
Heuristi
s and Mathemati
alDis
overy:The Case of Bayesian NetworksDonald Gillies
1 Introdu
tionI will begin this paper by dis
ussing some ideas to be found in two re-
ent books on the philosophy of mathemati
s. These are (i) Carlo Cel-lu

i's Filoso�a e matemati
a, published by Laterza in 2002, and (ii) DavidCor�eld's Towards a Philosophy of Real Mathemati
s, published by OxfordUniversity Press in 2003. I will start with Cellu

i's book.In his book, Cellu

i is highly 
riti
al of the traditional or foundationalapproa
h to the philosophy of mathemati
s, based on the attempt to justifymathemati
s. Instead he advo
ates what he 
alls the heuristi
 approa
h tothe philosophy of mathemati
s. As he says (2002, p. viii):A

ording to the dominant point of view the prin
ipal problemin the philosophy of mathemati
s is that of the justi�
ation ofmathemati
s. . . . In this book I maintain instead that the prin
i-pal problem of re
e
tion on mathemati
s is that of mathemati
aldis
overy. This problem in
ludes the problem of justi�
ation . . .I partly agree and partly disagree with this. It is 
ertainly true that tra-ditional philosophy of mathemati
s fo
ussed ex
lusively on the problem ofthe justi�
ation of mathemati
s and negle
ted the problem of mathemati
aldis
overy. So I de�nitely think that philosophers of mathemati
s should nowtake up the problem of mathemati
al dis
overy and that interesting resultsare to be expe
ted from investigating it. On the other hand, I do not thinkthat the problem of dis
overy in
ludes that of justi�
ation. So I hold thatthe problem of justi�
ation should remain on the agenda of philosophers of
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s, as a problem partly related to, but partly separate from thatof dis
overy. For the purpose of this paper, however, I want to emphasizemy agreement with Cellu

i and to adopt his heuristi
 approa
h.Now the obvious obje
tion to the 
laim that philosophers should studythe problem of mathemati
al dis
overy is that dis
overies in mathemati
sdepend on psy
hologi
al fa
tors su
h as insights of genius, the subje
tiveintuitions of 
reative mathemati
ians and so on; and that, 
onsequently,mathemati
al dis
overy 
annot be given a systemati
 philosophi
al treat-ment. Cellu

i strongly 
hallenges this point of view in the following passage[2002, p. xvii℄:A

ording to the dominant point of view mathemati
al dis
overyis an irrational pro
ess, whi
h is not based on logi
 but rather onintuition. . . . In this book I maintain instead that mathemati
sis a rational a
tivity at every moment, in
luding the most impor-tant, dis
overy. Sin
e antiquity many have re
ognised not onlythat mathemati
al dis
overy is a rational pro
ess, but also that amethod exists for it, namely the analyti
 method. This methodgave a great heuristi
 power to the an
ient mathemati
ians forthe solution of geometri
al problems, and has had a de
isive rolein the new developments of mathemati
s and physi
s at the be-ginning of the modern era. In it logi
 plays an essential role inthe dis
overy of hypotheses, though this is not logi
 understoodin the restri
ted fashion . . . but in a wider fashion whi
h in
ludesalso and above all non-dedu
tive inferen
es.Cellu

i does not merely advo
ate a heuristi
 approa
h to the philosophyof mathemati
s, but a
tually makes a start with developing it, parti
ularlyin Chapters 30 to 38 of his book. Here he lists and illustrates quite a numberof prin
iples whi
h he regards as fruitful for mathemati
al dis
overy. Thisinvestigation of Cellu

i's does indeed 
all into question the 
laim that math-emati
al dis
overy is ex
lusively a matter of subje
tive intuitions and thelike. There is however a point whi
h 
an be regarded as doubtful. Cellu

imakes 
lear in the passage just quoted that he believes that the prin
iplesunderlying mathemati
al dis
overy are logi
al in 
hara
ter, so that thereis, in e�e
t, a logi
 of mathemati
al dis
overy. However, another point ofview would be that there are indeed prin
iples underlying mathemati
aldis
overy but that these prin
iples are heuristi
s, or guides to dis
overy,
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h are not logi
al in 
hara
ter. It is not an easy matter to de
ide be-tween these two points of view, sin
e it is not 
lear what we should regardas 
onstituting logi
. If there is to be a logi
 of mathemati
al dis
overy,then logi
 will 
ertainly, as Cellu

i stresses, have to extended to in
ludenon-dedu
tive inferen
es. Yet how far 
an we extend logi
 beyond its 
oreof dedu
tive inferen
es while still retaining something that is re
ognisablylogi
? Is there an indu
tive logi
 for example? And if so, what is its 
har-a
ter? More generally what are the boundaries of logi
? In the last se
tionof this paper (Se
tion 6) I will 
ome ba
k to this question and dis
uss someof the interesting ideas of Ladislav Kvasz on this subje
t. However for themoment, I will take the goal to be that of elu
idating some of the heuristi
prin
iples involved in mathemati
al dis
overy, and leave aside the questionof whether these prin
iples should be regarded as logi
al in 
hara
ter.Let me now turn to Cor�eld's new book. This 
ontains a mass of interest-ing material ranging from automated theorem proving, through Bayesian-ism applied to mathemati
s, to a 
onsideration of groupoids and higher-dimensional algebra. However, for the purposes of this present paper, I wantto 
onsider only one general methodologi
al point whi
h Cor�eld makes to-wards the beginning of his book. He points out that the mathemati
s 
on-sidered by philosophers of mathemati
s tends to be almost ex
lusively thefoundational mathemati
s of the period 1880{1930, and that, in parti
ular,the mathemati
s of the last 70 years is largely ignored ex
ept perhaps, insome 
ases, for a 
onsideration of further developments of foundationalistmathemati
s. As Cor�eld himself says [2003, p. 5℄:By far the larger part of a
tivity in what goes by the name philos-ophy of mathemati
s is dead to what mathemati
ians think andhave thought, aside from an unbalan
ed interest in the `founda-tional' ideas of the 1880{1930 period, . . .Cor�eld 
alls this attitude `the foundationalist �lter'. This �lter removesfrom the attention of philosophers of mathemati
s any mathemati
s whi
his not foundationalist. Cor�eld thinks that philosophers of mathemati
sshould remove this �lter and 
onsider mathemati
s whi
h is not founda-tionalist. This 
ould be some of the mathemati
s of the past, but Cor�eldre
ommends very strongly that philosophers of mathemati
s should take aninterest in the non-foundationalist mathemati
s of the last seventy yearswhi
h he thinks that they have hitherto largely ignored. As he says [2003,pp. 7{8℄:
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tive 
onsiderations, it shouldstrike us as implausible that mathemati
ians dealing with num-ber, fun
tion and spa
e have produ
ed nothing of philosophi
alsigni�
an
e in the past seventy years in view of their re
ord overthe previous three 
enturies.Cor�eld attempts in his book to redress the balan
e by 
onsidering fromthe philosophi
al point of view many developments in mathemati
s duringthe last seventy years.That 
on
ludes my dis
ussion of some of the ideas in the new books byCellu

i and Cor�eld. I will now explain how they have led to the planfor the present paper. Essentially I have taken from Cellu

i the idea ofstudying the heuristi
s of mathemati
al dis
overy, and I will try to add tohis treatment by 
onsidering an example of mathemati
al dis
overy di�er-ent from the ones whi
h he 
onsiders. Following the re
ommendations ofCor�eld, I have taken this example form the �eld of non-foundational math-emati
s in the last seventy years. The example in fa
t 
omes from my ownfavourite bran
h of mathemati
s: probability theory. Probability theory isusually 
onsidered by philosophers of s
ien
e rather than philosophers ofmathemati
s, and there are obvious reasons for this. Probability is 
losely
onne
ted to indu
tion whose analysis, or in some 
ases denial, is a 
entralissue in philosophy of s
ien
e. Probabilities also appear in many s
ienti�
theories, notably quantum me
hani
s. But despite its interest for philoso-phers of s
ien
e, probability theory is after all a bran
h of mathemati
s andan important one. So there may be some value in 
onsidering some of thegeneral problems of the philosophy of mathemati
s in relation to probabilitytheory.Sin
e I started studying probability theory in the 1960s, the most im-portant development in the �eld has been, in my opinion, the dis
overyof Bayesian networks, whi
h took pla
e in the 1980s | fortunately wellwithin the Cor�eld limit of seventy years. Many mathemati
al dis
overiesare of proofs of theorems, but some dis
overies are of new mathemati
al
on
epts whi
h give rise to new theories involving many theorems and hav-ing many uses in di�erent areas. The most famous dis
overy of this type isperhaps the dis
overy of the group 
on
ept. The dis
overy of the 
on
eptof Bayesian network has this 
hara
ter. It has resulted in the developmentof an entirely new bran
h of probability theory whi
h is now expounded intextbooks like Neapolitan 1990. None of the 
ontents of Neapolitan 1990



