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Abstract

In this PhD thesis, the role of dynamical systems in cosmology

has been studied. Many systems and processes of cosmological inter-

est can be modelled as dynamical systems. Motivated by the con-

cept of hypothetical dark energy that is believed to be responsible

for the recently discovered accelerated expansion of the universe, var-

ious dynamical dark energy models coupled to dark matter have been

investigated using a dynamical systems approach. The models investi-

gated include quintessence, three-form and phantom fields, interacting

with dark matter in different forms. The properties of these models

range from mathematically simple ones to those with better physical

motivation and justification. It was often encountered that linear sta-

bility theory fails to reveal behaviour of the dynamical systems. As

part of this PhD programme, other techniques such as application of

the centre manifold theory, construction of Lyapunov functions were

considered. Applications of these so-called methods of non-linear sta-

bility theory were applied to cosmological models. Aforementioned

techniques are powerful tools that have direct applications not only in

applied mathematics, theoretical physics and engineering, but also in

finance, economics, theoretical immunology, neuroscience and many

more. One of the main aims of this thesis is to bridge the gap be-

tween dynamical systems theory, an area of applied mathematics, and

cosmology, an exciting area of physics that studies the universe as a

whole.
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Outline

The outline of this thesis is as following: In Chapter 1, the basics of cosmol-

ogy, including dark energy and its alternative, are reviewed. In Chapter 2, the

mathematical machinery needed to take the dynamical systems approach to

study cosmological models and its underlying theories are discussed. This is

followed by Chapter 3 which reviews the role of dynamical systems in cosmol-

ogy. Chapter 4 concerns with new models of coupling between quintessence

dark energy and dark matter which is quadratic in their energy densities while

in Chapters 5 and 6 dynamical three-form and phantom dark energy models

were studied, respectively. Chapter 7 concludes the thesis with discussion on

work currently in progress as well as that for the future.

1 Introduction to Cosmology

Cosmology, in simple terms, may be regarded as the study of the universe

as a whole - its history, its current state, and its future. It seeks to answer

the oldest questions of mankind: How did the universe come into existence?

What is the universe made of? What will happen to us in the future? There

are still many unanswered questions which remain subject to further scientific

investigation and philosophical debate. In this thesis, the nature of a kind of

mysterious contents of the universe, namely, dark energy has been studied.

1.1 The Expanding Universe

From recent observational data of Supernovae Type Ia (SNIa) in 1998, re-

ported independently by Riess et al [1] and Perlmutter et al [2], it seems

likely that our universe has been undergoing accelerated expansion (see also

Reference [3]). This discovery, which subsequently led to the award of the

2011 Nobel Prize, raised many more exciting questions. Where would the

energy needed to drive this possible accelerated expansion come from? One

of the explanations is that a kind of energy, known as “dark energy”, may be

responsible for this. Since dark energy has neither been detected nor been
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understood well, it is still hypothetical and is an area of research in progress

for cosmologists. Dark energy is believed to drive the universe into acceler-

ated expansion in defiance of the known gravitationally attractive properties

of the matter contents of the universe.

The acceleration could also have been due to the cosmological constant

Λ term in the field equations of Einstein (see later in Chapter 2). The

cosmological constant was introduced by Einstein and included in the field

equations to keep the universe static, but it was later abandoned. In reality,

the universe seems far from being static, it is in fact undergoing accelerated

expansion. However, a positive and sufficiently large Λ can overcome the

gravitational attractive force to provide repulsion, leading to an accelerating

universe [4].

One of the methods to determine the expansion of the universe is by

means of calculating the Doppler effect of distant objects. In 1929, Hubble

observationally discovered that distant galaxies recede away from Earth and

the receding velocity was found to be proportional to the relative distance of

the object [5]. This becomes known as Hubble’s law and is expressed as

v = H0d, (1.1)

where v is the veolcity of the receding object, H is the Hubble constant and d

is the relative distance. The subscript 0 refers to today’s value of the quantity

concerned. Such a relationship is given by the plot in Figure 1 [6]. Objects

moving towards the observer would produce blue-shifted wavelengths while

those moving away from the observer would be red-shifted in the spectrum.

The red-shift z of the objects moving away from observer can be expressed

as

1 + z =
λ0

λ
, (1.2)

where λ is the wavelength.

The estimated value of H0 varies: Freedman et al [6] estimates that

H0 = 72 ± 8 kms−1Mpc−1,1 while Riess et al [7] estimates H0 = 74.2 ±
11 Parsec (Pc) is approximately 3.23 light years and 1 light year is about 1 × 1016m.
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Figure 1: Hubble diagram from the Hubble Space Telescope Key Project.
Best fit of H0 vs distance gives the value of 72km sec−1 Mpc−1. Credit:
Freedman et al., 2001

3.6kms−1Mpc−1, while most recently, it is measured to be 67±3.2kms−1Mpc−1

by Beutler et al [8].

1.2 General Relativity and Components of the Uni-

verse

General relativity (GR) can be thought of as a geometric theory of gravita-

tion, from which one can study the geometry of the space-time of the uni-

verse. Throughout this entire research programme, the universe is regarded

as spatially flat, homogeneous and isotropic universe, known as Friedmann-

Lemâıtre-Robertson-Walker (FLRW) universe, described by the following

metric

ds2 = −dt2 + a2(t)
[

dr2 + f 2(r)dΩ2
]

, (1.3)

14



where

f(r) =











sin r if K = 1 → positively curved,

r if K = 0 → spatially flat,

sinh r if K = −1 → negatively curved,

(1.4)

and

dΩ2 = dθ2 + sin2 θdφ2, (1.5)

is the metric of a 2-sphere in spherical polar coordinates. K is the spatial

curvature of the universe. Since the model under assumption is a spatially

flat model, the value of K is taken as 0 throughout this thesis.

Data from WMAP satellite observations [9] reveals nearly identical tem-

perature of about 2.725 K of the Cosmic Microwave Background (CMB)

radiation coming from different parts of the universe [10]. This suggests that

the universe may be, at least on very large scales (> 100 MPc), homoge-

neous and isotropic. Consequently, the cosmological principle, which asserts

that the universe is homogeneous on large scales [11], is assumed. If the

nearby environment, which contains stars, galaxies and clusters of galaxies,

is to be taken into account, then the universe is highly inhomogenous. Such

inhomogeneities at local or small scales are ignored by assuming the cosmo-

logical principle. Homogeneity implies that the universe expands uniformly

and hence any observer would measure the same expansion rate everywhere.

Isotropy of the universe means that it looks the same in all directions and is

invariant under rotations. The following axioms are also assumed:

1. The laws of physics known do not change and are the same everywhere.

2. Physical constants are true constants.

3. The universe is connected.

Matter in the Einstein field equations is described by a stress-energy

tensor2 Tµν . The present universe, to a good approximation, can be described

2Stress-energy tensor is also sometimes referred to as energy-momentum tensor.
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by pressureless fluid or dust whose stress-energy tensor Tµν is given by

Tµν = ρuµuν, (1.6)

where uµ is the particle’s four-velocity and ρ is the mass density of the mat-

ter3. The differential equations for the scale factor and the matter density

follow from the Einstein’s field equation given by [12, 13]

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.7)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor and R is the Ricci

scalar, all of which depend on the metric and its derivatives. G = 6.673 ×
10−11Nm2kg−1 is Newton’s universal gravitational constant. Natural units

for G and the speed of light c are used i.e. G = c = 1.

When the cosmological constant Λ is included, the modified Einstein’s

field equation becomes [13, 14]

Rµν −
1

2
gµνR + Λgµν = 8πTµν , (1.8)

whose trace yields

R + 4Λ = 8πT. (1.9)

The Hubble constant is related to the scale factor a by

H =
ȧ

a
. (1.10)

Together with this, and with assumption of the perfect fluid, differentiating

the Hubble constant with respect to time gives

Ḣ =
äa − ȧ2

a2
=

ä

a
− H2, (1.11)

3On cosmological scale, each galaxy is idealised as a test particle.
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equation (1.8) yields

H2 =
8π

3
ρ +

Λ

3
+

K

a2
, (1.12)

Ḣ = −4π(p + ρ) +
Λ

3
+

K

a3
, (1.13)

ä

a
= −4π

3
(ρ + 3p) +

Λ

3
, (1.14)

while the continuity equation is given by

ρ̇ + 3H(ρ + p) = 0, (1.15)

where ρ and p are the total energy density and pressure of the fluid re-

spectively. From equations (1.12) and (1.14), it suggests that cosmological

constant contributes negatively to the pressure term. It must therefore be a

kind of energy with negative pressure which is in fact a property that defies

the gravitational attraction.

When there is a vanishing cosmological constant and K = 0, and from (1.12)

and (1.13), it gives
ä

a
= −4π

3
(ρ + 3p), (1.16)

from which the condition for acceleration is obtained as

ρ + 3p < 0, (1.17)

and hence

w =
p

ρ
< −1/3. (1.18)

Critical density ρcrit is given by

ρcrit =
3H2

8π
, (1.19)

and the density parameter Ω is defined as

Ω =
ρ

ρcrit
. (1.20)
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Coming back to the original equation (1.12), and dividing it by H2 gives

1 =
8π

3H2
ρ +

Λ

3H2
− K

a2H2
. (1.21)

With the density parameters of the cosmological constant and the curvature

defined respectively as

ΩΛ =
Λ

3H2
, (1.22)

ΩK =
K

a2H2
, (1.23)

we have

Ωtot = Ω + ΩΛ, (1.24)

Ωtot − 1 =
K

a2H2
= ΩK . (1.25)

From (1.24) spatial geometry of the universe is determined as

Ωtot > 1 or ρ > ρcrit → K = +1, (1.26)

Ωtot = 1 or ρ = ρcrit → K = 0, (1.27)

Ωtot < 1 or ρ < ρcrit → K = −1. (1.28)

The geometry of the universe is spherical if Ωtot > 1, hyperbolic if Ωtot <

1, and is spatially flat Euclidean if Ωtot = 1. Since the value of Ωtot is the

density of matter present in the universe, the spatial geometry of the universe

is determined by its matter distribution. As stated before, throughout this

research, the universe is assumed to be spatially flat and hence the Ωtot = 1

case. This assumption, in fact, seems consistent with reality as suggested by

observations which have shown that the current state of universe is such that

the value of Ωtot is very close to 1 [15].

Then, by solving the Friedmann equation, one obtains the solution for

the scale factor a(t) which represents the dynamics of the universe and it

turns out that for dust-dominated universe with the value of the equation of

18



Figure 2: Depiction of three possible geometries of the universe i.e. re-
lationship between K and Ω. The top image Ωtot > 1 corresponds
to K > 0 (spherical geometry). The middle image Ωtot < 0
corresponds to K < 1 (hyperbolic geometry). The bottom image
Ωtot = 1 corresponds to K = 0 (flat Euclidean geometry). Credit:
NASA (http://map.gsfc.nasa.gov/media/990006/index.html Accessed: 19th
September 2011)

state w = 0 [14],

a(t) ∝ (t − t0)
2/3, ρ ∝ a−3, (1.29)

while for radiation-dominated universe with w = 1/3, the solution is

a(t) ∝ (t − t0)
1/2, ρ ∝ a−4. (1.30)

For matter-dominated universe, ρ ∝ 1
a3 is expected as ρ ∝ 1

V
and a3 ∝ V ,

where V is the volume. In the radiation-dominated universe, the energy

E of the photons is lost as the universe expands as E ∝ 1
a
. The number

density, as in the matter-dominated universe, is proportional to 1
a3 . Together

with this, in the radiation-dominated universe, there is an extra-factor of a−1

in the relationship between energy density and scale factor. The dynamical

behaviour of the scale factor for different epochs of the universe is summarised

in Table 1.

Measuring how the scale factor changes, therefore, reveals the energy
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Epoch Dynamical behaviour of the scale factor
inflation a ∝ exp(λt) (model-dependent and λ is a constant)
matter a ∝ t2/3

radiation a ∝ t1/2

dark energy a ∝ exp(
√

Λ
3
t)

Table 1: Summary of the dynamical behaviour of the scale factor for different
epochs of the universe

contents of the universe. Cosmic inflation takes place in the early era universe

prior to radiation-dominated epoch. We are interested in late-time era of the

universe dominated by dark energy. Therefore, radiation has been neglected

in this thesis.

1.3 Dark Matter

Regarding the contents of the universe, it has been known that only about

4% of the universe is the observed ordinary matter such as atoms, while the

dark matter is believed to make up about 22% of it. The rest is filled with

so-called dark energy whose nature is still unknown. The existence of dark

matter has long been implied from the flattened galactic rotation curves [16]

observed by Zwicky [17, 18] as early as 1933 (although modified Newtonian

dynamics or modified gravity may be an alternative explanation). Dark

matter does not interact with normal matter or electromagnetic radiation.

It perhaps interacts only gravitationally. Therefore, so far, it has not been

possible to detect dark matter directly. Only the total dark sector energy-

momentum tensor is inferred from its combined gravitational effect on visible

matter. One of the indirect methods of detecting it is, amongst others, by

means of gravitational lensing (see e.g. [19] and references therein). The

search for candidate dark matter particles is still in progress (see e.g. [20–23]).

Possible candidate particles or models includes, but are not limited to, axions,

neutrinos, neutralinos and so on. Ordinary matter is referred to as baryonic

matter or baryons and quantities related to them are indicated with subscript

b. They are protons and neutrons, but for cosmological purpose, electrons
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Figure 3: Chart showing the contents of the universe. Credit: NASA
(http://map.gsfc.nasa.gov/media/060916/index.html Accessed: 7th August
2011)

are also included in the baryons. It could also include baryonic dark matter

which may be detected by means of gravitational lensing. Dark matter may

also be non-baryonic. This possibility is also inferred from the event where

atomic nuclei were formed in the early stage of the universe. This process is

called nucleosynthesis.

Dark matter is considered essential in the formation and growth of large-

scale structures in the universe such as galaxies and clusters of galaxies. It

has been predicted by particle physicists that the dark matter particles must

be very massive in order for its properties to be consistent with respect to

the structure formation in the universe [24]. Weakly interacting particles,

including dark matter and its candidate particles, are collectively classed as

Weakly Interacting Massive Particles (WIMPs).

