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1 Introduction

I will begin this paper by discussing some ideas to be found in two re-
cent books on the philosophy of mathematics. These are (i) Carlo Cel-
lucci’s Filosofia e matematica, published by Laterza in 2002, and (ii) David
Corfield’s Towards a Philosophy of Real Mathematics, published by Oxford
University Press in 2003. I will start with Cellucci’s book.

In his book, Cellucci is highly critical of the traditional or foundational
approach to the philosophy of mathematics, based on the attempt to justify
mathematics. Instead he advocates what he calls the heuristic approach to
the philosophy of mathematics. As he says (2002, p. viii):

According to the dominant point of view the principal problem
in the philosophy of mathematics is that of the justification of
mathematics. ...In this book I maintain instead that the princi-
pal problem of reflection on mathematics is that of mathematical
discovery. This problem includes the problem of justification ...

I partly agree and partly disagree with this. It is certainly true that tra-
ditional philosophy of mathematics focussed exclusively on the problem of
the justification of mathematics and neglected the problem of mathematical
discovery. So I definitely think that philosophers of mathematics should now
take up the problem of mathematical discovery and that interesting results
are to be expected from investigating it. On the other hand, I do not think
that the problem of discovery includes that of justification. So I hold that
the problem of justification should remain on the agenda of philosophers of
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mathematics, as a problem partly related to, but partly separate from that
of discovery. For the purpose of this paper, however, I want to emphasize
my agreement with Cellucci and to adopt his heuristic approach.

Now the obvious objection to the claim that philosophers should study
the problem of mathematical discovery is that discoveries in mathematics
depend on psychological factors such as insights of genius, the subjective
intuitions of creative mathematicians and so on; and that, consequently,
mathematical discovery cannot be given a systematic philosophical treat-
ment. Cellucci strongly challenges this point of view in the following passage
[2002, p. xvii]:

According to the dominant point of view mathematical discovery
is an irrational process, which is not based on logic but rather on
intuition. ...In this book I maintain instead that mathematics
is a rational activity at every moment, including the most impor-
tant, discovery. Since antiquity many have recognised not only
that mathematical discovery is a rational process, but also that a
method exists for it, namely the analytic method. This method
gave a great heuristic power to the ancient mathematicians for
the solution of geometrical problems, and has had a decisive role
in the new developments of mathematics and physics at the be-
ginning of the modern era. In it logic plays an essential role in
the discovery of hypotheses, though this is not logic understood
in the restricted fashion ... but in a wider fashion which includes
also and above all non-deductive inferences.

Cellucci does not merely advocate a heuristic approach to the philosophy
of mathematics, but actually makes a start with developing it, particularly
in Chapters 30 to 38 of his book. Here he lists and illustrates quite a number
of principles which he regards as fruitful for mathematical discovery. This
investigation of Cellucci’s does indeed call into question the claim that math-
ematical discovery is exclusively a matter of subjective intuitions and the
like. There is however a point which can be regarded as doubtful. Cellucci
makes clear in the passage just quoted that he believes that the principles
underlying mathematical discovery are logical in character, so that there
is, in effect, a logic of mathematical discovery. However, another point of
view would be that there are indeed principles underlying mathematical
discovery but that these principles are heuristics, or guides to discovery,
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which are not logical in character. It is not an easy matter to decide be-
tween these two points of view, since it is not clear what we should regard
as constituting logic. If there is to be a logic of mathematical discovery,
then logic will certainly, as Cellucci stresses, have to extended to include
non-deductive inferences. Yet how far can we extend logic beyond its core
of deductive inferences while still retaining something that is recognisably
logic? Is there an inductive logic for example? And if so, what is its char-
acter? More generally what are the boundaries of logic? In the last section
of this paper (Section 6) I will come back to this question and discuss some
of the interesting ideas of Ladislav Kvasz on this subject. However for the
moment, [ will take the goal to be that of elucidating some of the heuristic
principles involved in mathematical discovery, and leave aside the question
of whether these principles should be regarded as logical in character.

Let me now turn to Corfield’s new book. This contains a mass of interest-
ing material ranging from automated theorem proving, through Bayesian-
ism applied to mathematics, to a consideration of groupoids and higher-
dimensional algebra. However, for the purposes of this present paper, I want
to consider only one general methodological point which Corfield makes to-
wards the beginning of his book. He points out that the mathematics con-
sidered by philosophers of mathematics tends to be almost exclusively the
foundational mathematics of the period 1880-1930, and that, in particular,
the mathematics of the last 70 years is largely ignored except perhaps, in
some cases, for a consideration of further developments of foundationalist
mathematics. As Corfield himself says [2003, p. 5]:

By far the larger part of activity in what goes by the name philos-
ophy of mathematics is dead to what mathematicians think and
have thought, aside from an unbalanced interest in the ‘founda-
tional’ ideas of the 1880-1930 period, ...

Corfield calls this attitude ‘the foundationalist filter’. This filter removes
from the attention of philosophers of mathematics any mathematics which
is not foundationalist. Corfield thinks that philosophers of mathematics
should remove this filter and consider mathematics which is not founda-
tionalist. This could be some of the mathematics of the past, but Corfield
recommends very strongly that philosophers of mathematics should take an
interest in the non-foundationalist mathematics of the last seventy years
which he thinks that they have hitherto largely ignored. As he says [2003,

pp. 7-8]:
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Straight away, from simple inductive considerations, it should
strike us as implausible that mathematicians dealing with num-
ber, function and space have produced nothing of philosophical
significance in the past seventy years in view of their record over
the previous three centuries.

Corfield attempts in his book to redress the balance by considering from
the philosophical point of view many developments in mathematics during
the last seventy years.

That concludes my discussion of some of the ideas in the new books by
Cellucci and Corfield. I will now explain how they have led to the plan
for the present paper. Essentially I have taken from Cellucci the idea of
studying the heuristics of mathematical discovery, and I will try to add to
his treatment by considering an example of mathematical discovery differ-
ent from the ones which he considers. Following the recommendations of
Corfield, I have taken this example form the field of non-foundational math-
ematics in the last seventy years. The example in fact comes from my own
favourite branch of mathematics: probability theory. Probability theory is
usually considered by philosophers of science rather than philosophers of
mathematics, and there are obvious reasons for this. Probability is closely
connected to induction whose analysis, or in some cases denial, is a central
issue in philosophy of science. Probabilities also appear in many scientific
theories, notably quantum mechanics. But despite its interest for philoso-
phers of science, probability theory is after all a branch of mathematics and
an important one. So there may be some value in considering some of the
general problems of the philosophy of mathematics in relation to probability
theory.

