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Since Trösch (1986) found trapped sub-inertial oscillations in computations of low fre-
quency variability in the Lake of Lugano, models of trapping have generally considered
evenly spaced isobaths parallel to shorelines with approximate boundary conditions at
any shelf-ocean boundary. Here an asymptotic analysis for slowly-varying topography
and accurate spectral computations demonstrate trapping on non-rectilinear shelves. It
is shown that changes in any of three factors, isobath curvature, distance from the coast
and the shelf-break, and the slope at the shelf-break, are sufficient on their own to give
trapping. Continental shelves that abut smoothly onto the open ocean are considered thus
avoiding the shelf-ocean boundary condition approximation and allowing the accuracy
of previous approximations to be assessed.

1. Introduction

Trapped modes are known to exist in a number of physical settings. Existence theorems
have been proved rigorously for the acoustic (see Evans et al. 1994; Aslanyan et al.
2000; Davies and Parnovski 1998) and the quantum (Exner and Seba 1989; Duclos and
Exner 1995; Dittrich and Kriz 2002; Krejčǐŕık and Kř́ıž 2005) problems and asymptotic
and numerical results have been obtained for problems in elasticity (Gridin et al. 2005;
Kaplunov et al. 2005). Trapped modes are also known to exist along continental shelves,
in particular when continental shelf waves (CSWs) are trapped.

CSWs are low frequency disturbances of ocean currents that occur near coastlines
over the continental shelf. They are considered as a type of planetary wave having a
period of a few days and exist due to the presence of rotation and depth changes. Since
they were first discovered by Hamon (1962, 1963) and Robinson (1964), most theoretical
results are concerned with shelf waves that propagate along continental shelves with
unchanged offshore profile but decay away from the coast. There is far less discussion
in the literature regarding geographically localised regions of wave motion where modes
decay both away from the coast and along the shelf, away from the wave region. Such a
behaviour is possible when sufficient changes in the shelf geometry are present, since at
a fixed frequency a given mode can change from propagating to decaying. These waves
will be referred to as trapped CSWs (tCSWs).

The first results showing the existence of tCSWs were presented in the papers by
Stocker and Hutter (1986, 1987) in a rectangular lake with idealised topography and
as the low-frequency modes found in a finite-element model of Lake Lugano by Trösch
(1986). Stocker and Johnson (1989, 1991) presented simplified quasi-analytical models
for a semi-infinite channel with terminating bay zone and for an estuary mouth on a
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coastal shelf, respectively, which admit tCSWs. Straight, rectilinear shelves (i.e. where
the depth changes uniformly away from the coast) do not admit trapped modes and
in the simplest case of CSWs, making the non-divergent, barotropic approximation, the
topographic Rossby wave equation is invariant under conformal mappings, hence any
geometry that can be mapped conformally to a (straight) rectilinear shelf cannot support
trapped modes. Questions still remained as to whether tCSWs can exist in other (smooth)
geometries e.g. in bays or headlands and the effect of alongshore variations in the isobaths.

One of these questions was answered in Johnson et al. (2006) (JLP, here) where spectral
theory is used to prove that under relatively weak (geometric) assumptions, tCSWs can
exist on a rectilinear shelf lying between a smooth curved coastline and a constant-
depth open ocean. The shelf is modelled as a strip taking Dirichlet boundary condition
at the coast and Neumann boundary condition at the shelf-ocean boundary and if the
waveguide is bent towards the Dirichlet condition (i.e. towards shallow water) a trapped
mode exists. Considering a similar geometric model to the one in JLP, Postnova and
Craster (2008) and Johnson et al. (2011) show, using an asymptotic scheme, that tCSWs
can exist in a curved coastline, which is straight asymptotically (i.e. the curvature goes
to zero at infinity) a weaker condition than the one in JLP, where the curvature has
compact support. Also, in Kaoullas and Johnson (2010b) trapped modes are constructed
without restricting attention to weak curvature and thus the behaviour of the solutions is
examined when the curvature exceeds the upper bound of JLP. These three methods rely
heavily on the Neumann boundary condition approximation, at the shelf-ocean boundary,
which is valid only in the long wave limit.

The purpose of this paper is to extend previous results and show the existence of tC-
SWs along a curved shelf abutting a flat open ocean. In addition we present analogous
results for straight shelves with varying bathymetry both across and along the coast.
In Section 2 we present the governing equation and then employ its asymptotic expan-
sion by modelling the shelf as a waveguide. Then, we discuss the existence of trapping
when a straight shelf is considered with nonrectilinear depth profiles (i.e. we allow for
depth changes along the coastline as well). In particular, we investigate the existence
of trapped modes in the cases of a submerged ridge and of a submerged valley (for an
oceanic waveguide). Assuming that the scale of the along-shelf variations of the isobaths
is large compared to the shelf width (which implies that the wavelength in the along-
shelf direction is much larger than in the cross-shelf direction), we reduce our problem
to finding (analytical) solutions of a second order ordinary differential equation in the
along-shelf direction. It is shown that in this particular case of a submerged ridge, when
the depth is perturbed slightly, a trapped mode always exists, while in the case of a sub-
merged valley, trapping is impossible. The full equations including a semi-infinite open
ocean region, thus removing the Neumann shelf-ocean approximate boundary condition,
are solved with an accurate spectral method. The numerical results are in close agree-
ment with the asymptotic results and also allow consideration of the existence of trapped
modes along a shelf with alongshore depth variations of the same order as the shelf width
abutting an open ocean and assessing the accuracy of the Neumann shelf-ocean boundary
condition. The simple physical mechanism behind the localisation is also described here:
modes are trapped in regions where the local propagation frequency is higher than maxi-
mum possible frequency for propagating modes in the far-field. Curving the domain with
shallower fluid on the inside of the curve, increasing the displacement of the shelf-break
from the coast, or shelf-steepening, each individually or in combination raise the local
propagation frequency on shelves that do no vary along the coast. Thus if these changes
are localised then trapped modes should be possible.

