the mean of the marginal likelihood. The

standard deviation, as a dispersion indicator, gives a measure of the “uncertainty” of

our prediction. The objective of learning is to reduce this uncertainty by the observation

of data, i.e. samples from p(x, y) given by the real world.

In Bayesian learning theory, the probabilistic formalism is used to encode our expec-

tations on what w may be, also called our ‘belief’. Our prior belief p(w) is readjusted

after observing data D, according to Bayes rule:

p(w|D) =
p(D|w)p(w)

p(D)

The new distribution p(w|D) is called the posterior, as it characterises our belief on

w a posteriori (after observing data). We say that the posterior is equal to the prior

multiplied by the likelihood of the data (also called the evidence) and divided by a

normalising constant, also called the marginal probability of the data. Note that the

posterior may be of a different family to the prior distribution, because the latter is

multiplied by the likelihood. The prior and posterior are said to be conjugate distribu-

tions and the family of the prior distribution is the conjugate prior of the family of the

likelihood. For instance, the Beta distribution is the conjugate prior of the Bernoulli

distribution, and the Gaussian distribution is conjugate to itself.

The assumptions we made in our model, in the form of distributions p(y|x,w) and

p(w), imply that:

p(y|x,D) =

∫
w
p(y|x,w)p(w|D)dw

Making predictions using the predictive distribution p(y|x,D) is referred to as proba-

bilistic inference. We consider as regressor µ(x) the most likely output according to this

distribution. Again, when it is unimodal and not skewed, it coincides with its mean.
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2.2.1.2 Bayesian linear regression

We assume a linear relationship between input and output random variables, observed

with noise:

y = wTx + ε (2.10)

The noise is assumed to be Gaussian: ε ∼ N (0, s2
noise), which gives:

p(y|x,w) ∝ exp

(
−
∣∣y −wTx

∣∣2
2s2

noise

)

Because of the problem of over-fitting caused by the noise in our observations, we model

our prior belief on w with a zero-mean multivariate Gaussian distribution: we believe

that a small norm is more probable, and the probability drops quickly as the norm gets

bigger. We write w ∼ N (0,Σ). We assume that dimensions are independent of each

other, and without further knowledge on the relative importance of each dimension, Σ

can be taken to be λIt. Thus, the probability density for w can be written

p(w) ∝ exp

(
− 1

2λ
||w||2

)

We now determine the posterior, which we know will be Gaussian. The likelihood

is a product of one-dimensional independent Gaussians:

p(Dt|w) =

t∏
i=1

p(yi|xi,w)p(xi)

∝ exp

(
−
∑
i

∣∣yi −wTxi
∣∣2

2s2
noise

)

∝ exp

(
−
∣∣∣∣yt −XT

t w
∣∣∣∣2

2s2
noise

)

The posterior is obtained by multiplying this by the prior and normalising. With a bit

of algebra we get:

p(w|Dt) ∝ exp

(
−
∣∣∣∣yt −XT

t w
∣∣∣∣2

2s2
noise

− 1

2λ
||w||2

)

The mean of this Gaussian is the value wt which maximises this, also called the Max-

imum A Posteriori (MAP) estimate of w. The objective is similar to the one for

regularised Least Squares regression in the primal, and by setting the derivative of its

log to zero we get:

wt = (XtX
T
t +

s2
noise

λ
In)−1Xtyt
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We use this expression in order to rewrite the previous expression of the posterior as

follows:

p(w|Dt) ∝ exp(− 1

2s2
noise

(w −wt)
T(XtX

T
t +

s2
noise

λ
In)(w −wt))

w|Dt ∼ N (wt, s
2
noise(XtX

T
t +

s2
noise

λ
In)−1)

The predictive distribution p(y|x,Dt) at x is obtained by multiplying the p(w|Dt) pos-

terior by p(y|x,w) and integrating the result over all possible w vectors. From Equation

(2.10) and by symmetry, we see that this is a Gaussian with mean equal to µt(x) = wT
t x:

Bayesian linear regression is equivalent to performing linear regression with the MAP

estimator of w. When the noise variance goes to 0 or when λ goes to infinity, this is

equivalent to Least Squares regression.

2.2.2 Non-parametric models: Gaussian Processes

2.2.2.1 Definition of a Gaussian Process

A Gaussian Process is a collection of random variables, any finite number of which have

a joint Gaussian distribution. This condition that the random variables must satisfy is

also called the consistency property. Let us write F for one such collection. In particular,

we are interested in collections indexed by X , and denote by Fx the random variable

associated to x ∈ X . A realisation f of F is a collection of real values indexed by the

input space. This is analogous to a function from X to R. As a consequence, GPs are

a way to represent our belief of what an unknown function may be.

The Gaussian distributions on any finite number of random variables still need to

be specified. For this, we characterise a GP by a mean function of one variable m(x)

and a covariance function of two variables κ(x,x′) in X such that, for any finite number

of elements {x1, . . . ,xt} of X , we write mt for the vector of mean values, ft a vector of

realisations of (Fx1 , . . . , Fxt), and we have:

ft ∼ N (mt,Kt) (2.11)

We summarise this by simply writing f ∼ GP(m,κ). Covariance functions have the

same properties as kernel functions, and in the rest of this work we will use both terms

equivalently.
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Interpretation GPs can be seen as extensions of multi-variate Gaussians to an infi-

nite number of variables (an N -variate Gaussian is actually a distribution over functions

defined on spaces of exactly N elements), where the mean has an infinite number of

components, and the covariance has an infinite number of rows and columns. Also note

that, in informal terms, the closer two given inputs, the more likely their function values

will also be close. The covariance function takes the role of modelling the smoothness of

a GP function. This comes from the fact that, given two inputs xa and xb, the proba-

bility density for their respective function values is a 2-variate Gaussian with covariance

matrix  κ(xa,xa) κ(xa,xb)

κ(xb,xa) κ(xb,xb)


By specifying how much function values co-vary, we express a belief on the smoothness

of a function.

2.2.2.2 Inference

We assume that y is a noisy observation of a functional of x: y = f(x)+ε. Furthermore,

we assume white Gaussian noise, as we did before. Instead of assuming that f is linear

and putting a prior distribution on the weight vectors, we characterise our prior belief of

what the function values may be with a Gaussian Process with zero mean and covariance

function κ. In this model, the form of the functional is not specified by a parameter –

as it was in the linear model with the weight vector – and the model is therefore said to

be non-parametric. In other terms, if one considers the collection of random variables

that consists of the possible values of f(x) for all possible input x, in the linear model

these variables are linked to each other through the parameter w, whereas in the GP

model they are linked to each other through the consistency property.

We write (yt z)
T for the vector of output variates associated to the training inputs

and the function variate associated to a new input x:

 yt

z

 ∼ N
0,

 Kt + s2
noiseIt kt(xt+1)

kt(xt+1)T κ(xt+1,xt+1)


The function of x that gives the mean of the predictive distribution p(z|x,D) is the GP

posterior mean µt(x), the function that gives the variance of this probability is the GP
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posterior variance σt(x), and by Equation (A.5) we have:

µt(x) = kt(x)TC−1
t yt (2.12)

σ2
t (x) = κ(x,x)− kt(x)TC−1

t kt(x) (2.13)

where matrix Ct and vector kt(i) are defined as follows:

(Ct)p,q = κ(ip, iq) if p 6= q

κ(ip, iq) + s2
noise otherwise

(kt(i))p = κ(i, ip)

Equation (A.5) can also be used to characterise p(z, z′|x,D) and to derive the following

expression for the posterior covariance between x and x′:

covt(x,x
′) = κ(x,x′)− kt(x)TC−1

t kt(x
′) (2.14)

Inference is simple and efficient in the Gaussian model, as we get expressions in

closed form – this is not always the case with probabilistic models. The regressor µt is

the same as in kRR. The kernel and covariance function play indeed the same role, and

the two terms can be used equivalently. Predictions in the noise-free case are obtained

by letting snoise tend to 0. With the Bayesian approach we have made additional,

probabilistic assumptions, in order to model uncertainty. The fact that p(y|x,Dt) is a

one-dimensional Gaussian with mean equal to µt(x) and variance equal to σ2
t (x) implies:

P(|f(x)− µt(x)| ≥
√
βtσt(x)) = erfc

(√
βt
2

)
(2.15)

by definition of the complementary error function erfc (Equation A.3).

2.2.2.3 Reproducing Kernel Hilbert Spaces

µt is a linear combination of functions from X to R of the form kx = κ(x, .) where x is

a fixed element in X . More precisely, it is a linear combination of the kxτ functions for

τ from 1 to t. Consider the vector space of these kx functions, for all x ∈ X , with inner

product between two functions kx and kx′ defined as κ(x,x′). We denote by Hκ the

Hilbert space obtained when completing this vector space of functions with the limits

of Cauchy sequences with respect to the norm defined by the previous inner product.

An interesting property of this space is that, for any f ∈ Hκ and any x ∈ X , the inner
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product between f and kx is equal to f(x). We say that Hκ is the Reproducing Kernel

Hilbert Space induced by the kernel κ.

A few remarks:

• Hκ can be made an almost arbitrarily rich space of functions, depending on the

choice of κ. Kondor (2003) notes that for the Gaussian kernel, H can be shown

to be a dense subset of L2(X )

• Defining a probability distribution p(f) ∝ exp(− ||f ||
2
κ

2 ) in the RKHS and using it

as a prior on f implies the GP consistency property. This is easier to see when

X is finite and K is invertible, as we can write ∀x, f(x) =
∑

i αiκ(ai,x) where

α = K−1f , and thus:

||f ||2κ = 〈f, f〉

=
∑
i

∑
j

αiαj〈kai , kaj 〉

=
∑
i

∑
j

αiαjKi,j

= αTKα

= fTK−1f

• In the next chapter we will give a regret bound for a GP-based bandit algorithm

in terms of the norm of f in the RKHS induced by the chosen covariance function.

2.2.3 Covariance functions

In many problems we can assume that the covariance should be stationary, meaning

that κ(x,x′) should be a function of x − x′ and thus invariant to translation, or even

that it is isotropic, meaning that it should be a function of the distance between x

and x′ and thus invariant to all rigid motions. One such covariance function that is

widely used in practise in Rn is the ISO-SE which is a Squared Exponential (SE) on the

Euclidian distance between two vectors, with a width adjusted to fit the characteristic

length-scale s which is assumed for f along each of its dimensions,3 multiplied by a

3The name ISO-SE comes from the fact that the length scale is the same along each dimension.
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signal variance term sf :

κ(x,x′) = s2
f exp

(
−||x− x′||2

2s2

)
(2.16)

We refer the reader to Shawe-Taylor and Cristianini (2004) and Rasmussen and Williams

(2006) for proofs that this is indeed a valid kernel/covariance function. Sample functions

for the ISO-SE covariance function are particularly smooth as they are differentiable to

any order almost surely.

s and sf are called hyper-parameters: they are parameters of the covariance func-

tion, hence of the model, but not of the regression method (which is non parametric).

The signal variance s2
f characterises our prior belief on the value z of f at any point x:

p(z|x) = N (m(x), κ(x,x))

= N (m(x), s2
f )

An advantage of the ISO-SE covariance function is that we can encode, through s, a

belief on the length-scale of f which, loosely speaking, characterises how much f is

expected to change on a given scale, or the distance between two inputs from which

they will become practically uncorrelated. It can be shown that the mean number of

level-zero crossings on a unit interval for a one-dimensional SE process with zero mean

is (2πs)−1. Note that if s is overestimated, the GP regressor will be generalising too

much, and the µt(x) estimates will be too close to each other. If s is underestimated, we

will not be sharing enough information from one input to the other and we will over-fit

the data.

We now consider a similar covariance function, but with different length-scales

(si)1≤i≤n along the different dimensions of the input space.

κ(x,x′) = s2
f exp(−(x1 − x′1)2

2s2
1

) . . . exp(−(xn − x′n)2

2s2
n

) (2.17)

The 1/si terms are analogous to (independent) weights given to the different dimensions

of the input space when combining the differences between the components of two

vectors in order to determine their Euclidian distance. A lower length-scale on the ith

dimension will give it more importance. The covariance above is called the ARD-SE,

for Automatic Relevance Determination.

Although we may be able to determine from the context whether the SE covariance

functions would be suitable for a particular application, in practise we only have a vague
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idea of what the length-scales should be. We can set their values by maximising the like-

lihood of the observations (which is expressed as a function of the hyper-parameters).4

In the ARD-SE case, we can thus learn the relative importance of each dimension on the

f values. Maximising the likelihood is equivalent to minimising minus its log, for which

the derivatives with respect to each si can be given in terms of ∂Ct
∂si

(see Rasmussen and

Williams, 2006, for a complete proof):

p(yt|Xt, s1, . . . , sn, sf , snoise) = N (0,Kt + s2
noiseIt)

− log(p(yt|Xt, s1, . . . , sn, sf , snoise)) =
1

2
log(|Ct|) +

n

2
log(2π) +

1

2
yT
t C−1

t y

∂

∂si
(− log(p(. . .))) =

1

2
tr

(
(C−1

t −C−1
t yty

T
t C−1

t )
∂Ct

∂si

)
The partial derivative of Ct with respect to si is a matrix whose components are:

(xτ,i − xτ ′,i)2

s3
i

κ(xτ ,xτ ′)

As a consequence, gradient search methods can be employed, but they may have diffi-

culties in finding an optimal setting of the hyper-parameters as the likelihood function

may suffer from multiple local optima.

2.3 Tree search

The exploration/exploitation balance achieved by bandit algorithms can be applied

to the search of very large spaces organised in tree structures. We consider functions

defined on leaves of a tree with finite depth and branching factor, and noisy observations.

We look for the leaf with highest function value, f∗. We consider cases where an

exhaustive search of the tree is prohibitive due to its size.

Typically, algorithms proceed in iterations of tree traversals starting from the root.

After the tth iteration, a leaf node nt is selected and a reward yt is received. It is usually

assumed that there exists a mean-reward function f such that yt is a noisy observation

of f(nt). Other common assumptions are that f∗, the highest value of f , is known (or

an upper bound on f∗ is known) and is always bigger than yt. The algorithm stops

when a convergence criterion is met, when a computational/time budget is exhausted

4If we have prior knowledge regarding the hyper-parameters, we can seek a MAP estimator instead.

Sparsity-inducing hyper-priors can be useful to remove variables that are irrelevant to the learning

problem.
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(in game tree search for instance), when a maximum number of iterations has been

specified (this is referred to as fixed horizon exploration, as opposed to anytime), or

when uncertainty measures drop below a certain threshold. In the end, a path through

the tree is given. This can simply be the path that leads to the leaf node that received

the highest reward, or that has the highest estimated reward, or that has the highest

lower confidence bound at a given confidence threshold. These last two might be more

robust to the variability of the rewards (we could be misled by an unlikely high reward

value for a mediocre path).

2.3.1 Many-bandits algorithms: Upper Confidence Trees

2.3.1.1 Path selection as a sequence of bandit problems

Many-bandits tree search algorithms use bandit problems at each interior node of the

tree in order to assign high-probability upper bounds on the best reward values that

can be obtained by continuing the exploration from each of this node’s children. We

call these upper bounds U -values (they are called B-values in the notations of Coquelin

and Munos (2007b) and Bubeck et al. (2010), but B is already reserved here for the

branching factor of the tree). The children of a given node are the arms of its associated

bandit problem, and the U -values of the children are defined as the ft values that are

assigned to them by their parent’s bandit algorithm. At each iteration of the tree search

algorithm, we start from the root and repeatedly select the child node with highest U -

value, until a leaf j is reached and a reward y is received. Then, for each ancestor i of

j we add the observation (i, y) to the training set of the bandit algorithm of the parent

of i, and thus we update the U -values of all ancestors of j.

2.3.1.2 UCT

Kocsis and Szepesvári (2006) proposed a many-bandits tree search algorithm based

on UCB1, which they called Upper Confidence Trees and which is described below.

Gelly and Wang (2006) reported that UCT performed significantly better than previous

approaches to Go game trees, when generating stochastic rewards at leaves by rolling

out the game randomly and receiving +1 when winning, 0 otherwise.5

5Note that, for two-player game trees, when UCT has to choose a move for the opponent, it uses

1 − µt(i) instead of µt(i) in the UCB formula (the exploration term stays the same).
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• Repeat while stopping/convergence criterion has not been met:

– Set node x to the root

– Repeat while x is not a leaf:

∗ If x has never been seen before, associate a new UCB1 algorithm to

x, notated A(x), with arms corresponding to the children of x. The ft

values given by A(x) to its arms are initialised to infinity and used to

assign U values to the children of x.

∗ Set x to the node with highest U value (break ties arbitrarily).

– Get reward value y for the leaf x that has been reached

– “Back-propagate” the reward, i.e. repeat while x has a parent:

∗ Add (x, y) to the training data of A(parent(x)). This updates the ft

values given by this algorithm, which are, by definition, the U values for

all siblings of x.

∗ Set x to parent(x)

2.3.1.3 Measure of performance

A Tree Search algorithm’s performance can be measured, as for a bandit algorithm,

by its cumulative regret RT = Tf∗ −
∑T

t=1 f(nt). However, although this is a good

objective to achieve a good exploration/exploitation balance, we might be ultimately

interested in a bound on how far the reward value for the best node we would see after

T iterations is from the optimal f∗. Or it might be more useful to bound the regret

after a given execution time (instead of a number of iterations) in order to compare

algorithms that have different computational complexity.

2.3.1.4 Tree growing methods

The trees we set to search are usually too big to be represented in memory, which

is why we “grow” them iteratively by only adding the nodes that are needed for the

implementation of our algorithm. The fixed-depth tree growing method consists, at

each iteration, in selecting child nodes sequentially until reaching a maximum depth D.

Another method of growing the tree is iterative-deepening, which consists in stopping

the traversal of the tree only after having created a new node. Thus, the maximum
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depth can potentially be increased at each iteration. In Go tree search (Coulom, 2006),

the method used to evaluate leaf nodes does not depend on their (variable) depth as it

simply consists in random rollouts. The tree may grow asymmetrically as it contains

paths that have different numbers of nodes. Hopefully iterative-deepening helps to go

deeper in the tree in regions where f has high values, and keeps the paths short in the

rest of the tree. This saves time and memory by stopping the exploration early and not

creating nodes that would belong to sub-optimal paths.

Note that iterative-deepening is not suitable for cases where reward values depend

on the number of nodes in a path (as for sums of intermediate reward values, for

instance), because this would favour the exploration of average nodes that are deep in

the tree, rather than the exploration of promising nodes that are not that deep.

2.3.2 Revised upper confidence bounds: the Bandit Algorithm for Smooth

Trees

2.3.2.1 Description

Despite the good performances of UCT on Go, Coquelin and Munos (2007b) showed

that it can behave poorly in certain situations because of “overly optimistic assumptions

in the design of its upper confidence bounds” (Bubeck and Munos, 2010), leading to

a high lower bound on its cumulative regret. Consequently, they proposed a revised

definition of U to overcome this problem, based on a regularity assumption on f : there

exist decreasing values ρ0≤d≤D such that, for all i at depth d and for all descendants j

of i, f(i) − f(j) ≤ ρd. This implies that the more ancestors in common between two

leaves, the closer their f values will be. This assumption was subsequently relaxed to

η-suboptimal nodes only, for a fixed η.

The Bandit Algorithm for Smooth Trees of Coquelin and Munos follows the algo-

rithmic description of UCT given in Section 2.3.1.2 and only differs in the way that the

U -values are updated at interior nodes when rewards are back-propagated:

U(i) = min{ft(i) + ρd, max
j child of i

{U(j)}} (2.18)

where ft(i) is defined as µt(i) +
√

log(N̄ν(i,t)(ν(i,t)+1)δ−1)
2ν(i,t) and µt(i) is the reward estimate

for node i given by the UCB1 algorithm associated to the parent node of i – in other
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terms it is the average of the rewards obtained after selecting i.

2.3.2.2 Theoretical insights

We first explain how the regularity assumption on f is used to build true upper confi-

dence bounds at interior nodes and to finally arrive at the above formulation. For this,

we extend the definition of f to all nodes: we set f on any interior node to be the max-

imum value of f on tree paths that go through this node. The ft values of UCT do not

represent true upper confidence bounds on the f values (except for leaf nodes), because

the rewards are not iid: the leaf nodes for which the rewards are obtained depend on

a node selection process which is not stationary. Therefore, Hoeffding’s inequality does

not apply. However, owing to the regularity assumption on f we can relate its value

at a given node i to its value at leaf nodes j ∈ L(i) that are descendants of i, and

thus derive true confidence bounds. We assume that the number of times nj that node

j ∈ L(i) has been selected by the tree search algorithm is given. We write yj,τ for the

τ -th reward received at leaf j, so that:

ni =
∑
j∈L(i)

nj

µt(i) =
1

ni

∑
j∈L(i)

nj∑
τ=1

yj,τ

We have:

f(i) =
1

ni

∑
j∈L(i)

njf(i)

≤ 1

ni

∑
j∈L(i)

nj(f(j) + ρd)

≤ µt(i) + ρd +
1

ni

∑
j∈L(i)

nj∑
τ=1

f(j)− yj,τ

Azuma’s inequality (A.7) can be applied to the (f(j)−yj,τ )j,τ difference sequence. There

are ni elements in this sequence and they have range in [−1, 1] since reward values are

in [0, 1]. By the fact that rewards obtained when selecting the same leaf are iid and by

definition of f on leaves, we have: ∀j ∈ L(i),∀τ ∈ [1, nj ],E(f(j)−yj,τ ) = 0. This proves

that, whatever the order of its elements, this sequence is a martingale. As a result, the

probability of the sum of elements of the sequence being bigger than ε =

√
log(δ−1)ni

2 is
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bounded above by δ. This gives, with probability 1− δ:

f(i) ≤ µt(i) + ρd +
1

ni
ε

≤ µt(i) + ρd +

√
log(δ−1)

2ni

This true upper bound is bigger than the UCT pseudo upper bound by a ρd term, which

shows that UCT is indeed overly optimistic given our assumptions of smoothness.

Recall that the role of the U -values is to put a tight, optimistic, high-probability

upper bound on the best mean-reward value that can be achieved from a given node.

We have seen a way to derive true upper confidence bounds at interior nodes. We could

also get true bounds by considering at depth D−1 the max of the true upper confidence

bounds of the children (i.e. their ft values since they are leaves), and so on for depths

D− 2 to 1. As a consequence, the U -values in BAST were defined so as to benefit from

these two ways of constructing upper confidence bounds. The choice of the expression

for ft was motivated by the regret analysis which can be carried out when the f values

of all the N̄ = BD+1−1
B−1 − 1 nodes of the tree are within their confidence intervals, with

high probability. Note that the exploration term expression contains no term in t only,

so we should write:

βt = 1

σ2
t (i) =

log(N̄ν(i, t)(ν(i, t) + 1)δ−1)

2ν(i, t)

BAST is parameterised by ρd and can therefore adapt to different levels of smooth-

ness of the reward function. A time-independent regret upper bound was derived,

expressed in terms of the sub-optimality values ∆i of nodes (dependent on the reward f

on nodes, hence unknown to the algorithm) and was thus problem specific. Also, quite

paradoxically, the bound could become very high for smooth functions (because of 1/∆i

terms).

2.3.2.3 UCT as a special case of BAST

Let us show that BAST with ρd = 0 for all d is equivalent to UCT. For this, we

show by induction that the ft values at all nodes, as given by their parent’s bandit

algorithm, coincide with their U -values. This is true at depth D, by definition of

BAST. Assuming that the result is true at depth d, we show by contradiction that,
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for all nodes i at depth d − 1, ft(i) is smaller than the maximum of all the U -values

of its children. If this was not the case, then for all children j of i, we would have

µt(i) + βtσ
2
t (i) > µt(j) + βtσ

2
t (j) since the children are at depth d and their U -values

coincide with their ft values; hence µt(i) > µt(j) since i has been played more times

that its child j and consequently σ2
t (j) − σ2

t (i) > 0; this last result on µt contradicts

the fact that µt(i) is a weighted average of the µt(j) values. As a consequence, U(i) =

min{ft(i) + ρd−1,maxj child of i{U(j)}} = ft(i).

2.3.3 Applications to planning in Markov Decision Processes

We present an application of bandit based tree search to the problem of planning in

Markov Decision Processes. Beforehand, we introduce the notion of MDP as a formalism

of decision making in environments in which the actions taken by an agent can change its

state and give rewards. We present classical planning methods and their disadvantages

in order to motivate the use of Open Loop planning methods. These are applicable

when a generative model of the environment is available. We introduce the OLOP

algorithm, inspired by previous tree search algorithms, where the tree represents the

possible sequences of actions from the current state, and which exploits the smoothness

induced by the particular form of the reward function as an exponentially discounted

sum of bounded intermediate rewards.

2.3.3.1 Background

Markov Decision Processes are a formalism for sequential decision-making problems,

which are numerous in operations research (inventory control, optimising transporta-

tions systems, schedules, production, etc.) and also occur in the control of chemical,

electronic or mechanical systems (Szepesvári, 2010). The characteristics of the problems

modelled by MDPs are that:

• a decision maker, called the “agent”, acts within an environment in a sequential

fashion;

• each action that the agent takes changes its state and the actions that will be

available from then on;

• a reward is given by the environment for each action taken by the agent;
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• the agent must decide which action to take at each time step, in order to maximise

the rewards given by the environment.

Note that being greedy at each time step and selecting the action that maximises the

reward may lead to a state from which only actions with poor rewards will be available.