Since I started studying probability theory in the 1960s, the most im-
portant development in the field has been, in my opinion, the discovery
of Bayesian networks, which took place in the 1980s — fortunately well
within the Corfield limit of seventy years. Many mathematical discoveries
are of proofs of theorems, but some discoveries are of new mathematical
concepts which give rise to new theories involving many theorems and hav-
ing many uses in different areas. The most famous discovery of this type is
perhaps the discovery of the group concept. The discovery of the concept
of Bayesian network has this character. It has resulted in the development
of an entirely new branch of probability theory which is now expounded in
textbooks like Neapolitan 1990. None of the contents of Neapolitan 1990
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would have appeared in a textbook of probability theory written before the
1980s. We have something here that is really new and that has also been
applied with great success in a wide variety of different areas. We are thus
dealing with a discovery of considerable importance and an analysis of the
heuristics which led to this discovery may be not without some interest. In
the next Section 2, I will give a brief historical account of how the discovery
of Bayesian networks was made. This should also serve as an introduction
to the concept for those who have not met it as yet. Then in Sections 3,4
and 5, I will state and analyse three heuristics which seem to me to have
been involved in the discovery.

2 The Development of Artificial Intelligence and the
Discovery of Bayesian Networks

One route which led to the discovery of Bayesian networks began with in-
vestigations into artificial intelligence (AI). This is the route which I will
describe in what follows. The full story however is more complicated. There
was another largely independent route which began with investigations into
decision theory and which led to concepts not dissimilar from Bayesian
networks. Another strand in the story is constituted by attempts to find
economical ways of storing probability distributions in computers. The de-
velopments which I will describe, however, were largely self-contained and
are suitable for analysis from the point of view of the heuristics involved. I
will therefore leave the full account as the task for a more detailed history.
Research in AT began in the 1950s and many important ideas were de-
veloped by the pioneers. Then in the 1970s a breakthrough was produced
by the creation of expert systems. The lead here was taken by the Stan-
ford heuristic programming group, particularly Buchanan, Feigenbaum, and
Shortliffe. What they discovered was that the key to success was to extract
from an expert the knowledge he or she used to carry out a specialised task,
and then code this knowledge into the computer. In this way they were
able to produce ‘expert systems’ which performed specific tasks at the level
of human experts. One of the most important of these early expert sys-
tems (MYCIN) was concerned with the diagnosis of blood infections. This
system will now be briefly described, and it will then be shown that its
implementation led to the problem of how to handle uncertainty in Al
MYCIN was developed in the 1970s by Edward Shortliffe and his col-
leagues in collaboration with the infectious diseases group at the Stanford
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medical school. The medical knowledge in the area was codified into rules of
the form: IF such and such is observed, THEN likely conclusion is such and
such. MYCIN’s knowledge base comprised over 400 such rules which were
obtained from medical experts. An example of such a rule will be given in a
moment, but first it would be as well to present some evidence of MY CIN’s
success.

To test MYCIN’s effectiveness a comparison was made in 1979 of its per-
formance with that of nine human doctors. The program’s final conclusions
on ten real cases were compared with those of the human doctors, including
the actual therapy administered. Eight other experts were then asked to
rate the ten therapy recommendations and award a mark, without knowing
which, if any, came from a computer. They were requested to give 1 for a
therapy which they regarded as acceptable and 0 for an unacceptable ther-
apy. Since there were eight experts and ten cases, the maximum possible
mark was 80. The results were as follows [Jackson, 1986, p. 106]:

MYCIN 52 Actual therapy 46
Faculty-1 50 Faculty-4 44
Faculty-2 48 Resident 36
Inf dis fellow 48 Faculty-5 34
Faculty-3 46 Student 24

So MYCIN came first in the exam, though the difference between it and
the top human experts was not significant.

Let us now examine one of MYCIN’s rules. The following rule is given
by Shortliffe and Buchanan [1975, p. 357]:

If: (1) the stain of the organism is gram positive (S;), and
(2) the morphology of the organism is coccus (S3), and
(3) the growth conformation of the organism is chains (S3)

Then: there is suggestive evidence (0.7) that the identity of the
organism is streptococcus (Hy)

In symbols this could be written: If Sy & S2 & S3, then there is sug-
gestive evidence p that H;, where p = 0.7. Here S;,S>2,S3 are the ob-
servations/symptoms, which support hypothesis H; to a particular degree.
These rules were obtained from the medical experts. The numbers they
contain such as 0.7 were also obtained from the experts. The expert was in
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fact asked: “On a scale of 1 to 10, how much certainty do you affix to this
conclusion?” The answer was then divided by 10.

At first sight it looks as if the figure 0.7 in the rule from MYCIN is an
ordinary probability, but this is not the case, as Shortliffe and Buchanan
make clear in the following passage [1975, p. 358]:

... this rule at first seems to say P(H1|S1&S»2&S;3) = 0.7,....
Questioning of the expert gradually reveals, however, that des-
pite the apparent similarity to a statement regarding a condi-
tional probability, the number 0.7 differs significantly from a
probability. The expert may well agree that P(H;|S1&S2&S3) =
0.7, but he becomes uneasy when he attempts to follow the logi-
cal conclusion that therefore P(not.H;|S;&S>&S3) = 0.3. The
three observations are evidence (to degree 0.7) in favor of the
conclusion that the organism is a streptococcus and should not
be construed as evidence (to degree 0.3) against streptococcus.

Shortliffe and Buchanan used this observation to motivate the introduc-
tion of a non-probabilistic model of evidential strength. Their measure of
evidential strength was called a certainty factor, and certainty factors nei-
ther obeyed the standard axioms of probability theory, the Kolmogorov
axioms, nor combined like probabilities.

Certainty factors were criticized by those who favoured a probabilistic
approach, cf. Adams [1976] and Heckerman [1986], and in fact the next
expert system we will consider (PROSPECTOR) did move more in the
direction of standard probability.

PROSPECTOR, an expert system for mineral exploration, was devel-
oped in the second half of the 1970s at the Stanford Research Institute.
A good general account of the system is given by Gaschnig in his 1982.
PROSPECTOR’s most important innovation was to represent knowledge
by an inference network (or net). This is motivated by Duda et al. in their
[1976, p. 1076] as follows:

A collection of rules about some specific subject area invariably
uses the same pieces of evidence to imply several different hy-
potheses. It also frequently happens that several alternative
pieces of evidence imply the same hypothesis. Furthermore,
there are often chains of evidences and hypotheses. For these
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reasons it is natural to represent a collection of rules as a graph
structure or inference net.

