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Abstract 

 

Loss and Recovery of Humoral Immunity to Influenza Virus Following Malaria 

Infection 

 

The mechanisms of maintenance of humoral immunity to infectious pathogens, particularly 

the contributions of memory B cells and long-lived plasma cells in maintaining specific 

serum antibody titres, are not well understood. Furthermore, it is not clear whether 

sequential heterologous humoral immune responses and disease pathology can result in the 

dysregulation and loss of previously acquired antibody-mediated immune responses to 

unrelated antigens. Here, depletion of memory B cells using anti-hCD20 monoclonal 

antibodies in hCD20 transgenic mice was used to dissect the role of memory B cells and 

long-lived plasma cells in maintaining long-term serum antibodies after intranasal Influenza 

A infection. Next, an experimental model of sequential infections with Influenza A/PR/8/34 

and Plasmodium chabaudi chabaudi (AS) was set up, with a 15-20 week interval between 

the infections, in order to investigate whether sequential infection with P. chabaudi would 

affect pre-established humoral immunity to Influenza A. 

 

This study demonstrates that memory B cells are essential for the maintenance of long-

lived serum Ab titres to Influenza A, as depletion of memory B cells results in the eventual 

loss of long-lived plasma cells and serum antibodies. Sequential infection with P. chabaudi 

results in the loss of pre-established serum antibodies to Influenza A by inducing the loss of 

long-lived plasma cells in an FcγRI,II,III-dependent manner, and this renders mice 

susceptible to secondary infection with Influenza A. However, this loss of pre-established 

humoral immunity is temporary, as serum antibodies do eventually return to normal levels. 

These findings demonstrate a mechanism shared by memory B cells and long-lived plasma 

cells which ensures that serum antibodies are maintained for long periods of time in the 

face of continuous generation and incorporation of new specificities throughout the lifetime 

of the host. A more complete understanding of the parameters that affect the longevity of 

immunological memory and how heterologous infections influence this will be vital in our 

understanding of the effect of continuous exposure to infectious pathogens on the efficacy 

and longevity of previously established immune memory. 
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Chapter 1: Introduction 

 

Immunological memory is the ability to ‘remember’ an antigen that a host has previously 

encountered (through natural infection or vaccination) and to mount a more rapid and 

robust secondary response (Gray 1993). This can result in attenuated symptoms, decreased 

pathogen burden or even sterile immunity to re-infection (Ahmed & Gray 1996). One of the 

theories to explain immunological memory is a greater precursor frequency of antigen-

specific lymphocytes, which arise out of clonal expansion, and which are long-lived in the 

absence of antigen. These increased number of memory cells are also primed to 

subsequently give more specific, rapid and robust immune responses than naïve cells when 

re-encountering the antigen. Fine dissection of the qualitative and quantitative responses 

involved in mounting memory immune responses have been characterised extensively with 

model antigens (Nossal et al. 1968). Cells with these memory characteristics can 

differentiate from different types of naive lymphocytes, including innate cells (Bird 

2010;Paust & von Andrian 2011), CD4+ and CD8+ T cells (Pepper & Jenkins 2011;Sallusto 

et al. 2004), and B cells (McHeyzer-Williams et al. 2011) (Table 1.1).  

 

After vaccination, for example, with many viral vaccines such as the live attenuated 

Influenza A vaccines, or infections, for example, measles or smallpox or even malaria, 

protective immunity is usually correlated with antibody titres (Crotty & Ahmed 

2004;Langhorne et al. 2008;Pulendran & Ahmed 2011;Welsh et al. 2004;Zinkernagel 

2002). However, whether these high serum antibody titres are maintained by memory B 

cells, short-lived plasma cells or long-lived plasma cells is still unclear. In addition to 

antibodies, memory CD8+ T cells can also contribute to cellular immunity, for example, 

after Influenza A vaccination (Lalvani et al. 1997), but the correlation studies of memory T 

cells with either antibody levels or protective immunity is inconsistent (Zinkernagel et al. 

1996) and possibly age-related (Forrest et al. 2008; Goronzy et al. 2001). Correlates to 

protective immunity can perhaps be complicated by the fact that protective immunity can 

be either towards disease or towards re-infection, which can be mediated through different 

mechanisms. 
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The memory niches and necessary survival resources which organise, maintain and even 

limit immunological memory cells have been a subject of intense study. The memory T cell 

niche was previously thought to be finite (Selin et al. 2004), perhaps restricted by the 

availability of cytokines such as Interleukin-15 and TNF-TNFR ligand interactions 

(reviewed by Sabbagh et al. 2004). Attrition of pre-existing memory CD8+ T cells in the 

spleen was demonstrated by either stochastic competition for survival resources 

(Chapdelaine et al. 2003) and also by active deletion as a result of infection (Kim & Walsh 

2003). However, other studies have also demonstrated long-term maintenance of cell 

numbers particularly in the CD8+ T cell memory pool (Murali-Krishna et al. 1998; 

Odumade et al. 2012) or even an expandable CD8+ T cell memory pool (Vezys et al. 2009). 

CD4+ and CD8+ memory T cells are able to undergo a slow homeostatic turnover which 

can enhance the longevity of antigen-specific populations (Murali-Krishna et al. 1999). In 

humans, memory B cells (MBCs) similarly are able to undergo homeostatic turnover 

(Macallan et al. 2005; Wirths & Lanzavecchia 2005), although it is not known whether 

memory B cells undergo homeostatic proliferation in mice, but the characteristics of their 

niche are not well understood. By contrast, long-lived plasma cells (LLPCs) have been 

found to predominantly reside in specialised bone marrow niches (Manz et al. 1997; Slifka 

et al. 1998; Tokoyoda et al. 2004) and require specific survival resources (Fairfax et al. 

2008). It is currently believed that the niche for LLPCs is finite, and because they are 

terminally differentiated and are unable to replace themselves, LLPCs can be more 

susceptible to stochastically-determined attrition (Radbruch et al. 2006). It is important to 

understand the mechanisms that regulate the finite LLPC population in order to 

accommodate an increasing number of specificities throughout the host’s lifetime. 

 

The first aim of this thesis is to understand the relative contributions of the cells that 

mediate humoral memory – B-cell originated memory B cells (MBC), which can mount a 

heightened recall response to a secondary challenge, and long-lived plasma cells (LLPC), 

which secrete antibodies (Abs) of high affinity and specificity into the circulation and 

mucosa – towards maintaining persistently elevated serum Abs. The second aim of this to 

understand whether and how a sequential heterologous infection can affect pre-established 
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Table 1.1: Contributions to immunological memory by different cell types. 
Cell name Cell phenotype /characteristics* Mechanism of action Ref 
T effector 
memory 
(TEM) 

CD8>CD4 
CCR7- CD62L+/-** 
 
Express homing receptors that facilitate 
migration to nonlymphoid sites of 
inflammation . 
Enriched in lung, liver and gut 
May require pMHCII stimulation for 
longevity 
Maintain stable Th1 or Th2 
polarisation   

Produce IFNg, IL-4 and IL-5 within 
several hours of TCR stimuilation.  
CD8 TEM carry large amounts of 
perforin 
Th1 or CTL: CCD5+ CXCR6+ 
CCR3+ 
Th2: CCR3+ CRTh2+ CCR4+ 
Selective chemokine expression 
enables homing into barrier sites – 
skin, gut, lymph nodes through 
HEV 

T central 
memory 
(TCM) 

CD4>CD8 
CD45RO+  CD62L+ and CCR7+ 
Enriched in lymph node and tonsils 
Higher sensitivity to TCR stimulation, 
require less costimulation signals, 
higher levels of CD40L 
Recirculate through secondary 
lymphoid organs 
High levels of phosphorylation of 
STAT5 and are capable of self-
renewal; high levels of IL-15R 
Contains both uncommitted and 
polarised cells 

Do not produce cytokines except 
IL-2.  However can proliferate and 
differentiate into effector cells 
producing IFNg and IL-4. 
CXCR5+ Tfh phenotype – produce 
IL-2 and IL-10 and provide 
spontaneous B cell help 
Can be induced to differentiate into 
Th1 or Th2 or CTL 

(Sallusto, 
Geginat, & 
Lanzavecchia 
2004) 

NK Complex pattern of expression of the 
polygenic and polymorphic Ly49 
family of innate receptors (and KIR in 
humans). Bind MHCI or MHCI-like 
molecules which are inhibitory or 
activating.  

Like T cells.  
Population expansion, cytolytic 
activity/cytokine production.  

(Bird 
2010;Paust & 
von Andrian 
2011) 

Memory B 
cell 

Undergoes homeostatic turnover  
Able to differentiate into daughter 
memory B cells or plasma cells rapidly 
Heterogenous population; Not all 
isotype switched, variable somatic 
hypermutation 
Can be T cell-dependent or T cell-
independent 
Mainly reside in spleen, with a small 
proportion recirculating 

Fewer activation requirements, may 
not need co-stimulation 

(McHeyzer-
Williams, 
Okitsu, 
Wang, & 
McHeyzer-
Williams 
2011) 

Long-lived 
plasma cell 

Terminally differentiated 
CD138+ intracellular Ig+  
Not all isotype switched 
Highest levels of somatic 
hypermutation 
Can be T cell-dependent or T cell-
independent 
Mainly reside in bone marrow niches, 
do not recirculate 

Secretion of Ig (Shapiro-
Shelef & 
Calame 
2005) 

*Defined in the human system 
** Other markers, like CD45RA, CD27 and CD28 have been used to further divide TCM and TEM into subgroups 
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humoral memory. To this end, how MBC and LLPC are generated and maintained in their 

niches, various mechanisms of how they are thought to maintain serum Abs, and the 

humoral immune responses to Influenza A and Plasmodium chabaudi, which are the model 

infections used in the subsequent experiments, are outlined in this introduction. 

 

1.1: Generation of memory B cells and long-lived plasma cells in the primary immune 

response. 

 

1.1.1: Differentiation of naïve B cells, affinity maturation and isotype switching in the 

germinal centre response 

 

During many viral infections, the appearance of neutralizing Abs coincides with the 

appearance of germinal centres (GCs) and marks the onset of recovery from the infection 

and clearance of virus from the circulation (Dörner & Radbruch 2007). GCs in the 

secondary lymphoid organs (spleen and regional lymph nodes) appear at day 4 of a primary 

immune response to protein immunisation, peak between days 12 and 14, and recede after 

three to four weeks (Allen et al. 2007;Pape et al. 2003). GCs are organised focal 

localisations consisting of foreign antigen, activated cells (B cells, T follicular helper (Tfh) 

cells, tangible body macrophages and follicular dendritic cells) and are the sites where B 

cells receive signals which are necessary for the differentiation into short-lived 

extrafollicular plasma cells (PCs), MBCs and LLPCs (Figure 1.1). The GC is also the site 

for somatic hypermutation and class-switch recombination of the genes encoding the B cell 

receptor (BCR), leading to affinity maturation as oligoclonal B cells are selected by 

antigen, as well as isotype switching and enhanced effector functions. In the GC, foreign 

antigen can be presented to B cells in different ways: 1) in follicles via fibroblastic reticular 

cells or small gaps in basement of lymph node sinus, where it is bound by antigen-reactive 

B cells in subcapsular sinus (SCS) (Roozendaal et al. 2009), 2) In the form of immune 

complexes or higher molecular weight by SCS macrophages (Batista & Harwood 2009), 3) 

Free diffusion of soluble antigen into lymphoid follicles (Pape et al. 2007), and 4). 

Dendritic cells (DC) migrating from peripheral organs can also transport antigens to 
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secondary lymphoid organs to access non-follicular B cells (Qi et al. 2006). Antigen-

specific B cells process and present peptides complexed to MHC Class II to antigen-

specific Tfh cells, which recognise these complexes. The co-stimulatory molecules 

provided by T cells, like CD40L, ICOSL and OX40L, engage the B cell during the 

formation of the immunological synapse and provide the necessary signals which activate 

the B cell and drive their differentiation into short-lived PCs, LLPCs or MBCs. This 

process is known as receiving cognate T cell help.  

 

A recirculating naïve B cell repertoire produced by the bone marrow has, at any one time, 

104-105 different specificities. The GC is a dynamic structure and naïve B cells can be seen 

moving through the GC to scan antigen presented on FDCs (Camacho et al. 1998). 

Signalling through the BCR as well as co-stimulation from Tfh cells activates antigen-

specific B cells to proliferate intensely and undergo somatic hypermutation in the genes 

encoding the BCR, producing an oligoclonal population of B cells with different receptor 

affinities for the antigen. Somatic hypermutation is initiated by the enzyme Activation-

Induced (Cytidine) Deaminase (AID), which deaminates cytosine into uracil in DNA, 

creating a uracil:guanine mismatch (Muramatsu et al. 2000). This mismatch is rapidly 

repaired by DNA mismatch repair enzymes like DNA polymerases (Casali et al. 2006). 

However, these DNA polymerases are error-prone and point mutations are introduced into 

the deaminated cytosine or the neighbouring base-pairs (Di Noia & Neuberger 2007). High 

levels of the anti-apoptotic transcription factor Bcl-6 in GC B cells suppress the cells’ 

intrinsic response to DNA damage and allows gene mutations to occur in the variable 

region (Ranuncolo et al. 2007). Approximately one irreversible single-base pair mutation is 

introduced during each division cycle. Hence the final variable region of the BCR which is 

transcribed by the B cell is a variant within the oligoclonal population of rapidly 

proliferating B cells bearing mutated BCRs with varying affinities for the antigen (Allen et 

al. 2007). The highest affinity GC B cells have preferential survival rates, and over time the 

final affinity of the Ab produced by the LLPC or the BCR of the MBC evolves to becoming 

much higher than the affinity of the original BCR of the B cell which recognised the 

antigen. At the same time, negative selection against self-antigen occurs to remove the self-  
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Figure 1.1: Programming of differentiation from a naive B cell to MBC or LLPC. 
Taken from McHeyzer-Williams M et al. Nature Reviews Immunology 2012. 
 

 
 

a and b) Interaction between B cells and Tfh cells in germinal centres initiate and influence 
B cell expansion, differentiation pathways, extent of affinity maturation by somatic 
hypermutation (SHM) and isotype switching through class-switch recombination (CSR). c)  
GC B cells scan antigen sequestered as immune complexes on the long processes of 
follicular dendritic cells. The affinity of the B cell receptor for the antigen influences their 
update, processing and presentation on MHC Class II molecules. The affinity also triggers 
downstream signals that determine whether the B cell survives and differentiates into short-
lived PCs, MBCs or LLPCs, or undergoes apoptosis (positive and negative selection). d) 
The signals that are required for the development of Tfh cells, as well as the molecular 
interactions between the TCR and peptide-MHC class II and other co-stimulatory 
molecules and how they influence the differentiation of B cells are very complex and are 
still being defined. e) GC B cells can undergo several rounds of recycling through the light 
and dark zones and re-initiation of somatic hypermutation which results in affinity 
maturation. f) GC B cells exit the GC as MBC or LLPC. 
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reactive clones produced by somatic hypermutation. These proliferating GC B cells, which 

are known as centroblasts and centrocytes, form a distinct structure which can be seen as 

light zone and dark zones (MacLennan 1994). Follicular dendritic cells (FDCs) express the 

chemokines CXCL13 as well as integrins which attract centroblasts to the light zone. 

Movements between the light and dark zone are bidirectional, depending on the 

concentration gradient of the chemokines CXCL12 and CXCL13 and the corresponding                  

expression of the chemokine receptors CXCR4 and CXCR5 on the differentiating 

centroblasts (Allen et al. 2004). This cycle of cellular movements, which is regulated by 

changes in expression of chemokine and chemokine receptors, and the accompanying 

molecular changes within the B cell, underpins the mechanisms that regulate antigen-

specific clonal evolution during the development of B cell memory (Allen et al. 

2007;Schwickert et al. 2007). Reiterative GC cycles of somatic hypermutation and affinity-

based selection rapidly expands the highest-affinity variants of the original antigen-specific 

B cell compartment, whilst causing apoptosis of self-reactive and low-affinity clones 

(Takahashi et al. 1999), and this results in affinity maturation of the humoral immune 

response (Allen et al. 2007;Phan et al. 2009;Victora et al. 2010).  

 

Isotype switching, which is the changing of the constant region of the Ab heavy chain, 

occurs via class switch recombination. This is a process which is stimulated by CD40 

binding and switching from IgM and IgD to IgG, IgA or IgE is influenced by the local 

cytokine milieu (Cazac & Roes 2000;Snapper & Paul 1987) and the number of mitotic 

cycles the cell undergoes (Tangye et al. 2002). Unwanted constant region (CH) exons are 

excised by the enzyme AID in the form of circular DNA by double-stranded breaks (DSB) 

at defined switch regions (Stavnezer et al. 2008). The gene segments surrounding the 

deleted portion are rejoined by non-homologous end joining (NHEJ) or microhomology 

joins to re-form a functional immunoglobulin gene that encodes a different heavy chain 

isotype, usually either a γ, α or ε exon. This process is mediated by several DNA repair 

enzymes including uracil DNA glycosylase and endonucleases. With the exception of the μ 

and δ genes, only one isotype is expressed by a B cell after leaving the GC. The IgG heavy-

chain has a longer cytoplasmasmic tail and induces a unique signalling cascade that confers 
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to MBC a survival advantage over B cells with IgM and enhances the overall ability of the 

class-switched B cell to survive for longer periods of time (Horikawa et al. 2007). The 

activity of AID is controlled by transcription factors including paired box binding protein 

(PAX5) (Tran et al. 2009), homeobox C4 (HOXC4) (Park et al. 2009) and forkhead box 

O1 (FOXO1) (Dengler et al. 2008). Additionally, specific cytokines can induce the 

selective expression of transcription factors which enhance class-switch recombination to 

certain isotypes, for example, the cytokine IFNγ enhances the expression of the trancription 

factor T-bet, which promotes class switching of B cells to IgG2a (Mohr et al. 2010;Peng et 

al. 2002).  

 

1.1.2: Fate determination: Short-lived PC, LLPC or MBC? 

 

The combination of antigen recognition by the BCR and pro-survival signals from Tfh cells 

(Crotty 2011;Fazilleau et al. 2009) stimulate B cells to undergo genetic reprogramming to 

differentiate into extrafollicular short-lived PCs, LLPC or MBCs and exit the GC. 

Alternatively, these B cells can recycle through the dark zone to undergo further rounds of 

proliferation and affinity maturation (McHeyzer-Williams & McHeyzer-Williams 2005) 

(Table 1.2). Signals obtained outside of this, for example those provided by Toll-like 

receptors (TLR) ligands like bacterial lipopolysaccharide as well as the local cytokine 

milieu, can influence fate determination, affinity maturation and isotype class switching.  

 

The activation and differentiation of naïve CD4+ T cells into a distinct transcriptional state 

of CXCR5hi Tfh cells is important for providing cognate T cell help in terms of cross-

linking of the BCR as well as co-stimulatory interaction such as CD40-CD40L, OX40-

OX40L and ICOS-ICOSL (Crotty 2011;Fazilleau et al. 2009). Cognate T cell help is 

crucial for the generation of MBC and LLPC. In SLAM (Signaling lymphocytic activation 

molecule)-associated protein (SAP)-deficient mice, where activated CD4+ T cells fail to 

differentiate into Tfh cells and thus do not provide T cell help, long-lived humoral memory 

is severely impaired but not short-lived Ab responses (Qi et al. 2008). The complex factors 

which are required for the maintenance of cell contact between Tfh cells and B cells are  
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Table 1.2: Factors which are required for the development of long-lived plasma cells 

and memory B cells. 
Cell type Required for 

development 
humoral 
memory 

External ligands  Transcription 
factor changes 

Cytokine 
milieu 

Ref 

Plasma cell BCR – High 
avidity, may 
require several 
cycles through the 
GC 
 
GC dependent - 
extrafollicular 
tends to be short-
lived 
 
ICOSL 
 
CD19, CD21/35 
 
CD40L, although 
CD40 
overstimulation 
favours 
development of 
short-lived 
extrafollicular PCs 
 
TLR 
 
CD27-CD70 (in 
mice) 

Retain EBL-2, 
which enables 
extrafollicular 
migration of 
LLPCs 
Blimp-1 ↑ 
XBP-1 ↑ 
Pax5 ↓ 
CTIIA ↓ 
Bcl-6 ↓ + 
Blimp-1 ↑ 
c-myc ↓ 
Bcl-2 ↑ 
SWAP-70 ↓ 
 
 

T cell 
derived 
cytokines 
– IL-2, 
IL-4, IL-
21 
BAFF 
APRIL 
 

(Shapiro-Shelef 
& Calame 2005) 

Memory B 
cells 

BCR – Moderate 
avidity, not as 
many mitotic 
cycles needed 
 
CD38 ligation 
 
Signalling through 
PLCγ2 
 
 

Appears to be 
less stringent 
compared to 
LLPC 
**Bcl-6 ↓ 
Bcl-2 ↑ 
SWAP-70 ↑ 
 

IL-21 ↓ (McHeyzer-
Williams & 
McHeyzer-
Williams 
2005;McHeyzer-
Williams et al. 
2011) 

Extrafollicular 
memory B 
cells 

    

GC B cells 

Recognition of 
pMHCII by the 
TCR of the 
cognate Th cell, 
i.e. “The 
Immunological 
Synapase” 
CD28-
CD80/CD86 
 
B cell-Th cell 
interaction 
• CD40-CD40L 

(CSR and GC 
formation) 

• OX40-OX40L 
(CSR) 

• ICOS-ICOSL 
 
Appropriate 
spatio-temporal 
control of all 
molecular 
signals 
 
Apoptosis of 
low-affinity or 
self-reactive 
clones 
• Bcl-2 ↓ 
• Bcl-XL ↓ 
 
Positive 
selection of 
high-affinity 
clones 
• T cell help 

T cell interaction 
through SLAM-
associated protein 
(SAP) 

Lose EBL-2 
Bcl-6 ↑ 
 

IL-21 
IL-4 
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still being molecularly defined and include the cytokine IL-21 (Linterman et al. 2010;Ozaki 

et al. 2002;Zotos et al. 2010), dedicator to cytokinesis protein 8 (Dock8) (Randall et al. 

2009), transcription factors like Bcl-6 (Kitano et al. 2011;Nurieva et al. 2009), and the 

micro-RNA mIR-155 (Thai et al. 2007;Vigorito et al. 2007). Loss-of-function mutations in 

these components, which affect the interaction between B cells and Tfh cells, have a drastic 

effect on the development of either MBC or LLPC.  

  

The formation of GCs per se does not appear to be strictly required for MBC formation but 

is required for LLPC formation. Bcl-6-deficient mice, which cannot make GCs nor have 

GC B cells, still can produce MBC which can persist in the quiescent state in spleen for up 

to 90 days, and can undergo isotype class-switching but not somatic hypermutation. 

However in these mice, there was a failure to generate LLPCs (Toyama et al. 2002). 

Similarly,  mice  deficient in Type 1 TNF receptor or TNFα also cannot form GCs in the 

spleen (Matsumoto et al. 1996), but these mice can still generate high affinity clones of 

MBC which are isotype switched and which are also very long lived, albeit at reduced 

numbers than in GC-competent mice. It is possible that these MBC are generated in GC-

like structures in other secondary lymphoid tissue like lymph nodes (Fu et al. 1997). 

However there are markedly reduced LLPCs in TNFα-deficient mice and LLPCs also seem 

to decrease in number at a faster rate, suggesting a survival defect in these GC-independent 

PCs either due to an intrinsically truncated lifespan, or defects in homing or adapting to 

their long-term niche. Within the GC, antigen presentation and BCR-stimulated signalling 

through PLCγ2, as well as ligation of CD38 (Ridderstad & Tarlinton 1998), are thought to 

influence the differentiation of B cells into MBC. It has been suggested that the reduction 

of Bcl-6 alone by default leads to the differentiation into MBC, whilst that reduction of 

Bcl-6 combined with upregulation of the transcription factor Blimp-1 leads to 

differentiation into PCs (Angelin-Duclos et al. 2000). 

 

Quantitative differences in affinity for antigen amongst the positively selected centrocytes 

can control their fate to become MBC or LLPC. The highest affinity clones tend leave the 

GC early with few V-region mutations, to differentiate into short-lived extrafollicular PCs 
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first producing IgM and subsequently IgG (Dal Porto et al. 1998;Paus et al. 

2006;Schwickert et al. 2011). By contrast, LLPC typically display the highest number of 

V-region mutations, and can take months to leave residual GCs, indicating that they have 

been through an extremely long-lived affinity maturation process (Phan et al. 2006;Smith et 

al. 1997;Takahashi et al. 1998). Moderate affinity clones typically differentiate into MBC 

and as a result, MBC can have more polyreactive BCRs than LLPC and can recognise viral 

escape mutants during a secondary response (Purtha et al. 2011). The introduction of a 

mouse with a selective defect in Prdm1, which encodes the ‘PC transcription factor’ Blimp-

1, has allowed extensive analysis of the transcriptional changes that occur in developing 

pre-PCs. PC commitment occurs in GCs, where high-affinity BCR stimulation, in 

combination with other signals such as CD40L, may facilitate PC commitment by 

downregulation of the transcription factors Pax5 and Bcl-6, both of which maintain the 

naïve B cell state, and upregulation of X box-Binding Protein-1 (XBP-1), a transcription 

factor that regulates the unfolded protein response protecting the cell from damage induced 

by the continuous production and secretion of high amounts of Ab (Hu et al. 2009;Iwakoshi 

et al. 2003;Reimold et al. 2001;Todd et al. 2009). Although CD40 stimulation is required 

for development of PCs (Takahashi et al. 1998), overstimulation of CD40 curtails the 

production of LLPC and leads to differentiation into short-lived PCs (Erickson et al. 2002). 

Full commitment to PC differentiation occurs via induction of the transcription factor 

Blimp-1, the ‘master switch’ of PCs (Angelin-Duclos et al. 2000). Blimp-1 exerts a 

positive feedback loop that induces the expression of XBP-1 and represses Pax5, Bcl-6 and 

other genes important for B cell identity such as MHC class II transactivator (CIITA) and 

c-myc, allowing genetic ‘freedom’ of development into PCs (Calame et al. 2003;Shapiro-

Shelef & Calame 2005). CD40 and TLR stimulation help to repress Bcl-6 through NF-κB 

and IRF4-mediated pathways. Blimp-1 also represses the chemokine receptors CXCR5 and 

induces the expression of CXCR4 (Shaffer et al. 2002), which allows the PC to exit the 

GC, which expresses the chemokine CXCL13 and home to peripheral bone marrow niches 

which express CXCL12.  
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1.2: Memory B cells – subsets and localisation 

 

MBCs derived from GC B cells have the hallmark features of having an increased 

frequency to a particular antigen, constitutive TLR expression, and having the ability to 

differentiate more rapidly into PCs which secrete affinity matured and isotype switched 

Abs (Good, Avery, & Tangye 2009). However it has become increasingly evident that 

MBCs have a variety of surface phenotypes, and not all MBCs have undergone somatic 

hypermutation or class switch recombination (McHeyzer-Williams & McHeyzer-Williams 

2005;Sanz et al. 2008;Tangye & Good 2007;Yoshida et al. 2010). The MBC population is 

a heterogeneous one, but is still a functionally distinct population from other antigen-

experienced B cell populations, such as GC B cells (PNA+ GL7+), or PCs (CD138+, Blimp-

1hi) and have discrete effector functions which are important in maintaining humoral 

memory.  

 

Human MBCs can be distinguished by the downregulation of IgD, an identifier of a B cell 

that has undergone class-switch recombination. Based on this definition, IgD- MBCs can be 

subdivided into IgM+ and IgG+ MBCs, both of which have undergone affinity maturation 

and have a more differentiated transcriptome than naïve IgD+ B cells. IgM+ MBC have 

been reported to be important in both thymus-dependent and thymus-independent immune 

responses and in cross-protective immunity during co-infection; for example they play a 

protective role during Cryptococcus co-infection of HIV patients (Subramaniam et al. 

2009). Human MBCs can also be identified using the ‘pan MBC marker’ CD27 (Agematsu 

et al. 2000). Following this criteria, CD27+ MBCs are seen to comprise nearly half (40-

50%) of total peripheral B cells from adult blood or secondary lymphoid organs. 

Surprisingly, using CD27 to define MBCs revealed that a large proportion of CD27+ MBCs 

had not undergone class-switch recombination and were still IgD+, with 40% of CD27+ 

MBC being IgM+ IgD+ compared with 20% of CD27+ MBC being IgM+ IgD-. However, 

these CD27+ IgM+ IgD+ peripheral blood B cells had undergone somatic hypermutation, 

indicating that they were bona fide antigen-experienced cells which had been through the 

GC reaction (Klein et al. 1998). Recently, in the light of the identification of the ATP-
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binding cassette (ABC)B1 transporter being expressed only on  human mature naïve B 

cells, while being absent on memory and transitional B cells, it was demonstrated that a 

small population of (ABC)B1- IgG+ MBCs were CD27- (Wirths & Lanzavecchia 2005). In 

summary, the MBC population in humans is a very heterogeneous one and bears a variety 

of surface markers and isotypes. 

 

Due to the low frequency of Ag-specific MBC in mice, it is more difficult to characterise 

the MBC population in mice. Some groups have used transgenic mice and knock-in mice to 

increase the frequency of Ag-specific MBC in order to overcome this handicap. In one 

study using mice in which 2% of MBC were NP-specific after immunization, Anderson and 

colleagues (Anderson et al. 2007) found that NP-binding MBCs could be separated into 

subpopulations based on relative expression of CD80 and CD35. Surprisingly, the CD35+ 

CD80+ fraction, which comprised the majority (70%) of NP-specific MBC, had unmutated 

V genes, whereas only the remaining minority CD35- CD80+ NP-specific MBC fraction 

had undergone somatic hypermutation. However the unmutated MBC were as long-lived as 

their mutated counterparts and maintained their distinct surface markers for the length of 

the study. In another study, Pape and colleagues used mice in which the BCR-specificity 

had been knocked into the endogenous H chain locus, which meant that the monoclonal B 

cell population was capable of class switching. They identified CD38 as a good marker to 

distinguish class-switched memory (CD38+) from GC B cells (CD38-), and using this, they 

demonstrated that IgM+ and IgG+ MBC have different sites of generation and kinetics after 

primary immunization (Pape et al. 2003).  

 

One of the drawbacks of genetic manipulation to increase the frequency of MBC is that it 

may introduce confounding effects on the emerging MBC populations. Therefore a further 

study was done using a novel flow-cytometry based technique to characterise the 

phenotype of the endogenous population of R-Phycoerythrin (PE)-specific MBC formed 

after immunisation with PE. Confirming previous data, this study demonstrated that there 

were significant populations of both PE-specific IgD- IgM+ and IgD- IgG+ MBC (Pape et 

al. 2011). Furthermore, after adoptive transfer and re-exposure to antigen, most transferred 



____________________________________________________ Chapter 1: Introduction 

 

 

 

31

IgD- IgG+ MBC differentiated into IgG-secreting PCs, whilst IgD- IgM+ MBC 

predominantly gave rise to IgM+ and IgG+ GC B cells rather than differentiating into PCs, 

indicating that they had discrete effector functions (Pape et al. 2011). It is possible that the 

ability of IgG+ MBC to directly differentiate into PCs was due to their ability to be 

activated in the presence of pre-existing high-affinity neutralizing serum Ig, unlike their 

IgM+ counterparts which are inhibited from differentiating into PCs by pre-existing serum 

Ig (Pape et al. 2011).  

 

Another study made use of a Rosa26-loxP-EYFP reporter mouse crossed with a transgenic 

knock-in mouse with Cre inserted into the Acida locus which encodes AID, which genetic 

labelling of AID-expressing cells with yellow fluorescent protein (YFP), i.e. antigen-

experienced GC B cells and MBC. (Dogan et al. 2009). This study not only confirmed the 

existence of both IgM+ and IgG1+ YFP+ (i.e. Ag-experienced) MBCs after secondary 

challenge with SRBC, but also that IgM and IgG MBCs had distinct differentiation 

pathways after re-exposure to antigen. Furthermore, this study demonstrated that there were 

distinct localisations of MBC, with clusters of IgM+ and IgG1+ MBC persisting for up to 8 

months within GC-like structures, and others residing in extrafollicular locations, and a 

minority being CD62L+ recirculating MBC (Dogan et al. 2009). The MBC which localised 

and proliferated in GC-like structures were in close contact with FDCs and CD4+ T cells 

where antigen could be maintained for long periods of time. These MBC were probably 

dependent on antigen for long-term maintenance, and these could be a distinct mechanism 

of survival from the population of recirculating quiescent MBC. By contrast, after 

immunisation with the NP-CGG in alum, these authors did not observe GC-like structures 

after 3 months, but instead NP-specific MBC were observed mainly outside the B cell 

follicles and in the circulation, indicating that the nature of the MBC response was highly 

influenced by the type of antigen. Whether it is an intrinsic difference in their genetic 

programming by the nature of the antigen, or their microenvironment that determine the 

separate functions and localisations of MBC remains to be studied.  
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1.3: T cell-independent B cell memory 

 

Some MBC and LLPC can be generated in a thymus-independent (TI) manner outside of 

the GC (Defrance et al. 2011). These have been termed TI-MBC and TI-LLPC, and they 

are typically generated by TI-antigens such as pneumococcal capsular polysaccharides. 