Heuristi
s and Mathemati
al Dis
overy 91would have appeared in a textbook of probability theory written before the1980s. We have something here that is really new and that has also beenapplied with great su

ess in a wide variety of di�erent areas. We are thusdealing with a dis
overy of 
onsiderable importan
e and an analysis of theheuristi
s whi
h led to this dis
overy may be not without some interest. Inthe next Se
tion 2, I will give a brief histori
al a

ount of how the dis
overyof Bayesian networks was made. This should also serve as an introdu
tionto the 
on
ept for those who have not met it as yet. Then in Se
tions 3,4and 5, I will state and analyse three heuristi
s whi
h seem to me to havebeen involved in the dis
overy.2 The Development of Arti�
ial Intelligen
e and theDis
overy of Bayesian NetworksOne route whi
h led to the dis
overy of Bayesian networks began with in-vestigations into arti�
ial intelligen
e (AI). This is the route whi
h I willdes
ribe in what follows. The full story however is more 
ompli
ated. Therewas another largely independent route whi
h began with investigations intode
ision theory and whi
h led to 
on
epts not dissimilar from Bayesiannetworks. Another strand in the story is 
onstituted by attempts to �nde
onomi
al ways of storing probability distributions in 
omputers. The de-velopments whi
h I will des
ribe, however, were largely self-
ontained andare suitable for analysis from the point of view of the heuristi
s involved. Iwill therefore leave the full a

ount as the task for a more detailed history.Resear
h in AI began in the 1950s and many important ideas were de-veloped by the pioneers. Then in the 1970s a breakthrough was produ
edby the 
reation of expert systems. The lead here was taken by the Stan-ford heuristi
 programming group, parti
ularly Bu
hanan, Feigenbaum, andShortli�e. What they dis
overed was that the key to su

ess was to extra
tfrom an expert the knowledge he or she used to 
arry out a spe
ialised task,and then 
ode this knowledge into the 
omputer. In this way they wereable to produ
e `expert systems' whi
h performed spe
i�
 tasks at the levelof human experts. One of the most important of these early expert sys-tems (MYCIN) was 
on
erned with the diagnosis of blood infe
tions. Thissystem will now be brie
y des
ribed, and it will then be shown that itsimplementation led to the problem of how to handle un
ertainty in AI.MYCIN was developed in the 1970s by Edward Shortli�e and his 
ol-leagues in 
ollaboration with the infe
tious diseases group at the Stanford
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al s
hool. The medi
al knowledge in the area was 
odi�ed into rules ofthe form: IF su
h and su
h is observed, THEN likely 
on
lusion is su
h andsu
h. MYCIN's knowledge base 
omprised over 400 su
h rules whi
h wereobtained from medi
al experts. An example of su
h a rule will be given in amoment, but �rst it would be as well to present some eviden
e of MYCIN'ssu

ess.To test MYCIN's e�e
tiveness a 
omparison was made in 1979 of its per-forman
e with that of nine human do
tors. The program's �nal 
on
lusionson ten real 
ases were 
ompared with those of the human do
tors, in
ludingthe a
tual therapy administered. Eight other experts were then asked torate the ten therapy re
ommendations and award a mark, without knowingwhi
h, if any, 
ame from a 
omputer. They were requested to give 1 for atherapy whi
h they regarded as a

eptable and 0 for an una

eptable ther-apy. Sin
e there were eight experts and ten 
ases, the maximum possiblemark was 80. The results were as follows [Ja
kson, 1986, p. 106℄:MYCIN 52 A
tual therapy 46Fa
ulty-1 50 Fa
ulty-4 44Fa
ulty-2 48 Resident 36Inf dis fellow 48 Fa
ulty-5 34Fa
ulty-3 46 Student 24So MYCIN 
ame �rst in the exam, though the di�eren
e between it andthe top human experts was not signi�
ant.Let us now examine one of MYCIN's rules. The following rule is givenby Shortli�e and Bu
hanan [1975, p. 357℄:If: (1) the stain of the organism is gram positive (S1), and(2) the morphology of the organism is 
o

us (S2), and(3) the growth 
onformation of the organism is 
hains (S3)Then: there is suggestive eviden
e (0.7) that the identity of theorganism is strepto
o

us (H1)In symbols this 
ould be written: If S1 & S2 & S3, then there is sug-gestive eviden
e p that H1, where p = 0:7. Here S1; S2; S3 are the ob-servations/symptoms, whi
h support hypothesis H1 to a parti
ular degree.These rules were obtained from the medi
al experts. The numbers they
ontain su
h as 0.7 were also obtained from the experts. The expert was in
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t asked: \On a s
ale of 1 to 10, how mu
h 
ertainty do you aÆx to this
on
lusion?" The answer was then divided by 10.At �rst sight it looks as if the �gure 0.7 in the rule from MYCIN is anordinary probability, but this is not the 
ase, as Shortli�e and Bu
hananmake 
lear in the following passage [1975, p. 358℄:. . . this rule at �rst seems to say P (H1jS1&S2&S3) = 0:7; : : :.Questioning of the expert gradually reveals, however, that des-pite the apparent similarity to a statement regarding a 
ondi-tional probability, the number 0.7 di�ers signi�
antly from aprobability. The expert may well agree that P (H1jS1&S2&S3) =0:7, but he be
omes uneasy when he attempts to follow the logi-
al 
on
lusion that therefore P (not:H1jS1&S2&S3) = 0:3. Thethree observations are eviden
e (to degree 0.7) in favor of the
on
lusion that the organism is a strepto
o

us and should notbe 
onstrued as eviden
e (to degree 0.3) against strepto
o

us.Shortli�e and Bu
hanan used this observation to motivate the introdu
-tion of a non-probabilisti
 model of evidential strength. Their measure ofevidential strength was 
alled a 
ertainty fa
tor, and 
ertainty fa
tors nei-ther obeyed the standard axioms of probability theory, the Kolmogorovaxioms, nor 
ombined like probabilities.Certainty fa
tors were 
riti
ized by those who favoured a probabilisti
approa
h, 
f. Adams [1976℄ and He
kerman [1986℄, and in fa
t the nextexpert system we will 
onsider (PROSPECTOR) did move more in thedire
tion of standard probability.PROSPECTOR, an expert system for mineral exploration, was devel-oped in the se
ond half of the 1970s at the Stanford Resear
h Institute.A good general a