A part of PROSPECTORs inference network is shown in Figure 1.

Figure 1.
H, = There are massive sulfide deposits.
Hs = There are clay minerals.
Hs; = There is a reduction process.
E;, = Barite is overlying sulfide.
E; = Galena, sphalerite, or chalcopyrite fill cracks in rhyolite or
dacite.
Es; = There are bleached rocks.

Evidence E; is taken as supporting hypothesis H;, and this is indicated
by the arrow joining them in the inference network. Similarly Ey supports
hypothesis H;, while E5 supports Hs which supports H, which supports H; .
Note how these rather complicated relations are simply and elegantly rep-
resented by the arrows of the network. Each inference arrow has a strength
associated with it, and this obtained from the expert as in the case of
MYCIN.
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PROSPECTOR, however, differs from MYCIN in using subjective Ba-
yesianism rather than certainty factors. This subjective Bayesianism is not
entirely pure, since it is combined with fuzzy logic formulae, which were
also used in MY CIN. This use of fuzzy logic tended to disappear in further
developments.

In PROSPECTOR, Bayesianism is formulated using odds rather than
probabilities. The odds on a hypothesis H[O(H)] are defined as follows:

O(H) = P(H)/P(-H)
Writing down Bayes theorem first for H and then for —=H, we get
P(H|E) = P(E|H)P(H)/P(E)
P(-H|E) = P(E|-H)P(=H)/P(E)
So dividing gives

(1) O(H|E) = A(E)O(H)

where A(E) is the likelihood ratio P(E|H)/P(E|-H). (1) is the odds and
likelihood form of Bayes theorem, and it is used in PROSPECTOR to
change the prior odds on H to the posterior odds given evidence E.

Let us now consider the problems which arise if we have several different
pieces of evidence Ei, Es, ..., E, say. We might in practice have to up-
date using any subset of these pieces of evidence E;, I}, ..., E} say, where
(i,],...k) is any subset of (1,2,...,n). If we use (1), this would involve
having values of A(E;&E;& ... &E},) for all subsets of (1,2,...n). When we
remember that, on this approach the values of \ are obtained from the do-
main experts, we can see that obtaining the requisite values of A is scarcely
possible. Clearly some simplifying assumptions are necessary to produce a
workable system, and the designers of PROSPECTOR therefore made the
following two conditional independence assumptions:

(2) P(E,...,E,H) = P(E\|H)...P(E,|H)
(3) P(E,...,En|~H) = P(E\|-H)...P(E,|~H)

Given these assumptions, the whole problem of updating with many pieces
of evidence becomes simple, and, in fact,

O(H|E & ... &E,) = A1 Az...\O(H) where \; = A(E;)
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The only remaining problem was whether the conditional independence as-
sumptions (2) and (3) are plausible. The search for a justification of these
assumptions led, as we shall see, to the modification of the concept of infer-
ence network, and the emergence of the concept of Bayesian network.

The concept of Bayesian network was introduced and developed by Pearl
in a series of papers: Pearl [1982; 1985a; 1985b; 1986], Kim and Pearl [1983],
and a book: Pearl [1988]. An important extension of the theory was carried
out by Lauritzen and Spiegelhalter [1988], while Neapolitan’s 1990 book
gave a clear account of these new ideas and helped to promote the use of
Bayesian networks in the Al community.

The actual term Bayesian (or Bayes) network was introduced in Pearl’s
[1985b] where it is defined as follows (p. 330):

Bayes Networks are directed acyclic graphs in which the nodes
represent propositions (or variables), the arcs signify the exis-
tence of direct causal influences between the linked propositions,
and the strengths of these influences are quantified by condi-
tional probabilities.

This verbal account is illustrated by a diagram which is reproduced, with
different lettering, in Figure 2.

)

Figure 2.
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If we compare the network of Figure 2 with that of Figure 1, two differ-
ences should be noted immediately. First of all the arrows in the inference
network of Figure 1 represent a relation of support holding between e.g.
E5 and Hs, while the arrows in the Bayesian network of Figure 2 represent
causal influences, so that, e.g. the arrow joining A to B means that A
causes B. Secondly, corresponding to the first difference, we can say that,
in a certain sense, the arrows of a Bayesian network run in the opposite
direction to those of an inference network. Pearl puts this point as follows
(1986, pp. 253-4]:

...in many expert systems (e.g. MYCIN), ...rules point from
evidence to hypothesis (e.g. if symptom, then disease), thus
denoting a flow of mental inference. By contrast, the arrows
in Bayes’ networks point from causes to effects or from condi-
tions to consequence, thus denoting a flow of constraints in the
physical world.

This reversal of arrows from inference networks to Bayesian networks is
illustrated in Figure 3, which shows one pair of nodes taken from the portion
of PROSPECTOR’s inference network shown in Figure 1.

(a) Inference Network
(b)  Bayesian Network @<—@

Figure 3. Reversal of Arrows

Here F3 = There are bleached rocks, while H3 = There is a reduction
process. From the point of view of an inference network (a), we regard
the evidence of bleached rocks as supporting the hypothesis that there is
a reduction process, while, from the point of view of a Bayesian network
(b), we regard there being a reduction process as a cause of there being
bleached rocks. In his 1993, Pearl gives an account of his discovery of
Bayesian networks, and says that one factor that led him to the idea was
his consideration of the concept of influence diagrams introduced by Howard
and Matheson (1984). Pearl decided to limit the influences specifically to
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causal influences. Now Howard and Matheson were working on decision
theory. So this is one point where the investigations of decision theory may
have had an input into the investigations in artificial intelligence.

I will now make a few further points about Bayesian networks. If, in
such a network, an arrow runs from node A to node B, then A is said to
be a parent of B, and B a child of A. Children of A, children of children
of A, and so on are known as descendants of A. If a node has no parents,
it is called a root, so that in Figure 2, A is a root. In a Bayesian network,
it is possible for a child to have several parents. Thus in Figure 2, E
has parents B and C. If, however, every child has at most one parent,
the network is called a tree. As in the earlier case of PROSPECTOR’s
inference networks, in order to make computation feasible, some conditional
independence assumptions have to be made. For a Bayesian network, these
are that a node is conditionally independent given its parents of the rest of
the network except its descendants. I will call the conditional independence
assumptions defining a Bayesian network the generalised Markov condition.

The nodes of a Bayesian network are random variables. Suppose we
specify for each node the conditional probability distribution of that node
given its parents, then it follows from the generalised Markov condition
that these conditional probability distributions suffice to determine the joint
distribution of all the variables of the network. This is an important result
since it shows that Bayesian networks enable us to store joint distributions
in a very concise way.