Human studies have demonstrated that TI-MBC can be long-lived and can render 

protective humoral immunity in adults for at least 9 years after the initial dose (O'Brien et 

al. 2007). However their ‘memory’ features are a subject of controversy – some studies 

report that TI-MBC differ phenotypically and functionally from thymus dependent (TD)-

‘canonical’ MBC, in that there is no enhanced sensitivity to Ag re-stimulation and no 

extended lifespan – in fact, phenotypically and functionally they are very similar to naïve B 

cells, except that there is an expansion of Ag-specific B cells, giving them a competitive 

edge in recognising Ag because of the increased pre-existing numbers during re-infection 

(Alugupalli et al. 2004). Indeed, because polysaccharide antigens tend to be retained in the 

host for longer periods of time, giving rise to continual effector responses, TI-MBC may 

not have developed these TD characteristics, and instead are subject to strict negative 

feedback regulation by pre-existing Ab (Obukhanych & Nussenzweig 2006). Indeed, TI-

MBC are unresponsive to a secondary challenge with polysaccharide vaccine when 

secondary immunisation was performed 5 years after primary immunisation, possibly due 

to the inability of TI-MBC to differentiate into PCs in the presence of pre-existing specific 

Ab. In one study, in order to ‘unmask’ their effector memory function, TI-MBC were 

adoptively transferred into immunodeficient SCID mice, and this showed that TI-MBC 

were able to mount typically ‘anamnestic’ responses towards both TI and TD antigens, and 

they underwent isotype class switching and differentiation into IgG producing PCs (Moens 

et al. 2008).  

 

TI-LLPCs have been shown to have a lower secretion capacity than TD LLPC, but they do 

not undergo a contraction phase like short-lived PCs, and so are maintained at higher 

numbers. CD5- B-1b cells are thought to be the main precursors for TI-MBC (Alugupalli et 

al. 2004), but the precursors for TI-LLPC are unknown. How LLPC are generated outside 
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the GC is unknown as it has been shown that GCs are necessary for LLPC development, 

but it is possible that extensive cross-linking of the BCR can be induced by TI-Ag, which 

tend to have expansive regions of repetitive epitopes, while the necessary T cell help may 

be overcome by TLR agonists or inflammatory cytokines, particularly IL-1.  

 

1.4: Long-lived plasma cells migrate to bone marrow niches 

 

LLPCs can develop from any type of activated B cell: naive B-2, marginal zone or 

follicular, GC and MBCs. After a secondary immunisation of mice with ovalbumin, about 

80-95% of the resulting PCs are short-lived PCs (SLPC) and contract after resolution of 

GCs, whilst the remaining can develop into LLPC (Manz et al. 1997). LLPC can have 

different IgG subclasses and tend to have more V-gene mutations than SLPC and MBCs 

(Smith et al. 1997). As they develop, dendritic cells and monocytes/macrophages secrete 

IL-6 and APRIL, providing survival factors to the PC as it migrates from the perivascular 

areas to the medullary cords (Moisini & Davidson 2009). Distinct changes in phenotype 

occur in LLPC intermediaries as they appear in the circulation on their way to the bone 

marrow. Recently, the BlimpGFP reporter strain was used to define developmental stages of 

PC differentiation by characterising the phenotypic features of PCs at different stages of 

increasing BLIMP-1 expression (i.e. at different stages of maturity into terminally 

differentiated LLPC) (Kallies et al. 2004). An increase in GFP expression from low to high 

was associated with an increasing Ig secretion and a decreasing proliferative capacity (both 

downstream effects of BLIMP-1), confirming their identity as terminally differentiated 

PCs. As plasma calls accrued BLIMP-1 expression, they also downregulated B220, CD19 

and MHCII, and all GFPhigh cells in the bone marrow were CD19- B220-, MHCIIlow. All 

GFP+ cells expressed highly heterogeneous levels of CD138 (syndecan-1), a commonly 

used marker for ASC, as well as CD38, CD62L and CD43. Both GFPint cells in the spleen 

and GFPhigh cells in the bone marrow were CXCR5low CXCR4high, indicating that the 

transcriptional programmes mediating LLPC trafficking to the bone marrow occurred early 

in LLPC development.  
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The phenotype of LLPC precursors was also investigated using a Ig transgenic B cell 

adoptive transfer system by O'Connor and colleagues (O'Connor et al. 2002), where the 

transferred cells could be tracked with congenic and allotypic markers as they progressed 

through the primary immune response. Two weeks post-immunisation, Tg post-GC LLPC 

precursors in the bone marrow could be distinguished by their downregulation of B220, 

MHCII and surface Ig, and upregulation of LFA-1, VLA4, CD80, CD86, CD126 and 

CD127, when compared to Tg naive splenic B cells. Interestingly, irradiation of the mice at 

7 and 14 days after immunisation caused >70% loss in BM ASC, whereas irradiating at 

Day 28 and 49 after immunisation did not result in this decay, indicating that PCs that enter 

the BM 2-3 weeks after immunisation are the true LLPCs.  

 

These phenotypic changes have functional consequences. First, by downregulating surface 

Ig, MHCII and co-stimulatory molecules, the PC becomes unable to take, process and 

present antigen and unresponsive to further antigen stimulation. Second, they enable PCs to 

leave the GC and migrate to the bone marrow as LLPC precursors or terminally 

differentiated LLPC. Third, surface adhesion molecules like integrin α4β7, E- and P-

selectin, the integrins LFA and VLA, CD44, CD11a and CD18, or other molecules like B 

cell maturation antigen (BCMA) (O'Connor et al. 2004), CD28 and CD93 (the function of 

which is unknown) (Chevrier et al. 2009) are essential for LLPC to remain in the bone 

marrow niches, or increase their ‘stickiness’ in bone marrow niches in the face of 

competition from migratory plasmablasts, as deficiency or loss of these markers by loss-of-

function genetic manipulation or injection of blocking antibodies results in normal LLPC 

development but inefficient retention in the bone marrow.  

 

Trafficking from the spleen to bone marrow survival niches is regulated by selective 

expression of chemokine receptors and adhesion molecules. Developing LLPCs in the GC 

downregulate surface expression of the chemokines receptors CXCR5 and CCR7 (Ellyard 

et al. 2005), which control the trafficking of activated B cells into and within the GC; this 

enables the LLPC precursors to disengage from the original site of activation. Most 

plasmablasts, whether destined to become SLPC or LLPC, upregulate surface expression of 
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CXCR4 after activation, and this causes them to migrate towards its ligand CXCL12, which 

is expressed in by reticular cells in the red pulp of the spleen, medullary cords of the lymph 

nodes as well as stromal cells in the bone marrow (Hargreaves et al. 2001;Wols et al. 

2002), clearly marking a pathway of egress from GCs to the bone marrow. LLPCs and 

CXCL12-secreting bone marrow stromal cells are very closely apposed (Tokoyoda et al. 

2004). The specific LLPC stromal cells are VCAM-1+ PECAM- IL-7- which comprise 

approximately 17% of bone marrow mesenchymal stromal cells (Tokoyoda et al. 2004), 

and are believed to be responsible for limiting the estimated capacity in mouse BM for 

LLPCs at approximately 106 PCs at any one time (Radbruch et al. 2006). These stromal 

niches could play an important role in maintaining LLPC ‘stickiness’, which makes them 

less susceptible to dislocation by the influx of new plasmablasts. Long-term PC survival in 

the spleen also depends on colonisation of limited niches, initially in close association to 

CD11chi mature DCs but later dispersing the red pulp. However the responsiveness of 

plasmablasts generated by a secondary immune response to CXCR3 and CXCR4 ligands 

only lasts for 1-2 weeks as measured in transwell migratory assays (Hauser et al. 2002). 

Therefore the role of CXCL12 expressed by stromal cells may be limited to attracting 

newly produced LLPC precursors to the bone marrow, rather than be a LLPC survival 

factor. After two weeks, LLPC precursors and LLPC lose all recirculatory potential and die 

if not contained within survival niches. Competition of LLPC precursors for limited 

survival niches is mediated by phenotypic changes that occur during development 

(Radbruch et al. 2006). 

 

Expression of CXCR3 appears to be conditionally expressed on plasmablasts after exposure 

to interferon-γ (IFNγ) (Muehlinghaus et al. 2005), which is present in inflamed tissue. This 

attracts plasmablasts to migrate to sites of original infection and then, as IFNγ levels drop 

after resolution of inflammation, to be released. This is an important homeostatic regulatory 

system to prevent the accumulation of potentially autoimmune Ab-secreting cells in 

peripheral tissues. The persistence of inflammation is probably a precondition for the 

generation of pathogenic ectopic LLPC niches, which are found in many autoimmune 

diseases such as rheumatoid arthritis (Tsubaki et al. 2005).  
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Ex vivo bone marrow LLPC die within 24 hours, but can be rescued by in vitro culture with 

cytokines like interleukin (IL)-5, IL-6 (in synergy with CD44), tumour necrosis factor 

(TNF)-α, (Cassese et al. 2003) and a proliferation-inducing ligand (APRIL), which is a 

ligand for CD138 (syndecan-1) (Ingold et al. 2005). Although the cytokines IL-6, IL-10 

and IL-5, are able to support LLPC survival in in vitro culture, mice deficient in these 

cytokines are still able to generate and maintain normal numbers of LLPC, suggesting that 

they are possibly redundant survival resources. IL-21 is required by B cells in order to 

differentiate into LLPC but whether it is required for the survival of LLPC is also unclear. 

Mice injected with blocking antibodies for APRIL (Benson et al. 2008) or B cell activating 

factor (BAFF) (Avery et al. 2003) have reduced numbers of LLPC. In APRIL-deficient 

mice, there is delayed but eventually normal accumulation of LLPC in BM, although class 

switching to IgA and survival of isotype switched MBC is impaired. Co-blockade of 

APRIL and BAFF has a significant impact on B cells, depleting naïve B cells, GC B cells 

and PC compartments, whilst leaving only the MBC compartment untouched, 

demonstrating that LLPC and MBC are discretely regulated compartments with 

independent survival needs. The cognate receptors of BAFF and APRIL, which are BCMA 

and TACI are important for survival of PCs in the bone marrow (Benson et al. 2008). 

APRIL has been shown to be secreted by a number of different bone marrow-resident cells, 

including eosinophils (Fröhlich et al. 2011), bone marrow macropahges (Belnoue et al. 

2008), and in the periphery, inflammatory neutrophils can secrete APRIL and create ectopic 

PCs niches in the mucosa (Huard et al. 2008). 

 

1.5: Maintenance of serum antibodies in the absence of antigen 

 

After the clearance of infection and resolution of GCs, there is no or very little antigen 

remaining in the host. The half-life of serum Ig has been estimated to be about 3 weeks in 

humans, and about 1 week in mice (Vieira & Rajewsky 1988). Despite this, serum Ab can 

be maintained at persistently elevated titres for very long time, for up to 90 years in humans 

(Yu et al. 2008b) and for at least 250 days in the mouse, in the absence of re-infection. 
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MBC and LLPC both contribute to this maintenance of high Ab titres, however how they 

do this is still unknown.  

 

The necessity for persisting antigen for the maintenance of long-lived serum is difficult to 

determine, because it is difficult to ascertain whether there are minute amounts of residual 

or cross-reactive antigens in both humans and laboratory animals. It has been argued that 

persisting antigen is necessary for the maintenance of high titres of Abs and it is dependent 

not on memory T and B cells nor on LLPCs, but on continuous antigen-driven maturation 

of naïve B cells to PCs (Gray 2002;Tarlinton 2006;Traggiai et al. 2003;Zinkernagel et al. 

1996). The prolonged generation of LLPC for weeks to months after the original stimuli, 

with PC continuing to leave the secondary lymphoid organs from residual GCs, suggests 

this may be true and continuous replenishment of short-lived PCs may be necessary to 

replenish serum Ab titres. As described earlier, the finding that significant numbers of 

MBC are localised in persistent GCs in the spleen for up to 8 months after primary 

immunisation, and that the artificial programming of persistent Abs to Influenza requires 

the generation of persistent GCs in lymph nodes for up to 1.5 years, is evidence that antigen 

persistence and continuous differentiation of B cells and MBCs into PCs is important for 

the maintenance of long-term Ab titres. 

 

In order to overcome the difficulties in obtaining an antigen-free system, one group made 

used of a mouse strain where the BCR specificity could be genetically switched following 

immunisation, so that the MBC no longer recognised the antigen that induced them 

(Maruyama et al. 2000). This showed that MBC could persist for long periods of time in 

the absence of cognate BCR stimulation. However, in a conditional knock-out mouse 

model where the enzyme phospholipase Cγ2 (PLCγ2), which is a downstream component 

of BCR signalling, was excised with recombinant Cre under the Cγ1 promoter, the 

secondary humoral response was impaired due to a drastic reduction in the number of GCs 

and MBCs, demonstrating that BCR-mediated signals are necessary for the survival of 

MBC. The role of antigen sequestration on FDCs for the maintenance of MBCs has also 

been investigated but has given contradictory results. One group used mice where B cells 
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were unable to secrete Ig and therefore could not make immune complexes which could be 

bound by FDCs, and showed that immune complexes sequestration on FDCs was not 

necessary to maintain a long-lived MBC population (Hannum et al. 2000). By contrast, in a 

bone marrow chimera system where FDCs were deficient in complement receptor 2 (CR2) 

and therefore could not bind immune complexes, while B cells were wild-type, there was 

poor maintenance of serum IgG titres as well as an impaired secondary response due to a 

reduction in GC and MBC (Fang et al. 1998).  

 

Nevertheless, immune complexes sequestered on FDCs has a ‘natural’ half-life and their 

decrease may be hastened by internalisation by centrocytes, meaning that, if Ab titres were 

dependent on continuous antigen-driven differentiation of B cells into ASC, then Ab levels 

would decay at the same rate as the decay of GCs or immune complexes (Kesmir & De 

Boer 1999). Mathematical modelling showed that the size and duration of GC reactions and 

indeed, the generation and rescue of high-affinity centrocytes as they recycle through the 

light and dark zones of the GC, is directly correlated with the availability (half-life and 

dose) of Ag, (Kesmir & De Boer 1999). The half-life of a protein Ag on FDCs seems to be 

of the order of 30 days (Oprea & Perelson 1997), but MBC and serum Ab can last for up to 

a lifetime of a mouse, and for up to 90 years in humans. Therefore the longevity of Ab 

outlasts the longevity of antigen sequestered and brings into question whether antigen alone 

is capable of maintaining serum Ab titres for very long-term time points. 

 

It is not known whether both MBCs and LLPCs are equally generated by the immune 

response and can equally survive over the years. Certainly the inflammatory context of the 

infection or vaccination can influence the differentiation of B cells towards either MBC or 

LLPC. Their lifespans are probably genetically imprinted and MBC and LLPC appear to 

rely on mutually independent mixtures of intrinsic and extrinsic resources for survival. 

MBCs undergo a slow homeostatic turnover rate of less than 1 division per month and, 

unlike all other B-2 cell subsets and LLPC, are independent of the cytokines BAFF and 

APRIL for survival. By contrast, LLPC are terminally differentiated, do not undergo 

mitosis, and can maintain a non-proliferating, senescent phenotype in vivo for as long as 90 
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days, as demonstrated by bromo-deoxyuridine pulse-chase labelling of splenic LLPC after 

immunisation of mice with 4-hydroxy-3-nitrophenyl acetyl (NP)(Sze et al. 2000). They are 

crucially reliant on a specific transciptome (Blimp-1, Aiolos, XBP-1, Ets-1, anti-apoptotic 

factors like BCL-2 family protein A1, A20 and IAP-2) and compete for external survival 

signals like BAFF and APRIL for survival against the stresses of continuously secreting 

large amounts of immunoglobulin (reviewed by (Chu et al. 2011;Radbruch et al. 

2006;Shapiro-Shelef & Calame 2005)). The anatomic distribution of MBC and LLPC are 

also different – 80-90% of PCs reside in the bone marrow (Manz et al. 1997), while the 

anatomic distribution of IgM+ and IgG+ MBCs appears to be largely influenced by the 

context of different infections and immunisation strategies, as described previously 

(Doherty 1995).   

 

Generally, models of how serum antigen-specific Ab responses are maintained are divided 

into MBC-dependent or LLPC-dependent mechanisms. In the first, Abs are maintained 

either by repeated re-stimulation of MBCs into short-lived PCs or LLPCs. Re-stimulation 

can occur through the BCR by re-infection, scheduled boosters, sequestered antigen or 

cross-reactive antigens, or in any inflammatory context with TLR ligands and bystander T 

cell help. If levels of serum Abs are a direct result of MBC, there would be peaks and 

troughs of Ab levels, where Ab levels correlate with numbers of circulating specific MBCs. 

In the second LLPC-dependent model, Abs are secreted autonomously by LLPC, where Ab 

levels are stable and correlate with numbers of LLPCs, do not correlate with MBC numbers 

and are independent of antigen stimulation (Amanna et al. 2007). These models are 

outlined briefly below, but longitudinal correlation studies in humans as well as the 

findings of various MBC or LLPC depletion studies will be discussed in greater detail in 

Chapter 3. 

 

1.5.1: Antibody maintenance by long-lived plasma cells 

 

The ability of LLPC to maintain serum Ab titres independently of MBC was demonstrated 

by two groups in the late 1990s. In the study by Manz et al, irradiation of LCMV-immune 
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mice, which depleted all subsets of B cells including MBC and short-lived PC but not 

radiation-insensitive LLPC, demonstrated that in the absence of MBC, a substantial number 

of LLPC were still detected up to 250 days later, showing that LLPC can survive for long 

periods of time in the absence of replenishment by MBC (Manz et al. 1997). In the other 

study by Slifka et al, adoptive transfer of OVA-specific LLPCs from bone marrow, but not 

MBCs, conferred specific and long-lasting Ab titres to antigen-free IgH syngeneic 

recepients, showing that LLPCs survived and were capable of continuously producing Ab 

in the absence of antigen or MBC (Slifka et al. 1998). More recently, two MBC depletion 

studies by Amana et al and DiLillo et al, where MBCs were depleted using anti-CD20 

mAbs showed that, in spite of rapid and drastic depletion of the MBC compartment, LLPC 

numbers in spleen and bone marrow as well as pre-established serum Ab titres remained 

constant (Ahuja et al. 2008;DiLillo et al. 2008).  

 

Some investigators argue that the Ab-secreting population in the bone marrow are not all 

uniformly terminally differentiated LLPC, but contains of a group of pre-LLPC precursors, 

which are able to undergo a final differentiation step to becoming a ‘true’ LLPC (O’Connor 

et al. 2002). They can theoretically do this when specific ‘true’ LLPCs diminish in number; 

hence they are the most likely precursor cell to replenish the LLPC niche. The exact 

transcriptional mechanisms which ‘halt’ development at the pre-LLPC stage, and what 

signals trigger the final differentiation step into LLPC, are not clear. Little is known about 

whether they are capable of undergoing homeostatic turnover, which would make them a 

self-replenishing pool of cells capable of replenishing the LLPC niche. 

 

1.5.2: Antibody maintenance by memory B cells 

 

LLPCs have a finite lifespan with a half-life of about 138 days in mice, and over time, 

LLPCs are believed to turnover, or undergo attrition from their finite niches by competition 

from new migrating plasmablasts generated by heterologous infections. This has led some 

investigators to argue that in these situations, long-lived serum Ab could be replenished by 

MBC (or, as described above, by ‘LLPC precursors’). MBC have a low turnover rate just 
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sufficient to maintain its own frequency and repertoire as a group. MBCs differentiate into 

Ab-secreting cells (ASCs) after stimulation through the BCR, or through signals from 

cytokine receptors and TLRs (Traggiai et al. 2003). In humans, MBCs constitutively and 

exclusively express high levels of Toll-like receptors, e.g. TLR9 (which binds 

unmethylated CpG) and TLR4 (which binds bacterial lipopolysaccharides) (Bernasconi et 

al. 2003). This allows only MBCs, and not naïve B cells, to respond to innate signals and 

differentiate into plasmablasts even in the absence of antigen-specific BCR signalling. 

Bystander CD4+ T cell help in vitro also stimulates non-specific MBCs to differentiate into 

PCs, possibly because of increased availability and upregulation of co-stimulatory 

molecules and production of Th2 cytokines (Bernasconi et al. 2003;Bernasconi et al. 2002). 

In vitro, addition of TLR9 agonists effectively elicited polyclonal MBC differentiation into 

PCs, whilst non-follicular naive B cells required TLR9 agonist as well as BCR and CD40 

stimulation to promote a similar response. In human subjects receiving a booster for tetanus 

toxoid (TT) vaccination, besides the increase in TT-specific Ab, there was a polyclonal 

boost of lower magnitude for Ab titres for unrelated antigens, suggesting that during an 

antigen encounter, bystander help and the inflammatory context could stimulate some 

unrelated MBC to differentiate into PCs. However, this has not been subsequently 

confirmed in other studies in mice (Benson et al. 2009) or humans (Amanna & Slifka 

2010), there are now alternative hypotheses proposed to explain the boost in non-specific 

Ab, for example, the residual Ab generated by a very prolonged primary immune response 

triggered by residual antigen sequestered on FDCs, or that the spike in unrelated serum Ab 

is a consequence of dislodgement of pre-existing LLPC from the BM niches by newly 

formed plasmablasts. MBC may ‘sense’ deficiencies in ‘old’ PCs or reduction in specific 

nAb titres, either by purely stochastic means or a negative feedback mechanism, and react 

by differentiating into PCs, which migrate to the bone marrow to re-enhance levels of 

specific nAb in serum.  

 

The second aim of this thesis is to investigate what happens to pre-established humoral 

immunity during sequential heterologous infections. In this introduction, the humoral 



____________________________________________________ Chapter 1: Introduction 

 

 

 

42

immune responses to Influenza A and malaria infection will be described, as these are the 

two infectious models used in my experiments.  
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1.6: Influenza overview 

 

Influenza is an infection caused by the RNA virus of the family Orthomyxoviridae. It is 

transmitted through the air in aerosols containing virus, or by direct contact with bird 

droppings or nasal secretions. In this thesis, the virus that is used is one of the five genera 

of the family, the Influenza A virus. Following infection of mice with a replication-

competent recombinant influenza virus carrying a GFP reporter gene in the NS segment 

(NS1-GFP virus), which allowed visualisation of the early events of Influenza A infection, 

it was recently shown that Influenza A viruses grow rapidly in the respiratory mucosa, with 

respiratory epithelial cells being the primary target, where they replicate to produce large 

amounts of virus that then infects alveolar macrophages and local dendritic cell 

populations, B cells and NK cells. Infection with Influenza A viruses begins near the 

trachea and main stem bronchi, spreading with time into bronchioles (Manicassamy et al. 

2010). Inoculation of influenza virus by the intranasal route results in a highly localised 

pulmonary infection because of the dependence of viral replication on a trypsin-like 

enzyme that is largely restricted to respiratory epithelial cells (Steinhauer 1999).  

 

1.6.1: Innate immune response 

 

The Influenza A virus single-stranded RNA triggers all three major families of the innate 

pattern recognition receptors (PRRs), including Toll-like receptors (TLR), Nod-like 

receptors (NLR), and the host cell cytoplasmic RNA helicases called retinoic acid-

inducible gene I (RIG-I) like receptors (RLR) (Pang & Iwasaki 2010;Sanders et al. 2011). 

Activation of downstream pathways following triggering of these PRRs leads to production 

of Type 1 interferons (IFNα and IFNβ), IL-1, IL-18 and IL-6, which creates an ‘anti-viral’ 

state, inhibiting protein synthesis in host cells and limiting virus replication (Alexopoulou 

et al. 2001). Influenza single-stranded RNA activates the NLR, NOD-like receptor family, 

pryin domain containing 3 (NLRP3), which induces the formation of the inflammasome, 

generating active caspase-1, which cleaves pro-IL-1B, IL-18, etc., resulting in the release of 

these cytokines, which are involved in the induction of Th17 and CD4+ T cell responses 
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(Allen et al. 2009). Activation of RIG-I is important for early cytokine production 

(Pichlmair et al. 2006). Activation of these early viral recognition signals is essential for 

protecting mice from death. 

 

A number of resident innate lymphocytes like alveolar macrophages (Kumagai et al. 2007), 

DCs (Piqueras et al. 2006) and NK cells (He et al. 2004;Mandelboim et al. 2001), as well 

as respiratory epithelial cells (Herold et al. 2006), are activated through these PRRs 

(Tumpey et al. 2005). In addition, infiltrating cell populations like inflammatory 

monocytes, DCs migrating from lung and blood (Belz et al. 2004), natural killer (NK) cells 

and neutrophils are attracted by changes in chemokine expression on the respiratory 

epithelium (Herold, von Wulffen et al. 2006). The increase in innate cells in the lung 

results in inflammation, production of nitric oxide synthase (NOS) and direct killing of 

infected epithelial cells by the triggering of apoptosis through a TNF-related apoptosis-

inducing ligand (TRAIL)-dependent manner. Furthermore, antigen presentation 

(GeurtsvanKessel et al. 2009a) initiation and maintenance of the GC reaction 

(GeurtsvanKessel et al. 2009b) leads to the activation and regulation of specific adaptive 

immune responses, primarily consisting of B cell and CD8+ T cell proliferation and survival 

(Wijburg et al. 1997). 

 

1.6.2: Humoral immune response 

 

Despite intranasal Influenza A infection being localised to the respiratory epithelium, it 

generates both a local and systemic humoral response, a phenomenon which is similar to 

the humoral immune response towards most respiratory infections. The humoral response is 

both essential for clearance of virus during primary infection (Gerhard et al. 1997) and for 

long-term protective immunity (Waffarn & Baumgarth 2011). High titres of serum 

neutralising Ab specific for the virus variable surface glycoprotein haemagglutinin (HA) 

and, to a lesser extent, against neuraminidase (NA), correlate very well with protective 

immunity after both natural infection and intramuscular vaccination. A single natural 

infection with any strain of influenza virus is capable of eliciting long-lived Ab-mediated 
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protection against the homologous infection, as evidenced by protective titres of nAb found 

in donors infected with the 1918 ‘Spanish’ influenza virus 90 years previously (Yu et al. 

2008a), as well as after experimental Influenza A infections in mice (Hyland et al. 

1994;Jones & Ada 1987).  

 

Humoral responses towards respiratory viruses can be generated locally in the nasal-

associated lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT) 

(Rangel-Moreno et al. 2005;Wijburg et al. 1997;Zuercher et al. 2002). B cells in the 

mediastinal lymph node encounter viral antigens transported from the site of infection by 

DCs by day 3 of infection, or directly capture viral antigens in the mediastinal lymph nodes 

(MLN) or at site of infection for transport to the lymph nodes (Manicassamy et al. 2010). 

GC-like structures, with distinct B and T cell zones appear in the BALT, and are sites of B 

cell proliferation. Furthermore, in the absence of peripheral lymphoid organs like spleen, 

lymph nodes and Peyer’s patches, the isolated immune response in the BALT was able to 

clear influenza infection and result in a small measure of protective immunity (Moyron-

Quiroz et al. 2004). Both GC and extrafollicular B cell responses can be induced by 

Influenza A infection, although MBC and LLPC are predominantly produced by the GC 

reaction.  

 

The mucosal humoral immune response is distinct from the systemic humoral immune 

response, in terms of having its own long-term niches for MBC and LLPC, and mucosal 

Abs have a different profile from serum Abs (e.g. IgA > IgG). The NALT is a site of 

residence for MBC and LLPC and long-term virus-specific Ab production (Liang et al. 

2001). NALT is composed of a pair of organised (O-NALT) lymphoid aggregates located 

on the entrance to the nasopharyngeal duct and the less well-organised diffuse (D-NALT) 

lymphoid tissue lining the nasal passages. Local Ab-secreting cell (ASC) generation in 

NALT of BALB/c mice parallels detection of anti-HA Abs in nasal wash and correlates 

with viral clearance from the nose (Tamura et al. 1998). The frequency of ASCs is much 

greater in D-NALT than O-NALT over the course of a primary infection, with a higher 

number of ASCs continuing to secrete Ab for a longer time. Long-term virus-specific Ab is 
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detectable in the D-NALT 18 months after primary infection, whereas no ASCs are 

detectable in O-NALT after approximately 5 months. This appears to be a feature of 

respiratory infections, as intranasal immunisation with inactivated respiratory syntial virus 

(RSV), in combination with bacterial outer membrane vesicles as adjuvant, also generates a 

population of NALT-resident RSV-specific ASCs and local long-term Ab production 

(Etchart et al. 2006). 

 

Joo and colleagues (Joo et al. 2008) have demonstrated that MBC induced by influenza 

become broadly dispersed and localized to the lung mucosal tissue, particularly O-NALT, 

and do not undergo a contraction phase, unlike recirculating MBC, indicating that the O-

NALT may be a unique depository for MBC after mucosal infection. The O-NALT and 

MLN, but not D-NALT, have measurable HA-specific IgA MBC after 8 weeks of infection. 

The expression of the integrin α4β7 on IgA-expressing MBC leads to their preferential entry 

into O-NALT, where its ligand, MadCAM-1, is highly expressed. Given the preferential 

localisation of MBC to O-NALT, and PCs to D-NALT, the O-NALT could represent the 

‘central memory’ niche, while D-NALT could support ‘effector memory’ PCs. Another 

study showed that a small subset of lung MBC bore similar surface markers to that of 

splenic MBC and were CD73+ CD80+ CD273+ CD69+ CXCR3+, and persisted for at least 5 

months, and mounted localised protective IgG and IgA responses to secondary challenge 

(Onodera et al. 2012). Recently, an effort to ‘programme’ long-lived Ab responses after 

vaccination of mice with synthetic nanoparticles containing Influenza antigens with 

adjuvant TLR-ligands demonstrated that long-lived Ab titres correlated with enhanced 

persistence of GCs and of PC responses, which persisted in the lymph nodes for >1.5 years 

(Kasturi et al. 2011), consistent with the idea that MBC play a significant role in 

maintaining protective immunity against secondary infection through 

continuous generation of PCs. 

 

Ab-mediated protection from live-virus challenge is a combination of local neutralising Ab, 

secretory IgA and serum neutralising Ab; however, the relative importance of each is not 

clear. It is thought that mucosal Ab is correlated to protective immunity after natural 
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infection whilst serum Ab is correlated to protective immunity after intramuscular 

vaccination, and that serum Ab is particularly important during infection with highly 

pathogenic virus, viral pneumonia and immunity in the longer-term (Palladino et al. 1995). 

After primary influenza infection, PCs leave the GCs and appreciable numbers of PCs are 

seen in accumulating in bone marrow, spleen, mesenteric lymph nodes and lung, where 

they maintain high titres of nAb (Fazekas et al. 1994). Haemagglutinin (HA) is a lectin on 

the surface of the viral particle which mediates viral binding to sialic acid on the surface of 

cells, and enables fusion of the virus to the endosomal membrane and facilitates the release 

of virus RNA into the host cell cytosol (Markwell & Paulson 1980). It is the predominant 

critical target structure for the immune response mechanisms which eliminate Influenza 

virus. Preformed virus-specific Ab directed against HA, and to a lesser extent, NA or the 

matrix 2 (M2) proteins, in serum or in the airway mucosal surface can block virus entry and 

subsequent establishment of infection, which is important because, once established in 

respiratory epithelium, the virus is capable of extremely rapid replication. In vivo, only 

passive transfer of anti-HA Abs are able to neutralise the virus and prevent disease (i.e. 

offer sterilising immunity), but not Abs directed against other surface glycoproteins like 

NA or non-structural proteins like nucleoprotein (NP). NA-specific Ab do not block the 

initiation of infection but inhibit virus release, therefore they do not confer sterilising 

immunity but do protect from morbidity and mortality. Anti-M2 Abs provide only partial 

protection and are mainly studied as a vaccine target, as it is very poorly generated by a 

natural infection (Feng et al. 2006;Jegerlehner et al. 2004). Most of the antigenic structures 

recognised by neutralising anti-HA Abs are condensed within the HA1 polypeptide, and are 

highly specific for one of five defined recognition sites on the surface of the HA molecule. 

Likewise, the majority of the PC and MBC clones derived from mouse and human donors 

are specific for these few sites in HA1 (Caton et al. 1982;Wiley et al. 1981). NAbs are so 

specific that minor changes in the HA1 structure (antigenic drift) in its structure can lead to 

escape mutants, whilst major changes (antigenic drifts) leads to serologically distinct sub-

strains with little sub-heterotypic cross-reactivity between anti-sera (Horimoto & Kawaoka 

2005).  
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Another important feature of Influenza A immunity, particularly as a vaccine design 

strategy, is pre-existing antigen-specific CD8+ T cells directed towards conserved viral 

regions. In mice, in the absence of CD8+ T cells, virus clearance is delayed and pathology 

is augmented (Eichelberger et al. 1991). An expansion and trafficking of large numbers of 

virus-specific CD4+ and CD8+ T effector cells into the lung occurs within 1 week of 

infection (Flynn et al. 1998;Lawrence & Braciale 2004;Novak et al. 1999;Román et al. 

2002). Memory CD8+ T cells are able to rapidly reduce the viral load through various 

mechanisms, e.g. production of pro-inflammatory cytokines like IFNγ, TNFα and IL-2 

(Carding et al. 1993;Xu et al. 2004) and granule exocytosis or FasL-mediated killing of 

infected epithelial cells (Hou & Doherty 1995;Topham et al. 1997). However, an over-

exuberant CD8+ T cell response, for example in the case of the highly pathogenic avian 

Influenza, is thought to mediate pathology which can be fatal (Mauad et al. 2010). CD4+ T 

cell help is important for CD8+ T cell primary and recall responses, as the size and function 

of the CD8+ T cell pool is smaller and clearance of virus is delayed in CD4+ T cell-deficient 

mice (Belz et al. 2002;Bennett et al. 1997). CD4+ T cells are also essential for providing 

help for the developing virus-specific B cell response and humoral immunity (Brown et al. 