Dark matter can be classified into different families: one of them is the

cold dark matter (CDM) for non-relativistic dark matter which have no sig-

nificant random motion, and another one is called hot dark matter (HDM)

which is relativistic. The former is a simple model since individual particle

properties are, by definition, not important and their density Ω is the only
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important quantity. CDM may be considered extremely important since it

is said to incorporate dark matter with evolution of structure and inflation

that are beyond the Standard Model [13]. There is yet another type of dark

matter model known as warm dark matter (WDM), cosmological effects of

which depend both on density and the nature of random motion and are

therefore considered more complex. The CDM candidates may be some kind

of lightest supersymmetric particles or massive primordial black holes while

neutrinos may be the possible candidates of HDM. Active experimental ef-

forts have been made to search for neutrinos as one possible candidate (see

e.g. [25] and references therein).

1.4 Dark Energy

The current best fit in the Hubble’s diagram seems to imply a preference for a

universe with more than 70% of the energy in the form of dark energy [13], for

which reason investigating a universe with a scenario in which it is dominated

by dark energy appears important. The idea of dark energy, however, is

hypothetical since it has never been detected or created in a laboratory.4 It

has been introduced to explain the observed accelerated expansion of the

universe. Furthermore, at this stage, it is necessary to include the concept

of dark energy in order to account for the vast majority of missing energy

in the universe, which otherwise would lead to a “shortfall” of the energy

budget of the universe. One of the simplest models for dark energy is the

cosmological constant Λ or vacuum energy density, with negative pressure,

whose equation of state is given by

wΛ =
pΛ

ρΛ

= −1, (1.31)

where pΛ and ρΛ are the pressure and the energy density of the cosmological

constant respectively.

Λ is also called the vacuum energy density since, in particle physics, it

4Analogical phenomena may be observed in a kind of superfluid condensate known as
Bose-Einstein Condensate which exhibits behaviour analogous to accelerated expansion of
the universe [26].
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naturally arises as the energy density of the vacuum. The fact that it has

negative pressure distinguishes dark energy from other kinds of matter such

as baryons and radiation, which are also constituents of the universe. Origi-

nally, the cosmological constant was introduced by Einstein and included in

his field equations of general relativity to keep the universe static. However,

it later turned out that the cosmological constant itself can be regarded as a

form of dark energy that is driving the late-time acceleration of the universe.

The standard model of cosmology, known as ΛCDM (cold dark matter)

model, is a very good model that is in good agreement with observational

data. However, there exists several fine-tuning problems, one of which is that

the value of Λ is many orders of magnitude smaller than that of the vacuum

energy predicted in quantum field theories. It is severely fine-tuned and is

the order of about 10121 wrong. The observational value of dark energy is

expected to be about 1074GeV while the vacuum energy is approximately

10−47GeV. This problem is called the cosmological constant problem (for

recent review, see e.g. [27, 28]). It has not been resolved satisfactorily until

today.

It has been considered that if dark energy evolves with time, the cosmo-

logical coincidence problem may be alleviated. One of the simplest scalar

field models of time-evolving dark energy is quintessence [29, 30] which is

one of the main investigations of this thesis. Some other models of dark

energy are scalar field models such as phantom fields [31], K-essence [32–34],

tachyons [35, 36], Chaplygin gases [37–39], and Higgs fields amongst others.

A review on various dark energy models can be found in [14] and references

therein. In theoretical particle physics and string theory, scalar fields natu-

rally arise. It may, therefore, be possible for them to act as potential can-

didates of dark energy. There are also more complicated fields proposed as

dark energy models such like as p-forms, spinors [40,41] and vector fields [42].

Each model has its own strengths and shortcomings.

The cosmological constant problem is not the only problem that the stan-

dard model of cosmology suffers from, there are also other problems, namely

the flatness problem and the horizon problem.
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Flatness problem

By recalling that we have

Ωtot − 1 =
K

(aH)2
,

which is time-dependent in general. However, if the constant time hypersur-

faces are flat i.e. K = 0, then Ωtot = 1 and it remains so for all times. In a

flat matter-dominated universe,

a ∼ t2/3, H ∼ 1

t
⇒ aH ∼ t−1/3, (1.32)

while for radiation-dominated epoch,

a ∼ t1/2, H ∼ 1

t
⇒ aH ∼ t−1/2, (1.33)

hence arriving at

|Ωtot − 1| ∼
{

t radiation-dominated;

t2/3 matter-dominated.
(1.34)

The flatness problem is that in general aH is a decreasing function. The

value of Ωtot at time t = 0 is of the order of unity. Thus it is expected that

Ω has to be close to unity at earlier times. For example, it is required that,

at time t = tnucleo when nucleosynthesis takes place, |Ω(tnucleo)| < O(10−16),

and in Planck epoch5 at time t = tPlanck, |Ω(tPlanck)| < O(10−64), in order to

obtain the universe as it is at present. These are highly fine-tuned conditions

and are unlikely. Without these fine-tuned conditions the universe would

either collapse too soon, or expand too quickly before structure formation.

5Planck epoch is when the universe is only at the age of Planck time, which is about
10−43s. This is before inflation.
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Horizon problem

The particle horizon DH is the distance travelled by light since the beginning

of the universe at time t = t0 and is defined as

DH = adH , (1.35)

where

dH =

∫ t

t0

dt′

a(t′)
, (1.36)

is the comoving distance. Both in radiation- and matter-dominated epochs,

there are particle horizons and there exist regions that cannot interact. On

the other hand, the cosmic microwave background (CMB) radiation is nearly

homogeneous i.e. it has roughly the same temperature distribution in all

directions on the sky. These are the regions that cannot have interacted

before recombination6. Thus, the question arises as to how it was possible

to achieve thermal equilibrium if there were no interactions between these

regions. Such a problem is called horizon problem.

In order to overcome these problems, the concept of cosmological infla-

tion [43] needs to be considered. It is an epoch in which the scale factor of

the universe undergoes extremely rapid exponential expansion. The hypo-

thetical field that is responsible for inflation to take place is called inflaton.

There exist various inflationary models (see e.g. [44] and references there in).

1.5 Interacting Dark Energy Models

Since neither dark energy nor dark matter are understood fundamentally,

currently there are no a priori conditions imposed upon possible interac-

tions between these two components. Therefore, without violating the ob-

servational constraints, dark energy may interact with dark matter in various

fashions by means of energy transfer between each other. If dark energy inter-

acts with dark matter, then the former would also have some role in the past

history of the universe, in particular, structure formation. In contrast, in the

6Recombination refers to an epoch in which electrons and nucleons combine to form
atoms. Before this, the universe was too hot for the atomic nuclei to e formed.
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uncoupled models, dark energy only become important at late times. During

the early stage of the universe, it was dominated by radiation, and then by

matter. The present universe or late universe appears to be dominated by

dark energy.

The coupling strength of the coupling models may be varied to be in

agreement with observations of Cosmic Microwave Background (CMB) and

galaxy clustering. The interaction between dark energy and dark matter has

never been observed or created in laboratory, nor is there a well-grounded

theory that implies a specific form of coupling and therefore any such cou-

pling models will necessarily be phenomenological and the aim is to work

out a more realistic model with better physical justification. However, ex-

perimental activities are taking place to explore the relationship between

dark matter and dark energy such like as those carried out at Large Hadron

Collider (LHC) at CERN in Switzerland [45].

There is plenty of literature on this matter and various models have been

investigated (see, for example, [46–62] and references therein). Some models

are motivated by mathematical simplicity, while other may feature more

interesting and realistic properties.

As mentioned earlier, we wish to alleviate the cosmological coincidence

problem in which the ΛCDM model is highly fine-tuned due to the fact that

dark matter energy density is comparable to the vacuum or dark energy

density yet their time evolution is so different. A decisive way of achieving

similar energy densities is if the couplings can lead to an accelerated scaling

attractor solution with

Ωdarkenergy

Ωdarkmatter
= O(1) and ä > 0. (1.37)

Based on the fact that dark energy and dark matter have the same order of

energy density today, it is reasonable to assume that there may be some form

of interaction or relation between them. Therefore the above expression is

a well-motivated scaling solution intended to alleviate cosmological coinci-

dence problem. In fact, certain types of interaction such like as those taking

place in the form of Q = βρmϕ̇ [46, 47, 63] also appear in scalar-tensor the-
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ories, f(R) gravity and dilaton gravity (see e.g. [64] and references therein).

Furthermore, coupling can lead to an accelerated scaling attractor solution

such that the need for fine-tuned initial conditions can be eliminated from

context [56, 65].

In the models investigated in this thesis, scalar fields with exponential

potential [29, 30, 66] have been considered. There is also literature that con-

sidered other forms of scalar field potentials. An expression for general inter-

action between a scalar field ϕ, that contains dark energy, and dark matter

is given by [14, 64]

∇µT
µ
ν(ϕ) = −Qν , (1.38)

∇µT µ
ν(M) = Qν . (1.39)

where ∇µT µ
ν(ϕ) and ∇µT

µ
ν(M) are the energy-momentum tensors of the scalar

field ϕ and non-relativistic matter, respectively, which can be known from

its combined gravitational effect. In order to separate the two components,

it is necessary to assume a model for them. It is possible that the interaction

between these two components takes place without being coupled to standard

model particles (such like as baryons). The trace of T µ
ν(M) yields

TM = −ρM + 3PM , (1.40)

of the matter fluid.

In this thesis, radiation has been neglected since the primary interest is in

the dark sector. Furthermore, baryons are assumed to be decoupled so that

they are unaffected by any force other than gravity, hence to ensure that the

results obtained are comparable to that of observations.

The energy conservation equations in the case of general coupling Q be-

come

ρ̇ϕ + 3H(ρϕ + Pϕ) = −Q, (1.41)

ρ̇M + 3HρM = Q. (1.42)
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For the sake of completeness, we state the other evolution equations for

baryons and radiation which are given by

ρ̇b + 3Hρb = 0, (1.43)

ρ̇r + 4Hρr = 0. (1.44)

In what follows, the presence of ρb and ρr will be neglected in our models. It

follows that

Q

{

> 0 energy transfer is dark matter → dark energy;

< 0 energy transfer is dark energy → dark matter.
(1.45)

The dark energy equation of state parameter is

wϕ :=
pϕ

ρϕ

=
1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

, (1.46)

The modified Klein-Gordon equation becomes

ϕ̈ + 3Hϕ̇ +
dV

dϕ
=

Q

ϕ̇
. (1.47)

and

Ḣ = −κ2

2

[

ρc + ρb +
4

3
ρr + ϕ̇2

]

, (1.48)

subject to the Friedman constraint,

Ωc + Ωb + Ωr + Ωϕ = 1, Ω :=
κ2ρi

3H2
with i = c, b, r, ϕ. (1.49)

However, in this case baryons are considered to be decoupled and radiation

in the dark sector. Effective equation of state parameters for the dark sector

are defined by

w
c,eff =

Q

3Hρc
, w

ϕ,eff = wϕ − Q

3Hρϕ
. (1.50)
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Consequently,

Q > 0 ⇒
{

w
c,eff > 0 dark matter redshifts faster than a−3;

w
ϕ,eff < wde dark energy has more accelerating power.

(1.51)

Q < 0 ⇒
{

w
c,eff < 0 dark matter redshifts slower than a−3;

w
ϕ,eff > wde dark energy has less accelerating power.

(1.52)

1.6 Alternatives to Dark Energy

Since existence of dark energy has not yet been proved, it may be possible

to find alternative theories that can explain the observed accelerated expan-

sion of the universe, while at the same time solving the cosmological con-

stant problem. Some of such theories are modified gravity theories known as

f(R) [67,68] and f(T ) [69] theories, a network of topological defects driving

the universe into a period of accelerated expansion [70], quantum gravity [71],

string theory [72] and so on. This list is not exhaustive. Some reviews on

recent progresses in the context of f(R) gravity theories can be found in [73].

Investigation of these theories are beyond the scope of this thesis.
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2 Introduction to Dynamical Systems

The aim of this chapter is to discuss some mathematical aspects of dynam-

ical systems, or systems of autonomous differential equations. Autonomous

systems are the ones which do not explicitly depend on time, while non-

autonomous systems are the systems in which the time variable does not

explicitly appear in the differential equation(s) describing the system, for

example, a forced damped pendulum equation [74]. In Chapter 3, we will

discuss the role of dynamical systems in cosmology.

2.1 Dynamical Systems

What is a dynamical system? It can be anything ranging from something as

simple as a single pendulum to as complex as human brain and the entire

universe itself. A dynamical system consists of

1. a space (state space or phase space), and

2. a mathematical rule describing the evolution of any point in that space.

The state of the system is a set of quantities which are considered im-

portant about the system and the state space is the set of all possible values

of these quantities. In the case of a pendulum, position and momentum

are natural quantities to specify the state of the system. For more compli-

cated systems such as those in cosmology, the choice of good quantities is

not obvious and it turns out to be useful to choose convenient variables.

There are two main types of dynamical systems. The first one is the

continuous dynamical systems whose evolution is defined by ordinary differ-

ential equations (ODEs) and the other one is called time-discrete dynamical

systems which are defined by a map or difference equations. In this PhD

programme the systems under investigation are called autonomous systems

which fall under the category of continuous dynamical systems.

The standard form of a dynamical system is usually expressed as [75]

ẋ = f(x), (2.1)
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where x ∈ X i.e. x is an element in state space X ⊂ R
n, and f : X → X.

The function f : R
n → R

n is a vector field on R
n such that

f(x) = (f1(x), · · · , fn(x)), (2.2)

and x = (x1, x2, · · · , xn).

These ODEs define the vector fields of the system. At any point x ∈ X

and any particular time t, f(x) defines a vector field in R
n. As far as this PhD

thesis is concerned, the systems under investigation are finite dimensional and

continuous autonomous systems.

Definition (Critical point) The autonomous equation ẋ = f(x) is said to

have a critical point or fixed point at x = x0 if and only if f(x0) = 0.

The stability/instability of a fixed point may be categorised as following:

A critical point (x, y) = (x0, y0) is stable (also called Lyapunov stable) if all

solutions x(t) starting near it stay close to it and asymptotically stable if it

is stable and the solutions approach the critical point for all nearby initial

conditions. If the point is unstable then solutions will escape away from it.

The stability/instability of the fixed points may also be revealed by means

of linearisation.