After introducing the concept of Bayesian network, Pearl developed al-
gorithms which allow Bayesian updating to take place in such networks. If
one of the variables which represents an observation is set to a particular
value, the changes brought about by this new information in all the proba-
bilities throughout the tree can be computed in an efficient manner. Pearl
began in his 1982 by developing an updating algorithm for a simple form
of network, namely a tree. He then extended his algorithm to more com-
plicated networks. Kim and Pearl [1983] generalised from trees to Bayesian
networks which are singly connected, i.e. there exists only one (undirected)
path between any pair of nodes. Pearl in his 1986 tackled the further exten-
sion to Bayesian networks which are multiply connected. This problem was
also investigated by Lauritzen and Spiegelhalter who in their 1988 solved it
using the idea of reducing a multiply connected network to a tree of cliques.
Their algorithm has been generally adopted by the AI community.
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Let us now turn from these powerful mathematical developments to the
consideration of a conceptual point. How exactly are causes and proba-
bilities connected in Bayesian networks? In his original definition which
he gave above, Pearl mentions both causes and probabilities. The arrows
signify causal influences, while the nodes have associated with them proba-
bility distributions conditional on their parents. Pearl’s idea about the link
between causes and probabilities seems to have been that, if in a network
the parents of every node represented the direct causes of that node, then
the relevant conditional independence assumptions (the generalised Markov
condition) would automatically be satisfied. As he says [1993, p. 52]:

Causal utterances such as “X is a direct cause of Y were given a
probabilistic interpretation as distinctive patterns of conditional
independence relationships that can be verified empirically.

A suggested link between causality and conditional independence in fact
goes back to Reichenbach [1956]. Reichenbach considers two events B and
C say which are correlated. For example, in a travelling troupe of actors,
B = the leading lady has a stomach upset, and C' = the leading man has a
stomach upset. We can explain such correlations, according to Reichenbach,
by finding a common cause, namely that the leading lady and the leading
man always have dinner together. The common stomach upsets occur when
the food in the local restaurant has gone off. Denote ‘dining together’ by
A. We then have the causal graph shown in Figure 4.

(B)
)
©

Figure 4.

Reichenbach then claimed that, conditional on A, B and C' were no longer
correlated but independent, i.e. P(B&C|A) = P(BJA)P(C|A). He also
expressed this idea by saying that a common cause A screens one of its
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effects B off from the other C. Reichenbach’s causal fork is just a simple
case of a Bayesian network. We can indeed apply his term ‘screening off’ to
Bayesian networks by saying that in such networks, the parents of a node
screen it off from all the other nodes in the network except its descendants.
We are now in a position to summarise the ingenious way in which
Bayesian networks solved the problem of handling uncertainty in expert sys-
tems. In most of the domains considered, e.g medical diagnosis, a domain
expert is very familiar with the various causal factors operating. It should
therefore be an easy matter to get him or her to provide a causal network.
By the addition of probabilities this can be turned into a Bayesian network.
In earlier systems such as MYCIN or PROSPECTOR, conditional indepen-
dence assumptions were made for the purely ad hoc and pragmatic reason of
allowing the updating to become possible. For Bayesian networks, however,
the causal information obtained from the expert provides a justification
for making a set of conditional independence assumptions (the generalised
Markov condition) in the manner first suggested by Reichenbach. Moreover
as Pearl, Lauritzen and Spiegelhalter have shown, the generalised Markov
condition is sufficient to allow Bayesian updating to become computation-
ally feasible. Everything fits together in a most satisfying manner. There
is only one weak link in the chain. It turns out that it is possible to have a
bona fide causal network in which the generalised Markov condition is not
satisfied. I have discussed this last point with examples in Gillies [2002],
but I will not pursue the development of the theory of Bayesian networks
further here. I have given enough of the history of their discovery to enable
us to examine in the next three sections the heuristic principles involved.

3 Heuristics Involved: (a) the Use of Philosophical
Ideas

The first of the heuristics which I think was involved in the discovery of
Bayesian networks was the use of philosophical ideas as a guide to the de-
velopment of new mathematical concepts. The process which led to the
discovery of Bayesian networks was begun by Shortliffe and Buchanan’s at-
tempt to construct a formal model for evidential support which could be
implemented in their expert system: MYCIN. Shortliffe and Buchanan’s
key 1975 paper: ‘A model of inexact reasoning in medicine’ contains 33
references and no less than 14 of these (or over 42%) are to works in the
philosophy of science concerned with the confirmation of scientific hypothe-
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ses by evidence and related questions concerned with induction and the in-
terpretation of probability. These 14 references are: Barker [1957], Carnap
[1950], De Finetti [1972], Harré [1970], Helmer and Rescher [1960], Hempel
[1965], Keynes [1921], Popper [1959], Ramsey [1931], Salmon [1966; 1973],
Savage [1954], and Swinburne [1970; 1973]. In fact Buchanan and Shortliffe
referred to nearly all the philosophers of science who were famous for their
works on probability, induction and confirmation.

The main debate within philosophy of science about the confirmation
of scientific hypotheses was at the time between the Bayesians and the
anti-Bayesians. The Bayesians were divided in turn between the logical
Bayesians such as Carnap and the subjective Bayesians such as De Finetti,
Ramsey, and Savage. The leading anti-Bayesian was Popper. As we have
seen, Shortliffe and Buchanan in constructing their formal model adopted
an anti-Bayesian position. They were then immediately attacked by the
Bayesians, and it was the members of the subjective Bayesian school, partic-
ularly Pearl, who succeeded in developing the successful theory of Bayesian
networks. Recently Pearl has introduced some qualifications into his sup-
port for Bayesianism. His 2001 paper is significantly entitled: ‘Bayesianism
and Causality, or Why I am only a Half-Bayesian’, but at the very beginning
of the paper he reveals that he had no such doubts about the correctness
of subjective Bayesianism when he introduced the concept of Bayesian net-
work. This is what he says (2001, p. 19):

I turned Bayesian in 1971, as soon as I began reading Savage’s
monograph The Foundations of Statistical Inference [Savage,
1962]. The arguments were unassailable: (i) It is plain silly to
ignore what we know, (ii) It is natural and useful to cast what
we know in the language of probabilities, and (iii) If our sub-
jective probabilities are erroneous, their impact will get washed
out in due time, as the number of observations increases.

In other words, Pearl adopted a particular philosophical position (sub-
jective Bayesianism) and this acted as a heuristic guide to his mathematical
work.