2006;Topham & Doherty 1998). Primed HA-specific TCR transgenic CD4+ T cells which 

are adoptively transferred and challenged can also have direct anti-viral activity through 

perforin-mediated cytolytic activity and induction of pro-inflammatory cytokine production 

(Brown et al. 2006).  
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1.7: Malaria overview 

 

Malaria is caused by the single-cell protozoan parasite from the genus Plasmodium. There 

are five Plasmodium species known to infect humans – Plasmodium falciparum, P. vivax, 

P. ovale and P. malariae, which are transmitted to humans through the mosquito vector, 

and P. knowlesi, which is zoonotic and is transmitted by mosquito from its other host, the 

long-tailed macaque (Lee et al. 2011). Due to the limitations of obtaining and analysing 

human samples, animal models are an important resource to delineate many of the 

protective mechanisms against malaria (Craig et al. 2012;Lamb et al. 2006;Langhorne et al. 

2002;Sanni et al. 2002), but there are important caveats to consider when translating the 

data in the context of human infection, for example, the fact that rodent parasites are not 

natural mouse pathogens and that initiation of experimental infection can occur by 

unnatural routes which bypass the natural intradermal route of inoculation via the mosquito 

bite. Mosquito-transmitted infections have often been done in mouse models, particularly 

with P. berghei. However there are still very few studies focusing on the celluar immune 

responses that occur after this infection route. Nevertheless, it is one of the best 

experimental systems for delineating the immune responses that can occur in the field. 

There are several mouse models of malaria, and the one used in this thesis is blood-stage 

infection with P. chabaudi, which has a synchronous 24h erythrocytic life-cycle and has a 

well-characterised acute phase and a and chronic relapsing and remitting phase which lasts 

for up to 2-3 months. P. chabaudi has a variety of cloned lines and causes a spectrum of 

disease patterns, which are determined by both the parasite strain and host background. One 

of them, P. chabaudi chabaudi (AS), is a well-characterised model for immunological 

studies and is the one used in this study. A summary of the main mechanisms of protective 

immunity to P. chabaudi is in Table 1.3 and are also reviewed by (Good et al. 2005;Lamb 

et al. 2006;Langhorne et al. 2002;Sanni et al. 2002;Stephens et al. 2011). 
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1.7.1: Immunity to malaria 

 

There are two distinct forms of immunity to malaria – clinical immunity, which refers to 

protection against disease severity, and parasitological immunity, which refers to a 

reduction in parasitaemia. Anti-disease clinical immunity is acquired rapidly in endemic 

places and can be observed in young children and results in reduced mortality and severe 

clinical disease (Gupta et al. 1999) (Figure 1.2a). This is probably due to a ‘learned’ 

regulation of the inflammatory cytokine response to the pathogen. Conversely, anti-parasite 

immunity is more slowly acquired even in endemic areas, and results in reduction of high 

density parasitaemia which can be mostly seen in older age groups. However, in almost all 

cases, sterilising immunity is never achieved and asymptomatic carrier status is the norm in 

adults. Furthermore, there is strong evidence that the parasite can evade the host immune 

response through antigenic variation (Brown & Brown 1965). The relationship between 

clinical symptoms of malaria, parasitaemia and the host immune response are extremely 

complex and can be affected by a combination of host, parasite and environmental factors, 

for example, the stage of life when malaria is first encountered (infants, children, 

adolescence or adulthood), pregnancy and parity, co-morbidity or co-infection and 

medical/drug history, nutrition status, endemicity of the area, transmission intensity, and 

host genetic background (Doolan et al. 2009). There is a fine balance in the host immune 

response which determines whether the immune response leads to disease resolution or 

leads to severe malaria syndromes, namely severe malarial anaemia, cerebral anaemia and 

respiratory distress. Studies in Mali, Papua New Ginuea and India have shown a correlation 

between increased levels of both pro-inflammatory cytokines like TNFα, IL-1B, IL-6 and 

IFNγ (Lyke et al. 2004;Prakash et al. 2006;Robinson et al. 2009) as well as the anti-

inflammatory cytokine IL-10 (Kurtzhals et al. 1998;Othoro et al. 1999) with severe disease 

syndromes. In addition, host polymorphisms are associated with greater host susceptibility 

to immune pathology in response to malaria, particularly in genes encoding IFNγ, IRF, 

TNF, IL-10 and IL-4 (Carpenter et al. 2007).  
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Most of the information of protective immune responses in humans to erythrocytic stage 

parasites has been provided by longitudinal studies in endemic populations and determined 

by passive-transfer experiments. Naturally acquired immunity to malaria is gradual and 

requires uninterrupted heavy exposure, and protective Abs are rapidly lost upon cessation 

of exposure or after receiving medical treatment (Cavanagh et al. 1998;Fonjungo et al. 

1999;Giha et al. 1999;Jennings et al. 2006;Kinyanjui et al. 2007); however, this may not be 

a complete loss as some people exposed to malaria infection even 30 years earlier are more 

resistant to clinical disease than completely naïve subjects (Lim et al. 2004). There is little 

documented heterologous immunity, and immunity to a specific strain is also somewhat 

stage-specific, for example, naturally-acquired immunity to P. falciparum appears to be 

mainly driven against the erythrocytic stages (Owusu-Agyei et al. 2001). Repeated 

infections brings about a broadening of specificity that helps with immunity against 

different stages, and an accumulation of a sufficiently diverse repertoire to recognise most 

variants encountered in the field, and at this stage there may be some heterologous 

immunity (Crompton et al. 2010;Weiss et al. 2010). Those exposed since birth have a very 

high degree of protection that is broader in scope. Interestingly, in vaccination strategies 

where the erythrocytic stages of the parasite life cycle are curtailed, for example by 

irradiation (Nussenzweig et al. 1969;Silvie et al. 2002) or genetic modification of the 

sporozoite (Mueller et al. 2004;Mueller et al. 2007), or by curative drug treatment (Belnoue 

et al. 2004;Friesen et al. 2010;Putrianti et al. 2009;Roestenberg et al. 2009), long-term 

sterile protection is established even after a single infection, making it the basis of the most 

advanced malaria vaccine strategy at present. Stage-specific immune mechanisms can be 

finely dissected through analysis of patients or animal models immunisation directed 

against the intrinsic mechanisms of immunity to pre-erythrocytic and erythrocytic stages 

(Table 1.4 and Figure 1.2b). 

 

1.7.2: Humoral immune responses to malaria 

 

In humans, transfer of sera from ‘asymptomatic carrier’ adults in hyperendemic areas to 

children or naïve individuals is able to drastically reduce parasitaemia, particularly when γ-
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globulin therapy was started during high density parasitaemia (Cohen et al. 1961). 

Similarly, passive transfer of hyperimmune sera from P. yoelli-infected mice can protect 

against re-infection or reduce parasitaemia in recipient mice (Jayawardena et al. 

1978;White et al. 1991). Furthermore, mice which have a targeted disruption of the 

transmembrane exon of the Ig mu-chain gene (mu-MT mice), and hence are B cell-

deficient, are not able to clear a blood-stage P. chabaudi infection, but have a fluctuating 

chronic parasitaemia, which can then be eliminated by the adoptive transfer of B cells (Der 

Weid et al. 1996), highlighting the importance of B cells and Ab for clearance of parasite. 

Malaria-specific Abs can mediate a number of anti-parasitic and anti-toxic functions, 

including: 

 

• Inhibition of merozoite invasion of erythrocytes and intra-erythrocytic growth 

(Blackman et al. 1990) 

• Enhancement of parasite clearance by preventing resetting and sequestration in 

small vessels (Carlson et al. 1990)  

• Enhancing phagocytosis opsonisation (Bull et al. 1998) 

• Ab-mediated cellular cytotoxicity (Bouharoun-Tayoun et al. 1995b) 

• Providing help to developing T cell effector mechanisms (Langhorne et al. 1998) 

• Inhibition of parasite-induced pro-inflammatory response, e.g. 

glycosylphosphatidylinositol (GPI)-specific Abs can neutralise GPI-induced TNF 

production by macrophages, which contributes to severe disease (de Souza et al. 

2010) 

 

The exact target antigen(s) on the surface of free merozoites or infected erythrocytes 

inducing protective immunity are not known and this is hampered by the fact that the 

majority of antigens encoded by the parasites are completely unknown. However the 

parasite’s ability to evade the immune system suggests that it is unlikely for there to be a 

single effective target antigen. Indeed, vaccines directed against single antigens have 

limited success. In order to define the specificities of the Abs in malaria immune adults, 

Crompton and colleagues designed a protein microarray containing approximately 23% of 
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the P. falciparum 5,400-protein proteome and assessed antigen- specificity of plasma Ab 

taken from 220 individuals between the ages of 2-10 years and 18-25 years in Mali before 

and after the 6-month malaria transmission season. Although Ab increases were short-lived, 

there were modest incremental polyclonal increases in Ab reactivity with age, indicating 

that protective immunity is more likely to be a result of an accumulation of polyclonal Abs 

specific for a variety of antigens, and this eventually confers the increasing anti-parasite 

immunity in older age groups (Crompton et al. 2010). However, Abs in adults from 

hyperendemic areas are mainly directed towards the erythrocytic stages, particularly against 

the variant surface antigens (VSA) displayed on the surface of the infected erythrocyte.  

 

Candidate antigens like the merozoite surface protein 1 (MSP1) and apical membrane 

antigen 1 (AMA1) have been identified by injection of monoclonal Abs which can block 

invasion by the merozoite, or show protective efficacy after vaccination with recombinant 

or native affinity-purified proteins (Holder & Freeman 1981). Several studies in mice 

showed that immunisation with the 19 kiloDalton sequence on the carboxyl terminal of 

MSP1, MSP119, elicits Ab-mediated protection particularly against a lethal challenge with 

P. yoelii, and this protection correlates well with MSP119-specific Abs (Daly & Long 

1995;Ling et al. 1994;Tian et al. 1996). The homologous protein has been identified in 

several species of parasite including P. falciparum (Holder et al. 1985),  and indeed, Abs 

against MSP119 can inhibit parasite growth in vitro (Egan et al. 1999). Moreover, MSP1 

specific Abs form part of the endogenous Ab response against P. falciparum infection 

(Guevara Patiño et al. 1997). However, monoclonal Abs to MSP1 or MSP2 have not shown 

much inhibition of P. falciparum merozoite growth. More recently, it has been discovered 

that a blood-stage surface erythrocyte-binding protein on P. falciparum, the reticulocyte- 

binding protein homologue 5 (PfRh5), which forms a single receptor-ligand pair with the 

blood group antigen, Basigin (Crosnier et al. 2011), is essential for erythrocyte invasion by 

most strains of P. falciparum. PfRh5 is unique because it cannot be deleted in any P. 

falciparum strain and is therefore apparently absolutely essential for parasite growth as 

shown in blood stage culture (Baum et al. 2009). Importantly, parasite growth across 

several laboratory P. falciparum strains is inhibited by very low concentrations of anti-
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Table 1.3: Effector immune responses of various cell types during infection with P. falciparum or P. chabaudi. Adapted from Stephens et al. 2012. 

 Cell type P. falciparum P. chabaudi 
Innate immune responses 

Dendritic cells P. falciparum: unclear; suppressive at times, but activate at low doses 
P. vivax: sporozoites activate DCs to kill hepatic stages. Produce 
cytokines IL-2, IL-10 

Activation of CD11c+ CD8+ DCs (Th1), and later post-peak of infection 
CD11c+ CD8- DCs (IL-4, IL-10)  
Antigen is processed within a 3-4 h timeframe to T cells 
Produce IL-2, IL-6, IL-10 and TNF 

   
Macrophages/monocytes Monocytes phagocytose iRBCs. Macrophages sense parasite products 

such as GPI anchors and parasite DNA trapped in haemozoin, and 
produce inflammatory cytokines TNF, IL-6 and IL-12p40. 

Produce IL-12 – associated with resistance 
Phagocytosis of iRBC and antigen presentation to T cells 
Produce iNOS. 

Inflammatory monocytes  Derived from atypical progenitors in the bone marrow – IFNγ-dependent 
Direct killing of iRBC by phagocytosis and ROS production 

NK cells  Produce IFNγ 
Cytotoxic effects on iRBC 

NK T cells  Act during the pre-erycthrocytic stage by producing IFNγ and during the 
chronic phase by producing IL-4 to enhance the Ab response 

PRRs 
Byproducts of parasite 
metabolism like GPI, 
haemazoin, DNA, etc can 
activate various innate 
pathways: 
• TLR/MyD88 
• NLR 
• C-type lectin receptors 

(CLR) 
 
 
 
 
 γδ T cells  Contribute to protection during both acute and chronic phase as a source 

of inflammatory cytokines 
May be a back up when αβ T cells are depleted 

Adaptive immune response 
CD4+ T cells Mix of Th1 cells producing IFNγ with lower levels of Th2 and Th17 cells 

Th2 cells producing IL-4 
Balance of IL-10 and TNF crucial 
Tregs correlated with susceptibility to infection 

Th1 cells produce IFNγ;  
Tregs and IL-10+ T cells regulate pathogenesis; TNF and IFNγ are crucial 
for clearance and host survival  but cause pathology, IL-10+ T cells are 
crucial for ameliorating immunopathology 
Prime B cells 
Multi-functional CD4+ Th1 cells are asoociated with protection, e.g. 
TNF+ IL-2+ IFNγ+ while single producers are associated with 
immunopathology, e.g. IFNg alone. 

CD8+ T cells  Produce IFNγ, IL-12, iNOS (in BALB/c) 
Lytic factors like perforin, granzyme B, FasL (in C57BL/6) 

B-1 cells  IgM-deficient mice are less able to control pathology and parasitaemia 

B-2 cells Cytophyllic antibody (IgG1) correlates with decreased parasitaemia 
Antibody to parasite variants correlates to exposure, protection 
Passive transfer of serum from previously infected donors or maternal Ab 
can offer protection 
Disorganisation of splenic architecture 

Produce cytophillic antibody (IgG2a in mice) and IgG1.  
Passive transfer of Ab offers protection, where the number of infections 
given to donor mice correlates with greater protection 
Ab are necessary for parasite clearance particularly in the chronic phase 
Ab also aid the development of T cell help 
Large short-lived component to the Ab response and temporary 
disorganization of splenic architecture 

 

Memory cells Specific Th1 cells shown to correlate with protection 
Memory B cells accumulate with repeated infections and can be long-
lived 

Effector memory Th1 cells develop, not exhausted 
Memory CD4+ T cells help to maintain long-lived Ab  
Functional and long-lived B cells generated 
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Figure 1.2: The life cycle of the malaria parasite P. falciparum and acquisition of 
immunity in an area of endemic transmission. Adapted from Langhorne et al. 2008 
and Marsh & Kinysnjui 2006. 
 

Parasite strain Incubation 
period 

Symptomatic 
cycle 

P. falciparum 6-21 days 48 hours 
P. vivax 12-17 days 48 hours 
P. malariae 18-40 days or 

longer 
72 hours 

P. ovale 16-18 days or 
longer  

48-50 hours 

P. knowlsei 24 hours 24 hours 

 
 

 
a) Several Plasmodia species are able to infect humans (top left) and in experimental rodent models 
(top right). The life cycle of P. falciparum can be divided into the sexual stage in the female 
anopheles mosquito (top centre) and asexual stages in the mammalian host (bottom centre). 
Approximately 10-15 sporozoites are injected into the dermis and bloodstream during a blood meal 
(1). They travel to the liver and invade hepatocytes, whereupon they multiply and differentiate into 
merozoites (2). The erythrocytic stages of infection are initiated with the rupture of merozoites into 
the bloodstream and b) a 24-72h symptomatic cycle of re-invasion and rupture of new erythrocytes, 
depending on the species of infection. (3). Some of the merozoites develop into male and female 
gametocytes, which can be ingested by a mosquito to re-initiate the life cycle of the parasite. c) Age 
patterns of clinical and parasitical immunity taken from a number of studies in the Kilifi District, an 
area of high malaria transmission. The prevalence of severe and mild malaria is shown in relation to 
the maximum prevalence of parasitaemia. 

P. knowlsei 

a 

c 

b
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Table 1.4: Stage-specific mechanisms of immunity after various vaccination strategies. 
Stage Method of immunization Primary immune response Protective immunity against re-infection 

Immunisation with whole irradiated sporozoites/radiation-
attentuated sporozoites (RAS). 
 
Sporozoites take only seconds to reach the liver. They 
transmigrate into heptatocytes by traversing Kupffer cells, 
migrate through several hepatocytes before infecting a final one, 
with invagination of the cell plasma membrane to form a 
parasitophorous vacuole (Mota et al. 2001). Inside the vacuole, 
multiple rounds of nuclear divisions followed by schizogony 
results in release of thousands of erythrocytre-invasive 
merozoites. Merozoites are not delivered directly to the blood 
circulation but bud off from hepatocytes as merozomes (Sturm 
et al. 2006). Some can be trapped in mouse lung 
microvasculature, where they disintegrate and release 
merozoites in the lung capillaries (Baer et al. 2007). 

In vitro, sporozoites can 
interact directly with MOs and 
DCs. In vivo, sporozoites can 
encounter specialised DCs in 
skin, and liver(Plebanski et al. 
2005). 
 
In vitro, activated DCs 
incubated with P. berghei 
parasites can induce CSP-
specific CD8+ T cells to 
produce IFNγ (Amino et al. 
2006). 
 
CD8+ T cells are activated 
after DC priming in skin-
draining lymph nodes and 
CD4+ T cell help 
 
Infiltrating neutrophils and 
macrophages create small 
granulomas in the liver and 
phagocytose infected 
hepatocytes and parasite 
material after merozome 
formation, but P. yoelii and P. 
berghei parasites can escape 
phagocytosis (Sturm et al. 
2006). 
 
 

Experimental immunization of rodents, 
non-human primates and humans with 
multiple doses of RAS can induce sterile 
protective immunity (Nussenzweig et al. 
1969). However immunity  induced by 
RAS tends to be short-lived (Hoffman et al. 
2002). RAS must remain capable of 
invading hepatocytes. Heat-inactivated 
sporozoites cannot induce protection. 
 
Neutralising Ab that inhibit sporozoite 
invasion and conventional αβ IFNγ-
secreting T cells that target the infected 
hepatocyte. The main target is likely to be 
CSP, which binds to liver HSPGs and 
allows them to rapidly sequester in the 
liver(Frevert et al. 1993). However further 
studies have cast doubt on the protective 
efficacy of vaccines directed against CSP 
(Gr++ner et al. 2007). 
 
IFNγ-producing CD8+ effector T cells are 
able to kill infected hepatocytes (Schofield 
et al. 1987). 
γδ T cells(Lee et al. 2011) 
NK cells, NK T cells (Roland et al. 
2006;Tsuji et al. 1994) 

Controlled WT-sporozoite inoculation under prophylactic 
cover with chloroquine or primaquine (Belnoue et al. 
2004;Putrianti et al. 2009;Roestenberg et al. 2009) or antibiotic 
treatment (Friesen et al. 2010). 

 Sterile protective immunity (Belnoue et al. 
2004;Putrianti et al. 2009;Roestenberg et 
al. 2009) 
Induces cross-stage immunity to pre-
erythrocytic and erythrocytic stages 
(Belnoue et al. 2004;Roestenberg et al. 
2009). 
 
CD4+ and CD8+ T cells and  IFNγ and NO 
production (Belnoue et al. 2004). 
Role of B cells and Ab is still unclear. 

Pre-
erythrocytic 
stage 

Genetically attenuated parasite (GAP) malaria vaccine. 
 
Genetic manipulation of rodent parasites which lack genes 
necessary for liver stage development, therefore generate 
sporozoites which can infect hepatocytes but are unable to 
mature (Mueller et al. 2004). 

 Sterile protective immunity 
 
CD8+ T cells and IFNγ production (Kumar 
et al. 2009;Mueller et al. 2007;Tarun et al. 
2007). 

Erythrocytic 
stage 

Direct injection of large numbers of blood-stage parasites, 
bypassing the pre-erythrocytic cycle 

Macrophages and the innate 
system 
Activated T cells 
 
Humoral immune responses 
directed against free 
merozoites or parasitized 
erythrocytes (Bull et al. 
1998;Cohen et al. 1961b). 
 
Fine balance of inflammatory 
and anti-inflammatory 
cytokines required for parasite 
clearance without severe 
immunopathology. 

Naturally-acquired clinical immunity 
develops after repeated exposure and is 
mainly directed against erythrocytic stages 
(Crompton et al. 2010;Marsh & Kinyanjui 
2006). 
 
Humoral immune responses directed 
against free merozoites or parasitized 
erythrocytes (Bull et al. 1998;Cohen et al. 
1961b). Immunisation with  MSP119 
induces protection in mice(Holder & 
Freeman 1981). 
 

Dermal stage Small numbers of sporozoites inoculated into the dermis and 
not directly into the blood circulation (as few as ten per 
mosquito bite). 
 
A significant proportion of these parasites remain in the dermis 
at the bite, while others are drained by lymphatic circulation and 
trapped in the proximal lymph node in close approximation with 
CD11c+ DCs. Some escape degradation and develop into exo-
erythrocytic forms (Amino et al. 2008;Sidjanski & Vanderberg 
1997;Yamauchi et al. 2007). 

 Tregs in the skin 
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PfRh5 antibodies (Douglas et al. 2011). Furthermore, erythrocyte invasion by six fresh 

Senegalese field parasite isolates is inhibited by blocking of PfRh5-Basigin binding 

(Crosnier et al. 2011), making both Basigin and PfRh5 very promising vaccine targets. 

Nevertheless, at present there is no study in humans that definitively demonstrates that any 

monoclonal Ab response is protective in the field.  

 

Longitudinal studies in humans show that the cryophilic Abs of the IgG1 and IgG3 isotype 

correlate highly with protection from P. falciparum (Groux & Gysin 1990) and are most 

efficient in neutralising parasite in vitro, while amounts of malaria-specific IgG4 and IgG2 

Ab tend to be lower in immune adults. Analysis of sera from people from hyperendemic 

regions demonstrated that IgG1 and IgG3 did not inhibit parasite invasion of erythrocytes 

in vitro, but instead worked by Ab-dependent cellular inhibition (ADCI), by inducing 

TNFα production from monocytes in an Fc receptor-dependent manner (Bouharoun-

Tayoun et al. 1990;Bouharoun-Tayoun et al. 1995a). In mice, infection with P. yoelii and 

P. berghei elicits protective Abs of mainly the IgG2a and IgG3 isotype (Waki et al. 

1995;White et al. 1991). In P. chabaudi infection, IgG Ab plays an important role in 

protective immunity; however IgM has also been shown to be important in a primary P. 

chabaudi infection, as IgM-deficient mice appear more susceptible to pathology and blood-

stage parasitaemia. These mice also appear less able to control recrudescent parasiteaemias 

suggesting a role for IgM in the chronic stage (Couper et al. 2005). MSP119-specific IgG 

Ab titres are stably maintained after a primary infection with P. chabaudi, but at low levels, 

for several months following the decay of the acute peak of Ab response (Achtman et al 

2007).  

 

In both humans and mice, Ab-mediated immunity to malaria may operate by an Fc 

receptor-mediated event like receptor-mediated phagocytosis or Ab-dependent cellular 

killing (ADCC). In humans, polymorphisms in FcγRIIa FcγRIIb and FcγRIIIb have been 

implicated in susceptibility to severe malaria pathology (Cooke et al. 2003;Omi et al. 2002) 

and also protection (Shi et al. 2001). The systemic lupus erythematosus (SLE)-associated 

loss-of-function mutation in the human FcγRIIb gene is commonly found in Africa, 
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suggesting that they are preferentially selected for (Clatworthy et al. 2007). One of the roles 

of FcγRIIb is to inhibit the phagocytosis of infected cells by macrophages and monocytes 

(Bouharoun-Tayoun et al. 1995b;Jafarshad et al. 2007), therefore losing the inhibitory 

signal from the FcγRIIb in people with SLE may result in enhanced phagocytosis of 

malaria parasites, thus conferring on them a survival advantage.  

 

Studies delineating the downstream roles of Fcγ receptors by malaria-specific IgG have 

given contradictory results. Although protection against P. yoelii infection after the passive 

transfer of merozoite-specific monoclonal IgG1, IgG2a and IgG3 Abs has been 

demonstrated previously, transfer of IgG3 Abs alone is able to offer protection from lethal 

P. yoelii infection. However, IgG3 does not bind to FcγRs and may not require a functional 

Fcγ-chain to exert its effector functions, instead possibly acting by steric hindrance of the 

interaction of the merozoite with the erythrocyte and preventing invasion (Freeman et al. 

1980). Although monomeric IgG3 does not bind to FcγR, IgG3 immune complexes have 

been found to be able to bind to FcγR1 in vitro (Gavin et al. 1998). However in mice 

deficient in the γ-chain of FcγR1 and which therefore cannot signal through this receptor, 

passive transfer of MSP119-specific IgG3 Abs is still able to protect mice from P. yoelii 

infection (Vukovic et al. 2000). Furthermore, in this same study, MSP119-specific single-

chain fragments (scFv) could also show dose-dependent protective anti-parasite effects 

despite lacking the Fc portion, suggesting that the effector functions mediated through the 

Fc portion are not required.  

 

There is some evidence that complement activation through binding of FcγR is important 

for protection. Complement activation occurs by the binding of C1q to the Fc domain of 

immune complexes. Studies using transfer of human-mouse chimeric Abs composed of a 

murine V region specific for MSP119 and human IgG2b Fc regions, which can bind mouse 

FcγRs and trigger in vitro phagocytosis of merozoites, but not activate mouse complement, 

failed to protect against lethal P. yoelii challenge (Pleass et al. 2003). By contrast, a further 

study using a similar chimeric Ab with human IgG1 Fc region recognising P. falciparum 

MSP119 was able to suppress parasitaemia after infection with a P. berghei transgenic for P. 
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falciparum MSP119, and this was critically dependent on the presence of transgenic human 

FcγR1 in the host mouse (McIntosh et al. 2007).  

 

In P. chabaudi infection, although B cells are required for the control of chronic 

parasitaemia (Der Weid et al. 1996), and are important in helping anti-parasitic CD4+ T cell 

development and function (der Weld & Langhorne 1993;Langhorne et al. 1998), the role of 

Fc receptors in Ab-mediated protection during P. chabaudi infection is still unclear. In 

FcRγ-chain deficient mice, which lack surface expression of FcεEI and FcγRIII, and lack 

binding to FcγRI, and have defects in phagocytosis and NK cell-mediated ADCC (Takai et 

al. 1994), there is no effect of the loss of FcRγ-chain on the course of P. chabaudi infection 

(P. Gardner, unpublished observations).  

 

Plasmodium infection induces both thymus-independent and thymus-dependent B cell 

responses. Both IgM+ and IgM- MBC were generated after a primary P. chabaudi infection 

in mice but, whilst their specificity was not known, only the IgM- MBC and marginal zone 

(MZ) B cells expanded upon re-infection (Stephens et al. 2009). Upon re-infection, a faster 

kinetic and higher avidity of the IgG Ab response was observed, more bone marrow LLPC 

are generated, and splenomegaly and bone marrow hypocellularity were reduced compared 

to that seen in the primary immune response, indicating that functional parasite-specific 

humoral memory does develop in the primary infection (Stephens et al. 2009). In mice, 

MSP119-specific IgG MBC are detected for up to 8 months post-infection, even after 

chronic infection was terminated by chloroquine treatment, and can produce functional 

anamnestic responses for at least 3-4 months post infection (Ndungu et al. 2009). The 

percentage of peripheral blood MBC which was observed in mice (less than 5% of total B 

cells) during primary and secondary infection is lower than that typically found in 

humans. During primary P. chabaudi infection, there is a large short-lived extrafollicular 

CD138+ PC response that peaks on around day 10 and is reduced to background levels by 

day 21. However, functional MSP1-specific ASC can survive at a stable mean frequency 

for at least two months after infection irrespective of the presence of chronic parasitaemia. 

Interestingly, at this time point, approximately 40% of mice after P. chabaudi infection 
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actually did not have detectable numbers of MSP119-specific ASC, whilst others had high 

numbers of MSP119-specific ASC (Ndungu et al. 2009), which is either because there was 

no generation of MSP119-specific ASC in some of these mice, or that the MSP119-specific 

ASC are extremely short-lived (disappearing in less than two months).  

 

In humans, there are a handful of studies have looked at the longevity and characteristics of 

malaria-specific MBC in the peripheral blood of exposed individuals. One study in 

Madagascar, an area of very low transmission, reported that, 8 years after a single exposure 

to P. falciparum, parasite-specific MBC could still be detected in peripheral blood in low 

numbers (Migot et al. 1995). A similar study in northern Thailand, another area of 

extremely low malaria transmission, reported that both Ab and MBC responses to P. 

falciparum and/or P. vivax antigens were stably maintained over time in the absence of 

reinfection (Wipasa et al. 2010). The results from vaccination studies were similarly 

encouraging, demonstrating that long-lived MBC and Ab responses in the blood could be 

generated by immunisation of naïve people with two candidate malaria subunit protein 

vaccines and the adjuvant TLR9 ligand CpG (Crompton et al. 2009), although a follow up 

report showed this mechanism failed to have the same effect in malaria semi-immune 

adults (Traore et al. 2009). Therefore long-lived MBC are generated after infection with P. 

falciparum or P. vivax in areas of low transmission intensity. However, in these studies, the 

correlation of parasite-specific MBC and Ab is inconsistent, as subjects who have persistent 

titres of malaria-specific Ab can lack detectable recirculating malaria-specific MBC, whilst 

others who lack Ab do have detectable specific MBC.  

 

In areas of high transmission intensity, it has been observed that the P. falciparum-specific 

MBC compartment increases with age in children and adults, indicating that acquisition of 

natural immunity to malaria in humans may require an increasingly polyreactive profile of 

MBC and serum Ab, that builds up with age after repeated infections (Weiss et al. 2010). 

The specificity of protective MBCs appears to be somewhat stage-specific, as there were 

no, or very low and intermittent, MBCs specific for some Plasmodium antigens (Dorfman 

et al. 2005;Weiss et al. 2010), and these are often undetectable outside of the transmission 
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season. In addition, a recent study reported increased numbers of the inhibitory receptor 

FCRL4 (Fc receptor-like protein 4)-expressing hyporesponsive MBC in malaria-exposed 

individuals, which possessed an atypical phenotype similar to the HIV-specific exhausted 

MBC reported previously, comprising higher expression of homing receptors, lower 

proliferative potential and having undergone few mitotic divisions and less somatic 

hypermutation (Weiss et al. 2009). This longitudinal study in Mali demonstrated that 20-

60% of circulating B cell pool were exhausted B cells, even in children as young as 2 years 

of age, whereas they comprise only 1-2% of the pool in people from non-endemic 

countries. A follow up study showed that the degree of atypical MBC expansion increased 

with the intensity of P. falciparum transmission (Weiss et al. 2011).  

 

1.8: Reasons why humoral immunity to malaria may be short-lived 

 

The short-lived nature of humoral immunity to malaria in humans is well-documented 

(Crompton et al. 2010;Dorfman et al. 2005;Marsh & Kinyanjui 2006), although Ab 

responses against some antigens may be more persistent than others (Drakeley et al. 2005). 

In P. chabaudi infection of mice, malaria-specific Abs decrease significantly relatively 

early after a primary infection and are not as persistent as the Abs induced by protein 

immunisations or viral infections (Achtman et al. 2005;Achtman et al. 2007). If malaria-

induced PC responses are intrinsically short-lived compared to those induced by protein 

immunisations or viral infections, it is currently unclear what the key differences are in 

these contexts that determines the life-span of the PC response. Alternatively, the reason for 

rapidly waning Abs could be due to the failure of generating PC and MBC with optimal 

functional qualities or with adequately protective specificities, allowing the parasite to 

evade the immune response. Alternatively, the PC and MBC generated are intrinsically 

long-lived, but their lifespan can be curtailed through a parasite-specific mechanism. There 

are various ways in which this can occur. The chronic parasitaemia and constant exposure 

to novel antigens could result in chronic simulation of naïve B cells into short-lived PCs, 

masking or attenuating the MBC response. Indeed there appears to be a constant turnover 

of MBC and LLPC during chronic infection, with LLPC still being generated 12 weeks 
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after primary P. chabaudi infection (Ndungu et al. 2009), indicating a constant exposure to 

novel antigens.  

 

The formation of ‘optimum’ humoral immunity to infection requires appropriate signals 

from the antigen-presenting cell and T cell help and it is possible that parasite-specific 

MBC or LLPC are not ‘optimally’ generated (Kasturi et al. 2011;Reis e Sousa, Sher, & 

Kaye 1999). The modulation of the host immune response by the parasite is well 

documented (Coban et al. 2007;Stevenson & Riley 2004) and this could have adverse 

affects on the quality of parasite-specific MBC and LLPC generated during the infection. 

Indeed, innate immune responses are very sensitive to modulation by the by-products of the 

parasite metabolism, parasite growth rates and antigen loads, or ligands that can activate 

PRRs such as Toll-like receptors (TLR), and these factors can influenced them to exert 

either activatory and inhibitory effector responses (Langhorne et al. 2004). While it has 

been shown in some experimental systems with various Plasmodium strains that DCs can 

be directly activated by the parasite (Seixas et al. 2001), others have demonstrated that DC 

maturation and ability to present antigen and stimulate T cells can be suppressed during 

infection by modulation from infected erythrocytes (Couper et al. 2007;Sponaas et al. 