2.2 Linear Stability Theory

Given a dynamical system ẋ = f(x) with critical point at x = x0, in order

to linearise the system it should first be Taylor expanded such that

f(x) ≈ f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + · · · , (2.3)

which can be generalised as

f(x) ≈
∞
∑

n=0

f (n)(x0)

n!
(x − x0)

n. (2.4)
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By the definition of the critical point, f(x0) = 0 and by ignoring the higher

order terms,

ẋ = f ′(x0)(x − x0). (2.5)

In this setup, the critical point x0 can be deduced as

1. stable if f ′(x0) < 0,

2. unstable if f ′(x0) > 0,

3. unknown i.e. linear stability theory fails if f ′(x0) = 0.

If the linearisation results in the case 3 above, then non-linear stability anal-

ysis must be performed. The above was a 1D system. For higher dimensional

systems, eigenvalues of the Jacobi matrix of the system evaluated at critical

points would reveal information regarding their stabilities. Given a dynami-

cal system ẋ = f(x, t) with critical point at x = x0, the system is linearised

about its critical point by

M = Df(x0) =

(

∂fi

∂xj

)

x=x0

, (2.6)

and the matrix M is called Jacobi matrix.

For example, a simple 2D autonomous system, may be given by

ẋ = f(x, y),

ẏ = g(x, y), (2.7)

where f and g are functions of x and y, with critical point at (x = x0, y = y0)

assumed. The Jacobi matrix constructed to linearise the system about its

critical point would then be

M =

(

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

. (2.8)

When eigenvalues are computed, it will have two eigenvalues, hereby de-

noted by λ1 and λ2. The eigenvalues of this matrix linearised about the
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critical point in question reveal the stability/instability of that point pro-

vided that the point is hyperbolic.

Definition Let x = x0 be a fixed point (critical point) of the system ẋ =

f(x), x ∈ R
n. Then x0 is said to be hyperbolic if none of the eigenvalues of

Df(x0) have zero real part, and non-hyperbolic otherwise [75].

If the point is non-hyperbolic, linear stability theory fails and therefore al-

ternative techniques such as finding Lyapunov’s functions or applying centre

manifold theory must be carried out.

Assuming a general 2D system, the possibilities regarding the stability of

the critical point with respect to the two eigenvalues λ1 and λ2 are as follows:

1. If λ1 < 0 and λ2 < 0, then the critical point of the dynamical system

is asymptotically stable and trajectories starting near that point will

approach that point or remain near that point.

2. If λ1 > 0 and λ2 > 0, then the critical point of the dynamical system

is unstable and trajectories will escape away.

3. If λ1, λ2 6= 0 and are of opposite signs, then the critical point is a saddle.

4. If λ1 = 0 and λ2 > 0, or the other way round, the point is unstable.

5. If λ1 = 0 and λ2 < 0, or the other way round, it is not possible

to tell whether the critical point is stable or unstable. The point is

non-hyperbolic. In the chapters that follow, how nature of stability of

non-hyperbolic points can be determined will be reviewed.

6. If λ1 = α+ iβ and λ2 = α− iβ, with α > 0 and β 6= 0, it is an unstable

spiral.

7. If λ1 = α + iβ and λ2 = α − iβ, with α < 0 and β 6= 0, it is a stable

spiral.

8. If λ1 = iβ, λ2 = −iβ, then the solutions are oscillatory and is a centre7.

7Note that a critical point being a centre is not related to centre manifolds.
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2.3 Lyapunov’s Functions

Lyapunov’s functions, named after the Russian mathematician Aleksandr

Mikhailovich Lyapunov, are functions that can be used to prove the stability

of the critical points of the system. In constructing Lyapunov’s functions, a

number of conditions must be satisfied. Unfortunately, there is no systematic

way of finding these functions. They are, at best, done by trial and error

and by educated guess. Traditionally, Lyapunov’s functions have played a

key role in control theory, but there have also been some work in which it

has been applied in cosmological contexts [76, 77].

Definition (Lyapunov function) Given a smooth dynamical system ẋ =

f(x), x ∈ R
n, and an critical point x0, a continuous function V : R

n → R in

a neighbourhood U of x0 is a Lyapunov function for the point if

1. V is differentiable in U\{x0},

2. V (x) > V (x0) ∀x ∈ U\{x0},

3. V̇ ≤ 0 ∀x ∈ U\{x0}.

The existence of a Lyapunov’s function guarantee the asymptotic stability

and one would not have to solve the ODEs explicitly. However, just because

it was not possible to compute Lyapunov’s function at a particular point

does not necessarily imply that such a point is unstable. Since there is no

systematic way of finding the function, it is possible that one could not simply

construct a Lyapunov’s function for the critical point concerned.

Theorem 2.1 (Lyapunov stability) Let x0 be a critical point of the system

ẋ = f(x), where f : U → R
n and U ⊂ R

n is a domain that contains x0. If

V is a Lyapunov function, then

1. if V̇ = ∂V
∂x

f is negative semi-definite, then x = x0 is a stable fixed point,

2. if V̇ = ∂V
∂x

f is negative definite, then x = x0 is an asymptotically stable

fixed point.

Furthermore, if ‖x‖ → ∞ and V (x) → ∞ for ∀x, then x0 is said to be

globally stable or globally asymptotically stable, respectively.

34



2.3.1 An example of proving the stability of a critical point by

finding a corresponding Lyapunov’s function

In the subsequent work where attempts were made to find the Lyapunov’s

function of the critical points, the following example from [75] has been

closely followed. Suppose that a system is described by the vector field

ẋ = y, (2.9)

ẏ = −x + ǫx2y, (2.10)

which has a critical point at (x, y) = (0, 0) A candidate Lyapunov’s function

is given by

V (x, y) =
x2 + y2

2
, (2.11)

satisfying V (0, 0) = 0 and V (x, y) > 0. This function leads to

V̇ (x, y) = ∇V (x, y) · (ẋ, ẏ) = ǫx2y2, (2.12)

from which it can be concluded that the point is stable if ǫ < 0 since it would

give V̇ < 0. It is important to emphasise, however, that ǫ > 0 does not imply

the point is unstable.

2.4 Centre Manifold Theory

Centre manifold theory is a theory that allows us to simplify the dynamical

systems by reducing their dimensionality. It is also central to other elegant

theories such as bifurcations. Another technique that can also be applied to

simplify the dynamical systems is the method of normal forms which elimi-

nates the nonlinearity of the system. Here the essential basics of the theory

are discussed. The eigenspace with corresponding eigenvalues that have zero

real parts reveals little information about the system. As a result, where

there is a zero eigenvalue resulting from the Jacobi matrix, the correspond-

ing critical point is non-hyperbolic and the structural stability is no longer

guaranteed. Thus, it is necessary to investigate further by, for example,

applying the centre manifold theory.
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In applying the centre manifold theory, the approach taken by Wig-

gins [75] has been closely followed.

Let a dynamical system be represented by the vector fields as followings:

ẋ = Ax + f(x, y),

ẏ = By + g(x, y), (x, y) ∈ R
c × R

s, (2.13)

where

f(0, 0) = 0, Df(0, 0) = 0,

g(0, 0) = 0, Dg(0, 0) = 0, (2.14)

are Cr functions.

In the system (2.13), A is a c× c matrix possessing eigenvalues with zero

real parts, while B is an s × s matrix whose eigenvalues have negative real

parts. The aim is to compute the centre manifold of these vector fields so as

to investigate the dynamics of the system.

Definition (Centre Manifold) A geometrical space is a centre manifold for (2.13)

if it can be locally represented as

W c(0) = {(x, y) ∈ R
c × R

s|y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0}, (2.15)

for δ sufficiently small.

The conditions h(0) = 0 and Dh(0) = 0 from the definition imply that

W c(0) is tangent to the eigenspace Ec at the critical point (x, y) = (0, 0).

In applying the centre manifold theory, three main theorems [75], each for

existence, stability and approximation, have been assumed without proof.

Theorem 2.2 (Existence) There exist a Cr centre manifold for (2.13). Its

dynamics restricted to the centre manifold is given by

u̇ = Au + f(u, h(u)), u ∈ R
c, (2.16)

for u sufficiently small.
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Theorem 2.3 (Stability) Suppose the zero solution of (2.16) is stable (asymp-

totically stable) (unstable); then the zero solution of (2.16) is also stable

(asymptotically stable) (unstable). Furthermore, if (x(t), y(t)) is also a so-

lution of (2.16) with (x(0), y(0)), there exists a solution u(t) of (2.16) such

that

x(t) = u(t) + O(e−γt), (2.17)

y(t) = h(u(t)) + O(e−γt), (2.18)

as t → ∞, where γ > 0 is a constant and for sufficiently small (x(0), y(0).

In order to proceed to compute the centre manifold and before stating or

considering the third theorem, an equation that h(x) must satisfy, in order

that its graph to be a centre manifold for (2.13), needs to be derived. Its

explicit derivation is as following.

First, by the chain rule, differentiating y = h(x) gives

ẏ = Dh(x)ẋ, (2.19)

and is satisfied by any (ẋ, ẏ) coordinates of any point on W c(0) since (x, y)

coordinates of any point on it must have satisfied y = h(x).

Furthermore, W c(0) obeys the dynamics generated by the system (2.13).

Substituting

ẋ = Ax + f(x, h(x)), (2.20)

ẏ = Bh(x) + g(x, h(x)), (2.21)

into (2.19) yields

Dh(x) [Ax + f(x, h(x))] = Bh(x) + g(x, h(x)), (2.22)

and re-arranging this results in quasilinear partial different equation N given

by

N (h(x)) ≡ Dh(x) [Ax + f(x, h(x))] − Bh(x) + g(x, h(x)) = 0, (2.23)
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and must be satisfied by h(x) so as to ensure its graph to be an invariant

manifold.

Finally the following third and last theorem is assumed in computing the

approximate solution of (2.23).

Theorem 2.4 (Approximation) Let φ : R
c → R

s be a C1 mapping with

φ(0) = Dφ(0) = 0 such that N (φ(x)) = O(|x|q) as x → 0 for some q > 1.

Then

|h(x) − φ(x)| = O(|x|q) as x → 0. (2.24)

The advantage of this theorem is that one can compute the centre man-

ifold which would return the same degree of accuracy as solving (2.23) but

without having have to face the difficulties associated with doing it. The

proofs of these theorems can be found in Carr [78].

2.4.1 An example of application of centre manifold theory: a sim-

ple two-dimensional case

The following two dimensional example from Wiggins [75] has been closely

followed and extended in applying the centre manifold theory to study the

cosmological problems. Suppose there is a system given by the vector field

ẋ = x2y − x5,

ẏ = −y + x5, (x, y) ∈ R
2. (2.25)

The origin, (x, y) = (0, 0) is a critical points, which yields, when linearised

about it, eigenvalues of 0 and −1. Since there is a zero eigenvalue, it is not

possible to determine the nature of stability of this point just by looking

at the eigenvalues obtained from the Jacobi matrix evaluated at that point.

The point is non-hyperbolic and therefore structural stability is no longer

guaranteed. Thus, non-linear stability analysis must be performed and this

is where centre manifold theory can be applied.

As per Theorem 2.2, there exists a centre manifold for the system (2.25)
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and it can be represented locally as:

W c(0) = {(x, y) ∈ R
2|t = h(x), |x| < δ, h(0) = Dh(0) = 0}, (2.26)

for δ sufficiently small.

In order to proceed with computing the W c(0), it is customary to assume

the expansion for h(x) to be of the form

h(x) = a1x
2 + a2x

3 + O(x4), (2.27)

and it is then substituted into (2.23) which, in order for it to be a centre

manifold, must be satisfied by h(x).

In this example,

A = 0,

B = −1,

f(x, y) = x2y − x5,

g(x, y) = x2. (2.28)

which, together with (2.27), is substituted into (2.23), gives

N = (2ax + 3bx2 + · · · )(ax4 + bx5 − x5 + · · · )
+ ax2 + bx3 − x2 + · · · = 0. (2.29)

The coefficients of each power of x must be zero so that (2.29) holds. Then

coefficents of each power of x are equated to zero, so that for x2 and x3,

a = 1,

b = 0, (2.30)

respectively and the higher powers are ignored. Therefore,

h(x) = x2 + O(x4). (2.31)
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Finally, as per Theorem 2.2, the dynamics of the system restricted to the

centre manifold is obtained to be

ẋ = x4 + O(x5). (2.32)

By studying (2.32), it can be concluded that for x sufficiently small, x = 0

is unstable. Therefore, the critical point (0, 0) is unstable.
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3 Dynamical Systems Approach to Cosmol-

ogy

3.1 Introduction

As defined earlier, a dynamical system, in simple terms, is nothing but a

mathematical concept in which a fixed rule determines the evolution and

state of a system in future. A dynamical system is described by an equation

of the form

ẋ = f(x). (3.1)

In equation (3.1), for simplicity t was not included as a variable in the

function since the system is assumed to be autonomous. Many processes and

systems that are of cosmological interest can be modelled as a dynamical

system of that form. The motivation is to re-write Einstein’s field equations

for cosmological models in terms of a system of autonomous first-order ODEs,

thereby modelling it as a dynamical system in R
n [64].

It is a powerful tool which allows one to study the dynamical behaviour

of the universe as a whole. By analysing the fixed points (critical points)

at which f(x) vanishes, it often suffices to extract information regarding the

dynamics of the universe. In doing so, the following three requirements must

be met:

1. There has to be an early time expansion (inflation), a state which

should be unstable so as to enable the universe to evolve away from

that point.

2. An epoch of matter domination is required since it would not be pos-

sible for us to exist otherwise.

3. A late-time attractor where the universe expands must exist. This is

in order to resemble the current state of the universe which, according

to observational data, is undergoing accelerated expansion and asymp-

totically approaching de Sitter space.
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With this established, a dynamical system approach incorporating cosmo-

logical quantities fulfilling the above requirements has been taken in studying

the interacting dark energy models. It was assumed that the universe is filled

with a barotropic perfect fluid with equation of state given by

pγ = (γ − 1)ργ , (3.2)

where γ is a constant and 0 ≤ γ ≤ 2.

Its value is 4/3 when there is radiation, and is 1 for dust or dark matter.

