ISSN 1473-2262

Endothelial cell migration and aggregation in response to hypoxia-induced signalling

Cheema, U.^{1*} Hadjipanayi, E.¹, Mudera, V.¹, Deng, D.², Liu, W.², Brown, R.A.¹

¹UCL Division of surgery and interventional sciences, Tissue Repair and Engineering Centre, London, HA7 4LP, UK .²Department of Plastic and Reconstructive Surgery, Ninth People's Hospital and National Tissue Engineering Center of China, Shanghai Jiangtong University School of medicine, Shanghai 200011, PR China.

Introduction

The vascularisation of any graft, engineered implant or injury site is a key factor for optimal repair and regeneration. New blood vessel formation is a physiological response to tissue hypoxia, through upregulation of angiogenic factor signalling. We engineered cell-mediated hypoxia in a convenient cell type, human dermal fibroblasts (HDFs), to form a population of Hypoxia-Induced Signalling (*HIS*) cells and showed that *HIS* responses by HDFs induce endothelial cell (EC) migration and tubule formation both *in vitro* and *in vivo*.

Materials and Methods

Capillary-like structure formation by EC's (HUVEC'S) in response to the *HIS* response by HDF's was measured in a 3D collagen matrix assay. This assay tested EC migration (up to 1 cm) and aggregation towards a HIS cell source (fig.1). EC capillary-like structure (CLS) formation was monitored over 14 days. Constructs containing *HIS* cells were also seeded *in vivo* and the functionality of invading vessels was verified by real-time monitoring of O_2 in the core of implanted constructs.

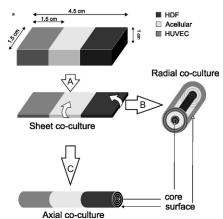


Fig. 1 Schematic showing construction of 3D collagen matrix with spatially positioned cells. Maximal protein was found in the core.

Results

By positioning *HIS* cells and ECs in distinct locations within 3D collagen constructs, we were able to quantify CLS formation by EC's in response to *HIS* cells, which induced directional EC sprouting *in vitro* (fig.2). Furthermore, depots of *HIS* cells, positioned in the core of 3D collagen constructs could direct host vessels deep into the matrix within 1 week *in vivo* implantation in rabbits.

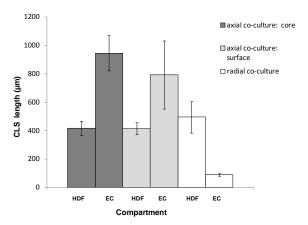


Fig. 2. Graph showing CLS formation mainly in the EC/HUVEC region of the axial co-culture. In the radial co-culture this CLS formation was inhibited due to decreased diffusion of angiogenic proteins through multiple collagen layers.

Discussion and Conclusions

These findings unravel the angiogenic potential of *HIS* cells with important implications for *in vitro* tissue modelling, as well as devising implant vascularisation strategies and potent angiogenic therapies for ischaemic diseases.

Acknowledgments

UC is a BBSRC David Phillips Fellow and this work has been funded through this route.