Such trapped modes are constructed in Section 3. A curved coast is modelled as in



Isobath variation and trapping of continental shelf waves 3

JLP, Postnova and Craster (2008), Kaoullas and Johnson (2010b) and Johnson et al.
(2011) who show that trapped modes can exist when a coast curves to form a headland.
To assess the second factor a straight shelf that admits no trapped modes is constructed
in section 3.2. A flat bay (of finite extent) is then added to the coast, which increases the
distance of the shelf-break from the coast, similarly to Johnson and Kaoullas (2011) and
thus raises the local cutoff frequency of waves (compared to the cutoff frequency in the
farfield which remains unchanged) and hence allows trapped modes. To assess the third
factor a straight shelf is constructed where the slope of the shelf-break is changes locally
while the distance of the shelf-break from the wall remains constant. It is shown that a
steepening shelf break leads to trapping.

2. Non rectilinear topographies along straight coastlines

2.1. Governing Equation

CSWs are well described within the barotropic, rigid-lid approximation (Buchwald and
Adams (1968); LeBlond and Mysak (1978); JLP) by the topographic Rossby wave equa-
tion:

∇·
(
H−1∇Ψt

)
+ 2Ωẑ·

(
∇Ψ×∇H−1

)
= 0, (2.1)

Ψ = 0, at the coast, (2.2)

∇Ψ→ 0, in the open ocean. (2.3)

Here, Ψ(x, y, t) is the mass transport stream function, H(x, y) the local depth, ẑ a vertical
unit vector, ∇ the horizontal gradient operator and Ω is the vertical component of the
Earth’s rotation. The coastline is considered to be impermeable giving the Dirichlet
boundary condition (2.2) that the streamfunction vanishes along the coast. Additionally,
the depth becomes constant in the open ocean region forcing the velocity associated with
CSWs to vanish far from the coast giving the boundary condition (2.3).

2.2. Asymptotic method

In this section we examine the existence of trapped modes in a straight coastline with
depth variations both along and across the shore. Assuming that the scale of the along-
shelf variations of the isobaths is large compared to the shelf width (which implies that the
wavelength in the along-shelf direction is much larger than in the cross-shelf direction), we
reduce our problem to finding (analytical) solutions of a second order ordinary differential
equation in the along-shelf direction.

Consider a straight shelf, modelled as a waveguide, with depth variations both along
and across the shore (see figure 1). If the coastline is straight and the depth profile is
rectilinear, the boundary condition at the shelf-ocean boundary has a simple form (e.g.
Buchwald and Adams 1968; Kaoullas and Johnson 2010a). However, for nonrectilinear
geometries, where either the coast or the depth profile or both are not functions of a
single coordinate, the boundary condition becomes an integral equation which leads to
complicated expressions.

It is common in the literature (e.g. JLP, Postnova and Craster (2008), Kaoullas and
Johnson (2010b), Johnson et al. (2011)), in such cases to replace (2.3) with a Neumann
boundary condition

n̂·∇Ψ = 0, (2.4)

where n̂ is normal to the shelf ocean boundary. Condition (2.4) is an approximation to
(2.3), valid for waves sufficiently long compared to the shelf width, but is essential for
the asymptotic analysis which follows.
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Figure 1. Isobaths (not drawn to scale) of (a) a submerged ridge (α < 0) and (b) a
submerged valley (α > 0).

We construct this depth profile by introducing a perturbation (to a rectilinear shelf)
in the longshore direction

H(x, y) = exp (2bp(x, y)) , y ∈ [0, 1], (2.5)

where

p(x, y) = y − 1 + y(1− y)(α/2)ε2g(εx). (2.6)

At the coast (y = 0), the depth is constant H0(x, 0) = e−2b and at the shelf-ocean
boundary (y = 1) is H1(x, 1) = 1. For this work we choose g(εx) = sech2(εx), so that the
maximum perturbation to the Buchwald and Adams (1968) exponential profile occurs
in the neighbourhood of x = 0 and then disappears as |x| → ∞ (see figures 1 and
2.2). We assume the slowness parameter ε � 1 and introduce a parameter α, which is
the amplitude of this depth perturbation. The sign of α determines whether we have
a submerged ridge, for α < 0 (figures 1(a) and 2.2), or a submerged valley, for α > 0
(figures 1(b) and 2.2). When a = 0, the bathymetry is rectilinear. Solutions of (2.1) of
the form Ψ(x, y, t) = Re{exp(−i2Ωωt)ψ(x, y)}, satisfy

ψxx + ψyy − 2b(pxψx + pyψy)− 2bi/ω (pyψx − pxψy) = 0. (2.7)

Note from Kaoullas and Johnson (2010a) that for a rectilinear exponential shelf with
a Neumann boundary condition at the shelf-ocean boundary, all evanescent modes lie
along the curve k = b/ω (where k is the x-wavenumber) and the cutoff frequency of all
propagating modes satisfies this relation. If a mode is trapped (in the perturbed channel)
it must match in the farfield, to the decaying modes of the unperturbed channel implying
that this relationship still holds, fixing k in terms of ω. This important simplification (also
used in Postnova and Craster (2008) and Johnson et al. (2011)) reduces the problem to a
single eigenvalue ω. If the open ocean boundary condition (2.3) is considered, the relation
between k and ω becomes a trancedental equation resulting in a much harder asymptotic
analysis. We look for solutions of the form ψ(x, y) = exp(ibx/ω)Φ(x, y), and introduce a
slow longitudinal variable ξ = εx