We consider finite and deterministic MDPs in which the set of actions A is finite

and the transition from one given state to the next one, after taking a given action,

is deterministic. Such MDPs are characterised by (S,A, T ,P, γ) tuplets where S is a

set of states, A is a set of actions, T is a function that takes a state-action pair and

returns a new state, P is a probability distribution over the possible reward values in R,

and γ is a discount factor. We introduce some terms and notations in order to define

the role of γ. Let St ∈ S denote the state at time t, At ∈ A the action taken, and Yt

the reward obtained from the environment after taking this action: Yt ∼ P(.|Xt, At).

The agent selects actions to take based on the observed history, according to certain

“rules” that we call the behaviour of the agent. The return of a given behaviour is the

discounted sum of all the rewards incurred:
∑∞

t=0 γ
tYt+1. The goal of the agent is to

adopt a behaviour that is as close as possible to the optimal one, i.e. the behaviour

that maximises the expected return.

The optimal behaviour is the one that always takes the action a that maximises

the optimal action-value function Q∗(x, a), when in state x. This is defined as the

maximum expected return under the constraints that the process starts at state x and

the first action chosen is a. Therefore, it verifies the following Bellman equation:

Q∗(x, a) = r(x, a) + γmax
a′∈A

Q∗(T (x, a), a′)

where r(x, a) is defined as the mean of P(.|x, a). We can get a near-optimal behaviour

by learning the optimal action-value function and taking actions greedily with respect

to this value function. We refer the reader to Szepesvári (2010) for a review of the

techniques that follow this idea (Value iteration, Dynamic Programming, Temporal-

difference learning). However, this approach can become problematic for large state-

action spaces, for which it will be difficult to store all values in memory: some sort of

function approximation is required.
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2.3.3.2 Open-Loop Optimistic Planning

Another approach to choose which actions to take is open-loop planning, which is used

when a generative model of the MDP is available, i.e. we know T and have a model of

P. We perform a search of the tree representing the succession of actions available from

the current state we are in (seen as the root of the tree). A sample-based look-ahead

search starts exploring the tree from the root, stops when reaching a certain depth,

observes rewards generated from the model for the actions taken, and starts again from

the root. The exploration and exploitation of branches of the tree should be balanced.

One approach proposed by Kocsis and Szepesvári consists in using UCT, which works

in an any-time fashion and returns the root action from the current state of the MDP

for which the average of the rewards generated during planning was the highest.

The Open Loop Optimistic Planning (OLOP) algorithm of Bubeck and Munos is

based on BAST and builds true upper confidence bounds by exploiting the smoothness

of f , induced by the discount factor: ρd = γd+1

1−γ . The other difference with BAST comes

from the fact that, in the MDP setting, we observe the intermediate reward values that

make up the reward function on paths. OLOP takes advantage of this extra information

by updating each bandit instance along each node of a path that was played, using the

corresponding intermediate reward value instead of back-propagating the reward value

for the whole path.

The branching factor of the tree is the cardinality of A. The depth of the tree is

potentially infinite, but we need to stop each exploration of the tree (an iteration of

the tree search algorithm) at a certain depth. The cumulative regret R̄n considered by

Bubeck and Munos is measured as a function of the number of calls n to the generative

model, which is equal to D T for us. It is the sum for t from 1 to T of the immediate

regrets r̄t defined as the difference between the infinite sum of discounted rewards for

the sequence of nodes chosen by the optimal policy, and for the sequence of nodes given

by following our policy for D actions and switching to the optimal policy from then on.

Consider the tth path exploration. Let us write nD,t for the node that we have after

following our policy for D actions. It may be different from the node n∗D that we would

have had with the optimal policy. For this reason, n∗D+1 may not be available after nD,t,

which implies that the sequences of nodes that follow can be different, even though we

are using the same, optimal policy. Consequently, r̄t is equal to rt, measured up to depth
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D, plus γD
∑+∞

i=1 2γi−1, where the intermediate reward differences after D actions are

all bounded by 2 (since rewards lie in [−1, 1]). OLOP works with D = logB(T ) so

that the cost of stopping the exploration at depth D is not linear but is in the order of

TγD = T 1−a where a = logB(1/γ) > 0. This gives R̄n = RT + Õ(T 1−a).

The authors derive regret bounds expressed in terms of a measure b ∈ [1, B] of the

quantity of near-optimal branches in the tree:

1

n
R̄n = Õ(n− logb(1/γ)) if γ >

1√
b

= Õ(n−1/2) otherwise

If γ ≤ 1√
B

then γ ≤ 1√
b

and the second bound applies. Otherwise, the first bound

or the second bound applies. γ > 1√
B

implies a < 1/2 and thus n−1/2 < n−a; it also

implies n− logb(1/γ) < n−a. As a consequence, we can give a result which does not involve

problem-specific quantities:

1

n
R̄n = Õ(n−a) if γ >

1√
B

= Õ(n−1/2) otherwise

We show that these bounds are equivalent to the following cumulative regret bounds

on the tree search problem with maximum depth equal to logB(T ):

RT = Õ(T 1−a) if γ >
1√
B

= Õ(
√
T ) otherwise

We use the fact that n = D T = T logB(T ) by definition.

1

n
R̄n = Õ(n−a)

∃α, β > 0, R̄n ≤ α log(n−a)βn1−a where β can only be even

≤ (−a)β

(1− a)β
α log(n1−a)βn1−a

R̄n = Õ(n1−a)

∃α, β > 0, R̄n ≤ α log(n1−a)βn1−a

≤ α(1− a) log(n)βT 1−a logB(T )1−a

≤ α′ log(T )β+1−aT 1−a

≤ α′

(1− a)β+1−a log(T 1−a)β+1−aT 1−a

R̄n = Õ(T 1−a)



2.4. Related work 55

We thus have

RT = Õ(T 1−a)− Õ(T 1−a) if γ >
1√
B

RT = Õ(T 1/2)− Õ(T 1−a) otherwise

which proves the result on RT .

2.4 Related work

Firstly, we show how bandit-based tree search algorithms have been applied to design

a global framework for online optimisation, namely the Hierarchical Optimistic Opti-

misation framework. For this framework to be applicable, we only need to be given a

tree of coverings of the (potentially infinite) input space. We select a point (arm) to

sample the objective function (reward) at by growing a tree structure representing the

input space and sampling randomly within the subspace associated to a chosen leaf. We

give an overview of the regret analysis of HOO. We then briefly review the UCB-AIR

algorithm that also deals with infinitely many arms by making an assumption on the

probability of selecting suboptimal arms, another algorithm that deals with many arms

by clustering them, and one that works with taxonomies, i.e. hierarchies of clusters.

Secondly, as a prelude to the next chapter where we will be introducing the Gaussian

Processes Bandit algorithm, we review some applications of the GP modelling tool to

online function optimisation, in which points where to sample the function are chosen

sequentially, based on the current function estimation and uncertainty measures. In

particular, we show how the optimal allocation of function samples (in terms of the

expected final loss) can be approximately determined, which is a technique very similar

in spirit to the first Bayesian approaches to bandit problems.

2.4.1 Bandit problems with many and infinitely-many arms

2.4.1.1 Some algorithms

As pointed out in the introduction, some problems have a number of options that is

much larger than the number of observations we can hope to make. In this case, if no as-

sumption is made on the smoothness of f , the search might be arbitrarily hard. The key

idea is, as we did with LinRel, to model dependencies between arms through smooth-
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ness assumptions on f , so that information can be gained about several arms (if not

the whole set of arms) when playing only one arm. Pandey et al. (2007) have developed

an algorithm which exploits cluster structures among arms in order to share knowledge

between them, motivated by a content-matching problem (matching webpages to ads).

Wang et al. (2008) make a probabilistic assumption on f : the probability that an arm

chosen uniformly at random is ε-optimal scales in εβ. Thus, when there are many near-

optimal arms and when choosing a certain number of arms uniformly at random, there

exists at least one which is very good with high probability. The regret bound of their

UCB-AIR algorithm is in Õ(
√
T ) when β < 1 and f∗ < 1, and in Õ(T

β
1+β ) otherwise.

Bandit problems in continuous arm spaces have been studied notably by Auer

et al. (2007), Kleinberg et al. (2008), Wang et al. (2008) and Bubeck et al. (2009).

Kleinberg et al. (2008) consider metric spaces, Lipschitz functions, and derive a regret

growth-rate in Õ(exp(n)T
n+1
n+2 ), which strongly depends on the dimension n of the input

space. The algorithm of Bubeck et al. (2009), HOO, follows a similar idea to that of

Kleinberg et al. which is to “zoom” the discretisation of X in regions of interest. They

consider weak-Lipschitz functions in arbitrary topological spaces, and derive a bound

with a similar growth-rate. However, when X = [0, 1]n, when the number of maxima is

finite and f is locally Hölder with a known exponent around any maxima, their bound

becomes Õ(
√

exp(O(n))T ). This is strictly better than in the work of Kleinberg et al.,

is independent of the dimension of the input space and matches the bound derived by

Auer et al. – but HOO deals with multiple dimensions, does not waste computational

resources on discretising the input space finely where such a fine discretisation is not

needed, and is therefore a viable algorithm in practise.

2.4.1.2 Hierarchical Optimistic Optimisation

The Hierarchical Optimistic Optimisation (HOO) algorithm uses BAST on a recursive

splitting of the space where each node corresponds to a region, or covering, of the space,

and all interior nodes have two children representing two-halves of the corresponding

space. BAST is used to go down the tree of coverings of X in an iterative-deepening

fashion, thus selecting smaller and smaller regions to randomly sample f in. A first

version of this idea was given by Coquelin and Munos (2007b) with an application of

BAST to the problem of optimising an unknown function in [0, 1]. Here, the diameter

of a covering at depth h is assumed to decrease exponentially. More precisely, it is
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assumed that there exists ν1 > 0 and 0 < ρ < 1 such that for any h this diameter is

bounded by ν1ρ
h (which we use as ρh value in BAST).

We give a brief overview of the strategy used to deal with the fact that HOO builds

an infinitely deep tree in the derivation of a regret bound. As is usual with UCB-type

algorithms, the fact that arms’ mean-reward values lie within their confidence intervals

with a high probability that rapidly decreases in time allows us to upper bound the

number of times that arms are selected. The regret at time T is equal to the sum for

each arm of its sub-optimality multiplied by the number of times it has been selected

up to time T . HOO builds an infinite tree and constantly considers new arms which

have sub-optimalities that become smaller and smaller as the algorithm narrows down

the location of the optimum: ∆min is not a constant anymore, as it decreases with time.

The regularity assumption on f (weak-Lipschitzness with respect to a dissimilar-

ity l) and the assumption that the size of the coverings decreases exponentially with

the depth in the tree are used in order to prove a key result for the following, owing

to concentration of measure inequalities: if the sub-optimality of a node is bounded

by cν1ρ
h, then the sub-optimality of all descendants of this node will be bounded by

max{2c, c+1}ν1ρ
h. This is used so that we only need to analyse the regret contributions

of nodes up to a depth H and bound the contributions of the descendants. We divide

the tree into ‘good’ nodes and ‘bad’ nodes, i.e. nodes which sub-optimality values are

smaller than 2ν1ρ
h when they are at depth h, and nodes which sub-optimality values

are bigger. The value of H will have to be chosen so that it minimises the sum of the

contributions of the good nodes and of the bad nodes on the regret. The tree is divided

in 3:

• Good nodes at depth H and their descendants: we have selected T of these nodes

at most, and their sub-optimalities are bounded by 4ν1ρ
H .

• Good nodes at depth h = 0 . . . H − 1. Each node is played once at most (because

HOO uses iterative deepening to grow the tree) and the number of good nodes at

depth h is bounded in terms of a quantity called the near-optimality dimension

of f with respect to l.

• Bad nodes at depth h = 0 . . . H − 1 that have a good parent (at depth h− 1), and

their descendants. The number of times that such nodes are played is bounded
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by the sum over h of the number of bad nodes at depth h that have a good parent

(this is smaller than twice the number of good nodes at depth h−1, by definition),

multiplied by the number of times that a bad node at this depth is expected to

have been chosen (meaning that the node was on a path chosen by the algorithm).

Once this has been bounded, it can be multiplied by the sub-optimality bound

derived from the fact that the parent is a good node.

2.4.2 Bayesian global optimisation

2.4.2.1 Motivation

Global optimisation is one area where the exploration/exploitation dilemma appears:

we need to learn a function and to optimise it at the same time. Research in this field

has produced methods such as Lipschitz optimisation, homotopy methods, simulated

annealing, genetic algorithms and Bayesian response-surface methods (Lizotte, 2008).

These methods all deal in their own way with the exploration and exploitation tradeoff,

for instance through the acceptance probability function in simulated annealing, or

through crossovers and mutations in genetic algorithms.

Bayesian approaches typically use Gaussian Processes to model a belief on f , as

we have seen in Section 2.2. Samples of the target function are acquired iteratively and

used to maintain a posterior belief on f , and thus to decide where we want to sample

next. The combination of function estimates and uncertainty measures is particularly

useful as, for the problem of global optimisation, we are not interested in learning f

accurately where we are confident that its values are low. GP optimisation methods

(also referred to as “Kriging” and “response-surface” optimisation) are very popular due

to the flexibility and power of GPs (see Brochu et al., 2009, for a review of Bayesian

optimisation using GPs) and their applicability in practise in engineering problems (see

Grünewalder et al., 2010, and references therein). Their main limitation, however, seems

to be a poor scalability with respect to the dimension of the search space (Rolet, 2011).

When function evaluations are expensive, it is important to choose samples care-

fully, as we do in bandit problems. We can thus see the problem of deciding which

samples to acquire as a bandit problem: each point in the search space is an arm and,

when it is played, a potentially noisy observation of f at that point is given as a re-
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ward. The UCB heuristic, which is popular in bandit algorithms, could be used to

focus exploration in global optimisation. Even though the actual objective may not be

to minimise the cumulative regret but to minimise the simple regret, we have seen in

Section 2.1 how a bound on the former can give a bound on the latter. Minimising

the cumulative regret forces algorithms not to waste samples, which can be costly to

acquire in certain applications as they might involve a physical and expensive action for

instance, such as deploying a sensor or taking a measurement at a particular location

(see the experiments on sensor networks performed by Srinivas et al., 2010), or they

can simply be computationally costly because of lengthy computer simulations for in-

stance: the less samples, the quicker we can find a maximum. Such problems include

robot gait design, online path planning, algorithm configuration, sensor placement and

reinforcement learning (see references within Hoffman et al., 2011).

2.4.2.2 Sample acquisition criteria

GP optimisation algorithms differ in their sample acquisition function ft. We assume

that this function is given in closed form or is easy to evaluate, so that its maximisation

can be carried out with standard numerical techniques, sequential quadratic program-

ming or the DIRECT algorithm (Hoffman et al., 2011). Even when ft is multimodal,

Brochu et al. (2009) showed that global search heuristics are very effective.

The GPGO algorithm of Osborne et al. (2009) considers a fixed horizon T and

computes an approximation of the Expected Improvement (EI) provided by the selection

of x at time t, over all possible T − t remaining allocations. The improvement is defined

as the difference between the best observed function value at time T and at time t. For

this, the probability of improvement is broken down into the probability of improvement

given the arms at times t to T , times the probability of picking these arms, which can

also be broken down recursively. This is similar in spirit to the work of Gittins and

Jones. The computations have a very high computational cost (hopefully warranted by

the cost of function samples) and, in the experiments of Osborne et al., the number of

iterations was only twice the dimension of the problem. However, the algorithm was

found to perform better than other optimisation methods on most benchmark problems.

A lower bound on the simple regret of this algorithm was given by Grünewalder et al.

(2010) in the case where observations are not noisy. Different variants of Expected

Improvement exist, such as the myopic version which assumes that the next sample will
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be the last one – see Bull (2011) for more on Expected Improvement and for convergence

rates.

In the UCB heuristic, ft takes a form also encountered in sequential design (see the

Sequential Design for Optimisation algorithm of Cox and John, 1997): ft = µt+
√
βtσt.

Note that if we wanted to maximise the information gained at each time step, we would

take ft = σt – but some of this information is not useful as we do not need to learn f

accurately in regions where its values are low. We present GP-UCB in more detail in

the next Chapter, and we also present the theoretical regret bounds derived by Srinivas

et al. (2010). They are based on the rate of decay of the eigenvalues of the kernel

matrix on the whole set of arms, if finite, or of the kernel operator. The regret is

O(n
√
T ) for the linear kernel and O(

√
T log(T )n+1) for the ISO-SE kernel, where n is

the dimension of the input space. Bounds are given when f follows a GP distribution,

but also in the setting where f has finite norm in the RKHS induced by the covariance

function. However, the convergence rates for optimisation in that setting are not optimal

(Bull, 2011). While Srinivas et al. report that, on an application to sensor networks,

they obtained their best results with the UCB heuristic, Hoffman et al. (2011) show

that there is no sample acquisition technique that consistently performs better than

others. The algorithm they propose, GP-Hedge, uses a portfolio of heuristics including

UCB, Expected Improvement and Maximum Probability of Improvement (see Mockus,

1989; Lizotte et al., 2007, for practical applications) and adaptively learns which ones

are better for the problem at hand. Another efficient way to trade exploration and

exploitation in practice is Thompson sampling (Chapelle and Li, 2011), which is not

based on the maximisation of a ft function but on drawing xt+1 from the posterior

distribution at time t.

Finally, note that, in practise, the covariance function is not entirely specified as

its parameters are not held fixed but they are estimated from previous observations.

The problem is that our GP optimisation algorithm chooses where it wishes to observe

f , and thus there is bias in the areas where it observes the function. Bull (2011) shows

that using the Maximum Likelihood (or MAP) estimates of the hyper-parameters may

cause GP-EI to never converge. The author proposes alternative estimators for which

the convergence rates with a fixed prior still apply, with constants that are minimised.
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2.4.2.3 Comparison to HOO and other bandit algorithms

The GP-based optimisation methods do not need f to be bounded in a known interval (a

common assumption in bandit algorithms), but instead they have a prior on the signal

variance. Bull (2011) note that the HOO assumption that f has a finite number of global

optima and is quadratic in a neighbourhood of each – under which the regret growth

rate matches that of GP-UCB, in Õ(
√
T ) – is quite restrictive. GPs specify global

smoothness properties, unlike the local assumptions of the continuum-armed bandit

algorithms, but Srinivas et al. say that these algorithms’ regularity assumptions can

be too coarse-grained, whereas the GP assumption is neither too weak nor too strong

in practise. One added benefit of the Bayesian framework is the possibility of tuning

the parameters of our smoothness assumption (encoded in the covariance function) by

maximising the likelihood of the observed data, which can be written in closed-form for

the commonly used ARD-SE.

Interestingly, Graepel et al. (2010) have used ideas that are similar to what we

have reviewed here, for the problem of Click-Through Rate prediction in sponsored

search advertising systems: for a given ad impression characterised by a feature vector

x, the probability of a click is modelled as a probit function on top of the inner product

between a weight vector w and x; a factorising Gaussian prior distribution over w is

assumed; ad impressions are chosen by Thompson sampling.



3
Gaussian Process Bandits

We have seen in Chapter 2 that GPs perform the same regression as kRR, but, owing

to additional probabilistic assumptions, they are also able to model uncertainty. By

assuming a GP prior on the mean reward as a function of arm feature representations,

we are able to derive true upper confidence bounds for any arm, formed by a multiple

of the GP posterior variance added to the posterior mean. In the rest of this thesis, we

focus on the GP-UCB bandit algorithm, also referred to as Gaussian Process Bandits

(GPB).

We first show how UCB1 can be seen as a special case of GPB, when the kernel

is the Kronecker function. This is followed by an analysis of the computational cost

of GPB. We reduce its complexity by deriving linear update expressions which involve

an expensive matrix-vector product whose value can be shared for the updates of the

reward estimates and uncertainty measures of all arms. We write N for the number of

arms and T for the number of iterations. We obtain two formulations with total costs
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in O(N T 2) or in O(N2 T ), instead of O(T 4 + N T 3) for a naive formulation of the

algorithm. The same results also apply to LinRel. In addition to this, we propose an

approximation called GPB-red that helps make the algorithm run faster by occasionally

removing the oldest training data point, so that the size of the training set is bounded

by an increasing function S. The cost thus becomes O(T (S2
T +N ST )).

In the second section of this chapter, we present an information-theoretic analysis

of the regret of GPB due to Srinivas et al., in which the regret is bounded with high

probability (up to constant and logarithmic factors) by the square root of T multiplied

by the maximum possible information gain after T iterations. We focus on bandit

problems with finite number of arms N , and we will see that the information gain can

be expressed in terms of the eigenvalues of the total kernel matrix on the input space.

As a consequence, the information gain can be bounded by a constant that depends on

N . We finish by mentioning how the analysis presented here is extended to infinitely

large spaces of arms, and to a more agnostic setting where the target function f has

finite norm in a given Reproducing Kernel Hilbert Space and the noise sequence is a

martingale difference sequence.
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3.1 Gaussian Processes for bandit problems

3.1.1 The GPB algorithm

We assume a GP prior with covariance function κ on the mean-reward function f . In

the absence of any extra knowledge on the problem at hand, f is flat and centred in

the output space, so our GP prior mean is the 0 function. We model the variability of

the reward, when always playing the same arm, as Gaussian noise with variance s2
noise

(where snoise is a parameter of the model). In the case of a finite number of arms, the

GP prior on f is equivalent to an N -variate Gaussian prior on f :

f ∼ GP(0, κ)⇔ f ∼ N (0,K)

where we write K for the total kernel matrix on X . The posterior at time t after seeing

data Dt has mean µt(x) and variance σ2
t (x), as given in Equations (2.12) and (2.13).

3.1.1.1 Arm selection

For a given training set Dt, GPB has the same confidence interval centres as LinRel,

but different widths. As a UCB-type algorithm, it selects arms iteratively by maximising

the upper confidence function:

• Initialisation:

– For all x ∈ X , we set µ0(x) = 0 and σ2
0(x) = κ(x,x)

– t = 0

• Loop:

– Play xt+1 = argmaxx∈X ft(x) and break ties arbitrarily

– Get reward yt+1, which defines µt+1(x) and σt+1(x) (and thus ft+1(x)) for

all x:

µt+1(x) = kt+1(x)TC−1
t+1yt+1

σ2
t+1(x) = κ(x,x)− kt+1(x)TC−1

t+1kt+1(x)

– t = t+ 1
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3.1.1.2 Choice of βt

A choice of βt corresponds to a choice of confidence interval width. The GPB regret

bound given by Srinivas et al. (2010), that we present in the second section of this

chapter, relies on the fact that the f values lie between their lower and upper confidence

bounds. If X is finite and of cardinality N , this happens with probability 1− δ if:

βt = 2 log

(
Nt2π2

6δ

)

Justification δ is referred to as the confidence threshold and lies between 0 and 1.

We write p for the probability that at least one f value is not in its confidence interval

at some point in time. Applying Inequality (2.15) for all t and for x = ai for all i gives:

p = N
∞∑
t=1

erfc(

√
βt
2

)

≤ N

∞∑
t=1

exp(−βt
2

)

≤ N
6δ

Nπ2

∞∑
t=1

1

t2

≤ δ

where we have used the upper bound on erfc given in Inequality (A.4). As a consequence,

all f values are within their confidence intervals at all times with probability 1− δ.

The above expression for βt is due to Srinivas et al.. Note that they did not optimise

the constants in this expression, and it is usually beneficial in practise to scale βt by

a constant specific to the problem at hand. In their sensor network application, the

scaling parameter was tuned by cross validation.

3.1.1.3 Case where K = IN and similarities with UCB1

If K = IN , the arm feature representations are orthogonal. Since the dimensions of w

are independent, the f(i) variates, hence the arms, are independent too.

Posterior mean and variance Let us re-order the arms in the training data so

that the ν(i, t) first arms that were played are i (this does not affect the values of the

posterior mean and variance). We write A the covariance matrix between the remaining
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training inputs. This gives:

kt(i) = (1 . . . 1 0 . . . 0)T

Ct =



1 + s2
noise

. . . 1

1
. . .

1 + s2
noise

0

0 A


Ctkt(i) = (ν(i, t) + s2

noise . . . ν(i, t) + s2
noise 0 . . . 0)T

= (ν(i, t) + s2
noise)kt(i)

C−1
t kt(i) =

1

ν(i, t) + s2
noise

kt(i)

From this and Equations (2.12) and (2.13) we derive the following expressions for

the posterior mean and variance:

µt(i) =
1

ν(i, t) + s2
noise

ν(i,t)∑
j=1

yj

σ2
t (i) = 1− 1

ν(i, t) + s2
noise

kt(i)
Tkt(i)

=

√
s2

noise

ν(i, t) + s2
noise

Regret bound Even though the regret has a different nature in the Bayesian setting

(it is a random variable since f is not fixed anymore but drawn from a probability

distribution), we could adapt the regret analysis of UCB1 and use the GP error bars

in place of the Hoeffding inequalities in order to determine confidence intervals for f(i).

As seen in Section 2.1.2.2, we would need to have

∞∑
t=1

t2P(f∗ ≥ µt(i∗) +
√
βtσt(i

∗) or f(i) ≤ µt(i)−
√
βtσt(i)) =

∞∑
t=1

t2erfc

(√
βt
2

)
< ∞

so that the ideas of the UCB1 regret proof can be applied. This is the case for

βt > 6 log(t). One could thus give a problem-specific regret upper bound with high

probability in O(log(T )) for GPB. In the general case where K is not necessarily the
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identity matrix, we can expect the posterior variance to be even lower (sharing infor-

mation between arms helps to reduce the variance). We will see in the second section

of this chapter how the regret relates to spectral properties of this matrix, namely the

rate of decay of the eigenvalues.