ount of the system is given by Gas
hnig in his 1982.PROSPECTOR's most important innovation was to represent knowledgeby an inferen
e network (or net). This is motivated by Duda et al. in their[1976, p. 1076℄ as follows:A 
olle
tion of rules about some spe
i�
 subje
t area invariablyuses the same pie
es of eviden
e to imply several di�erent hy-potheses. It also frequently happens that several alternativepie
es of eviden
e imply the same hypothesis. Furthermore,there are often 
hains of eviden
es and hypotheses. For these
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olle
tion of rules as a graphstru
ture or inferen
e net.A part of PROSPECTOR's inferen
e network is shown in Figure 1.H1 H2H3E1 E2 E3Figure 1.H1 = There are massive sul�de deposits.H2 = There are 
lay minerals.H3 = There is a redu
tion pro
ess.E1 = Barite is overlying sul�de.E2 = Galena, sphalerite, or 
hal
opyrite �ll 
ra
ks in rhyolite orda
ite.E3 = There are blea
hed ro
ks.Eviden
e E1 is taken as supporting hypothesis H1, and this is indi
atedby the arrow joining them in the inferen
e network. Similarly E2 supportshypothesisH1, while E3 supportsH3 whi
h supportsH2 whi
h supportsH1.Note how these rather 
ompli
ated relations are simply and elegantly rep-resented by the arrows of the network. Ea
h inferen
e arrow has a strengthasso
iated with it, and this obtained from the expert as in the 
ase ofMYCIN.
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overy 95PROSPECTOR, however, di�ers from MYCIN in using subje
tive Ba-yesianism rather than 
ertainty fa
tors. This subje
tive Bayesianism is notentirely pure, sin
e it is 
ombined with fuzzy logi
 formulae, whi
h werealso used in MYCIN. This use of fuzzy logi
 tended to disappear in furtherdevelopments.In PROSPECTOR, Bayesianism is formulated using odds rather thanprobabilities. The odds on a hypothesis H [O(H)℄ are de�ned as follows:O(H) = P (H)=P (:H)Writing down Bayes theorem �rst for H and then for :H , we getP (H jE) = P (EjH)P (H)=P (E)P (:H jE) = P (Ej:H)P (:H)=P (E)So dividing gives(1) O(H jE) = �(E)O(H)where �(E) is the likelihood ratio P (EjH)=P (Ej:H). (1) is the odds andlikelihood form of Bayes theorem, and it is used in PROSPECTOR to
hange the prior odds on H to the posterior odds given eviden
e E.Let us now 
onsider the problems whi
h arise if we have several di�erentpie
es of eviden
e E1; E2; : : : ; En say. We might in pra
ti
e have to up-date using any subset of these pie
es of eviden
e Ei; Ej ; : : : ; Ek say, where(i; j; : : : k) is any subset of (1; 2; : : : ; n). If we use (1), this would involvehaving values of �(Ei&Ej& : : :&Ek) for all subsets of (1; 2; : : : n). When weremember that, on this approa
h the values of � are obtained from the do-main experts, we 
an see that obtaining the requisite values of � is s
ar
elypossible. Clearly some simplifying assumptions are ne
essary to produ
e aworkable system, and the designers of PROSPECTOR therefore made thefollowing two 
onditional independen
e assumptions:(2) P (E1; : : : ; EnjH) = P (E1jH) : : : P (EnjH)(3) P (E1; : : : ; Enj:H) = P (E1j:H) : : : P (Enj:H)Given these assumptions, the whole problem of updating with many pie
esof eviden
e be
omes simple, and, in fa
t,O(H jE1& : : :&En) = �1 �2 : : : �nO(H) where �i = �(Ei)



96 Donald GilliesThe only remaining problem was whether the 
onditional independen
e as-sumptions (2) and (3) are plausible. The sear
h for a justi�
ation of theseassumptions led, as we shall see, to the modi�
ation of the 
on
ept of infer-en
e network, and the emergen
e of the 
on
ept of Bayesian network.The 
on
ept of Bayesian network was introdu
ed and developed by Pearlin a series of papers: Pearl [1982; 1985a; 1985b; 1986℄, Kim and Pearl [1983℄,and a book: Pearl [1988℄. An important extension of the theory was 
arriedout by Lauritzen and Spiegelhalter [1988℄, while Neapolitan's 1990 bookgave a 
lear a

ount of these new ideas and helped to promote the use ofBayesian networks in the AI 
ommunity.The a
tual term Bayesian (or Bayes) network was introdu
ed in Pearl's[1985b℄ where it is de�ned as follows (p. 330):Bayes Networks are dire
ted a
y
li
 graphs in whi
h the nodesrepresent propositions (or variables), the ar
s signify the exis-ten
e of dire
t 
ausal in
uen
es between the linked propositions,and the strengths of these in
uen
es are quanti�ed by 
ondi-tional probabilities.This verbal a

ount is illustrated by a diagram whi
h is reprodu
ed, withdi�erent lettering, in Figure 2. AB CED FFigure 2.
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overy 97If we 
ompare the network of Figure 2 with that of Figure 1, two di�er-en
es should be noted immediately. First of all the arrows in the inferen
enetwork of Figure 1 represent a relation of support holding between e.g.E3 and H3, while the arrows in the Bayesian network of Figure 2 represent
ausal in
uen
es, so that, e.g. the arrow joining A to B means that A
auses B. Se
ondly, 
orresponding to the �rst di�eren
e, we 
an say that,in a 
ertain sense, the arrows of a Bayesian network run in the oppositedire
tion to those of an inferen
e network. Pearl puts this point as follows[1986, pp. 253{4℄:. . . in many expert systems (e.g. MYCIN), . . . rules point fromeviden
e to hypothesis (e.g. if symptom, then disease), thusdenoting a 
ow of mental inferen
e. By 
ontrast, the arrowsin Bayes' networks point from 
auses to e�e
ts or from 
ondi-tions to 
onsequen
e, thus denoting a 
ow of 
onstraints in thephysi
al world.This reversal of arrows from inferen
e networks to Bayesian networks isillustrated in Figure 3, whi
h shows one pair of nodes taken from the portionof PROSPECTOR's inferen
e network shown in Figure 1.(a) Inferen
e Network E3 H3(b) Bayesian Network E3 H3Figure 3. Reversal of ArrowsHere E3 = There are blea
hed ro
ks, while H3 = There is a redu
tionpro
ess. From the point of view of an inferen
e network (a), we regardthe eviden
e of blea
hed ro
ks as supporting the hypothesis that there isa redu
tion pro
ess, while, from the point of view of a Bayesian network(b), we regard there being a redu
tion pro
ess as a 
ause of there beingblea
hed ro
ks. In his 1993, Pearl gives an a