ε2Φξξ + Φyy + [2εi(b/ω)(1− py)− 2bε2pξ]Φξ + [ε2i(b/ω)pξ − 2bpy]Φy

+ [(b/ω)2(2py − 1)− ε2i(b2/ω)pξ]Φ = 0, (2.8)

where

py = 1 + (1− 2y)(α/2)ε2g(ξ), pξ = y(1− y)(α/2)ε2gξ(ξ). (2.9)
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For boundary conditions we take (2.2) and (2.4) giving Φ(x, 0) = 0 and Φy(x, 1) = 0
respectively. Following the approach for near cut-off modes of Gridin et al. (2005) and
Postnova and Craster (2008) we introduce the following regular asymptotic solutions to
(2.8)

Φ(ξ, y) = Φ(0)(ξ, y) + εΦ(1)(ξ, y) + ε2Φ(2)(ξ, y) + · · · , (2.10)

(b/ω)
2

= µ0 + εµ1 + ε2µ2 + · · · . (2.11)

These give to leading order

Φ(0)
yy − 2bΦ(0)

y + µ0Φ(0) = 0, (2.12)

subject to the boundary conditions Φ(0)(ξ, 0) = Φ
(0)
y (ξ, 1) = 0. The solution for (2.12) is

Φ(0) = f (0)(ξ)eby sin γy, γ =
√
µ0 − b2, (2.13)

and µ0 which gives the cutoff frequency of the rectilinear channel, is determined by

tan γ = −γ/b. (2.14)

The function f (0)(ξ) contains the longshore behaviour of the solution and remains to be
determined. The equation of order ε is given by

Φ(1)
ηη − 2bΦ(1)

η + µ0Φ(1) = −µ1Φ(0), (2.15)

subject to the boundary conditions Φ(1)(ξ, 0) = Φ
(1)
y (ξ, 1) = 0. Multiplying both sides

of the equation by ue−2by, where u is the adjoint of the solution of the homogeneous
problem, and integrating from y = 0 to y = 1, forces the left-hand side of the equation
to vanish and gives the solvability condition (Nayfeh 1993; Postnova and Craster 2008;
Johnson et al. 2011)

µ1

∫ 1

0

e−2byuΦ(0) dy = µ1

∫ 1

0

sin2 γy dy = 0. (2.16)

Evaluating the integral gives µ1(2γ−sin 2γ) = 0, forcing µ1 = 0 (as in Postnova and Cras-
ter (2008)), since the term in the brackets is strictly positive, by the definition of γ (2.14),
which requires γ > π/4. The solution for (2.15) thus becomes Φ(1) = f (1)(ξ)eby sin γy.
The order ε2 equation is

Φ(2)
yy − 2bΦ(2)

y + µ0Φ(2) = −Φ
(0)
ξξ + αg(ξ)(1− 2y)(bΦ(0)

y − µ0Φ(0))− µ2Φ(0), (2.17)

subject to Φ(2)(ξ, 0) = Φ(2)(ξ, 1) = 0. The appropriate solvability condition gives the
second order ordinary differential equation for f (0),

f
(0)
ξξ + [µ2 − V (ξ)]f (0) = 0, (2.18)

where

V (ξ) = 2αg(ξ)(b+ 1)(b2 + γ2) sin2 γ/γ(2γ − sin 2γ). (2.19)

Equation (2.18) is a one-dimensional Schrödinger equation with V the associated poten-
tial and µ2 the eigenvalue. Since the coefficient of α in (2.19) is positive by the definition
of γ, the sign of the potential depends solely on the sign of α. Gridin et al. (2005) derive
an equation similar to (2.18) for elastic trapped modes and discuss the theoretical con-
sequences. Applying their discussion of the positive operator theory, here, for trapped
modes we require that (2.18) has exponentially decaying solutions at infinity, i.e. f (0) → 0
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as |ξ| → ∞. Since trapped modes must have a higher frequency ω than the cutoff fre-
quency of the unperturbed channel, ω0, we deduce from (2.11) that µ2 must be negative.
Multiplying both sides of (2.18) by f (0) and integrating by parts on (−∞,∞) gives∫ ∞

−∞

(
f
(0)
ξ

)2
dξ +

∫ ∞
−∞

V (ξ)
(
f (0)

)2
dξ = µ2

∫ ∞
−∞

(
f (0)

)2
dξ. (2.20)

If V is positive, the left-hand side of (2.20) is positive forcing µ2 to be positive, which
contradicts the fact that trapped modes must have a higher frequency than the cutoff
frequency. Also by inspecting equation (2.18), the second term vanishes as |ξ| → ∞ and
if µ2 is non-negative it leaves an ODE with propagating solutions, implying that trapped
modes cannot exist. If V is negative, implying that α < 0, a negative eigenvalue might
exist (depending on the magnitude of α). Hence, in this problem there is a possibility of
existence of trapped modes, in the case of a submerged ridge (α < 0), while submerged
valleys (in this problem) cannot support trapped modes.

Taking the shelf-ocean boundary to be impermeable i.e. a Dirichlet boundary condition,
the flow is that along a straight, infinite channel with increasing cross-channel depth
and a depth perturbation at the middle of the channel. The above manipulations give
γ = nπ, n = 1, 2, . . . and V (ξ) = αbg(ξ). Since the terms multiplied with α are always
positive, the same conclusions for trapping to occur still hold.

2.3. Analytical solution

Equation (2.18) is to be solved numerically in general, however, for the specific choice of
the function g(ξ) = sech2(ξ), it can be solved analytically following Landau and Lifshitz
(1991) as

f (0)(ξ) = coshm−s(ξ)F (−m, 2s+ 1−m; s+ 1−m; (1− tanh ξ)/2) , (2.21)

where

s = (
√

1− 4αβ − 1)/2, β = (b+ 1)(b2 + γ2) sin2 γ/γ(2γ − sin 2γ), (2.22)

and

µ2 = −(s−m)2, 0 ≤ m < s, (2.23)

and F is the hypergeometric function. Since −m is a negative integer, F is a polynomial
of degree m. The condition that s > m gives the following lower bound on the parameter
α

−α > [(2m− 1)2 − 1]/4β. (2.24)