Relationship to UCB1 For βt = 4 log t
s2noise

the upper confidence function for arm i

becomes:

1

ν(i, t) + s2
noise

∑
τ=1...t s.t. iτ=i

yτ +

√
2 log t

ν(i, t) + s2
noise

which tends to the value of the UCB1 upper confidence function when snoise tends to

0.

3.1.1.4 Remarks on the UCB maximisation for infinitely many arms

GPB can also be used in infinite spaces of arms. If the horizon T is known in advance,

βt can be replaced by a constant; otherwise, we give an expression for βt in Proposition 3

on page 82. While our model stays the same, infinite spaces introduce difficulties in

finding the upper confidence maximiser. In our approach, the problem of finding the

maximum of the function f is replaced by iterations of a simpler problem, which is

to maximise the function ft, given in closed form. In the case where the kernel is

normalised (κ(x,x) = 1 for all x, as with the Gaussian and the cosine kernels), ft(x)

is a concave function of kt(x) and we look for the maximum over k of the following

expression:

kTC−1
t yt +

√
βt(1− kTC−1

t k)

However, in most cases, the constraints on k that result from the fact that ∃x,k =

kt(x) cannot all be written in the form required for convex optimisation, which would

be:

gi(k) ≤ 0 where gi is convex

hi(k) = 0 where hi is affine

We could optimise without considering these constraints, but this could lead to

situations where we obtain a maximiser k∗ such that there are no solutions to k(x) = k∗.

We could look for x such that k(x) approximates k∗ – for Gaussian kernels, with
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triangulation for instance. However, our attempts have been unsuccessful in practise,

as the ft value at the chosen location was found to be far from its maximum.

We have mentioned techniques to deal with the maximisation of ft in Section

2.4.2.2. The most straightforward approach is probably to discretise the input space.

The problem of a fixed-size discretisation is that the regret in T is linear. Nonetheless,

if we know the total number of iterations in advance, we can make the discretisation

depend on T and avoid this problem. HOO and the Zooming Algorithm do not need

to fix T in advance: they constantly refine the discretisation in regions of the input

space that they find “interesting”. For instance, the strategy of the Zooming Algorithm

is, when playing an arm x already played before, to add other arms close to x to the

current set of arms being considered.

3.1.2 Computational analysis, optimisations and approximations

Assuming the set of arms is finite and fixed, we now study the cost of updating the upper

confidence bounds of the GPB algorithm after observing (xt+1, yt+1). We can expect it

to be in O((t+ 1)α) = O(tα) where α is an integer, hence the cost of one iteration to be

in O(tα+N) by adding the cost of finding the upper confidence maximiser among the N

arms. The total cost of T iterations of the algorithm would thus be CT = O(Tα+1+N T )

. We write CT as a function of N too, so that the expression can be used for the case

where N is a function of time. We assume that the algorithm is allowed to learn its

hyper-parameters only up to a fixed time T0, so that the kernel matrix is fixed thereafter,

and the extra computational cost associated to this transitory phase can be considered

a constant.

3.1.2.1 Default algorithm

Cost At each iteration t+ 1, once xt+1 has been chosen, we have to do the following

in order to determine µt+1 and σt+1:

• Compute the covariance matrix inverse C−1
t+1, used for the posterior mean and

variance computation: O((t+ 1)3).

• Compute:

µt+1 = K(It+1, I)TC−1
t+1yt+1 (3.1)
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The cost of this step is O((t + 1)2) for the right-most product and O(N(t + 1))

for the remaining product, i.e. O(N t+ t2).

• Compute σ2
t+1: this is more expensive as we have to compute a kt+1(ai)

TC−1
t+1kt+1(ai)

term for each ai. This implies that we either perform a loop over the ai’s, or, in

matrix form, we write:

σ2
t+1 = diag(K−K(It+1, I)TC−1

t+1K(It+1, I)) (3.2)

In both cases, the cost of this step is O(N (t+ 1)2).

As a consequence, CT = O(T 4 +N T 3).

Iterative matrix inversion It is possible to reuse the covariance matrix inverse at

time t in order to compute the inverse at time t+ 1 more efficiently. For this, we write:

C−1
t+1 =

 Ct kt(xt+1)

kt(xt+1)T κ(xt+1,xt+1) + s2
noise

−1

=

 At bt

bT
t dt


where At = C−1

t +
C−1
t kt(xt+1)(C−1

t kt(xt+1))T

σ2
t (xt+1) + s2

noise

bt = − C−1
t kt(xt+1)

σ2
t (xt+1) + s2

noise

dt =
1

σ2
t (xt+1) + s2

noise

This technique is sometimes referred to as the Sherman-Woodbury-Morrison matrix

inversion in the literature. We thus see that the covariance matrix inverse can be

computed in O(t2), and therefore CT = O(N T 3).

Parallelisation We remark that the updates for all N arms could be done in parallel,

so the factor in front of T 3 could be reduced, depending on the number of processors

available.

3.1.2.2 Online updates

We can take advantage of the previous recursive formulation and of the fact that

kt+1(x)T = (kt(x)T κ(x,xt+1)) and yT
t+1 = (yT

t yt+1), in order to derive sequential
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update formulae for µ and σ2:

µt+1(x) = µt(x) + (yt+1 − µt(xt+1))
κ(x,xt+1)− kt(x)TC−1

t kt(xt+1)

σ2
t (xt+1) + s2

noise

σ2
t+1(x) = σ2

t (x)− (κ(x,xt+1)− kt(x)TC−1
t kt(xt+1))2

σ2
t (xt+1) + s2

noise

It is easy to see, in this formulation, that i) the amount of change of the estimated

reward for x is small when the posterior covariance at time t between x and xt+1 is

small, or when the new reward sample yt+1 agrees with the estimated reward for x

at time t, and ii) the posterior variance can only decrease: the bigger the posterior

covariance at time t between x and xt+1, the bigger the decrease.

We can make a quick sanity check for x = xt+1, independent arms, and xt+1 played

once, so that σ2
t (xt+1) = s2

noise: in that case, µt+1(xt+1) is the average between µt(xt+1)

and yt+1, and σ2
t+1(xt+1) is half of σ2

t (xt+1).

We also see that all updates are expressed in terms of C−1
t kt(xt+1). We thus have

to do the following in order to update µ and σ:

• Update the covariance matrix inverse: O(t2)

• Compute C−1
t kt(xt+1): O(t2).

• For all 1 ≤ i ≤ N :

– Update µ and σ2 for ai, which involves the computation of an inner product,

and operations on scalars: O(t).

The overall cost becomes: CT = O(T 3+N T 2). We refer to this version of the algorithm

as ‘GPB-online1’.

Improved formulation The computational cost of an iteration can further be

improved by computing and memorising the list of vectors qt(x) = C−1
t kt(x) for

x ∈ {a1, . . . ,aN}. We write:

αt+1(x) = κ(x,xt+1)− qt(xt+1)Tkt(x) (3.3)

µt+1(x) = µt(x) + (yt+1 − µt(xt+1))
αt+1(x)

σ2
t (xt+1) + s2

noise

(3.4)

σ2
t+1(x) = σ2

t (x)− αt+1(x)2

σ2
t (xt+1) + s2

noise

(3.5)
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These expressions do not involve the covariance matrix anymore, and qt+1(x) is updated

as follows:

qt+1(x) =

 qt(x)− αt+1(x)
σ2
t (xt+1)+s2noise

qt(xt+1)

αt+1(x)
σ2
t (xt+1)+s2noise

 (3.6)

which has a cost in O(t) for each x.

The procedure to update µ and σ2 is now:

• For all 1 ≤ i ≤ N :

– Compute αt+1(ai), based on qt(xt+1): O(t);

– Compute µt+1(ai) and σt+1(ai), based on αt+1(ai): O(1);

– Compute qt+1(ai): O(t).

This gives: CT = O(N T 2). Note that the memory requirements are different:

there are t×N values to memorise for q, and N for α. We refer to this version of the

algorithm as ‘GPB-online2’. Although the recursive formulation is similar in spirit to

recursive least-squares estimation, we believe that the “trick” of memorising the qt(x)

vectors is novel.

Numerical stability The previous formulae illustrate the numerical stability prob-

lems one encounters with GPs with very small, or zero noise. As we get training samples

that are close to each other, the uncertainty about these samples gets very low and the

σ2
t (xt+1) + s2

noise denominator tends to zero. One way to deal with this is to not up-

date µt+1 values if σt(xt+1) is below a certain threshold. If all σt values are below that

threshold, we switch to the greedy policy – there is nothing more to learn and we assume

we have converged to the true f .

LinRel We can also use the “qt trick” for LinRel where σ2
t (x) = qT

t (x)qt(x), hence

its computational cost is the same as GPB’s.

When N is relatively small (≤ T ) Let us write pt(x,x
′) = kt(x)TC−1

t kt(x
′) and

Pt for the N ×N matrix of such values for x,x′ ∈ {a1, . . . ,aN}. We have:

µt+1(x) = µt(x) + (yt+1 − µt(xt+1))
κ(x,xt+1)− pt(x,xt+1)

σ2
t (xt+1) + s2

noise

σ2
t+1(x) = σ2

t (x)− (κ(x,xt+1)− pt(x,xt+1))2

σ2
t (xt+1) + s2

noise



3.1. Gaussian Processes for bandit problems 72

P can be updated in O(N2) owing to the following recursive formulation:

pt+1(x,x′) = pt(x,x
′) +

1

σ2
t (xt+1) + s2

noise

(pt(x,xt+1)pt(x
′,xt+1)

−κ(x′,xt+1)pt(x,xt+1)− κ(x,xt+1)pt(x
′,xt+1)

+κ(x,xt+1)κ(x′,xt+1))

Once P is known, the computation of C−1 is not required anymore, there are no more

matrix-vector products to be performed, and the µ and σ2 updates can be done in

O(N), which means that the cost of iteration t+ 1 is O(N2) and CT = O(N2 T ).

We refer to this version of the algorithm as ‘GPB-online3’. It is particularly

interesting for relatively small values of N , for instance when the number of iterations

of the algorithm grows larger than N . Note that this cost is the same as for GP inference

in the weight-space view. Also, for UCB1, T ≥ N and the cost of T iterations is in

O(N T ).1 We thus have a linear cost for both algorithms, with a constant in N for

UCB1 and in N2 for GPB-online3, and we have regret bounds in Õ(
√
T ) in both

cases – but supposedly with a better constant for GPB, as we learn more from each

sample.

When N is large The exhaustive search for the upper confidence maximiser implies

a cost in O(N) at least, which can be very large. We will see in the next chapter how to

exploit tree-like dependency structures among arms in order to only consider a subset

of the whole set of arms that grows with t.

3.1.2.3 Reducing the size of the training set: GPB-red

We can reduce the computational cost of GPB by reducing the size of the training set.

For example, at each iteration we add an arm to the training set, but we can also decide

to remove the oldest sample in the training set if the size of Dt is bigger than a certain

function St. This new version of GPB will be referred to as GPB-red. An interesting

thing to notice with GPB-red is that, when removing a data point from the training

set, we increase the GP posterior variance at this point and points close to it. Therefore

we give them more chances to be selected, as increasing the variance increases ft, and

thus GPB-red explores more than GPB – empirical evidence of this was given by

1The cost of an update is constant, but the cost to find the arm with highest upper confidence bound

scales linearly with N .
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Dorard et al. (2009).

The cost of updating the posterior mean and variance at iteration t of GPB-red

is obtained by replacing t by a bound on the number of elements in training, St – which

is smaller than t. We must also determine the cost of recomputing the posterior after

the oldest data point has been removed (downdate).

Online downdates Let us write It,l = {it−l+1, . . . , it} and Dt,l for the corresponding

training set, i.e. the training set at time t restricted to the l last elements that have

been observed. We denote by a t, l subscript all quantities that are based on It,l instead

of It. We write:

C−1
t,l+1 =

 dl bT
l

bl Al


=

 κ(xt−l,xt−l) + s2
noise kt,l(xt−l)

T

kt,l(xt−l) Ct,l

−1

C−1
t,l can thus be determined from the block matrices that make up C−1

t,l+1:

C−1
t,l = Al −

bT
l bl
dl

We thus see that the covariance matrix can be downdated in O(l2) when removing xt−l.

Similarly to the previous online updates formulae, we can show that

µt,l+1(x) = µt,l(x) + (yt−l − µt,l(xt−l))
κ(x,xt−l)− kt,l(x)TC−1

t,l kt,l(xt−l)

σ2
t,l(xt−l) + s2

noise

(3.7)

σ2
t,l+1(x) = σ2

t,l(x)−
(κ(x,xt−l)− kt,l(x)TC−1

t,l kt,l(xt−l))
2

σ2
t,l(xt−l) + s2

noise

(3.8)

We have to do the following in order to downdate µ and σ2 when discarding the

(l + 1)th last observation:

• Downdate the covariance matrix inverse: O(l2)

• Compute µt,l = K(It,l, I)TC−1
t,l yt,l: O(l2) for the right-most product, O(N l) for

the remaining product

• Compute σ2
t,l(xt−l) = κ(xt−l,xt−l)− kt,l(xt−l)

TC−1
t,l kt,l(xt−l): O(l2)
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• Compute σ2
t,l:

– Determine the list of κ(x,xt−l) − kt,l(x)TC−1
t,l kt,l(xt−l) values for all arms,

based on Equation (3.7) and the fact that µt,l, µt,l+1 and σ2
t,l(xt−l) are al-

ready known: O(N)

– Use these values to compute σ2
t,l(x) for all arms, using Equation (3.8) and

the fact that σ2
t,l+1 is already known: O(N)

The total cost of this is O(l2 +N l).

Cost of GPB-red The cost of iteration t+1 is equal to the cost of an online update,

plus potentially the cost of an online downdate. With the GPB-online1 algorithm,

this is twice O(S2
t + N St). The overall cost of T iterations CT is thus bounded by

O(T (S2
T + N ST ) + N T ) = O(T (S2

T + N ST )). If S is a constant function, the cost

becomes linear, as it is with UCB1 for instance. However, if the value of S depends on

N , the constant will be bigger than with UCB1. If S is a logarithmic function, then

CT = Õ(T ).

Remarks

• Although we do not give theoretical guarantees on the performance of GPB-red,

it seems preferable, if we want to keep the no-regret property, to impose at least

to S to be a strictly increasing function that tends to infinity, so that there is no

T∗ such that no more data is added to the training set after T∗.

• An alternative way to decide when to remove samples would be by dropping the

oldest sample of the training set as long as the resulting σt values do not exceed

a certain threshold. We would need to determine a bound on the size of the

training set at time T with this method if we want to determine its computational

complexity.

• Choosing to remove the oldest sample is somewhat arbitrary: it may be better,

instead, to remove samples based on the amount of information they provide.
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3.2 Theoretical analysis

3.2.1 Overview

The GPB algorithm was analysed by Srinivas et al. in the cases of finite and infinite

number of arms, under the assumption that f is drawn from a Gaussian Process with

zero mean and given covariance function, and in a more agnostic setting where f has

low complexity as measured under the RKHS norm induced by a given kernel. The rest

of this chapter focuses on their work, reviewed in Propositions 1 to 4 and in the proofs

to which we added details. Their results will be core to the regret bounds we give in

Section 4.3.3. It is important to note that, whereas f was previously fixed, in the GP

setting it is now a random variate. As a consequence, the cumulative regret defined

in Section 2.1.1.1 is now a random quantity, and we aim to upper bound it with high

probability with respect to the choice of f .

The regret analysis is based on a quantification of the reduction in uncertainty

caused by the observation of data, through the information gain. If A is a subset of

X , getting a sample of outputs yA for the elements in this set reduces our uncertainty

about the set of f values for all arms, f . The information gain associated to A is defined

as the mutual information between yA and f , i.e. the entropy of f minus the entropy

of f given yA:

G(A) = G(yA; f) = H(f)−H(f |yA) (3.9)

G is a monotonic function (Cover and Thomas, 1991): A ⊂ A′ ⇒ G(A) ≤ G(A′). It

is also a submodular function (Krause and Guestrin, 2005): if A ⊂ A′, we gain less

information when adding a new element to A′ than when adding it to A (property of

diminishing returns).

Proposition 1. We restate Theorem 1 of Srinivas et al. (2010). We write GuT for

the information gain after acquiring T samples iteratively by maximisation of the upper

confidence function in a finite space X . Assume that f is drawn from a Gaussian

Process with zero mean and given covariance function κ, and that κ(x,x) = σ2
0 for all

x. For any given δ between 0 and 1 and βt defined accordingly (see 3.1.1.2 on page 65),

we have:

P

(
∀T > 1, RT ≤

√
8σ2

0

log(1 + s−2
noiseσ

2
0)
βT−1TGuT

)
≥ 1− δ
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We can also write, “with high probability”:

RT = Õ(
√
TGuT )

A proof is given in Section 3.2.2.

The distributions being Gaussian (Gaussian process and Gaussian noise), the in-

formation gain GuT is expressed in terms of the log determinant of KT + s2
noiseIT . It can

easily be written in terms of the eigenvalues of KT . The simplest case is for a linear

kernel in d dimensions, which we illustrate in Section 3.2.4.1. However, in general there

is no simple expression for these eigenvalues since we do not know which arms have

been played.2

Instead, we aim to bound the max infogain (maximum possible information gain),

maxA⊂X ,|A|=T G(A), which measures how quickly the function can be learnt in an in-

formation theoretic sense. We actually consider the max infogain G∗T in the extended

space X e of linear combinations of the elements in X such that the vector of coefficients

has norm 1, for a reason that will become clear later:

X e =

{
N∑
i=1

viai s.t. ||v|| = 1

}
⊃ X

Clearly, we have G∗T ≥ GuT . Intuitively, a small growth rate of the max infogain means

that there is not much information left to be gained after some time, hence that we can

learn quickly, which should result in small regrets. We can expect the max infogain to

be a problem-dependent quantity, and that its growth is determined by properties of

the kernel and of the input space. We write GgT for the greedy infogain after acquiring

T samples in X e, i.e. the information gain of a “greedy” algorithm that selects at

each iteration the arm that maximises its immediate information gain. Because the

information gain is a monotonic and a sub-modular function, Nemhauser et al. (1978)

state that:

G∗T ≤
1

1− e−1
GgT

where e = exp(1).

Proposition 2. We write λ̂1 ≥ . . . ≥ λ̂N for the eigenvalues of K. The greedy infogain

can be bounded as follows:

GgT =
1

2

min(T,N)∑
i=1

log(1 + s−2
noisemiλ̂i) (3.10)

2The process of selecting arms is non-deterministic because of the noise in the observations.
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where (mi)i is a sequence of positive or zero values which sum is equal to T and which

maximises the expression above. A proof is given in Section 3.2.3.

Remarks

• min(T,N) ≤ N hence GgT = Õ(N) and thus:

RT = Õ(
√
N T ) (3.11)

However, in some applications, N � T , and it is more interesting to bound RT

in terms of T rather than N , when possible.

• We may be interested in cases where N depends on T , as in MDP planning (with

deterministic transitions) where the tree of all possible sequences of actions has

infinite depth and we typically choose D as a function of the horizon T (see Section

2.3.3).

3.2.2 Bounding the regret with the information gain

In this section we prove Proposition 1.

Information gain of a GP-based algorithm We start by writing:

G(DT ) = H(f)−H(f |yT ) = H(yT )−H(yT |f)

• The first term can be expressed recursively: H(yT ) = H(yT−1) + H(yT |yT−1).

Conditioned on yT−1, the (xt)1≤t≤T are deterministic and thus f(x) ∼

N (0, σ2
T−1(x)) for all x. yT = f(xT )+εT is a sum of two zero-mean Gaussians: one

with variance equal to σ2
T−1(xT ) and the other with variance equal to s2

noise. By

application of Equation (A.2) we have H(yT |yT−1) = log(2πe(s2
noise +σ2

T−1(xT ))),

from which we deduce:

H(yT ) =
1

2

T∑
t=1

log(2πe(s2
noise + σ2

t−1(xt)))

• The second term is easily determined, using the fact that yT conditioned on f

follows a zero-mean normal distribution with covariance matrix equal to s2
noiseIT :

H(yT |f) =
1

2
log(

∣∣2πes2
noiseIT

∣∣)
=

1

2

T∑
t=1

log(2πes2
noise)



3.2. Theoretical analysis 78

Combining these two terms and bringing each term of the sum over t under one log, we

get:

G(DT ) =
1

2

T∑
t=1

log(1 + s−2
noiseσ

2
t−1(xt)) (3.12)

Bound on the sum of squared immediate regrets Recall that, for a UCB-type

algorithm, the immediate regret was bounded in terms of σt(xt+1) in Inequality (2.6).

We now try to relate the immediate regret to an expression in log(1 + s−2
noiseσ

2
t−1(xt)),

so that later we can bound the regret in terms of the information gain. From In-

equality (2.6), r2
t ≤ 4βT−1s

2
noisea where a = s−2

noiseσ
2
t−1(xt) ≤ s−2

noiseσ
2
0 = b. We have

a ≤ b
log(1+b) log(1 + a) because x

log(1+x) is an increasing function, which gives:

r2
t ≤

4σ2
0

log(1 + s−2
noiseσ

2
0)
βT−1 log(1 + s−2

noiseσ
2
t−1(xt))

Using Equation (3.12), we thus have:

T∑
t=1

r2
t ≤

8σ2
0

log(1 + s−2
noiseσ

2
0)
βT−1G

u
T (3.13)

We can relate the cumulative regret RT to
∑
r2
t using the Cauchy-Schwarz inequal-

ity and the fact that RT is the inner product between the vector of regrets rt at each

time 1 ≤ t ≤ T and the T -dimensional vector of ones.

R2
T ≤ T

T∑
t=1

r2
t

Combining this with Inequality (3.13) proves Proposition 1.

Remark on the noise-free case It is not straightforward to adapt the current analy-

sis to the case where rewards are deterministic (snoise = 0). Indeed, the information gain

at time t in this case is equal to H(yt−1)+H(yt|yt−1) = H(yt−1)+1/2 log(2πeσ2
t−1(xt))

and thus it is equal to
∑T

t=1 1/2 log(2πeσ2
t−1(xt)): the trick we used to relate the infor-

mation gain to the sum of squared regrets cannot be applied here.

3.2.3 Bounding the information gain with the eigenvalues of the total kernel

matrix

In this section we prove Proposition 2.
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The greedy algorithm chooses at each time step the arm that maximises the im-

mediate information gain:

G(Dt−1 ∪ {x, y})−G(Dt−1) = H(yt)−H(yt−1)− (H(yt|f)−H(yt−1|f))

= H(yt|yt−1)−H(yt|yt−1, f)

= 1/2 log(2πe(s2
noise + σ2

t−1(x)))− 1/2 log(2πes2
noise)

We thus see that this is equivalent to maximising the posterior variance.

We write Σt for the posterior covariance matrix on the whole set of arms at time

t for the greedy algorithm. x can be written as
∑N

i=1 viai where ||v|| = 1.

σ2
t (x) = covt(x,x)

=
∑
i1

∑
i2

vi1vi2 covt(ai1 ,ai2)

=
∑
i1

∑
i2

vi1vi2(Σt)i1,i2

= vTΣtv

Choosing an arm x is equivalent to choosing a vector v of norm 1. We denote by vt the

vector that corresponds to the arm chosen at time t by the greedy algorithm.

vt+1 = argmax||v||=1 vTΣtv (3.14)

3.2.3.1 The greedy posterior covariance matrix has same eigenbasis as K

Relationship between the two matrices We have

Σ−1
t = K−1 + s−2

noiseVtV
T
t (3.15)

where Vt is the matrix of concatenated vτ vectors (for τ from 1 to t). Using (A.5) with

the fact that Σt is the covariance matrix of P(f |yt) and the vector [f yt]
T is drawn from

a Gaussian with zero mean and covariance matrix: K KVt

VT
t K Kt + s2

noiseIt


Recursive proof they share the same eigenbasis Let us show by recursion that

for all t, Σt and K have same eigenbasis. We write the eigen-decomposition K = UΛ̂UT

where U = [u1 . . .uN ] is the matrix of normalised eigenvectors ordered by decreasing

eigenvalues. We only need to show that for all i, ui is an eigenvector of Σt.



3.2. Theoretical analysis 80

• The proposition is trivial for t = 0 since Σ0 = K.

• Note that, if the proposition is true for a given t− 1, vt being the eigenvector of

Σt−1 with highest eigenvalue, it is also an eigenvector of K.

• Let us assume that the proposition is true for 1 to t − 1, and let us show that it

is true for t.