ount of his dis
overy ofBayesian networks, and says that one fa
tor that led him to the idea washis 
onsideration of the 
on
ept of in
uen
e diagrams introdu
ed by Howardand Matheson (1984). Pearl de
ided to limit the in
uen
es spe
i�
ally to
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ausal in
uen
es. Now Howard and Matheson were working on de
isiontheory. So this is one point where the investigations of de
ision theory mayhave had an input into the investigations in arti�
ial intelligen
e.I will now make a few further points about Bayesian networks. If, insu
h a network, an arrow runs from node A to node B, then A is said tobe a parent of B, and B a 
hild of A. Children of A, 
hildren of 
hildrenof A, and so on are known as des
endants of A. If a node has no parents,it is 
alled a root, so that in Figure 2, A is a root. In a Bayesian network,it is possible for a 
hild to have several parents. Thus in Figure 2, Ehas parents B and C. If, however, every 
hild has at most one parent,the network is 
alled a tree. As in the earlier 
ase of PROSPECTOR'sinferen
e networks, in order to make 
omputation feasible, some 
onditionalindependen
e assumptions have to be made. For a Bayesian network, theseare that a node is 
onditionally independent given its parents of the rest ofthe network ex
ept its des
endants. I will 
all the 
onditional independen
eassumptions de�ning a Bayesian network the generalised Markov 
ondition.The nodes of a Bayesian network are random variables. Suppose wespe
ify for ea
h node the 
onditional probability distribution of that nodegiven its parents, then it follows from the generalised Markov 
onditionthat these 
onditional probability distributions suÆ
e to determine the jointdistribution of all the variables of the network. This is an important resultsin
e it shows that Bayesian networks enable us to store joint distributionsin a very 
on
ise way.After introdu
ing the 
on
ept of Bayesian network, Pearl developed al-gorithms whi
h allow Bayesian updating to take pla
e in su
h networks. Ifone of the variables whi
h represents an observation is set to a parti
ularvalue, the 
hanges brought about by this new information in all the proba-bilities throughout the tree 
an be 
omputed in an eÆ
ient manner. Pearlbegan in his 1982 by developing an updating algorithm for a simple formof network, namely a tree. He then extended his algorithm to more 
om-pli
ated networks. Kim and Pearl [1983℄ generalised from trees to Bayesiannetworks whi
h are singly 
onne
ted, i.e. there exists only one (undire
ted)path between any pair of nodes. Pearl in his 1986 ta
kled the further exten-sion to Bayesian networks whi
h are multiply 
onne
ted. This problem wasalso investigated by Lauritzen and Spiegelhalter who in their 1988 solved itusing the idea of redu
ing a multiply 
onne
ted network to a tree of 
liques.Their algorithm has been generally adopted by the AI 
ommunity.
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s and Mathemati
al Dis
overy 99Let us now turn from these powerful mathemati
al developments to the
onsideration of a 
on
eptual point. How exa
tly are 
auses and proba-bilities 
onne
ted in Bayesian networks? In his original de�nition whi
hhe gave above, Pearl mentions both 
auses and probabilities. The arrowssignify 
ausal in
uen
es, while the nodes have asso
iated with them proba-bility distributions 
onditional on their parents. Pearl's idea about the linkbetween 
auses and probabilities seems to have been that, if in a networkthe parents of every node represented the dire
t 
auses of that node, thenthe relevant 
onditional independen
e assumptions (the generalised Markov
ondition) would automati
ally be satis�ed. As he says [1993, p. 52℄:Causal utteran
es su
h as \X is a dire
t 
ause of Y " were given aprobabilisti
 interpretation as distin
tive patterns of 
onditionalindependen
e relationships that 
an be veri�ed empiri
ally.A suggested link between 
ausality and 
onditional independen
e in fa
tgoes ba
k to Rei
henba
h [1956℄. Rei
henba
h 
onsiders two events B andC say whi
h are 
orrelated. For example, in a travelling troupe of a
tors,B = the leading lady has a stoma
h upset, and C = the leading man has astoma
h upset. We 
an explain su
h 
orrelations, a

ording to Rei
henba
h,by �nding a 
ommon 
ause, namely that the leading lady and the leadingman always have dinner together. The 
ommon stoma
h upsets o

ur whenthe food in the lo
al restaurant has gone o�. Denote `dining together' byA. We then have the 
ausal graph shown in Figure 4.BA CFigure 4.Rei
henba
h then 
laimed that, 
onditional on A;B and C were no longer
orrelated but independent, i.e. P (B&CjA) = P (BjA)P (CjA). He alsoexpressed this idea by saying that a 
ommon 
ause A s
reens one of its
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ts B o� from the other C. Rei
henba
h's 
ausal fork is just a simple
ase of a Bayesian network. We 
an indeed apply his term `s
reening o�' toBayesian networks by saying that in su
h networks, the parents of a nodes
reen it o� from all the other nodes in the network ex
ept its des
endants.We are now in a position to summarise the ingenious way in whi
hBayesian networks solved the problem of handling un
ertainty in expert sys-tems. In most of the domains 
onsidered, e.g medi
al diagnosis, a domainexpert is very familiar with the various 
ausal fa
tors operating. It shouldtherefore be an easy matter to get him or her to provide a 
ausal network.By the addition of probabilities this 
an be turned into a Bayesian network.In earlier systems su
h as MYCIN or PROSPECTOR, 
onditional indepen-den
e assumptions were made for the purely ad ho
 and pragmati
 reason ofallowing the updating to be
ome possible. For Bayesian networks, however,the 
ausal information obtained from the expert provides a justi�
ationfor making a set of 
onditional independen
e assumptions (the generalisedMarkov 
ondition) in the manner �rst suggested by Rei
henba
h. Moreoveras Pearl, Lauritzen and Spiegelhalter have shown, the generalised Markov
ondition is suÆ
ient to allow Bayesian updating to be
ome 
omputation-ally feasible. Everything �ts together in a most satisfying manner. Thereis only one weak link in the 
hain. It turns out that it is possible to have abona �de 
ausal network in whi
h the generalised Markov 
ondition is notsatis�ed. I have dis
ussed this last point with examples in Gillies [2002℄,but I will not pursue the development of the theory of Bayesian networksfurther here. I have given enough of the history of their dis
overy to enableus to examine in the next three se
tions the heuristi
 prin
iples involved.3 Heuristi
s Involved: (a) the Use of Philosophi
alIdeasThe �rst of the heuristi
s whi
h I think was involved in the dis
overy ofBayesian networks was the use of philosophi
al ideas as a guide to the de-velopment of new mathemati
al 
on
epts. The pro
ess whi
h led to thedis
overy of Bayesian networks was begun by Shortli�e and Bu
hanan's at-tempt to 
onstru
t a formal model for evidential support whi
h 
ould beimplemented in their expert system: MYCIN. Shortli�e and Bu
hanan'skey 1975 paper: `A model of inexa
t reasoning in medi
ine' 
ontains 33referen
es and no less than 14 of these (or over 42%) are to works in thephilosophy of s
ien
e 
on
erned with the 
on�rmation of s
ienti�
 hypothe-
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overy 101ses by eviden
e and related questions 
on
erned with indu
tion and the in-terpretation of probability. These 14 referen
es are: Barker [1957℄, Carnap[1950℄, De Finetti [1972℄, Harr�e [1970℄, Helmer and Res
her [1960℄, Hempel[1965℄, Keynes [1921℄, Popper [1959℄, Ramsey [1931℄, Salmon [1966; 1973℄,Savage [1954℄, and Swinburne [1970; 1973℄. In fa
t Bu
hanan and Shortli�ereferred to nearly all the philosophers of s
ien
e who were famous for theirworks on probability, indu
tion and 
on�rmation.The main debate within philosophy of s
ien
e about the 
on�rmationof s
ienti�
 hypotheses was at the time between the Bayesians and theanti-Bayesians. The Bayesians were divided in turn between the logi
alBayesians su
h as Carnap and the subje
tive Bayesians su
h as De Finetti,Ramsey, and Savage. The leading anti-Bayesian was Popper. As we haveseen, Shortli�e and Bu
hanan in 
onstru
ting their formal model adoptedan anti-Bayesian position. They were then immediately atta
ked by theBayesians, and it was the members of the subje
tive Bayesian s
hool, parti
-ularly Pearl, who su