In general, the potential V is assumed to be of the exponential form, V =

V0 exp(−λκϕ) in which ϕ is a scalar field.

3.2 Constructing a Cosmological Dynamical System

In order to construct a dynamical system in a cosmological context, a spa-

tially flat FLRW universe with the following evolution and conservation equa-

tions are considered:

H2 =
κ2

3

(

ργ +
1

2
ϕ̇2 + V

)

, (3.3)

ρ̇γ = −3H(ργ + Pγ), (3.4)

ϕ̈ = −3Hϕ̇ − dV

dϕ
. (3.5)

It follows that

Ḣ = −κ2

2
(ργ + Pγ + ϕ̇2). (3.6)

Furthermore, dividing equation (3.3) with H2 results in

1 =
κ2ργ

3H2
+

κ2ϕ̇2

6H2
+

κ2V

3H2
, (3.7)
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allowing the dimensionless variables x and y to be defined [14, 79] such that

x2 =
κ2ϕ̇2

3H2
, (3.8)

y2 =
κ2V

3H2
, (3.9)

leading to the following expression

1 − x2 − y2 =
κ2ργ

3H2
≥ 0, (3.10)

implying a unit circle for phase space and boundedness 0 ≤ x2 + y2 ≤ 1.

Furthermore, from equation (3.3),

Ωϕ ≡ κ2ρϕ

3H2
= x2 + y2. (3.11)

The effective equation of state for the scalar field is given by

γϕ ≡ ρϕ + pϕ

ρϕ
=

ϕ̇2

V + ϕ̇2/2
=

2x2

x2 + y2
. (3.12)

Now, we are ready to derive a 2D system of autonomous ODEs, x′ and

y′ where the prime denotes the differentiation with respect to N = ln a such

that

dN =
ȧ

a
dt = Hdt, (3.13)

By differentiating x with respect to t gives

ẋ =
κ√
6

ϕ̈H − ϕ̇Ḣ

H2

=
κ

H
√

6

(

ϕ̈ − ϕ̇

H
Ḣ

)

. (3.14)

Substituting for ϕ̈ and Ḣ using evolution equations and then using (3.8)
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and (3.9) to substitute for ϕ̇ and V respectively in terms of x and y, it gives

ẋ = H

[

−3x +

√

3

2
λy2 +

3

2
x
(

(1 − x2 − y2)γ + 2x2
)

]

. (3.15)

From (3.13),

x′ =
ẋ

H
. (3.16)

Thus, dividing (3.15) with H gives

x′ = −3x +

√

3

2
λy2 +

3

2
x
(

γ(1 − x2 − y2) + 2x2
)

. (3.17)

Following similar steps, the equation for y′ is obtained as

y′ = −λ

√

3

2
xy +

3

2
y
(

2x2 + γ(1 − x2 − y2)
)

. (3.18)

Thus the system of autonomous equations governing this cosmological dy-

namical system is

x′ = −3x +

√

3

2
λy2 +

3

2
x
(

γ(1 − x2 − y2) + 2x2
)

,

y′ = −λ

√

3

2
xy +

3

2
y
(

2x2 + γ(1 − x2 − y2)
)

. (3.19)

The system is invariant under y → −y and time reversal t → −t, with

y < 0 or the lower disc of the phase space corresponding to the contracting

universe. Thus only the semi-circle is needed to contain the phase-space.

The values of λ and γ affect the existence and stability of the critical points

and this is summarised in Tables 2 and 3, attributed to [79]. By computing

the critical points and the eigenvalues of the system linearised about these

points, and by investigating the phase-space of the above system is expected

reveal cosmological information of the system in this context. Such infor-

mation could include whether the model under investigation can admit the

evolution of the universe in a way it should be, what the universe will be dom-

inated by etc. Since this model is non-interacting, the dynamical equations
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Point x y Existence

A 0 0 ∀λ and γ

B 1 0 ∀λ and γ

C -1 0 ∀λ and γ

D λ/
√

6 [1 − λ2/6]1/2 λ2 < 6

E (3/2)1/2γ/λ [3(2 − γ)γ/2λ2]1/2 λ2 > 3γ

Table 2: Summary of the critical points and their existence in uncoupled
model.

Point Stable? Ωϕ γϕ

A Saddle point for 0 < γ < 2 0 Undefined

B Unstable node for λ <
√

6 1 2

Saddle point for λ >
√

6

C Unstable node for λ > −
√

6 1 2

Saddle point for λ < −
√

6

D Stable node for λ2 < 3γ 1 λ2/3

Saddle point for 3γ < λ2 < 6

E Stable node for 3γ < λ2 < 24γ2/(9γ − 2) 1 γ

Stable spiral for λ2 > 24γ2/(9γ − 2)

Table 3: Summary of the critical points and their stabilities.

involved are relatively simple compared with their interacting counterparts.

Thus, it may be possible to find the Lyapunov function of the critical points

of the system prove their stability. Existence of a Lyapunov’s function is suf-

ficient, but not necessary, to ensure the stability of a critical point. Thus, to

apply this technique in a cosmological context, construction of a Lyapunov’s

function for two of the critical points, D and E, which are, by linear theory,

stable nodes for λ2 < 3γ and 3γ < λ2 < 24γ2/(9γ − 2) respectively, was

considered.
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The candidate Lyapunov’s functions for these two points are hereby pro-

posed to be

V (x, y) =
1

2

(

x − λ√
6

)2

+
1

2

(

y −
√

1 − λ√
6

)2

, (3.20)

and

V (x, y) =
1

2

(

x −
√

3

2

γ

λ

)2

+
1

2

(

y −
√

(

3(2 − γ)
γ

2λ2

)

)2

, (3.21)

respectively and indeed both functions turn out that they are indeed the

Lyapunov functions for their respective critical points since they both satify

V (x0, y0) = 0, (3.22)

V (x, y) > 0 in the neighbourhood of x0 and y0, (3.23)

V̇ (x, y) < 0. (3.24)

The above condition is affected by the values of the λ and γ chosen, but

according to Theorem 2.1 the existence of this function proves the stability

of the above two points and it may serve as an alternative to linear stability

theory which could be applied in case results obtained via linear theory are

inconclusive. It is also possible that a Lyapunov’s function of another form

may be constructed. This method was extended to interacting dark energy

models that were investigated in the chapters that follow but a suitable

Lyapunov’s function was not discovered. Thus the method has limitations.

A detailed and comprehensive phase-space analysis of this non-interacting

model can be found in [79]. This model has interesting features as well as

some problems which motivates the idea to be extended, leading towards

studying interacting models. In particular, it is possible for the last critical

point in the Table 3 to be a scaling solution which might alleviate the fine

tuning problem, subject to parameter constraints. However, it does not

explain the cosmological constant problem, which needs to be constrained

by observations [80]. The shortcoming like this in uncoupled models gives
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motivation to study various coupled models.

3.3 Incorporating Interacting Dark Energy into the

Dynamical System

Should there be an interaction, represented by Q, energy densities of dark en-

ergy and dark matter are governed by conservation equations (1.41) and (1.42).

Instead of equation (3.5), the system would be described by a modified Klein-

Gordon equation given by equation (1.47). The existence of the interaction

term Q may complicate the dynamical equations, depending on the model

chosen, and therefore the behaviour of the entire system. In some models, it

may not be possible to contain the system in 2D, which would subsequently

require a third variable to be defined so as to achieve a 3D system. When

considering coupling models, it is natural to consider dark sector coupling in

which the universe is one that is dominated by dark energy and dark matter

since they are dominant sources in its evolution. The models given by

QI =

√

2

3
κβρcϕ̇, (3.25)

QII = αHρc, (3.26)

where α and β are dimensionless constants whose sign represents and deter-

mines the direction of energy transfer such that

α, β

{

> 0 energy transfer is dark matter → dark energy;

< 0 energy transfer is dark energy → dark matter;
(3.27)

were considered by Böhmer et al [56] taking a dynamical systems approach.

Model QI was previously studied in [47, 48, 63].

For both models, it was possible to construct a dynamical system whose

phase space is contained in two dimensions. It was concluded that the mod-

els do not lead to evolution of the system with dark energy dominant and
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accelerating universe. A third model [62] given by

QIII = Γρc, (3.28)

where Γ is, again, a constant that determines the direction of energy trans-

fer demands the introduction of a third variable in order to maintain the

compactness of the phase space. This arises from the fact that H could not

otherwise be eliminated from the energy conservation equations. Therefore,

in [56], a third variable z was defined such that

z =
H

H + H0
, (3.29)

This variable z is chosen to ensure that a compact phase-space is achieved

since

z =











0 if H = 0
1
2

if H = H0

1 if H → ∞.

(3.30)

Therefore, z is bounded by 0 ≤ z ≤ 1, resulting in a compactified phase

space corresponding to a half-cylinder of unit height and radius. However,

inclusion of a third dimension in the phase-space may open up the opportu-

nity for the system to become more mathematically complicated. For this

model, the resulting system of autonomous equations read [56]

x′ = −3x + λ

√
6

2
y2 +

3

2
x(1 + x2 − y2) − γ

(1 − x2 − y2)z

2x(z − 1)
, (3.31)

y′ = −λ

√
6

2
xy +

3

2
y(1 + x2 − y2) , (3.32)

z′ =
3

2
z(1 − z)(1 + x2 − y2). (3.33)

Detailed phase-space analysis is in [56]. This model III in particular is

claimed to have better physical motivation since the energy transfer rate

Γ is independent of the universal expansion rate and determined only by

local properties of the dark sector interactions. In fact, it may be reason-

able to expect that energy transfer rate and expansion rate of the universe
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are unrelated since there is no fundamental theory so far that establishes a

relationship between the two. These models investigated in [56] show that it

is not always possible to construct a simple dynamical system for all mod-

els and that systems may become even more complicated for more realistic

models. These models are the basis of motivation for the models investigated

in the next chapter.
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4 Models with Quadratic Couplings

4.1 Introduction

Quintessence is described by a light scalar field and is said to be important in

linking a bridge between string theory [81], a hopeful fundamental theory of

nature, and the observable structure of the universe, since light scalar fields

are involved in fundamental physics beyond the standard model of particle

physics. Unlike the cosmological constant Λ, quintessence is a dynamical

field. Furthermore its pressure can become negative. This is required to

defy the gravitational attraction and therefore to drive the universe into ac-

celerated expansion. The main motivation behind most of the literature on

quintessence as well as this thesis is that it may solve the cosmological coinci-

dence problem. Moreover, so-called tracker field models of quintessence have

attractor solutions (see e.g. [30, 82, 83] and references therein) without the

need for initial conditions to be fine-tuned, and therefore they are interesting

models of dark energy.

The action of quintessence described by an ordinary scalar field ϕ mini-

mally coupled to gravity is given by [14]

S =

∫

d4x
√−g

(

−1

2
(∇ϕ)2 − V (ϕ)

)

, (4.1)

where (∇ϕ)2 = ∂µϕ∂νϕ = gµν∂µϕ∂νϕ. It follows that the Lagrangian is

therefore given by

L = −1

2
(∇ϕ)2 − V (ϕ), (4.2)

and the equation of motion, known as Klein-Gordon equation, is

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0. (4.3)

In a FLRW Universe, the components of energy-momentum tensor Tµν of

the quintessence field are

Tµν = ∂µϕν − gµν

[

−1

2
gαβ∂αϕ∂βϕ + V (ϕ)

]

, (4.4)
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which leads to an expression for energy density and pressure

ρ = −T 0
0 =

1

2
ϕ̇2 + V (ϕ), (4.5)

p = T i
i =

1

2
ϕ̇2 − V (ϕ). (4.6)

The other evolution equations (3.3) and (3.6) then respectively become

H2 =
8πG

3

(

1

2
ϕ̇2 + V (ϕ) + ρM

)

, (4.7)

ä

a
= −8πG

3

(

1

2
ϕ̇2 − V (ϕ) + ρM

)

. (4.8)

The energy densities of dark energy and (dark) matter respectively satisfy

the conservation equations given by

ρ̇ϕ + 3H(1 + wϕ)ρϕ = −Q, (4.9)

ρ̇M + 3H(1 + wM)ρM = Q, (4.10)

where Q is a general coupling term (which is zero when there is no interaction)

and the equation of state parameter w of the field ϕ is expressed as

wϕ =
p

ρ
=

ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (4.11)

In order for the universe to undergo accelerated expansion with given

potential, the potential must satisfy

ϕ̇2 < V (ϕ), (4.12)

which demands a rather flat potential. If we think about this mechanically,

the particle rolls down its potential, thereby gaining kinetic energy and losing

potential energy. Equation (4.12) poses a stringent condition on the form of

the potential. If the potential is not flat enough then it may not give rise to

accelerated expansion of the universe. The kinetic energy of the quintessence

51



is given by

−1

2
∇µϕ∇µϕ =

ϕ̇2

2
. (4.13)

It is possible that kinetic energy term can drive the universe into acceleration.

If this is the case, the field responsible for this is called K-essence [34] whose

dynamics are more complicated than that described by equation (4.13) and

the study of this is beyond the scope of this thesis.

In this chapter, investigation on new form of DE-DM coupling that is

quadratic in their energy densities and their background dynamics is pre-

sented [84]. The dark energy in this case is assumed to be of the form of

a quintessence field with exponential potential. These models here build on

the linear models previously introduced in [56, 62], which was motivated by

simple models of inflaton decay during reheating and of curvaton decay to

radiation. Furthermore, superposition of these models have also been in-

vestigated. Many of the previously studied models were constructed with

mathematical simplicity in mind and the main aim was to contain the phase

space 2-dimensional. For models of the form Q ∝ ρc, one cannot elimi-

nate the Hubble constant from the equations and the introduction of a third

variable becomes necessary. In order to construct a dynamical system, di-

mensionless variables have been defined as in [79] given by equations (3.8)

and (3.9). Introduction of these two variables are motivated via the Fried-

mann constraint. As before, dividing the constraint equation with H2 after

including the matter in the equation, one obtains,

1 =
κ2ργ

3H2
+

κ2ϕ̇2

6H2
+

κ2V

3H2
, (4.14)

and hence

1 =
κ2ργ

3H2
+ x2 + y2. (4.15)

Thus, from the constraint equation

Ωϕ =
κ2ργ

3H2
= x2 + y2, (4.16)
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resulting in a bounded compact space satisfying

0 ≤ Ωϕ = x2 + y2 ≤ 1. (4.17)

Unlike some of the mathematically simple previous models, all three new

models investigated here demand introduction of a third dimension z previ-

ously discussed and is defined by [56]

z =
H

H + H0
.