1. From the previous point, we know that v1, . . . ,vt are all eigenvectors of K,

thus Vt is composed of columns of U, say columns î1 . . . ît:

2. (VtV
T
t )ui =

(
uî1 . . . uît

)
uT
î1

. . .

uT
ît

ui = mi,tItui

where mi,t is the number of occurrences of ui in Vt, i.e. the number of times

the ith arm has been selected up to time t

3. Multiplying Equation (3.15) by ui on the right-hand side, we find that each

ui is an eigenvector of Σt

3.2.3.2 Decay of the eigenvalues of the covariance matrix

For all ui:

Σ−1
t ui = K−1ui + s−2

noiseVtV
T
t ui (3.16)

= λ̂i
−1

ui + s−2
noisemi,tui (3.17)

Σtui =
λ̂i

1 + s−2
noisemi,tλ̂i

ui (3.18)

Interpretation At the first time step, u1 is selected. At the following time step,

either the eigenvalue corresponding to u1 (which is λ̂1
1+s−2

noiseλ̂1
) is still bigger than all the

λ̂i≥2, and u1 is selected again, or it is not the case and the biggest eigenvalue is thus

λ̂2 which makes us select u2. Then, either the eigenvalue corresponding to u1 shrinks

again (if chosen previously) which might thus create an opportunity to select u2, or

the eigenvalue corresponding to u2 shrinks (if chosen previously) which might create an

opportunity to select u3 or u1 again; and so on. Repeating this argument shows that

vt = uι(t) with ι(t) ≤ t.
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3.2.3.3 Impact on the information gain

Successive covariance matrices of P(f |yt) share their eigenbasis with K. Let us denote

by
ˆ̂
λi,t the eigenvalue of Σt corresponding to eigenvector ui.

σ2
t−1(xt) = max

||v||=1
vTΣt−1v = uT

i(t)Σt−1ui(t) =
ˆ̂
λi(t),t =

λ̂i(t)

1 + s−2
noisemi(t),tλ̂i(t)

We plug this in Equation (3.12), which gives:

GgT =
1

2

T∑
t=1

log(1 + s−2
noise

ˆ̂
λi(t),t)

Let us denote by Ti ⊂ [1, T ] the set of t values such that i(t) = i, and by mi the

number of elements in Ti (i.e. the number of times i has been selected up to time T ).

Because we have done T iterations, the greedy algorithm will have picked vectors among

the first T eigenvectors of K, hence i ≤ T , which, combined with i ≤ N (total number

of eigenvectors), gives i ≤ min(T,N). We denote by Si the sum of log(1 + s−2
noise

ˆ̂
λi(t),t)

for t ∈ Ti.

Si = log(1 + s−2
noiseλ̂i) + log

(
1 +

s−2
noiseλ̂i

1 + s−2
noiseλ̂i

)

+ log

(
1 +

s−2
noiseλ̂i

1 + s−2
noise2λ̂i

)

+ . . .+ log

(
1 +

s−2
noiseλ̂i

1 + s−2
noisemi,tλ̂i

)

We transform the sum of logs into a log of a product and expand the product, which

gives Si = log(1 + s−2
noisemiλ̂i). Summing the Si gives:

GgT =
1

2

min(T,N)∑
i=1

log(1 + s−2
noisemiλ̂i) (3.19)

Since the mi values are not known, we maximise over all positive mi values whose sum

equals T , which gives Proposition 2.

We see that comparing to the greedy algorithm is crucial to bound the information

gain in terms of the eigenvalues of K – instead of the eigenvalues of Kt.
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3.2.4 Other notable results

3.2.4.1 Special case: the linear kernel

The linear kernel in Rn is defined by κ(x,x′) = xTx′, so that KT = XT
TXT . Let us

denote by ΛT the diagonal matrix of eigenvalues λT,1 ≥ . . . ≥ λT,n of XTXT
T . The

information gained from a training set DT can be expressed in terms of KT :

G(x1, . . . ,xT ) = H(f)−H(f |yT )

= H(fT )−H(fT |yT )

= H(yT )−H(yT |fT )

= H(N (0,KT + s2
noiseIT ))−H(N (fT , s

2
noiseIT ))

= 1/2 log(
∣∣∣IT + s−2

noiseX
T
TXT

∣∣∣)
= 1/2 log(

∣∣∣In + s−2
noiseXTXT

T

∣∣∣) by Sylvester’s determinant theorem

≤ 1/2 log(
∣∣In + s−2

noiseΛT

∣∣) by Hadamard’s inequality

≤
n∑
i=1

1/2 log(1 + s−2
noiseλT,i)

≤ (n/2) log(1 + s−2
noiseλT,1)

The largest eigenvalue of XTXT
T is O(T ), therefore the information gain scales in

O(n log(T )) and the regret in Õ(
√
n log(N)T ).

3.2.4.2 Infinite number of arms

Proposition 3. We can bound with probability 1 − δ the regret of the GPB algorithm

run on a compact and convex subset of Rn with a Squared Exponential kernel and βt =

2 log
(
t
n
2 +2π2

3δ

)
as follows:

RT = Õ(
√
nTGuT )

See Srinivas et al. (2010) for a proof and a characterisation of the kernels for which

this result can be extended.

The analysis requires discretising the input space X , and to use the regularity of

the covariance function in order to have all f values within their confidence intervals

with high probability. The discretisation XT after T iterations is of cardinality O(T ),

and the information gain is bounded by an expression of the eigenvalues of KT . The
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expected sum of these can be linked to the sum of eigenvalues of the kernel operator

spectrum with respect to the uniform distribution over X , for which an expression is

known for common kernels such as the Gaussian and Matérn kernels.

3.2.4.3 Reward functions in a Reproducing Kernel Hilbert Space

As in the frequentist setting, we compare the performance of our algorithm on the

specific problem at hand (f is fixed) to the performance of an optimal allocation that

would know f in advance, without any assumption on the problem other than the reward

distributions for any given arm being bounded. In the present setting, f is arbitrary

(not drawn from any prior) and a regret bound is given in terms of its smoothness

(measured by its RKHS norm). The GP prior is just an artefact of the algorithm that

is only used to define an arm selection criterion. In the Proposition below, we give

an upper bound on the algorithm’s regret, which is now a fixed quantity (unlike in

Proposition 1).

Proposition 4. We restate Theorem 3 of Srinivas et al. (2010). If f is a fixed (but

unknown) function that lies in the RKHS induced by κ on the (potentially infinite) input

space X , if it has finite norm ||f ||κ ≤ c and if (ετ )τ is a martingale difference sequence

bounded by snoise almost surely, then when running GPB with covariance function κ and

with a certain expression for βt based on c, we have:

RT ≤ Õ(
√
T (||f ||κ

√
G∗T +G∗T )) (3.20)

See Srinivas et al. (2010) for the exact expression for βt and for a proof of this result.

The authors stress that neither this Proposition nor Proposition 3 encompasses the other.

The former holds uniformly over all functions of finite norm under the chosen RKHS,

whereas the latter is a probabilistic statement. Moreover, in the GP setting, ||f ||κ is

almost surely infinite.

If X is finite, for any set of function values f = (f(a1) . . . f(aN ))T we have ||f ||2κ =

fTK−1f , so the norm of f in the RKHS is always finite (see Section 2.2.2.3). If we take

a kernel for which the eigenvalues of K decay more rapidly , we can expect to get a

smaller G∗T bound but a larger ||f ||κ value. Note that this regret bound involves a G∗T

term – instead of
√
G∗T – and G∗T may scale linearly with N . If N depends on T (for

instance, N = T in Section 4.4.5), the regret upper bound can be worse than linear.



4
Gaussian Process Tree Search

In our background review, we saw how using UCB1 bandit instances at each node of a

tree could help tree search (the “many-bandits” approach). But with the more recent

many-armed bandit algorithms that model dependencies between arms and that can be

applied to optimisation problems, we can consider a single bandit instance applied to

the search for an optimum in a tree-structured space. Each element of the search space

on which the target f is defined is a tree leaf (or, equivalently, a tree path) and the

cardinality N of the space is bounded by the maximum branching factor to the power

of the maximum depth.

In this chapter, we introduce and study the Gaussian Process Tree Search algorithm

(GPTS), which consists of using GPB for searching tree-structured spaces. We start by

explaining why GP models make sense for trees and we introduce some kernels of interest

that are based on the number of nodes in common between two paths. The application

of GPB to tree search is not as straightforward as one could imagine, because the

84
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algorithm requires searching for the element with the highest upper confidence bound

in a large, discrete space, in which an exhaustive search will not be feasible. Also, the

reward estimates and uncertainty measures of all of the N arms need to be updated after

each new observation. These operations can be implemented efficiently by exploiting

the tree structure and the fact that leaves in the same unexplored subtree share their

upper confidence values. As a consequence, we only need to consider, at each time t, a

set of arms which cardinality scales linearly with t. The computational complexity that

follows from this scales in D T 3 (or D T S2
T +D T 2 ST for GPTS-red).

As we saw in the previous chapter, the information gain of the algorithm is bounded

by a constant that depends on N , which can be extremely large here (N � T for large

branching factors). We improve this constant by providing a bound on the eigenvalues

that exploits the properties of the kernel, and which is expressed in terms of the kernel

parameters. We give a regret bound that scales in the square root of NT (up to

logarithmic factors), and one that scales in N
1
4T

3
4 . In both cases, and for a Gaussian

tree paths kernel, the constant improves for higher values of the kernel width (resulting

in smoother functions).
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4.1 Introduction: GP models for Tree Search

Here, we consider the general problem of tree search, for which nodes may be unlabeled.

Our intuition on the function f defined on tree leaves, or, equivalently, on tree paths, is

that the more nodes in common between two paths, the closer their f values are likely

to be.

We saw that BAST and UCT estimate the “quality” of a node with an average µ of

the rewards obtained with all paths that were tried and that included this node. Thus,

the algorithm expects the value of the reward that will be obtained in the end, if it

chooses to go through this node, to be more or less close to µ: all paths that go through

this node will all have rewards close to each other. For the MDP planning problem,

Bubeck and Munos (2010) say that “the rewards obtained along any sequence provides

information, not only about that specific sequence, but also about any other sequence

sharing the same initial actions”. This is a property that translates to other tree search

problems and that many-bandits algorithms do not fully exploit: at each iteration, they

only update the statistics at the nodes of the path that was just “played”. It also relates

to a correlation assumption that can be formalised with a GP prior, with a covariance

function based on the number of nodes in common between two inputs. Owing to GPs,

we can share information gained for playing a path with any other path that has nodes

in common. The covariance function is between tree paths, i.e. sequences of nodes

x = x1, . . . , xD where x1 is always a child of the root node and has depth 1.

Our Gaussian Processes Tree Search approach consists in applying GPB to the

search for optimal values of f by considering tree paths as arms of a bandit problem.

We refer to this as the single-bandit approach to tree search: unlike the many-bandits

approach, we use only one instance of a bandit algorithm that is able to model de-

pendencies between arms.1 Perhaps the most natural features for tree paths consist

of node indicators for all nodes of the tree. Another possible single-bandit algorithm

would be based on LinRel instead of GPB. However, given the similarities between

the two algorithms, we prefer to use GPB since the definition of its exploration term is

more principled and performance guarantees have been given even when the Gaussian

1Bubeck and Munos (2010, sec. 4) also consider a similar approach when comparing UCB-AIR and

HOO to OLOP.
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assumptions do not hold.

In the following we consider trees with maximum branching factor B ≥ 2 and depth

D ≥ 1. The number of arms is N = BD.

4.1.1 Kernels based on the number of nodes in common

We consider a feature space indexed by all the nodes x of the tree, with the feature

vector of any given path x = (x1, ...xD) defined by:

φx(x) =

 1; if ∃1 ≤ i ≤ D,x = xi

0; otherwise.

The dimension of this space is equal to the number of nodes in the tree other than

the root, N̄ . The linear kernel in this space simply counts the number of nodes in

common between two paths. Note that paths that start from different children of the

root node will have a linear kernel product of 0, meaning that their mean-reward values

are considered to be independent. As a consequence, there will be many zero entries in

K with the linear kernel.

Similarly to BAST, we wish to model different levels of smoothness of f . For this,

we can extend the notion of characteristic length-scale to functions on tree paths by

considering a Gaussian covariance function in their feature space. The squared Euclidian

distance is twice the number of nodes d where they differ: path 1 contains nodes indexed

by i1, . . . , id that path 2 does not contain, and path 2 contains nodes indexed by j1, . . . , jd

that path 1 does not contain, so the i1, . . . , id and j1, . . . , jd components of the feature

vectors differ. The components of the difference of the feature vectors will be 0 except at

the d i-indices and at the d j-indices where they will be 1 or −1. Summing the squares

gives 2d. Consequently, the Gaussian kernel is an exponential on minus the number of

nodes where two paths differ (from 0 to D): exp(−d/s2) where s is the characteristic

length-scale.

More generally, any kernel function that is based on the number of nodes in common

between paths is characterised by a set of χ0 > ... > χD−1 values in [0, 1], where χd

represents the value of the kernel product between two paths that have d nodes not in

common, and χD = 0. We can give an explicit feature mapping for such a kernel, in
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the same feature space as before:

φx(x) =


√
χD−i − χD−i+1; if ∃1 ≤ i ≤ D,x = xi

0; otherwise.

Indeed, consider two paths that differ on d nodes: the first 1 + D − d nodes

only will be in common, hence the inner product of their feature vectors will be

χD +
∑D−d

i=1 (
√
χD−i − χD−i+1)2 = χd, which is equal to the kernel product between

the two paths, by definition of χd. Note that the kernel is normalised by imposing

χ0 = 1, which will be required in Section 4.3.2.1.

4.1.2 Examples: discounted MDPs and game trees

4.1.2.1 Discounted MDPs with deterministic dynamics and normalised Gaussian

rewards

We model our belief on what we expect the intermediate reward functions to be by

considering, at each node xτ in the sequence of actions being explored, a set of ran-

dom variables F
(xτ )
1 , . . . , F

(xτ )
B such that the intermediate reward function values for

all possible actions from node xτ is a realisation of this set of random variables. We

assume that each of these random variables follows a normalised Gaussian distribu-

tion, and that they are all independent. The discounted sum of intermediate reward

values is a sum of Gaussians, hence it is a Gaussian and the GP model makes sense.

We now determine the tree paths covariance function that follows from our assump-

tions. A path is a list of nodes x0, x1, . . . , xD, where x0 is the root, corresponding to

a list of indices i1, . . . , iD of actions taken in the environment. Our belief on the func-

tion value for this path is represented by γ0F
(x0)
i1

+ . . . + γD−1F
(xD−1)
iD

. If two paths

x and x′ have h = φ(x)Tφ(x′) action indices in common, they can be represented by

i1, . . . , ih, ih+1, . . . , iD and i1, . . . , ih, i
′
h+1, . . . , i

′
D. The kernel product between these two

paths is given by:

κ(x,x′) = cov(γ0F
(x0)
i1

+ . . .+ γh−1F
(xh−1)
ih

+ γhF
(xh)
ih+1

+ . . .+ γD−1F
(xD−1)
iD

,

γ0F
(x0)
i1

+ . . .+ γh−1F
(xh−1)
ih

+ γhF
(n′h)

i′h+1
+ . . .+ γD−1F

(n′D−1)

i′D
)

=
h−1∑
τ=0

γτγτ cov(F
(xτ )
iτ+1

, F
(xτ )
iτ+1

)

=
1− γ2h

1− γ2
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where we used the bi-linearity of the covariance, the independence of the random vari-

ables, and the fact that their variances are always 1 since they follow normalised Gaus-

sian distributions. This characterises our belief on the discounted sum of rewards f .

Note that the kernel is not normalised: κ(x,x) = 1−γ2D
1−γ2 which grows with D. This

reflects the fact that the signal variance is higher for deeper trees.

We refer to this kernel as the discounted kernel (γ < 1). If γ = 1 (un-discounted

MDP), we have the linear kernel. Note that f is made smoother by decreasing the value

of the discount factor γ.

4.1.2.2 Game trees

Hennig et al. (2010) provide a probabilistic, generative model for the value of game tree

nodes under the random rollout policy. We show that their model’s assumptions imply

a GP over the leaves and we give the expression of the covariance function.

The assumptions are that, for each node in the tree, there exists a latent variable

called its score which represents the average of all possible outcomes (+1 for a win, −1

for a loss) from that node on. The prior for the score of the root node is a Gaussian

with zero mean and standard deviation equal to 1 (this can actually be generalised to

any values). The score of a node is generated from a Gaussian with mean equal to the

parent’s score, and with standard deviation equal to 1. As a consequence, the scores of

sibling nodes are independent given their parent’s score.

Ultimately, we are interested in learning the scores of leaves at depth D, and the

assumptions on the scores at interior nodes are used to model the relationships between

the leaves’ scores. When arriving at a leaf, we get a reward by randomly finishing the

game (as in classical Monte-Carlo game tree search, see Gelly and Wang, 2006). We

can thus consider that this reward is a Bernoulli sample with mean equal to the score of

the leaf node. Thus, we observe the true scores plus an arbitrary martingale difference

sequence (the noise) with variance bounded by the maximum possible Bernoulli variance

(given by m(1 −m) where m is the mean) which is 1/4. When scaling rewards to −1

and 1 instead of 0 and 1, this variance is multiplied by 4. The variance being bounded,

Inequality (3.20) could be applied to bound the regret of GPTS.

Let us now determine the covariance function between paths. We first show by
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induction that, for a node at depth d with score S, var(S) = d. For this, we write P for

the score of the parent. We have that var(P ) = d − 1. By the law of total covariance

(Equation A.6), var(S) = E(var(S|P )) + var(E(S|P )) = 1 + var(P ) = 1 + (d − 1) = d,

which ends the proof. We can also apply the law of total covariance between two paths

X and X ′ that have D−d nodes in common: cov(X,X ′) = E(cov(X,X ′|S))+var(S) =

0 + var(S) = D − d where S is the score of the last node they have in common, which

is at depth D − d. This is the linear covariance function.

Although their model’s assumptions seem restrictive, Hennig et al. have shown

with Q-Q plots that the game of Go is close to their model. They have also reported a

“minor decay in performance” when true scores are drawn uniformly at random, rather

than from Gaussians as the model assumes.

4.2 An efficient implementation of the GPTS algorithm

The difficulty in implementing the GPB algorithm is to find the maximum of the upper

confidence function, when the computational cost of an exhaustive search is prohibitive

due to a large number of arms – as for most tree search applications. At time t we look

for the path x which maximises ft(x). Because κ(x,x) has the same value for all x

(here, χ0), we can benefit from the tree structure in order to perform this search in O(t)

only: ft is a function of the vector k of kernel products with the arms in training, all

the paths that go through the same unexplored subtree share the same k, and there are

O(t) maximum unexplored subtrees. We first define some terminology and then prove

this result.

Terminology A node x is said to be explored if there exists a path xi,i≤t in the

training data such that xi contains x, and it is said to be unexplored otherwise. A

subtree is defined here to be a set of nodes that have a common ancestor called the

root of the subtree, excluding this root node. A subtree is unexplored if no path in the

training data goes through this subtree. A maximum unexplored subtree is a subtree

such that its root belongs to an xi in the training data.

Proof and procedure When κ(x,x) has same value for all x, ft(x) can be expressed

as a function of k = kt(x) (see Equations 2.12 and 2.13 on page 42) and we argue that

all paths that go through a given unexplored subtree S will have same k value, hence
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same ft value. Let x = (x1, . . . , xl, . . . , xD+1) be such a path, where l ≥ 1 is defined

such that node xl has been explored but not xj for j > l. All x’s that go through

S have the same first nodes x1, . . . , xl, and the other nodes do not matter in kernel

computations since they have not been visited.

Consequently we just need to evaluate ft(x) on one randomly chosen path that goes

through the unexplored subtree S, all other such paths having the same value for ft(x).

We represent maximum unexplored subtrees by dummy nodes and, as we do for leaf

nodes, we compute and store ft values for dummy nodes. The number of dummy nodes

in memory is 1 per visited node with unexplored siblings: it is the subtree containing

the unexplored siblings and their descendants. There are at most D+ 1 such nodes per

path in the training data, and there are t paths in the training data, hence the number

of dummy nodes is less than or equal to (D + 1)t.

This means that the number of nodes (leaf or dummy) to examine in order to find

the maximiser of ft is in O(t). We denote this set of nodes Xt. We do not need to

represent all arms in memory, but only those in Xt. After some time, all N̄ nodes of

the tree will have been explored and Xt will be equal to X . Pseudo-code is given in

Algorithm 1 on the next page. Note that with this algorithm, we might choose the same

leaf node more than once unless snoise = 0.

Computational analysis As we said previously, we only need to consider O(D t)

dummy nodes and t leaf nodes when maximising and updating ft, instead of N leaf

nodes. Replacing N by D t in the GPB-online1 computational complexity formula,

we get a cost in O(S2
t +D t St) for the updates and potential downdates.

Here, GPB works with a finite but growing set of arms, so we need to consider

the costs of adding an arm to Xt. After choosing xt+1, we add up to D arms to X ,

corresponding to dummy nodes. With GPB-online1 and for a new arm x, we can

compute µt+1(x) and σt+1(x) directly, based on the covariance matrix inverse, which

costs O(S2
t ). As a consequence, adding dummy nodes at each iteration costs O(D S2

t ).

This is to be added to the previous cost and to the argmax cost (O(D t) instead

of O(N)), which gives:

CT =

T∑
t=1

O(D S2
t +D t St) ≤ O(D T S2

T +D T 2 ST )
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Algorithm 1 GPB for Tree Search

% Initialisation
t = 0 % number of iterations
create root and dummy child d0

Xt = {d0} % set of arms that can be selected
% Iterations
repeat

% Choose a path
if t == 0 then

x = d0

else
choose x in Xt that has highest upper confidence value

end if
if x is a dummy node then

% Random walk
create sibling x′ of x
if all siblings of x have been created then

delete x from the tree and remove from Xt
end if
x = x′

while depth of x is strictly smaller than D do
create x′ child of x and d dummy child of x
add d to Xt
x = x′

end while
add x to Xt % chosen leaf

end if
% Get reward and add to training set
compute the vector of kernel products k between x and the elements of Xt

append x to Xt

append reward(x) to yt

Kt =

(
Kt k
kT κ(x,x)

)
C−1
t = (Kt + s2

noiseIt+1)−1

for all x ∈ Xt do
compute the vector of kernel products k between x and the elements of Xt

compute ft(x) (based on k,Ct,yt, see Equations (2.12) and (2.13))
end for
t = t+ 1

until stopping criterion is met
% Define output
look for x in Xt that had highest reward value and output the corresponding path
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Note that the cost of all online variants of GPB applied to tree search would be the

same because the number of arms to be considered scales in O(T ).

On the choice of kernels The efficient implementation of GPTS through the use of

dummy nodes was made possible by the fact that there is only a small set of possible

kernel product values and we can easily identify paths that have same kernel products.

In problems where we may have access to feature descriptions of nodes, as in Go where

nodes are labelled by Go boards, we may be tempted to exploit the richer representations

of tree paths in our kernel, thus modeling dependencies between paths more precisely.

However, doing so would likely result in an intractable algorithm where we would have

difficulties updating the upper confidence values for all arms – unless N = BD is small.

4.3 Theoretical analysis

4.3.1 Overview

We have seen in Section 4.1.1 that all kernels considered here are equivalent to a linear

kernel in a certain feature space of dimension N̄ . Therefore, we can apply the linear

kernel GPB regret bound given in Section 3.2.4.1. n = N̄ = O(N) here, and thus

we know that the regret scales in Õ(
√
NT ) with high probability. However, we aim

to provide regret bounds with better constants that are stated in terms of the kernel

parameters – we expect smaller constants for smoother kernels. From Propositions 1

and 2, the regret is bounded as follows, with high probability:

RT ≤ max
(mi)i≥0 s.t.

∑
imi=T

√√√√ 4σ2
0βT−1T

(1− e−1) log(1 + s−2
noiseσ

2
0)

min(T,N)∑
i=1

log(1 + s−2
noisemiλ̂i)

(4.1)

We therefore have to upper bound the λ̂i. For our analysis, we “expand” the tree

by creating extra nodes so that all branches have the same branching factor B. This

construction is purely theoretical as the algorithm does not need a representation of the

whole tree, nor the expanded tree, in order to run. We first derive analytical expressions

for the eigenvalues of K in terms of B, D, and the χ0≤d≤D values.

Proposition 5. We write λ̄1 < . . . < λ̄D+1 for the distinct eigenvalues of K, and νi
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for their multiplicities.

∀i ∈ [1, D], λ̄
(D)
i =

i−1∑
j=0

Bj(χj − χj+1) and ν
(D)
i = (B − 1)BD−i

λ̄
(D)
D+1 =

D−1∑
j=0

Bj(χj − χj+1) +BDχD and ν
(D)
D+1 = 1

A proof is given in Section 4.3.2.2.

The λ̂t values are the λ̄i values repeated a number of times equal to their multiplic-

ities, and in reverse order. We thus have λ̂t = λ̄D−i with i such that Bi < t ≤ Bi+1. For

1 < t ≤ N , log(t) = i log(B) + r with 0 < r ≤ log(B) hence Bi < t ≤ Bi+1. i = log(t)−r
log(B)

from which we have:

∀t ∈ [1, N ],∃i ∈ [−1, D − 1], λ̂t = λ̄D−i with logB(t)− 1 ≤ i < logB(t) (4.2)

We can use this inequality in the previous proposition in order to study the decay rate

of λ̂t for chosen tree paths kernels. Note that the expression for λ̄D−i always involves a

BD factor. We will therefore derive upper-bounds of the form λ̂t ≤ Nl̂(t).

Proposition 6. We have, for all t > 1:

λ̂t ≤ Nl̂(t)

where

l̂(t) =
B

(B − 1)Dt
for the linear kernel

=
B

γ(B − γ2)t1+2 logB(1/γ)
for the discounted kernel, with 0 < γ < 1

= O

(
1

s2t

)
for the Gaussian kernel

See proofs in Sections 4.3.2.3, 4.3.2.4 and 4.3.2.5.