eeded in developing the su

essful theory of Bayesiannetworks. Re
ently Pearl has introdu
ed some quali�
ations into his sup-port for Bayesianism. His 2001 paper is signi�
antly entitled: `Bayesianismand Causality, or Why I am only a Half-Bayesian', but at the very beginningof the paper he reveals that he had no su
h doubts about the 
orre
tnessof subje
tive Bayesianism when he introdu
ed the 
on
ept of Bayesian net-work. This is what he says (2001, p. 19):I turned Bayesian in 1971, as soon as I began reading Savage'smonograph The Foundations of Statisti
al Inferen
e [Savage,1962℄. The arguments were unassailable: (i) It is plain silly toignore what we know, (ii) It is natural and useful to 
ast whatwe know in the language of probabilities, and (iii) If our sub-je
tive probabilities are erroneous, their impa
t will get washedout in due time, as the number of observations in
reases.In other words, Pearl adopted a parti
ular philosophi
al position (sub-je
tive Bayesianism) and this a
ted as a heuristi
 guide to his mathemati
alwork.Pearl may also have been in
uen
ed by Rei
henba
h's philosophi
al viewson 
ausality, for, as we saw earlier, Rei
henba
h's notion of a 
ausal forkanti
ipates the 
on
ept of Bayesian network in a simple 
ase. However, thetextual eviden
e here is not de
isive. In his 1988, Pearl refers to Rei
hen-ba
h's 1949 book on probability, but this book did not 
ontain a dis
ussion
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ausal forks whi
h are introdu
ed by Rei
henba
h in his 1956. In his1988, Pearl refers to another philosophi
al work on 
ausality, namely Sup-pes 1970 monograph: A probabilisti
 theory of 
ausation. However, thiswork of Suppes does not mention Rei
henba
h's notion of 
ausal fork.I think this establishes beyond doubt that philosophi
al ideas were usedas a heuristi
 guide in the dis
overy of the mathemati
al theory of Bayesiannetworks. But is this an unusual and ex
eptional 
ase, or does philosophyquite often a
t as a heuristi
 in mathemati
al dis
overy? The idea thatphilosophy 
ould be a heuristi
 guide in the natural s
ien
es is in fa
t nowquite familiar. It was introdu
ed by Popper in 1934 as part of his 
ritiqueof the Vienna Cir
le. While the Vienna Cir
le held that metaphysi
s wasmeaningless, Popper argued that metaphysi
s was not only often meaningfulbut 
ould be helpful to s
ien
e. Popper 
ited the example of atomism whi
hbegan as a metaphysi
al theory and long remained one, but whi
h waseventually turned into a s
ienti�
 theory. Before Popper, Duhem had givenmany interesting examples of metaphysi
al ideas a
ting as heuristi
s for thedevelopment of s
ien
e. More details of the work of Duhem and Popper onmetaphysi
s in relation to the development of the natural s
ien
es is to befound in Gillies [1993, Chapter 9, Se
tions 1{3, pp. 189{201℄.Although the idea of philosophy a
ting as heuristi
 guide is familiar inthe 
ase of the natural s
ien
es, there has been surprisingly little dis
ussionof philosophy as a heuristi
 guide for mathemati
s. If we examine the his-tory of mathemati
s, however, we 
an �nd many examples of philosophi
alideas a
ting as heuristi
 guides to mathemati
al dis
overies, though, at thesame time, there are also many mathemati
al dis
overies in whi
h philoso-phy played no role. An obvious example of the in
uen
e of philosophy onmathemati
s is provided by the development of mathemati
al logi
. Frege'srevolution in the subje
t arose from his attempt to support the philosophi-
al view that arithmeti
 was redu
ible to logi
 (see Gillies [1992℄ for details).The mathemati
al theory of probability too was strongly in
uen
ed by phi-losophy at earlier periods. The mathemati
al work of Thomas Bayes wasdesigned to promote Bayesianism whi
h, in turn, was devised in order toanswer Hume's s
epti
al doubts about indu
tion, as I have argued in Gillies[1987℄. Another example from probability theory is provided by von Miseswho in his development of his frequen
y theory of probability gave a philo-sophi
al analysis and de�nition of randomness. This de�nition appearedto have some 
aws, and attempts to resolve this diÆ
ulty led to important
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al Dis
overy 103mathemati
al results by Wald and Chur
h. Details are to be found in Gillies[2000, pp. 105{9℄.These examples of the in
uen
e of philosophy on the development ofmathemati
s taken from the history of mathemati
al logi
 and mathemat-i
al probability are not dissimilar from Popper's leading example of thein
uen
e of metaphysi
al ideas on the development of the natural s
ien
es,namely: atomism. Before a pre
ise experimentally testable theory of atom-ism 
ould be developed it was ne
essary that atomism as a general view ofthe world should be elaborated in a less pre
ise, metaphysi
al fashion. Nowlogi
 and probability form an integral part of philosophy be
ause of their im-portan
e for epistemology. Some preliminary philosophi
al analysis of logi
and probability was surely ne
essary to provide a jumping o� point for amore pre
ise mathemati
al theory of these 
on
epts. This explains why inthese 
ases, philosophi
al ideas were able to a
t as a guide to mathemati
aldevelopment.Logi
 and probability, so I have argued, are part of the subje
t matterof both philosophy and mathemati
s. The same is true of the 
on
eptof in�nity. This is the subje
t of philosophi
al disquisitions as well as ofCantor's theory of the trans�nite. Indeed Cantor in developing his theory ofthe trans�nite, made an intensive study of philosophi
al and also theologi
alideas about the in�nite. Details of this are to be found in Dauben's 1979 lifeof Cantor, whi
h is signi�
antly entitled: Georg Cantor. His Mathemati
sand Philosophy of the In�nite.As my �nal example of philosophi
al ideas as a heuristi
 for mathemati
aldis
overy, I want to 
onsider a 
ase whi
h is rather di�erent from those oflogi
, probability, and the in�nite. This is Riemann's dis
overy of non-Eu
lidean geometry. I have argued that logi
, probability and in�nity areall subje
ts of both philosophy and mathemati
s and that a preliminaryqualitative philosophi
al analysis of these notions was needed before morepre
ise mathemati
al theories 
ould be developed. Geometry, however, isnot per se part of philosophy. However, sin
e the time of Plato, geometryhas been of great signi�
an
e for Western philosophy as a prime exampleof ex
ellent, indeed 
ertain, knowledge, and therefore as a most importantexample for epistemology. In a famous passage from his 5th Meditation,Des
artes says [1641, p. 181℄:. . . I 
learly see that existen
e 
an no more be separated fromthe essen
e of God than 
an its having its three angles equal to
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e of a [re
tilinear℄triangle, . . .Now the proposition that the three angles of a re
tilinear triangle areequal to two right angles is equivalent to Eu
lid's 5th postulate. So Des
artesis 
laiming that the truth of Eu
lidean geometry is as 
ertain as the exis-ten
e of God. Of 
ourse by this he means that the truth of Eu
lidean geom-etry is 
ompletely 
ertain. Later on Kant 
laimed that Eu
lidean geometrywas syntheti
 a priori, implying that its truth was known with 
ertaintyindependently of experien
e.These well-known philosophi
al do
trines aÆrming the 
ertain truth ofEu
lidean geometry 
ertainly 
onstituted an obsta
le to the dis
overy ofnon-Eu
lidean geometry. Riemann presented his new ideas on non-Eu
lideangeometry in his famous le
ture: `�Uber die Hypothesen, wel
he der Geome-trie zu Grunde liegen' (On the Hypotheses whi
h lie at the Foundationsof Geometry) delivered as a qualifying le
ture (Habilitationsvorlesung) forthe title of Privatdozent to the fa
ulty at G�ottingen on 10 June 1854. Rie-mann regarded it as ne
essary to begin his le
ture with some philosophi
alanalysis. This in e�e
t 
onstitutes an empiri
ist a