2006;Urban et al. 1999b). The DCs which encounter the pre-erythrocytic forms of the 

parasite are also subject to modulation, e.g. sporozoites can reduce the sensitivity of 

Kupffer cells to pro-inflammatory signals and induce apoptosis of KCs (Klotz & Frevert 

2008), whilst merozoites can downregulate surface signals of infected erythrocytes that 

induce phagocytosis, e.g. phosphatidyl serine, which may enable them to escape 

phagocytosis, leading to decreased antigen presentation (Sturm & Heussler 2007). High 

antigen loads can cause apoptosis of DCs and hence reduce the numbers of DCs available 

to activate T cells (Elliott et al. 2007;Sponaas et al. 2006;Urban et al. 1999a). Haemozoin, 

a malarial byproduct, has been shown to be a key mechanism which suppresses DC 

function not only to itself (Urban & Todryk 2006) but also to heterologous antigens 

(Millington et al. 2006). However, haemozoin has also been shown to activate 

plasmacytoid DCs through TLR9 and constitute an important mechanism of parasite 

resistance (Coban et al. 2005), but which at the same time can inhibit cross-priming and 
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cross-presentation to a heterologous viral antigen (Wilson et al. 2006). Hemin, another 

parasite degradation product, has been shown to cause premature mobilization of 

granulocytes from bone marrow with a quantitative defect in the oxidative burst, which is 

advantageous for parasite survival but impaired the immune response to S. typhimurium co-

infection (Cunnington et al. 2011).  

 

The complex disulphide bonded structure of parasite proteins such as MSP119 may inhibit 

antigen processing and presentation by APCs and B cells, and this may induce poor 

provision of T cell help to GC B cells (Egan et al. 1997). Furthermore, a large proportion of 

parasite-specific and non-specific T cells undergo apoptosis and are reduced in number 

during infection by various lethal and non-lethal Plasmodium strains (Xu et al. 2002). It is 

also likely that, similar to the abnormally large proportion of atypical or exhausted MBC 

found in people living in malaria-endemic countries (Weiss et al. 2009), a large proportion 

of CD4+ T cells could be exhausted, indicating that they undergo abnormal differentiation 

and may only provide suboptimal help to B cells. Indeed, there appears to be 

overexpression of negative regulators of T cell activation, CTLA-4 and PD-1, on T cells 

during P. berghei infection, which correlates with the downregulation of pro-inflammatory 

responses and increased susceptibility to lethal infection (Hafalla et al. 2012). 

Dysfunctional and short-lived CD4+ T cell responses may lead to failure to maintain long-

lived protective immunity to P. chabaudi infection (Freitas do Rosário et al. 2008). CD4+ T 

cell activation can be inhibited by IL-10 produced by infected erythrocyte-modulated DC 

and macrophages. It is possible that too many regulatory T cells are formed instead of 

effector T cell responses, leading to overproduction of anti-inflammatory cytokines IL-10 

and TGFβ, which inhibits the anti-parasitic inflammatory response (Couper et al. 

2008;Omer, de Souza, & Riley 2003), possibly due to the high antigen load (Finney et al. 

2010). Therefore, the various ways that the parasite can modulate the innate immune 

response and development of CD4+ T cell help could result in the rapid loss of Abs if the 

resulting PC and MBC were not optimally ‘programmed’ or ‘imprinted’ with a long 

lifespan. 
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In addition to the attenuation of immune cell activation by a direct effect of parasite or an 

imbalance in regulatory mechanisms, there is also a massive disruption to the splenic 

microarchitecture in both humans (Looareesuwan et al. 1987) and mice during acute 

malaria. In mice, there is a striking and temporary changes in the leukocyte distribution 

during acute P. chabaudi infection, occurring maximally just after the peak of parasitaemia 

(Achtman et al. 2003;Cadman et al. 2008). This is in contrast to the immune response that 

occurs after immunisation with soluble antigen, which is highly organised and take place in 

very well defined cellular structures (Allen et al. 2007), but has been observed to be similar 

to that induced by administration of the TLR4 ligand, lipopolyssaraide (LPS) and other 

parasitic diseases such as leishmaniasis (Yurdakul et al. 2011). The remodelling of stromal 

tissue can affect antigen presentation, alter cellular movements and restrict access to 

appropriate or adequate cytokines and co-stimulatory signals which are required for the 

generation of a protective immune response. Therefore remodelling of stromal tissue of 

haematopoetic microenvironments like the bone marrow and spleen could be a mechanism 

of immune evasion by the parasite (Svensson & Kaye 2006).  

 

During malaria infection, massive splenomegaly occurs, often increasing to several times 

the cellular size of a naïve spleen, and many changes occur in the splenic cellular 

microarchitecture and circulation (del Portillo et al. 2011). During infection with P. 

chabaudi in mice, there is severe but reversible disruption of the splenic white pulp 

architecture, with transient loss of follicular mantle and T zone integrity, atypical 

localisation of PCs, and loss of marginal metalophillic macrophages, marginal zone (MZ) B 

cells and macrophages from the splenic marginal zones (Cadman et al. 2008). Some MZ B 

cells are found in the red pulp, where they can contribute to the large extrafollicular short-

lived PC response seen in acute P. chabaudi infection. Surprisingly, despite these drastic 

splenic alterations, large and persistent GCs still form during P. chabaudi infection. 

However, these GCs are atypical, as normal dark and light zones, where centrocytes cycle 

between and undergo proliferation, class-switch recombination and somatic hypermutation, 

are absent throughout acute P. chabaudi infection (Achtman et al. 2003;Kumararatne et al. 

1987). There is a reduction in the avidity of the Ab response to a third-party antigen given 
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at the time of acute P. chabaudi infection, indicating that this is not restricted to the 

parasite-specific response (Achtman et al. 2003). 

 

In humans, not only is the Ab response short lived, the existing B cell and Ab response to 

malaria is highly dysregulated, with over-exuberant non-specific polyclonal B cell 

activation (Banic et al. 1991;Freeman & Parish 1978;Rosenberg 1978), 

hypergammaglobulinaemia (Greenwood 1974), formation of large amounts of low-affinity 

immune complexes (June et al. 1979), skewing of malaria-specific Abs to less favourable 

isotypes, and also production of autoantibodies (Greenwood 1974;Rosenberg 1978) and 

frequent occurrence of B cell tumours in malaria endemic areas (Kafuko & Burkitt 1970). 

Atypical GCs have also been reported in P. falciparum infection (Zingman & Viner 1993) 

and the Ab response to vaccinations given at or around the time of malaria is impaired 

(Greenwood et al. 1972;Williamson & Greenwood 1978). 

 

Another mechanism for the short-lived humoral immune response is that established 

memory is actively and rapidly curtailed by the parasite. The large numbers of B cells and 

PCs found in the spleen during acute P. chabaudi infection disappear from the spleen and 

blood, and are not subsequently recovered in the bone marrow, indicating that the majority 

have not matured into bone marrow LLPC (Achtman et al. 2003). Indeed, the large 

quantities of soluble antigen that are shed by the parasite during merozoite invasion could 

induce early apoptosis of any MBC and LLPC which are leaving the GC and therefore they 

are not detected in circulation. In one study, infection of mice with P. yoelii resulted in 

significant caspase-3-dependent apoptosis of pre-existing vaccine-induced MSP119-specific 

and unrelated MBCs and LLPC, hence contributing to the loss of vaccine-induced Ab 

(Wykes et al. 2005). Similar observations have been made in Trypanosoma brucei infection 

of C57BL/6 and BALB/c mice, which also resulted in reduction of not only pre-established 

anti-parasite MBC, but also unrelated hapten-protein conjugate- and vaccine-induced 

MBCs and LLPC, resulting in an increased susceptibility to a heterologous infection from 

which the host should have been protected from by the previous vaccination (Radwanska et 

al. 2008).  
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No mechanism has been described to explain parasite-induced abrogation of previously 

established humoral immunity, but this could be one explanation for the short-lived nature 

of malaria-induced MBC and LLPC. Furthermore, abrogation of previously established 

immune cells by parasitic infections has obvious implications on the longevity of 

vaccination-induced humoral immunity in areas where parasitic infections are endemic. 

One possible mechanism is that the circulation of large amounts of low affinity immune 

complexes produced by polyclonal B cell activation during parasitic infections can induce 

the apoptotic clearance of resident LLPC via the cross-linking of the FcγRIIb on the surface 

of resident LLPC, a recently described novel mechanism for regulating of the LLPC niche 

(Xiang et al. 2007). Alternatively, the maintenance of higher-than-average BAFF-R 

expression on malaria-induced MBC may be necessary for their longevity, as it was 

observed that there was a positive correlation with highest level of BAFF-R expression on 

B cells and the maintenance of schizont-specific IgG for period of more than 4 months in 

children (Nduati et al. 2011).  
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1.9: Aims of this study 

 

The first aim of this study is to determine the cellular basis of long-lived serum Ab titres 

after a natural infection. In this study, the humoral immune response to an intranasal 

infection with Influenza A in BALB/c mice will be characterised. Next, hCD20 transgenic 

mice will be used to provide a system whereby memory B cells (MBCs) can be depleted, 

leaving long-lived plasma cells (LLPCs) intact. MBCs will be depleted using an anti-

hCD20 monoclonal antibody after humoral memory to Influenza A is established. The 

selective depletion of MBC but not LLPC will allow discrimination of the contribution of 

the MBC and LLPC towards long-lived serum Ab titres. 

 

The second aim of this study is to determine the effect of a heterologous infection on pre-

established humoral immune responses. In this study, the first infection will be intranasal 

Influenza A infection. The second infection, which is blood-stage P. chabaudi infection, 

will be initiated after the resolution and establishment of humoral immunity to Influenza A. 

This will be the experimental model to investigate the effect of P. chabaudi infection on 

pre-established humoral memory.  
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2.1: Mice 

 

All mice were bred in the specific pathogen free (SPF) unit at the National Institute for 

Medical Research (NIMR), London. hCD20tg BALB/c (Ahuja et al. 2007) and 

FcγRI,II,III-/- (Van Lent et al. 2003) C57BL/6 mice were backcrossed for at least 7 

generations (see Table 2.11). Experiments were carried out in a non-SPF unit in 

accordance to the Home Office Animal Act (1980). Experiments were initiated in 8 to 

15 week old female mice of each strain. 

 

2.2: Influenza A infection   

 

For induction of non-lethal Influenza A infection, mice were infected with 250 

hemagglutinin units (HAU) of the A/Puerto Rico/8/34 (PR8) strain of (H1N1) 

Influennza A virus by instillation into their nasal cavities without anaesthesia. For sub-

lethal infection, mice were given light inhalation anaesthesia with isoflorane before 

intranasal instillation with 0.1, 1 or 10 HAU of PR8 and allowed to recover. 

 

2.3: The mouse model of malaria 

 

2.3.1: Plasmodium chabaudi chabaudi AS 

 

Plasmodium chabaudi chabaudi (P. chabaudi) was isolated from the African thicket rat 

(Thamnomys rutilans) and passaged in mice (Walliker et al 1975). P. chabaudi parasites 

were cloned and maintained at the NIMR, London (Slade & Langhorne, 1989), with 

only four passages in C57BL/6 mice from the original isolate provided by Professor 

David Walliker (University of Edinburgh). Cryo-preserved parasite stabilates were 

tested negative for Mycoplasma and other common mouse pathogens by inoculation 

onto Mycoplasma Agar (Oxoid Ltd., CM0401) and a horse blood agar plate and 

examined under the light microscope at 50X magnification.  
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2.3.2: Passage of P. chabaudi through BALB/c mice 

 

Cryopreserved parasite stabilates were used for initiating infections in the animals in the 

manner previously described (Langhorne J et al, 1989). Briefly, stabilates were thawed 

from liquid nitrogen, diluted 1:1 with 0.9% saline and injected i. p. into BALB/c mice. 

These parasites were passaged up to four times in mice by i. p. injection of 106, 105 or 

104 pRBC per mouse diluted in 100 μl of Kreb’s glucose saline (See Table 2.1) (Jarra 

and Brown 1985). The number of pRBC was calculated by determining the percentage 

of parasitaemia on thin blood films using 20% Giemsa stain (VWR) and assuming a 

RBC density of 2.5 x 109 /ml in peripheral venous blood.  

 

2.3.3: Infection of experimental mice with P. chabaudi 

 

Experimental mice were infected using pRBC taken from one of the passage mice 

before the peak of parasitaemia. Each experimental mouse received an i. p. injection of 

105 pRBC diluted in 100 μl of Kreb’s glucose saline. 

 

2.3.4: Determination of parasitaemia using thin blood films 

 

Thin blood films were prepared on microscope slides from a drop of blood 

(approximately 5 μl) obtained by tail nick. The blood films were air-dried and fixed 

with 100% methanol (BDH), stained for 25 minutes in 20% Giemsa stain (VWR), and 

then washed thoroughly in tap water and air-dried. Films were analysed under oil 

immersion on a Zeiss Axioskop light microscope with a 100X objective. For films with 

high parasitaemia, at least 2,000 RBC were counted for parasites and for those with low 

parasitaemia, at least 10,000 RBC were counted. Parasitaemia was quantified as a 

percentage of pRBC in total RBC counted. 

 

Formula for obtaining % Parasitaemia = (total number of pRBC / total number of RBC) 

x 100% 
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2.4: Chloroquine treatment 

 

Chloroquine for injection was prepared fresh from chloroquine diphosphate salt (Sigma) 

for each treatment. The treatment protocol was 10 daily i. p. injections of 40 mg/kg of 

chloroquine dissolved in sterile 0.9% saline. 

 

2.5: Preparing serum from whole blood 

 

Monitoring of serum antibody responses was performed by obtaining serum from 

venous blood, taken by incision across the lateral tail vein with a scalpel blade. No more 

than 15% of total blood volume was collected over any 28-day period. Blood was 

directly collected in clean Eppendorf tubes and incubated for approximately 2-5 hours 

(h) at room temperature to allow clotting to take place. Tubes were centrifuged at 900 

xg for 10 minutes using the Heraeus Fresco 17 centrifuge (Thermo Scientific) and the 

serum removed from the clot into a clean Eppendorf tube. Some erythrocytes and 

insoluble material was usually transferred during this process, so the serum was re-

centrifuged at 16,200 xg for 5 minutes to remove any transferred or remaining material. 

The serum was transferred again into clean Eppendorf tubes and heat-inactivated at 56 

ºC for 10 minutes. Heat-inactivated serum was stored at -20 ºC until use. 

 

2.6: Tissue harvesting and making single cell suspensions 

 

2.6.1: Splenocytes 

 

Mice were sacrificed by cervical dislocation, stretched opened and pinned to a 

Styrofoam board. Spleens were dissected and transported from the animal housing unit 

to the sterile tissue culture room in 15 ml Falcon tubes containing 5 ml of complete 

IMDM medium (Gibco) on ice. Individual spleens were placed in separate sterile 60 

mm Petri dishes containing 5 ml red blood cell lysing buffer (Sigma R7757). The 

plunger of a 5 ml syringe was used to mash and press the spleen gently through a 70 μm 

filter into the red blood lysing buffer, to release individual cells and lyse red blood cells 

at the same time. The cell suspension was transferred into a 15 ml Falcon tube. The 

Petri dish and 70 μm filter was rinsed with 5 ml of cold complete IMDM and added to 

the suspension to maximise yield and terminate the erythrolysis reaction. The cells were 
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washed by centrifugation (7 minutes, 425 xg 4ºC, Heraeus Megafuge 1.0R using a 

swing bucket rotor) and re-suspended in complete IMDM or sterile FACS buffer. 

 

2.6.2: Bone marrow cells 

 

Femurs and tibias were dissected and cleaned by removing the attached muscle, fat and 

cartilage. The bones were gently opened at either end with surgical scissors and the 

marrow flushed out in red cell lysing buffer, using a 5 ml syringe and 27 G needle, into 

a sterile Petri dish. Marrow was mashed through a 70 μm filter using the plunger of a 5 

ml syringe, to release individual cells and lyse red blood cells at the same time.  

 

2.6.3: Peripheral blood mononuclear cells (PBMCs) 

 

Mice were euthanised with terminal anaesthesia using i. p. injection of 50 μl 

pentobarbitone (source). The chest cavity was opened and flooded with 200 μl of 

herparinised KGS (see Table 2.1) The descending aortic arch was cut and blood was 

suctioned using a Pasteur pipette into Eppendorf tubes. Erythrocytes were lysed by 

incubating with 5 ml of red cell lysis buffer for 3 minutes, washing with 5 ml cold 

complete IMDM or FACS buffer and repeating the erythrolysis step for two more times 

in order to completely remove red blood cells. 

 

2.7. Immunobloting using the LICOR/Odyssey system 

 

P. chabaudi parasite lysates were a kind gift from Jennifer Lawton, NIMR, London. 

Briefly, P. chabaudi infected blood was filtered through Plasmodipur (Euro 

Diagnostica) to remove mouse leukocytes and washed 3X in PBS at 490 xg, 10 min 

each. Parasites were lysed in 0.1% saponin (Sigma) in PBS, and washed 3X in PBS at 

3,0074.5 xg for 10 minute at 4 ºC. Pelleted material was stored at -70 ºC. The parasite 

lysate fraction contains the purified parasite and its parasitophorous vacuole membrane, 

but may also contain a small amount of contaminating pRBC membrane.  

 

Bromelain-digested Influenza A/PR8/34 haemagglutinin was a kind gift from John 

Skehel, NIMR, London. 
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Proteins were resolved on NuPAGE 12% bis-Tris gels (Invitrogen) under non-reducing 

conditions in NuPAGE 1X morpholineethanesulfonic acid sodium dodecyl sulphate 

buffer (Invitrogen) according to the manufacturer’s instructions. Proteins were run 

alongside 1X SeeBlue Plus2-prestained standard (Invitrogen) for 60-90 minutes at 200 

V. The proteins were then electrophorectically transferred to Hybond C membrane 

(Amersham Biosciences) in buffer containing 10% methanol, 0.025 M Tris base 

(Sigma) and 0.2 M Glycine (BDH biosciences) for 3 h at 30 V. Membranes were 

blocked at 4 ºC overnight in skimmed milk, then washed 6 x 5 minutes with PBS + 

0.1% Tween20 on a agitating rocker. Specific proteins on the membranes were detected 

using a variety of anti-sera: Hyperimmune sera from mice multiply-infected with P. 

chabaudi; sera from PR8-infected mice, and sera from uninfected mice as a negative 

control. These were incubated at 1/100 dilution for 1 h at room temperature (RT) on an 

agitating rocker, wrapped in aluminium foil. The membranes were washed as before. 

The secondary Alexa 680-conjugated goat anti-mouse IgG (Licor Biosciences 926-

32220) was used at a 1:15,000 dilution and incubated for 1 h at RT on an agitating 

rocker, wrapped in aluminium foil. Membranes were washed as before, then with PBS 

only for 30 minutes on an agitating rocker, wrapped in aluminium foil. The 

fluorochrome conjugated to the secondary antibody was revealed by scanning the 

membranes with the Odyssey scanner (Licor Biosciences) using 680EX nm/700EM nm 

filter settings 

 

2.8. ELISA 

 

2.8.1: Measurement of HA-specific IgG 

 

96-well MaxiSorpTM plates (Nunc 439454) were coated with 0.25 μg/well of bromelain-

released PR8 haemaglutinnin (HA). Duplicate columns for the positive standard was 

included on each plate and coated with 0.25 μg/well of goat anti-mouse IgG (H+L) 

(Southern Biotech) and incubated overnight (ON) at 4 °C. Subsequently, the coat was 

removed and the residual surface of the wells were blocked with 200 μl/well of 

Blocking Buffer (PBS, 1% bovine serum albumin, 0.3% Tween20, 0.05% NaN3) for 2 h 

at 37 °C to reduce non-specific binding. Wells were washed 4 times with PBS + 0.01% 

Tween20. Eight two-fold dilutions of serum samples were made with a dilution range of 

1/50 – 1/128,000. Eight two-fold dilutions of purified immunoglobulin (Table 7) were 
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included on each plate starting with a pre-titrated known concentration. Dilutions of 

serum and standard were made in Blocking Buffer.  

 

Serum and standard were incubated for 1-2 h at RT. Plates were washed 4 times with 

PBS + 0.01% Tween20. 100 μl/well of secondary alkaline phosphatase-conjugated 

detecting antibodies (Table 2) at a 1/1000 dilution was added and incubated for 1 h at 

RT. Plates were washed 4 times with PBS + 0.01% Tween20. 50 μl/well of a 1 mg/ml 

4-Nitrophenyl phosphate disodium salt hexahydrate (Sigma S0942) in diethanolamine 

buffer pH 9.8 solution (see Table 2.1) was added and incubated in the dark until the 

colour reaction was completed. The optical density (O. D.) of each plate wasmeasured 

at the reference wavelength of 450 nm using the Dynex MRX-TC Revelation Microtiter 

plate reader and analysed using Microsoft Excel (2003) software. 

 

2.8.2: Measurement of P. chabaudi-specific IgG 

 

Parasite lysate was prepared as described above. 250 µl of parasite lysate buffer was 

added to every 50 µl of parasite lysate and vortexed, followed by centrifugation at 

16,200 xg for 2-5 minutes. The supernatant was diluted in PBS to give an OD280 reading 

of 0.05 and 50 μl was used to coat PolySorpTM plates (Nunc 475094). Hyperimmune 

serum from mice multiply infected with P. chabaudi were used as a standard, starting 

from a pre-titrated dilution. The remaining steps of the ELISA were as described above 

for HA-specific IgG. 

 

2.9: Hybridoma culture and purification of HY1.2 mIgG2a and 2H7 mIgG2b 

 

The hybridoma cell line Hy1.2 was a gift from Professor Hans Ulrich Weltzein 

(Ortmann B 1992). The Hy1.2 hybridoma was grown up to 30 L by the NIMR large-

scale facility in endotoxin-low 5% complete IMDM. Another hybridoma cell line, the 

2H7 hybridoma was also grown up to 30 L in protein-free RPMI (Table 2.3). The 

concentrated hybridoma cell supernatants were sterilised by 0.2 µm filtration and 

antibodies were purified using a Protein G column according to the manufacturer’s 

instructions (GE Healthcare Life Sciences). Briefly, Protein G sepharose (Hi-Trap, 

Pharmacia Biotech #17-0404-01) was used to fill a column, followed by the addition of 

5 bed volumes of PBS. PBS pH 7.4 (Gibco) was added in a ratio of 1:1 to the culture 

supernatant and filtered through a 0.22 µm filter. The culture supernatant was then 
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added onto the column according to the manufacturer’s protocol. The column was 

washed with PBS, and immunoglobulin was eluted using 3 bed volumes of 0.1 M 

Glycine pH 2.8 into tubes containing 1 M Tris (pH 2). After use, the column was 

regenerated with 2% ethanol and stored at 4 °C. Eluted fractions were pooled and 

dialyzed against 3 changes of endotoxin-free PBS (Gibco), using at least 100 times the 

sample volume using Slide-A-Lyzer Dialysis Cassettes, 10 K MWCO (Pierce cat: 

66810). Dialyzed antibody was then run through polymixin B agarose (Sigma) to 

remove endotoxin and concentrated using Vivaspin columns (5,000 MWCO) (GE 

Healthcare Life Sciences), according to the manufacturer’s instructions. The final 

antibody concentration was determined by spectrophotometery at OD280 nm (Nanodrop 

ND-1000 Spectrophotometer, Labtech) and ELISA (as described above).  

 

2.10: Immunodepletion with 2H7 mAb. 

 
The mAb recognizing hCD20, 2H7, was used for B cell depletion. 2H7 is a mouse 

IgG2b that binds an epitope on hCD20 similar to that bound by rituximab and therefore, 

mimics rituximab treatment of humans (Ahuja et al. 2007). 2H7 was purified from 

culture supernatants as described above. Mice were injected i. p. with 2 mg/week of 

2H7 in sterile 0.9% saline for 2 weeks. 

 

2.11: Determination of the half-life of serum Ab. 

 

The protocol for determination of the half-life of a non-specific serum Ab in mice was 

adapted from the ones used by Viera and colleagues (Vieira & Rajewsky 1988). Briefly, 

200 μg of anti-TNP mIgG2a (Hy1.2) in 200 μl PBS was injected i. p. into mice 24 hours 

or 60 days after infection with 105 pRBC, and into uninfected controls. 25 μl of blood 

was taken by tail nick from all the mice 6, 24, 80, 150 and 193 h after injection. Serum 

was obtained from blood following the method described above. Concentrations of anti-

TNP mIgG2a in serum were quantified using ELISA as described above, with the 

following exceptions: 96-well MaxiSorpTM plates (Nunc 439454) were coated with 25 

ng/well of TNP-BSA (Biosearch Technologies T-5050; diluted in PBS) and duplicate 

standard columns were coated with 25 ng/well of goat anti-mouse Ig(H+L; Southern 

Biotech; diluted in PBS) and incubated overnight at 4 °C. Known concentrations of 

purified mouse IgG2a (Sigma M9144) was used as a standard control. 
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2.12: ELISpots 

 

2.12.1: HA-specific antibody-secreting cell ELISpot 

 

Plasma cells specific to an antigen of choice were quantified by a direct ex vivo 

ELISpot, based on their ability to continuously secrete antibody. 96-well Multi-screen 

MCE filtration plates with mixed cellulose ester bases (Millipore MSHAN4550) were 

coated with 0.5 μg/well of PR8 haemagglutinin (HA) for HA-specific antibody-

secreting cells (ASC) and 0.5 μg/well of purified goat anti-mouse IgG (Sigma M30100) 

for total IgG antibody-secreting cells. Plates were wrapped tightly in saran wrap and 

incubated at 4 °C overnight. Plates were then washed twice with PBS and blocked with 

200 µl/well of sterile complete IMDM for 2 h at RT. Spleen and bone marrow cells 

were isolated and two-fold serial dilution suspensions made with a starting 

concentration of 5 x 105 cells per well. Complete IMDM was added to each well to 

make a final volume of 200 μl per well. Plates were incubated for 5 h at 7% CO2 and 37 

°C in a humidified incubator. After incubation, plates were washed twice with PBS and 

twice with PBS-0.025% Tween (PBS-T). 50 ng/well of biotinylated goat anti-mouse 

IgG (Sigma M30115) diluted in PBS-T+1% FCS was added and plates were incubated 

at 4 °C overnight. Plates were then washed 4 times with PBS-T and incubated with 50 

μl/well pre-titrated 1/8000 dilution of streptavidin alkaline phosphatase (BD 

Pharmingen 554065) diluted in PBS-T+1% FCS for 1 h at RT. Plates were washed 4 

times with PBS and 4 times with PBS-T. BCIP/NBT substrate (BioFX Laboratories 

BCIB-1000-01) was filtered through a 0.2 μm filter and pre-warmed to RT in the dark. 

100 μl/well BCIP/NBT substrate was added and incubated in the dark for approximately 

20-30 minutes until blue spots became sufficiently distinct, while making sure the 

background did not become too dark. The reaction was stopped by vigorously washing 

the plate 10 times with running cold water. The base of the plate was carefully removed 

and membranes air-dried overnight, shielded from direct sunlight. Plates were recorded 

using the ImmunoSpot® S5 UV Analyser and analysed using ImmunoSpot® Academic 

Software Version 4.0 (Cellular Technology Ltd) according to the manufacturer’s 

guidelines. Experiments were done with at least 4 replicates. 
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2.12.2: HA-specific memory B cells 

 
2.12.2.1: Concanavalin A supernatant 

 

Single cell suspensions were made from spleen and erythrolysed. Cells were washed 

and re-suspended at a concentration of 1.25 x 106/ml in fresh IMDM containing 5% 

FCS, penicillin/streptomycin (500 units/ml), L-glutamine (200 mM) and β-

mercaptoethanol (50µM). Cells were cultured in a T-75 tissue culture flask in a 20 ml 

volume containing 2.5 µg/ml of Concanavalin A (Pharmacia) and 20 ng/ml of PMA 

(Sigma), for 48 h at 7% CO2 and 37 °C in a humidified incubator. After incubation, the 

supernatant was transferred to 50 ml Falcon tubes and centrifuged at 425 xg for 10 

minutes to remove cellular debris. The supernatant was sterilised by filtering through a 

0.2 µm syringe filter. The supernatant was compared with previous batches using a 

CTLL-2 assay (see below). Aliquots of Concanavalin A supernatant were made and 

stored at -80 °C until use. 

 

2.12.2.2: CTLL-2 assay 

 

CTLL-2 is a IL-2 dependent cell line which grows in complete IMDM supplemented 

with 5% Concanavalin A supernatant and may therefore be used to test the efficacy of 

Concanavalin A supernatant. The CTLL-2 cell line was thawed from liquid nitrogen, 

grown and passaged at least twice before use for this assay. Cells were used when two-

thirds confluent. Cells were washed 3 times with HBSS. In between the 2nd and 3rd 

wash, cells were left in HBSS for 30 minutes at RT to starve them. After the 3rd wash, 

cells were re-suspended in 5 x 104/ml in complete IMDM. A serial dilution of 

Concanavalin A supernatant was made starting with a concentration of 50%. A positive 

control of a previous batch of Concanavalin A supernatant was also made. 100 µl of 

CTLL-2 cell suspension (i.e. 5 x 103 cells) were added to each well. Cells were 

incubated for 24 h at 7% CO2 and 37 °C in a humidified incubator. At this point, 0.25 

uCi of 3H-Thymidine was added to each well and incubated for a further 12 h. Plates 

were then frozen at -20 °C, or cells were harvested and radioactivity determined using 

liquid scintilliation (Wallac TriLux). 
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2.12.2.3: HA-specific memory B cell ELISpot 

 

Memory B cells may be detected using an indirect ex vivo ELISpot assay by activating 

them in vitro to generate plasma cells and then quantifying the plasma cells. This is an 

ELISpot technique which has been adapted from the one reported by Crotty and 

colleagues (Crotty et al. 2004). Briefly, replicates of two-fold dilutions of cell 

suspensions of spleen were made on flat-bottomed 96-well plates (Costar) with 21 

replicates and cultured for 6 days in 200 µl/well complete Iscove's medium containing a 

‘stimulant mastermix’ of 0.4 µg R595 lipopolysaccharide (Alexis Biochemicals), 1×106 

irradiated (1,200 rad) naive splenocytes and 20 µl Concanavalin A supernatant, 

prepared as described above. After 6 days, cells were washed in complete IMDM+1% 

FCS, harvested and transferred to pre-coated 96-well Multi-screen MCE filtration 

plates. An ex-vivo ELISpot assay for HA-specific and total IgG plasma cell detection 

performed as described above. A graphical plot was made of the fraction of natural 

logarithm of the fraction of non-responding cultures as a function of the dose of cells 

placed in each culture and a straight line was fitted to cross 0 at the y- and x-axes. 

Assuming that one responding cell is sufficient to produce a positive culture, the cell 

dose yielding 37% negative cultures gives a frequency of cells in the population capable 

of responding to the antigen. Using the Microsoft Excel Trendline option, a straight line 

of best fit was plotted. The frequencies of HA-specific and total memory B cells were 

determined from the slope of the line. Values were accepted when r2 values were greater 

than 0.7. 

 

2.13: Virus neutralisation assay 

 

Virus-neutralising Ab titres were determined using an assay as previously described 

(Kassiotis et al. 2006). Sera were collected at time points after PR8 infection, heat-

inactivated for 10 minutes at 56 °C, and tested using a modified Madin-Darby canine 

kidney (MDCK)-based assay as previously described (Kassiotis, Gray, Kiafard, 

Zwirner, & Stockinger 2006). For this, 1:2 serial dilutions of test sera were made in 96-

well flat-bottom plates with a dilution range of 1:100–1:12800 in IMDM containing 5% 

FCS. Wells containing 1:2 serum dilutions of a control serum with a dilution range of 

1:100–1:12800 served as a control for inter-plate variation. These were incubated with a 

95% tissue culture-infected dose of 0.3 HAU/1000 MDCK cells at 37 °C, 5% CO2 for 

30 minutes. Next, 1000/well of a fresh suspension of MDCK cells was added. Wells 
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containing virus and MDCK cells without serum served as background controls, and 

wells containing only MDCK cells without virus or serum were used to determine 50% 

proliferation. The plates were then incubated at 37 °C, 5% CO2 for 3 days. Media was 

removed and wells gently washed with 100 μl IMDM containing 5% FCS. Cultures 

were pulsed with alamarBlue and incubated for 1-2 hours at 37 °C, 5% CO2 to let the 

colour reaction develop. Resazurin, a non-fluorescent indicator dye, is converted to 

bright red–fluorescent resorufin via the reduction reactions of metabolically active cells 

(O'Brien et al. 2000). The amount of fluorescence produced is proportional to the 

number of living cells. Fluorescence was measured with SAFIRE II using 560EX 

nm/590EM nm filter settings. 

 

Absorbance values correlated directly to the number of viable cells in the wells, which 

correlates with the neutralising activity of influenza-specific antibodies present in the 

serum. Absorbance values were used to calculate the neutralising antibody titres. The 

absorbance value was calculated after the mean value from the background control 

wells had been subtracted. Neutralising antibody titres were expressed as the reciprocal 

of the highest serum dilution that inhibited virus growth by ≥50 %.  

 

2.13.1: MDCK cells 

 

MDCK cells were grown in IMDM containing 5% FCS and maintained at 37 °C, 5% 

CO2 in a humidified atmosphere. The cells were sub-cultured at serial dilutions of 1:10 

once a week. For the neutralisation test, cells were used when they formed an 80% 

monolayer. 