Higher modes (in the along-stream direction) need a larger value of |α|, in order to
become trapped, and corresponds to the fact that α is the magnitude of the potential V .
This implies that a larger amplitude in the depth perturbation is needed. Higher modes
in the cross-stream direction, affect relation (2.24) only through β. It is remarkable that
for the first transverse mode, when m = 1, condition (2.24) becomes that α > 0, which is
independent of β. Hence, as long as there is a perturbation in depth, the first transverse
mode becomes trapped and an infinite number of cross-stream modes can exist as well.
As the number of cross-stream modes goes to infinity, from (2.14)

γ → π(2q − 1)/2, q ∈ N, q � 1, (2.25)

and β → 1/2(b+ 1), implying that for each m there is an infinite number of cross-stream
trapped modes. Similar conclusions, regarding higher modes, can be drawn for the curved
oceanic waveguide considered by Postnova and Craster (2008) and Johnson et al. (2011).
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2.4. Numerical method for the full problem

In this section we describe a highly accurate pseudospectral method which is used to
solve the full partial differential equation (2.7) and to calculate the eigenfrequency ω for
each trapped mode (see Boyd 2000; Trefethen 2000). This method is independent of the
small depth changes (along-shore) limitation and thus will be used to provide verification
of the accuracy of the asymptotic scheme and to investigate a wider range of parameters.
It involves expanding the unknown solution of the equation as a global interpolant, and
thus deriving the differentiation matrix corresponding to each interpolant (Weideman
and Reddy 2000). A similar method is applied to elastic modes in Gridin et al. (2005).

Looking for solutions of (2.7) of the form ψ(x, y) = exp(ibx/ω)Φ(x, y) and considering
the profile (2.6) gives

ω2[Φxx + Φyy − 2b(pxΦx + pyΦy)] + 2biω[(1− py)Φx + px(Φy − bΦ)]

+ b2(2py − 1)Φ = 0. (2.26)

We will be solving the equation above numerically for the eigenvalue ω, subject to Dirich-
let condition at the coast, Neumann condition at the shelf-ocean boundary, and vanishing
disturbance in the farfield. From the definition of g(εx) we get that H(x, y) = H(−x, y),
which in turn implies that if ψ(x, y) is a solution to (2.7), so is ψ∗(−x, y) and ψ(x, y) =
ψ∗(−x, y), where ∗ denotes the complex conjugate. Due to this symmetry it is suffi-
cient to solve for x ≥ 0. The geometry of the straight coastline problem is reduced to a
semi-infinite strip of fixed width, thus in the cross-shore direction y ∈ [0, 1] we will use a
Chebyshev method. In the along-shore direction x ∈ [0,∞] we will again use a Chebyshev
method on the truncated domain, say x ∈ [0, L]. L must be large enough to allow for the
solution to decay but to maintain resolution as L is increased the number of alongshore
points needs to increase. If a trapped mode exists, it matches in the farfield (x → ∞)
to a decaying mode of the rectilinear shelf. Then, the decay rate of the trapped mode is
proportional to exp(−Imk) where k is the x-wavenumber of the rectilinear shelf, which
can be obtained analytically (Buchwald and Adams 1968).

The frequency ω, of trapping is thus calculated by solving equation (2.26) numerically
on a spectral grid. This gives an eigenvalue problem solved using a shifted method, given
in Appendix A.

2.5. Comparison of numerical and asymptotic results

Let ωm,n be the frequency of the (m,n) trapped mode where m is the mode number
in the x-direction and n in the y-direction. To get a direct comparison between the
asymptotic and numerical methods we need to define the numerical value of µ2 as µ2N =
[µ0 − (ω0 + λ)−2]/ε2.

The numerical method is very accurate indeed, with µ2N for the eigenvalue ω1,1 achiev-
ing an accuracy of five significant figures for M = 20, N = 10, which implies an accuracy
of eight digits (for ε = 0.1) for ω. Higher modes require much higher resolution for similar
accuracy with ω2,3 requiring M = 66, N = 22.

Direct comparison between the two methods is demonstrated in table 1. The asymp-
totic eigenvalues are indeed very accurate, with the relative error in µ2 well below 10%.
This is due to the fact that in the asymptotic expansions we have discarded the O(ε3)
terms implying that µ2A should be accurate at least to O(ε), which is precisely what
emerges from the numerics in Table 1. The relative error is increasing for higher modes,
since the coefficients of the O(ε3) terms could become more important for higher modes.

In figure 2, Φ is plotted as a function of the variable x at y = 1, for the modes ω1,1 and
ω2,1, demonstrating good agreement between the asymptotic and the numerical method.
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n m ω b/ω0 b/ω µ2A µ2N r.error
1 1 0.6588161295 3.039605122 3.03574838 -2.3431 -2.3366 -0.0028
1 2 0.6580805227 - 3.03914176 -0.2816 -0.2807 -0.0032
2 1 0.3660655837 5.466023907 5.46350187 -2.7564 -2.7137 -0.0158
2 2 0.3659233772 - 5.46562511 -0.4359 -0.4250 -0.0259
3 1 0.2398712074 8.339536263 8.33780770 -2.8827 -2.7844 -0.0352
3 2 0.2398298861 - 8.33924426 -0.4870 -0.4609 -0.0562

Table 1. The trapped frequencies ω as calculated from the asymptotic method and a comparison
of µ2 from the asymptotic method, µ2A , and the numerical method, µ2N . Here α = −π/2 and
ε = 0.1.
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Figure 2. Φ(x, 1) generated by the spectral method (solid line) and the asymptotic method
(dashed line) for the ω1,1 and ω2,1 modes. Here b = 2, α = −π/2, and ε = 0.1.