Using this result in Equation 4.1, we can derive the following proposition.

Proposition 7. Under the assumption that f is drawn from a GP prior, and by appli-

cation of Proposition 1, the regret of GPTS can be upper-bounded “with high probability”

by an expression that scales in Õ(
√
NT ). In the cases of the linear and of the Gaussian

kernels, it can also be bounded by an expression that scales in Õ
(
N

1
4T

3
4

)
. The con-

stant in the bound improves for larger widths of the Gaussian kernel. Proofs are given

in Sections 4.3.3.1 and 4.3.3.2.
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The ratio between these two rates is Õ

((
N
T

) 1
4

)
, hence the bound corresponding

to the second rate is more interesting when N � T .

4.3.2 Eigenvalues of the kernel matrix on tree paths

In this section we prove Proposition 6, which is a direct application of Proposition 5

with the χd values corresponding to the kernels that are considered.

4.3.2.1 Recursive block representation of the kernel matrix

We write KB,D for the kernel matrix on all paths through an expanded tree with

branching factor B and depth D. These two integers completely characterise the tree.

We start by giving an expression of KB,D in terms of KB,D−1, which will be used in

order to prove Proposition 5.

We write Ji for the matrix of ones of dimension i × i. KB,D can be expressed in

block matrix form with KB,D−1 and JBD−1 blocks:

KB,1 = (χ0 − χ1)IB + χ1JB (4.3)

and

KB,D =


KB,D−1 χDJBD−1 . . . χDJBD−1

χDJBD−1
. . .

. . .
...

...
. . .

. . . χDJBD−1

χDJBD−1 . . . χDJBD−1 KB,D−1



To see this, one must think of the (B,D)-tree as a root pointing to B (B,D − 1)-

trees. On the 1st diagonal block of KB,D is the kernel matrix for the paths that go

through the first (B,D − 1)-tree. Because the kernel function is normalised, this stays

the same when we prepend the same nodes (here the new root) to all paths, so it is

KB,D−1. Similarly, on the other diagonal blocks we have KB,D−1. In order to complete

the block matrix representation of KB,D we just need to know that any two paths that

go through different (B,D − 1)-trees only have the root in common, and we use the

definition of χD.
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Let us denote by Ĩ(n)(M) and J̃(n)(M) the matrices of n blocks by n blocks:

Ĩ(n)(M) =


M 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 M



J̃(n)(M) =


M . . . M
...

. . .
...

M . . . M



We can then write:

KB,D = χDJ̃(B)(JBD−1)− χD Ĩ(B)(JBD−1) + Ĩ(B)(KB,D−1) (4.4)

4.3.2.2 Eigenvalues

We prove Proposition 5 by recursion on D. We write λ̄
(D)
i for the D + 1 distinct

eigenvalues of KB,D and ν
(D)
i their multiplicities. For this, we show that JBD and

KB,D share same eigenbasis, and the eigenvector KB,D with highest eigenvalue is the

vector of ones 1BD , which is also the eigenvector of JBD with highest eigenvalue.

Preliminary result: eigenanalysis of the block-matrix of ones JB has two

eigenvalues: 0 with multiplicity B−1 and B with multiplicity 1. We denote by j1, . . . , jB

the eigenvectors of JB, in decreasing order of corresponding eigenvalue. j1 is the vector

of ones. The coordinates of ji are notated ji,1 . . . , ji,B. For all i from 1 to B we define

Ũ
(B)
i (.) as a concatenation of B vectors:

Ũ
(B)
i (v) =


ji,1v

...

ji,Bv
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For all i ≥ 2,
∑

l ji,l = 0 by definition of ji. For all n-dimensional vector v and n × n

matrix M :

J̃(B)(M)Ũ
(B)
i (v) =


(
∑

k M1,kji,1vk) + . . .+ (
∑

k M1,kji,Bvk)
...

(
∑

k Mn,kji,1vk) + . . .+ (
∑

k Mn,kji,Bvk)



=


(
∑

k M1,kvk)(
∑

l ji,l)
...

(
∑

k Mn,kvk)(
∑

l ji,l)


= 0

Hence Ũ
(B)
i (v) is an eigenvector of J̃(B)(M) with eigenvalue equal to 0.

Recursion We propose eigenvectors of KB,D, use Equation (4.4) and determine the

value of each term of the sum multiplied by the proposed eigenvectors, in order to get

an expression for the eigenvalues.

• For D = 1. From Equation (4.3), j1, . . . , jB−1 are also eigenvectors of KB,1 with

eigenvalue λ̄
(1)
1 = χ0 − χ1, hence λ̄

(1)
1 has multiplicity ν

(1)
1 = B − 1 as expected.

jB is also an eigenvector of KB,1 with eigenvalue λ̄
(1)
2 = Bχ1+χ0−χ1, and ν

(1)
2 = 1.

• Let us assume the result is true for a given depth D − 1.

– The largest eigenvalue of KB,D−1 is

λ̄
(D−1)
D = BD−1χD−1 +

D−2∑
j=0

Bj(χj − χj+1)

with multiplicity 1. Let us apply Ũ
(B)
B to the corresponding eigenvector

1BD−1 , and multiply it by the expression of KB,D given in Equation (4.4).

∗ Ũ
(B)
B (1BD−1) = 1BD and J̃(B)(JBD−1) is a matrix of ones in BD dimen-

sions, hence:

J̃(B)(JBD−1)Ũ
(B)
B (1BD−1) = BDŨ

(B)
B (1BD−1)
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∗ 1BD−1 is also the highest eigenvector of JBD−1 , with eigenvalue BD−1,

hence:

Ĩ(B)(JBD−1)Ũ
(B)
B (1BD−1) = BD−1Ũ

(B)
B (1BD−1)

∗ By definition of 1BD−1 and λ̄
(D−1)
D :

Ĩ(B)(KB,D−1)Ũ
(B)
B (1BD−1) = λ̄

(D−1)
D Ũ

(B)
B (1BD−1)

As a consequence, Ũ
(B)
B (1BD−1) = 1BD is the eigenvector of KB,D

with highest eigenvalue (this will be confirmed later), equal to λ̄
(D)
D+1 =

BDχD +
∑D−1

j=0 Bj(χj − χj+1).

– Let us apply Ũ
(B)
k to 1BD−1 for all k from 1 to B − 1.

∗ Owing to the preliminary result, we have:

J̃(B)(JBD−1)Ũ
(B)
k (1BD−1) = 0

∗ Since 1BD−1 is the eigenvector of JBD−1 with eigenvalue BD−1:

Ĩ(B)(JBD−1)Ũ
(B)
k (1BD−1) = BD−1Ũ

(B)
k (1BD−1)

∗ Since 1BD−1 is the eigenvector of KB,D−1 with highest eigenvalue:

Ĩ(B)(KB,D−1)Ũ
(B)
k (1BD−1) = λ̄

(D−1)
D Ũ

(B)
k (1BD−1)

for the same reasons as previously.

As a consequence, KB,DŨ
(B)
k (1BD−1) = (−χDBD−1 + λ̄

(D)
D+1)Ũ

(B)
k (1BD−1)

and we have found B − 1 eigenvectors of KB,D with eigenvalue equal to

λ̄
(D)
D =

∑D−1
j=0 Bj(χj − χj+1). These vectors are also eigenvectors of JBD

with eigenvalue 0, which comes from the preliminary result and the fact that

JBD = J̃(B)(JBD−1).

– For i from 1 to D − 1, let us apply Ũ
(B)
k , for all k from 1 to B, to all

(B − 1)BD−1−i eigenvectors v of KB,D−1 with eigenvalue equal to λ̄
(D−1)
i .

By definition of v:

Ĩ(B)(KB,D−1)Ũ
(B)
k (v) = λ̄

(D−1)
i Ũ

(B)
k (v)
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v being also an eigenvector of JBD−1 with eigenvalue 0:

J̃(B)(JBD−1)Ũ
(B)
k (v) = 0

Ĩ(B)(JBD−1)Ũ
(B)
k (v) = 0

As a consequence, eigenvalues stay unchanged but their multiplicities are

all multiplied by B (because k goes from 1 to B and we have identified B

times as many eigenvectors) which gives ν
(D)
i = (B − 1)BD−i. Again, the

preliminary result allows us to show that the Ũ
(B)
k (v) are also eigenvectors

of JBD with eigenvalue 0.

– The total number of multiplicities for all found eigenvalues is equal to

(
∑D−1

i ν
(D)
i ) +B − 1 + 1 = BD so we have identified all the eigenvectors.

4.3.2.3 Linear kernel

The linear kernel is an inner product in the feature space, which amounts to counting

how many nodes in common two paths have. It takes values from 0 toD. The normalised

linear kernel divides these values by D. If two paths of depth D differ on d nodes, they

have D − d nodes in common:

χd =
D − d
D

For all j, χj − χj+1 = 1/D, hence λ̄i = 1
D

∑i−1
j=0B

j = Bi−1
(B−1)D for i < D + 1.

• For t > 1: we use Inequality (4.2) to get a lower and an upper bound on λ̂t.

λ̄D−i =
NB−i − 1

(B − 1)D

NB− logB(t) − 1

(B − 1)D
≤ λ̂t ≤ NB1−logB(t) − 1

(B − 1)D

N − t
(B − 1)Dt

≤ λ̂t ≤ NB − t
(B − 1)Dt

And thus we can take:

l̂(t) =
B

(B − 1)Dt



4.3. Theoretical analysis 100

• For t = 1:

λ̂1 = λ̄D+1

= λ̄D +BDχD

= λ̂2

≤ NB

2(B − 1)D

But more simply, we can also write λ̂1 ≤ N .

4.3.2.4 Discounted kernel

If two paths differ on d nodes, they have D − d nodes in common.

χd =
1− γ2(D−d)

1− γ2

χj − χj+1 =
(γ2)D−(j+1) − (γ2)D−j

1− γ2

= (γ2)D−j−1

λ̄i =

i−1∑
j=0

Bj(χj − χj+1)

= γ2D−1
i−1∑
j=0

(
B

γ2

)j

=
γ2D+1

B − γ2

((
B

γ2

)i
− 1

)

λ̄D−i ≤
Nγ

B − γ2

(
B

γ2

)−i
λ̂t ≤

Nγ

B − γ2

(
B

γ2

)1−logB(t)

λ̂t ≤
NB

γ(B − γ2)t1+2 logB(1/γ)

We note that, although the constant in the expression for l̂(t) grows for larger γ values,

i.e. smoother functions, the decay rate in t gets faster.

4.3.2.5 Gaussian kernel

Value of χd and λ̄i

χd = exp(− d

s2
)
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For all j, χj − χj+1 = (1− exp(− 1
s2

)) exp(− j
s2

), hence for all i < D + 1,

λ̄i = (1− qs
B

)
i−1∑
j=0

qjs

= cs(q
i
s − 1)

where

qs = B exp(− 1

s2
))

cs =
1− qs

B

qs − 1

By definition, qs < B. Let us focus on the case where 1 < qs so that cs is always

positive, which is equivalent to:

s >
1√

log(B)

Bounds on λ̂t Once again, Inequality (4.2) gives us a lower and an upper bound on

λ̂t:

cs(q
Dq− logB(t) − 1) ≤ λ̂t ≤ cs(qDq− logB(t)q − 1)

q− logB(t) = t− logB(q)

q− logB(t) = t
−1+ 1

s2 log(B)

1

t
≤ q− logB(t) ≤ 1

t
exp

(
D

s2

)
since t ≤ min(N,T ) ≤ BD

1

t
≤ q− logB(t) ≤ N

t
q−D

cs(N exp(−D
s2

)− t)
t

≤ λ̂t ≤ cs(Nqs − t)
t

And thus we can take:

l̂(t) =
csqs
t

Influence of the kernel width Note that

csqs =
(B − qs)qs
B(qs − 1)

=

(
1 +

1

qs − 1

)(
1− qs

B

)
and qs increases when s increases, hence 1

qs−1 decreases and −qs decreases. As a result,

csqs decreases. Also, since qs tends to B when s tends to infinity, the limit of csqs is 0



4.3. Theoretical analysis 102

when s tends to infinity. The λ̂t upper-bound improves over that of the linear kernel

when s is big enough so that csqs ≤ B
(B−1)D .

Now, let us look at the rate at which csqs tends to zero: when s is bigger than

1√
log(B2 )

, we have:

csqs ≤ 2

(
1− exp

(
− 1

s2

))
≤ 2

(
1

σ2
+ o

(
1

s2

))

Hence:

csqs = O

(
1

s2

)
(4.5)

4.3.3 Regret bounds

In this section we prove Proposition 7 by using Equation (4.1) as a starting point (see

page 93). We lower-bound mt by 0 and we upper-bound it by T . We assume that

λ̂t ≤ Nα1t
−α2 , as it is the case for the linear, discounted and Gaussian kernels (see

Proposition 6). One way to bound the sum of log terms is with a tail-sum of the terms

inside the logarithm: log(1 + s−2
noisemtλ̂t) ≤ s−2

noisemtλ̂t. However, this introduces a T

factor (upper bound on mt) and a N factor from the upper bound on λ̂t, which results

in a regret bound that is worse than linear and involves large constants. Another way

is to bound this sum of log terms by a sum of log-eigenvalues, which we do in Section

4.3.3.1. We can actually stop this sum at T ′ ≤ min(T,N) such that ∀t > T ′,mt = 0,

and we show in Section 4.3.3.2 that the smallest T ′ that verifies this scales in O(
√
NT )

when the kernel is linear or Gaussian.
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4.3.3.1 Bound based on the sum of log-eigenvalues

We bound the sum of log(1+s−2
noisemtλ̂t) by a sum of log(c′λ̂t) = log(c′Nα1)+α2 log(1/t),

which can in turn be bounded owing to a result on the sum of log(1/t):

T ′∑
t=2

log(1/t) ≤
T ′∑
t=1

log(1/t)

≤ log

(
1

T ′!

)
≤ − log(Γ(T ′ + 1))

≤ −T ′ log

(
T ′ + 1

e

)
≤ T ′ log

(e
2

)
using the fact that Γ(x) ≥ (xe )x−1. Let us consider the Gaussian kernel.2 Because

1 ≤ λ̂t
λ̂T

and mt ≤ T , we have:

log(1 + s−2
noisemtλ̂t) ≤ log

((
1

λ̂T
+ s−2

noiseT

)
λ̂t

)
T ′∑
t=1

log(1 + s−2
noisemtλ̂t) ≤ log

((
1

λ̂T
+ s−2

noiseT

)
α1N

)
T ′ + α2

T ′∑
t=2

log

(
1

t

)
+ log(λ̂1)

GgT ≤ log

((
1

λ̂T
+ s−2

noiseT

)
α1

(e
2

)α2

N

)
T ′ +D log(B)

By extracting log(λ̂t) terms from GgT , we take advantage of the log but we also introduce

a 1
λ̂T

term which will be larger for smoother kernels. Indeed, for the Gaussian kernel:

1

λ̂T
≤ 1

λ̂N
=

1

λ̄1

≤ 1

1− e−1/s2

≤ 1
1
s2

+ o
(

1
s2

)
= O(s2)

Using this in the GgT bound with α1 = csqs = O
(

1
s2

)
and α2 = 1 gives:

GgT ≤ log

((
o(1) + s−2

noiseO

(
1

s2

))
e

2
NT

)
T ′ +D log(B) (4.6)

We thus see that the infogain bound improves for smoother Gaussian kernels, i.e. bigger

s. We either get a regret in Õ(
√
NT ) or in Õ(T ) depending on whether we bound

T ′ ≤ min(T,N) by N or T : the former implies a smaller rate in time and a bigger

constant, the latter implies a smaller constant but a rate too high to make the bound

interesting.

2The derivations for the linear kernel are identical and just involve different constants.
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4.3.3.2 Tighter bound on the number of different arms selected by the infogain

greedy algorithm

We know that the infogain greedy procedure chooses eigenvectors of K among the T

that have highest associated eigenvalues. However, we may have only picked T ′ different

eigenvectors, because we picked several times the same ones (mi gives the number of

times we picked the ith eigenvector of K). We look for the smallest T ′ such that:

∀t > T ′,mt = 0 (4.7)

The contrary to Equation (4.7) is equivalent to choosing uT ′+1 at least once. This

is equivalent to the fact that there exists t, first time we select uT ′+1, such that all

eigenvalues
ˆ̂
λi,t of Σt are smaller than

ˆ̂
λT ′+1,t = λ̂T ′+1. This can be written:

∃t ≤ T, ∀i ≤ T ′, λ̂i

1 + s−2
noisemi,tλ̂i

≤ λ̂T ′+1 (4.8)

1

λ̂T ′+1

− 1

λ̂i
≤ s−2

noisemi,t (4.9)

Therefore, Not Equation (4.7) is equivalent to Equation (4.9). Let us assume that the

latter is true. We know that each mi,t is smaller than mi,T and that
∑T ′

i=1mi,T ≤ T ,

hence:
T ′∑
i=1

(
1

λ̂T ′+1

− 1

λ̂i

)
≤ s−2

noiseT (4.10)

Thus, we can find T ′ such that Equation (4.7) is true by lower bounding∑T ′

i=1

(
1

λ̂T ′+1

− 1
λ̂i

)
and looking for T ′ such that this lower bound is equal to s−2

noiseT .

From the λ̂t upper and lower bounds established in the previous section for the Gaussian

kernel, we have:

T ′∑
i=1

(
1

λ̂T ′+1

− 1

λ̂i

)
≥

T ′∑
i=1

T ′ + 1

Ncsqs
− i

cs
(
N exp

(
−D
s2

)
− i
)

≥ 1

as
T ′(T ′ + 1)

where as =
Ncsqs

(
exp

(
−D
s2

)
− 1
)

exp
(
−D
s2

)
− 1− qs

2

thus we look for 0 < T ′ < T such that T ′2 + T ′ − s−2
noiseasT = 0:

T ′ =

√
1 + 4s−2

noiseasT − 1

2
= O(

√
NT )
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Since as tends to 0 when s tends to infinity, the bigger s, the smaller the constant in

the upper bound for T ′.

The same idea can be applied to the case of the linear kernel by using the corre-

sponding upper and lower bounds for λ̂t – which only differ from those for the Gaussian

kernel by constants.

4.4 Discussion

We discuss GPTS in comparison with other algorithms for tree search.

4.4.1 Model

Smoothness of f For any two nodes x and x′ with same parent n at depth d, there

exist two leaves x and x′ (with ancestors x and x′, respectively) such that f(x)−f(x′) =

f(x)− f(x′) (by definition of f on interior nodes, which is the maximum value of f on

descendant leaves). With the GP assumption, (f(x), f(x′))T lies with high probability

within an ellipse determined by the kernel product between x and x′ (equal to the depth

of x and x′, when considering the linear kernel). One can thus say how close the f values

of two siblings may be, and thus bound f(n)−f(x) in terms of d, with high probability,

in order to give a rough comparison with the BAST smoothness assumption. Although

this bound is only with high probability – while it would always hold with BAST –

GPB makes an extra assumption on how the f values are distributed.

The GP smoothness assumption is global, whereas BAST only assumes smoothness

for η-optimal nodes. We note that GPs can estimate the parameters of the covariance

function by maximising the likelihood of the training data.

Reward variability BAST assumes that the reward at each leaf is always in [0, 1]

and is given by a probability distribution whose nature is unknown (it could be different

for each node) and with mean equal to the f value at that leaf. GPB assumes that the

reward distribution is Gaussian with standard deviation snoise. However, Proposition 4

also provides theoretical guarantees when this is not the case and the noise sequence is

an arbitrary martingale difference sequence uniformly bounded by snoise.
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4.4.2 Computational cost

With UCT and BAST, we only need to keep track of two quantities for each node,

which define its U -value: the number of visits of this node and the average of the rewards

obtained by paths that went through this node. At each iteration, the algorithm chooses

a path to explore by starting from the root node and by repeatedly selecting a child

node with highest U -value. The obtained reward is back-propagated from the leaf node

of the path to the root node, in order to update the average reward values, to increment

the number of visits, and thus to update the U -values of these nodes. As a consequence,

the cost of an iteration is constant.

With GPTS, however, we need to update all dummy nodes at each iteration, and

the number of dummy nodes grows in time. Each dummy node is the sibling of a

node at a certain depth that belongs to a path in training, and as a consequence, all

dummy nodes have different kt vectors. As a consequence, even when benefiting from

the computational improvements offered by the online GPB updates and when limiting

the size of the training set to a logarithmic function, iterations of GPTS are expensive

compared to BAST (they are at least quadratic in time). The dummy nodes that are

created when exploring a new subtree at time t+1 have same kt vectors, and they have

kt+1 vectors that only differ at their last coordinate. It might be possible to further

exploit the structure of the tree and the relationships between dummy nodes’ kt vectors

in order to speed up the dummy nodes updates and therefore the GPTS algorithm.

Besides, an interesting property of the updates is that all leaf nodes in a fully explored

subtree share the same update after exploring a dummy node. Although using this

property would not reduce the theoretical complexity of the algorithm, it could offer a

minor improvement on the number of computations in certain cases, and it shows that

the current implementation of GPTS does not fully exploit the tree structure.

4.4.3 Tree growing method

Because we consider tree paths as arms of a bandit problem in GPTS, we need all

paths to have same length. BAST can either be run in iterative-deepening or fixed-

depth mode. Supposedly, it is more efficient in its iterative-deepening version (but

no regret bound was given by Coquelin and Munos for this version). Because GPTS

creates dummy nodes at different depths and considers all of them when deciding where
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to explore, it also grows the tree asymmetrically by going deeper only in regions of

interest – but it has a maximum depth.

It may be possible to run GPTS in iterative-deepening mode, by considering that

there is no maximum depth and that all leaf nodes are dummies. A random walk would

consist of creating only one child node. We would also need to work with a kernel which

would only be based on the number of nodes that paths have in common (not on a

maximum depth).

Finally, we remark that GPTS lends itself to progressive widening (Coulom, 2007)

in a very simple way, owing to the use of dummy nodes. Progressive widening is a

technique which is used for planning in MDPs with infinite action spaces, or more

generally it is used in order to deal with cases where the branching factor is large with

respect to the number of interactions with the environment. In the work of Rolet et al.

(2009), for instance, a node’s children correspond to a discretisation of a continuous

space, and it is useful to refine the discretisation as the tree search algorithm keeps

choosing this parent node. For this, when starting a random walk from a dummy node

in GPTS, we can simply make sure that we never delete this dummy node, so that we

always consider that more siblings exist. Each time a dummy node is chosen by the

algorithm, the branching factor increases.

4.4.4 Regret bounds

Theorem 4 of Coquelin and Munos (2007b) gives a regret bound when ρd decreases expo-

nentially: ρd = δγd. The bound is written in terms of the parameters of the smoothness

assumption (namely η, δ, γ) and is independent of time. This bound is problem-specific

as it involves the inverse of the ∆min quantity, where ∆min = mini{∆i = f∗ − f(i)}.

Note that when f has BD possible inputs, 1/∆min can easily be of the order of BD.

While the bound is interesting asymptotically, the number of iterations T of the tree

search algorithm is unlikely to go past BD for most interesting values of B and D. An-

other issue with the 1/∆min term is that, the smoother f , the bigger 1/∆min and the

bigger the regret – whereas we would actually like to take advantage of the smoothness

of f to improve the regret. The non-dependency w.r.t. ∆min usually comes at the

price of a stronger dependency on time T , as it is the case with UCB1 – O(log(T )) vs.

O(
√
T ).
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Our GPTS regret bound is problem-independent; it scales in the square root of

T , up to logarithmic factors and constant factors that decrease for smoother functions.

Since GPTS does more updates at each iteration than BAST (which only updates

values at the nodes of the last path that was selected), it is learning more, and its

regret should be smaller. One way to improve the current GPTS regret bounds would

be to use the fact that we know the eigenvalues of K exactly in order to provide an

expression (or an upper bound) in terms of t and T for the numbers of times that the

greedy infogain algorithm selects each eigenvector of K – this was previously bounded

by T .

4.4.5 MDP planning

Planning in MDPs with deterministic transitions is an example of a setting where D

can be a function of the horizon T . As seen in Section 2.3.3, it is convenient to take

D = logB(T ), which implies N = T . In this case, we don’t have constants in the order

of BD anymore and we are interested in the growth rate in T of asymptotic regret

bounds. We have:

GgT ≤ max
(mi)i

1

2

min(T,N)∑
i=1

log(1 + s−2
noisemiλ̂i)

≤ max
(mi)i

T∑
i=1

log(1 + s−2
noisemiT l̂(i))

When splitting the sum at t = T∗ and writing r =
∑T∗

i=1mi, we can bound mi by r

when i ≤ T∗ and T − r when i > T∗:

GgT ≤ max
1≤r≤T

T∗ log(1 + s−2
noiserT l̂(1)) + (T − r)Ts−2

noise

T∑
t=T∗+1

l̂(i)

l̂ is a decreasing function, so we can bound its tail-sum by N times a tail integral of l̂.

We write a = logB(1/γ) > 0.

T∑
t=T∗+1

l̂(i) ≤
∫ T

t=T∗+1
l̂(t)dt

≤ B

γ(B − γ2)2aT 2a
∗

When T∗ = T 1/a, the first term dominates in the upper bound of GgT , so that r = T

and we have:

RT = Õ(T 1/2+1/(2a))



4.4. Discussion 109

This is sub-linear for:

1/(2a) < 1/2

logB(1/γ) > 1

γ < 1/B

Usually, the discount factor γ is close to 1 and the number of actions is at least 2, so

the case where γ < 1/B is not really interesting. Note that the bound we give suffers

from the very loose bound on mt (≤ T ), and future work should address this.