 

2.14: Flow cytometry 

 

For the surface staining procedure, 5 x 106 washed cells in 50 μl FACS buffer (PBS, 2% 

FCS, 0.05% NaN3) were added to each well of a 96-well microtitre plate and mixed 

well with 50 ul of prepared multi-mixes of antibody panels (Tables 2.4 – 2.9). To 

prevent non-specific binding of monoclonal antibodies to the Fc receptors, 5 μl of the 

Fc receptor blocking antibody (clone 24G.2) was added with the multi-mix per 1 x 106 

cells.. Cells were incubated at RT in the dark for 20 minutes. Stained cells were 

centrifuged (425 xg, 1 minute), supernatant discarded by flicking the plate and washed 

with 200 μl of FACS buffer twice. For biotinylated antibodies, streptavidin-conjugated 
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fluorochromes were added at a dilution of 1/100 and further incubated for 10 minutes at 

RT and subsequently washed 3 times. Cells were acquired using the CyAn ADP flow 

cytometer (Beckman Coulter) within 2 hours. Data were analysed using FlowJo 

(Treestar). FlowJo was also used for graphical representation and statistical analysis. 

 

For Annexin V staining, after surface staining was completed, cells were washed and re-

suspeded in Annexin V Binding Buffer (BioLegend) at a concentration of 1 x 106 

cells/ml. 100 µl of the cell suspension was filtered through a 0.2 µm filter into 

polypropylene FACs tubes (BD 352002) and 5 µl of Annexin V-Pacific Blue 

(BioLegend) was added. Cells were incubated for 15 minutes at RT in the dark. 400 µl 

of Annexin V Binding Buffer was added to the tube just prior to analysis, as described 

above.  

 

2.15: Determining lung viral titres 

 

2.15.1: RNA extraction and cDNA preparation  

 

RNA extraction was carried out according to the RNeasy mini kit protocol following the 

manufacturer’s protocol (Qiagen cat: 74106). Total RNA was extracted from whole 

lung tissues using TRI reagent (Sigma-Aldrich) and subsequently was used for cDNA 

synthesis with the Omniscript reverse transcription (RT) kit (Qiagen, Hilden, Germany). 

1 ng of RNA was used as the template, and cDNA synthesis was primed by a mixture of 

1 µM random hexamers and 1 µM of a primer specific to a highly conserved region of 

the IAV matrix gene (5'-TCTAACCGAGGTCGAAACGTA-3'), as previously 

described (Ward et al. 2004). Reaction mixtures were incubated at 37 °C for 1 h and 

terminated by incubating the mixture at 90 °C for 5 minutes. 

 

2.15.2: qRT-PCR 

 

Expression of mRNA was determined by quantitative reverse transcription-PCR (qRT-

PCR) using a DNA master SYBR green I kit (Roche, Mannheim, Germany) and the 

ABI Prism 7000 detection system (Applied Biosystems, Foster City, CA). The primers 

used for the amplification of target transcripts are in Table 2.2 (Ward et al. 

2004). Samples were analyzed in duplicate. The housekeeping gene Hprt was used to 
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normalize the critical threshold values for the genes of interest. Levels of 

IAV matrix mRNA are plotted as arbitrary units relative to Hprt mRNA levels.  

 

2.16: Paraffin sections and H&E staining 

 

Femurs were gently opened at either end and fixed in 10% neutral formalin 

buffer overnight, dehydrated through graded alcohols (Leica ASP300s), embedded in 

paraffin, and sectioned at 5 µm using a microtome. Sections were mounted on 

SuperFrost Plus Slides (Microm International) and stained by routine H&E (Harris 

haematoxylin and eosin, Leica Autostainer XL). Histological sections were examined 

and photographed under light microscopy using a 100X oil immersion objective lens. 

 

2.17: Statistical analysis 

 

Statistics were generated by Student’s t test and Mann-Whitney U test performed using 

GraphPad Prism software. 
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Table 2.1: Buffers 

 
Phosphate Buffered Saline (PBS) 

5 mM KH2PO4 

5 mM K2HPO4 

0.1 M NaCl 

pH 7.5 

 

FACS Buffer 

PBS 

2% FCS 

5 mM EDTA 

0.05% NaN3 

 

ELISA/ELISPOT: Wash Buffer 

PBS 

0.025% Tween20 

 

ELISA: Blocking Buffer 

PBS 

1% BSA 

0.03% Tween20 

0.05% NaN3 

 

ELISA: Substrate Buffer 

48.5 ml Diethanolamine (source? Conc?) 

400 mg MgCl2.6H2O 

0.05% NaN3 

pH 9.8  

P nitrophenyl phosphate (PNPP) 

tablets (Sigma N-9389) were 

added just prior to use at a final 

concentration of 1 mg/ml 

 

Giemsa Buffer 

0.9% NaCl 

0.2 mM KH2PO4 

0.8 mM K2HPO4 

pH 7.0-7.2 

 

 

Krebs’ Glucose Solution 

Buffer 222.2 ml 

Buffer contents: 

NaH2PO4 26 mM 

NH4Cl 4.36 ml 

pH 7.4 

NaCl 55 mM 

KCl 4.6 mM 

MgSO4.7H2O 2.4 mM 

Glucose 11 mM 

 

For heparinised KGS, dilute heparin (LEO, 

009876-04) 1/50 in KGS (100 IU/ml) 

 

Parasite Lysate Buffer 

50 mM Tris pH7.5  

1 mM EDTA  

0.05% SDS  

pH8  

 

Complete Iscove’s Modified Dulbecco’s 

Medium (IMDM) 

To IMDM medium 500 ml, the following were 

added: 

1 M Hepes 5 ml 

Penicillin G sodium/streptomycin sulfate (500 

units/ml) 5 ml 

L-Glutamine (200 mM)  

Β-mercaptoethanol (50µM) 500 µl 

Heat-inactivated FCS 10% 50 ml 
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Reagents 

 

Table 2.2: Primers 

Primer Sequence 

Hprt forward 5'-TTGTATACCTAATCATTATGCCGAG-3'   

Hprt reverse 5'-CATCTCGAGCAAGTCTTTCA-3' 

IAV matrix forward 5'-AAGACCAATCCTGTCACCTCTGA-3'  

IAV matrix reverse 5'-CAAAGCGTCTACGCTGCAGTCC-3'  

 

Table 2.3: Hybridomas 

Clone Specificity Isotype Reactivity Purified on 

Hy1.2 2, 4, 6-trinitrophenyl mIgG2a Mouse Protein G 

2H7 Human CD20 mIgG2b Human Protein G 
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Antibody Tables 

 

Table 2.4: Plasma cell panel  

Company Catalog 

# 

Specificity Fluorochrome Channel Stock 

concentration 
Use 

at  

Clone Isotype 

eBioscience 53-9991 CXCR4 Alexa Fluor® 488 FL-1 0.5 mg/ml 2B11 Rat IgG2b, κ 

BD 

Pharmingen™ 

553714 CD138 PE FL-2 0.2 mg/ml 281-2 Rat IgG2a, κ 

BD 

Pharmingen™ 

560528 CXCR5 PerCP-Cy5.5 FL-4 0.2 mg/ml 2G8 Rat IgG2a, κ 

eBioscience 25-0452 Human/Mouse 

CD45R (B220) 

APC FL-8 0.2 mg/ml RA3-6B2 Rat IgG2a, κ 

eBioscience 47-5321 MHC Class II 

(I-A/I-E) 

APC-Cy7 FL-9 0.2 mg/ml 

1/200 

M5/114.15

.2 

Rat IgG2b, κ 

BioLegend 640918 Annexin-V Pacific Blue FL-6  5 µl/100µl cell suspension 

containing 105 cells 

 

 

Table 2.5: Memory B cell and Germinal Centre B cell panel 

 

 

Company Catalog 

# 

Specificity Fluorochrome Channel Stock 

concentration 
Use 

at  

Clone Isotype 

eBioscience 25-0452 

 

Human/Mouse 

CD45R (B220) 

PE-Cy7 FL-5 0.2 mg/ml RA3-6B2 Rat IgG2a, κ 

BioLegend 405712 IgD Pacific Blue FL-6 0.5 mg/ml 11-26c.2a Rat IgG2a, κ 

eBioscience 17-0381 CD38 APC FL-8 0.2 mg/ml 90 Rat IgG2a, κ 

BD 

Pharmingen™ 

562080 GL7 (B and T-

Cell Activation 

Antigen) 

FITC FL-1 0.5 mg/ml 

1/200 

 

GL7  Rat IgM, κ 
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Table 2.6: B cell panel 

 

 

Company Catalog 

# 

Specificity Fluorochrome Channel Stock 

concentration 
Use at  Clone Isotype 

eBioscience 25-0193 CD19 

 

PE-Cy7 FL-5 0.2 mg/ml eBio1D3 

(1D3) 

Rat IgG2a, κ 

BD 

Pharmingen™ 

553818 CD21/CD35 FITC FL-1 0.5 mg/ml 7G6 Rat IgG2b, κ 

BD 

Pharmingen™ 

553137 CD23 Biotin  0.5 mg/ml B3B4 Rat IgG2a, κ 

BioLegend 406512 IgM PerCP-Cy5.5 FL-3 0.2 mg/ml RMM-1 Rat IgG2a, κ 

BioLegend 405316 IgG (minimal 

x-reactivity) 

APC-Cy7 FL-9 0.2 mg/ml 

1/200 

Poly4053 Goat Ig 

BD 

Pharmingen™ 

561857 CD43 PE FL-2 0.2 mg/ml 1/500 S7 Rat IgG2a, κ 
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 Table 2.7: T cell, NK cell and NK T cell panel 

 

 

Company Catalog 

# 

Specificity Fluorochrome Channel Stock 

concentration 
Use 

at  

Clone Isotype 

eBioscience  12-5941 NK1.1 

 

PE FL-2 0.2 mg/ml PK136 Mouse 

IgG2a, κ 

eBioscience 25-5971 CD49b 

(Integrin alpha 

2)  

PE-Cy7 FL-5 0.2 mg/ml DX5 Rat IgM, κ 

eBioscience 11-0083 CD8b FITC FL-1 0.5 mg/ml eBioH35-

17.2 (H35-

17.2) 

Rat IgG2b, κ 

eBioscience 45-0042 CD4 PerCP-Cy5.5 FL-3 0.2 mg/ml RM4-5 Rat IgG2a, κ 

BD 

Pharmingen™ 

559250 CD44 APC FL-8 0.2 mg/ml IM7 Rat IgG2b, κ 

eBioscience 48-0621 CD62L (L-

Selectin) 

eFlour® 450 FL-6 0.2 mg/ml 

1/200 

MEL-14 Rat IgG2a, κ 
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Table 2.8: Granulocyte panel 

 

Company Catalog 

# 

Specificity Fluorochrome Channel Stock 

concentration 
Use at  Clone Isotype 

BD 

Pharmingen™ 

552126 Siglec F 

 

PE FL-2 0.2 mg/ml E50-

2440 

Rat IgG2a, κ 

BioLegend 117324 CD11c APC-Cy7 FL-9 0.2 mg/ml N418 Armenian 

Hamster IgG 

eBioscience 17-0112 CD11b APC FL-8 0.2 mg/ml M1/70 Rat IgG2b, κ 

BioLegend 128014 Ly6C Pacific Blue FL-6 0.5 mg/ml HK1.4 Rat IgG2c, κ 

BioLegend 127606 Ly6G FITC FL-1 0.5 mg/ml 1A8 Rat IgG2a, κ 

BioLegend 123114 F4/80 PE-Cy7 FL-5 0.2 mg/ml BM8 Rat IgG2a, κ 

eBioscience 13-5898 FcεR1α (high 

affinity IgE 

receptor) 

Biotin  0.5 mg/ml MAR-1 Armenian 

Hamster IgG 

BioLegend 406906 IgE FITC FL-1 0.5 mg/ml RME-1 Rat IgG1, κ 

eBioscience 12-1171 CD117 (c-kit) PE FL-2 0.2 mg/ml 

1/200 

2B8 Rat IgG2a, κ 

 

 

Table 2.9: hCD20rg panel  

 

 

Company Catalog 

# 

Specificity Fluorochrome Channel Stock 

concentration 
Use at  Clone Isotype 

eBioscience 12-0209 Human CD20 PE 

 

FL-2 5 µL (0.06 

µg)/test 

1/20 2H7 Mouse 

IgG2b, κ 

BioLegend 302314 Human CD20 APC-Cy7 FL-9  1/20 2H7 Mouse 

IgG2b, κ 
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Table 2.10: ELISA and ELISpot Antibodies 

 

ELISA: Coating Antibodies 

Company Catalog # Name Working dilution 

Southern Biotech 1030-01  Goat Anti-Mouse IgG, Human ads-UNLB 1:1000; 50µl/well 

Southern Biotech 1070-01  Goat Anti-Mouse IgG1, Human ads-UNLB 1:1000; 50µl/well 

Southern Biotech  1080-01  Goat Anti-Mouse IgG2a, Human ads-UNLB 1:1000; 50µl/well 

Southern Biotech 1090-01  Goat Anti-Mouse IgG2b, Human ads-UNLB 1:1000; 50µl/well 

Southern Biotech 1100-01  Goat Anti-Mouse IgG3, Human ads-UNLB 1:1000; 50µl/well 

Southern Biotech 1020-01  Goat Anti-Mouse IgM, Human ads-UNLB 1:1000; 50µl/well 

 

ELISA: Secondary Antibodies 

Company Catalog # Name Working dilution 

Southern Biotech 1031-04 Goat anti-mouse IgG (H+L)-AP 1:1000; 50µl/well 

Southern Biotech 1070-04 Goat anti-mouse IgG1-AP 1:1000; 50µl/well 

Southern Biotech 1090-04 Goat anti-mouse IgG2a-AP 1:1000; 50µl/well 

Southern Biotech 1080-04 Goat anti-mouse IgG2b-AP 1:1000; 50µl/well 

Southern Biotech 1100-04 Goat anti-mouse IgG3-AP 1:1000; 50µl/well 

Southern Biotech 1020-04 Goat anti-mouse IgM-AP 1:1000; 50µl/well 

 

ELISA: Purified immunoglobulin used for standards, reconstituted to stock solutions of 1 mg/ml 

from ≥ 95% purified (SDS-PAGE) lyophilized powder. 

Company Catalog # Name Clone 

Sigma-Aldrich I5381 IgG from mouse serum  

Sigma-Aldrich M1398 IgG1, Kappa from murine myeloma MOPC 31C 

Sigma-Aldrich M9144 IgG2a, Kappa from murine myeloma UPC 10 

Sigma-Aldrich M8884 IgG2b, Kappa from murine myeloma MOPC 141 

Sigma-Aldrich I3784 IgG3, Kappa from murine myeloma DX 

Sigma-Aldrich M1520 IgM, Kappa from murine myeloma TEPC 183 

 

 

 

 

 

 

 

 

 

 

 

 87

http://www.southernbiotech.com/techbul/1030.pdf
http://www.southernbiotech.com/techbul/1070.pdf
http://www.southernbiotech.com/techbul/1080.pdf
http://www.southernbiotech.com/techbul/1090.pdf
http://www.southernbiotech.com/techbul/1100.pdf
http://www.southernbiotech.com/techbul/1020.pdf


_________________________________________Chapter 2: Methods and Materials 

 88

ELISPOT: Coating Antibodies 

Company Catalog # Name Working dilution 

Invitrogen M30100 IgG (γ), Goat Anti-Mouse, (Purified) 1:1000; 50µl/well 

 

 ELISPOT: Secondary Antibodies and Streptavidin Alkaline Phosphatase 

Company Catalog # Name Working dilution 

Invitrogen M30115 IgG (γ), Goat Anti-Mouse, (Biotin) 1:1000; 50µl/well 

 BD 

Pharmingen™ 

554065 Streptavidin-Alkaline Phosphatase 1:8000; 50µl/well 

 

 

Table 2.11: Mouse Strains 

 
Strain Reference 

BALB/c  NIMR 

C57BL/6 NIMR 

hCD20tg BALB/c Ahuja, A., Shupe, J., Dunn, R., Kashgarian, M., Kehry, M. R., & Shlomchik, 

M. J. 2007, "Depletion of B cells in murine lupus: efficacy and resistance", The 

Journal of Immunology, vol. 179, no. 5, p. 3351. 

FcγRI,II,III-/- 

C57BL/6 

Van Lent, P., Nabbe, K. C., Boross, P., Blom, A. B., Roth, J., Holthuysen, A., 

Sloetjes, A., Verbeek, S., & Van Den Berg, W. 2003, "The inhibitory receptor 

Fc+¦RII reduces joint inflammation and destruction in experimental immune 

complex-mediated arthritides not only by inhibition of Fc+¦RI/III but also by 

efficient clearance and endocytosis of immune complexes", The American 

journal of pathology, vol. 163, no. 5, p. 1839. 
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Chapter 3: The role of memory B cells and long-lived plasma cells in maintaining 

serum antibody titres after intranasal infection of BALB/c WT female mice with 

Influenza A/PR/8/34. 

 

3.1: Introduction 

 

Longitudinal studies of antibody (Ab) responses in humans have shown that Abs appear to 

be maintained for long periods of time at detectable, and in many cases, protective, levels in 

the absence of re-exposure after infection with viruses such as measles (Panum et al. 1940), 

yellow fever virus (Sawyer 1931), polio (Paul et al. 1951) and Influenza A (Yu et al. 

2008b). In addition, live attenuated vaccines for measles, yellow fever, polio and Influenza 

A, as well as vaccinia and rubella, are also able to induce successful life-long protective 

immunity (Amanna et al. 2007;Slifka & Ahmed 1996). The estimated half-life of Abs 

derived from these studies place vaccinia, rubella, mumps, measles and EBV as the 

vaccines that establish Ab titres with the longest serum half-lives, ranging from 92 to an 

infinite number of years (Amanna et al. 2007). However, how serum Abs are maintained 

for this long in the absence of antigenic stimulation is unknown (Ahmed & Gray 1996). In 

this chapter, I will investigate whether MBC is required for the maintenance of humoral 

immunity to Influenza.  

 

3.1.1: Maintenance of serum antibodies by memory B cells or long-lived plasma cells  

 

There have been a number of mechanisms proposed to explain how long-term Abs is 

maintained in the absence of antigen. Both memory B cells (MBCs) and long-lived plasma 

cells (LLPCs) can survive in the absence of antigen (Manz et al. 1998;Maruyama et al. 

2000), summarized in (Amanna & Slifka 2010), but whether MBC or LLPC can maintain 

serum Abs independently of each other is unclear. MBC do not spontaneously differentiate 

into Ab-secreting plasma cells, and mechanisms which are dependent on MBC hinge upon 

antigenic stimulation or bystander stimulation and T cell help. MBC differentiate into 

plasma cells upon antigenic stimulation and they have the potential to react to a wider range 

of pathogenic epitopes than the Abs produced by LLPC, due to their lower-affinity, more 

polyreactive B cell receptors (BCRs) (Dal Porto et al. 2002;Tarlinton & Smith 2000), 

meaning that both homologous antigen and cross-reactive stimulation can stimulate the 
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MBC BCR. In addition, human and mouse MBC can differentiate in vitro into plasma cells 

upon non-BCR-mediated, non-specific Toll-like receptor (TLR) stimulation (Benson et al. 

2009;Bernasconi et al. 2002). Therefore there are a number of ways for how MBC can 

maintain serum Abs. Over time, MBC can continually differentiate into Ab-secreting 

plasma cells whenever the host encounters homologous re-infection, cross-reactive 

heterologous infections, or in any inflammatory context with TLR ligands and bystander T 

cell help, and thus frequently boost serum Ab titres, and/or replenish the LLPC niche 

(Bernasconi et al. 2002). 

 

LLPC have also been shown to have a significant role in maintaining serum Ab. Unlike 

mature naive and MBCs, LLPCs do not require, or respond to, antigenic or bystander 

stimulation and are terminally differentiated Ab-secreting cells (Tarlinton et al. 2008). 

Instead, homeostatic regulation of LLPC occurs as they compete for space in finite survival 

niches where they continuously secrete large amounts of immunoglobulin, supported by 

intrinsic and extrinsic survival resources (Moser et al. 2006). Three papers have been 

published whereby MBC have been depleted either by irradiation or by Ab-mediated 

depletion, and these papers conclude that long-term Abs can be maintained exclusively by 

LLPC. Firstly, LCMV-induced LLPCs in mice continue to produce specific Abs for 250 

days, despite irradiation to ablate dividing MBCs and inhibit differentiation of MBCs into 

new plasma cells (Slifka et al. 1998). In this study, LCMV-specific Ab levels showed a 

marked decrease directly after irradiation but thereafter remained stable, albeit at lower 

titres. Secondly, the B cell depleting mAb clone 2H7 directed against a human CD20 

(hCD20) antigen was used by the Shlomchik and colleagues (Ahuja et al. 2008) in their 

hCD20 transgenic x B10 knock-in mice to show that the LLPCs generated by NP-CGG 

immunization were able to survive and maintain NP-specific serum Abs for up to 150 days 

in vivo, independently of naïve and MBCs, which had been depleted. This finding was 

consistent with another study, where murine anti-CD20 was directed against wild-type 

CD20 by the Tedder and colleagues (DiLillo et al. 2008), which demonstrated that the Ab 

responses generated by immunization with DNP-KLH was maintained for up to 77 days 

after CD20-mediated MBC depletion. Conversely, co-blockade of the adhesion receptors 

LFA-1 and VLA-4, which are components of the LLPC survival niche, caused the 

temporary loss of Ag-specific LLPC and the loss of specific serum Ab.  
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In summary, Ab titres can be maintained without Ag for long periods of time. During 

immune homeostasis, LLPCs generated by protein immunization have the ability to survive 

and maintain serum Abs in the absence of a MBC compartment for a long time in vivo. 

Interventions which result in the depletion of LLPC also result in the loss of serum Abs. 

However it has been suggested that in some contexts, stimulation of MBC may be required 

to maintain serum Ab titres beyond the finite lifespan of LLPC. In the context of LCMV 

infection, MBC may contribute to maintaining serum Abs at their optimum level, without 

which LLPCs are able to maintain Ab titres, albeit at a lower level. 

 

3.1.2: Correlative longitudinal studies on memory B cells and serum Abs in humans 

 

One way of determining the relative contribution of MBCs or LLPCs to long-lived serum 

Abs in humans is to correlate the concentrations of serum Abs to the abundance of specific 

MBCs in blood. This is especially informative when analyzing humoral immunity to 

vaccines with single/few protective antigens like those with protein antigens or single 

bacterial toxins (e.g. tetanus toxin) or invariant viruses (e.g. yellow fever virus), because in 

such cases high neutralizing Ab titres often are the best correlates with protective immunity 

and are used clinically to monitor vaccine efficacy (Amanna & Slifka 2010). Although Abs 

are the direct product of LLPCs, LLPCs are predominantly found in survival niches in the 

bone marrow and very rarely, if ever, detected in circulation, and are therefore very 

inaccessible for studies (Radbruch et al. 2006). On the other hand, the majority of MBCs 

are found in the spleen and lymph nodes, but a small number of specific MBCs recirculate 

and, in some contexts like NP immunization, are considered to be representative of the 

peripheral pool of specific MBCs within a month after immunization (Tarlinton & Smith 

2000). It is possible that other infections and vaccinations can induce varying distributions 

of MBCs over different anatomic sites and recirculating MBCs may not necessarily reflect 

the total antigen-specific population in peripheral organs like spleen and lymph nodes 

(Doherty 1995). 

  

Nevertheless, bearing these caveats in mind, longitudinal studies have been used to find 

correlative relationships between serum Abs and recirculating memory cells. If Ab kinetics 

matches that of a particular blood cell type, this suggests that Abs are maintained by that 

particular cell type. As mentioned above, some vaccines are able to induce Abs which have 
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a very long half-life. One of the best-studied examples in humans is the Ab response after 

immunization with vaccinia (DryVax), which generates serum Abs with an estimated half-

life of 92 years (Amanna et al. 2007;Amanna et al. 2006). Correlative studies of long-term 

humoral immunity with MBCs after vaccinia vaccination are informative because: a) the 

tightest predictor of protective immunity to smallpox in the field, based on longitudinal 

studies (Slifka 2004), as well as in animal models (Davies et al. 2005;Shearer et al. 2005), 

is serum Abs. There is no consistent correlation between protective immunity and T cell 

memory, and neither is there a consistent correlation between T cell memory and serum 

Abs (Crotty et al. 2003;Hammarlund et al. 2003); b) since the cessation of vaccination with 

DryVax in 1972 and worldwide eradication of smallpox in 1980, there is unlikely to have 

homologous antigenic restimulation in humans for at least 30 years, with the exception of 

military personnel and people in specialized laboratories who still undergo smallpox 

vaccination. Smallpox is the only known virus in the orthopoxvirus family, which means 

that a cross-reactive by a closely related virus is unlikely, and it does not form chronic or 

latent infections. 

 

DryVax is a live virus vaccine against smallpox derived from freeze-dried calf lymph, and 

was used from the 1940s to 2008. Immunization is via scarification of superficial epidermal 

layers. The establishment of several cohorts of human subjects immunized with DryVax in 

the 1940s has been followed by several very long-term studies examining the persistence of 

serum Abs to this vaccine. All these studies have shown that vaccinia-specific serum Abs 

and recirculating MBC responses are very long-lived. However, there has been no 

consistent correlation between MBC and serum Ab. Hummerlund and colleagues 

(Hammarlund et al. 2003) showed that there was detectable serum neutralizing activity and 

virus-specific re-circulating B and T memory cells present for up to 75 years after DryVax 

vaccination; however these cell populations displayed different decay kinetics over time 

and these authors concluded that they formed distinctly regulated compartments. There was 

no correlation between virus-specific T cell numbers and Ab titres at early or late time 

points. However, no direct correlations between MBCs and serum Abs were undertaken in 

this study.  In another study, cross-sectional analysis of human vaccinees ranging from 

4 weeks to more than 50 years post-immunization was done by Crotty and colleagues 

(Crotty et al. 2003), and this demonstrated a biphasic kinetic whereby the number of 

vaccine-specific MBCs increased and declined by about 90% during the first few 
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months/years post-vaccination and then appeared to stabilize, with vaccinia-specific 

IgG+ MBCs maintained for >50 years, and there was a positive correlation with virus-

specific Ab titres, which was also maintained for more than 50 years. 

 

Notably, another group found that, although the majority of smallpox virus-specific MBC 

are contained within the spleen, virus-specific Ab titres are not lower in splenectomised or 

B cell depleted individuals, where presumably the majority of virus-specific MBC would 

have been removed (Mamani-Matsuda et al. 2008). However, in this same study, several 

patients were identified who had virus-specific recirculating MBC but undetectable levels 

of virus-specific Abs, and conversely, some patients had high levels of virus-specific Abs 

but no detectable virus-specific recirculating MBC (Mamani-Matsuda et al. 2008), leading 

the authors to conclude that there was no clear correlation between virus-specific MBC and 

serum Abs, and that they belonged to distinctly regulated compartments. Finally, taking 

data from a recent study by Amana et al., which followed the Ab responses to several 

childhood vaccine antigens in 45 adults for a period of 26 years (Amanna et al. 2007), the 

same authors expanded their analysis to attempt to fit their data into 6 different models of 

MBC- or LLPC-dependent mechanisms (Amanna & Slifka 2010). These authors did not 

observe a correlation between MBC-based models and Ab kinetics after vaccinia, varicella 

zoster virus, Epstein-barr virus, or tetanus-diphtheria vaccinations, but they reported a 

correlation after measles, mumps and rubella vaccinations (Amanna & Slifka 2010). None 

of the MBC-dependent or LLPC-dependent models adequately fitted the kinetics of serum 

Ab loss following the complete course of vaccination (Amanna & Slifka 2010), suggesting 

that the mechanisms that contribute to long-term serum Ab maintenance are probably more 

complex than the MBC or LLPC-dependent mechanisms proposed. 

 

It is difficult to measure kinetics when there is little or no observable decline in serum Abs 

over time. In cases where vaccinations induce Abs with a shorter half-life, e.g. tetanus 

and/or diphtheria, it is possible to test a direct correlation with MBCs and serum Abs by 

following the response to booster immunization during later time points after 

immunization, when Ab levels decline, and immediately after booster immunization to see 

whether the rate of decrease in serum Abs matches the rate of decrease in MBC, and 

whether increases in Ag-specific MBC activation after booster immunization leads to 

concordant increases in Ab responses, which would then decline during the intervening 
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periods between outbreaks or vaccinations. These studies have also not shown a clear link 

between booster-induced elevation of serum Abs and numbers of recirculating MBC just 

after booster immunization (Leyendeckers et al. 1999;Nanan et al. 2001). One study 

reported a strong correlation between serum Abs and recirculating MBC years after the 

booster, with the additional observation that the number of specific recirculating MBC 

increased with the number of booster immunizations (Bernasconi et al. 2002), summarized 

by (Lanzavecchia et al. 2006). 

 

Finally, vaccine failures, which are immunologically defined the rapid loss of serum titres 

below a protective threshold, have occurred despite the presence of effective immune 

priming, a robust early Ab response, and generation of high numbers of specific circulating 

MBCs, e.g. after Bordetella pertussis (Hendrikx et al. 2010) or Hepatitis B vaccinations 

(Rosado et al. 2011). The latter study has shown that, although HBsAg-specific Abs soon 

fall below protective levels (<10 mIU/ml) within 5 years in 45 out of 99 of children tested, 

robust MBC recall responses can still be induced  (Rosado et al. 2011). This non-

correlation between waning Ab titres and the MBC recall response suggests that, in the 

absence of antigenic restimulation by booster immunization, MBCs do not in fact 

differentiate into plasma cells to maintain serum Ab. It could be that in the case of Hepatitis 

B, which is a virus which takes a few days to disperse from the site of inoculation, there is 

no need for MBCs to maintain serum Abs as there is enough time for them to differentiate 

into plasma cells and produce Abs to prevent the systemic spread of the virus. 

 

In summary, although some infections and vaccines can induce long-lived serum Abs in the 

absence of antigen, and others induce Abs with a shorter half-life which requires periodic 

boosting, this does not consistently correlate with numbers of recirculating MBCs. The 

kinetics of serum Ab loss and numbers of recirculating MBCs appear to be different where 

there has not been any known antigenic re-stimulation, and yet also appear independent of 

homologous boosters. Therefore, from longitudinal studies following vaccination in 

humans, there is no clear resolution of whether MBCs are required for long-lived serum 

Abs after human infections or vaccinations. 
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3.1.3: Antibody maintenance after memory B cell depletion  

 

A number of agents are able to selectively deplete MBCs or plasma cells (Clatworthy 

2011;Hu et al. 2009). One of them, Rituximab™, which is a chimeric anti-human CD20 

monoclonal Ab, is used as a biological treatment for diseases caused by abnormal B cell 

development, e.g. haematological neoplasms (Coiffier et al. 2002;Maloney et al. 

1997;McLaughlin et al. 1998) or by pathogenic autoantibodies, e.g. autoimmune diseases 

such as rheumatoid arthritis (Rastetter et al. 2004;Silverman & Weisman 2003), and anti-

rejection treatments for organ transplants by depleting B cells (Becker et al. 2004;Milpied 

et al. 2000;Vo et al. 2008). CD20 is a trans-membrane protein present on the surface of all 

B cells from pre-B cell stage onwards but not on terminally differentiated plasma cells 

(Gong et al. 2005). Depletion of B cells by Rituximab™ treatment is very specific and only 

depletes naïve, mature, MBCs and short-lived plasma cells. LLPCs, which have 

downregulated CD20, and other cell types like T cells and granulocytes, which do not 

express CD20, are not depleted by Rituximab™ (DiLillo et al. 2008;Gong et al. 2005). 

Thorough analysis of B cell depletion in the periphery in human patients is difficult; 

however it has resulted in a prolonged loss of peripheral blood CD19+ B cells (<0.0005 x 

106/ml) for more than 25 weeks in patients with rheumatoid arthritis (RA) (Cambridge et 

al. 2003;Edwards et al. 2004). Furthermore, Rituximab™ treatment results in the profound 

and rapid reduction of B cells in the peripheral blood (>99%), bone marrow (>90%) and 

lymph nodes (>80%) after a single treatment dosage in macaques (Reff et al. 1994). 

Although peripheral B cells recover within a year in patients treated for RA, the loss of 

MBCs after Rituximab™ treatment is prolonged, and there is a significant loss of recall 

humoral responses to vaccination boosters for up to 2 years post-treatment (Cambridge et 

al. 2003). Whether LLPC are truly not affected by Rituximab™ treatment has not been 

formally confirmed in human patients, but Rituximab™ therapy indirectly provides a 

system in humans to test the longevity of pre-established LLPC and their ability to maintain 

stable serum Ab titres, in the absence of a functional MBC compartment.  

 

In most patients treated with Rituximab™, there is a significant reduction in auto-Abs for 

up to 1 year following treatment (Cambridge et al. 2003;Cambridge et al. 2006). By 

contrast, levels of pre-existing anti-microbial or anti-vaccine Abs, e.g. anti-pneumococcal 

or anti-tetanus Abs, have been found to remain stable for up to 1 year after Rituximab™ 
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treatment (Cambridge et al. 2003;Cambridge et al. 2006), suggesting that pre-existing 

serum Abs can be maintained at normal levels by LLPCs in the absence of MBCs. 