ount of geometry whi
h
riti
izes impli
itly the Kantian view of Eu
lidean geometry as syntheti
 apriori. Riemann says that he has made use of some philosophi
al investiga-tions of Herbart, an empiri
ist philosopher, and he remarks rather modestly[1854, p. 412℄:. . . I think myself the more entitled to ask 
onsiderate judgmentinasmu
h as I have had little pra
tise in su
h matters of a philo-sophi
al nature, where the diÆ
ulty lies more in the 
on
eptsthan in the 
onstru
tion . . .In fa
t Riemann had studied theology before turning to mathemati
s andwas by no means unfamiliar with philosophy. Here is a passage from hispreliminary philosophi
al dis
ussion [1854, p. 412℄:. . . the propositions of geometry are not derivable from general
on
epts of quantity . . . those properties by whi
h spa
e is distin-guished from other 
on
eivable triply extended magnitudes 
anbe gathered only from experien
e. There arises from this theproblem of sear
hing out the simplest fa
ts by whi
h the metri
relations of spa
e 
an be determined, a problem whi
h in nature
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al Dis
overy 105of things is not quite de�nite; for several systems of simple fa
ts
an be stated whi
h would suÆ
e for determining the metri
relations of spa
e; the most important for present purposes isthat laid down for foundations by Eu
lid. These fa
ts are, likeall fa
ts, not ne
essary but of a merely empiri
al 
ertainty; theyare hypotheses; one may therefore inquire into their probabil-ity, whi
h is truly very great within the bounds of observation,and thereafter de
ide 
on
erning the admissibility of protra
t-ing them outside the limits of observation, not only toward theimmeasurably large, but also toward the immeasurably small.The title of Riemann's le
ture is itself an impli
it 
riti
ism of Kant, sin
eRiemann's point is that hypotheses (whi
h may be empiri
ally 
on�rmed ordis
on�rmed) and not a priori truths lie at the foundation of geometry. Thispoint is made more expli
it in the passage just quoted, sin
e Riemann 
laimsthat Eu
lidean assumptions are `not ne
essary but of a merely empiri
al
ertainty', and that sin
e `they are hypotheses', `one may therefore inquireinto their probability'. Riemann regards this probability as very high forwhat falls within the bounds of observation, but still regards it as possiblethat Eu
lidean assumptions might break down `toward the immeasurablylarge' or `toward the immeasurably small'.More details about Riemann's dis
overy of non-Eu
lidean geometry andhis empiri
ism in the philosophy of geometry are to be found in Gillies,[1999, pp. 174{78℄. For the purpose of the present paper, however, we
an observe that Riemann's empiri
ist philosophy of geometry, whi
h hedeveloped with the help of Herbart's writings, played a very importantrole in his dis
overy of non-Eu
lidean geometry. It formed the basis ofhis 
riti
ism of the do
trine of Kant and other philosophers who held thatEu
lidean geometry was known with 
ertainty a priori, and so opened up theway to introdu
e new forms of geometry whi
h 
ontradi
ted the Eu
lideanaxioms.In the present se
tion I have given quite a number of examples of mathe-mati
al dis
overies where philosophi
al ideas played an important heuristi
role. However it should be stressed in 
on
lusion that this is not a generallaw of mathemati
al development and there have been many mathemati
aldis
overies in whi
h philosophy played little or not part. An obvious exam-ple of su
h a dis
overy is the dis
overy of the 
on
ept of group in algebra.This arose from mathemati
al resear
h into the problem of �nding solutions
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als. Lagrange found a 
onne
tionbetween this problem and permutations of the roots of the equation, and
olle
tions of su
h permutations 
onstituted the �rst examples of the later
on
ept of abstra
t group. Here we have a dis
overy emerging from internalmathemati
al investigations whi
h did not have a 
onne
tion with externalphilosophi
al questions.4 Heuristi
s Involved: (b) New Pra
ti
al ProblemsThe study of new pra
ti
al problems often leads to mathemati
al dis
over-ies. The dis
overy of Bayesian networks is a perfe
t example of this. As wehave seen the dis
overy arose out of the problem of implementing expertsystems for medi
ine, geologi
al exploration and other areas. These expertsystems involved handling un
ertainty in a way whi
h was rather di�er-ent from previous appli
ations of the probability 
al
ulus. The solution ofthis problem involved the development of new te
hniques involving a newmathemati
al 
on
ept.On
e again the pattern here exhibited in the dis
overy of Bayesian net-works is to be found in many other dis
overies in the history of mathemati
s.The mathemati
al theory of probability itself originated from the problemof 
al
ulating fair odds in gambling games. This was a very pra
ti
al prob-lem at the time, sin
e gambling houses of that period o�ered odds whi
hwere empiri
ally based. A mathemati
ian who 
ould 
al
ulate the 
orre
todds stood a good 
han
e of making money. New pra
ti
al problems aboutthe kinemati
s and me
hani
s of moving bodies su
h as 
annonballs, planetsor 
omets stimulated the development of 
al
ulus in the 17th 
entury. Inthe previous se
tion we saw how a philosophi
al resear
h programme (theattempt to establish logi
ism in the philosophy of mathemati
s) led to thedevelopment of mathemati
al logi
. However mathemati
al logi
, though itoriginated in philosophy, was to �nd pra
ti
al appli
ations in the �eld of
omputer s
ien
e. The new pra
ti
al appli
ations led to developments inmathemati
al logi
 itself, and, in parti
ular, to the dis
overy of a quite newtype of logi
 | non-monotoni
 logi
. Some details about the dis
overy ofnon-monotoni
 logi
 are to be found in Gillies, [1996, pp. 72{75℄.Although the investigation of new pra
ti
al appli
ations often leads tothe dis
overy of new mathemati
al 
on
epts, sometimes this is not the 
asebe
ause the existing body of mathemati
s is suÆ
ient for handling the newappli
ation. An example of this is provided by S
hr�odinger's work in quan-
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overy 107tum me
hani
s. S
hr�odinger's equation was a very important dis
overy inphysi
s, but the equation turned out to be of a type whi
h was familiarto mathemati
ians, and whi
h 
ould be solved by existing te
hniques. So,although S
hr�odinger was investigating some very new, indeed one mightalmost say, weirdly new phenomena, he was not led to formulating any newmathemati
al 
on
epts.Let me 
on
lude this se
tion by 
omparing the heuristi
 of using philo-sophi
al ideas with that of studying new pra
ti
al problems. At �rst sightthey seem to be quite distin
t and rather opposed approa
hes. Philosophy,one might think, may be suitable for the abstra
t pure mathemati
ian likeCantor who is far removed from any pra
ti
al problem in the real world.Su
h a person would, it might be thought, be very di�erent from the downto earth resear
her working on pra
ti
al problems. Of 
ourse this point ofview is 
orre
t in Cantor's 
ase, but one �nds in many other 
ases, in
ludingour prin
ipal example of the dis
overy of Bayesian networks, that the studyof pra
ti
al problems and philosophi
al 
onsiderations, far from being op-posed, a
tually go hand in hand. The reason for this is that philosophy neednot be remote from the real world, but 
an be 
losely related to pra
ti
ala
tion, and, 
onversely, it may often be diÆ
ult to a
t in pra
ti
e withoutsome philosophi
al orientation.5 Heuristi
s Involved: (
) Domain Intera
tionThe third heuristi
 whi
h I will 
onsider is what I will 
all: domain in-tera
tion. This o

urs when two separate domains are brought togetherand partially uni�ed. This pro
ess 
an often result in new dis
overies andthe growth of knowledge. Domain intera
tion has been studied by EmilyGrosholz, who has emphasized its role in the development of mathemati
s.In this se
tion, therefore, I will reverse the order used in the two pre
edingse
tions. I will �rst give a general a

ount of Grosholz's ideas on domainintera
tion, in
luding examples of where it has led to mathemati
al dis
ov-ery. I will then show that domain intera
tion was an important heuristi
prin
iple involved in the dis
overy of Bayesian networks. In fa
t the exam-ple of Bayesian networks provides a striking vindi
ation of Grosholz's ideason this subje
t.In a series of publi
ations [1981; 1985; 1991; 1992℄, Grosholz has studieda number of 
ases in whi
h knowledge (parti
ularly mathemati
al knowl-edge) has advan
ed through the intera
tion of separate domains. In 1981,
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onsiders Logi
 and Arithmeti
, in 1985 Logi
 and Topology, while inher 1992 she argues that Leibniz invented and developed the 
al
ulus bybringing together geometry, algebra, number theory, and me
hani
s. Her1991 book shows that to a remarkable extent all Des
artes' intelle
tual work
an be seen as bringing together di�erent domains. As she says [1991, pp.2{3℄: . . . Cartesian domains . . . 
an be understood as a novel amalga-mation of formerly distin
t or at least very in
ompletely uni-�ed domains: the Geometry brings together geometry and alge-bra, the Prin
iples geometry and physi
s, the Treatise of Manphysi
s and medi
al physiology, and the Meditations me
hani
alphilosophy and s
holasti
 theology.This is an interesting passage sin
e it shows that the heuristi
 of domainintera
tion is not limited to mathemati
s, but applies to other subje
ts aswell. However the passage also gives one of the most famous examples ofdomain intera
tion in mathemati
s, namely the bringing together of geom-etry and algebra to 
reate analyti
 geometry. Although Grosholz approvesof Des
artes's method of bringing together separate domains, she nonethe-less 
riti
izes the way in whi
h he 
arries out this pro
ess. In her view theintera
tion of di�erent domains is most fruitful, if, while intera
ting, theynonetheless retain some degree of autonomy. An attempt to redu
e one do-main to the other will generally inhibit fruitful developments. As she says[1991, p. 3℄:. . . the uni�
ation of domains 
ontributes to the growth of knowl-edge when and be
ause it exploits partially shared stru
ture be-tween domains that none the less retain their autonomy anddistin
tness. Revelation is impaired when domains are heldtoo far apart, or assimilated too 
losely. But Des
artes's wayof 
onstru
ting knowledge 
an produ
e both these unfortunateout
omes . . .A