The Hubble evolution equation can be re-written as

Ḣ

H2
= −3

2
(1 + x2 − y2), (4.18)

while the equation of state parameter is

wϕ =
x2 − y2

x2 + y2
, (4.19)

and

wtot = x2 − y2. (4.20)

To further understand the behavior of the system of each model, their

relative coupling strengths, denoted by f , have been introduced. This is

given by

f :=
|Q|
Hρc

. (4.21)

where the subscript c refers to the cold dark matter.
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4.2 Model A: Q = α
H0

ρ2
ϕ

For this model, the system of autonomous differential equations is

x′ = −3x + λ

√
6

2
y2 +

3

2
x(1 + x2 − y2) + α

3(1 − z)(x2 + y2)2

2xz
, (4.22)

y′ = −λ

√
6

2
xy +

3

2
y(1 + x2 − y2) , (4.23)

z′ =
3

2
z(1 − z)(1 + x2 − y2) . (4.24)

The critical points are defined by x′ = 0, y′ = 0 and z′ = 0. In computing

the eigenvalues, firstly note that when z′ = 0 then z = 0 or z = 1. If the

former is the case, then x and y must also be zero as the third term in

equation (4.22) is not well-defined. When z = 1, in order for equation (4.23)

to vanish, 1+ x2 − y2 = 0 must hold, so that y2 = 1 + x2. In that case, there

are five possible solutions for x. Hence there are six critical points in total

as summarised in Table 4. Critical points for Model B and Model C were

computed similarly.

The eigenvalues of the stability matrix are given in Table 4. The charac-

teristics of the critical points and and their corresponding effective equation

of state for the late-time attractor are summarised in Table 5.

Point x∗ y∗ z∗ Eigenvalues

A 0 0 0 −3
2
, 3

2
, 3

2

D 0 0 1 −3
2
,−3

2
, 3

2

E± ±1 0 1 −3 , 3 , 3 ∓
√

3
2
λ

F
√

3
2

1
λ

√

3
2

1
λ

1 −3
2
,− 3

4λ
(λ ±

√
24 − 7λ2)

G λ√
6

√

1 − λ2

6
1 −λ2

2
,−3 + λ2

2
,−3 + λ2

Table 4: Critical points and associated eigenvalues for coupling model A.
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Point Stable? Ωϕ wT Acceleration? Existence

A Saddle node 0 0 No ∀λ, α

D Saddle node 0 0 No ∀λ, α

E± Saddle node 1 1 No ∀λ, α

F Stable focus for λ2 > 24
7

3
λ2 0 No λ2 ≥ 3

Stable node for 3 < λ2 < 24
7

G Saddle node for λ2 > 3 1 λ2

3
− 1 λ2 < 2 λ2 < 6

Stable node for λ2 < 3

Table 5: The properties of the critical points for model A.

The phase-space trajectories of Model A are shown in Figures 4 and 5.

For this system, by appropriate choice of λ and α parameter values, evolution

of the universe consistent with observations can be achieved. Saddle point A

corresponds to the standard matter-dominated universe with a(t) ∝ t2/3 and

the fact that it is unstable means that there exists some trajectories escaping

out of it, ending at an attractor, which is the case for certain values of the

parameters.

For instance, for a potential that is flat enough (i.e. λ2 < 2) trajecto-

ries will escape to point G, an attractor, which is completely dark energy

dominated. On the other hand, if the potential is not flat enough, then the

trajectories will escape to point F which is a scaling solution in which dark

energy dominates only a certain fraction.

With H2 = κ2ρc/3 for matter-dominated universe and from (4.21), the

relative coupling strength is computed as

f ∼ ρ2
ϕ/ρ3/2

c . (4.25)

which is decreasing into the past. Thus, it seems to imply that the coupling

may be weaker in the past, making it possible to have an almost standard

matter dominated era.
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Figure 4: Phase-space trajectories for model A showing the
stable node G, with λ = 1.2 and α = 10−3.
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Figure 5: Phase-space trajectories for model A showing the
stable focus F, with λ = 2.3 and α = 10−3.
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4.3 Model B: Q = β
H0

ρ2
c

The autonomous system is

x′ = −3x + λ

√
6

2
y2 +

3

2
x(1 + x2 − y2) + β

3(1 − z)(1 − x2 − y2)2

2xz
, (4.26)

y′ = −λ

√
6

2
xy +

3

2
y(1 + x2 − y2) , (4.27)

z′ =
3

2
z(1 − z)(1 + x2 − y2) . (4.28)

The critical points and their stability properties are summarized in Ta-

bles 6 and 7 respectively.

Point x∗ y∗ z∗ Eigenvalues wtot

B± ±1 0 0 3 , 3 , 3∓
√

3
2
λ 1

C λ√
6

√

1 − λ2

6
0 λ2

2
, λ2

2
− 3 , λ2 − 3 λ2

3
− 1

D 0 0 1 −3
2
,−3

2
, 3

2
0

E± ±1 0 1 −3 , 3 , 3 ∓
√

3
2
λ 1

F
√

3
2

1
λ

√

3
2

1
λ

1 −3
2
,− 3

4λ
(λ ±

√
24 − 7λ2) 0

G λ√
6

√

1 − λ2

6
1 −λ2

2
,−3 + λ2

2
,−3 + λ2 λ2

3
− 1

Table 6: Critical points and associated eigenvalues for coupling model B.
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Point Stable? Ωϕ wT Acceleration? Existence

B+ Saddle node for λ >
√

6 1 1 No ∀λ, β

Unstable node for λ <
√

6

B− Unstable node for λ > −
√

6 1 1 No ∀λ, β

Saddle node for λ < −
√

6

C Saddle node 1 λ2

3
− 1 λ2 < 2 λ2 < 6

D Saddle node 0 0 No ∀λ, β

E± Saddle node 1 1 No ∀λ, β

F Stable focus for λ2 > 24
7

3
λ2 0 No λ2 ≥ 3

Stable node for 3 < λ2 < 24
7

G Saddle node for λ2 > 3 1 λ2

3
− 1 λ2 < 2 λ2 < 6

Stable node for λ2 < 3

Table 7: The properties of the critical points for model B.

The phase-space trajectories of Model B are shown in Figures 6 and 7.

Analysing the critical points reveals that this model does not have a suit-

able unstable standard matter solution. The ideal situation looking for is

such that the model should have an unstable matter-dominated point, from

which trajectories would escape to an attractor point dominated by dark en-

ergy. This model has been ruled out in subsequent work on superposition of

couplings.

From equation (4.21), the relative coupling strength for this model is

computed as

f ∼ H, (4.29)

and is increasing to the past. This means that during the early stage of the

evolution of the universe, the coupling would get stronger and hence this

model is unable to admit an epoch dominated by standard matter.
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Figure 6: Phase-space trajectories for model B showing the
stable node G, with λ = 1.2 and β = 10−3.
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Figure 7: Phase-space trajectories for model B showing the
stable focus F, with λ = 2.3 and β = 10−3.
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4.4 Model C: Q = γ
H0

ρcρϕ

The autonomous system is

x′ = −3x + λ

√
6

2
y2 +

3

2
x(1 + x2 − y2)

+ γ
3(1 − z)(1 − x2 − y2)(x2 + y2)

2xz
, (4.30)

y′ = −λ

√
6

2
xy +

3

2
y(1 + x2 − y2) , (4.31)

z′ =
3

2
z(1 − z)(1 + x2 − y2). (4.32)

The critical points and stability of this model are summarised in Tables 8

and 9 respectively. There are infinities in the eigenvalues of the critical points.

Whether they are positive or negative are, however, controlled by the sign of

γ.

Point x∗ y∗ z∗ Eigenvalues wtot

A 0 0 0 3
2
, 3

2
, sgn(γ)∞ 0

B± ±1 0 0 3 , 3 ∓
√

3
2
λ ,− sgn(γ)∞ 1

C λ√
6

√

1 − λ2

6
0 λ2

2
, λ2

2
− 3 ,− sgn(γ)∞ 1

D 0 0 1 −3
2
,−3

2
, 3

2
0

E± ±1 0 1 −3 , 3 , 3 ∓
√

3
2
λ 1

F
√

3
2

1
λ

√

3
2

1
λ

1 −3
2
,− 3

4λ
(λ ±

√
24 − 7λ2) 0

G λ√
6

√

1 − λ2

6
1 −λ2

2
,−3 + λ2

2
,−3 + λ2 λ2

2
− 1

Table 8: Critical points and associated eigenvalues for coupling model C.
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Point Stable? Ωϕ wT Acceleration? Existence

A Unstable node for γ > 0 0 0 No ∀λ, γ

Saddle node for γ < 0

B+ Unstable node forλ <
√

6 and γ < 0 1 1 No ∀λ, γ

Saddle otherwise

B− Unstable node for λ > −
√

6 and γ < 0 1 1 No ∀λ, γ

Saddle otherwise

C Saddle node 1 λ2

3
− 1 λ2 < 2 λ2 < 6

D Saddle node 0 0 No ∀λ, β

E± Saddle node 1 1 No ∀λ, β

F Stable focus for λ2 > 24
7

3
λ2 0 No λ2 ≥ 3

Stable node for 3 < λ2 < 24
7

G Saddle node for λ2 > 3 1 λ2

3
− 1 λ2 < 2 λ2 < 6

Stable node for λ2 < 3

Table 9: The properties of the critical points for model C.

The phase-space trajectories of Model C are shown in figures 8 and 9.

In this model, there exist an unstable matter era point, which is point A,

when γ > 0 and this is generic as it occurs in all directions. On the other

hand, when γ < 0, it becomes a saddle point. Furthermore, acceleration can

be achieved at two possible attractors completely dominated by dark energy

if the potential is flat enough i.e. if the value of λ is small enough. This

model, therefore, exhibits some interesting properties. The relative coupling

strength of this model is computed as

f ∼ ρ2
ϕ/ρ1/2

c , (4.33)

which means it is decreasing into the past. Therefore, it indicates that the

strength of the coupling was weaker in the early era of the universe.
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Figure 8: Phase-space trajectories for model C showing the
stable node G, with λ = 1.2 and γ = 10−3
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Figure 9: Phase-space trajectories for model C showing the
stable focus F, with λ = 2.3 and γ = 10−3

65



4.5 Superposition of Couplings

When the different coupling models are combined, it was expected that only

those critical points that would be present are those of each individual model.

Since it was the intention to describe the evolution of the universe that

includes a standard matter era and evolves towards a stable accelerating

solution, the model B which appears to not admit suitable standard matter

era has been omitted in the superposition of couplings. Only the combination

of the models A and C were chosen since those are the ones that allow for a

standard matter era. The superposition of the couplings is then given by

Q =
α

H0

ρ2
ϕ +

γ

H0

ρcρϕ. (4.34)

It has been noted that the two couplings are decoupled in the sense that

there are no cross-coupling terms in the dynamical system.

This superposition results in the following system of autonomous differ-

ential equations

x′ = −3x + λ

√
6

2
y2 +

3

2
x(1 + x2 − y2)

+ α
3(1 − z)(x2 + y2)2

2xz

+ γ
3(1 − z)(1 − x2 − y2)(x2 + y2)

2xz
, (4.35)

y′ = −λ

√
6

2
xy +

3

2
y(1 + x2 − y2) , (4.36)

z′ =
3

2
z(1 − z)(1 + x2 − y2). (4.37)

The critical points and their stability are listed in Tables 10 and 11 respec-

tively. The phase-space trajectories of this superposition model are shown in

Figures 10 and 11.
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Point x∗ y∗ z∗ Eigenvalues wtot

A 0 0 0 sgn(γ)∞ , 3
2
, 3

2
0

D 0 0 1 −3
2
,−3

2
, 3

2
0

E± ±1 0 1 −3 , 3 , 3 ∓
√

3
2
λ 1

F 1
λ

√

3
2

1
λ

√

3
2

1 −3
2
,− 3

4λ
(λ ±

√
24 − 7λ2) 0

G λ√
6

√

1 − λ2

6
1 −λ2

2
,−3 + λ2

2
, λ2 − 3 λ2

2
− 1

Table 10: Critical points and associated eigenvalues for the superposition of
couplings for model A and model C.

Point Stable? Ωϕ wT Acceleration? Existence

A Saddle node for γ < 0 0 0 No ∀λ, α, β, γ

Stable node for γ > 0

D Saddle node 0 0 No ∀λ, α, β, γ

E± Saddle node 1 1 No ∀λ, α, β, γ

F Stable focus for λ2 > 24
7

3
λ2 0 No λ2 ≥ 3

Stable node for 3 < λ2 < 24
7

G Saddle node for λ2 > 3 1 λ2

3
− 1 λ2 < 2 λ2 < 6

Stable node for λ2 < 3

Table 11: The properties of the critical points for the superposition of cou-
plings.

We see that there are two points, A and D, corresponding to the standard

matter era. Point G is the accelerated attractor dominated by dark energy

for a flat enough potential in which λ2 < 2.
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Figure 10: Phase-space trajectories for the superposition of
couplings showing the stable node G, with λ = 1.2,α = 2 and
γ = 2 × 10−3.
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Figure 11: Phase-space trajectories for the superposition of
couplings showing the stable focus F, with λ = 2.3,α = 2 and
γ = 2 × 10−3.
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4.6 Conclusion

In investigating these new models, a comprehensive analysis of the back-

ground dynamics for a new class of models with quadratic coupling is per-

formed. The introduction of coupling results in the following extra respective

terms in the x′ equation of the models,

Q =











α 3(1−z)(x2+y2)2

2xz
Model A,

β 3(1−z)(1−x2−y2)2

2xz
Model B,

γ 3(1−z)(1−x2−y2)(x2+y2)
2xz

Model C.

(4.38)

The rest of the equations in the systems remain the same. Their relative

coupling strengths are

f ∼











ρ2
ϕ/ρ

3/2
c Model A,

H Model B,

ρ2
ϕ/ρ

1/2
c Model C.