However, risk of re-infection with Hepatitis B virus and a higher incidence of infection has 

been reported in patients (Cooper & Arnold 2010), indicating that mature and MBCs may 

be particularly important for protective immunity against those infections 

(Clatworthy;Cooper & Arnold 2010). Total serum immunoglobulin levels do not fall below 

normal levels (about 2 mg/ml) in the majority of patients treated with one course of 

Rituximab™ (Stasi et al. 2001). However, in relapsing and remitting cases of multiple 

sclerosis, where patients are given up to 5 cycles of Rituximab™ treatment, a progressive 

loss of the immunoglobulin subclasses IgM, IgG and IgG has been reported, in some cases 

falling below the normal range (Edwards et al. 2004). It has been noted that IgM levels tend 

to fall more than IgG and IgA levels (Keystone et al. 2007).  

 

In contrast to CD20-targeted therapies like Rituximab™, which do not deplete LLPCs, 

CD19-targeted therapy has been found to also deplete 50% of murine bone marrow LLPCs, 

and is more efficacious at reducing circulating IgG Abs than CD20-targeted therapy. 

Depletion of plasma cells by Atacicept, which blocks the cytokines BAFF and APRIL, 

which are two survival resources crucial for LLPC survival in bone marrow, results in a 

significant reduction in serum IgG levels (Dall'Era et al. 2007). Patients who are treated by 

combination chemotherapy or bone marrow transplantation, whereby there is an almost 

complete loss of bone marrow plasma cells, there is a significant loss of serum 

immunoglobulin as well as loss of specific protective Ab titres against tetanus, diphtheria, 

measles and mumps in these patients (Lim et al. 2008;Nishio et al. 2006), possibly 

reflecting the contribution of LLPC to total serum immunoglobulin and Ab responses 

induced by these vaccinations. These findings are by no means universal: one study has 

reported that despite the use of Bortezimib (Everly et al. 2010;Wahrmann et al. 2010), a 

proteosome inhibitor which causes apoptosis of plasma cells, there is preservation of 

protective anti-microbial Ab titres and only very modest losses in some auto-Abs, 

indicating that LLPC may not be the exclusive source of anti-microbial serum Abs, and that 

they can contribute partially to the production of autoimmune Ab. 

 

The chimeric monoclonal Ab 2H7, which recognizes epitopes similar to that recognized by 

Rituximab™, is used to deplete B cells in a hCD20 BAC transgenic mouse strain, where 
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the expression of hCD20 is similar to that of mouse CD20 (Ahuja et al. 2007;Gong et al. 

2005). This transgenic model provides a clean system whereby the efficacy of B cell 

depletion can be extensively characterized. One study made use of genetically modified 

hCD20 transgenic mice crossed with B cell receptor B1-8 knock-in mice, in which 

approximately 2% of hCD20+ B cells were NP-specific and generated an abnormally large 

pool of MBC and LLPC after immunization (Ahuja et al. 2008). When these mice were 

depleted of MBCs after NP-CGG immunization, there was preservation of LLPC numbers 

and pre-existing NP-specific serum Ab, in the absence of MBCs for up to 16 weeks after B 

cell depletion (Ahuja et al. 2008). These results are consistent with another study where a 

mouse anti-CD20 Ab, 2B8, which binds to murine CD20 with similar affinity as the 

humanized 2H7, was used to deplete B cells in wild-type mouse strains, where pre-existing 

total serum immunoglobulin was also maintained for at least 77 days after depletion with 

2B8 (DiLillo et al. 2008). 

 

These hCD20 transgenic mice have also been crossed to autoimmune-prone mice and used 

to determine the role of autoimmune Abs to disease. In these studies, anti-hCD20 treatment 

or treatment with anti-mCD20 mAb has resulted in delayed symptoms or reversal of 

disease. However the mechanisms of amelioration of autoimmune symptoms do not always 

correlate with loss of autoimmune Abs, reflecting the role of multiple arms of immune 

responses to autoimmunity. In one study using the hCD20/Non-Obese Diabetic (NOD) 

model of Type 1 diabetes, (Hu et al. 2007) a 9-day cycle of 4 intravenous injections with a 

3-day interval resulted very effective B cell depletion. B cell depletion resulted in 

prolonged prevention or delay of the onset of full-blown diabetes, even after insulinitis had 

begun, and was also able to reverse diabetes at a relatively advanced stage of the disease. 

The mechanism of recovery in this study, however, was found to be not due to reduction of 

autoantibodies, but due to the promotion of development of regulatory T and B cells and 

decrease in effector CD4 and CD8 T cells. Surprisingly, the role of autoantibodies was not 

examined in this study. In another study, using the K/BxN hCD20tg mouse model of 

inflammatory arthritis (Huang et al. 2010), which develop spontaneous arthritis in response 

to the auto-antigen glucose-6-phosphate isomerase (GPI), mice were treated with 1mg/wk 

anti-hCD20 mAb. Analysis of anti-GPI ASCs in bone marrow, spleen, lymph nodes, 

peripheral blood and peritoneal cavity by ELIspot revealed that the highest numbers of anti-

GPI ASC were plasmablasts in spleen and lymph nodes, which expressed intermediate 
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levels of hCD20 and were susceptible to anti-hCD20 mAb-mediated depletion, leading to a 

reduction in serum titres of anti-GPI Abs over time, whereas total Ab titres were not 

affected. The main finding of this paper was that the reduction of anti-GPI Ab in serum was 

a result of depletion of GPI-specific short-lived plasma cells. By contrast, non-specific 

LLPC were not affected by anti-hCD20 mAb treatment. 

 

Several papers have demonstrated that certain autoimmune contexts can pre-dispose hosts 

to ‘resistance’ to B cell depletion by anti-CD20 mAbs. In hCD20tg crossed to an lupus-

prone MRL/MpJ-Faslpr background, B cells were very refractory to depletion compared 

with BALB/c mice across different anti-hCD20 clones (Ahuja et al. 2007), possibly due to 

impairment of IgG-mediated phagocytosis by macrophages and neutrophils exposed to 

lupus mouse serum (Ahuja et al. 2011). In these mice, significant, but not complete, 

depletion of B cells was only achieved with extremely high doses of anti-hCD20 mAb for 

prolonged periods of time (10mg/wk for 10 weeks) and similarly high doses were required 

when anti-mCD20 was used to deplete B cells in another autoimmune lupus-prone strain 

NZB/W. Using this high-dose regimen to deplete B cells, amelioration of lupus symptoms 

was found to be a combinatorial effect of a reduction in T cell activation, 

hypogammaglobulinaemia and lower titres of autoimmune Abs (Ahuja et al. 2007). The 

selective depletion efficacy of some B cell subsets was also shown in a murine model of 

spontaneous autoimmune thyroiditis in NOD.H-2h4 mice, where about 50-80% of splenic 

B cells were depleted by a single i.v. injection of 250µg anti-mCD20 mAb. In this system, 

splenic marginal zone B cells were resistant to depletion, whilst most follicular and 

immature B cells were effectively depleted. Despite the retention of marginal zone B cells, 

anti-mouse thyroglobulin autoantibody responses were significantly reduced and thyroiditis 

was reversed (Yu et al. 2008a). Therefore, in the autoimmune context, the depletion 

efficacy of anti-CD20 mAb treatment is reduced and may confound the interpretation of 

data from patients treated with Rituximab™ for autoimmune diseases such as SLE. 

 

In summary, despite MBC depletion by Rituximab™ and prolonged suppression of MBC-

mediated humoral recall responses in patients, the majority of treated patients maintain 

normal levels of some pre-existing serum anti-microbial immunoglobulin up to 1 year post-

depletion. Autoantibodies tend to be preferentially reduced, and antimicrobial Abs tend to 

be maintained at pre-existing levels, in patients treated with anti-CD20 mAbs, but the 
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reason for this is not clear. It is difficult to assess the extent of depletion of peripheral B1, 

MBCs and short-lived inflammatory plasma cells from germinal centres in secondary 

lymphoid organs and ectopical germinal centres in patients treated with Rituximab™. 

LLPC are predominantly found in bone marrow niches and are also very inaccessible, and 

it is difficult to confirm whether LLPC are truly non-depleted. Therefore, as the depletion 

efficacy of peripheral B cells by Rituximab™ has not been extensively characterized in 

humans, it is difficult to draw conclusions as to which cell is the source of autoantibodies 

and anti-microbial Abs and whether LLPC and MBCs are independent sources of serum 

Ab. In mice, where anti-CD20 targeted B cell depletion has been extensively characterized, 

the LLPC and serum Abs induced by intraperitoneal protein immunization can be 

maintained for up to 77 – 150 days, in the absence of a MBC compartment and without any 

other immunological stimulus (Ahuja et al. 2008;DiLillo et al. 2008). However, the 

findings of anti-CD20 mAb mediated depletion in autoimmune-prone mice has revealed 

that depletion of B cells in an autoimmune context is relatively inefficient, suggesting that 

the same occurs in human patients. Therefore the conflicting data on serum Abs titres after 

MBC depletion may simply reflect the different contexts in which these experiments are 

done and the resulting variable depletion efficacies. It is possible that MBCs have a 

significant contribution to long-lived Abs titres in situations when there may be continuous 

Ag stimulation, e.g. autoimmune diseases or some infections, whilst LLPC play a 

predominant role in Ab maintenance in situations where Ag is more rapidly eliminated, e.g. 

protein immunization. It is still unknown whether LLPC generated by an infectious agent 

rather than immunization protocol also maintains serum Abs independently of MBCs. 

 

3.1.4: Kinetics of the humoral immune response to Influenza A/PR/8/34 in mice 

 

Influenza A/PR/8/34 (PR8) is a human-derived that is considered a prototype strain of the 

H1N1 subtype of Influenza A viruses. PR8 can affect mice and the mouse model for PR8 

infection has been extensively used and characterized. The infection generates a 

predominantly Th1 response with the induction of virus-specific CD8 cytolytic T cells and 

a rapid Ab response comprising predominantly IgA and IgG isotypes. Elimination of CD8+ 

T cells does not abolish viral clearance and Abs to influenza virus haemagglutinin on their 

own are able to eliminate the virus from the lung, demonstrating the substantial 

contribution of the Ab response in anti-viral protection. 
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The outcome of experimental infection of mice with PR8 depends on many parameters, 

including the dose and route of administration. Infection via intranasal instillation results in 

either non-lethal respiratory disease (influenza model) or lethal viral pneumonia (viral 

pneumonia model) if light anesthesia is applied to allow viral inhalation directly into the 

lower respiratory tract. Regardless of route of administration, active infection with PR8, i.e. 

viral replication and generation of viable viral progeny, is typically confined to the airway 

epithelium although viral RNA can be detected in extrapulmonary tissues.  

 

In the influenza model initiated by intranasal instillation, viral titres peak within 3-5 days 

and decline to undetectable levels by 14 days (Eichelberger et al. 1991). Intranasal PR8 

infection initiates a systemic humoral immune response which comprises in an early 

appearance of IgM in the serum, followed by IgG2a and IgG1 which predominates from 

day 14 onwards (Jones & Ada 1986;Jones & Ada 1987). The titre of virus-specific IgA in 

the serum is usually very low. Virus-specific ASC can be detected in mesenteric lymph 

nodes, lung, spleen and bone marrow from day 7 to day 40 of infection, although the 

isotype distribution varies in each organ (Fazekas et al. 1994).  Most studies of correlates of 

immune protection against influenza have focused on serum anti-HA1 Ab. The results of 

these studies generally agree that serum HA1-specific Abs are correlated with protection, 

whereas Abs specific for nucleoprotein (NP) and matrix protein 1 have less therapeutic 

potency, possibly because they are internal proteins not typically accessible on intact 

virions. HA1-specific serum IgG2a predominates in both quantity (Fazekas et al. 1994) and 

protective efficacy. The ability of serum IgG Abs to prevent re-infection has been 

documented by passive transfer of serum or HA-specific mAb into immunodeficient SCID 

mice, which is able to protect from infection (Gerhard et al. 1997;Palladino et al. 1995).  
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3.2: Aim 

The intranasal route of infection with PR8 of wild-type mice is a well-characterized model 

and one that induces long-lived humoral immunity. However the cellular mechanisms for 

Ab maintenance are not known. In this chapter, I aim to determine whether LLPCs are able 

to survive and maintain serum PR8-specific Abs in the absence of a MBC compartment, by 

using the hCD20tg system of depleting MBCs. 

 

3.3: Objectives 

1. To determine whether intranasal infection with Influenza A/PR/8/34 of wild-type 

BALB/c female mice can induce long-term serum Abs, LLPCs and MBCs for up to 

234 days post-infection. 

2. To characterize hCD20tg mice and determine the extent of depletion using the anti-

hCD20 mAb 2H7. 

3. To determine the effect of 2H7-mediated depletion on pre-existing HA-specific 

serum IgG and LLPCs. 
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3.4: Results 

 

3.4.1: Development of long-lived specific systemic humoral memory after primary 

intranasal PR8 infection in BALB/c WT mice. 

 

Serum antibody  

 

Influenza A virus replicates in both the upper and lower respiratory tract. Viral replication 

peaks approximately 48 hours after inoculation into the nasopharynx and declines slowly, 

with little virus shed after about 6 days. The B cell response to influenza virus does not 

depend on extensive viral replication or viral persistence. No influenza virus genetic 

material can be demonstrated 14 days after infection by PCR (Eichelberger et al. 1991). To 

characterize the development of humoral immunity in BALB/c mice infected with 

intranasal instillation of PR8, specific serum Ab concentrations and specific plasma cells 

and MBCs were quantified at various time points after infection. The median value of the 

concentration of HA-specific serum IgG rose significantly from 116 µg/ml on d72 to 237.8 

µg/ml on d91 (Mann-Whitney test; P = 0.0317), and to 401.4 µg/ml on day 190 but there 

was no statistical difference between d91 and d190 (P = 0.2844) (Figure 3.1A). The 

concentration of serum HA-specific IgM was analyzed from serum obtained on d14, 31, 72 

and 190 post-infection. There was a significant increase (d14 vs. d31; P = 0.0003) in the 

median value of HA-specific IgM from 0.416 µg/ml on d14 to 2.03 µg/ml on d31. This 

then reached a plateau with no significant change to d72, but there was a significant 

decrease by d190 (d72 vs. d190; P = 0.0286) to comparable levels with d14 (d14 vs. d190; 

P = 0.7641). The results therefore demonstrated that a primary infection induced a slow 

accumulation of specific IgG by d91, thereafter remaining at a stable level for the rest of 

the period of observation until d190. This was accompanied by a faster but smaller increase 

in HA-specific IgM by d31, followed by a decrease by d190.  

 

HA-specific antibody-secreting cells in spleen and bone marrow 

 

The frequency and total number of HA-specific Ab secreting cells (ASC) in spleen and 

bone marrow from femur pairs were quantified using ELISpot at various time-points up to 

d234 after PR8 infection (Figure 3.1B-C). In spleen, there was no significant change in 
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either the frequency and number of HA-specific ASC between d150 and d234 (Figure 

3.1B). The median frequency of HA-specific ASC in bone marrow increased significantly 

from 11.32/106 cells on d28 and 67.75/106 cells on d150; but did not significantly change 

after d150 (Figure 3.1C). However the total median number of HA-specific ASC in bone 

marrow reached a stable number by d63 and remained similar on d150, by which all of the 

mice had above background numbers of HA-specific ASCs, and up till d234 (Figure 3.1C). 

This data therefore demonstrates that HA-specific ASCs are detected in spleen and bone 

marrow, where they stabilize in number by d150 in the spleen and d63 in the bone marrow. 

LLPCs have been detected in the lymph nodes after intranasal influenza vaccination in 

association with certain adjuvants (Kasturi et al. 2011), but HA-specific LLPC in lymph 

nodes were not measured in these experiments. 

 

HA-specific memory B cells in spleen 

 

The frequency and total number of HA-specific MBCs (MBC) in spleens were quantified 

using limiting dilution ELISpot at various time-points up to d337 after PR8 infection 

(Figure 3.1D). Because the majority of MBCs are thought to reside in splenic reservoirs 

(Mamani-Matsuda et al. 2008), and due to the difficulty in doing limiting dilution ELISpot 

in more than one organ, I limited the quantification of HA-specific isotype-switched MBCs 

to cells in the spleen. Stable numbers of MBCs were established by at a median value of 

111.6 per spleen by d150 and were not statistically different from the median value of 

168.6 per spleen on d337. 

 

These data demonstrate that a primary intranasal infection with Influenza A/PR/8/34 

induces stable concentrations of HA-specific Ab as well as stable numbers of HA-specific 

LLPCs and MBCs by 150 days post-infection. 

 

3.4.2: Experimental protocol for depletion of MBCs from hCD20tg/BALB/c mice. 

 

In order to determine whether MBCs or LLPCs were the source of long-lived Abs after 

intranasal Influenza A/PR/8/34 (PR8) infection, I designed a system whereby MBCs would 

be depleted 150 days after PR8 infection. If maintenance of Abs was dependent on the 

differentiation of MBCs into plasma cells, then this should result in the loss of Ab. In order 
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to do this, I used hCD20 transgenic mice and depleted mature and MBCs using the anti-

hCD20 mAb, 2H7 (Figure 3.2A). By contrast, LLPCs have been documented to be 

resistant to depletion by 2H7, either because they have downregulated their surface hCD20 

and/or due to their niche location in the bone marrow, and would therefore remain after 

2H7 treatment. 6-10 wk old female hCD20 transgenic (hCD20tg) and hCD20tg-negative 

littermate control mice were intranasally infected with 250 haemagglutinin units of PR8. 

Serum was obtained 28, 56 and 84 days after infection to determine the Ab response to PR8 

HA. After resting the mice for 20 weeks to allow both the MBC and ASC pools to become 

stably established, both groups of mice were given anti-hCD20 mAb for 2 weeks (8 x 

0.5mg; 2mg/wk i.p.) to deplete B cells. Depletion was confirmed 24 hours after the last 

injection of 2H7 in a subset of mice. MBC, ASC and serum HA-specific IgG was 

quantified 42 and 150 days post-depletion.  

 

In order to determine whether hCD20tg mice show similar responses as wild-type BALB/c 

mice, the concentration of HA-specific serum IgG after PR8 infection in hCD20tg and 

hCD20tg-negative mice and BALB/c WT mice was quantified by ELISA. There was no 

significant difference in the mean HA-specific IgG concentrations between the three groups 

(Figure 3.2B). Therefore, hCD20tg mice and their littermate controls mount similar Ab 

responses to PR8 HA compared to wild-type BALB/c mice. 

 

3.4.3: The 2H7 mAb targets hCD20 on CD19+ B cells in spleens from hCD20tg mice 

but not in hCD20tg-negative littermates. 

 

hCD20 transgenic mice were backcrossed for at least 7 generations with NIMR BALB/c 

mice. Spleen was obtained from 1 hCD20tg mouse and 1 hCd20tg-negative littermate and 

surface stained by flow cytometry using anti-hCD20 and anti-CD19 Abs. The anti-hCD20 

mIgG2b 2H7 was purified from a hybridoma supernatant as described in Methods and 

Materials. This 2H7 mAb recognized hCD20 on splenic CD19+ cells from the hCD20tg 

mouse but not in the hCD20tg-negative littermate control, when compared with a 

commercial 2H7-PE mAb and an isotype control (Figure 3.3). For all experiments, PBMCs 

were obtained from every hCD20tg and hCD20tg-negative mouse and screened with anti-

hCD20 and anti-CD19 Abs before experiments were initiated. 
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3.4.4: Distribution of hCD20 on different cell lineages after PR8 infection  

 

150 days after infection with PR8, hCD20 expression profile on various cell types in spleen 

and bone marrow was analyzed by flow cytometry in hCD20tg and hCD20tg-negative 

littermates (Figure 3.4). The lineage markers used and the cell types they delineated were 

CD19 (B cells), B220- CD138+ (LLPCs), CD3 (T cells), DX5 (NK cells in BALB/c mice 

express DX5 but not NK1.1), CD11b (macrophages, monocytes, granulocytes, NK cells), 

CD11c (mainly dendritic cells, but also macrophages, monocytes, neutrophils, B cells) and 

F4/80 (macrophages). In agreement with previous studies (DiLillo et al. 2008), hCD20 is 

expressed by CD19+ B cells in spleen and bone marrow. In addition, hCD20 was expressed 

by B220- CD138+ LLPCs in the spleen and at intermediate levels on approximately 40% of 

B220- CD138+ LLPCs in the bone marrow. However, hCD20 is not expressed on any other 

cell type. 

 

3.4.5: Depletion efficacy after 2H7 treatment 

 

Having determined the expression profile of hCD20 on different cell types in hCD20tg and 

hCD20tg-negative mice, both groups were infected with PR8 and rested for 150 days. The 

short-term depletion efficacy of 2H7 treatment was tested in these PR8-immune mice using 

flow cytometric analysis before, and 1, 42 and 150 days post-treatment. After 2H7 

administration, there was rapid loss of spleen cellularity (Figure 3.5A), but not in bone 

marrow cellularity (Figure 3.5B) when analyzed 1 day following the last dose of 2H7 In 

the spleen, there was recovery to approximately 50-60% of pre-depletion total cell numbers 

by days 42 and 150 post-depletion. The effect of 2H7 treatment on the frequencies of 

neutrophils, macrophages, dendritic cells, monocytes, eosinophils and mast cells was 

determined 1 day post-treatment using the gating strategy shown in the figure (Figure 

3.6A-B). There was no change in the frequencies of neutrophils, macrophages, eosinophils, 

monocytes and mast cells in the bone marrow (Figure 3.6C-G). However, there was a 

significant decrease in dendritic cells in both the hCD20tg and hCD20tg-negative 

littermates (Figure 3.6H), suggesting that the slight depletion of dendritic cells was not a 

hCD20-specific effect but a bystander effect of the immunization. Similarly, there was also 

a depletion of both CD4 T cells (Figure 3.7B) and CD8 T cells (Figure 3.7C) in the bone 

marrow in hCD20tg but not in hCD20tg-negative littermates. There was no significant 
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change in DX5+ NK cells (Figure 3.7D-E). In summary, treatment with 2H7 resulted in a 

slight depletion of DCs, CD4+ and CD8+ T cells, but not neutrophils, macrophages, 

eosinophils, monocytes and mast cells. 

 

By contrast, in the spleen, there was effective, rapid and specific B cell depletion. Surface 

markers CD19+, CD21+ and sIgD+ were independently used to quantify B cells (Figure 

3.8A), and these markers were co-expressed on double plots (Figure 3.8B). In all three 

different analyses, B cells were depleted by 70-75% in the frequency and a greater than 

95% reduction in the numbers 1 day post-depletion. Although frequencies were restored to 

pre-depletion levels by d150 post-treatment, the numbers of CD19+, CD21+ and sIgD+ cells 

were still significantly reduced at d150 (Figure 3.8C-E), perhaps indicating that there may 

have been a long-term disruption of particular splenic B cell niches which affected their 

ability to re-constitute naïve B cell numbers to pre-depletion levels. In contrast, splenic B 

cells before and after 2H7 treatment were very similar in hCD20tg-negative littermates, 

showing that depletion was 2H7 specific, rather than a bystander effect of the mAb 

treatment. CD19+ B cells were then quantified in spleen, peripheral blood mononuclear 

cells (PBMC), lymph nodes and bone marrow (Figure 3.9A). Similar to other studies, B 

cell depletion was not 100% complete and varied in spleen, lymph node, bone marrow and 

PBMC as assessed using CD19. Approximately 70-75% of CD19+ B cells were depleted in 

spleen, lymph node and PBMC and 50% depletion in bone marrow when analyzed 1 day 

post-depletion (Figure 3.9B-E).  

 

Analysis of hCD20 expression on B cell subsets in spleen showed that hCD20 is expressed 

on immature, marginal zone and follicular B cells (Figure 3.10A). Despite all groups 

expressing hCD20, analysis of immature, marginal zone and follicular B cells 1 day post-

depletion revealed very significant depletion of marginal zone (MZ) and follicular (FO) B 

cells, but no decrease in frequency of immature B cells (Imm) from the spleen (Figure 

3.10B-D). In bone marrow, B cell depletion was highly specific and corresponded to the 

expression of hCD20 on pre-B cells (Figure 3.11A); only depleting pre-B cells and not pre-

pro and pro-B cells (Figure 3.11B).  

 

Splenic germinal centre B cells (B220+ IgD- CD38- GL7+) and MBCs (B220+ IgD- CD38+ 

GL7-) both expressed hCD20 (Figure 3.12A and 3.13A). Assessment of short- and long-

 106



____________________________________________Chapter 3: Role of memory B cells  

term depletion of MBCs and germinal centre B cells was done on d1, 42 and 150 after 2H7 

treatment. 2H7 treatment resulted in 85% reduction in frequency and number of splenic 

MBC (B220+ IgD- CD38+ GL7-) even only 1 day after the last 2H7 administration, and the 

numbers of splenic MBC remained significantly decreased for up to 150 days post-

treatment (Figure 3.12B-C). Surprisingly, splenic germinal centre B cells were found to be 

completely resistant to 2H7-mediated depletion. Instead there was rapid and drastic 

increase in both frequency and number of splenic germinal centre B cells, particularly in 

the hCD20tg-ve littermates, 1 day after the last 2H7 administration (Figure 3.13B-C).  

 

Despite intermediate to high levels of expression of hCD20 on B220- CD138+ plasma cells 

in spleen and bone marrow (Figure 3.14A), plasma cells were not depleted by 2H7 

administration. In spleen, there was a large increase in the frequency and number of B220- 

CD138+ plasma cells 1 day after the last 2H7 administration, but this had decreased to pre-

depletion levels by day 42 (Figure 3.14B-C). In bone marrow, there was no significant 

change in the frequency and number of B220- CD138+ plasma cells for up to 150 days after 

2H7 treatment (Figure 3.14D-E). 

 

3.4.6: Depletion of HA-specific memory B cells and its effect on HA-specific long-lived 

plasma cells and HA-specific IgG. 

 

Having characterized the depletion efficacy and specificity by 2H7 treatment and 

established that treatment with 2H7 depletes CD19+ B cells but not B220- CD138+ LLPC, 

the next task was to determine whether 2H7 treatment depleted pre-established HA-specific 

MBC from PR8-immune hCD20tg or hCD20tg-negative littermates. The numbers of 

functional HA-specific MBC in spleen was determined by limiting dilution ELISpot. There 

was a significant reduction of more than 80% of HA-specific IgG MBC from the spleen 1 

day post-2H7 treatment, and this loss remained significant for up to 150 days post-

treatment (Figure 3.15A). By contrast, although there was a greater than 95% reduction in 

total IgG MBC 1 day post-2H7 treatment, numbers of total IgG MBC returned to pre-

depletion levels by day 42 and remained stable up to 150 days post-treatment (Figure 

3.15B). There was no change in numbers of HA-specific MBC and total IgG MBC in the 

hCD20tg-negative littermate controls. Therefore, depletion of HA-specific MBCs was rapid 

but prolonged, remaining significantly depleted for up to 150 days after 2H7 treatment, 
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with 2 out of 3 hCD20tg mice at day 150 still having undetectable numbers of HA-specific 

MBC (individual data points not shown). Total IgG MBCs were reconstituted to pre-

depletion levels by day 42, probably due to homeostatic division or stimulation of MBCs 

for other specificities by environmental antigens or other undetected infections throughout 

this time period. 

 

Having determined that 2H7 resulted in significant and prolonged depletion of HA-specific 

MBC, next I quantified HA-specific Ab-secreting cells (ASC) functionally by ELISpot. 

There was no reduction in HA-specific ASC in either spleen and bone marrow observed 1 

day and 42 days post-2H7 treatment, but there was a significant decrease in HA-specific 

ASC in both spleen (Figure 3.16A) and bone marrow (Figure 3.16C) at day 150 post-

treatment in hCD20tg mice. There was also a decrease in total IgG-secreting ASC in spleen 

(Figure 3.16B) but not in bone marrow (Figure 3.16D)). Therefore, HA-specific ASC were 

not immediately depleted by the short two-week course of 2H7 treatment, consistent with 

the lower expression levels of hCD20 on plasma cells (Figure 3.14A). Instead, their loss at 

a late time point (at day 150 but not before day 42 post-2H7 treatment) suggests that the 

loss of HA-specific ASC was more likely to be a consequence of the long-term depletion of 

HA-specific MBC, possibly because of a lack of replenishment, than a direct effect of 2H7 

treatment.  

 

Finally, I quantified HA-specific serum IgG concentrations after 2H7 treatment and found 

that there was a significant decrease of HA-specific serum IgG only from day 90 up to day 

150 post-treatment in hCD20tg mice, whereas HA-specific serum IgG remained stable in 

hCD20tg-negative littermates (Figure 3.17A). By contrast, there was no difference in total 

serum IgG concentrations either between hCD20tg or hCD20tg-negative littermates after 

2H7 treatment, across the different time points (Figure 3.17B). These results suggested that 

MBCs contribute significantly to the long-term maintenance of HA-specific serum IgG. 

 

 

 

 

 

 



B

C

D

Days after Influenza A infection

H
A

-s
pe

ci
fic

 Ig
G

 A
S

C
pe

r s
pl

ee
n 

(p
er

 1
06  c

el
ls

)

0 28 63 150 234
0

10

20

30

40 ns

not done

Days after Influenza A infection

H
A

-s
pe

ci
fic

 Ig
G

 A
S

C
pe

r f
em

ur
 p

ai
r (

/1
06  c

el
ls

)

0 28 63 150 234
0

50

100

150

200

p=0.0362

Days after Influenza A infection

H
A

-s
pe

ci
fic

 Ig
G

 A
S

C
pe

r f
em

ur
 p

ai
r (

x1
06 )

0 28 63 150 234
0

2000

4000

6000

8000

10000

Days after Influenza A infection
H

A
-s

pe
ci

fic
 Ig

G
 A

S
C

pe
r s

pl
ee

n 
(x

10
6  c

el
ls

)

0 28 63 150 234
0

2000

4000

6000

8000

10000
ns

not done

Sp
le

en
Bo

ne
 m

ar
ro

w

Frequency Number

Frequency Number

ASC in spleen

ASC in bone marrow

MBC in spleen

3.1A

Days after Influenza A infection
0 50 100 150 200

0.1

1

10

100

1000

IgG
IgM

H
A

-s
pe

ci
fic

 Ig
 (u

g/
m

l)

Serum antibody

109Days after Influenza A infection

H
A

-s
pe

ci
fic

 Ig
G

 M
B

C
pe

r s
pl

ee
n

0 28 63 150 227 337
0

100

200

300

400

not
donenot

detected

Undetectable in naïve mice



3.2A

B

Days after Influenza A infection

H
A

-s
pe

ci
fic

 Ig
G

 (u
g/

m
l)

28 56 84
1

10

100

1000

hCD20tg

BALB/c WT
hCD20tg-negative

Influenza A

hCD20tg
hCD20tg-negative littermates

20 wk

B cell depletion
2mg/wk 2H7 i.p. for 2 wk

24h-20 wk

ELISA
Flow cytometry
ASC/MBC ELISpot

110



CD19-APC

hC
D

20
-P

E

CD19-APC

hC
D

20
-P

E

CD19-APC

hC
D

20
-P

E

CD19-APC

hC
D

20
-P

E

CD19-APC

hC
D

20
-P

E

CD19-APC

hC
D

20
-P

E

Commercial 2H7-PE 
antibody

Purified 2H7 antibody
+ anti-mouse IgG2b-biotin
+ streptavidin-PE

hCD20tg

Mouse IgG2b-PE 
isotype control

hCD20tg-
negative

3.3

111



3.4

112



3.5A
Spleen number

Pre 1 42 15
0

Pre 1 42 15
0

0

50

100

150

200

Days after 2H7 treatment

pe
r s

pl
ee

n 
(x

10
6 )

p=0.0057

p=0.042

Bone marrow number

Pre 1 42 15
0

Pre 1 42 15
0

0

20

40

60

80

Days after 2H7 treatment

pe
r f

em
ur

 p
ai

r (
x1

06 )

B

113

hCD20tg hCD20tg-negative 



Neutrophils

Pre 1
Pre 1

25

30

35

40

45

50

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w

Macrophages

Pre 1
Pre 1

0.0

0.2

0.4

0.6

0.8

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w

Dendritic cells

Pre 1
Pre 1

0.0

0.1

0.2

0.3

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w

p=0.0175

Monocytes

Pre 1
Pre 1

0

2

4

6

8

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w

Eosinophils

Pre 1
Pre 1

0.0

0.5

1.0

1.5

2.0

2.5

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w

Mast cells

Pre 1
Pre 1

0.0

0.2

0.4

0.6

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w

ns

FceR1B-PerCP-Cy5.