OLOP uses the fact that the intermediate reward values are observed, whereas

GPTS can only use information in the form of arm-reward pairs where arms are leaves.

We would need interior nodes to be considered as arms of a bandit problem if we wanted

to add intermediate reward values to the training data. The difference in performance

between OLOP and GPTS can be thought of as the “price” of the information that

GPTS is not able to take into account. The regret of GPTS is T 1/(2a) times the regret

of OLOP when γ ≤ 1√
B

, and T a+1/(2a)−1/2 times the regret of OLOP otherwise.

The relevance of GPTS for MDP planning is questionable, but the method we used

for its theoretical analysis in this setting may be relevant for other problems where

• we only observe reward values on whole paths;

• we have to decide how deep to go down the tree based on the horizon;

• stopping at a fixed depth introduces a linear cost;

• the deeper we go down the tree, the higher the covariances between paths.

One such problem is hierarchical optimisation.

4.4.6 Application to optimisation

4.4.6.1 A model for GP hierarchical optimisation

Coquelin and Munos (2007b) present empirical results for BAST applied to a 1D optimi-

sation problem, which has probably inspired the HOO algorithm. Similarly, we should

be able to apply GPTS in a manner similar to HOO in order to find the maximum of a
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function in a space for which we are given a tree of coverings. As for discounted MDP

planning, we can choose D as a function of T . Each leaf of the tree corresponds to a

region of the search space (regions get smaller as D increases), and we aim at learning

the average f values in these regions. When a leaf is reached, we receive a reward as

the f value of a sample of the uniform distribution in the corresponding search region.

In GP optimisation, we assume a covariance function κ between inputs. Here,

we consider the covariance between any two paths p1 and p2 of the tree of coverings,

corresponding to regions X1 and X2 of the input space. This is the covariance of the

function values for random variables X1 and X2 that follow uniform distributions in

their respective regions. Recall that the (unknown) function value for an input x is

represented by a random variable notated Fx.

cov(p1,p2) = cov(FX1 , FX2)

=

∫
f1f2p(f1, f2)df1df2

=

∫
f1f2p(f1, f2|X1 = x1, X2 = x2)p(x1,x2)df1df2dx1dx2

=

∫
κ(x1,x2)p(x1,x2)dx1dx2

=
1

|X1||X2|

∫
κ(x1,x2)dx1dx2

by definition of the covariance in X , the fact that f has a zero-mean prior, and that X1

and X2 are independent and uniformly distributed in spaces of volumes |X1| and |X2|.

We note, however, that there are as many possible kernel product values as there

are leaves in the tree of coverings (i.e. 2D), whereas our description and analysis of

GPTS concerned cases where the covariance only depends on the number of nodes in

common (there were D possible kernel product values). This was a precondition to our

eigenvalue analysis, but also to the efficient implementation of GPB for tree search

with the use of dummy nodes. We may depart from this model and consider a simpler

one where, as with HOO, we do not account for the fact that leaves may correspond to

regions of the search space that are very close, even when they have few ancestors in

common. To illustrate, consider a recursive splitting in two of [0, 1]: there is a leaf that

corresponds to the region immediately below 0.5, and another leaf that corresponds

to the region immediately above. These two regions are next to each other, but the

corresponding leaves only have the root node as a common ancestor.
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We can choose to only model covariances between leaves based on the number

of ancestors they share. Some covariances will be overestimated, and others will be

underestimated. The model is characterised by a set of χd values, which are initially

unknown but can be set to maximise the likelihood of the observed data. Before any

data is observed, we can initialise these values to those of the linear kernel, scaled so

that χ0 corresponds to the signal variance (if it is known beforehand).

4.4.6.2 Remarks

Hierarchical optimisation has the following properties:

• it offers a unified framework for many optimisation problems (not just in Rn): the

search space can be the Cartesian product of an arbitrary (and possibly infinite)

family of discrete and continuous sets;

• it simplifies the dependency structure, compared to “normal” GP models: there

is only a finite number of possible kernel values;

• choosing a point where to sample the function is straightforward, as no search

heuristics are required to approximate the sample acquisition criterion.

In their application, Coquelin and Munos tried several values for the smoothness

parameter δ (ρ in our notations), but no method was given in order to tune its value

for the problem at hand. By adapting the hierarchical optimistic strategy to the GP

framework, we would benefit from the Bayesian way of updating the parameters of

the model based on new observations. Besides, Bubeck et al. (2010) tell us that no

performance guarantees are available for HOO with an overestimated smoothness, and

that the algorithm may get stuck indefinitely in a local optimum of f . We expect the

GP model to be more robust to misestimations of its parameters since regret bounds

are also available for the more agnostic setting where f has finite norm in the RKHS

induced by the covariance function.

It may be interesting to consider a tree of coverings with a branching factor that is

greater than 2. For example, at each level of the tree we could split the search space in

two according to each of its n dimensions: B would be equal to 2n, and the size of the

coverings would decrease more rapidly. By only splitting according to one dimension,
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HOO privileges the dimensions along which it splits first – which are chosen arbitrarily.

Indeed, the more reliable reward estimates in tree search are at smaller depths.



5
Empirical Results

We introduce a new Matlab toolbox for bandits and tree search (“Bats”) aimed to make

the empirical evaluations of algorithms easy to perform by defining common interfaces,

and to cut down development time and errors of implementation by sharing code among

them. For instance, LinRel and GPB are kRR extensions of UCB1 that only differ

from each other in the way that they compute their uncertainty estimates, BAST is

based on instances of UCB1, and GPTS is based on an instance of GPB. We explain

how the Object Oriented code of the framework was structured.

We have presented GPB as an alternative to LinRel, and, as such, we now test its

performance on a Content-Based Image Retrieval (CBIR) task for which LinRel was

found to be successful. The problem is to assist a user to find images that are relevant to

his search, by using feature representations of the images and binary feedback in order

to learn what the user is interested in, as he browses results pages. The bandit algorithm

is used to deal with the exploration-exploitation tradeoff imposed by the necessity of

113
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reducing the uncertainty in the learnings and of presenting relevant images as early as

possible. In our experiments, for each category of images taken from the VOC’2007

Challenge data (Everingham et al.), we consider the task of finding images that belong

to this category; the algorithm chooses which images to present to the “user”, and

feedback is given for these images only, based on the fact that they belong or not to the

category. Performance is measured by the average precision, which privileges algorithms

that find relevant images early. Our results validate the pertinence of the GP model in

practise. We were also able to improve the performance of GPB for a few categories, by

periodically updating its hyper-parameters (the weights on the different image features)

using the Maximum Likelihood principle. This means that, with the GP model, we may

be able to learn which features are important for the current search session, based on

the feedback given by the user.

We also study the performance of GPTS on different synthetic trees, with rewards

that are built as discounted sums of unobserved, intermediate rewards at each node.

We vary the parameters of the tree search problems (branching factor, depth, noise

variance, discount factor) in order to study how they impact the regret of the algorithm.

We compare to BAST and show that GPTS handles large branching factors (B = 200,

as one could expect in Go game trees) particularly well. It is likely that this is due to

the fact that, in BAST, the initialisation of the UCB1 instances at each node requires

playing each child node at least once before being able to make an informed decision

on the child node to select. GPTS, however, maintains confidence intervals for all

unexplored subtrees (the number of which scales linearly in T ) and updates each of

them after each new observation. This is also what makes the GPTS iterations more

costly than the BAST iterations.

All experiments were performed with the Bats toolbox for Matlab. The code for

both the toolbox and the experiments was released under a GPL License and it can be

downloaded at http://louis.dorard.me/bats, along with unit tests and the libraries

required for its functioning.

http://louis.dorard.me/bats
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5.1 The Bats toolbox for Matlab

The Bats toolbox for Matlab contains implementations of the Gaussian Process Bandit

and Tree Search algorithms, as well as of other standard algorithms. In the following we

give a high level description of the contents and functioning of the toolbox. We start by

describing the Bandits framework, which will be used for the construction of the Tree

Search framework. We also introduce the Experiments framework for running algo-

rithms multiple times on several problem instances, which was used for the experiments

presented in the rest of this chapter.

The use of the Object Oriented features of the Matlab language allows us to repre-

sent the interactions between agent and environment, and to define common interfaces

that enable the testing of different algorithms on different problem instances with the

same code – only the construction of the agent and environment changes. Inheritance

allows us to share code between algorithms that have things in common. For instance,

in this toolbox, UCB1 is an implementation of a UCB-type algorithm, and LinRel

and GPB are implementations of a class of kRR-UCB-type algorithms, which derive

from UCB-type algorithms.

In Object Oriented programming, classes are constituted of properties, and methods

that perform operations on these properties. Abstract classes are used to define proper-

ties, method profiles and implementations that are common to a family of algorithms,

but they are not instantiable themselves, as some methods are left unimplemented.

We describe the relationships between the classes of this toolbox, their properties and

methods, and how they implement the algorithms that we presented and that we intro-

duced in this work. More information on the properties and methods can be found by

browsing the Matlab HTML documentation (‘doc bats’). The source code also contains

many comments that explain in detail how the implementations work. In the following,

we denote properties, methods, functions and classes with this typeface; class names

are capitalised.
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5.1.1 Bandit problems

5.1.1.1 Environment

The environment is where the reward function is defined. The latter is kept as a private

property of the Environment abstract class1 so that it is not directly accessible by

the outside. reward is expressed as a function but it can also represent a distribution

through the use of random generators in Matlab. Reward samples can be obtained for

a chosen input by calling the public method play, which calls reward, keeps track of

the arms that have been played (X), of the rewards that have been obtained (Y), and of

the number of plays (t).

The EnvironmentBandit class extends this base class for the multi-armed bandit

problem. It keeps a list of mean-reward values rewardList (also a private property),

used by the class to determine which arm is best and to define the regret R and the

empirical regret eR. The constructor initialises the reward function based on a list of

mean rewards given in input, and accepts 3 types of rewards:

• ‘bernoulli’, where the reward for arm i is 1 with probability rewardList(i) (must

be in [0, 1]), and 0 otherwise;

• ‘bernoulli2’, same as the above but with reward −1 instead of 0;

• ‘normal’, where each arm i’s reward distribution is a one-dimensional normal

distribution with mean specified by rewardList(i) and variance given as an

extra input;

• ‘gp’, which is similar except that the list of mean rewards is not given but is

drawn from a multi-variate Gaussian with zero mean and covariance matrix given

in input.

The environment also allows for feature representations of arms (given as optional inputs

to the constructor) and can proceed to their normalisation, if specified. Arms can be

added at any stage owing to the addArm method (which also returns the normalised

feature representation of the arm). This can be particularly useful when we choose not

1Matlab is also a functional programming language and considers functions as an object type.
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to represent all arms because of memory constraints, but to add them sequentially, as

would be the case for GPTS and for item recommendation. Note that this poses a

problem for determining the regret: the best arm can change as arms are added to the

environment; however, we might know in advance what the best possible reward value

rbest would be.

5.1.1.2 Bandit algorithms

Initialisation The BAlg abstract class defines basic methods that are shared by all

bandit algorithms. The constructor is given the number of arms N specified by the

environment, and optionally a list of feature representations of these arms. It is useful

in certain cases to identify arms by labels (see 5.1.2.2 for instance), also given as optional

inputs to the constructor. New arms can be added to the bandit algorithm after they

have been added to the environment, and a normalised feature representation can be

specified.

Training When reward samples are received from the environment, they are added to

the bandit algorithm’s training set Tr through the train method. Arms can be identified

by their label, and when an arm’s index has been found, it is fed to the addTraining

method. If the size of the training set becomes larger than a given function S of the

number of iterations, the oldest training point is removed. The train method relies on

removeOldestTraining and addTraining to remove/add points from/to the training

set. The former method is called first. Both methods are left for implementation

and are expected to update the algorithm’s knowledge. We increment the number of

iterations t at each data point added to the training set. This should match the value

of the t property of the environment, since training points are obtained by playing

arms. However, we do not decrement t when removing points form the training set –

the number of elements in the training set is given by ntr.

Choosing arms The most often-called method is choose, whose interface is defined

in BAlg but left for implementation. By default, any arm can be chosen to be played,

but this can be changed to restrict possible outputs to the list of arms indicated in the

playable property. Also, the chooseNew property indicates whether we want to force

the algorithm to always choose arms that have never been played before, or not. This

is useful for applications to content-based document retrieval for instance, where we
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do not want to retrieve the same document twice. Besides, we may want to retrieve

several documents at the same time. For this, the chooseSimulated method can return

as many arms as specified, by duplicating the current instance and iteratively choosing

and adding an arm to the training set, along with its estimated reward.

The choose method is always based on a list of estimations of all arms’ mean-

reward values. This list is defined in the BAlg class as the M property and is initialised

to a list of 0 values. In the random implementation RandBAlg, the maximum size of the

training set is set to 0 and M is never updated. Arms are chosen randomly among the

list of playable arms. M corresponds to what we notated µt, and the output of choose

corresponds to it+1.

Code snippet We give below a typical sequence of calls to the environment and to

the bandit algorithm. Note that only their initialisation is application-specific.

rl = rand(1,N); % rewards list (N arms)

e = EnvironmentBandit(’bernoulli’, rl);

b = RandBAlg(N);

x = b.choose();

y = e.play(x);

b.train(x, y);

xs = b.chooseSimulated(3);

5.1.1.3 UCB algorithms

UCB algorithms represent their knowledge on the arms’ reward distributions with a

list of estimated means (M) and variances (V, initialised to infinity). The choice of an

exploration/exploitation balance function beta defines upper confidence values U for

all arms, through the updateU method which simply sets U = M + sqrt(beta(t)) .*

sqrt(V) and deals nicely with cases where some V values are equal to infinity and

beta(t) = 0. The form of beta, as a function of the number of iterations, is usually

fixed for a given algorithm, and its expression can admit parameters (such as δ in GPB).

The UcbAlg abstract class defines a base constructor that takes the same arguments

as the BAlg constructor, plus an optional delta argument. Note that beta often depends

on the total number of arms, hence we specify the existence of an updateBeta abstract
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method which is used both to initialise beta and to update it when adding new arms.

This method requires that we memorise (with a class property) the delta value initially

given to the constructor. A setter on beta is defined so that a change of value of beta

is always followed by a call to updateU. The setter can also be used if we want beta to

take another form, but this should be reserved to tests.

The choose method can be implemented in UcbAlg: it simply picks an arm with

highest U value. In order to learn from experience, we need to extend the addTraining

method by calling an abstract method updateMV, and then updateU. In the UCB1

implementation of class UCB, we define the nplayed property as the list of the number of

times that each arm has been played, which updateMV uses to perform the computations

defined in Equation (2.1) and (2.3). updateBeta defines beta as specified in Equation

(2.2). This expression does not involve any parameter, and as a consequence, delta is

left unspecified in the constructor.

5.1.1.4 Kernel Ridge Regression UCB algorithms

Core properties Algorithms that derive from the kRRUcbAlg abstract class, such

as KLinRel and GPB, use kernel Ridge Regression to learn non-linear relationships

between arm feature vectors and mean-reward function values. The computation of

M and V therefore requires that we either pass a kernel matrix K to the constructor,

or a kernel/covariance function covfunc and arms’ feature representations. In the

second case where the kernel matrix is not explicitly given, it is computed owing to the

kernelProducts method – which also serves in the rest of this class to compute kernel

products for new arms or new hyper-parameters. The logtheta property is a list of the

logarithms of the hyper-parameters of the covariance function. This does not include

other hyper-parameters of the model such as the noise standard deviation signoise,

which is kept as a separate property.

Computing M and V As we have seen for GPB in Section 3.1.2.2, the M and V

properties can be updated online. The desired update mode (‘default’, ‘online1’ or

‘online2’) is specified to the kRRUcbAlg constructor.2 The implementation of updateMV

is fixed and relies on methods that compute M and V values, or incremental updates

dM and dV. The methods that compute the M values are already implemented, because

2The ‘online3’ version was not implemented in this first version of the toolbox.
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they are the same for all kRR algorithms. The methods that compute the V values are

abstract and their implementation will vary from one algorithm to the other.

• In the default mode, M and V can be expressed as affine functions k2M and k2V of

the matrix of kernel products between all arms and the arms in training, and of

the covariance matrix inverse Ci. The latter is recomputed when adding/removing

points to/from the training set through the updateCi and downdateCi methods

which implement the online update and downdate formulae for C−1
t .

• In the online2 mode, the α vector is computed by k2al (see Equation (3.3)) which

makes use of the matrix Q. It is then fed to al2dM and al2V which compute the

difference between the new and the previous M and V values (see Equations (3.4)

and (3.5) for GPB). The Q property is updated according to Equation (3.6) which

is implemented in the updateQ method. We do not support the removal of data

from training.

• In the online1 mode, we do not use Q but Ci to compute α, that we feed to

the same methods as above. Ci is updated after M and V, and not before as

it is the case with the default algorithm. The M and V downdates are done in

removeOldestTraining: M is computed from scratch (Equation (3.1)) and V is

downdated through the downdateV abstract method.

Estimating U values In certain situations, we need to estimate the U value of an

arm that is not represented in the bandit algorithm’s set of arms, based on its feature

representation. In the estimateU method, kernelProducts is applied to the feature

representation given in input and to the arms in training, and the result is fed to k2M

and k2V in order to determine the U value for this arm. The procedure is the same for

the default and online1 update modes (but is not available in online2 mode).

Adding arms In the current implementation, adding new arms is restricted to the

case where a covariance function has been defined. It requires providing a feature

description of the new arm so that the kernel products with the previously defined arms

can be computed and the total kernel matrix can be extended. These kernel products

are also used to set the M and V values for the new arm. The procedure is the same for

the default and online1 update modes (but is not available in online2 mode).
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Setters We specify setters for logtheta and K as we may wish to change their values

if we decide to learn the kernel/covariance function from observed data. When changing

existing entries of K, Ci and Q must be recomputed, and, based on their new values, M,

V and U must be recomputed too. However, adding arms to the bandit problem does

not impact these properties because it augments but does not change existing values of

K. When changing the value of logtheta, we must recompute the total kernel matrix

and reset K.

5.1.1.5 GPB

Hyper-parameter learning In the Gaussian Processes framework, logtheta can be

learnt by maximising the likelihood of the observed data. The likelihood is determined

according to the model, and is therefore a function of its parameters. We rely on the

GPML toolbox (Rasmussen, 2010), namely on two functions:

• gpr: in the way we use it, this function takes a covariance function and training

data in input, and outputs minus the log likelihood of the data along with its

partial derivatives with respect to the hyper-parameters;

• minimize: minimises a differentiable multivariate function using conjugate gradi-

ents, based on the partial derivatives of that function and an initial guess of where

the minimum could be.

Here, we plug the output of gpr to the input of minimize. Note that for this to

work with any covariance function, we must make sure that it has been implemented

according to the specifications of the GPML toolbox.

Updates in matrix form In order to speed up the Matlab computations, we rewrite

the update formulae in matrix form so that no loops are needed (loops are inefficient in

Matlab). For this, we write αt+1 for the vector of αt+1(x) values for all arms in X . We

also write Qt for the matrix of qt(x) vectors for all arms. For GPB-online1:

µt+1(x) = µt(x) +
yt+1 − µt(xt+1)

σ2
t (xt+1) + s2

noise

(K(:, it+1)−K(:, It)TC−1
t kt(xt+1))

σ2
t+1(x) = σ2

t (x)− 1

σ2
t (xt+1) + s2

noise

(K(:, it+1)−K(:, It)TC−1
t kt(xt+1))2

where the squared operator for vectors corresponds to the component-wise exponentia-

tion to the power of 2.
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For GPB-online2:

αt+1 = K(:, it+1)−K(:, It)Q(:, it+1)

µt+1 = µt +
yt+1 − µt(xt+1)

σ2
t (xt+1) + s2

noise

αt+1

σ2
t+1 = σ2

t −
α2
t+1

σ2
t (xt+1) + s2

noise

Qt+1 =

 Qt − repmat(αT
t+1, t, 1)× repmat(Qt(:, it+1), 1, N)

αt+1


where × for vectors denotes the component-wise multiplication.

The kRRUcbAlg class implements the above M (= µ) updates, while the GPB class

implements the V (= σ2) updates.

Code snippet We give below a typical sequence of calls to an environment and a

bandit algorithm. Note that only their initialisation is application-specific.

% Initialise environment

% create N random vectors of dim dimensions, normally distributed

dim = 5;

features = randn(dim, N);

sigma = 1;

ker{1} = ’covSEiso’;

% log of SE width and log of signal variance

ker{2} = [log(sigma); log(sqrt(1))];

normalise = true;

e = EnvironmentBandit(’gp’, {ker, signoise}, features, normalise);

% Initialise bandit

delta = 0.05;

labels = [];

b = GPB(ker, signoise, labels, e.features, delta, ’online1’);

% note that the features are given by the environment

b.S = @(t) N./2;

e.iterations(b, N);

b.learnHyper();

xf = randn(dim, 1);

xfn = e.addArm(’new’, xf);

b.estimateU(xfn);

b.addArm(’new’, xfn);

Remark on the precision of Matlab’s computations The Bats toolbox contains

a bunch of tests to make sure that the implementations of the different versions of GPB
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are correct. In particular, we compare the M given by UCB1 to the M given by GPB

with a kernel matrix equal to the identity matrix; we also compare the U values given

by the different versions (default, online1, online2), with the same data in training.

Although they should be the same, this is not the case in practise. Indeed, Matlab

is imprecise when working with large vectors. For instance, if x, y and z are vectors,

[x’;y’]*z is not exactly equal to [x’*z;y’*z]. These imprecisions are amplified in

the online updates and after a large number of iterations, as previous computations are

being reused and the imprecisions add up.

5.1.2 Tree Search

TreeSearchInterface specifies the profile of the choose method that should return

a near-optimal path of given length np after a number nit of iterations. BanditTS

provides a super class for single-bandit as well as many-bandits tree search algorithms:

they all consist of an environment e and a tree structure tree where the explored nodes

are stored. The growMethod property specifies how the tree should be grown – in a

‘fixed-depth’ or an ‘iterative-deepening’ way. In tree search environments, inputs to the

reward function are sequences of node feature representations. EnvironmentTS extends

Environment by providing one important additional property: the offspring function

which lists the children (and their feature representations) that can be produced from

a given node.

BanditTS implements the choose method by running the specified number of iter-

ations, where each consists of searching the tree for a path to be played by the environ-

ment. The observed reward at time t is used to train the bandit(s) through the train

method. At the end of these iterations, the best method selects the best path down

the tree, based on the current learnings. Both methods are left for implementation.

Besides, a newChild method is implemented and uses tree and e in order to explore a

given node and create a new child to it: the method calls offspring in the environment

in order to determine the features of possible child nodes at this place in the tree, selects

one at random among those that are not yet in memory, and then stores it in the tree

structure.
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5.1.2.1 Tree representation

The Tree class implements a tree structure which, essentially, is a set of nodes indexed

in [1, nn] where nn is the number of nodes currently stored in the tree structure. We

only store in the tree structure the nodes that have already been explored: the structure

is made of regular nodes, and of dummy nodes that represent unexplored subtrees.

A number of properties (arrays) are used to describe the relationships between

nodes: parent, firstChild, lastChild, nextSibling, previousSibling. They are

not all necessary to characterise the tree, but keeping them in memory can facilitate

certain operations and the navigation in the tree. The getChildren method, which

lists the indices of children of a given node, and the getPathTo method, which lists the

ancestors of a given node by increasing depth, are based on them.

The features property is used to store nodes’ feature representations, which will

be passed to the environment. Note that the tree search algorithms we consider here

do not consider the node feature representations. Dummy nodes do not have feature

representations, and their entries in features are columns of NaN values3 – it is this

property of dummy nodes which is used by the isdummy and hasDummyChild methods.

The tree structure can be made to have a maximum depth maxDepth, or, if this

property is set to 0, it can be grown indefinitely, as for iterative-deepening search

methods. At each time a new node is explored and added to the tree structure through

the createNode method, the properties of the Tree class must be resized, which is

costly. We avoid this by adopting the “doubling trick”: we keep track of the number of

nodes with the nn property and, when the length of parent becomes equal to nn, we

double the size of all arrays.

We show below how a Tree object is displayed. The tree given in example is

asymmetric (leaves are not always at the same depth). Indents are used to represent

the tree structure in the “tree-like representation”. Each line represents a node and

gives the feature representation of the node, followed by its index in brackets. The node

feature representation consists here of the depth of the node, an index among all nodes

of same depth, and a binary intermediate reward value.

3NaN means “Not a Number” in Matlab.
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obj =

Tree handle

Properties:

parent: [0 1 1 1 4 3 3]

firstChild: [2 0 6 5 0 0 0]

lastChild: [3 0 7 5 0 0 0]

nextSibling: [0 4 0 3 0 7 0]

previousSibling: [0 0 4 2 0 0 6]

features: [3x7 double]

nn: 7

maxDepth: 0

Methods, Events, Superclasses

Tree-like representation

------------------------

0 1 0 (1)

1 1 1 (2)

1 2 0 (4)

2 1 1 (5)

1 3 1 (3)

2 2 0 (6)

d (7)

Structure for many-bandits algorithms The BTree class extends Tree by storing

instances of bandit algorithms at interior nodes in the bandit cell-array property, which

will be useful for implementing many-bandits tree search algorithm. All bandits are of

same type (for instance: Random, UCB, GPB) specified by bType, and with optional

parameters delta and paramA passed to the bandit constructor when a new instance

is created. The bandit instances have their corresponding node’s children as arms

(identified by their indices in the tree). createNode is extended so that it either creates

a bandit at the parent node when creating a first child, or adds an arm to the parent’s

existing bandit. The U value of the new node is initialised to Inf, but this does not affect

the U value of the parent.