(4.39)

Higher-order couplings may be treated in similar way. The most general

form of such coupling may be expressed as

Q =
∑

m,n

qmnρm
c ρn

ϕ, (4.40)

where m and n are non-negative integers, and qmn is an arbitrary matrix

which is not necessarily a square matrix and hence has no no priori symmetry

properties but with the condition q00 = 0. The linear model [56] given by

a special case Q = Γρc was the most general linear model given by Q =

−(Γcρc +Γϕρϕ) [85]. This general linear model and the quadratic models can

be brought into the general form 4.40 by writing

qmn =

(

0 Γϕ

Γc 0

)

, (4.41)
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and

qmn =







0 0 A
0 B 0

C 0 0






, (4.42)

respectively.

By investigating the phase-space and behaviour of the trajectories, it can

be concluded that while model B leads to a universe without a standard mat-

ter era, models A and C admit a standard matter era and an evolution that

connects this to a late-time attractor. This attractor allows possibility for

acceleration to take place provided that the potential chosen is flat enough.

Furthermore, models A and C are not affected by the direction of the en-

ergy transfer. On the other hand, for model C, for Q > 0 the instability of

the matter era is more generic; so there is in some sense more room for a

transition from the matter era to the accelerated attractor. With all these

established, these quadratic models which admit a viable background evolu-

tion can be compared to observations in order to constrain the parameters

α and γ, which may then require investigation of cosmological perturbations

which is beyond the scope of this thesis. We refer the reader to [62, 86] for

an example of work done in such direction.
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5 A Simple Model of Self-interacting Three-

form and the Failure of Linear Stability

Theory

In this chapter, motivated by recent studies on three-forms [87,88], we study

an interacting three-form field model. As in previous chapters, a dynami-

cal system was constructed by rewriting the field equations in the form of a

system of autonomous differential equations. Having encountered the failure

of linear stability theory in investigating the system, this chapter aims to

point out the possibility of applying an alternative technique. Explicitly, it

demonstrates how centre manifold theory can be applied to study compli-

cated dynamical systems in the context of cosmology [89–91] and therefore

one of the aims is to build a bridge between the mathematical area of dynam-

ical systems and cosmology. More specifically, how to compute the centre

manifold of a dynamical system of cosmological interest has been demon-

strated. The dynamics of the original system is then restricted to that of the

corresponding centre manifold.

5.1 Introduction

A simple model of self-interacting three-forms has been considered. The role

of three-forms in cosmology is motivated by vector field inflation [92]. Three-

forms, a class of p−forms, are said to be able to give rise to viable cosmological

scenarios of inflation and dark energy with potentially observable signatures

which can be distinguished from standard single scalar field models. Vector

field dark energy models have been studied extensively since it has been

shown that it may alleviate the cosmological coincidence problem. It was

first introduced and studied by Koivisto et al [93].

The action of the three-form is given by [87, 88]

SA = −
∫

d4x
√−g

(

1

2κ2
R − 1

48
F 2 − V (A2)

)

, (5.1)
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where F (A) is the generalisation of the Faraday form appearing in Maxwell

theory. The explicit derivation of the energy-momentum tensor Tµν can be

found in [94]. The non-zero components of the most general three-form field

compatible with a homogeneous and isotropic geometry is given by [87]

Aijk = a3ǫijkX(t), (5.2)

where X(t) is a scalar function of time and i, j, k are the spatial indices. The

equation of motion of the field is given by a modified Klein Gordon equation

which reads [87]

Ẍ = −3HẊ − V,X − 3ḢX, (5.3)

in the absence of any coupling, where the subscript “, X” means derivative

with respect to X.

When there is some general coupling Q, then it becomes

Ẍ = −3HẊ − V,X − 3ḢX − Q

Ẋ + 3HX
. (5.4)

The reason for this slightly unusual term of Q

Ẋ+3HX
comes from the fact that

we introduced the coupling at the level of conservation equations in terms

of density and pressure. When this is rewritten in terms of the field X, this

coupling becomes divided by the kinetic term.

As before, the sign of Q determines the direction of energy transfer. An

exponential potential [79] of the form

V (X) = V0e
−λX , (5.5)

was chosen and λ is a dimensionless parameter and V0 > 0.

The equations for energy density and pressure are

ρX =
1

2
(Ẋ + 3HX)2 + V (X), (5.6)

pX = −1

2
(Ẋ + 3HX)2 − V (X) + V,XX, (5.7)
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respectively, while the other evolution equations are

H2 =
κ2

3
(
1

2
(Ẋ + 3HX)2 + V (X) + ρDM), (5.8)

Ḣ =
κ

2
(V,XX + ρDM). (5.9)

5.2 Constructing a Dynamical System for the Three-

form with Simple Coupling to Dark Matter

Dividing both sides of (5.8) with H2 gives

1 =
κ2

6H2

(

Ẋ + 3HX
)2

+
κ2V (x)

3H2
+

κ2ρc

3H2
, (5.10)

Without loss of generality, the value of κ can be set to 1. Together with this,

some dimensionless compact variables have been introduced and defined as

following [95]

x :=
1√
6H

(Ẋ + 3HX), (5.11)

y :=

√
V√
3H

, (5.12)

z :=
2

π
arctan

[

3X√
6

]

, (5.13)

s :=
ρDM√
3H

. (5.14)
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This is similar to, but deviates from, Koivisto and Nunes [87] who defined

the dynamical variables as

x := κX, (5.15)

y :=
κ√
6

(X ′ + 3X) , (5.16)

z :=
κ
√

V√
3H

, (5.17)

w2 :=
κ
√

ρ√
3H

, (5.18)

λ(x) := −1

κ

V,X

V
, (5.19)

with the Friedmann constraint

y2 + z2 + w2 = 1. (5.20)

Note that x can range in the whole of R. The advantage of our choice of

variables is that the phase space is then compactified by construction and

thus the possible presence of critical points at infinity does not cause any

concern. These variables can be motivated by noting that the Friedmann

constraint now becomes

x2 + y2 + s2 = 1. (5.21)

It is also noted here that by construction −1 ≤ z ≤ 1, and moreover −1 ≤
x ≤ 1, 0 ≤ y ≤ 1 and 0 ≤ s ≤ 1. The resulting phase space is therefore a half

cylinder with height 2. The price we have to pay for this is the introduction

of the inverse tangent function. While this makes some calculations slightly

harder, it seems to significantly improve our understanding of the phase-

space.

The equation of state parameter for the three-form field is defined by
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wX = pX/ρX and thus can be written as

wX = −1 +
V,XX

ρX

= −1 − 1

x2 + y2

√

2

3
y2λ tan

[πz

2

]

. (5.22)

Similarly, the total equation of state parameter becomes

wtot = −x2 − 1

3
y2
(

3 +
√

6λ tan
[πz

2

])

. (5.23)

Recall that the condition for acceleration is wtot < −1/3. The coupling Q

has been chosen to be of the mathematically simple form

Q = αρDMH, (5.24)

where α is a dimensionless constant. The uncoupled case would correspond

to α = 0. This results in the following autonomous system of differential

equations

x′ =
3

2
x(1 − x2 − y2) +

√

3

2
y2λ

(

1 − x tan
[πz

2

])

− α
(1 − x2 − y2)

2x
, (5.25)

y′ =
3

2
y(1 − x2 − y2) −

√

3

2
yλ
(

x +
(

−1 + y2
)

tan
[πz

2

])

, (5.26)

z′ =
6

π
cos
[πz

2

]2 (

x − tan
[πz

2

])

. (5.27)

It has been noted that the system of equations is invariant under the map

y → −y and thus focusing on the analysis on the y ≥ 0 case is sufficient.

This also comes from the fact that the potential is positive definite. The

number of critical points of this dynamical system depends on the coupling

parameter α. Starting with α = 0, the results of [87] are obtained and are

summarised in Table 12.

In the presence of a coupling i.e. α 6= 0, the number of critical points

changes. Specifically, the point B0 splits into two different critical points.

Furthermore, these two points move within the phase-space as the coupling

strength parameter α is varied. The points A± remain unchanged, however,

their eigenvalues do change. This is summarised in Table 13.
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Point x y z eigenvalues wX wtot

A+ 1 0 1
2

0,−3,−3 −1 −1

A− −1 0 −1
2

0,−3,−3 −1 −1

B0 0 0 0 3
2
, 3

2
,−3 −1 0

Table 12: Critical points in uncoupled case of three-form cosmology.

Point x y z eigenvalues wX wtot

A+ 1 0 1
2

0,−3,−3 + α −1 −1

A− −1 0 −1
2

0,−3,−3 + α −1 −1

B+

√

α
3

0 2
π

arccos
[√

3/
√

α + 3
]

−3,−α + 3, (−α + 3)/2 −1 −α
3

B− −√α
3

0 − 2
π

arccos
[√

3/
√

α + 3
]

−3,−α + 3, (−α + 3)/2 −1 −α
3

Table 13: Critical points in the coupled case of three-form cosmology.

The birth and movement of the new critical points with respect to the

coupling parameter α are also illustrated in the Figures 12, 13 and 14.

Figure 12: Illustration of the movement of critical points in cases α = 0 and
a small value of α.
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Figure 13: Illustration of the movement of critical points as α value gradually
increases.

Figure 14: Critical points at α = 3 (left) and illustration of the movement of
critical points with respect to α (right).

As the coupling strength increases to its maximally allowed value α → 3,

the two points B± move towards the points A±. We focus our analysis to

0 ≤ α ≤ 3. When α = 3 these points merge and the system has two

critical points, each with two zero eigenvalues. The fact that critical points

are created or destroyed, the nature of their stability change with respect to

parameters in the coupling corresponds to the mathematical phenomena of

bifurcations. This leads to the possibility of applying bifurcation theory to

study cosmological systems, a technique that has not been widely employed

in this context. As far as this thesis is concerned, we will not apply the

theory of bifurcations to study cosmological models.

The phase-space of the system for uncoupled case and coupled case are

78



Figure 15: Trajectories in the uncoupled three-form model

79



Figure 16: Trajectories in the coupled three-form model
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portrayed in Figures 15 and 16.

5.3 Applying the Centre Manifold Theory

With the presence of zero eigenvalues in the critical points A±, linear stability

theory fails to reveal information regarding these points. Therefore, we apply

the centre manifold theory to the system (5.25)–(5.27) for the critical points

A±. Let us focus on A+ point. Before proceeding, in order to apply the

centre manifold theory, this system needs to be transformed into the form

of (2.13). Firstly, for this point, coordinates are rescaled such that

X = x − 1, (5.28)

Y = y, (5.29)

Z = z − 1

2
. (5.30)

so that this rescaling moves the point (1, 0, 1/2) to the origin (0, 0, 0) of the

phase space. Under the coordinate transformation, the stability matrix was

computed as






dX′

dX
dX′

dY
dX′

dZ
dY ′

dX
dY ′

dY
dY ′

dZ
dZ′

dX
dZ′

dY
dZ′

dZ






, (5.31)

which results in






α − 3 0 0

0 0 0
3
π

0 −3






, (5.32)

The eigenvectors of the matrix (5.32) in the coordinate system (X, Y, Z) are







0

−3/(πα)

3/(πα)






,







1

0

0






,







0

1

0






. (5.33)
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Next, another set of new coordinates (u, v, w) are introduced and the rela-

tionship between these coordinates and (5.33) is such that







u

v

w






=







0 1 0

−3/(πα) 0 1

3/(πα) 0 0













X

Y

Z






. (5.34)

This diagonalises the stability matrix. With appropriate substitutions for

(X, Y, Z), the dynamical system is now governed by a new set of autonomous

differential equations u̇, v̇ and ẇ which can be found using the chain rule

u̇ = Ẋ
∂u

∂X
+ Ẏ

∂u

∂Y
+ Ż

∂u

∂Z
, (5.35)

v̇ = Ẋ
∂v

∂X
+ Ẏ

∂v

∂Y
+ Ż

∂v

∂Z
, (5.36)

ẇ = Ẋ
∂w

∂X
+ Ẏ

∂w

∂Y
+ Ż

∂w

∂Z
. (5.37)

The linear part of the new system in matrix form reads







−3 0 0

0 0 0

0 0 α − 3






, (5.38)

However, this is not yet in the right form and therefore, yet another change

of variables is necessary. In particular, u̇ and v̇ should be swapped, thereby

changing the dummy coordinate variables as u → v and v → u with w

remaining unchanged. In these coordinates, our system of equations is now

in the correct form







u̇

v̇

ẇ






=







0 0 0

0 −3 0

0 0 α − 3













u

v

w






+







non

linear

terms






. (5.39)

Comparing this with the general form (2.13), we firstly note that x = u is a

scalar function while y = (v, w) is a two-component vector. Accordingly, it
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is obvious to find that

A = 0, (5.40)

B =

(

−3 0

0 α − 3

)

, (5.41)

f = −1

6
πα(6 +

√
6λ)uw − 3

2
u3 − 1

6
π2α2uw2

−
√

3

2
uλ

(

1 +
(

u2 − 1
)

tan

[

1

2
π(

1

2
+ v + w)

])

, (5.42)

g =

(

g1

g2

)

=

(

(α + 2a2πα − 3)u2 + 3a3u
3 + O(u4)

(3 + 2b2πα)u2 + b3(3 − α)u3 + O(u4)

)

. (5.43)

According to Theorem 2.4, the centre manifold can now be assumed to be of

the form

h =

(

g1

g2

)

=

(

a2u
2 + a3u

3 + O(u4)

b2u
2 + b3u

3 + O(u4)

)

. (5.44)

It has to satisfy the equation (2.23), which explicitly reads

N =
1

2πα

(

3(α + 2a2πα − 3)u2 + 3a3u
3 + O(u4),

(3 − α)(3 + 2b2πα)u2 + b3(3 − α)u3 + O(u4),

)

= 0. (5.45)

The explicit expressions for g1 and g2 are

g1 =
1

6

( 9

π
+ 18(v + w) + 3wα(1 + 3πw) + π2w3α2 +

27

π(3 + πwα)

− 6

π
(3 cos[π(v + w)] − (3 + πwα) sin[π(v + w)])

)

+
3

2
u2w − 9

2π(3 + πwα)

+
u2

2πα

(

9 − 3
√

6λ +
√

6(3 + πwα)λ tan

[

1

2
π

(

1

2
+ v + w

)])

, (5.46)
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g2 =
3u2 ((3 − 6πw)α − π2w2α2 − 9)

2πα(3 + πwα)

− 1

πα

√

3

2
u2λ

(

3 − (3 + πwα) tan

[

1

2
π

(

1

2
+ v + w

)])

− πw2α (27 + 3(1 + 4πw)α + π2w2α2)

6(3 + πwα)
. (5.47)

Solving for the four constants a2, a3, b2 and b3, we obtain

a2 =
3 − α

2πα
, a3 = 0, (5.48)

b2 =
−3

2πα
, b3 = 0. (5.49)

We can now study the dynamics of the reduced equation (2.16), which be-

comes

u̇ = −
(

3

2
+

√

3

2
α

)

u3 + O(u4). (5.50)

Therefore, we find that the point A+ is stable according to the centre manifold

theory. This calculation has been repeated for A− and the opposite result

was obtained i.e. this point is unstable.