Pear]l may also have been influenced by Reichenbach’s philosophical views
on causality, for, as we saw earlier, Reichenbach’s notion of a causal fork
anticipates the concept of Bayesian network in a simple case. However, the
textual evidence here is not decisive. In his 1988, Pearl refers to Reichen-
bach’s 1949 book on probability, but this book did not contain a discussion



102 Donald Gillies

of causal forks which are introduced by Reichenbach in his 1956. In his
1988, Pearl refers to another philosophical work on causality, namely Sup-
pes 1970 monograph: A probabilistic theory of causation. However, this
work of Suppes does not mention Reichenbach’s notion of causal fork.

I think this establishes beyond doubt that philosophical ideas were used
as a heuristic guide in the discovery of the mathematical theory of Bayesian
networks. But is this an unusual and exceptional case, or does philosophy
quite often act as a heuristic in mathematical discovery? The idea that
philosophy could be a heuristic guide in the natural sciences is in fact now
quite familiar. It was introduced by Popper in 1934 as part of his critique
of the Vienna Circle. While the Vienna Circle held that metaphysics was
meaningless, Popper argued that metaphysics was not only often meaningful
but could be helpful to science. Popper cited the example of atomism which
began as a metaphysical theory and long remained one, but which was
eventually turned into a scientific theory. Before Popper, Duhem had given
many interesting examples of metaphysical ideas acting as heuristics for the
development of science. More details of the work of Duhem and Popper on
metaphysics in relation to the development of the natural sciences is to be
found in Gillies [1993, Chapter 9, Sections 1-3, pp. 189-201].

Although the idea of philosophy acting as heuristic guide is familiar in
the case of the natural sciences, there has been surprisingly little discussion
of philosophy as a heuristic guide for mathematics. If we examine the his-
tory of mathematics, however, we can find many examples of philosophical
ideas acting as heuristic guides to mathematical discoveries, though, at the
same time, there are also many mathematical discoveries in which philoso-
phy played no role. An obvious example of the influence of philosophy on
mathematics is provided by the development of mathematical logic. Frege’s
revolution in the subject arose from his attempt to support the philosophi-
cal view that arithmetic was reducible to logic (see Gillies [1992] for details).
The mathematical theory of probability too was strongly influenced by phi-
losophy at earlier periods. The mathematical work of Thomas Bayes was
designed to promote Bayesianism which, in turn, was devised in order to
answer Hume’s sceptical doubts about induction, as I have argued in Gillies
[1987]. Another example from probability theory is provided by von Mises
who in his development of his frequency theory of probability gave a philo-
sophical analysis and definition of randomness. This definition appeared
to have some flaws, and attempts to resolve this difficulty led to important
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mathematical results by Wald and Church. Details are to be found in Gillies
[2000, pp. 105-9].

These examples of the influence of philosophy on the development of
mathematics taken from the history of mathematical logic and mathemat-
ical probability are not dissimilar from Popper’s leading example of the
influence of metaphysical ideas on the development of the natural sciences,
namely: atomism. Before a precise experimentally testable theory of atom-
ism could be developed it was necessary that atomism as a general view of
the world should be elaborated in a less precise, metaphysical fashion. Now
logic and probability form an integral part of philosophy because of their im-
portance for epistemology. Some preliminary philosophical analysis of logic
and probability was surely necessary to provide a jumping off point for a
more precise mathematical theory of these concepts. This explains why in
these cases, philosophical ideas were able to act as a guide to mathematical
development.

Logic and probability, so I have argued, are part of the subject matter
of both philosophy and mathematics. The same is true of the concept
of infinity. This is the subject of philosophical disquisitions as well as of
Cantor’s theory of the transfinite. Indeed Cantor in developing his theory of
the transfinite, made an intensive study of philosophical and also theological
ideas about the infinite. Details of this are to be found in Dauben’s 1979 life
of Cantor, which is significantly entitled: Georg Cantor. His Mathematics
and Philosophy of the Infinite.

As my final example of philosophical ideas as a heuristic for mathematical
discovery, I want to consider a case which is rather different from those of
logic, probability, and the infinite. This is Riemann’s discovery of non-
Euclidean geometry. I have argued that logic, probability and infinity are
all subjects of both philosophy and mathematics and that a preliminary
qualitative philosophical analysis of these notions was needed before more
precise mathematical theories could be developed. Geometry, however, is
not per se part of philosophy. However, since the time of Plato, geometry
has been of great significance for Western philosophy as a prime example
of excellent, indeed certain, knowledge, and therefore as a most important
example for epistemology. In a famous passage from his 5th Meditation,
Descartes says [1641, p. 181]:

... I clearly see that existence can no more be separated from
the essence of God than can its having its three angles equal to
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two right angles be separated from the essence of a [rectilinear]
triangle, ...

Now the proposition that the three angles of a rectilinear triangle are
equal to two right angles is equivalent to Euclid’s 5¢* postulate. So Descartes
is claiming that the truth of Euclidean geometry is as certain as the exis-
tence of God. Of course by this he means that the truth of Euclidean geom-
etry is completely certain. Later on Kant claimed that Euclidean geometry
was synthetic a priori, implying that its truth was known with certainty
independently of experience.

These well-known philosophical doctrines affirming the certain truth of
Euclidean geometry certainly constituted an obstacle to the discovery of
non-Euclidean geometry. Riemann presented his new ideas on non-Euclidean
geometry in his famous lecture: ‘Uber die Hypothesen, welche der Geome-
trie zu Grunde liegen’ (On the Hypotheses which lie at the Foundations
of Geometry) delivered as a qualifying lecture (Habilitationsvorlesung) for
the title of Privatdozent to the faculty at Gottingen on 10 June 1854. Rie-
mann regarded it as necessary to begin his lecture with some philosophical
analysis. This in effect constitutes an empiricist account of geometry which
criticizes implicitly the Kantian view of Euclidean geometry as synthetic a
priori. Riemann says that he has made use of some philosophical investiga-
tions of Herbart, an empiricist philosopher, and he remarks rather modestly
(1854, p. 412]:

... I think myself the more entitled to ask considerate judgment
inasmuch as I have had little practise in such matters of a philo-
sophical nature, where the difficulty lies more in the concepts
than in the construction ...