C
D

11
b-

A
P

C

R1
1.34

FS Lin: FS

S
S

 L
in

: S
S

94.7

Ly6C-Pacific Blue
Ly

6G
-F

IT
C

Mast cell
28.9

R1

CD11b-APC

# 
C

el
ls

46.2

FS Lin: FS

S
S

 L
in

: S
S

94.7

Ly6C-Pacific Blue

Ly
6G

-F
IT

C

R1
7.09

Monocyte
8.42

Neutrophil
70.4

CD11c-APC-Cy7

S
ig

le
c-

F-
P

E

DC
6.16

Eosinophil
39.9

Macrophage
11.7

R1CD11b+

Gating for neutrophils, monocytes, macrophages, dendritic 
cells and eosinophils

Gating for mast cells

3.6A

B

C D E

F G H

114

hCD20tg hCD20tg-negative 



FS Lin: FS
S

S
 L

in
: S

S

95
CD8-FITC

C
D

4-
P

er
C

P
-C

y5
.5 CD4 T cell

0.67

CD8 T cell
0.12

CD4+  CD8- T cells

Pre 1
Pre 1

0.0

0.2

0.4

0.6

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w p=0.0195

CD8+  CD4- T cells

Pre 1
Pre 1

0.00

0.05

0.10

0.15

Days after 2H7 treatment
%

 in
 B

on
e 

m
ar

ro
w

p=0.0159

CD3- DX5+ NK cells

Pre 1
Pre 1

0

1

2

3

4

5

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w

ns

3.7A

B C

D

E

115

hCD20tg hCD20tg-negative 



CD19

Pre 1 42 15
0

Pre 1 42 15
0

0

50

100

150

Days after 2H7 treatment

pe
r s

pl
ee

n 
(x

10
6 )

p=<0.0001
p=0.402

IgD

Pre 1 42 15
0

Pre 1 42 15
0

0

50

100

150

Days after 2H7 treatment

pe
r s

pl
ee

n 
(x

10
6 )

p=<0.0001
p=0.457

CD21

Pre 1 42 15
0

Pre 1 42 15
0

0

50

100

150

Days after 2H7 treatment

pe
r s

pl
ee

n 
(x

10
6 )

p=<0.0001
p=0.402

FS Lin: FS

S
S

 L
in

: S
S

92

CD19-PE-Cy7

S
S

 L
in

: S
S

CD19+
52.8

CD21-FITC

S
S

 L
in

: S
S

CD21+
50.3

IgD+

S
S

 L
in

: S
S

IgD+
45.8

IgD+CD21+CD19+Live gate

Spleen

CD19-PE-Cy7

Ig
D

-P
ac

ifi
c 

B
lu

e

48.3

CD19-PE-Cy7

C
D

21
-F

IT
C

50.7

IgD-Pacific Blue

C
D

21
-F

IT
C

49

CD19 vs CD21CD19 vs IgD IgD vs CD21
Double plots

3.8A

B

C D E

116

hCD20tg hCD20tg-negative 



Lymph node

Pre 1
Pre 1

0

10

20

30

40 p=<0.0001

Days after 2H7 treatment

%
 in

 L
ym

ph
 n

od
e

Spleen

Pre 1
Pre 1

0

20

40

60

80
p=<0.0001

Days after 2H7 treatment

%
 in

 s
pl

ee
n

PBMC

Pre 1
Pre 1

0

20

40

60

80 p=<0.0001

Days after 2H7 treatment

%
 in

 P
B

M
C

Bone marrow

Pre 1
Pre 1

0

5

10

15

20

25 p=<0.0001

Days after 2H7 treatment

%
 in

 B
on

e 
m

ar
ro

w

FS Lin: FS

S
S

 L
in

: S
S

91.7
FS Lin: FS

S
S

 L
in

: S
S

91.9
FS Lin: FS

S
S

 L
in

: S
S

98.2
FS Lin: FS

S
S

 L
in

: S
S

92

CD19-PE-Cy7

S
S

 L
in

: S
S

CD19+
52.8

CD19-PE-Cy7

S
S

 L
in

: S
S

CD19+
30.4

CD19-PE-Cy7

S
S

 L
in

: S
S

CD19+
64

CD19-PE-Cy7

S
S

 L
in

: S
S

CD19+
17.8

Spleen

PBMC

Lymph 
node

Bone 
marrow

Live gate CD19+
3.9A B C

D E

117

hCD20tg hCD20tg-negative 



Follicular B cells
(CD21int CD23+)

Pre 1
15

0
Pre 1

15
0

0

10

20

30

40

50

Days after 2H7 treatment

%
 in

 s
pl

ee
n

p=0.0157

Marginal  zone B cells
(CD21+ CD23-)

Pre 1
15

0
Pre 1

15
0

0

1

2

3

4

Days after 2H7 treatment

%
 in

 s
pl

ee
n

p=0.0159

Immature B cells
(CD21- CD23-)

Pre 1
15

0
Pre 1

15
0

0

2

4

6

8

Days after 2H7 treatment

%
 in

 s
pl

ee
n

3.10A

B C D

118

hCD20tg hCD20tg-negative 



100 101 102 103 104

CD43

B
22

0

Pre
1.78

Prepro
7.84

Pro
10.7

Live gate

hCD20

%
 o

f M
ax

hCD20

%
 o

f M
ax

hCD20

%
 o

f M
ax

PrePre-pro Pro

Developing B cell subsets

Pre 1
Pre 1

Pre 1
Pre 1

Pre 1
Pre 1

0.1

1

10

100

Pre
Pro
Pre-pro

+ -

%
 in

 b
on

e 
m

ar
ro

w

p=0.0057

+ -+ -

Bone marrow

Live gate
CD43 vs B220

3.11A

B

119



Memory B cells
(B220+ IgD- GL7-  CD38+)

Pre 1
15

0
Pre 1

15
0

0

5

10

15

20

Days after 2H7 treatment

%
 in

 s
pl

ee
n

p=0.0002

Memory B cells
(B220+ IgD- GL7-  CD38+)

Pre 1
15

0
Pre 1

15
0

0

5

10

15

Days after 2H7 treatment

N
um

be
r i

n 
sp

le
en

 (x
10

6 )
p=<0.0001
p=0.0067

3.12A

B C

FS Lin: FS

S
S

 L
in

: S
S

73.5

B220

Ig
D

R1
6.57

GL7

C
D

38

GC
2.16

MBC
74.8

R1
Live gate

Spleen

B220 vs IgD GL7 vs CD38

hCD20

%
 o

f M
ax

hCD20

%
 o

f M
ax

GC B cellBmemMBC

120

hCD20tg hCD20tg-negative 



GC B cells
(B220+ IgD- GL7+ CD38-)

Pre 1
15

0
Pre 1

15
0

0.0

0.5

1.0

1.5

2.0

Days after 2H7 treatment

%
 in

 s
pl

ee
n p=0.0007

GC B cells
(B220+ IgD- GL7+ CD38-)

Pre 1
15

0
Pre 1

15
0

0.0

0.5

1.0

1.5

2.0

Days after 2H7 treatment

N
um

be
r i

n 
sp

le
en

 (x
10

6 )

p<0.0001

B C

3.13A

FS Lin: FS

S
S

 L
in

: S
S

73.5

B220

Ig
D

R1
6.57

GL7

C
D

38

GC
2.16

MBC
74.8

R1
Live gate

Spleen

B220 vs IgD GL7 vs CD38

hCD20

%
 o

f M
ax

hCD20

%
 o

f M
ax

GC B cellBmemMBC

121

hCD20tg hCD20tg-negative 



Long-lived plasma cells

Pre 1 42 15
0

Pre 1 42 15
0

0.0

0.5

1.0

1.5

Days after 2H7 treatment

%
 p

er
 s

pl
ee

n

not
done

ns

not
done

Long-lived plasma cells

Pre 1 42 15
0

Pre 1 42 15
0

0.0

0.5

1.0

1.5

Days after 2H7 treatment

N
um

be
r p

er
 s

pl
ee

n 
(x

10
6 )

ns

not
done

not
done

Long-lived plasma cells

Pre 1 42 15
0

Pre 1 42 15
0

0.0

0.2

0.4

0.6

0.8

1.0

Days after 2H7 treatment

%
 p

er
 fe

m
ur

 p
ai

r ns ns

Long-lived plasma cells

Pre 1 42 15
0

Pre 1 42 15
0

0.0

0.1

0.2

0.3

0.4

0.5

Days after 2H7 treatment

N
um

be
r p

er
 fe

m
ur

 p
ai

r

ns
ns

CD138-PEB
22

0-
A

PC
hCD20-APC750%

 M
ax

Bone marrow

Spleen

Live gate
B220 vs CD138 hCD20

CD138-PEB
22

0-
A

PC
hCD20-APC750%

 M
ax

Bone marrow

Spleen

Live gate
B220 vs CD138 hCD20

Frequency Number

S
pl

ee
n

B
on

e 
m

ar
ro

w

Frequency Number

3.14A

B C

D E

122

hCD20tg hCD20tg-negative 



HA-specific IgG MBC

Days after 2H7 treatment

N
um

be
r p

er
 s

pl
ee

n

0 1 4215
0 0 1 4215

0
0

200

400

600

800

1000

p=0.0129
p=0.0476
p=0.0476

IgG MBC

Days after 2H7 treatment

N
um

be
r p

er
 s

pl
ee

n

0 1 4215
0 0 1 4215

0
0

5000
10000
15000
20000
25000
40000
60000

p=0.0179

3.15A B

123

hCD20tg hCD20tg-negative 



Days after 2H7 treatment

N
um

be
r p

er
 s

pl
ee

n

0 1 4215
0 0 1 4215

0
0

2000
4000
6000
8000

10000
12000 p=0.0167

p=0.0294

Days after 2H7 treatment

N
um

be
r p

er
 s

pl
ee

n

0 1 4215
0 0 1 4215

0
0

20000

40000

60000

80000

100000 p<0.0001

Days after 2H7 treatment

N
um

be
r p

er
 fe

m
ur

 p
ai

r

0 1 4215
0 0 1 4215

0
0

1000

2000

3000

p=0.0167

p=0.0357

Days after 2H7 treatment

N
um

be
r p

er
 fe

m
ur

 p
ai

r

0 1 4215
0 0 1 4215

0
0

10000

20000

30000

40000 ns

HA-specific IgG ASC Total IgG ASC

S
pl

ee
n

B
on

e 
m

ar
ro

w

3.16A

C
HA-specific IgG ASC Total IgG ASC

B

D

124

hCD20tg hCD20tg-negative 



Total serum IgG

Days after 2H7 treatment

To
ta

l I
gG

 (m
g/

m
l)

0 42 90 150
1

10

100 hCD20tg
hCD20tg-negative

HA-specific serum IgG

Days after 2H7 treatment

H
A

-s
pe

ci
fic

 Ig
G

 (u
g/

m
l)

0 42 90 150
10

100

1000

p=0.0032
p=0.0002

p=0.0007

hCD20tg
hCD20tg-negative

3.17A

B

125



Chapter 3: Figure legends___________________________________________________ 

Figure 3.1: Development of long-lived specific humoral systemic memory after 

primary intranasal PR8 infection in BALB/c wild-type female mice. 

 

8-10 wk old female BALB/c mice were infected by intranasal instillation of 250 HAU of 

Influenza A/PR/8/34. A) Venous blood was obtained at various time points up to 250 days 

post-infection and processed for serum. HA-specific IgG (●) (n≥5 per time point) and IgM 

(n≥9 per time point) (●) antibodies in serum were quantified by ELISA. B) Spleens and C) 

Bone marrow from femur pairs was obtained at various time points up to 234 days post-

infection. HA-specific IgG ASCs were quantified by ELIspot. Graph shows frequencies 

and absolute numbers of HA-specific IgG ASCs C) per spleen [n = 2(d0), 4(d150); 

4(d234)] or C) per femur pair [n = 2(d0), 5(d28); 8(d63); 5(d150); 8(d234)]. D) HA-

specific MBCs were quantified by limiting dilution ELIspot. Graph shows total numbers of 

HA-specific IgG MBC per spleen [n = 1(d0), 6(d150); 4(d227); 3(d337)]. Line indicates the 

median value. Statistical values were calculated using the Mann-Whitney test using data 

pooled from 2-3 independent experiments. Background levels are indicated in dashed lines 

or were otherwise below the level of detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.2: Experimental protocol for depletion of memory B cells from 

hCD20tg/BALB/c mice. 

 

A) 8-10 wk old female hCD20tg and hCD20tg-negative littermates and BALB/c WT mice 

were infected by intranasal instillation of 250 HAU of Influenza A/PR/8/34. 150 days post-

infection, mice were treated with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks 

(2mg/wk). Analysis of efficacy of depletion was done 1 day post-depletion. Assessment of 

persistence of specific plasma cells and serum antibody was done 42, 84 and 112 days post-

depletion by ELISA, flow cytometry and ASC and memory B cell ELIspot. B) 8-10 wk old 

female hCD20tg and hCD20tg-negative littermates and BALB/c WT mice were infected by 

intranasal instillation of 250 HAU of Influenza A/PR/8/34. Venous blood was obtained at 

various time points up to 84 days post-infection and processed for serum. The concentration 

of HA-specific IgG in serum from hCD20tg [●; n=9(d28), 9(d56) and 5(d84)], hCD20tg-

negative littermates [●; n=8(d28), 8(d56) and 8(d84)] and BALB/c WT (○; n=3(d28), 

3(d56) and 3(d84)] were quantified by ELISA. Line indicates median values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.3: Preservation of Ag epitopes and specificity of in-house made anti-hCD20 

mIgG2b, 2H7 in hCD20tg CD19+ B cells. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. Spleens were obtained 150 days post-

infection and surface stained with CD19-APC in combination with either commercial 2H7-

PE, in-house made 2H7 or an mIgG2b-PE isotype control. The figure shows the FACS 

plots derived from the splenic live gate and plotted with CD19 vs hCD20 from a pilot 

experiment with 1 hCD20tg and 1 hCD20tg-negative littermate control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.4: Expression of hCD20 on different cell lineages. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. Spleens and bone marrow were obtained 

150 days post-infection. hCD20 expression on cells of different lineages in the spleen and 

bone marrow was analysed by flow cytometry. The figure shows the live gate, lineage gate  

based on CD19, B220- CD138+, CD3, DX5, CD11b, CD11c and F4/80, and relative mean 

fluorescence intensity (MFI) of hCD20 between hCD20tg (—) and hCD20tg-negative (—) 

littermates. These FACS plots are representative of 1 pilot experiment with 3 hCD20tg and 

3 hCD20tg-negative mice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.5: Depletion efficacy of 2H7 treatment – Total spleen and bone marrow 

cellularity. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 150 days post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk). Analysis of 

efficacy of depletion was done 1 day, 42 days and 150 days post-depletion. Single cell 

erythrolysed suspensions were obtained from spleens and bone marrow of hCD20tg and 

hCD20tg-negative littermates and counted using the haemocytometer with live/dead cell 

discrimination using Tryphan Blue. The graph shows the individual data points of A) 

spleen and B) bone marrow total cell counts just before treatment, 1 day, 42 days and 150 

days post-treatment in hCD20tg [●; n=7(pre-treatment), 5(d1); 5(d42); 3(d150)] and 

hCD20tg-negative [●; n=5(pre-treatment), 2(d1); 3(d42); 3(d150)] mice. Line indicates the 

median value. Statistical values were calculated using the Mann-Whitney test using data 

pooled from 2 independent experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.6: Depletion efficacy of 2H7 treatment – Neutrophils, monocytes, 

macrophages, dendritic cells, eosinophils and mast cells. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 150 days post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk). 1 day post-

depletion, bone marrow was obtained and stained with surface markers as indicated for A) 

neutrophils (CD11b- Ly6G+ Ly6Cint); monocytes (CD11b- Ly6G- Ly6C+); macrophages 

(CD11b- Ly6G- Ly6C- Siglec-F- CD11c-), dendritic cells (CD11b- Ly6G- Ly6C- Siglec-F- 

CD11c+), eosinophils (CD11b- Ly6G- Ly6C- Siglec-F+ CD11c-) and B) mast cells (CD11b- 

FcεR1B+ Ly6G- Ly6C-). C-H) Frequencies of each cell type in bone marrow were 

determined before treatment and 1 day post-treatment from hCD20tg [●; n=4(pre-

treatment), 5(d1)] and hCD20tg-negative [●; n=2(pre-treatment), 2(d1)] mice. Line 

indicates the median value. Statistical values were calculated using the Mann-Whitney test 

using data from 1 experiment. The n number of hCD20tg-negative mice was too small for 

Mann-Whitney test to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.7: Depletion efficacy of 2H7 treatment – T cells and NK cells. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 150 days post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk). 1 day post-

depletion, bone marrow was obtained and stained with surface markers as indicated for A) 

CD4 T cells (CD4+ CD8-) and CD8 T cells (CD4- CD8+) and D) NK cells (CD3- DX5+). 

Frequencies of B) CD4 T cells, C) CD8 T cells and E) NK cells in bone marrow were 

determined before treatment and 1 day post-treatment in hCD20tg [●; n=4(pre-treatment), 

5(d1)] and hCD20tg-negative [●; n=2(pre-treatment), 2(d1)] mice. Line indicates the 

median value. Statistical values were calculated using the Mann-Whitney test using data 

from 1 experiment. The n number of hCD20tg-negative mice was too small for Mann-

Whitney test to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.8: Depletion efficacy of 2H7 treatment – B cells. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 150 days post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk). 1 day post-

depletion, bone marrow was obtained and stained with surface markers as indicated for A) 

CD19, CD21 and sIgD B cells. B) These markers were co-expressed on the majority of B 

cells. Individual data points of the total number of C) CD19+, D) sIgD+ and E) CD21+ B 

cells in spleens were determined before treatment and 1 day post-treatment from hCD20tg 

[●; n=7(pre-treatment), 5(d1); 5(d42); 3(d150)] and hCD20tg-negative [●; n=5(pre-

treatment), 2(d1); 3(d42); 3(d150)] mice. Line indicates the median value. Statistical values 

were calculated using the Mann-Whitney test. Statistical values were calculated using the 

Mann-Whitney test using data pooled from 2 independent experiments. The n number of 

hCD20tg-negative mice was too small for Mann-Whitney test to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.9: Depletion efficacy of 2H7 treatment – B cells in peripheral organs. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 150 days post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk). Analysis of 

efficacy of depletion of CD19+ B cells in spleen, PBMC, lymph node and bone marrow was 

done 1 day post-depletion by flow cytometry. A) CD19+ gating in spleen, PBMC, lymph 

node and bone marrow. B-E) Individual data points of the percentage of CD19+ cells in B) 

spleens, C) bone marrow, D) lymph node and E) PBMC were determined before treatment 

and 1 day post-treatment in hCD20tg [●; n=4-5(pre-treatment), 4-5(d1)] and hCD20tg-

negative [●; n=2-4(pre-treatment), 2-3(d1)] mice. Line indicates the median value.  

Statistical values were calculated using the Mann-Whitney test using data from 1 

experiment. The n number of hCD20tg-negative mice was too small for Mann-Whitney test 

to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.10: Depletion efficacy of 2H7 treatment – Marginal zone, follicular and 

immature B cells. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 150 days post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk). A) Spleens were 

obtained hCD20 expression on CD19+ cells from spleen, lymph node, PBMC and bone 

marrow 150 days post-infection. The figure shows the live gate, lineage gate based on 

CD19, gating of marginal zone (CD21+ CD23-), follicular (CD21int CD23+) and immature 

(CD21- CD23-) B cells, and relative mean fluorescence intensity (MFI) of hCD20 between 

hCD20tg (—) and hCD20tg-negative (—) littermates on each B cell subset. B-D) 

Individual data points  of the percentage B) follicular, C) marginal zone and D) immature B 

cells in spleens were determined before treatment, 1 day and 150 days post-treatment in 

hCD20tg [●; n=4(pre-treatment); 5(d1); 3(d150)] and hCD20tg-negative [●; n=2(pre-

treatment); 2(d1); 3(d150)] mice. Line indicates the median value. Statistical values were 

calculated using the Mann-Whitney test using data from 1 experiment. The n number of 

hCD20tg-negative mice was too small for Mann-Whitney test to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.11: Depletion efficacy of 2H7 treatment – Developing B cells in bone marrow. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 150 days post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk).  A) The figure 

shows the live gate in total bone marrow cells and gating of pre-B cells (B220high CD43low), 

pro-B cells (B220int CD43int) and pre/pro-B cells (B220low CD43high) by FACS., and relative 

mean fluorescence intensity (MFI) of hCD20 between hCD20tg (—) and hCD20tg-negative 

(—) littermates on each B cell subset. B) Efficacy of depletion of developing B cells in 

bone marrow was determined before treatment and 1 day post-treatment in hCD20tg (+ on 

x-axis; n=7(pre-treatment); 5(d1)] and hCD20tg-negative (- on x-axis; n=5(pre-treatment); 

2(d1)] mice. Line indicates the median value.  Frequency of pre/pro-B cells (●), pro- (●) 

and pre- (●). Statistical values were calculated using the Mann-Whitney test using data 

from 1 experiment. The n number of hCD20tg-negative mice was too small for Mann-

Whitney test to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.12: Depletion efficacy of 2H7 treatment – Memory B cells analyzed by flow 

cytometry. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 5 months post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk). Analysis of 

efficacy of depletion was done 1 day post-depletion by flow cytometry. A) The gating 

strategy for splenic memory B cells (B220+ IgD- CD38+ GL7-) and GC B cells (B220+ IgD- 

CD38- GL7+) and relative mean fluorescence intensity (MFI) of hCD20 between hCD20tg 

(—) and hCD20tg-negative (—) littermates on MBC or GC B cells. Individual data points  

of the B) percentage and C) total number of splenic MBC were determined before 

treatment, 1 day and 150 days post-treatment in hCD20tg [●; n=7(pre-treatment); 5(d1); 

2(d150)] and hCD20tg-negative [●; n=5(pre-treatment); 2(d1); 3(d150)] mice. Line 

indicates the median value. Statistical values were calculated using the Mann-Whitney test 

using data from 1 experiment. The n number of hCD20tg-negative mice was too small for 

Mann-Whitney test to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.13: Depletion efficacy of 2H7 treatment – Germinal centre B cells analysed 

by flow cytometry. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates were infected by intranasal 

instillation of 250 HAU of Influenza A/PR/8/34. 5 months post-infection, mice were treated 

with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks (2mg/wk). Analysis of 

efficacy of depletion was done 1 day post-depletion by flow cytometry. A) The gating 

strategy for splenic memory B cells (B220+ IgD- CD38+ GL7-) and GC B cells (B220+ IgD- 

CD38- GL7+) and relative mean fluorescence intensity (MFI) of hCD20 between hCD20tg 

(—) and hCD20tg-negative (—) littermates on MBC or GC B cells. Individual data points  

of the B) percentage and C) total number of splenic GC B cells were determined before 

treatment, 1 day and 150 days post-treatment in hCD20tg [●; n=7(pre-treatment); 5(d1); 

2(d150)] and hCD20tg-negative [●; n=5(pre-treatment); 2(d1); 3(d150)] mice. Line 

indicates the median value. Statistical values were calculated using the Mann-Whitney test 

using data from 1 experiment. The n number of hCD20tg-negative mice was too small for 

Mann-Whitney test to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.14: Depletion efficacy of 2H7 treatment – Long-lived plasma cells by flow 

cytometry. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates and BALB/c WT mice 

were infected by intranasal instillation of 250 HAU of Influenza A/PR/8/34. 5 months post-

infection, mice were treated with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks 

(2mg/wk). Analysis of efficacy of depletion was done 1 day, 42 days and 150 days post-

treatment by flow cytometry. A) The gating strategy for splenic or bone marrow long-lived 

plasma cells (B220- CD138+) and relative mean fluorescence intensity (MFI) of hCD20 

between hCD20tg (—) and hCD20tg-negative (—) littermates on LLPC. The graphs show 

the mean and standard error of the B) percentage and C) total number of long-lived plasma 

cells in spleen and D) percentage and E) total number of long-lived plasma cells in femur 

pair were determined before treatment, 1 day, 42 days and 150 days post-treatment from 

hCD20tg [●; n=6(pre-treatment), 5(d1); 5(d42); 3(d150)] and hCD20tg-negative [●; 

n=5(pre-treatment), 3(d1); 3(d42); 3(d150)] mice. Line indicates the median value. 

Statistical values were calculated using the Mann-Whitney test using data pooled from 2 

independent experiments. In B) and C), the n number of hCD20tg-negative mice was too 

small for Mann-Whitney test to be performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

Figure 3.15: Depletion efficacy of 2H7 treatment – HA-specific memory B cells 

analysed by ELISpot. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates and BALB/c WT mice 

were infected by intranasal instillation of 250 HAU of Influenza A/PR/8/34. 5 months post-

infection, mice were treated with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks 

(2mg/wk). Analysis of efficacy of depletion was done 1 day, 42 days and 150 days post-

treatment by ELISpot. Splenic HA-specific memory B cells were quantified from mice 

using limiting dilution ELISpot. Individual data points of the total number of A) HA-

specific IgG MBC and B) Total IgG MBC in spleens were determined before treatment, 1 

day, 42 days and 150 days post-treatment from hCD20tg [●; n=6(pre-treatment), 5(d1); 

5(d42); 3(d150)] and hCD20tg-negative [●; n=4(pre-treatment), 2(d1); 1(d42); 2(d150)] 

mice. Line indicates the median value. Statistical values were calculated using the Mann-

Whitney test using data pooled from 2 independent experiments. 
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Figure 3.16: Depletion efficacy of 2H7 treatment – HA-specific ASC analyzed by 

ELISpot. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates and BALB/c WT mice 

were infected by intranasal instillation of 250 HAU of Influenza A/PR/8/34. 5 months post-

infection, mice were treated with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks 

(2mg/wk). Analysis of efficacy of depletion was done 1 day, 42 days and 150 days post-

treatment by ELISpot. The graphs show the individual data points of the total number of 

splenic A) HA-specific IgG ASC and B) total IgG ASCs and bone marrow C) HA-specific 

IgG ASC and D) total IgG ASCs were determined before treatment, 1 day, 42 days and 150 

days post-treatment from hCD20tg [●; n=7(pre-treatment), 4-5(d1); 5(d42); 3(d150)] and 

hCD20tg-negative [●; n=5-7(pre-treatment), 2(d1); 1(d42); 3(d150)] mice. Line indicates 

the median value. Statistical values were calculated using the Mann-Whitney test using data 

pooled from 2 independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Figure legends___________________________________________________ 

 

Figure 3.17: Loss of serum HA-specific IgG after memory B cell depletion. 

 

8-10 wk old female hCD20tg and hCD20tg-negative littermates and BALB/c WT mice 

were infected by intranasal instillation of 250 HAU of Influenza A/PR/8/34. 5 months post-

infection, mice were treated with 0.5 mg/wk of 2H7/saline i.p every 48 hours for 2 weeks 

(2mg/wk). Serum was obtained from mice at various time points post-treatment. A) HA-

specific serum IgG and B) total serum IgG concentrations was quantified using ELISA. The 

graphs show individual data points of A) HA-specific serum IgG and B) total serum IgG 

concentrations were determined before treatment, 1 day, 42 days and 150 days post-

treatment from hCD20tg [●; n=13(pre-treatment), 4(d1); 8(d42); 8(d150)] and hCD20tg-

negative [●; n=13(pre-treatment), 3(d1); 8(d42); 8(d150)] mice. Line indicates the median 

value. Statistical values were calculated using the Mann-Whitney test using data pooled 

from 2 independent experiments. 
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3.5: Discussion 

 

The aim of this study was to determine whether the long-term Ab production after a 

primary PR8 infection was maintained by LLPCs independently of MBCs. For this I made 

use of the hCD20tg system of depleting MBCs, which allowed me to directly test whether 

LLPCs are long-lived in the absence of MBCs, and whether they can maintain serum Ab 

without reconstitution by MBCs differentiating into Ab-secreting plasma cells.  

 

The key findings of this study are: 

• A primary intranasal PR8 infection generates long-lived humoral immune responses (for 

up to 250 days) in terms of serum Ab, LLPCs and MBCs. 

• hCD20 expression is restricted to CD19+ B cells and some B220- CD138+ LLPC in 

spleen and bone marrow. 

• 150 days after PR8 infection, depletion by 2H7 mAb is rapid, efficient and specific for 

CD19+ B cells. 2H7 treatment does not deplete B220- CD138+ LLPC in spleen and bone 

marrow. 

• Total B cells are reconstituted within 90 days of depletion. 

• Depletion of HA-specific MBC is rapid but prolonged, remaining significantly depleted 

for up to 150 days after 2H7 treatment. 

• Most importantly, in the absence of HA-specific MBC, there is an eventual loss of HA-

specific ASC and loss of HA-specific serum Ab. This indicates that MBC are required 

for maintenance of long-term serum Ab and LLPC after intranasal PR8 infection. 

 

The HA-specific Ab response induced by intranasal PR8 took at least 80 days to reach their 

peak value, but thereafter it stayed constant for up to 250 days post-infection. The majority 

of HA-specific Abs are of the IgG isotype, whilst HA-specific IgM decreases over time. 

The majority of HA-specific IgG ASCs were detected in the bone marrow and spleen, 

where total numbers peaked and remained stable from d63 onwards. If bone marrow taken 

from a femur pair contains 12.7% of bone marrow, and assuming that LLPC were only 

localised to spleen and bone marrow, it means that approximately 90% of total HA-specific 

IgG ASCs reside in the bone marrow and the remaining minority in spleen (approximately 

3.2 x 104 in total bone marrow vs. 0.4 x 104 in spleen). This is consistent with the findings 
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in a study using OVA-immunisation where 90% of OVA-specific LLPC were localized to 

bone marrow after secondary OVA immunization (Manz et al. 1997). Therefore, the bone 

marrow is a major site for accumulation of HA-specific LLPC after primary Influenza A 

infection. A surprising finding in this study was that the number of HA-specific ASC in 

bone marrow and spleen only reached stable and peak numbers 150 days post-infection, 

indicating that, even though the PR8 is eliminated to undetectable levels by PCR within 

two weeks (Eichelberger et al. 1991), the primary immune response was prolonged. The 

continuous generation of LLPC and MBC could be a response to antigen sequestered by 

follicular dendritic cells in residual germinal centres. Further work would be to extend this 

study of the kinetics and tissue localisation of MBCs, LLPCs and germinal centre B cells to 

lymph nodes and NALT would provide a more complete description of the humoral 

response to intranasal PR8. Serum or bronchial IgA was not measured in this study, but I 

expect that a significant contribution to protective immunity comes from IgA-secreting 

ASC locally distributed in the nasal and bronchial mucosal tissue, particularly as this 

infection was via the intranasal route. Nevertheless, this study indicates that intranasal PR8 

infection is able to generate long-lived systemic humoral memory, in terms of stable serum 

Ab concentrations, LLPC and MBC.  

 

Using multi-parameter flow cytometry to characterise hCD20tg mice, I found that only 

CD19+ B cells and splenic B220- CD138+ LLPCs expressed intermediate to high levels of 

surface hCD20. In this study, approximately 40% of bone marrow B220- CD138+ LLPC 

expressed intermediate levels of hCD20 and all of spleen B220- CD138+ LLPC expressed 

hCD20. Nevertheless, depletion by 2H7 treatment was highly specific towards B cells in 

vivo, depleting approximately 90% of CD19+, IgD+ and CD21+ B cells within 1 day of the 

last 2H7 injection. Amongst developing B cell subsets in bone marrow, hCD20 was 

expressed only on pre-B cells, and correspondingly only pre-B cells were depleted by 2H7 

administration, a result that is consistent with previous studies (Ahuja et al. 2007;Gong et 

al. 2005). In spleen, naive, marginal zone and follicular B cells, as well as MBCs and 

germinal centre B cells expressed hCD20. However, follicular and marginal zone B cells 

were preferentially depleted, but naive B cells and germinal centre B cells appeared to be 

highly resistant to 2H7 depletion.  

 

In summary, after 2H7 treatment in hCD20tg mice 5 months after PR8 infection, there is: 
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• Loss of spleen cellularity but not bone marrow cellularity. 

• Loss of CD19+ B cells from spleen, lymph node, PBMC and bone marrow. 

• Loss of pre-B cells from bone marrow. 

• Loss of marginal zone and follicular B cells from spleen. 

• Retention of naïve B cells and germinal centre B cells. 

 

The reason for the resistance of immature B cells and germinal centre B cells cannot be 

explained by lack of expression of hCD20, as both express hCD20 as highly as other B cell 

subsets; or lack of accessibility to Ab, as other splenic B cell subsets are depleted 

efficiently. Immature B cells could have undergone renewal of naïve B cells from bone 

marrow although this is unlikely 1 day post-2H7 treatment. GC B cells increased 1 day 

post-2H7 treatment in both hCD20tg and hCD20tg-negative littermates and returned to pre-

depletion levels by day 42. This transient increase in GC B cells is an important caveat in 

this study as MBCs can be generated by bystander T cell help induced by immune 

complexes formed by 2H7 treatment and sequestered on FDC. In another study, depletion 

by 2H7 used up to 16 mg/wk of mAb, in contrast to this study where a dose of 2 mg/wk 

was used; however reactivation of germinal centres as an effect of the high-dose mAb 

treatment was not examined. In this study, we observed that in both hCD20tg and 

hCD20tg-negative littermates, there was an increase in B220- CD138+ plasma cells in the 

spleen 1 day after 2H7 treatment, and, similar to the numbers of GC B cells, numbers of 

B220- CD138+ plasma cells returned to pre-depletion levels by d42 post-depletion. 

However, there was no increase in HA-specific IgG ASC in spleen or bone marrow either 

in hCD20tg or hCD20tg-negative littermates on day 1, 42 or 150 days post-2H7 treatment, 

suggesting that the transient increase in B220- CD138+ plasma cells in the spleen was non-

specific and could be a bystander effect from the repeated injections of exogenous Ab, 

causing regeneration of germinal centres via immune-complex-mediated idiotypic 

pathways or small amounts of contaminant TLR ligands, but not resulting in production of 

more HA-specific IgG ASC. Similarly, there was overall long-term depletion of HA-

specific MBC and no increase in total IgG MBC. 