5.4 Conclusion

Centre manifold theory has been applied to study the cosmological system

where linear stability fails due to presence of a zero eigenvalue. In doing so,

a step-by-step and systematic approach [75] has been taken. At the point B0

acceleration is possible and it is a scaling solution which would have solved

the cosmological coincidence problem, but the fact that it is unstable means

that the universe would evolve into the stable point A+ where wtot = −1 and

therefore acceleration is possible at this point. Both A+ and A− points are

completely dominated by dark energy while in B0 there is no dark energy.

Whilst phase-space might reveal information on the nature of the critical

points, it may sometimes give incorrect information if the point in question
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is a non-hyperbolic point. The results obtained above by applying the centre

manifold theory appear contradicting with what may be revealed from phase-

space plots. Thus, it becomes clear that we need to perform non-linear

stability analysis, especially when there is a zero eigenvalue resulting from

the system linearised about a point. When a non-minimal coupling between

three-form fields and the dark matter comes into existence, the system has

two extra critical points, but these points were not analysed. But the fact

that B0 disappears in the coupled model and degenerates into B± could

mean that in this model the degree of dark energy domination is affected by

the energy transfer rate. This model does not reveal information on matter

domination, nor does it give rise to scaling solutions to solve the cosmological

coincidence problem.
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6 Interacting Phantom Dark Energy

6.1 Introduction

Phantom dark energy models exhibit interesting features. They can be gener-

ated by a simple scalar field with a negative kinetic energy [31]. Its equation

of state parameter is almost w = −1 and it seems to be consistent with ob-

servational data [96,97]. The action of the phantom field minimally coupled

to gravity is given by [14]

S =

∫

d4x
√−g

[

1

2
(∇ϕ)2 − V (ϕ)

]

. (6.1)

The energy density and the pressure of the field is given by

ρϕ = −1

2
ϕ̇2 + V (ϕ), (6.2)

pϕ = −1

2
ϕ̇2 − V (ϕ). (6.3)

The value of the equation of state parameter can be smaller than -1; this

means

wϕ =
p

ρ
=

ϕ̇2 + 2V (ϕ)

ϕ̇2 − 2V (ϕ)
< −1, (6.4)

provided that

ϕ̇2/2 < V (ϕ). (6.5)

When equation (6.4) holds, which is indeed the case if the potential is of ex-

ponential form [98], the scalar field generating the dark energy is said to be in

the phantom regime and hence the name phantom field models. The phantom

fields induce vacuum instabilities which make research on these models very

challenging [31]. Furthermore, they suffer severe ultra-violet (UV) quantum

instabilities. Just like as in previously presented work on quintessence inter-

acting with dark matter, interacting phantom energy models may possibly

solve the cosmological coincidence problem [99–106].
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6.2 Phantom Dark Energy Coupled to Dark Matter

with Varying-mass

In a recent paper by Leon & Saridakis [107] a scenario in which dark energy

is attributed to a phantom field and interacting with a varying-mass model

for dark matter particles [50, 108–110] has been investigated. They consid-

ered a phantom dark energy model with power-law potential [111] interacting

with dark matter. The model from [107] (whose explicit formulation is pre-

sented below) has been investigated as part of this thesis for two reasons.

Firstly, the dynamical system constructed will yield a zero eigenvalue when

linearised about one of its physically meaningful critical points [107]. There-

fore we can explore the possibility of applying the centre manifold theory to

this model. Secondly the model has good physical motivation. Under the

assumption that dark energy and dark matter interact in a way that allows

the dark particles to gain mass depending on the scalar field which repro-

duces dark energy [108], makes this model appear to have better physical

justification and with strong theoretical basis. Some of these models can

be well-motivated from string theory or scalar-tensor theories where mass

variations appear quite naturally [112].

When it is assumed that dark energy is attributed to a phantom field,

then the equation of the state parameter is given by

wDE ≡ wϕ =
pϕ

ρϕ
. (6.6)

The energy density for dark matter whose mass is a function of the scalar

field is defined as [107]

ρDM = MDM(ϕ)nDM, (6.7)

where nDM is the number density of the dark matter which satisfies the

following conservation equation

ṅDM + 3HnDM = 0, (6.8)

H is the usual Hubble constant.

The potential and the mass of the dark matter depending on the scalar
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field are assumed to be of the forms [107]

V (ϕ) = V0ϕ
λ, (6.9)

MDM = M0ϕ
µ, (6.10)

respectively, where λ and µ are dimensionless constants.

The fact that the mass of the dark matter depends on the scalar field

gives rise to the existence of interactions (or couplings) between the two.

This implies that when the mass of the dark matter does not depend on the

field, the standard conservation equation for the energy density given by

ρ̇DM + 3HρDM = 0,

is satisfied. In the field-dependent case, however, the balance equations are

given by

ρ̇DM + 3HρDM = Q, (6.11)

ρ̇ϕ + 3H(ρϕ + pϕ) = −Q, (6.12)

where

Q =
d lnMDM(ϕ)

dϕ
ϕ̇ρDM, (6.13)

and the sign of Q determines the direction of energy transfer.

The other evolution equations and the modified Klein-Gordon equation

governing the evolution of the phantom field are given by

H2 =
κ2

3
(ρϕ + ρDM) , (6.14)

Ḣ = −κ2

2
(ρϕ + pϕ + ρDM) , (6.15)

ϕ̈ + 3Hϕ̇ − ∂V (ϕ)

∂ϕ
=

1

MDM(ϕ)

dMDM(ϕ)

dϕ
ρDM. (6.16)

Neglecting the baryons and radiation, the total energy density of the

universe is then the sum of the dark matter and the phantom

ρtot = ρDM + ρϕ,
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which satisfies the conservation equation given by

ρ̇tot + 3H(1 + wtot)ρtot = 0, (6.17)

with

wtot =
pϕ

ρϕ + ρDM

= wϕΩϕ, (6.18)

where

Ωϕ ≡ ρϕ

ρtot

= ΩDE. (6.19)

Similar to previous work, dimensionless dynamical variables have been

defined [107] as follows

x :=
κϕ̇√
6H

, (6.20)

y :=
κ
√

V (ϕ)√
3H

, (6.21)

z :=

√
6

κϕ
. (6.22)

It is useful to express the density parameter and the equation of state in form

of these variables, which gives

Ωϕ =
κ2ρϕ

3H2
= −x2 + y2, (6.23)

wϕ =
x2 + y2

x2 − y2
, (6.24)

wtot = −x2 − y2. (6.25)

In these variable, the cosmological field equations take the form of the fol-

lowing dynamical system

x′ = −3x +
3

2
x(1 − x2 − y2) − λy2z

2
− µ

2
z(1 + x2 − y2), (6.26)

y′ =
3

2
y(1 − x2 − y2) − λxyz

2
, (6.27)

z′ = −xz2, (6.28)

where λ and µ are dimensionless constants.
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This system possess two physically meaningful critical points which are

non-hyperbolic since there exists at least one zero eigenvalue in each of them,

see Table 14.

Point x y z eigenvalues wϕ wtot

A 0 0 0 0, 3/2,−3/2 undefined 0

B 0 1 0 0,−3,−3 −1 −1

Table 14: Critical points of the phantom dark energy model.

6.3 Application of the Centre Manifold Theory to Phan-

tom Dark Energy Model

Clearly the point A is always unstable since there is one positive and one

negative eigenvalue. As for the point B, there are two negative eigenvalues

and a zero eigenvalue. Therefore, linear stability theory fails to provide

information about that point and structural stability is no longer guaranteed.

Consequently, non-linear stability techniques must be exploited, either by

applying the centre manifold approach or by applying the methods of normal

form. Similar procedure has been carried out in the three-form model. We

closely followed [75].

Firstly, the coordinates of critical point B are changed so that it is moved

to the origin

X = x, (6.29)

Y = y − 1, (6.30)

Z = z. (6.31)

The linear matrix of the system becomes







−3 1 −λ
2

0 −3 0

0 0 0






, (6.32)
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whose eigenvectors are






0

1

0






,







1

0

0






,







0
λ
6

1






. (6.33)

Thus, we introduce another new set of coordinates which will diagonalise the

matrix.







u

v

w






=







0 1 0

1 0 λ
6

0 0 1













X

Y

Z






. (6.34)

in new coordinate system. As expected, the stability matrix at the origin is

obtained as






−3 0 0

0 −3 0

0 0 0






, (6.35)

The equations are not quite in the right form which is an issue not dissimilar

to the one encountered in the case of three-forms in the previous chapter.

Thus, by performing change of dummy variables as u → v and w → u, with

v remaining unchanged, we finally arrive at







u̇

v̇

ẇ






=







0 0 0

0 −3 0

0 0 −3













u

v

w






+







non

linear

terms






. (6.36)

As before, the system is compared against the general form (2.13) and it is

deduced that x = u is a scalar function while y = (v, w) is a two-component
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vector. Thus, we deduce

A = 0, (6.37)

B =

(

−3 0

0 −3

)

, (6.38)

f = −1

6
u2(6v − uλ), (6.39)

g =

(

g1

g2

)

. (6.40)

The explicit expressions of the components of g are

g1 = −3

2
v
(

v2 + w(2 + w)
)

+
1

4
u
(

w(2 + w)(2µ − λ) + v2(3λ − 2µ)
)

− 1

24
u2vλ(4 + 3λ − 4µ) +

1

144
u3λ2(4 + λ − 2µ), (6.41)

and

g2 = −3

2

(

v2(1 + w) + w2(3 + w)
)

+
1

24
u2(1 + w)λ2. (6.42)

The centre manifold can now be assumed to be of the form

h =

(

g1

g2

)

=

(

a2u
2 + a3u

3 + O(u4)

b2u
2 + b3u

3 + O(u4)

)

. (6.43)

The function h must satisfy the equation (2.23) which reads

N =

(

3a2u
2 + 1

144
u3 (432a3 + 72b2(λ − 2µ) − λ2(4 + λ − 2µ)) + O(u4)

3b3u
3 + u2

(

3b2 − λ2

24

)

+ O(u4)

)

= 0.

(6.44)

where the a2, a3, b2 and b3 are found to be

a2 = 0, a3 =
λ2

108
, (6.45)

b2 =
λ2

72
, b3 = 0. (6.46)

Therefore, the dynamics of the system restricted to the centre manifold
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is given by

u̇ =
u3λ

6
+ O(u4). (6.47)

Thus it is clear from the cm equation that the point is stable if λ < 0 and

unstable if λ > 0 and this result is in consistent with [107] who obtained

the same result by applying normal forms [75,113,114]. Note that when the

value of b2 is substituted into the first component of N , the constant µ drops

out which is why our result is independent of µ.

6.4 Conclusion

Results obtained in this chapter demonstrate that centre manifold theory

is a powerful tool, easily applicable to dynamical systems encountered in

cosmology. The next step could be an attempt to investigate whether the

models investigated using this technique are physically sensible and/or in

agreement with observations. The point investigated is whether acceleration

is possible and whether it is dominated by phantom dark energy. However, it

does not give a scaling solution to solve the cosmological coincidence problem.

Thus the question arises as to whether interacting phantom dark energy

models can give rise to evolution of the system starting from unstable point

dominated by standard matter and then end up at a point where acceleration

is possible and dominated by dark energy which is also a scaling solution,

thereby alleviating the cosmological coincidence problem.
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7 Discussion, Future Work and Conclusion

In this chapter, we discuss two projects currently in progress which may be

continued in the future. They are the standard model Higgs boson non-

minmally coupled to gravity and Einstein’s static universe. Both are to be

studied taking the dynamical systems approach.

7.1 Standard Model Higgs Boson Non-minimally Cou-

pled to Gravity

7.1.1 Introduction

Higgs fields are an important class of scalar fields in theoretical particle

physics since they might explain the origin of the mass of elementary par-

ticles [115]. The Higgs boson was first postulated by Peter Higgs [116] to

explain the mechanism that involves spontaneous symmetry breaking involv-

ing a gauge field. This mechanism became known as the Higgs mechanism.

The Higgs boson has not yet been discovered and is a hypothetical massive

elementary particle. The search for it is still in progress. First data hinting

at the existence of the Higgs boson have been found by the LHC. However,

more data is required to announce its discovery. In the context of cosmology,

Higgs fields were once considered as inflaton fields, a idea originally proposed

by Guth. The Standard Model Higgs Boson still remains a fundamental can-

didate for inflaton. Inflation is usually achieved by considering slowly rolling

scalar fields but this is not possible if the Higgs Boson is minimally coupled to

gravity [117]. Therefore, non-minimal couplings of the Higgs field to gravity

have been postulated [118, 119]. It has also been suggested that the Higgs

boson may interact with WIMPs (which include dark matter) [120], making

this particle even more relevant to cosmology.

A new model of slow-roll Higgs inflation, which is a unique non-minimal

derivative coupling of the Standard Model Higgs boson to gravity has been

considered in [121]. The model is said to propagate no more degree of freedom

than general relativity sourced by a scalar field. It seems to feature interesting

behaviour since it gives rise to inflating background solutions within the

parameter range of the Standard Model Higgs fields, while avoiding the need
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for quantum corrections.

Under the assumption that there is no interaction with gauge fields during

inflation, the action for the case in which Higgs boson minimally coupled to

gravity is given by [121]

S =

∫

dta3

[

−3
H2

κ2N
+

1

2

ϕ̇2

N
− N

λ

4
ϕ4

]

, (7.1)

while that for the case in which Higgs boson non-minimally couples to gravity

is given by

S =

∫

dta3

[

−3
H2

κ2N
+

1

2

ϕ̇2

N
+

3

2

H2w2

N3
ϕ̇2 − N

λ

2
ϕ4

]

, (7.2)

where N = N(t) is the lapse.