ording to Grosholz, Leibniz was more su

essful that Des
artes inhandling domain intera
tion (see [Grosholz, 1992℄).Another important 
on
ept whi
h Grosholz uses in this 
onne
tion is the
on
ept of hybrid. As she says [2000, p. 82℄;
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overy 109Moreover, my examination of the growth of mathemati
al knowl-edge sheds important light on mathemati
al hybrids, obje
tswhi
h exist in the overlap of domains and provoke dis
overy inunexpe
ted ways.An important feature of su
h hybrids is that they exhibit a kind of in-stability or in
onsisten
y. As Grosholz says [2000, p. 88℄:. . . the two domains as it were overlap, or are superimposed. Atthis overlap, obje
ts are 
onstituted whi
h must simultaneouslyexhibit features of both domains; if the domains are truly het-erogeneous, one must expe
t a kind of submerged heterogeneityin these obje
ts. And in fa
t su
h hybrids often exhibit an in-stability or in
onsisten
y that is however held in pla
e or madetra
table by the rational relatedness provided by the abstra
tstru
ture that holds the domains together.This instability or in
onsisten
y is not seen by Grosholz as a defe
t, butrather as a potential stimulus to further growth and development.Let me now show that these ideas apply very well to the example ofBayesian networks. In fa
t, Bayesian networks involved two instan
es ofdomain intera
tion. To begin with, Bayesian networks put together thedomains of probability theory and graph theory whi
h had previously beenlargely separate. Se
ondly, however, Bayesian networks put together thedomains of probability theory and 
ausality. In fa
t there had earlier beenthe beginning of an attempt in the philosophy of s
ien
e 
ommunity to
onne
t these domains. Suppes [1970℄ A probabilisti
 theory of 
ausation isa leading example of this trend. However the development of the 
on
eptof Bayesian network was a notable advan
e in linking the two domains. Ina Bayesian network, an arrow joining two nodes A and B usually indi
atesthat there is a 
ausal 
onne
tion between A and B. Furthermore ea
h nodein a Bayesian network has a 
onditional probability distribution asso
iatedwith it. Thus 
ausality and probability are brought together.However this hybrid of 
ausality and probability is by no means unprob-lemati
. Pearl originally hoped that the 
ausal 
onne
tions between thenodes of a network would justify adopting the generalised Markov 
ondi-tion for the probability distributions. However it emerged that there 
an begenuine 
ausal graphs for whi
h the generalised Markov 
ondition does not
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ausality and probability in a Bayesian network turn out tobe highly problemati
. Bayesian networks thus �t very well the des
riptionswhi
h Grosholz gives of other mathemati
al hybrids. As she says [2000, p.88℄: ` . . . one must expe
t a kind of submerged heterogeneity in these ob-je
ts. And in fa
t su
h hybrids often exhibit an instability or in
onsisten
y. . . '6 Heuristi
s of Mathemati
al Dis
overy versus Logi
of Mathemati
al Dis
overyHaving given my example of a re
ent mathemati
al dis
overy and attemptedto analyse the heuristi
s whi
h were involved, I now want to raise the generalquestion of whether su
h heuristi
s 
onstitute a kind of generalised logi
so that one 
ould speak of a logi
 of mathemati
al dis
overy, or whetherheuristi
 prin
iples are not logi
al in 
hara
ter. This question is by nomeans an easy one. The 
ore of logi
 is obviously standard dedu
tive logi
.However, it has often been suggested that logi
 
ould be extended to in
ludenot just dedu
tive inferen
es but ampliative inferen
es of various kinds.For example, many philosophers of s
ien
e have supported the idea of anindu
tive logi
. Might heuristi
 prin
iples 
onstitute an extension of logi
of whi
h indu
tive logi
 is just a part?I will begin my examination of this problem by 
onsidering an interestingrelated dis
ussion by Ladislav Kvasz in his 2002. Kvasz here deals not withthe relation between heuristi
s and logi
, but with the obviously 
losely
onne
ted question of the relation between diale
ti
s and logi
. Kvasz inhis paper 
riti
izes diale
ti
ians, but under that heading he in
ludes notjust the paradigm diale
ti
ians (Hegel and the Marxists), but also Popperand Lakatos whom he regards as also diale
ti
ians, notwithstanding theirstriking disagreements with Hegel and the Marxists. What is 
ommon to allthese thinkers a

ording to Kvasz is that they regard diale
ti
s as a bran
hof logi
. As Kvasz himself says [2002, p. 211℄:Usually, the diale
ti
ians believe that the pattern of the develop-ment of knowledge is of a logi
al nature (Hegel's idea of diale
ti-
al logi
, Popper's logi
 of s
ienti�
 dis
overy, or Lakatos' logi
of mathemati
al dis
overy), whi
h 
reates a tension between thedevelopment of knowledge and formal logi
.
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al Dis
overy 111This `
onfusion of diale
ti
 with logi
' [Kvasz, 2002, p. 211℄ is responsi-ble, a

ording to Kvasz, for grave failings in Hegel on the one hand and inPopper and Lakatos on the other. However, these failings are di�erent in thetwo 
ases. The problem with Hegel and the Hegelians is that they regardtheir diale
ti
al logi
 as being in 
ompetition with and superior to ordinarydedu
tive logi
. Hegelians therefore reje
t ordinary dedu
tive logi
 whi
hKvasz thinks is a mistake. Popper and Lakatos did not give up ordinarydedu
tive logi
, but their attempt to re
on
ile it with the development ofknowledge led to them 
on�ning their analyses to 
ases in whi
h the 
on-
eptual 
hanges in the growth of knowledge are relatively small. This ishow Kvasz puts this argument [2002, p. 229℄:Both solutions to the diale
ti
ian's 
on
i
t between logi
 andevolution of knowledge are unsatisfa
tory. Philosophers whofollow Hegel, in the attempt to repla
e 
lassi
al logi
 by somenew diale
ti
al one, were unable to o�er anything 
omparable tothe su

essive formal logi
, and thus their resear
h programmedegenerated. On the other hand, diale
ti
ians like Popper orLakatos, who were not prepared to sa
ri�
e logi
, and thoughtthat logi
al 
onsisten
y is 
ru
ial to rational dis
ourse, werefor
ed to give up evolution. The fa
t that Lakatos was un-able to re
onstru
t any deeper 
on
eptual 
hange in history ofmathemati
s or physi
s is not a

idental. As a diale
ti
ian, he
on
eived evolution to be in 
on
i
t with logi
, but as Popper'sdis
iple he was not prepared to give up logi
. Thus he omittedsome of the most interesting moments in the history of mathe-mati
s. If he had tried to re
onstru
t them, he would have beenfor
ed to violate logi
. Therefore he re
onstru
ted only those
hanges, in whi
h relatively small 
on
eptual 
hanges o

ur. . . .The one extreme is diale
ti
al logi
 (of Hegel and Marxism),whi
h for the sake of evolution sa
ri�
es logi
. The other ex-treme is logi
al diale
ti
 (of Popper or Lakatos), whi
h for thesake of logi
 sa
ri�
es evolution.Kvasz argues for this general position by giving an analysis of some
hanges in the development of mathemati
s whi
h he regards as being toolarge to be 
ompatible with formal logi
. These 
hanges all involve a 
hangein the form of the language used. Following Wittgenstein in the Tra
tatus,