A new method called trainBandit allows us to train the bandit instances at nodes

that were in a path that was just played by the environment. The b.U values given to

nodes by their parent’s bandit b are used to define the U values for these nodes, which

are updated as specified by Equation (2.18). ρd is specified by the rho property which
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is a function with inputs d and the maximum depth of the tree. In order to implement

this update, trainBandit should be called from the bottom of a recently played path

to the top: we need the children U values to be up-to-date, and changing the U value of

the current node implies that the parent’s U value will have to be updated.

5.1.2.2 A single-bandit algorithm: GPTS

Single-bandit algorithms implement superclass methods with a regular tree and only

one bandit algorithm. In GPTS, the BanditTS class is extended with an instance of

GPB, b. Because GPB can learn its hyper-parameters, we also add a learnHyper

property that specifies how often we would like the algorithm to learn and update its

hyper-parameters (0 for never).

In the GPB instance, arms correspond to dummy or leaf nodes. Their labels

are the nodes’ indices, which are used for identification. Their feature vectors are

vectors of node indices, up to the depth of the dummy/leaf node, and NaN entries up to

the maximum depth. We have implemented the discounted and the linear covariance

functions (covPathsDISC and covPathsLIN), that work on these feature representations.

They are based on the number of nodes in common between two paths.4 The tree and

the bandit are initialised in the constructor by doing a random walk down the tree, from

the root node: the leaf node and the dummy nodes (maxDepth of them in this case)

that are created during the randomWalk procedure constitute the initial arms of b.

The train method is simply implemented by calling b.train and, if specified by

learnHyper, b.learnHyper is also called. The search method consists of calling a new

method, explorePathFromBandit, with the result of b.choose passed in parameter.

This method does the following: it takes an arm index and gets the feature representa-

tion of that arm from b; this is a path to a dummy or a leaf node, and in the former

case, it performs a random walk until reaching a leaf node; the method then adds the

leaf node and all the dummy nodes created by randomWalk to b, and returns the path

to that leaf. The best method outputs the path with highest b.M value, and in case this

is a path to a dummy node, it completes this path by calling explorePathFromBandit.

4We should consider that the number of nodes in common between a path to a dummy and itself is

D.



5.1. The Bats toolbox for Matlab 127

5.1.2.3 Many-bandits algorithms

The ManyBanditsTS abstract class also derives from BanditTS. Its tree property is

now a BTree, but the type of bandit algorithms to be used (UCB, GPB, etc.) is not

specified here. ManyBanditsTS implements the superclass methods by calling the bandit

algorithms that are stored at each node of the tree. For instance, train simply calls

tree.trainBandit from the bottom to the top of the input path. The search method

goes down the tree by starting from the root and sequentially calling the next abstract

method to determine which child to go to next (possibly one that does not exist yet),

and this until reaching the maximum depth (in ‘fixed-depth’ mode) or appending a child

to a previously leaf node (in ‘iterative-deepening’ mode). best does something similar,

except that it stops at the desired depth and always chooses children that already exist

in the tree, based on the M values given to them by the bandit algorithm at the current

node.

UCT, BAST and HOO The UCT class implements the next method of

ManyBanditsTS by adding and returning a new child (with BanditTS.newChild) to the

node given in input if the latter is a leaf node or has a dummy among its children, or

by returning the child with highest U -value otherwise. The UCT constructor initialises

tree to a BTree object with given bType which can be either ‘random’, ‘ucb’ or ‘bast’

– the latter means that the BAST exploration term should be used rather than UCB’s.

If rho was not specified to the UCT constructor, it is set to 0 and the algorithm behaves

as UCT. Otherwise, rho is passed on to BTree and the algorithm behaves as BAST.

Note that we can run HOO if offspring is based on a binary tree of coverings of the

search space, reward is made to give the target function’s value at a point sampled

uniformly at random in the region of the space corresponding to the last node given in

input to it, and growMethod is set to ‘iterative-deepening’.

5.1.3 The Experiments framework

The empirical evaluation of the performance of a bandit algorithm requires perform-

ing several runs of this algorithm on the same problem: bandit algorithms often make

randomised choices, and the rewards they get are usually stochastic. For the Pinview

experiments, for instance, algorithms pick the 15 first images at random, and we can

imagine that selecting a relevant image by chance can influence their subsequent per-
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formance. We may also want to evaluate algorithms on randomly selected instances of

a same class of problems.

We introduce a simple framework that allows us to easily perform several runs

of bandit algorithms and to summarise the results. Besides, we make sure that our

implementations are randomised as they should by overloading the Matlab built-in

max function: the UCB heuristic requires selecting arms with highest upper confidence

bounds, and to break ties arbitrarily; for this, our version of max is such that if several

elements of the input list have the same maximal value, one of them will be picked

randomly and its index will be returned – whereas Matlab’s built-in function would

always return the index of the first element with maximal value.

5.1.3.1 Structure of the experiments

ExperimentsAbstract provides a super class for defining and running experiments.

The addAgent and addEnv methods allow to define agents (i.e. bandit algorithms) and

environments in which they will evolve, both characterised by a type (e.g. the name of a

bandit algorithm) and parameters, and stored as cells of the agent and env properties.

The addExpe method allows us to define experiments (cells of the expe property) that

specify parameters which will be used by the runOne abstract method to run a given

agent in a given environment.

Once experiments have been defined, they can be run a given number of times

owing to runExpe or runAll. The entries of the expe property are also used to store

the results of these runs. In order to deal with the stochasticity of bandit algorithms, we

report their average performance over several runs (see next paragraph for an example

of how this is displayed by the overridden display method). These results can be saved

to a file owing to the save method.

5.1.3.2 An implementation for tree search problems

The Experiments class of the ToyTS package derives from ExperimentsAbstract and

implements the runOne method as follows:

• it looks up the expe{i} entry, where i is the index of the experiment to run:
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this is a struct that contains the index ida of an agent and the index ide of an

environment

• an EnvironmentTS is created based on the parameters given by env{ide}

• a tree search algorithm is created based on this environment, and on the type

(‘Random’, ‘UCT’, ‘BAST’ or ‘GPTS’) and parameters given by agent{ida}

• the tree search algorithm is run for the number of iterations specified by the

parameter of expe{i}

• the cumulative reward obtained by the tree search algorithm is saved to

expe{i}.runs{nruns+1}.perf where nruns is the previous total number of runs

of this experiment

The class constructor defines some agents, environments, and experiments based

on these. It then launches several runs of all experiments (through runAll, which

calls runOne). We show below an example of how a ToyTS.Experiments object (Ex) is

displayed after the experiments have been run:

>> Ex

Agents:

------------

1: Random

2: UCT

3: BAST with gamma=0.5

4: GPTS with gamma=0.5 and s_n=2

5: GPTS-red @(t)log(t) with gamma=0.5 and s_n=2

Environments:

------------

1: TS, B=5, D=10, s_n=2, gamma=0.5, offspringSum and rewardSum

* Expe 4: 100 iterations; Agent 4 -> mean perf: 111.4734 (100 runs)

* Expe 2: 100 iterations; Agent 2 -> mean perf: 78.932 (100 runs)

* Expe 3: 100 iterations; Agent 3 -> mean perf: 76.6744 (100 runs)

* Expe 5: 100 iterations; Agent 5 -> mean perf: 70.2699 (100 runs)

* Expe 1: 100 iterations; Agent 1 -> mean perf: 57.7434 (100 runs)

On this example, we see that 5 different algorithms (Agents 1 to 5) were tried on one

tree search problem (Environment 1), which resulted in 5 different experiments that
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are listed below the information on Environment 1. Each of these experiments was run

100 times and consisted of 100 iterations of the agent. The experiments are sorted by

decreasing mean performance of the associated agent interacting with Environment 1.

5.2 Content-based image retrieval

5.2.1 Introduction: the Pinview system

The goal of the PinView European research project is to develop a “proactive Personal

Information Navigator that allows retrieval of multimedia - such as still images, text

and video - from unannotated databases” (pinview.eu). Such an information retrieval

system is therefore content-based, and needs to exploit relevance feedback given by its

user during a search session in order to infer what he is looking for. The objective is

to understand the intent of the user as quickly as possible, in order to present relevant

documents as early as possible in the search. Here, we will consider the case of image

retrieval, and of feedback given in the form of pointer clicks (the user clicks on images

relevant to his search). Other types of feedback can be considered, such as implicit eye

movement feedback for instance. A more in-depth review of the Pinview system can be

found in Auer et al. (2010a).

We consider a filtering task, where a user wants to find a set of images relevant to

his query. The feedback is received as clicks, which give rewards of 1, and −1 for no

click. Images can be presented to the user one by one, or, more realistically, collages

of images can be presented on a web page. In the first case, the feedback is said to be

immediate: we receive feedback from image t before we choose image t + 1 to present.

In the second case, the feedback is said to be delayed : if we present collages of

Nc images, we must choose image t + 2 without receiving the feedback for the image

picked at t+ 1, and so on, we must choose image t+Nc without receiving the feedback

at t + 1, t + 2, . . . , t + Nc − 1. The performance of an algorithm that selects which

images to present to the user, will be measured by its average precision, a standard

information retrieval metric which encodes our preference for algorithms that present

relevant documents early in the results. We first define the precision of an algorithm at

time t as the total number of relevant documents found up to time t, divided by t. The

average precision is the sum of the precisions at time t going from 1 to the total number
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of documents shown T , divided by T . We assume that the algorithms to be compared

always show the same number of images, for all queries (which is probably not the case

in practise).

Presenting relevant images early to the user requires learning his intent and util-

ising this learning to optimise the selection of images. There is a tradeoff between

exploration and exploitation that motivates the use of bandit algorithms. Indeed, Auer

et al. (2010b) use the LinRel algorithm to select images to present to the user, and

force it to select a new image at each time step.5 LinRel also showed the best perfor-

mance in the experiments carried out by Auer et al. (2011), when compared to other

algorithms. The algorithm models the true relevance of an image as a function f of the

feature representation of this image. When feedback is received from the user, (noisy)

observations of f are made. When the feedback is immediate, it selects the next image

to be presented as the one with highest upper confidence value among all the images

that have not been selected yet. When the feedback is delayed and we must choose Nc

images to present, selecting the Nc images with highest ft values may lead to collages

that consist of similar images. In order to remedy this and show a variety of images

that make us learn more from the user, one strategy is to duplicate the current instance

of the bandit algorithm, then to pick the image with highest upper confidence value,

simulate feedback by incorporating this new image with its predicted relevance (as given

by the model’s reward estimate) to the training set, and so on Nc times.6

5.2.2 Experimental setup

We stick to the setup of Auer et al., unless otherwise indicated, and the immediate

feedback mode.

Dataset We use a subset of the data of the VOC’2007 challenge, consisting of 2501

labelled images, belonging to 20 categories. We define search queries based on each

category: the relevance of an image for the ‘aeroplane’ task is 1 if this image belongs

to that category, −1 otherwise. We use the two-dimensional Self Organising Maps

5This forced exploration is necessary, otherwise, the best possible cumulated reward could be attained

by simply always playing the first relevant image that we find.
6Note that the procedure is particularly slow for picking the first Nc images to present: they will

involve the learning from “fake” observations (which has a non-negligible computational cost), but in

the end they will be picked at random.
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representations of 11 feature extraction methods used in the PicSOM system originally

introduced by Laaksonen et al. (2001), which makes up n = 22 features in total, and

we normalise the feature vectors individually.

Measure of performance We fix the maximum number of images to be seen to

T = 150. Thus, the computations won’t take too long, but it is also reasonable in

practise as users of an image search tool are expected to see at most a number of

images of this order. It is important to trade exploration and exploitation efficiently

because we will only be able to show the user 6% of the whole dataset. Also, even if

two algorithms find the same number of relevant images, a better tradeoff will show

interesting images earlier in the search. As we said previously, performance is measured

by average precision. However, the performance of an algorithm may be affected by the

first, randomly selected image: we are more lucky if we select a relevant image first.

For this reason, we run each algorithm 100 times and report the average results.

5.2.3 Methods and results

We aim to reproduce the results of Auer et al. by running LinRel on the image retrieval

problem for a fixed number of iterations T , and to compare its performance to that of

GPB. Note that the choice of a regression model, rather than a classification model, is

motivated by the fact that other types of feedback could be continuous (eye movement

feedback, for instance). The regression model of GPB is the same as LinRel’s. The

GP model, however, makes extra assumptions on the nature of the distribution of the

rewards. As we have seen in Section 2.1.3.4, βt can be replaced by a constant c when

T is fixed in advance. Let us rewrite the arm selection formulae in GPB and LinRel

in order to highlight the similarities between the two algorithms:

xt+1 = argmaxx kT
t (x)C−1

t yt + c

√
κ(x,x)− kT

t (x)C−1
t kt(x) for GPB

xt+1 = argmaxx kT
t (x)C−1

t yt + c

√
kT
t (x)C−1

t C−1
t kt(x) for LinRel

5.2.3.1 Model

We adapt the model and hyper-parameter settings of Auer et al.. The same values

should be used by LinRel and GPB, because they perform the same regression, there-

fore their models of f should coincide. The Gaussian kernel with width s = 1 was found
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to be preferable. For both algorithms, we use an ISO-SE kernel, which is equivalent to

a Gaussian kernel but is more suited to the GP model as it allows us to model signal

variance. For GPB we choose a signal variance of 0.25, which corresponds to sf = 0.5

and a 95% confidence that the f values are in [−1, 1]. LinRel, however, knows that

they are in [−1, 1] but has no knowledge on how they are distributed within this interval.

The values of the exploration terms are all β0sf initially with GPB, and they decrease

where we reduce uncertainty.

Noise/regularisation term Scaling the kernel products by s2
f has no impact on

LinRel when also adapting the noise level: let us write κ′ = s2
fκ, so that k′ = s2

fk

and C′t = K′t + s′2noiseIt where K′ = s2
fK and s′noise = sfsnoise. We have C′t = s2

fCt and

thus k
′T
t (x)C

′−1
t yt + c

∣∣∣∣∣∣k′Tt (x)C
′−1
t

∣∣∣∣∣∣ = kT
t (x)C−1

t yt + c
∣∣∣∣kT

t (x)C−1
t

∣∣∣∣. Auer et al. take

sf = 1 and snoise = 1 which means that if sf = 0.5 here, we should take snoise = 0.5.

5.2.3.2 Confidence term selection

The confidence term used by Auer et al. was 0.05, hence we should double this value for

LinRel, since we scaled rewards from [0, 1] to [−1, 1] here. The exploration terms are

constructed differently with GPB, so we need to tune the GPB confidence parameter

independently. The noise level, the default SE width and the confidence term are

common to all queries, so they can be tuned by running the algorithm with different

parameter values on a given task for which we know in advance the labels of the images.

We take the ‘aeroplanes’ task in order to choose GPB’s confidence term: we know which

are the relevant images for this specific task, and thus we can assess the performance

of GPB run with different values of c. We perform 100 runs with immediate feedback.

Table 5.1 shows that the UCB arm selection criterion doesn’t significantly improve

over greedy arm selection (corresponding to c = 0). Indeed, there are little differences

between the results observed for c from 0 to 0.5. It may be safer, however, to have an

exploration term that is not 0, and for this reason we choose c = 0.1 for both LinRel

and GPB.
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c = 0 0.05 0.1 0.2

LinRel 54.17± 0.50% 55.04± 0.49% 54.51± 0.50% 54.76± 0.41%

GPB 54.52± 0.45% 54.52± 0.42% 54.71± 0.39% 54.58± 0.48%

c = 0.5 1

LinRel 54.48± 0.40% 50.14± 0.77%

GPB 53.94± 0.52% 52.65± 0.51%

Table 5.1: Average precision (in %) of GPB and LinRel with immediate feedback for

the ‘aeroplanes’ task, with several values of the confidence term c. 150 images shown,

out of a total of 2501. Squared Exponential kernel with width s = 1 and scaling factor

s2
f = 0.25; noise variance snoise = 0.5. Results averaged over 100 runs. The numbers

after the ± correspond to the relative standard error.

5.2.3.3 Learning query-dependent kernels: Multiple Kernel Learning vs Maxi-

mum Likelihood

From one query to the other, we can expect some of the image features to be more

relevant than others. In other terms, the similarities between images depend on what

the user is looking for. This is always different and we cannot know in advance what

the ideal kernel is for a new query. We can model the relative importance of each

feature by considering an ARD-SE kernel. With no additional prior knowledge, the

widths along each of the n dimensions of the feature space should all be the same and

equal to s as chosen previously – which gives us the previous ISO-SE kernel. When

receiving feedback, we progressively learn what the user is looking for and, in the GP

framework, we can adjust the parameters of the kernel by maximising the likelihood

of the observed data. In our experiments, our implementation of GPB updates the

hyper-parameters si and sf of its kernel every 15 iterations.7 This is based on the

GPML toolbox (Rasmussen, 2010) which uses gradient descent-based techniques in

order to minimise minus the log likelihood of the data, starting the search from weights

initialised to 1 and signal variance initialised to 0.25.

7snoise stays fixed, however.
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5.2.3.4 Results

In Table 5.2 we report the performance of LinRel, GPB and GPB with hyper-

parameter learning every 15 iterations (GPB-h), as sample-means of their average

precision computed over 100 runs. For each sample-mean value, we also report the

relative standard error, i.e. the standard deviation of that mean divided by the latter

and expressed as a percentage. We show in bold which of the average precision of the

3 algorithms was best. When all algorithms were worse than random, we show the

random value in bold too.

All algorithms were run in the ‘online2’ mode. The experiments were run in parallel

on four Intel Xeon cores at 3GHz and took two days. The ‘online2’ mode has the smallest

cost for this application since N is larger than T . Our baseline for comparison is the

average precision of a random algorithm, which we can show is equal to the proportion

of relevant images in the dataset. As another baseline, Auer et al. have compared the

use of the Gaussian kernel in LinRel to that of the polynomial and the linear kernels,

and they have shown an improvement of around 0.5 and 1 point respectively.

5.2.3.5 Discussion

As we said before, the regression technique is identical for both algorithms, but the

exploration is different because different confidence intervals are used. With GPB, we

take advantage of extra assumptions on f and we can expect better confidence intervals

if these assumptions are reasonable. But in this application, the two algorithms are

practically the same, since the exploration term is low. Indeed, there are no significant

differences between the overall average precisions reported for LinRel and GPB. GPB-

h performed significantly better on some of the difficult tasks: bus, motorbike and

pottedplant. However, it was far from being systematically better than the other two,

as we could have hoped. This shows that hyper-parameter learning is challenging in

the bandit setting and illustrates the problem raised by Bull (2011) of the algorithm’s

convergence when using the Maximum Likelihood estimators in that setting. Moreover,

hyper-parameter learning is expensive as it takes a significant amount of compute time

to recompute K, µ and σ every time new values are learnt.

Regarding the probabilistic model we used, we did not encode the fact that f takes
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Random LinRel GPB GPB-h

bicycle 4.88 11.43± 5.00% 9.86± 5.61% 9.04± 4.20%

bird 7.28 14.07± 2.18% 14.14± 2.78% 13.91± 3.61%

boat 3.48 24.54± 2.26% 23.99± 2.12% 13.64± 5.37%

bottle 6.12 3.91± 5.02% 4.60± 5.02% 4.11± 5.40%

bus 4.00 0.00 0.15± 99.75% 2.68± 7.77%

car 16.07 33.86± 2.03% 33.21± 1.61% 26.18± 3.21%

cat 6.64 11.25± 3.30% 11.45± 2.04% 9.33± 5.03%

chair 11.28 13.71± 5.29% 14.25± 5.97% 10.68± 6.09%

cow 2.84 6.19± 1.84% 6.59± 1.76% 5.89± 4.29%

diningtable 5.20 6.51± 5.07% 5.95± 2.68% 6.25± 3.82%

dog 8.40 12.79± 2.24% 13.58± 1.97% 11.41± 2.93%

horse 5.76 13.22± 3.75% 14.17± 4.15% 12.77± 6.23%

motorbike 4.92 6.36± 5.24% 5.97± 5.12% 9.53± 4.25%

person 36.15 46.83± 1.57% 47.37± 1.48% 42.42± 1.93%

pottedplant 6.12 1.24± 16.58% 1.07± 17.54% 4.29± 6.11%

sheep 1.96 6.78± 4.42% 6.33± 3.31% 2.63± 9.52%

sofa 7.52 7.79± 3.98% 7.17± 2.28% 6.67± 4.62%

train 5.12 11.35± 1.99% 11.70± 2.23% 8.53± 6.38%

tvmonitor 5.76 9.51± 3.65% 9.92± 3.28% 6.69± 6.47%

overall 7.87 12.70± 2.14% 12.71± 2.13% 10.88± 2.19%

Table 5.2: Average precision (in %) of LinRel, GPB, and GPB with hyper-parameter

learning, for all tasks except ‘aeroplanes’. 150 images shown, out of a total of 2501,

and feedback given immediately. s = 1, snoise = 0.5, sf = 0.5, c = 0.1 for both GPB

and LinRel. Results averaged over 100 runs. The numbers after the ± correspond to

the relative standard error.
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values between −1 and 1. For this, it could be useful to observe and learn the logit8 of

(f + 1)/2, which has values in all of R when f has values in [−1, 1]. Besides, the GP

prior with zero mean does not encode the fact that we actually expect most images to

be irrelevant (f value close to -1), and that the closer to 1, the less likely reward values

would be.

We did not study the impact that delayed feedback had on the performance of the

bandit algorithms, as this was already investigated by Auer et al. (2010b). The solution

they propose to deal with delayed feedback requires copying the current bandit instance

in order to train a new one with simulated feedback (see the BAlg.chooseSimulated

method of the Bats toolbox). The mechanism used to copy objects in Matlab is par-

ticularly slow, which made it difficult to perform experiments. Finally, note that there

are some significant differences with the average precisions reported by Auer et al., in

particular in the fact that LinRel is always better than random in their results (which

is not the case here).

5.3 Search of synthetic trees

5.3.1 Experimental setup

The tree search environment with which the bandits interact specifies what the children

of any given node are – thus defining the tree structure – and how the rewards at leaf

nodes are given. As in the theoretical analysis of GPTS, we consider symmetric trees

with branching factor B and maximum depth D. To each node x is associated an

intermediate reward value, a depth, and an index defined as (id − 1)B + i where id

is the index of p the parent of x and i is the index of x among the B children of p.

The reward value at any given node is chosen once and for all for a given tree search

problem, by drawing a sample from N (0, 1).

For a given path, we draw rewards from a Gaussian with mean equal to the (dis-

counted) sum of its nodes’ intermediate rewards, and standard deviation equal to snoise.

Thus, this setup resembles an MDP planning problem with deterministic transitions,

fixed depth, and the mean-reward function verifies the GP assumption with the dis-

8The logit function is defined as logit(x) = log(x) − log(1 − x)
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counted kernel, or the linear kernel if γ = 1. Figures 5.1, 5.2 and 5.3 show what such

functions look like for different values of the discount factor γ. We do not know in

advance what the best mean-reward value f∗ is – for this we would need to do an ex-

haustive search of the whole tree –, hence we cannot measure the regret of an algorithm

as we have defined it so far. Instead, we look for the maximum reward ymax for all

algorithms run on a given problem, and use it to approximate immediate regrets by

ymax − yi. We also normalise regrets by dividing them by f∗, once again approximated

by ymax. As a consequence, it is the
∑

i
ymax−yi
ymax

value that we report and refer to as

“regret”.

In our experiments, for each parameter value for B,D, γ, snoise, we fix one instance

of the corresponding class of tree search problems, and we evaluate several algorithms on

this problem. We average performance measures over several runs (100) because of the

stochasticity of each experiment. We could also have decided to run these algorithms

on several instances of the same class of tree search problems (characterised by a set of

parameter values, and that are discounted sums of independent Gaussians with standard

deviation equal to 1), but this would have introduced additional variability, and more

runs would have been necessary to reduce this variability.

As default parameter values, we take γ = 1, so that the intermediate rewards at

all levels of the tree have the same importance, and our experiments are not subject

to the fact that the first levels could be accidentally “easier” than the other levels. We

choose B = 40 which is rather large, in order to minimise the chance of getting easy

levels where most values are positive (imagine B = 5). We choose a small value of snoise

(= 0.1) to reduce the variability of our results.

5.3.2 Methods and results

GPTS was run with hyper-parameters set to the true γ and snoise values, and with

δ = 5%. The ρd value used in BAST corresponds to the maximum difference between

the mean rewards of two paths that have d nodes in common. In our setup, when

given d first nodes, the rewards for paths that share these nodes are drawn from a

Gaussian with mean equal to the discounted sum of intermediate rewards for these

nodes, and standard deviation equal to
∑D

i=d+1 γ
i = γd−γD

1−γ . BAST was run with

ρd equal to the width of a 95% confidence interval in which the two paths’ rewards
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Figure 5.1: Example of a function on tree paths that is a sum of intermediate values at

each node, drawn from independent Gaussians with standard deviation equal to 1, for a

tree with branching factor B = 5 and depth D = 5.