The Hamiltonian constraint and the field equations for non-minimally

coupled case are respectively given by

H2 =
κ2

6

[

ϕ̇2(1 + 9H2w2) +
λ

2
ϕ4

]

, (7.3)

and

∂t

[

a3ϕ̇(1 + 3H2w2)
]

= −a3λϕ3, (7.4)

where the w term describes scalar field interactions with gravity. From the

above, the modified Klein-Gordon equation is derived as

ϕ̈ + 3Hϕ̇ +
6HḢϕ̇w2

1 + 3H2w2
+

λϕ3

1 + 3H2w2
= 0, (7.5)

assuming there is no interaction with ordinary or dark matter. Should there

be a general interaction Q, equation (7.5) would become

ϕ̈ + 3Hϕ̇ +
6HḢϕ̇w2

1 + 3H2w2
+

λϕ3

1 + 3H2w2
=

Q

1 + 3H2w2
, (7.6)

and again the sign of Q would dictate the direction of the energy transfer.
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7.1.2 Constructing a Dynamical System and Failure of Centre

Manifold Analysis

Similar to the work presented in previous sections, a dynamical systems

approach has been taken to investigate the nature of this field generating

dark energy which is also coupled to gravity in specific way. In order to

construct a dynamical system, the Friedmann constraint (7.3) was first solved

to obtain an expression for Hubble’s constant

H = κ

√

λϕ4 + 2ϕ̇2

12 − 18w2κ2ϕ̇2
. (7.7)

Squaring both sides of equation (7.7) and the dividing it with H2 results in

1 =
κ2ϕ̇2

3(2 − 3w2κ2ϕ̇2)H2
+

κ2λϕ4

6(2 − 3w2κ2ϕ̇2)H2
, (7.8)

so that dimensionless the variables x and y can be defined such that

x2 =
κ2ϕ̇2

3(2 − 3w2κ2ϕ̇2)H2
, (7.9)

y2 =
κ2λϕ4

6(2 − 3w2κ2ϕ̇2)H2
. (7.10)

The phase space is then compact since x2 + y2 = 1.

Similar to the work done previously [56,84], a third dimensionless variable

z =
H0

H + H0

,

has been included. However, this does not increase the number of dimensions

to three and the system is still maintained as a 2-dimensional system since

y =
√

1 − x2 which can be eliminated from the system.

By incorporating the modified Klein-Gordon equation together with the

expression for Ḣ obtained by differentiating equation (7.7) with respect to
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time, one obtains the following dynamical equations

x′ = 3x
(

−1 + x2
)

+
18x3 (−1 + x2) (−1 + z)2α2

z2

+

(

2 · 31/4 (1 − x2)
3/4 √

z√
1 − z

+
3 · 31/4 (1 − x2)

3/4
(−4 + x2) (1 − z)3/2α2

2z3/2

)

Γ,

(7.11)

z′ = 3x2(−1 + z)z, (7.12)

where new constants α and Γ have been introduced, defined such that

w =
α

H0

, (7.13)

λ = Γ4κ2H2
0 . (7.14)

The α terms in the equations, therefore, encodes interactions of the scalar

field with gravity in the case of non-minimal couplings. Setting α = 0 for

simplicity if there is no such interactions, then the equations become

x′ = −3x + 3x3 − 2 · 31/4(1 − x2)3/4

√

z

1 − z
Γ, (7.15)

z′ = −3x2(−1 + z)z. (7.16)

The variable y has been eliminated using y =
√

1 − x2. The critical

points of the system are (x, z) = (0, 0), (1, 0) and (1, 1). The eigenvalues of

the Jacobi matrix linearised about the point (0, 0) are −3 and 0 and therefore

non-linear stability analysis is necessary to determine whether it is stable or

not. As before centre manifold analysis has been performed. However, it

has been noticed along the process that the expression for the nonlinear part

of the system does not satisfy the condition given by equation (2.14), which

reads

f(0, 0) = 0, Df(0, 0) = 0,

g(0, 0) = 0, Dg(0, 0) = 0.

Note that this is the consequence of the term
√

z
1−z

from equation (7.15)
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which is not differentiable at the critical points. Therefore, dynamical sys-

tems approach to this particular model is met with difficulties and it demon-

strates limitations of the techniques that have been employed so far in this

thesis. Whilst numerical analysis and simulation similar to that performed

in [87] may be a solution to solve this problem, this was not pursued in this

thesis since the main focus is on analytical and not numerical studies of the

dynamical systems theory. In this regard, applying the method of normal

forms [75,114], which is a technique to eliminate the nonlinearity of the sys-

tem, may be an alternative solution to overcome this problem. This method

is briefly discussed, but its employment is beyond the scope of this thesis

and its applications in cosmology may be foreseen as something to be done

in the future.

7.2 Einstein’s Static universe

7.2.1 Introduction

Our understanding of the dynamics of the universe today is largely due to

the success of the theory of general relativity. Just like Newtonian mechan-

ics, which successfully describes the dynamics of macroscopic objects but

breaks down when it has to deal with subatomic particles whose behaviour

is dominated by quantum effects, the same is true with GR in a sense that

while it can successfully describe the large scale behaviour of the universe it

breaks down at small scale. At very small scales and after a finite time of

backward evolution, GR can no longer describe the behaviour of the system.

This is due to the fact that the universe collapses to a single point at Big

Bang, which is the problem known as singularity, and the energy densities

become divergent. Thus, the need for quantum gravity appears important

in this regard. One way of overcoming these singularity problems may be a

new framework of so-called loop quantum cosmology [122]. Loop quantum

gravity is a proposed theory that seeks to unify quantum theory and GR.

If successful, loop quantum gravity may become quantum theory of space-

time. Loop quantum cosmology may also be thought of as a high energy

modifications of GR which can lead towards uncovering the mathematically
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interesting properties of the universe in this context [123]. This owes to the

fact that high energy dynamics of the FLRW models are modified in loop

quantum cosmology. Furthermore, it has the advantage such that it removes

the Big Bang singularity [124] or the singularity at the centre of a black hole,

see e.g. [125]. It has been known that the Einstein Static universe in GR

is unstable with respect to homogeneous perturbations. The Einstein static

universe takes a very special role in studying the behaviour of the universe,

for instance in emergent universe scenarios (which is possible if curvature is

positive) and in dealing with singularity problems in the standard model.

7.2.2 Studying Einstein Static Universe as a Dynamical System

The Friedmann equation for closed FLRW model is given by [126]

H2
LQ =

(

κ

3
ρ +

Λ

3
− 1

a2

)(

1 − ρ

ρcrit
− Λ

κρcrit
+

3

κρcrita2

)

. (7.17)

The above is the modification of the classical Friedmann equation to take

into account the loop quantum effects which are characterised by a critical

energy density. In the GR limit, the critical density ρcrit tends to infinity.

Thus, the second term approaches unity in GR limit, in which case the

Friedmann equation takes its standard form

H2
GR =

(

κ

3
ρ +

Λ

3
− 1

a2

)

. (7.18)

The conservation equation for energy density ρ holds irrespective of the cor-

rections due to loop quantum gravity and for loop quantum case. It is given

by

ρ̇ + 3Hρ(1 + w) = 0. (7.19)

Together with equations (7.17) and (7.19), it results in a modified Ray-

chaudhuri equation

Ḣ = −κ

ρ
(1 + w)

(

1 − 2ρ

ρcrit

− 2Λ

κρcrit

)

+

[

1 − 2ρ

ρcrit

− 2Λ

κρcrit

− 3ρ(1 + w)

ρcrit

]

1

a2
+

6

κρcrita4
. (7.20)
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These equations fully determine the dynamical behaviour of the universe.

Viewing equations (7.19) and (7.20) as a dynamical system, we find that

one one of the critical points of it in loop quantum cosmology is a centre

of the linearised system, as suggested from Figure 17. However, it cannot

imply that it is also the centre of the entire nonlinear system [75, 113] 8.

This is also obvious from the fact that the Jacobi matrix linearised about

this point yields a pair of purely imaginary eigenvalues (see [123] for details).

It is likely that this system would give rise to bifurcation phenomena which

leads towards the opportunity to apply the theory of bifurcations to address

cosmological issues [127]. The role of this theory in cosmological context

have been studied in [128].

Figure 17: Dynamical behaviour of the system around the LQ critical point
for the case Λ > κρc with Λ/κ = 2, w = 1.

With this established, based on the present literature [123,129–131], and

given that it also has a role to interplay with f(R) modified gravity theo-

ries [132] it is expected that Einstein static universe in different scenarios

will lead to construction of dynamical systems enriched with interesting be-

haviour and cosmological dynamics.

8Note that this centre is not related to centre manifolds.
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7.3 Conclusion

In this thesis, mathematical properties and cosmological implications of var-

ious dynamical dark energy models have been studied by applying various

techniques. All models have their strengths and shortcomings. Physically re-

alistic and motivated models often become mathematically complicated and

computationally demanding. The ultimate goal is to construct a model that

is in close agreement with current observational data or future observational

data due to be obtained. Observations confirm the models and on the other

hand the models give ideas of what should be looked for in observations. It

has been shown that Model B of the quintessence model studied in Chapter 4

does not admit a standard matter era in its evolution. Thus, it is reason-

able to discard the model from future investigations. In Model C, on the

other hand, there exists an unstable matter era point which evolves into an

attractor point which is dominated by dark energy and where acceleration is

possible. Thus, this model is of potential interest for further investigation.

Applying dynamical systems theory is not always trivial. In Chapters 5

and 6, it has been demonstrated systematically how centre manifold the-

ory can be applied to the study of the dynamical systems that give rise to

zero eigenvalues when their Jacobi matrix is linearised about certain critical

points. In most physical systems modelled as dynamical systems, they are

usually restricted to mathematically simple models. More realistic physical

systems can become mathematically very complicated and powerful compu-

tational tools and resources are required to investigate such systems. The

case in which centre manifold theory successfully reveals the nature of a

non-hyperbolic critical point in the three-form model, in contrast to that re-

vealed by phase-space plot, has been demonstrated. This shows the need for

non-linear stability analysis. How to perform this have been demonstrated

explicitly in order to reveal the structural stability of such points. However,

centre manifold theory does not appear to be a universal tool to be able to

solve nonlinear dynamical systems. It has its own limitations as seen in the

case of the Higgs field coupled to gravity as discussed in part of Chapter 7.

This issue requires further investigation. In fact, centre manifold theory,
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which has been studied in this thesis, is not the only tool to overcome the

case of zero eigenvalues. For example, numerical analysis and second order

perturbation theory may also be applied to study the structural stability

of the critical points whose corresponding eigenvalues include a zero, which

could be performed in investigating the three-forms models [87]. Attempts to

find Lyapunov’s functions for the critical points where linear stability theory

have been made. Given that there is, unfortunately, to our knowledge so far,

no systematic way of finding these functions and that the equations involved

are relatively long expressions prevented us from finding one. It is also pos-

sible that there simply does not exist such functions for the critical point

concerned. Thus analysing the critical points by finding Lyapunov functions

may be useful only for relatively simple systems.

In Chapter 5, it has been shown that in the dynamical system in question,

the critical points are born and their stability may change with respect to a

parameter. Creation and destruction of critical points and their parameter-

dependent nature of (in)stabilities fall under the study of mathematical area

called “bifurcation theory” [75]. Thus, in the future, bifurcations in cosmo-

logical dynamical systems and application of the method of normal forms in

this context may be explored. It is expected that such techniques may reveal

interesting cosmological dynamics of the systems.

As far as achieving a late-time acceleration scenario, dominated by dark

energy, and a scaling solution are concerned, it may well be concluded that

certain quintessence models may be better physically motivated than others

like varying-mass power-law potential phantom dark energy models.

In this thesis, interacting dark energy models have been studied under the

assumption that dark energy is indeed responsible for the late-time acceler-

ated expansion of the universe. The possibility that it contributes towards

the growth of cosmological perturbations should not be ruled out. Thus,

in more physically well-motivated and realistic models, the effects of cosmo-

logical perturbations should also be taken into account. Consequently, the

dynamical system incorporating the time-evolution of cosmological perturba-

tions would be computationally demanding to investigate and might reveal

some interesting mathematical and physical properties and behaviour. What
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dark energy really is remains to be discovered experimentally and/or obser-

vationally with proper theoretical foundations. Furthermore, as discussed

earlier, dark energy is not the only possible explanation for the accelerated

expansion of the universe. Whilst it may well be directly responsible the

universe’s accelerated expansion, alternative theories exist to explain the ac-

celerated expansion of the universe without reference to dark energy or any

other form of matter. They include, but are not limited to, f(R) modified

gravity theories, scalar-tensor theories, DGP braneworld models etc. It is im-

portant to take into account the perturbations in modified gravity theories

as they reveal the features that enable us to distinguish between modified

gravity models and dark energy models.

It is expected that in future work more advanced techniques from the

theory of dynamical systems could be applied to study the models of the

universe in f(R) gravity to understand the accelerated expansion of the uni-

verse (as an alternative to dark energy models) and its dynamics in general.

The stability analysis performed in this regard as far as this thesis is con-

cerned is “local” in a sense that only the nature of the critical points of the

system that represents the system has been investigate. In order to get the

wider picture and the final state of the universe ultimately, the stability of the

entire model in question should be investigated. Beyond the field of mathe-

matical physics, the theory of dynamical systems has applications in many

other areas such as mathematical immunology which, for example, studies

the complex dynamics of the tumour growth, immune system response to

HIV vaccinations etc.

Whilst there is a huge amount of mathematical literature on the modern

theory of dynamical systems, which remains a relatively young field, much of

this still awaits to be applied to problems in theoretical physics. Dynamical

systems theory itself is at the cross-road of pure mathematics and applied

mathematics. It was the hope of this thesis that it will play a small role in

building a bridge between the ever increasingly blurring boundaries of the two

fields - applied mathematics and theoretical physics. With this established,

it is foreseeable that more mathematical tools will be explored to uncover

their potential power when applied to physics.
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