112 Donald GilliesKavasz regards any language (L say) as having a form whi
h is not express-ible in the language. We 
an however in
orporate the form of the languageL into L thereby 
reating a new language L0 say. A simple example of thispro
ess o

urred in the transition between the language of perspe
tive usedby Renaissan
e painters and the language of proje
tive geometry 
reatedby Desargues. As Kvasz says [2002, p. 221℄:. . . the 
entre of proje
tion represents, in an abstra
t form, theeye of the painter from D�urer's drawing. For Desargues, . . . , thepoint of view is expli
itly in
orporated into language.In fa
t Kvasz analyses a whole series of examples of 
hanges in mathe-mati
s whi
h follow this pattern in his papers [1998℄ and [2000℄.We 
an now see 
learly why formal logi
 is inadequate to deal with su
h
hanges. Any system of formal logi
 presupposes a language L in whi
h itis formulated, and this language is held 
onstant when the dedu
tions arebeing made. If therefore we make a fundamental 
hange in the 
hara
ter ofthe language, altering it from L to L0, this 
hange 
annot be 
aptured usingformal logi
. On the other hand we 
an apply formal logi
 without anyproblems either within L or within L0 so that there is no need to abandonformal logi
 altogether as the Hegelians deem to be ne
essary. Formal logi
has only to be given up temporarily in the 
ourse of a large 
hange involvinga 
onsiderable alteration in the form of the language used. This then is abrief summary of Kvasz's position. Let us now see if we 
an apply it to ourproblem about heuristi
s and logi
.It is 
lear that the dis
overy of Bayesian networks involved the 
reationof a new language formed through the synthesis of the languages of earlierprobability theory and graph theory. The language of Bayesian networkswith its network diagrams has an i
oni
 
hara
ter whi
h is not to be foundin earlier probability theory. As this is a major 
hange in language, thenwe 
an use Kvasz's argument to 
on
lude that the dis
overy of Bayesiannetworks is a transition whi
h 
annot be expli
ated logi
ally so that theheuristi
s involved are not logi
al in 
hara
ter. Indeed we 
an generaliseto say that many appli
ations of the domain intera
tion heuristi
 take usoutside logi
. Cartesian geometry, for example, has its own spe
i�
 languagewhi
h di�ers both from the language of 
lassi
al Eu
lidean geometry andfrom that of algebra unrelated to geometry. Similarly 
al
ulus introdu
ednew symbolisms su
h as dy/dx or �y whi
h made the language of 
al
ulusradi
ally di�erent from pre
eding mathemati
al languages.
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overy 113Changes of this magnitude 
annot, a

ording to Kvasz's argument, beexpli
ated using logi
. However, Kvasz's analysis also indi
ates that some
hanges might be logi
ally expli
ated. These would be smaller 
hanges. Anexample might be the dis
overy of the proof of a mathemati
al 
onje
turewhere both the 
onje
ture and the subsequent proof are formulated withina well-de�ned mathemati
al system, whi
h is not 
hanged in the pro
ess ofdis
overy. There is no reason why the heuristi
s of dis
overies of this sortmight not be expli
ated in a way that 
ould be des
ribed as logi
al.These 
on
lusions are supported by another approa
h to the problem.This approa
h relies on the 
onne
tion between logi
 and me
hanisation.If mathemati
al proofs are translated into formal logi
 then the validityof ea
h step 
an be 
he
ked me
hani
ally by means of a 
omputer. Thedis
overy of the proof, however, 
an be left entirely in the hands of humanmathemati
ians. The development of automated theorem proving, and ofnon-monotoni
 logi
 programming languages su
h as PROLOG has 
arriedthe me
hanisation pro
ess one stage further by me
hanising the 
onstru
tionof proofs. In this respe
t, then, it goes beyond Fregean formal logi
.I have suggested (in [Gillies, 1996, p. 85℄) a way of 
hara
terising thisnew kind of logi
 whi
h has been introdu
ed by investigations into arti�
ialintelligen
e. The formula proposed isLogi
 = Inferen
e + ControlWhen we employ Logi
, we start with a set of assumptions from whi
h wewant to derive some 
on
lusions. To 
arry out these derivations we needa set of rules of inferen
e (the Inferen
e 
omponent). If the derivation is
arried out by a trained mathemati
ian, then he or she will rely on intuitionto de
ide whi
h rule of inferen
e to use at a parti
ular stage in order to 
arryout the derivation. If, however, we are trying to program a 
omputer to
arry out the derivation, then we will have to give the 
omputer guidan
e asto whi
h assumptions to 
hoose and whi
h rules of inferen
e to apply. Thisguidan
e 
onstitutes the Control 
omponent. Thus the Control 
omponentmight spe
ify at ea
h stage of the derivation, whi
h of the assumptionsshould be employed, and whi
h of the rules of inferen
e should be appliedto these assumptions or to previously obtained results. More generally,the Control 
omponent would be designed to help in the 
onstru
tion of aderivation or proof of a 
on
lusion.



114 Donald GilliesI further suggested (in [Gillies, 1996, Ch. 5, pp. 98{112℄) that thisformula enables one to defend the possibility of an indu
tive logi
. Thedevelopment of ma
hine learning has lead to the formulation of indu
tiverules of inferen
e, while 
on�rmation theory 
onstitutes the 
ontrol 
ompo-nent. In the 
ase of automated theorem proving, the heuristi
s used 
ouldbe formulated as part of the 
ontrol 
omponent, and 
ould then, using theformula above, be 
onsidered part of a logi
 of mathemati
al dis
overy.This 
riterion suggests therefore that a heuristi
 
an be 
onsidered a logi-
al prin
iple if it 
an be formulated with pre
ision and in
orporated into asu

essful 
omputer system for automated theorem proving. This 
riterionimplies the Kvasz 
riterion sin
e, at least as things stands at present, anyautomated theorem proving system has to operate within a �xed formallanguage spe
i�ed at the beginning.The kind of heuristi
s whi
h I have 
onsidered in this paper (use of philo-sophi
al ideas, 
onsideration of new pra
ti
al problems, and domain inter-a
tion) are to vague in 
hara
ter to be suitable for pre
ise formulation andimplementation in programs for automated theorem proving. I would there-fore argue that they are not logi
al in 
hara
ter.A 
riti
 might say at this point that heuristi
s whi
h are not pre
iseenough to be
ome part of logi
 are unlikely to provide mu
h useful guid-an
e. However su
h a 
omment would be unfair. The somewhat vague non-logi
al heuristi
s 
onsidered in this paper are 
ertainly not pre
ise enoughto guide a 
omputer in the exe
ution of a program. However they are pre-
ise enough to suggest strategies for a human mathemati
ian 
arrying outmathemati
al resear
h. Moreover the kind of strategies suggested by thethree heuristi
s given are rather di�erent from those 
ommonly adopted byhuman mathemati
al resear
hers. It is all too 
ommon for resear
h math-emati
ians to be
ome ex
lusively absorbed in their own small �eld and todevote themselves to reading only the literature of that spe
ialty. The ana-lysis given of the dis
overy of Bayesian networks suggests a quite di�erentsort of resear
h strategy, one whi
h would involve a broader more inter-dis
iplinary approa
h, with the study of some philosophy, an interest inareas whi
h might require new te
hniques for su

essful pra
ti
al appli
a-tions, and a knowledge of several bran
hes of mathemati
s whi
h 
ould bebrought together for `domain intera
tion'. The example even suggests somemore spe
i�
 re
ommendations. Mathemati
ians preparing for resear
h inthe area of probability and statisti
s would normally take a master's degree
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overy 115in this spe
iality. The dis
overy of Bayesian networks suggests that it mightbe worth in
luding a 
ourse on the philosophi
al and foundational aspe
ts ofprobability and statisti
s as part of the preparation of the future resear
her.Yet this is rarely if ever done. In e�e
t the heuristi
s 
onsidered in this pa-per, though not pre
ise enough to guide a 
omputer, do de�nitely suggeststrategies for humans who want to 
arry out resear
h in mathemati
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