The imaginary part of Φ, with a magnitude of O(ε3), is also shown for the numerical
solution, implying that a small proportion of the phase is still present in the full problem.
It is non-zero because the phase changes slightly as the depth changes in x over a distance
of ε−1 and vanishes as ε goes to zero. The imaginary part of the asymptotic solution is
identically zero, for the present order of accuracy. Figure 3(a) is a contour plot of the
envelope of the trapped mode ω1,1 and figure 3(b) for the ω2,3 mode. The disturbance
is concentrated above the perturbed section of the shelf and decays exponentially along
the shelf as expected.

We have demonstrated the existence of trapping for a submerged ridge, where the
shelf had finite extent (limited to [0, 1]). As shown in Johnson and Kaoullas (2011) both
the wall or the slope effect alone, or combined could show trapping. To give a better
understanding of the underlying physics which lead to trapping we will consider the
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Figure 3. |Φ| for (a) (1,1) mode and (b) (2,3) mode for parameters b = 2, α = −π/2, and
ε = 0.1.

following (more general) rectilinear depth profile in y > 0 (Johnson and Kaoullas 2011)

H(y) = H0 + (1−H0){1 + tanh[(y − c)/s]}/2. (2.27)

H0 is the depth at the coastal wall, the depth in the open ocean is 1 and c gives the
distance of shelf-break (maximum slope) to the wall and s measures the slope of the
shelf-break. Figure 4(a) shows the profiles for shelf-breaks at c = 4, 5, 6, H0 = 0.25 and
s = 1, while figure 4(b) the corresponding sections of the dispersion relations between
the frequency ω of the fundamental cross-shelf mode and its along-shore wavenumber
k near cut-off frequencies, computed by the spectral method of Kaoullas and Johnson
(2010a). As the distance of the shelf-break form the wall increases, so does the cut-off
frequency since increasing the distance between the shelf-break and the coast weakens
the boundary constraint (Johnson 1989) giving higher propagating frequencies at any
fixed wavenumber. Thus if a shelf has a finite region where the shelf-break is further
from the wall than in the farfield i.e. a submerged ridge, the cutoff frequency of waves is
raised locally, while in the farfield it remains unchanged, allowing for trapping. On the
other hand submerged valleys formed when the shelf-break is locally closer to the wall
do not support tCSWs.

Figure 5(a) shows the profile (2.27) for coastal depths H0 = 0.25, a shelf-break at c = 5
and slope widths s = 0.5, 1.0, 1.5, and Figure 5(b) shows sections, near the maximum
propagating frequency, of the dispersion diagram for the fundamental cross-shelf mode for
these slope widths s. It is clear that for wider slopes the frequencies of locally propagating
modes are reduced and so locally trapped modes are not possible, while if the the shelf
steepens locally and then widens in the farfield, forming a submerged valley it allows for
tCSWs. The latter type of geometry is discussed in greater detail in section 3. For the
topography (2.5) considered here, it is a combination of these two factors that gives the
existence of trapped modes.

Similar dispersion curves can also be drawn to demonstrate the curvature geometric
effect (see section 3) and are given in Kaoullas and Johnson (2010b) where it is noted
that by bending locally a straight rectilinear shelf towards the coast increases the cut-off
frequency in the curved section. Questions still remain on how trapping will be affected
when considering a shelf which extends into an open ocean.
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Figure 4. (a) Depth profiles and (b) dispersion curves of the first propagating mode for shelf
breaks at c = 4 (dotted line), c = 5 (solid line) and c = 6 (dashed line) for the profile (2.27).
Here, s = 1 and H0 = 0.25.
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Figure 5. (a) Depth profiles and (b) dispersion curves of the first propagating mode for shelf
widths s = 0.5 (dotted line), s = 1 (solid line) and s = 1.5 (dashed line) for the profile (2.27).
Here, c = 5 and H0 = 0.25.

2.6. Open Ocean Trapping

Trapped CSWs in smooth coastlines are established by JLP and then by Postnova and
Craster (2008) and Kaoullas and Johnson (2010b). The most serious approximation in
these papers is that the open ocean is omitted by applying a Neumann boundary condi-
tion at the shelf-ocean boundary, thus reducing the problem to a strip. The same approx-
imation is necessary to obtain the asymptotic results for a shelf with alongshore depth
variations in §2.2. Even though this approximation simplifies these problems, as pointed
in Kaoullas and Johnson (2010b) it leads to discontinuous velocity profiles. Adapting the
asymptotic methods for the curved coastline and for the straight non-rectilinear shelf is
not easy since an extra term involving k appears in the relationship k = b/ω so fixing k
in terms of ω is more difficult. Also, the mode-matching method in Kaoullas and Johnson
(2010b) fails, since the set of cross-shelf eigenfunctions is not complete and obtaining a
rigorous result as in JLP is still an open research problem.
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Figure 6. Isobaths of (a) a submerged ridge (α > 0) and (b) a submerged valley (α < 0).

Nevertheless, we can still construct numerically trapped modes for these two problems
and assess the accuracy of the Neumann shelf-ocean boundary condition using a pseu-
dospectral method similar to that in §2.4. Consider an infinite, straight coastline as in
§2.2, where the nonrectilinear shelf extends into an open ocean. The governing equation,
with the corresponding boundary condition in the infinite ocean can be written as

H(ψxx + ψyy)− (Hxψx +Hyψy)− i/ω(Hyψx −Hxψy) = 0, (2.28)

ψ = 0, at y = 0, (2.29)

∇ψ → 0, at y →∞. (2.30)

Since the governing equation reduces to Laplace’s equation in the open ocean, the last
boundary condition is equivalent to ψ → 0 as y →∞. Extending the exponential topog-
raphy (2.5), into a constant ocean gives a continuous but not differentiable topography
function and thus seriously decreases the accuracy of the spectral method (Trefethen
2000). Hence, we construct the (everywhere) smooth topography (shown in figure 6) as