In fact Riemann had studied theology before turning to mathematics and
was by no means unfamiliar with philosophy. Here is a passage from his
preliminary philosophical discussion [1854, p. 412]:

...the propositions of geometry are not derivable from general
concepts of quantity . ..those properties by which space is distin-
guished from other conceivable triply extended magnitudes can
be gathered only from experience. There arises from this the
problem of searching out the simplest facts by which the metric
relations of space can be determined, a problem which in nature
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of things is not quite definite; for several systems of simple facts
can be stated which would suffice for determining the metric
relations of space; the most important for present purposes is
that laid down for foundations by Euclid. These facts are, like
all facts, not necessary but of a merely empirical certainty; they
are hypotheses; one may therefore inquire into their probabil-
ity, which is truly very great within the bounds of observation,
and thereafter decide concerning the admissibility of protract-
ing them outside the limits of observation, not only toward the
immeasurably large, but also toward the immeasurably small.

The title of Riemann’s lecture is itself an implicit criticism of Kant, since
Riemann’s point is that hypotheses (which may be empirically confirmed or
disconfirmed) and not a priori truths lie at the foundation of geometry. This
point is made more explicit in the passage just quoted, since Riemann claims
that Euclidean assumptions are ‘not necessary but of a merely empirical
certainty’, and that since ‘they are hypotheses’, ‘one may therefore inquire
into their probability’. Riemann regards this probability as very high for
what falls within the bounds of observation, but still regards it as possible
that Euclidean assumptions might break down ‘toward the immeasurably
large’ or ‘toward the immeasurably small’.

More details about Riemann’s discovery of non-Euclidean geometry and
his empiricism in the philosophy of geometry are to be found in Gillies,
(1999, pp. 174-78]. For the purpose of the present paper, however, we
can observe that Riemann’s empiricist philosophy of geometry, which he
developed with the help of Herbart’s writings, played a very important
role in his discovery of non-Euclidean geometry. It formed the basis of
his criticism of the doctrine of Kant and other philosophers who held that
Euclidean geometry was known with certainty a priori, and so opened up the
way to introduce new forms of geometry which contradicted the Euclidean
axioms.

In the present section I have given quite a number of examples of mathe-
matical discoveries where philosophical ideas played an important heuristic
role. However it should be stressed in conclusion that this is not a general
law of mathematical development and there have been many mathematical
discoveries in which philosophy played little or not part. An obvious exam-
ple of such a discovery is the discovery of the concept of group in algebra.
This arose from mathematical research into the problem of finding solutions
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to polynomial equations in terms of radicals. Lagrange found a connection
between this problem and permutations of the roots of the equation, and
collections of such permutations constituted the first examples of the later
concept of abstract group. Here we have a discovery emerging from internal
mathematical investigations which did not have a connection with external
philosophical questions.

4 Heuristics Involved: (b) New Practical Problems

The study of new practical problems often leads to mathematical discover-
ies. The discovery of Bayesian networks is a perfect example of this. As we
have seen the discovery arose out of the problem of implementing expert
systems for medicine, geological exploration and other areas. These expert
systems involved handling uncertainty in a way which was rather differ-
ent from previous applications of the probability calculus. The solution of
this problem involved the development of new techniques involving a new
mathematical concept.

Once again the pattern here exhibited in the discovery of Bayesian net-
works is to be found in many other discoveries in the history of mathematics.
The mathematical theory of probability itself originated from the problem
of calculating fair odds in gambling games. This was a very practical prob-
lem at the time, since gambling houses of that period offered odds which
were empirically based. A mathematician who could calculate the correct
odds stood a good chance of making money. New practical problems about
the kinematics and mechanics of moving bodies such as cannonballs, planets
or comets stimulated the development of calculus in the 17** century. In
the previous section we saw how a philosophical research programme (the
attempt to establish logicism in the philosophy of mathematics) led to the
development of mathematical logic. However mathematical logic, though it
originated in philosophy, was to find practical applications in the field of
computer science. The new practical applications led to developments in
mathematical logic itself, and, in particular, to the discovery of a quite new
type of logic — non-monotonic logic. Some details about the discovery of
non-monotonic logic are to be found in Gillies, [1996, pp. 72-75].

Although the investigation of new practical applications often leads to
the discovery of new mathematical concepts, sometimes this is not the case
because the existing body of mathematics is sufficient for handling the new
application. An example of this is provided by Schrodinger’s work in quan-
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tum mechanics. Schrodinger’s equation was a very important discovery in
physics, but the equation turned out to be of a type which was familiar
to mathematicians, and which could be solved by existing techniques. So,
although Schrodinger was investigating some very new, indeed one might
almost say, weirdly new phenomena, he was not led to formulating any new
mathematical concepts.

Let me conclude this section by comparing the heuristic of using philo-
sophical ideas with that of studying new practical problems. At first sight
they seem to be quite distinct and rather opposed approaches. Philosophy,
one might think, may be suitable for the abstract pure mathematician like
Cantor who is far removed from any practical problem in the real world.
Such a person would, it might be thought, be very different from the down
to earth researcher working on practical problems. Of course this point of
view is correct in Cantor’s case, but one finds in many other cases, including
our principal example of the discovery of Bayesian networks, that the study
of practical problems and philosophical considerations, far from being op-
posed, actually go hand in hand. The reason for this is that philosophy need
not be remote from the real world, but can be closely related to practical
action, and, conversely, it may often be difficult to act in practice without
some philosophical orientation.

5 Heuristics Involved: (c) Domain Interaction

The third heuristic which I will consider is what [ will call: domain in-
teraction. This occurs when two separate domains are brought together
and partially unified. This process can often result in new discoveries and
the growth of knowledge. Domain interaction has been studied by Emily
Grosholz, who has emphasized its role in the development of mathematics.
In this section, therefore, I will reverse the order used in the two preceding
sections. I will first give a general account of Grosholz’s ideas on domain
interaction, including examples of where it has led to mathematical discov-
ery. I will then show that domain interaction was an important heuristic
principle involved in the discovery of Bayesian networks. In fact the exam-
ple of Bayesian networks provides a striking vindication of Grosholz’s ideas
on this subject.

In a series of publications [1981; 1985; 1991; 1992], Grosholz has studied
a number of cases in which knowledge (particularly mathematical knowl-
edge) has advanced through the interaction of separate domains. In 1981,
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she considers Logic and Arithmetic, in 1985 Logic and Topology, while in
her 1992 she argues that Leibniz invented and developed the calculus by
bringing together geometry, algebra, number theory, and mechanics. Her
1991 book shows that to a remarkable extent all Descartes’ intellectual work
can be seen as bringing together different domains. As she says [1991, pp.
2-3]:

... Cartesian domains . ..can be understood as a novel amalga-
mation of formerly distinct or at least very incompletely uni-
fied domains: the Geometry brings together geometry and alge-
bra, the Principles geometry and physics, the Treatise of Man
physics and medical physiology, and the Meditations mechanical
philosophy and scholastic theology.