Figure 5.2: Examples of three functions on tree paths, each of which is a 0.5-discounted

sum of intermediate values at each node, drawn from independent Gaussians with stan-

dard deviation equal to 1, for a tree with B = 5 and D = 5.
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Figure 5.3: Examples of three functions on tree paths, each of which is a 0.1-discounted

sum of intermediate values at each node, drawn from independent Gaussians with stan-

dard deviation equal to 1, for a tree with B = 5 and D = 5.

should be, corresponding to twice the standard deviation of this Gaussian, i.e. 4 times

the previous value. Besides, each bandit instance in BAST expects rewards in [0, 1],

whereas rewards actually are in
[
−2(1−γD)

1−γ , 2(1−γD)
1−γ

]
with a probability slightly greater

than 95%. For this reason, we scaled βt by
(

4(1−γD)
1−γ

)2
(see Section 2.1.2.1). However,

these theoretically good settings for BAST led to mediocre performance in practise, as

the algorithm only slightly improved over random. We found that much better empirical

results could be obtained when using UCB1 instances at each node of the tree. We

call the resulting algorithm BAST1. We also found that UCT performed similarly to

BAST1. In summary:

• When γ < 1:

– We use GPTS with the γ-discounted kernel.

– We use BAST1 with ρd = 4γ
d−γD
1−γ , with the βt expression defined in UCB1

and scaled by
(

4(1−γD)
1−γ

)2
.

• When γ = 1:

– We use GPTS with the linear kernel.

– We use BAST1 with ρd = 4(D − d) and βt scaled by 4D.
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First, we report the performance of GPTS, BAST1, and the random algorithm,

after 1000 iterations on a problem with branching factor B = 200 and depth D = 10

(Figure 5.4). The resulting tree is similar in shape to a typical Go tree search problem

(Gelly, 2007).

Figure 5.4: Regret curves of GPTS, BAST1 and the random algorithm, over 1000 it-

erations. Tree search problem with discount factor γ = 1, branching factor B = 200,

depth D = 10 and noise variance snoise = 0.1. Results averaged over 100 runs.

Next, we report the performance of GPTS and BAST1 after 100 iterations, for

several values of γ. We normalise the reward values so that we can make comparisons

between the performances obtained with different γ values. For instance, we would like

that our performance measure for the random algorithm stays the same when varying

γ. For this, we divide the rewards by D when γ = 1, or by 1−γD
1−γ when γ < 1. For

the random algorithm, we can expect a (normalised) regret equal to the number of

iterations, since intermediate rewards will be distributed around 0. Although the sum

of rewards of the random algorithm averaged over 100 runs should be close to 0, we

have found that it can be in the order of plus or minus 35 after 100 iterations (with B

around 75 and D around 15). If it is positive, it means that the tree search problem

is rather easy (hence smaller regrets), whereas if it is negative, the problem is rather

difficult (hence larger regrets). For easier problems, we can expect ymax to be larger,

and thus the regret of the random algorithm should be closer to T . Because of these

considerations, we choose to report from now on the ratio between the regret and the
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regret of the random algorithm for each tree search problem. This should remove the

effect of easier and harder problems on our performance measures.

Figure 5.5 shows our results when varying the γ parameter. We see that BAST1 has

difficulties for γ = 1 (and for γ = 0.75 to a lesser extent). In the rest of our experiments,

we take γ = 0.5. We report the performance of GPTS and BAST1 when varying the

value of B (Figure 5.6), D (Figure 5.7) and snoise (Figure 5.8), with a default value of

B = 50.

Figure 5.5: Regrets after 100 iterations of GPTS and BAST1, divided by the regret of

the random algorithm, for different values of the discount factor: γ = 0.25, 0.5, 0.75, 1.

Tree search problem with B = 50, D = 10, snoise = 0.1. Results averaged over 100 runs.

5.3.3 Discussion

5.3.3.1 Large branching factors

The results presented in Figure 5.4 indicate that GPTS better handles large branching

factors. Indeed, UCT and BAST tend to pure exploration for large branching factors,

since the initialisation phase requires playing each child of a given node once, before

applying the upper-confidence formula. BAST1 suffers from a linear regret, similar to

that of the random algorithm, up to time T = 200 (equal to the branching factor). This

period corresponds to the initialisation phase of the root UCB1 instance: BAST1 has

to play all 200 children of the root before being able to make an informed decision on



5.3. Search of synthetic trees 143

Figure 5.6: Regrets after 100 iterations of GPTS and BAST1, divided by the regret of

the random algorithm, for different values of the branching factor: B = 30, 50, 70, 90.

Tree search problem with D = 10, γ = 0.5, snoise = 0.1. Results averaged over 100 runs.

Figure 5.7: Regrets after 100 iterations of GPTS and BAST1, divided by the regret of

the random algorithm, for different values of the maximum depth: D = 5, 10, 15, 20.

Tree search problem with B = 50, γ = 0.5, snoise = 0.1. Results averaged over 100 runs.
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Figure 5.8: Regrets after 100 iterations of GPTS and BAST1, divided by the regret of

the random algorithm, for different values of the noise variance: snoise = 0.1, 1, 2, 5.

Tree search problem with B = 50, D = 10, γ = 0.5. Results averaged over 100 runs.

where to explore the tree. However, we may have already found interesting branches of

the tree after just a few iterations, and with GPTS we may decide to explore a dummy

node which is at a depth greater than 1.

If GPTS finds a good path, it may decide to explore a subtree that branches off that

path, rather than to continue exploring all of the root node’s children (as BAST does).

We can expect that the dummy node that represents this subtree will be somewhere

in the middle of the tree: it should be close to the leaf of the previous path for which

a good reward was obtained, so that its µ value is high; but it should also be close to

the root so that its σ value is high. If the algorithm gets a good reward after selecting

a path created from this dummy node, then it can be confident that the early nodes

of that path are good (they are in common between the last two selected paths). If

it gets a poor reward, then it is likely that the previous path was good because of the

last nodes only (and not the ones in common with the newer path). Thus, GPTS can

rapidly refine the confidence intervals of its dummy nodes.

UCB1 does not take into account the fact that the rewards are normally distributed

(as sums of normally distributed intermediate rewards), but even if it did, the resulting

BAST would still run into the same problem of spending a lot of time in the initialisation
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phases of the bandit algorithms, so we would not expect a significant improvement. We

obtained regret curves similar in shape to those of Figure 5.4 when comparing Random,

BAST1 and GPTS up to time T = 100 on a problem with B = 20 and with intermedi-

ate rewards drawn uniformly at random, instead of normally, which suggests that the

advantage of GPTS persists even when the experimental setting does not exactly match

the model’s assumptions.9 Indeed, GPB benefits from theoretical guarantees even when

the GP assumption is not verified (see Proposition 4); but, as can be expected, these

guarantees get worse the more irregular f is. The advantage of GPTS lies in the fact

that, as a single-bandit algorithm, it builds upper confidence bounds for all unexplored

subtrees – not only for nodes that have already been explored, as many-bandits algo-

rithms do. Updating all these upper confidence bounds at every time step is costly but

they provide more information to better trade exploration and exploitation. Because

we learn more about f from each observation, we need less exploration.

5.3.3.2 Impact of the parameters of the tree search problem

As one can expect, the regrets of both algorithms increase with B, D and snoise. GPTS

seems to be slightly more robust to noise. The only counter-intuitive result is in Figure

5.5: where BAST1 performs better (relative to random) when the tree search problems

are easier, i.e. when γ decreases and f is smoother, GPTS performs worse. We do

indeed expect BAST1 to perform better when γ is smaller: the algorithm is likely to

make poor choices of nodes to select as it gets closer to the bottom of the tree, because

the deeper a node is, the less it has been explored and the less accurate the reward

estimates are; but these poor choices only have a small impact on the total rewards,

because the intermediate rewards obtained down the tree are further down-weighted

when γ decreases.

We saw in Section 4.3.2.4 that the rate of decay of the eigenvalues of K is higher

for smaller γ values. The sum of eigenvalues, however, does not change (it is equal

to N), and therefore the largest eigenvalues get even larger when γ decreases. This

explains why the GPTS regret upper bound could have a larger value when T is small –

although for T big enough the bound would have to improve when the discount factor

9It is also interesting to note that Hennig et al. (2010) only reported a “minor decay in performance”

of their Bayesian searcher when experimenting with synthetic game trees with intermediate scores

generated uniformly at random, instead of normally as in their model.
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decreases. Our observations suggest that the regret might also be lower bounded by a

sum of expressions involving the eigenvalues of K.

5.3.3.3 Computational aspects

Matlab being an interpreted language, it runs Object Oriented code very slowly (com-

pared to lower-level implementations). This was particularly obvious with BAST1 which

should have been much quicker than GPTS – but it was not, probably because its im-

plementation involved as many bandit algorithm objects as there were nodes in the

tree.

We had to run 51 experiments 100 times each, hence we could not run the algo-

rithms for an extended number of iterations (100 only for the bar charts, 1000 for the

regret curves). The computations took approximately 15 days on four Intel Xeon cores

at 3GHz. In practise, for a fixed problem on which the algorithm is run only once, we

should be able to perform many more iterations. Besides, based on usual benchmarks,

we can expect that an optimised version in C++ or Java would be 20 times faster than

its Matlab equivalent. We can also speed computations up with distributed computing.

Note that, owing to the use of dummy nodes in all algorithms (even in BAST), the

running time is not affected by B.



6
Conclusions

6.1 Conclusions

6.1.1 Gaussian Processes for bandit problems

This work started with an application of Gaussian Processes to model and handle un-

certainty in bandit problems. We showed connections between the resulting algorithm,

GPB, and popular bandit algorithms from the literature, namely UCB1 and LinRel.

We studied and improved the computational complexity of GPB owing to an online

computation “trick” – also applicable to LinRel. We reviewed the work of Srinivas

et al. who gave theoretical guarantees on the performance of GPB when the Gaussian

assumptions of the model hold, but also when they do not. In the latter case, they

showed a regret bound with a constant expressed in terms of the RKHS norm of f for

the chosen covariance function, which can be seen as a quantification of the mismatch

between the model and the reality.

147
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As the PinView application to image retrieval showed, it can be useful to see

certain problems involving the search of large spaces as many-armed bandit problems.

An advantage of approaching many-armed bandits with linear regression or Gaussian

Processes is that we are able to represent correlations between arms in a precise way,

hence, if time allows, we can be smart about the way we explore the search space.

We can deal with input spaces that are not continuous subsets of Rn, such as text,

as long as we can compute kernel products between inputs. Thus, we could use GPB

to recommend text documents (such as news articles) to a user, or to maximise the

relevance of text advertisements on the web for each individual user.

With Gaussian Processes, we also benefit from the range of tools available in this

framework, for instance to perform classification (for problems with binary rewards), to

select model parameters, or to summarise the training set with a smaller set (in order

to speed up the inference). If we extend GPB with principled methods that make use

of the GP assumption, we should be able to also extend our theoretical analyses in a

similar way to the analysis of the version of the GP-EI algorithm that used estimators

of the hyper-parameters from observations (Bull, 2011). One promising direction to

improve the performance of GPB in the PinView application is, for that matter, to

perform Bayesian hyper-parameter selection as proposed by Bull, which would amount

to learning an image similarity metric specific to the user’s query.

Processing all the arms correlation information has a large computational cost,

even after using the specificities of the bandit setting to speed up probabilistic inference.

Ranganathan and Yang (2008) suggest that further speed ups may be obtained when

using certain kernel functions. In certain problems, the cost of a sample or of an

error can be high enough to warrant the computational cost of GP-based algorithms.

Large scale recommender systems, however, usually do not consider the content of

items as this makes for inefficient algorithms. A partial solution may be to simplify the

dependency structure between arms with a tree, which is what Pandey et al. (2007) did

with hierarchical clusters of advertisements; we can assign arms to nodes of a tree of

coverings of the search space, based on their feature representations.
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6.1.2 Many-bandits vs single-bandit approaches to tree search

We developed the idea of using our new bandit algorithm for modelling and handling

uncertainty in tree search by simply considering a covariance function between tree paths

(seen as arms of a bandit problem), and we established parallels between the resulting

model and a generative game-tree model found in the literature (Hennig et al., 2010).

We also showed how we could use the GPTS algorithm in the (somewhat restrictive)

problem of planning in MDPs with deterministic dynamics and normalised Gaussian

rewards. However, due to computational considerations, we were not able to use feature

descriptions of states/actions in our covariance function between tree paths: we need

the number of possible kernel product values to be small in order to make GPB tractable

when the number of arms (tree paths) is large, so that many different paths share the

same kernel products with the training data and thus the same upper confidence bounds.

We were able to improve the GPB regret bound under the GP assumption by providing

a bound on the eigenvalues of the total kernel matrix that exploits the properties of

the kernel, and thus problem-independent regret bounds with constants expressed in

terms of the kernel parameters and such that smaller upper bounds could be obtained

for smoother functions.

The idea of using GPB for tree search can be generalised to using a single many-

armed bandit. Our experiments comparing GPTS (single-bandit) to BAST (many-

bandits) suggest that, after the same number of iterations on some tree search problems

with large branching factors, the cumulative regret for a single-bandit algorithm can be

expected to be significantly smaller than for a many-bandits algorithm. This implies

that single-bandits gain more from each sample, or in other terms that they have higher

sample efficiency. However, many-bandits are more computationally efficient: in the

same amount of time, a many-bandits algorithm may build a much larger tree if f is

cheap to evaluate, and in the end it may gain more from this large tree – even though

it gains less from each sample. In Go for instance, current approaches search thousands

of times more nodes than in our experiments. In any case, we can argue that there

is a crossover point where the single-bandit approach improves over the many-bandits

approach. This is when there is an overly large number of options to choose from: the

problem can be made arbitrarily difficult for a many-bandits algorithm by increasing B

(which makes it tend to pure exploration, due to the initialisation phase of the bandits),
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but the options available at any given node may not be that different from each other.

Another situation in which a single-bandit approach is preferable is that of expen-

sive target functions, in which case there is no hope of building large trees. For example,

the evaluation of f could be based on a physical experiment, or on a lengthy computer

simulation, or on a human evaluation. In recommender systems where items are organ-

ised in a taxonomy, the observations of f are based on human inputs, and inefficient

exploration-exploitation tradeoffs may make us lose the user. The fact that we only

have very few information regarding the user in the beginning (the “cold-start prob-

lem”) motivates the use of an algorithm with high sample efficiency, i.e. a single-bandit

algorithm.

For planning in MDPs, many-bandits algorithms may be preferable when we ob-

serve intermediate rewards for each action taken, because single-bandit algorithms do

not offer a way to take these intermediate rewards into account. Many-bandits can also

handle MDPs with stochastic transitions, whereas it is not straightforward how to ex-

tend the single-bandit idea to such MDPs, as we pick sequences of actions and therefore

we need to be certain about which sequences are possible.

6.2 Ideas for future work

It is worth trying to improve the computational complexity of GPTS by exploiting the

tree structure further, as well as the fact that the covariance matrix to be inverted

has large blocks of zero values (when χD = 0). Also, we may want to investigate

which S function in GPTS-red would give the best tradeoff between performance and

computational cost.

We hope that the results we presented on the use of GP models for bandit problems

and tree search will motivate these further studies. Hopefully they will provide ground-

work to continue the analysis of the GPB and GPTS algorithms, to investigate other

related algorithms, and to evaluate their practical performance on different problems

involving the search of large spaces, as suggested in the next section.

We organise ideas for future work in three groups: theory, new algorithms, and

example applications.
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Theory The theoretical analysis of GPB could be complemented with:

• Regret lower bounds for both the GP and the RKHS settings, in terms of the

eigenvalues of the total kernel matrix.

• Regret bounds in the noise-free case.

• Problem-specific regret bounds, that could be obtained by analysing the number

of times we play sub-optimal arms.

• Theoretical guarantees on the performance of GPB-red, in terms of the bound ST

on the size of the training set. We hope that by having a continuously growing ST ,

the infogain will continue to be bounded by a sub-linear expression of T (otherwise

the regret would become linear and we would not be able to prove the no-regret

property).

In addition, for GPTS with a given kernel, it may be possible to use the fact that

we know the eigenvalues of the total kernel matrix K exactly, in order to derive a closed-

form expression for the mi values defined in Section 3.2.3.3, i.e. the number of times

that the greedy infogain algorithm selects each eigenvector of K (previously bounded

by T ). This would impact the greedy infogain bound, and could thus improve the regret

bound.

We mentioned in Section 4.4.5 that one way to boundGgT is by using the log(1+x) ≤

x inequality. This bound is tighter for smaller x = s−2
noisemtλ̂t values and using it

results in a sum of eigenvalues, which can be bounded by an integral on the strictly

decreasing l̂ function. The quicker l̂ decreases, the smaller the integral, hence the lower

the information gain bound. The problem we saw with this technique was that bounding

log(1 + s−2
noisemtλ̂t) by s−2

noisemtλ̂t introduces a T factor (the upper bound on mt), but

we hope that this could be replaced with a smaller expression in T .

Then, an even better bound on GgT may be obtained by using the sum of log-

eigenvalues bound (seen in Section 4.3.3.1) up to a certain time T∗, and the sum of

eigenvalues bound for t from T∗ + 1 to T .

New algorithms Planning in MDPs is closely related to Tree Search. However, an

important property of MDPs is that the total reward for a given sequence of actions



6.2. Ideas for future work 152

(a tree path) is a discounted sum of intermediate rewards that can be observed sepa-

rately, whereas in tree search we only observe rewards for whole paths. In single-bandit

algorithms, one way to use the extra information provided by the intermediate rewards

that make up the total reward would be to consider all interior nodes as arms of the

bandit problem, to add each node on a selected path to the training data, along with the

discounted sum of rewards obtained up to this node, and to use a covariance function

that would be based on the number of ancestors in common between any two given

nodes.

In certain MDP problems, we may assume dependencies between the actions avail-

able at any given state. In game playing for instance, similar moves are likely to take us

to similar states, from which the chances of winning will be close. According to Gelly

and Silver (2011), one of the most interesting lines of research for Upper Confidence-type

Tree Search algorithms is to generalise between nodes of the tree. For this, we could

imagine a GP-UCT algorithm (and similarly, GP-BAST and GP-OLOP) that would

replace UCB1 instances at all interior nodes by GPB instances to which we would give

feature representations of actions. We would aim to learn immediate reward functions

at each node, as functions of the children’s feature representations.

Example applications

• Because we claim that GPTS handles large branching factors very well, the first

application that comes to mind is Go AI – indeed, Gelly and Wang (2006) mo-

tivated the use of UCT for Go specifically because of the large branching factors

of Go game trees. It would be interesting to also see how encoding prior domain

knowledge and heuristics in the prior mean (see Stern, 2008) could improve the

performance of the algorithm. Besides, if we could model similarities between Go

moves/boards through a kernel function, GP-UCT would certainly be an inter-

esting algorithm to try.

• As seen in Section 4.4.6, GPTS can be used for Hierarchical Optimisation and

it can thus provide an interesting alternative to HOO if we work with trees of

coverings that have large branching factors. It would be interesting to measure

the performance of hierarchical methods in comparison with the Bayesian methods

that we mentioned in Section 2.4.2 (GPGO and GP-Hedge), for the optimisation
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of standard test functions such as those considered by Hoffman et al. (2011) and

Osborne et al. (2009).

• After having applied GPB in the Pinview setting to binary feedback data, we

should apply it to eye-movement feedback measured in [0, 1]. Our results showed

the potential of hyper-parameter learning but more investigation is required to

make it perform consistently better than vanilla GPB – in particular, Bull (2011)

showed that using maximum likelihood estimators, as we did, can be problematic

in the bandit setting. Then, the Bayesian approach to learn a query-dependent

similarity measure between images could be compared to the Multiple Kernel

Learning approach.

• Our work on bandit-based tree search was initially motivated by the prob-

lem of generating expressive performances of scores of piano music. This can

be formalised as a sequence labelling problem where we are given a sequence

m = (m1, . . . ,mD) of notes and harmonies, and we must come up with a se-

quence x = (x1, . . . , xD) of performance parameters for each of these notes. One

approach to this problem consists in defining a compatibility measure Ψ(m,x)

and, given m, to search X for the maximum of Ψ(m, .). In Dorard et al. (2007),

the score and its performance are seen as two views of the same object (“the mu-

sic”), their representations are projected into a common semantic space owing to

Kernel Canonical Correlation Analysis, and the compatibility between any given

(m,x) pair is measured by their inner product in that space. The kernels to be

used for the two views should account for both local and global similarities be-

tween sequences. The maximisation of Ψ can be carried out by choosing the xi’s

one at a time in a sequence. Initially, this was done greedily, i.e. xi was chosen

so that it maximises Ψ ((m1, . . . ,mi), (x1, . . . , xi)), but we would expect better

results by taking the long term into account – as a game tree search algorithm

does when choosing a move to play. Note that each xi is a set of performance

parameters for mi that can take continuous values. This can be dealt with owing

to a discretisation of the space of parameter values and progressive widening in

the tree search.



A
Additional material

A.1 Mathematical and probabilistic identities

A.1.1 The Gaussian distribution

Density The probability density function of a random variate x ∈ Rn that follows a

Gaussian distribution with mean vector m and covariance matrix Σ is given by:

p(x) =
1√

(2π)n det Σ
exp

(
−1

2
(x−m)TΣ−1(x−m)

)
(A.1)

Entropy From the above we derive that the entropy of x ∼ N (m,Σ) is given by:

H(x) = −E(log p(x)) =
1

2
log((2πe)n det Σ) (A.2)

Complementary error function

erfc(z) =
2√
π

∫ ∞
z

exp(−u2)du (A.3)
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For z = a√
2

this is the probability that x ∼ N (m,σ) is outside of [m−aσ,m+aσ]. The

complementary error function can be upper-bounded as follows:

erfc(z) ≤ exp(−z2) (A.4)

Conditional Gaussian Assuming the following joint probability distribution: x

y

 ∼ N
 mx

my

 ,

 A C

CT B


we have:

x|y ∼ N (mx + CB−1(y −my),A−CB−1CT) (A.5)

A.1.2 Probabilities

Law of total covariance If X,Y, Z are random variables on the same probability

space, and the covariance of X and Y is finite, then:

cov(X,Y ) = E(cov(X,Y |Z)) + cov(E(X|Z),E(Y |Z)) (A.6)

Azuma’s inequality Let (Yτ )τ be a martingale difference sequence, i.e. for all τ ,

E(Yτ |Y1, . . . , Yτ−1) = 0. Assume that the range of these random variables is bounded

in [−1, 1], then for all ε > 0:

P

(
n∑
τ=1

Yτ ≥ ε

)
≤ exp

(
−2ε2

n

)
(A.7)

Hoeffding’s inequality Let Sn be the sum of n independent random variables

(Xτ )1≤τ≤n with the same distribution P with mean m and range bounded in [0, 1]. Ho-

effding’s inequality can be seen as a special case of Azuma’s inequality with Yτ = Xτ−m

and Yτ = m−Xτ :

P(nm ≥ Sn + ε) = P(nm ≤ Sn − ε) ≤ exp

(
−2ε2

n

)
from which we get:

P(m ≥ m̂n + ε) = P(m ≤ m̂n − ε) ≤ exp(−2ε2n) (A.8)

where m̂n is a random variable that represents an empirical average of n samples from

P .
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A.2 UCB1 regret bound

In this section, we give proofs of the lemmas invoked in Section 2.1.2.2.

Lemma 1 We start by introducing the following notation: if an event e is true, the

expression {e} takes the value 1; otherwise, it takes the value 0.

ν(i, T ) =
T∑
t=2

{it = i}

=
T∑
t=2

{it = i and ν(i, t− 1) < li(T )}+ {it = i and ν(i, t− 1) ≥ li(T )}

≤ li(T ) +
T∑
t=2

{it = i and ν(i, t− 1) ≥ li(T )}

Lemma 2 it = i implies, by definition of it and of the upper confidence function:

Ȳi∗,ν(i∗,t−1) +

√
βt

ν(i∗, t− 1)
≤ Ȳi,ν(i,t−1) +

√
βt

ν(i, t− 1)

Note that the ν(i, t) values are interdependent random variates. We aim at working

with independent random variates, and for this we write:

min
0<ν∗<t

Ȳi∗,ν∗ +

√
βt
ν∗
≤ max

li(T )≤νi≤t
Ȳi,νi +

√
βt
νi

This implies that Ȳi∗,ν∗ +
√

βt
ν∗ ≤ Ȳi,νi +

√
βt
νi

for a certain value of ν∗ and νi.

Lemma 3 Let us assume that f∗ is strictly below its upper confidence bound and f(i)

is strictly above its lower confidence bound. Using the result from the previous lemma,

there exist ν∗ and νi such that:

f∗ < Ȳi∗,ν∗ +

√
βt
ν∗

Ȳi,νi < f(i) +

√
βt
νi

Ȳi∗,ν∗ +

√
βt
ν∗
≤ Ȳi,νi +

√
βt
νi

Our aim is to show that f∗ ≥ f(i) + 2
√

βt
νi

is not true:

f∗ < Ȳi∗,ν∗ +

√
βt
ν∗

< Ȳi,νi +

√
βt
νi

< f(i) +

√
βt
νi

+

√
βt
νi
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Pierre-Arnaud Coquelin and Rémi Munos. Bandit Algorithms for Tree Search. (March),

2007a. URL http://arxiv.org/abs/cs/0703062v1. 106
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