H(x, y) =

 1− (1−H0) exp(−|y2 − p(x)2|−s + p(x)−2s), 0 ≤ y ≤ p(x),

1, y ≥ p(x),
(2.31)

where p(x) = (1 + αsech2εx)/(1 + α). The depth at the coast is H0 and the depth of
the ocean is 1. If α > 0 (see figure 6(a)), we get the submerged ridge case and if α < 0
(see figure 6(b)), the submerged valley case, where no trapped modes can be supported.
The disadvantage, using this depth profile instead of (2.5) is that the governing equation
in far-field does not have constant coefficients, hence the cross-stream modes have no
simple structure and it is not straightforward to factorise the phase from the problem,
requiring greater computational effort. We discretise the domain, over the half plane,
as in Appendix A, resulting in a grid of N points in the y-direction and M in the x-
direction. We use a Hermite method in the x-direction, which is more appropriate (i.e.
more accurate) than a Chebyshev method on the real line, since the latter clusters points
near the end of the interval and in the y-direction we use a Laguerre method. Similarly
to §2.3, we calculate the eigenvalue of trapping using a shifted eigenvalue method. The
Dirichlet condition at the coast is implemented as in Appendix A.

When dealing with unbounded domains it is often very important to choose a sensible
scaling factor β (Tang 1993; Weideman and Reddy 2000; Shen and Wang 2009). Let xj be
the collocation points of the Hermite method, u(xi the solution at these points and let δx
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Figure 7. Contour plot of |ψ| for (a) the mode ω1,1, and (b) the mode ω1,2. The dotted line
shows the position of the shelf break. Here, s = 2, α = 0.16 and ε = 1.

be an accuracy threshold such that |u(xi)| < δx, and |xi| ≤ Lx, for all 1 ≤ i ≤M . Then,
we set the scaling factor βH = xM/Lx, where xM is the largest Hermite collocation point
i.e. the Mth zero of the Hermite polynomial of degree M (Tang 1993; Abramowitz and
Stegun 1964). If a trapped mode exists, it matches in the farfield (x→∞) to a decaying
mode of the rectilinear shelf. Then, the decay rate of the trapped mode is exp(−Imk)
where k is the x-wavenumber of the rectilinear shelf, which can be calculated using the
numerical method in Kaoullas and Johnson (2010a). Hence, we can determine Lx and the
corresponding δx. Similarly for the Laguerre interpolant we define βL = yN/Ly, where
yN is the largest Laguerre collocation point i.e. the Nth zero of the Hermite polynomial
of degree N (Shen and Wang 2009; Szegö 1975). The decay rate of a trapped mode in
the open ocean is exp(−Rek), and thus Ly and δy can be determined.

2.7. Numerical results

As before, we let wm,n be the frequency of the (m,n) trapped mode, m is the mode
number in the longshore direction and n in the cross-shore direction. For the fundamental
eigenfrequency ω1,1, with a cutoff frequency ω0 = 0.40793063, an accuracy of five digits
is achieved for M = 44, N = 34, for near optimal values of β and the decay rate of the
corresponding eigenfunction ψ is approximately exp(−1.75) in the longshore direction
and approximately exp(−5.66) in the cross-shore direction. Figures 7(a) and 7(b) are
contour plots of |ψ| for the trapped modes ω1,1, and ω1,2, respectively. Most of the wave
disturbance is concentrated along the submerged ridge, with the maximum disturbance
being near the shelf break.

The boundary condition in the open ocean, that ∇ψ → 0 as y → ∞ is equivalent to
ψ → 0 as y → ∞, which implies that both the Dirichlet and Neumann condition are
equivalent as y → ∞. It can be shown using the variational principle as in JLP that
for a straight, rectilinear, oceanic waveguide the top of the essential spectrum i.e. the
cutoff frequency is always higher for a Neumann boundary condition (at the shelf-ocean
boundary) compared to a Dirichlet boundary condition. Also, from Johnson (1989) the
Dirichlet condition gives a lower bound on the frequency of trapping ωD and the Neumann
condition an upper bound ωN :

ωD ≤ ω ≤ ωN . (2.32)

If we impose a Dirichlet (Neumann) condition at Ly = 1, i.e. at the shelf-ocean boundary
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Figure 8. Convergence of the mode ω1,1, for the straight coast, for the Chebyshev grid with
Dirichlet b.c. (ωD) and Neumann b.c. (ωN ) and the Laguerre grid (ωL) for increasing Ly. Here,
s = 2, α = 0.16 and ε = 1.

and then increase Ly gradually to infinity, the frequency of trapping ωD (ωN ) should
converge to the same value ω. To implement this numerically we employ a Chebyshev
method.

We demonstrate these bounds for the fundamental trapped mode in figure 8. It is
evident that the frequencies for the two boundary conditions are converging as Ly →∞.
Additionally, the frequency obtained with the Laguerre grid ωL shows that the accuracy
of the Laguerre grid is slightly better than the accuracy of the Chebyshev grid. Note
however, that to obtain an accuracy of 5 digits when Ly = 2.5 requires 40 points for the
Dirichlet and Neumann boundary conditions but only 34 points for the Laguerre scheme
showing that the Laguerre method should be the method of choice for these problems.

3. Salient shelf geometry characteristics

Johnson and Kaoullas (2011) note three characteristics of the shelf geometry, namely
shelf curvature, the wall effect and the slope effect which alone or combined are respon-
sible for trapping. The first characteristic is examined alone in the case of a strip (JLP;
Postnova and Craster (2008); Kaoullas and Johnson (2010b)) and the other two are ex-
amined combined (in section 2) for a strip and a semi-infinite domain. In this section
we demonstrate that each characteristic alone is sufficient for the existence of trapped
modes in semi-infinite domains.

3.1. Isobath curvature - Curved Coastline

As shown in JLP and Postnova and Craster (2008) and in Kaoullas and Johnson (2010b),
a trapped mode in a curved oceanic waveguide (with rectilinear topography) exists when
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Figure 9. Isobaths of (a) a bay (α > 0) and (b) a headland (α < 0). The thick solid line
denotes the coastline and the dotted line the shelf-break.

the guide is bent towards the coast. An analogous result should be obtained when the
shelf extends into an open ocean.