This is an interesting passage since it shows that the heuristic of domain
interaction is not limited to mathematics, but applies to other subjects as
well. However the passage also gives one of the most famous examples of
domain interaction in mathematics, namely the bringing together of geom-
etry and algebra to create analytic geometry. Although Grosholz approves
of Descartes’s method of bringing together separate domains, she nonethe-
less criticizes the way in which he carries out this process. In her view the
interaction of different domains is most fruitful, if, while interacting, they
nonetheless retain some degree of autonomy. An attempt to reduce one do-
main to the other will generally inhibit fruitful developments. As she says
[1991, p. 3]:

... the unification of domains contributes to the growth of knowl-
edge when and because it exploits partially shared structure be-
tween domains that none the less retain their autonomy and
distinctness. Revelation is impaired when domains are held
too far apart, or assimilated too closely. But Descartes’s way
of constructing knowledge can produce both these unfortunate
outcomes ...

According to Grosholz, Leibniz was more successful that Descartes in
handling domain interaction (see [Grosholz, 1992]).

Another important concept which Grosholz uses in this connection is the
concept of hybrid. As she says [2000, p. 82];
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Moreover, my examination of the growth of mathematical knowl-
edge sheds important light on mathematical hybrids, objects
which exist in the overlap of domains and provoke discovery in
unexpected ways.

An important feature of such hybrids is that they exhibit a kind of in-
stability or inconsistency. As Grosholz says [2000, p. 88]:

...the two domains as it were overlap, or are superimposed. At
this overlap, objects are constituted which must simultaneously
exhibit features of both domains; if the domains are truly het-
erogeneous, one must expect a kind of submerged heterogeneity
in these objects. And in fact such hybrids often exhibit an in-
stability or inconsistency that is however held in place or made
tractable by the rational relatedness provided by the abstract
structure that holds the domains together.

This instability or inconsistency is not seen by Grosholz as a defect, but
rather as a potential stimulus to further growth and development.

Let me now show that these ideas apply very well to the example of
Bayesian networks. In fact, Bayesian networks involved two instances of
domain interaction. To begin with, Bayesian networks put together the
domains of probability theory and graph theory which had previously been
largely separate. Secondly, however, Bayesian networks put together the
domains of probability theory and causality. In fact there had earlier been
the beginning of an attempt in the philosophy of science community to
connect these domains. Suppes [1970] A probabilistic theory of causation is
a leading example of this trend. However the development of the concept
of Bayesian network was a notable advance in linking the two domains. In
a Bayesian network, an arrow joining two nodes A and B usually indicates
that there is a causal connection between A and B. Furthermore each node
in a Bayesian network has a conditional probability distribution associated
with it. Thus causality and probability are brought together.

However this hybrid of causality and probability is by no means unprob-
lematic. Pearl originally hoped that the causal connections between the
nodes of a network would justify adopting the generalised Markov condi-
tion for the probability distributions. However it emerged that there can be
genuine causal graphs for which the generalised Markov condition does not
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hold. More details about this are to be found in Gillies [2002]. So the rela-
tions between causality and probability in a Bayesian network turn out to
be highly problematic. Bayesian networks thus fit very well the descriptions
which Grosholz gives of other mathematical hybrids. As she says [2000, p.
88]:  ...one must expect a kind of submerged heterogeneity in these ob-
jects. And in fact such hybrids often exhibit an instability or inconsistency

)

6 Heuristics of Mathematical Discovery versus Logic
of Mathematical Discovery

Having given my example of a recent mathematical discovery and attempted
to analyse the heuristics which were involved, I now want to raise the general
question of whether such heuristics constitute a kind of generalised logic
so that one could speak of a logic of mathematical discovery, or whether
heuristic principles are not logical in character. This question is by no
means an easy one. The core of logic is obviously standard deductive logic.
However, it has often been suggested that logic could be extended to include
not just deductive inferences but ampliative inferences of various kinds.
For example, many philosophers of science have supported the idea of an
inductive logic. Might heuristic principles constitute an extension of logic
of which inductive logic is just a part?

I will begin my examination of this problem by considering an interesting
related discussion by Ladislav Kvasz in his 2002. Kvasz here deals not with
the relation between heuristics and logic, but with the obviously closely
connected question of the relation between dialectics and logic. Kvasz in
his paper criticizes dialecticians, but under that heading he includes not
just the paradigm dialecticians (Hegel and the Marxists), but also Popper
and Lakatos whom he regards as also dialecticians, notwithstanding their
striking disagreements with Hegel and the Marxists. What is common to all
these thinkers according to Kvasz is that they regard dialectics as a branch
of logic. As Kvasz himself says [2002, p. 211]:

Usually, the dialecticians believe that the pattern of the develop-
ment of knowledge is of a logical nature (Hegel’s idea of dialecti-
cal logic, Popper’s logic of scientific discovery, or Lakatos’ logic
of mathematical discovery), which creates a tension between the
development of knowledge and formal logic.
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This ‘confusion of dialectic with logic’ [Kvasz, 2002, p. 211] is responsi-
ble, according to Kvasz, for grave failings in Hegel on the one hand and in
Popper and Lakatos on the other. However, these failings are different in the
two cases. The problem with Hegel and the Hegelians is that they regard
their dialectical logic as being in competition with and superior to ordinary
deductive logic. Hegelians therefore reject ordinary deductive logic which
Kvasz thinks is a mistake. Popper and Lakatos did not give up ordinary
deductive logic, but their attempt to reconcile it with the development of
knowledge led to them confining their analyses to cases in which the con-
ceptual changes in the growth of knowledge are relatively small. This is
how Kvasz puts this argument [2002, p. 229]:

Both solutions to the dialectician’s conflict between logic and
evolution of knowledge are unsatisfactory. Philosophers who
follow Hegel, in the attempt to replace classical logic by some
new dialectical one, were unable to offer anything comparable to
the successive formal logic, and thus their research programme
degenerated. On the other hand, dialecticians like Popper or
Lakatos, who were not prepared to sacrifice logic, and thought
that logical comnsistency is crucial to rational discourse, were
forced to give up evolution. The fact that Lakatos was un-
able to reconstruct any deeper conceptual change in history of
mathematics or physics is not accidental. As a dialectician, he
conceived evolution to be in conflict with logic, but as Popper’s
disciple he was not prepared to give up logic. Thus he omitted
some of the most interesting moments in the history of mathe-
matics. If he had tried to reconstruct them, he would have been
forced to violate logic. Therefore he reconstructed only those
changes, in which relatively small conceptual changes occur. ...