Consider a curved, rectilinear shelf, which extends into an open ocean. Introducing the
curvilinear coordinate system (ξ, η), −∞ ≤ ξ ≤ ∞, η ≥ 0 similarly to JLP, we can write
the governing equation (2.28), with the corresponding boundary conditions as

H(p2ψξξ + ψηη − p3ηδξξψξ + pδσψη)−Hηψη − ip/ωHηψξ = 0, (3.1)

ψ = 0, at η = 0, (3.2)

∇ψ → 0, at η →∞. (3.3)

where

p = (1 + ηδξ)
−1, (3.4)

and δξ = αsech2(εx) is the curvature (following the definition in JLP). We shall investi-
gate the existence for trapped modes numerically for the following topography

H(η) =

 1− (1−H0) exp(−|η2 − 1|−s + 1), 0 ≤ η ≤ 1,

1, η ≥ 1,
(3.5)

where the depth at the coast is H0 and the depth at the open ocean is 1. Even though
this topography is rectilinear in the (ξ, η) plane, (3.1) differs from (2.28) and thus gives
the possibility of trapping.

3.2. Wall effect - Bay Trapping

As noted in Johnson and Kaoullas (2011) increasing (decreasing) the distance of the shelf-
break from the coast increases (decreases) the cutoff frequency of propagating modes. A
straight rectilinear shelf, extending into a flat open-ocean, is considered (which does not
support trapped modes) and a flat bay or a headland (of finite extent) is added to the
coast, in the vicinity of x = 0 as in figure (9). Adding a bay raises locally the maximum
frequency that waves can propagate for any fixed along-shore wavenumber, while the
cutoff frequency is unchanged hence allowing modes to be trapped in the bay region.
Adding a headland lowers locally this maximum frequency and no trapping appears.
Consider the topography
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Figure 10. Isobaths of (a) a valley (α > 0) and (b) a ridge (α < 0).

H(x, y) =


H0, y ≤ −1,

1− (1−H0) exp(1− |y(y + 2)|−s), −1 ≤ y ≤ 0,

1, y > 0,

(3.6)

where p(x) = 1 + αsech2x and H0 is the depth at the coast and the depth of the ocean
is 1. The sign of α distinguishes between bays (α > 0, see figure 9(a)) and headlands
(α < 0, see figure 9(b)). We introduce the new co-ordinate η as

η = y/p(x). (3.7)

The governing equation (2.28) then becomes

H4ψ − (Hx − η (px/p)Hη)ψx −
(
p−2(1 + η2p2x)Hη − η (px/p)Hx

)
ψη−

i/ωp (Hηψx −Hxψη) = 0, (3.8)

subject to ψ = 0 at y = −p(x) and ψ → 0 y →∞.

3.3. Slope Effect - Valley Trapping

Similarly to the wall-effect, increasing (decreasing) the slope of the shelf increases (de-
creases) the cutoff frequency of locally propagating modes for a fixed wavenumber. Con-
sider the profile shown in figure 10

H(x, y) =

 1− (1−H0) exp(p(x, y)−2s − |y2 − p(x, y)2|−s), 0 ≤ y ≤ 1,

1, y ≥ 1,
(3.9)

where

p(x, y) = 1 + α(y − 1)(y − 0.5)sech2x, (3.10)

and the governing equation is (2.28) - (2.30). With this profile the slope of the shelf is
changed locally while keeping the distance of the shelf-break from the coast constant
everywhere. Here, trapping is only expected for α > 0.
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Figure 11. Contour plot of |ψ| for (a) the mode ω1,1 and (b) the mode ω1,2. The dotted line
shows the position of the shelf break and the solid line denotes the coast.
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Figure 12. Contour plot of |ψ| for (a) the mode ω1,1 and (b) the mode ω1,2 for the bay
problem. The thick solid line denotes the coastline and the dotted line the shelf-break.

3.4. Results

Finding numerical solutions of equations (3.1), (3.8), and (2.28) requires only a slight
modification to the numerical method presented in section 2, so details will be omitted.
A similar convergence to the straight problem in section 2 is achieved for the curved,
bay and slope problems for the fundamental eigenfrequency ω1,1. Again the Dirichlet and
Neumann approximations, coincide with the unapproximated boundary condition,with
increasing the cross-shelf domain size and still capture the main dynamics of trapping
and give good qualitative results. Figures 11, 12, and 13 show contour plots of |ψ| of the
trapped modes ω1,1 and ω1,2, for the curved problem, bay and slope problem respectively.

The disturbance is concentrated along the shelf-break i.e. over the region of maximum
slope and decays exponentially both across the shelf away from the shelf-break and along
the coast away from the perturbed region. This accords with the results in §2.5, where
the maximum disturbance (shown in figure 3) also occurs at the steepest point of the
shelf, which coincides there with the shelf-ocean boundary. The results here (figure 12)
show that certain bay geometries support trapped modes (because of the wall effect) and
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Figure 13. Contour plot of |ψ| for (a) the mode ω1,1 and (b) the mode ω1,2 for the slope
effect problem. The dotted line shows the position of the shelf break

the corresponding headland geometries do not. On the other hand, figure 11 shows an
example where headlands support trapping and bays do not (because of the curvature
effect). Similarly, figure 13 shows the existence of trapped modes along a valley due to the
slope effect, while the trapping for the ridge geometry in §2.5 is due to the combination
of the wall and the slope effect.

4. Discussion

We demonstrate the existence of trapped CSWs along straight coastlines featuring
both alongshore and cross-shore depth variations. No rigorous proof of their existence
is given, however, strong evidence is provided by accurate numerical solutions and from
an asymptotic solution. Assuming that the scale of the along-shelf variations of the iso-
baths is large compared to the shelf width, we reduce our problem to finding (analytical)
solutions of a second order ordinary differential equation in the cross-shelf direction. It
is shown that in the case of a submerged ridge, when the depth is perturbed slightly,
a trapped mode always exists, while in the case of a submerged valley, trapping is im-
possible. Direct comparison between the asymptotic method and the numerical method,
shows that the results from the two methods are in agreement. We also show numerically,
that trapped modes still exist when the shelf extends into the open ocean, thus removing
the Neumann approximation taken at the shelf-ocean boundary and give an assessment
of this approximation.