The one extreme is dialectical logic (of Hegel and Marxism),
which for the sake of evolution sacrifices logic. The other ex-
treme is logical dialectic (of Popper or Lakatos), which for the
sake of logic sacrifices evolution.

Kvasz argues for this general position by giving an analysis of some
changes in the development of mathematics which he regards as being too
large to be compatible with formal logic. These changes all involve a change
in the form of the language used. Following Wittgenstein in the Tractatus,
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Kavasz regards any language (L say) as having a form which is not express-
ible in the language. We can however incorporate the form of the language
L into L thereby creating a new language L' say. A simple example of this
process occurred in the transition between the language of perspective used
by Renaissance painters and the language of projective geometry created
by Desargues. As Kvasz says [2002, p. 221]:

...the centre of projection represents, in an abstract form, the
eye of the painter from Diirer’s drawing. For Desargues, ..., the
point of view is explicitly incorporated into language.

In fact Kvasz analyses a whole series of examples of changes in mathe-
matics which follow this pattern in his papers [1998] and [2000].

We can now see clearly why formal logic is inadequate to deal with such
changes. Any system of formal logic presupposes a language L in which it
is formulated, and this language is held constant when the deductions are
being made. If therefore we make a fundamental change in the character of
the language, altering it from L to L', this change cannot be captured using
formal logic. On the other hand we can apply formal logic without any
problems either within L or within L’ so that there is no need to abandon
formal logic altogether as the Hegelians deem to be necessary. Formal logic
has only to be given up temporarily in the course of a large change involving
a considerable alteration in the form of the language used. This then is a
brief summary of Kvasz’s position. Let us now see if we can apply it to our
problem about heuristics and logic.

It is clear that the discovery of Bayesian networks involved the creation
of a new language formed through the synthesis of the languages of earlier
probability theory and graph theory. The language of Bayesian networks
with its network diagrams has an iconic character which is not to be found
in earlier probability theory. As this is a major change in language, then
we can use Kvasz’s argument to conclude that the discovery of Bayesian
networks is a transition which cannot be explicated logically so that the
heuristics involved are not logical in character. Indeed we can generalise
to say that many applications of the domain interaction heuristic take us
outside logic. Cartesian geometry, for example, has its own specific language
which differs both from the language of classical Euclidean geometry and
from that of algebra unrelated to geometry. Similarly calculus introduced
new symbolisms such as dy/dx or § which made the language of calculus
radically different from preceding mathematical languages.
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Changes of this magnitude cannot, according to Kvasz’s argument, be
explicated using logic. However, Kvasz’s analysis also indicates that some
changes might be logically explicated. These would be smaller changes. An
example might be the discovery of the proof of a mathematical conjecture
where both the conjecture and the subsequent proof are formulated within
a well-defined mathematical system, which is not changed in the process of
discovery. There is no reason why the heuristics of discoveries of this sort
might not be explicated in a way that could be described as logical.

These conclusions are supported by another approach to the problem.
This approach relies on the connection between logic and mechanisation.
If mathematical proofs are translated into formal logic then the validity
of each step can be checked mechanically by means of a computer. The
discovery of the proof, however, can be left entirely in the hands of human
mathematicians. The development of automated theorem proving, and of
non-monotonic logic programming languages such as PROLOG has carried
the mechanisation process one stage further by mechanising the construction
of proofs. In this respect, then, it goes beyond Fregean formal logic.

I have suggested (in [Gillies, 1996, p. 85]) a way of characterising this
new kind of logic which has been introduced by investigations into artificial
intelligence. The formula proposed is

Logic = Inference + Control

When we employ Logic, we start with a set of assumptions from which we
want to derive some conclusions. To carry out these derivations we need
a set of rules of inference (the Inference component). If the derivation is
carried out by a trained mathematician, then he or she will rely on intuition
to decide which rule of inference to use at a particular stage in order to carry
out the derivation. If, however, we are trying to program a computer to
carry out the derivation, then we will have to give the computer guidance as
to which assumptions to choose and which rules of inference to apply. This
guidance constitutes the Control component. Thus the Control component
might specify at each stage of the derivation, which of the assumptions
should be employed, and which of the rules of inference should be applied
to these assumptions or to previously obtained results. More generally,
the Control component would be designed to help in the construction of a
derivation or proof of a conclusion.
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I further suggested (in [Gillies, 1996, Ch. 5, pp. 98-112]) that this
formula enables one to defend the possibility of an inductive logic. The
development of machine learning has lead to the formulation of inductive
rules of inference, while confirmation theory constitutes the control compo-
nent. In the case of automated theorem proving, the heuristics used could
be formulated as part of the control component, and could then, using the
formula above, be considered part of a logic of mathematical discovery.
This criterion suggests therefore that a heuristic can be considered a logi-
cal principle if it can be formulated with precision and incorporated into a
successful computer system for automated theorem proving. This criterion
implies the Kvasz criterion since, at least as things stands at present, any
automated theorem proving system has to operate within a fixed formal
language specified at the beginning.

The kind of heuristics which I have considered in this paper (use of philo-
sophical ideas, consideration of new practical problems, and domain inter-
action) are to vague in character to be suitable for precise formulation and
implementation in programs for automated theorem proving. I would there-
fore argue that they are not logical in character.

A critic might say at this point that heuristics which are not precise
enough to become part of logic are unlikely to provide much useful guid-
ance. However such a comment would be unfair. The somewhat vague non-
logical heuristics considered in this paper are certainly not precise enough
to guide a computer in the execution of a program. However they are pre-
cise enough to suggest strategies for a human mathematician carrying out
mathematical research. Moreover the kind of strategies suggested by the
three heuristics given are rather different from those commonly adopted by
human mathematical researchers. It is all too common for research math-
ematicians to become exclusively absorbed in their own small field and to
devote themselves to reading only the literature of that specialty. The ana-
lysis given of the discovery of Bayesian networks suggests a quite different
sort of research strategy, one which would involve a broader more inter-
disciplinary approach, with the study of some philosophy, an interest in
areas which might require new techniques for successful practical applica-
tions, and a knowledge of several branches of mathematics which could be
brought together for ‘domain interaction’. The example even suggests some
more specific recommendations. Mathematicians preparing for research in
the area of probability and statistics would normally take a master’s degree



Heuristics and Mathematical Discovery 115

in this speciality. The discovery of Bayesian networks suggests that it might
be worth including a course on the philosophical and foundational aspects of
probability and statistics as part of the preparation of the future researcher.
Yet this is rarely if ever done. In effect the heuristics considered in this pa-
per, though not precise enough to guide a computer, do definitely suggest
strategies for humans who want to carry out research in mathematics.
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