Previous results by JLP, Postnova and Craster (2008), and Kaoullas and Johnson
(2010b), are extended by showing numerically, that trapped modes exist along curved
coastlines with no restrictions to the curvature or requiring to approximate the boundary
condition at the shelf-ocean boundary. In addition to the isobath curvature, two other
geometric factors noted by Johnson and Kaoullas (2011), the wall and slope effect are
also shown to be (individually or combined) necessary and sufficient for the existence of
trapping. The underlying physics are also examined showing how each of these factors
raises or lowers the cut-off frequency for propagating modes locally, at the topographic
feature, compared to the cut-off frequency in the farfield (which remains unchanged),
and thus allowing to identify features where trapping is physically expected. Since the
numerical method does not require the governing equation to have constant coefficients
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these results were obtained for a wider class of topographies (rather than convex expo-
nential or power-law cross-shelf profiles used extensively in the literature) and can also be
applied by oceanographers to shelf geometries from observed topographic data, provided
the data is approximated by a smooth interpolating function.

How far the frequencies of trapped modes lie above the cut-off frequency in the farfield,
which determines how clearly differentiated these modes are from propagating modes,
depends on how strongly the topography is perturbed in the trapping region. For order
unity disturbances the frequency differences are order unity and this is when such modes
would be likely to be identified in practice. In the possible example of trapped modes put
forward in Stocker and Johnson (1991) the estuary was an order unity perturbation to
shelf as was the lake end in Trösch (1986) and Johnson and Kaoullas (2011). For the weak
perturbations of the asymptotic theory the length scale and size of the the topographic
feature are inversely related and together determine how far the frequency of trapping
lies above cut-off with small, long perturbations leading to trapping frequencies only
slightly above cutoff (Johnson et al. 2011).

Relaxing the rigid-lid approximation thus allowing the ocean surface to be free intro-
duces the super-inertial Poincarè waves and the free-surface (external) Kelvin wave which
is present at all frequencies. If the external Rossby radius R (LeBlond and Mysak 1978)
is of order unity or less (i.e. shallow, very wide shelves or shelves near the equator) this
approximation fails and we are dealing with a completely different mathematical prob-
lem. Nevertheless, for typical, mid-latitude shelves, due to the disparity in scales between
the Kelvin wave and shelf waves any energy transfer will be negligible (Buchwald and
Adams 1968; LeBlond and Mysak 1978).

Introducing stratification increases the wave frequency at all alongshore wavenumbers
(Mysak 1980; Brink 1991). If the stratification is strong enough the group velocity is
generally in the same direction as the phase velocity and the short waves carrying energy
in the opposite direction of long waves, disappear and so trapping is impossible. However,
for sufficiently weak stratified shelves, some subinertial waves remain evanescent (Huth-
nance 1978; Chapman 1983), and trapping is possible in a reduced range of frequencies.
Further discussion and numerical examples of localised coastal trapped waves (`CTWs)
are given in Rodney and Johnson (2012).

The authors thank the UK Engineering and Physical Sciences Research Council for
supporting this work under Grant EP/ D058864/1.

Appendix A

Introduce points zi,j for i = 1, . . . , N and j = 1, . . . ,M , to give a grid of N points in
the y-direction and M in the x-direction, let ui,j be values of the solution of (2.26) at
the points zi,j defined as

ui,j = (u1,1, u2,1, · · · , uN,1, u1,2, · · · , uN,2, · · · , u1,M , · · · , uN,M )
T
,

and define the differentiation matrices

∂n

∂yn
= IM ⊗

(
2

b− a

)n
D̂n
y ,

∂n

∂xn
=

(
2

L

)n
D̂n
x ⊗ IN , (A 1)

where D̂n
x and D̂n

y are the Chebyshev differentiation matrices as defined in Weideman
and Reddy (2000), IM is the M ×M identity matrix, n is the order of the derivative and
⊗ is the tensor product. In order to impose the Dirichlet boundary condition we need
to remove the first or last row and column of the matrix D̂n, depending on which end
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of domain is imposed. For the Neumann condition a Hermite interpolation approach is
used given in Weideman and Reddy (2000). The discretised equation can be written as

ω2Au + ωBu + Cu = 0, (A 2)

where (for the symmetric case) A, B and C are (M − 1)(N − 2) × (M − 1)(N − 2)
matrices:

A = D2
x + D2

y − 2b(PxDx + PyDy),
B = 2bi((I−Py)Dx + Px(Dy − bI)),
C = b2(2Py − I),

(A 3)

the matrices Px and Py are the values of the functions

px = −y(1− y)αε3sech2(εx) tanh(εx), py = 1 + (1− 2y)αε2 tanh(εx)/2, (A 4)

at the points zi,j , I is the (M − 1)(N − 2) × (M − 1)(N − 2) identity matrix and Dn

are the differentiation matrices subject to the appropriate boundary conditions. System
(A 2) can be transformed into a linear system by introducing the unknown vector v = ωu
giving

Cu + Bv = −ωv, (A 5)

v = ωu. (A 6)

Since the frequencies of trapped modes lie above, but close to the cutoff frequency ω0,
of the rectilinear shelf in the farfield, numerical efficiency can be further increased by
introducing the shifted eigenvalue λ as ω = ω0+λ which satisfies the standard eigenvalue
problem

Fw = λw, (A 7)

where F = G−1F, w = (u,v)T and

F =

(
C B + ω0A
−ω0I I

)
, G =

(
0 −A
I 0

)
. (A 8)
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