 

Besides B cells, there was a small but significant depletion of dendritic cells in both 

hCD20tg and hCD20tg-negative littermates, suggesting that this was a bystander effect of 
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the immunization. It is known that dendritic cells are sensitive to levels of serum 

immunoglobulin and may have undergone apoptosis in response to increased clearance of 

opsonised and/or apoptosing B cells, or as a tolerogenic mechanism in response to the 

increased serum immunoglobulin (2 mg/wk of 2H7 mAb). In addition, there was a 

depletion of CD4+ and CD8+ T cells in hCD20tg mice but not in the hCD20tg-negative 

littermates, suggesting that this was 2H7-specific. However, the mechanism of depletion of 

CD4+ and CD8+ T cells is not known. 

 

Long-term effects of memory B cell depletion on long-lived plasma cell numbers and 

serum antibody levels 

 

HA-specific MBCs remained depleted for up to 150 days post-2H7 treatment, with 2 out of 

3 mice at 150 days post-treatment still having completely undetectable HA-specific splenic 

MBCs by limiting dilution ELISpot. In contrast, total IgG-secreting MBCs were depleted 

by more than 95% but recovered to pre-depletion levels by 7 weeks post-depletion, 

probably via homeostatic turnover until the MBC ‘niche’ was filled. The efficacy of 

depletion of IgM, IgG and IgA MBCs in lymph nodes and NALT was not determined in 

these experiments but will be pertinent in accessing the contributions of mucosal MBC and 

LLPC to maintaining mucosal Ab of different isotypes after intranasal infection. 

 

The purpose of characterizing this system was to determine the effect of MBC loss on 

numbers of pre-established LLPC and serum Ab. In hCD20tg mice, 2H7 treatment had no 

effect on HA-specific IgG ASC in either the spleen and bone marrow for up to at least 90 

days after that, which is consistent with a previous finding that LLPCs are refractory to 

depletion by anti-CD20 mAb despite expressing low to intermediate levels of hCD20 

(DiLillo et al. 2008). However on day 150, there was a significant loss of HA-specific IgG 

ASC from both spleen and bone marrow in hCD20tg mice but not in hCD20tg-negative 

littermates. As this was too late to be a direct depleting effect of the 2H7 mAb, it suggests 

that MBCs, which were depleted rapidly by 2H7 treatment, are required for the 

maintenance of HA-specific ASC in spleen and bone marrow, especially at very long-term 

time points. In the prolonged absence of 90% of HA-specific IgG MBCs, the concentration 

of serum HA-specific IgG remained stable for up to 42 days post-2H7 treatment but 

decreased by 90 days and remained significantly decreased for up to 150 days after MBC 

 129



____________________________________________Chapter 3: Role of memory B cells  

depletion. In the spleen, there was also a decrease in the numbers of total IgG-secreting 

ASC, possibly because some of these were not ‘true’ LLPCs but rather plasmablasts which 

expressed hCD20 and were continually produced by non-specific stimulation of MBCs and 

therefore were absent after depletion of MBCs. The concurrent decrease in he number of 

bone marrow HA-specific IgG ASC and HA-specific serum Ab in hCD20tg mice indicates 

that the long-term maintenance of HA-specific serum Ab as well as the HA-specific LLPC 

pool was dependent on the presence of MBC.  

 

MBCs do not spontaneously differentiate into Ab-secreting plasma cells but require a 

stimulus. The two main stimuli are antigen, or as proposed recently by Lanzevecchia and 

colleagues (Bernasconi et al. 2002) by non-specific TLR stimulation and bystander T cell 

help  in the absence of antigen. In vitro, it is well established that MBC can be activated to 

differentiate by combinations of TLR agonists and cytokines in the absence of direct BCR 

stimulation (Bernasconi et al. 2002). However, when this was tested in vivo, there was 

little/no activation of pre-estabilshed PE-specific MBC or naïve follicular B cells observed 

in response to injection of LPS, CpG, or anti-CD3 Ab alone or anti-CD3 Ab and LPS or 

CpG (Benson et al. 2009), although 25-50% of both PE-specific MBC and naïve follicular 

B cells did proliferate in response to agonistic anti-CD40 Ab alone or anti-CD40 Ab 

coupled with LPS or CpG. Maximal MBC activation in vivo was observed by BCR 

activation by direct exposure to cognate antigen (Benson et al. 2009). In this study, there 

was no replenishment of HA-specific MBC, suggesting that there was little/no re-

stimulation of any remaining HA-specific MBCs. Indeed, experimental mice were not 

intentionally exposed to homologous re-infection by PR8, and. non-specific stimuli was 

minimized in a clean animal facility. The profound and prolonged loss of HA-specific 

MBC after 2H7 treatment was inadequate to restore serum Ab and replenish the LLPC 

niche. In the absence of HA-specific MBC, the half-life of HA-specific LLPC in these 

experiments approximately corresponds to that established for LCMV-specific LLPC in 

irradiated mice, which has been estimated to be about 138-141 days.   

 

Data from longitudinal observational studies after vaccination and/or booster suggests that 

maintenance of serum Ab is complex. The recent mathematical modeling by Amanna and 

colleagues (Amanna et al. 2010) demonstrate that Ab kinetics is probably dependent on the 

context of immunization (route of administration, adjuvant, etc) or infection. Long-lived 
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serum Abs are most likely maintained by a combination of MBC-dependent and LLPC-

dependent mechanisms. This study has shown that after intranasal PR8 infection, MBCs are 

required to maintain long-term serum Ab and bone marrow and splenic LLPCs. This 

finding is in contrast to the recent studies showing that MBCs are not required for the 

maintenance of serum Ab or the LLPC pool after systemic immunisation with protein 

(Ahuja et al. 2008;DiLillo et al. 2008). The difference in findings between our study and 

previous studies may simply reflect the heterogeneity of mechanisms that maintain long-

lived humoral immunity under different immunisation or infection contexts. Perhaps when 

there is residual antigen, e.g. in chronic/latent infections or autoimmune disease, MBCs 

play a more important role in maintaining serum Ab, while when antigen is rapid 

eliminated, e.g. in acute viral infections or after protein immunization, LLPCs are able to 

maintain serum Ab without MBCs. Furthermore, an additional level of homeostatic control 

exists, whereby pre-existing serum Ab concentrations affect whether MBC respond to 

antigen by differentiating into Ab-secreting plasma cells or non-secreting daughter MBC. 

 

Like LLPCs, MBCs have the important role of maintaining serum Ab in the absence of 

antigenic re-stimulation. MBCs can be remarkably long-lived and are thought to represent 

an important second line of immune defence that is initiated especially if pre-existing Ab 

levels are inadequate to prevent infection or if the invading pathogen is able to circumvent 

the pre-existing Ab response (e.g. high dose exposure or antigenic mutation). These data 

demonstrate that pre-existing LLPC can survive independently of the MBC compartment 

for at least 90 days but it requires MBCs to replenish the pool and maintain long-lived 

serum Ab.  

 

Outstanding questions 

 

There are several methods to reduce the number of LLPCs in vivo but leave the MBC 

compartment intact, which would enable us to test whether MBCs can maintain serum Ab 

in the absence of LLPC. For example, using genetically-altered mice which fail to produce 

LLPCs but are able to produce MBCs and short-lived PCs after immunisation or infection 

[e.g. mice with deletions in homing receptor CXCR4, CD93 (Chevrier et al. 2009), CD28 

(Rozanski et al. 2011)]. Other agents allow selective depletion of LLPC but not MBCs, e.g. 

Bortezimib, as described previously, or by destruction of the LLPC survival niche e.g. by 
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depleting APRIL-producing eosinophils (Van Trung et al. 2011) or anti-BAFF/APRIL 

therapy (Benson et al. 2008). Whether by blocking differentiation of naïve B cells into 

LLPC, or by depleting pre-established LLPC, it would be very interesting to further this 

work by selectively depleting HA-specific LLPC after intranasal PR8 infection to test 

whether an intact MBC compartment can maintain serum Ab levels in the absence of HA-

specific LLPC. Additionally, it would be important to determine whether mice depleted of 

MBC by treatment with 2H7 mAb would develop more severe infection after re-challenge 

with Influenza A virus.  

 

Immunization with different vaccinates, adjuvants or by different routes of administration 

has demonstrated that the longevity of serum Ab is dependent on, or in other words, 

‘imprinted’ by, the context of immunization. Why some immunization strategies work 

better than others is not known, and it would be useful to find out whether the relative 

compartments of MBC or LLPC are altered by different immunization contexts, and the 

relative contributions of each compartment to long-lived serum Ab.  
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Chapter 4: Loss of previously established humoral immunity to Influenza A after 

sequential Plasmodium chabaudi chabaudi (AS) infection.   

 

4.1: Introduction 

 

Humoral immunity is defined as the antibody response and the accompanying cellular 

immune response that is initiated after vaccination or infection, and which has been 

correlated with protective immunity. High titres of specific serum and mucosal antibodies 

(Abs) are found only in hosts which have previously encountered the vaccine, infection or 

pathogen, and are therefore hallmarks and diagnostic indicators of the humoral immune 

memory repertoire (reviewed by Slifka & Ahmed 1996). Conversely, the absence or 

attrition of specific Abs, memory B cells (MBCs) or long-lived plasma cells (LLPCs) 

indicates that long-lived humoral memory was not established or that humoral memory has 

been established but was lost. Loss of humoral immunity can occur naturally with the 

waning of antibody levels after infection or failed vaccination. This could be due to 

inadequate priming or establishment of long-lived memory cells or attrition or apoptosis of 

pre-established LLPCs or MBCs.  

 

In the previous chapter, I determined that persistent serum Abs after intranasal PR8 

infection was partly maintained by both LLPCs and MBCs. The aim of this chapter is to 

investigate whether a subsequent infection with malaria could affect pre-established 

antibody persistence by affecting LLPCs or MBCs. The hypothesis is that infection with 

the malaria parasite could affect LLPCs through competitive dislocation by migratory 

plasmablasts, or by causing apoptosis of LLPCs; or affecting MBCs, which would then lead 

to inadequate replenishment of the LLPC pool and serum Abs. 

 

4.1.1: Dislocation of pre-established long-lived plasma cells by new migratory 

plasmablasts 

 

The size of the LLPC niche in the bone marrow is finite (Radbruch et al. 2006;Sze et al. 

2000;Terstappen et al. 1990). However this finite niche has to accommodate LLPCs with 

specificities against different infections over time (Radbruch et al. 2006a). One of the 
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mechanisms by which LLPC homeostasis is maintained is through occupation of and 

competition for the niche in a purely stoichiometric manner by migratory plasmablasts 

competing for survival resources, such as the chemokine CXCL12 or the cytokine APRIL, 

which are essential for homing into and survival in the bone marrow (Belnoue et al. 

2008;Hargreaves et al. 2001). This means that in order to accommodate LLPC of new 

specificities in the bone marrow, some of the pre-established LLPC have to be ejected into 

the circulation, where they eventually die (Fairfax et al. 2008;Radbruch et al. 2006). The 

burden of migratory plasmablasts entering the bone marrow can be very large (Hofer et al. 

2006). First, very little, if any, cross-reactivity exists between Abs against discrete 

pathogens or even closely-related pathogens. This means that, in order for serum Abs to 

persist against all pathogens, specific LLPC have to be generated and accommodated after 

each infection. Secondly, over time, hosts also have to cope with antigenic variation 

through genetic shifts and drifts in pathogens, each rendering previously established 

specific memory ineffective in preventing re-infection, and necessitating the generation of 

new LLPCs. Thirdly, these competitive stresses may even increase with age as the holding 

capacity of LLPC niches may be reduced with age (Han et al. 2003). If numbers eventually 

fall below the threshold required to sustain enough specific serum Abs to neutralise re-

infection, the host effectively loses protective immunity to that pathogen. Therefore it is 

imperative that homeostatic regulation occurs to allow the host to accommodate new LLPC 

specificities without compromising pre-established LLPC.  

 

Plasma cells appear in the blood during a narrow window of time after immunisation. To 

test whether attrition of pre-established LLPC from bone marrow into circulation can occur 

in humans, one group (Odendahl et al. 2005) tested human peripheral blood mononuclear 

cells (PBMCs) 7 days after secondary immunisation of healthy adults with recombinant 

tetanus toxoid, using a panel of specific Abs that could differentiate LLPC from newly 

generated migratory plasmablasts within the pool of PBMCs. In this study, LLPC and 

plasmablasts were differentiated by their relative surface expression of human leukocyte 

antigen (HLA-DR), the cell surface markers CD38 and CD20, chemotactic responsiveness 

to ligands for the chemokine receptors CXCR3 (CXCL9) and CXCR4 (CXCL12), and 

specificity of secreted antibody by ELIspot. A small number of HLA-DRlow LLPC 

appeared at the same time as HLA-DRhigh TT-specific migratory plasmablasts on days 6 
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and 7 after booster immunisation. Using ELISpot, they established that the HLA-DRlow 

LLPC did not secrete TT-specific Ab, nor did they respond to the chemokines CXCL9 and 

CXCL12, indicating that they were mature LLPC which had lost chemotactic 

responsiveness to those homing chemokines. This was the first indication that competitive 

dislocation was occurring at the level of the bone marrow niche. 

 

Using these and other published data (Bernasconi et al. 2002;Manz et al. 1997;Slifka et al. 

1998), Hofer and colleagues designed a mathematical model to determine whether 

homeostatic dislocation alone would be able to bring the number of pre-established plasma 

cells down below the threshold level of protection (Hofer et al. 2006). Assuming that a host 

encounters four novel pathogens each year, and, a) each infection generates an influx of a 

constant fraction of new cells into the bone marrow niche; b) competitive displacement is 

stoichiometrically determined; c) memory declines in an cell-autonomous fashion, d) a 

critical frequency of plasma cells is required to maintain protective antibody titres for a 

given pathogen; it is possible to predict the waning of humoral memory over time. Using 

the data from a previous study (Manz et al. 1997), it would take an ovalbumin-immune 

BALB/c mouse 367 subsequent antigenic challenges in order to lose serum antibody. Based 

on data obtained from another study (Odendahl et al 2005), a human child vaccinated with 

tetanus toxoid would theoretically require 692 heterologous infections or immunogens 

generating a secondary response of similar magnitude, to be rendered non-immune to 

Tetanus. To encounter that number of disparate infections in their lifetime is unrealistic for 

both laboratory mice and humans, and if most infections generate a constant fraction of 

new cells into the bone marrow niche, then the majority of pre-established functional 

humoral immunity is unlikely to be eroded by competitive displacement alone, if the 

antigens encountered have one or few dominant epitopes.  

 

However there may be situations where a pathogen can create an overwhelming migratory 

plasmablast load, which could affect the LLPC niche. In this laboratory, it has been been 

observed that a primary blood-stage infection with the rodent malaria P. chabaudi 

generates approximately 6000 B220+ CD138+ migratory plasmablasts per femur pair 

entering the bone marrow per day from day 12 to 25 of primary blood-stage infection. Out 

of these, approximately 1000 MSP1-specific ASC are added to the LLPC pool from day 30 
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and remain stable for up to 8 months after primary infection with P. chabaudi (Nduati et al. 

2010;Ndungu et al. 2009). It is believed that a large proportion of the first wave of 

plasmablast entry into the bone marrow is not protective as it may be a low-affinity non-

specific response generated by malarial mitogens or the very large antigenic load caused by 

the shedding of parasite material and/or antigenic variation (Achtman et al. 

2007b;Greenwood 1974;McLean et al. 1982). Furthermore, parasites such as Plasmodium 

can continuously generate new migratory plasmablasts over a long period of time as they 

can induce chronic infection (Jarra 1982). This can occur through multiple possible 

mechanisms, including stimulation by malarial mitogens, bystander activation of helper T 

cells (Ho & Webster 1990), antigenic variation (McLean et al. 1982) or revelation of novel 

intracellular auto-epitopes after invasion (Rosenberg et al. 1973). In human bone marrow 

aspirates or smears taken during acute infection with the human parasites P. falciparum or 

P. vivax, an increase in bone marrow plasma cells has been observed (Wickramasinghe et 

al. 1987). Compared to a secondary OVA immunisation, which generates a total of 

approximately 3000 OVA-specific LLPC, the large number of migratory plasmablasts 

generated by a single P. chabaudi infection competing for space in the LLPC niche in the 

bone marrow may have the potential to dislocate LLPC from their niches (Nduati et al. 

2010b;Ndungu et al. 2009a). Hence it is possible that malaria infection could exert a greater 

competitive stress on the limited bone marrow plasma cell niches than the comparatively 

fewer LLPC generated by other acute infections or sub-unit vaccinations, making it an ideal 

model to test the hypothesis of whether attrition of humoral immunity can occur in a purely 

stoichiometric manner of competitive dislocation based on finite survival resources. 

 

4.1.2: Clearance of pre-established long-lived plasma cells and MBCsby causing 

apoptosis 

 

Infection of mice with P. yoelii has been shown to result in significant apoptosis of both 

vaccine-induced MSP119-specific and unrelated MBCs and LLPC (Wykes et al. 2005). 

Similar observations have been made in Trypanosoma brucei infections of C57BL/6 and 

BALB/c mice, which also result in reduction of pre-established anti-parasite, hapten-protein 

conjugate- and vaccine-induced MBC and LLPC, leaving mice with increased 

susceptibility to previously-encountered infections (Radwanska et al. 2008).  
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Some pathogens, in particular parasitic infections such as those caused by Plasmodium sp., 

can directly affect B cell memory niches irrespective of the immune responses they induce. 

Bone marrow hypocellularity is a feature of acute malaria (Wickramasinghe & Abdalla 

2000) but the exact cause of this is unknown. However it is known that malaria can cause 

cellular dysregulation, development of atypical cell populations, cellular infiltration and 

extrusion, and disruption or acceleration of lymphatopoesis and haematopoeisis (Belyaev et 

al. 2010;Kurtzhals et al. 1997;Palframan et al. 1998;Silverman et al. 1987). A recent report 

demonstrated a decrease in CXCL12 mRNA in bone marrow which was proposed to result 

in the loss of developing B cells from their bone marrow niche (Viki & Nathalie 2011). 

This could also be a cause for the loss of LLPC, as they share overlapping survival niches 

on CXCL12+ VCAM-1+ stromal cells with developing B cells. In spleen, the niches for 

LLPC and MBCs are less well defined, but physical changes in splenic microarchitecture 

and modifications in B cell compartments (Castillo-Méndez et al. 2007), as well as their 

relation to the compartments containing T cells and innate cells could possibly reduce their 

access to survival resources. A novel mechanism for regulating of the LLPC niche 

involving FcγRIIB has been proposed whereby circulating low affinity Abs and the 

immune complexes produced by polyclonal B cell activation, which is a prominent feature 

of many parasitic infections, can induce the apoptotic clearance of resident LLPC via the 

cross-linking of the FcγRIIb on the surface of resident LLPC (Xiang et al. 2007). 

Therefore, it is not known whether the loss of LLPC from their bone marrow niche is 

merely a bystander effect of a general bone marrow hypocellularity or whether it is 

preferentially depleted in comparison to other cell types. It is important to note that bone 

marrow cellularity is a feature of or by induction and release of large amounts of 

inflammatory cytokines, which may cause dysregulation of the bone marrow niche. 

 

Sequestration of Plasmodium parasite is the accumulation of erythrocytes parasitized with 

mature stages of parasites (trophozoites and schizonts) in particular organs and their 

adhesion to host endothelium. As the expression of endothelial cells surface receptors 

implicated in iRBC cytoadherance (such as CD36, ICAM, VCAM and P-selectin) is 

induced by inflammatory cytokines (such as TNFα, IFNγ and LTα ) (Favaloro 1993;Mota 

et al. 2000), this phenomenon increases with inflammation. In humans, sequestration of P. 
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falciparum-parasitized erythrocytes (pRBC) has been documented, and is thought to be 

linked to pathology such as cerebral malaria and respiratory distress. They have been found 

adhering to endothelium microvasculature in brain, heart, lung, liver, spleen, placenta and 

bone marrow (MacPherson et al. 1985) (reviewed by (Rowe et al. 2009)). In humans, 

sequestration of P. falciparum pRBC in bone marrow has been recorded but has only been 

shown to be by gametocyte-infected erythrocytes rather than asexual forms (Smalley, 

Abdalla, & Brown 1981). In culture, these gametocyte-infected erythrocytes adhere to bone 

marrow stromal and endothelial cells (Rogers et al. 2000). In mouse models, sequestration 

of P. chabaudi-parasitized erythrocytes has been reported in C57BL/6 mice (Gilks et al. 

1990;McLean et al. 1982;Mota et al. 2000). In vitro, P. chabaudi parasitized red blood 

cells can bind to primary mouse endothelial cells (namely via CD36) and in an IFNγR-

dependent manner (Mota et al.2000). In vivo, sequestered P. chabaudi parasites have been 

found predominantly in the liver but also in the lung and spleen (D. Cunningham and T. 

Brugat, in press; and (Gilks et al. 1990)) but the mechanisms of sequestration in vivo are 

not known and how/whether sequestration causes pathology is unclear (Miller et al. 2002). 

Little is known whether sequestering parasites, in both humans and mice, can cause local 

immunomodulation or dysregulgation of the LLPC niche and whether they can directly 

affect the survival of pre-established LLPC. It is important to note that perhaps the effect of 

parasite sequestration on the survival of bone marrow LLPC, if any, may be less relevant in 

non-sequestering parasite strains, e.g. P. vivax infection in humans and P. yoelii and P. 

berghei NK65 infections in mice.  
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4.2: Aim 

 

The aim of this chapter is to establish whether P. chabaudi causes a reduction of pre-

established Influenza-specific Abs. 

 

4.3: Objectives 

 

1. To determine whether the antibody response induced in P. chabaudi infection is cross-

reactive with Influenza. 

2. To determine whether P. chabaudi infection increases clearance of pre-established 

Influenza-specific Abs in serum. 

3. To determine whether P. chabaudi infection causes reduction of pre-established 

Influenza-specific LLPC in bone marrow, and if so, to investigate the mechanism: 

• Whether the migratory plasmablasts induced by malaria causes competitive 

dislocation of pre-established bone marrow LLPC from their niches. 

• Whether infection with P. chabaudi causes apoptosis of LLPC through FcγRI,II,III-

mediated mechanisms. 

• Whether P. chabaudi-induced apoptosis of LLPC can be related to the kinetics of 

parasite sequestration in the bone marrow. 
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4.4: Results 

 

4.4.1: Little serological cross-reactivity between Influenza A/PR/8/34 and P. chabaudi 

infections. 

 

A blood-stage infection with P. chabaudi generates a large polyclonal and non-specific B 
cell response This results in hypergammaglobulinaemia which is characterised by IgG Ab 
with specificities for both plasmodial and non-plasmodial antigens  (Achtman et al. 2003; 
Seixas and Ostler 2005). This is consistent with the hypergammaglobulinaemia observed 
after infection with P. chabaudi adami and P. yoelli (Langhorne et al. 1984). 
Hypergammaglobulaemia including non-specific Ab has also been observed even after 
mosquito-transmission of P. berghei (Mori et al. 1987). This persistent 
hypergammaglobulinaemia may be a result of a large increase in B cells and plasma cells 
during early infection, which can persist for up to day 40 of infection (Castillo-Méndez et al. 
2007). 
 

To ensure that there were no Abs generated by a P. chabaudi infection that would bind to 

Influenza A/PR/8/34 (PR8) and thus confound interpretation of the results, I determined 

levels of cross-reactivity in serum Abs against PR8 and P. chabaudi.  

 

First, three different types of sera were obtained from: 1) a pool of several sera from 

BALB/c mice infected previously with PR8; 2) a pool of immune sera from BALB/c mice 

recovered after 2-4 sequential infections with P. chabaudi, called “hyperimmune sera”; and 

3) a pool of sera from naïve BALB/c mice. Second, a lysate of P. chabaudi-parasitized 

erythrocytes (“parasite lysate”) and bromelain-digested haemagglutinin cleavage product 1 

(HA) from PR8 were used as antigens in three different assays to measure antibody cross-

reactivity: 1) ELISA; 2) Western blot; and 3) In vitro virus neutralisation assay.  

 

The binding of these three pools of sera to HA was first quantified by ELISA, using HA as 

the capture antigen. No cross-binding Abs to HA were detected in P. chabaudi 

hyperimmune sera or naive sera (Figure 4.1A). Surprisingly, when parasite lysate was used 

as the capture antigen, a small amount of cross-binding of Abs in PR8 sera to parasite 

lysate was detected (Figure 4.1B).  
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To confirm the ELISA data, three independent preparations of HA and parasite lysate were 

separated by SDS-PAGE and a Western blot was performed using these three sera as the 

primary Abs. The gel confirmed that there was little cross-reactivity between PR8 and P. 

chabaudi serum Abs, as HA1, an approximately 46 kDa product (Wang et al. 2006), was 

not recognised by serum Abs from hyperimmune sera and parasite lysate was not 

recognised by HA-specific Abs in sera obtained from PR8-infected mice in the Western 

blot. Surprisingly, there was also a doublet of approximately 20 kDa that was present and 

recognised by both PR8 sera and hyperimmune sera but not naïve sera (Figure 4.1C). The 

identity of that approximately 20 kDa doublet is at present unknown. 

 

These three pools of sera were also tested in a viral neutralisation assay to determine their 

ability to neutralise PR8 virus in vitro. Hyperimmune sera and naive sera did not have any 

neutralising activity against PR8 in vitro (Figure 4.1D). BALB/c mice were infected with 

105 P. chabaudi-parasitised erythrocytes intraperitoneally and 60 days later, infected with 

250 haemagglutinating units (HAU) of PR8 intranasally. Sera obtained 0, 14 and 28 days 

after PR8-infection was tested using the neutralisation assay and showed that a previous 

infection with P. chabaudi did not alter the primary nAb response to PR8 (Figure 4.1E-F).  

 

In summary, there was little cross-reactivity of serum Abs to parasite lysate and HA 

detected using ELISA, Western blot and neutralisation assay. Hyperimmune serum from 

mice multiply infected with P. chabaudi do not bind to HA in ELISA and Western blot and 

not neutralise PR8 virus in vitro. There is some cross-reactivity between P. chabaudi-

specific sera and PR8 bromlain-digested HA; however a previous P. chabaudi infection and 

pre-existing P. chabaudi-specific Ab in BALB/c mice does not appear to change the 

development of PR8-specific nAb in vivo from that of naïve mice. 

 

4.4.2:  Experimental protocol of sequential infection with PR8 and P. chabaudi. 

 

Having determined that there are little cross-reactive Abs induced by the individual PR8 

and P. chabaudi infections, I set up a model of sequential infection model in BALB/c 

female mice, where the second infection with P. chabaudi was initiated 5 months after the 

first PR8 infection (Figure 4.2A). At 150 days after PR8 infection, the frequencies of 
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germinal centre B cells in the spleen had returned to levels similar to naïve mice (Figure 

4.2B-C), indicating that there was probably very few new HA-specific LLPC and MBC 

being generated at this late time-point. At this time point, a primary blood-stage P. 

chabaudi infection was initiated by intrapertoneal injection of 105 P. chabaudi-parasitized 

erythrocytes while a primary PR8 infection was initiated by intranasal instillation of 250 

HAU of virus-containing fluid without anaesthesia. The course of parasitaemia after an 

intraperitoneal injection of 1 x 105 P. chabaudi-parasitised erythrocytes has been described 

previously in both BALB/c and C57BL/6 mice (Meding et al. 1990; Helmby et al. 2000; 

Ndungu et al. 2009), with acute high parasitaemia followed by a 2 to 3 month low-grade 

chronic parasitaemia. The course of parasitaemia in naïve BALB/c mice in my experiments 

is similar to that of C57BL/6 mice (Figure 4.2A, graph in box). This model of sequential 

PR8-P.chabaudi infections would enable me to investigate how pre-established humoral 

immunity was maintained after a heterologous infection at a cellular level. The impact of a 

sequential infection on pre-established humoral immunity to PR8 will be assessed by a) 

concentration of PR8 HA-specific Abs of different isotypes measured by ELISA; b) 

neutralizing anti-PR8 antibody titres measured by in vitro virus neutralization assay; c) 

numbers of antibody-secreting cells and MBCs quantified by ELISpot; d) numbers of 

LLPC and migratory plasmablasts quantified by multiparameter flow cytometric analysis 

using a panel of Abs specific for these cell types (Figure 4.2A, text in box). 

 

4.4.3: An infection with P. chabaudi in mice previously infected with PR8 reduces pre-

established PR8-specific humoral immunity 

 

BALB/c mice were infected intranasally with 250 HAU of PR8 and rested for 105 or 150 

days to ensure that the majority of HA-specific LLPC were stably established in the bone 

marrow (Results Chapter 3; Figure 3.1). Mice were then infected with P. chabaudi as 

described in Figure 4.2A. The concentration of HA-specific serum IgG Ab was measured 

by ELISA at various time points for up to 100 days after P. chabaudi infection. When mice 

were infected with P. chabaudi 105 days after PR8, there was a significant reduction in 

HA-specific IgG at 21, 42 and 63 days after P. chabaudi infection, when compared with 

serum from PR8 immune mice without P. chabaudi infection (Figure 4.3A). This was also 

the case when P. chabaudi was initiated 150 days after PR8 infection (Figure 4.3B). When 
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there was an interval of 150 days between PR8 and P. chabaudi infection, HA-specific IgG 

started to return to the level of PR8 immune mice without P. chabaudi infection by 42 days 

after P. chabaudi infection (Figure 4.3B). Therefore a primary infection with P. chabaudi 

resulted in attrition of pre-established serum Ab 105 or 150 days after PR8 infection, but 

this effect appears to be transient, at least with a 150-day interval. 

 

4.4.4: An infection with P. chabaudi in mice previously infected with PR8 results in the 

loss of thymus-dependent serum antibody isotypes. 

 

Malaria infection induces a pro-inflammatory cytokine response with a rapid but regulated 

production of the cytokines interleukin-12 (IL-12), tumour necrosis factor-α (TNF-α), and 

interferon-γ (IFN-γ)(Langhorne et al. 2004;Su & Stevenson 2000). P. chabaudi has been  

shown to induce a large production of IL-12, TNF-α, and IL-6 (Langhorne et al. 

2004;Stevenson et al. 1995), thus inducing a CD4 Th1 response (Langhorne et al. 1989). A 

role for specific isotypes, in particular IgG2a, in protective immunity to PR8 is inferred 

from the experimental models and immuno-epidemiological studies in which high antibody 

(Ab) titres and in some cases restricted immunoglobulin (Ig) isotypes to particular antigens 

(Ag) like HA correlate with immunity. Having found that an infection with P. chabaudi in 

mice previously infected with PR8 resulted in a global loss of HA-specific IgG, I 

hypothesized that P. chabaudi could affect some HA-specific Ig isotypes more than others 

and this may result in loss of protective immunity to PR8. 

  

Four weeks post-PR8 infection, the predominant anti-HA serum Ab isotypes were IgG2a 

followed by IgG1. After P. chabaudi infection, the isotypes which were particularly 

reduced in the PR8-P. chabaudi-infected group were the thymus-dependent isotypes 

(Coffman et al. 1988;Reinhardt et al. 2009;Snapper & Paul 1987), IgG1, IgG2a and IgG2b. 

In contrast, the thymus-independent isotypes IgG3 and IgM were not significantly reduced 

in serum (Figure 4.3C). This suggests that P. chabaudi infection particularly affected the 

thymus-dependent isotypes of HA-specific serum antibody response. 
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4.4.5: An infection with P. chabaudi in mice previously infected with PR8 results in the 

loss of protective immunity to PR8. 

 

Pre-established HA-specific Ab was transiently lost after infection with P. chabaudi, 

despite no decrease in serum Ab half-life. The loss of serum Abs was comprised mostly of 

IgG1, IgG2a and IgG2b isotypes. I then hypothesized that this loss was physiologically 

important in increasing susceptibility to re-infection with PR8. Therefore the neutralising 

antibody (nAb) response to PR8 was determined by a neutralising assay which has been 

previously described (Kassiotis et al. 2006) (Figure 4.4A). Briefly, the ability of serum 

from influenza-immune mice was quantified by its ability to inhibit killing of the cell line 

MDCK by PR8. The Influenza PR8 virus kills MDCK cells within 3 days of culture, but 

these cells are rescued by the addition of anti-sera. Sera were obtained at various time 

points after PR8-P. chabaudi infection and heated-inactivated for 10 min at 56°C to remove 

complement.  

 

In agreement with the data obtained from ELISA showing a decrease in HA-specific serum 

IgG (Figure 4.4A-B), there was a highly significant reduction in serum nAb-mediated in 

vitro neutralisation of PR8 virus for up to 60 days post-P. chabaudi infection, compared 

with PR8 only control serum (Figure 4.4A). 

 

To confirm that the loss of in vitro neutralisation indeed was an indication of a loss of in 

vivo protection, PR8-P. chabaudi-infected mice, as well as the PR8-only and naïve mice, 

were treated with chloroquine 21 days after the P. chabaudi infection to eliminate any 

residual parasites, rested for a further 21 days, and then re-infected with 10 HAU of PR8 

intranasally under light anaesthesia. Three days later, viral titres in the lung were measured 

by qRT-PCR (Figure 4.4B). Whilst control naïve mice had high lung viral titres, the 

majority of PR8-immune mice had below detectable levels of viral titres in the lung. In 

contrast, mice which had been infected with PR8-P. chabaudi had intermediate viral titres 

in the lung (Figure 4.4C). This is in agreement with the loss of the neutralising activity of 

serum after P. chabaudi infection (Figure 4.4A), although correlation of viral loads with 

weight loss or lung pathology has not been determined. Therefore P. chabaudi infection 

initiated after establishment of protective immunity to a previous infection results in loss of 
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neutralising Ab and loss of resistance to the previous infection, regardless of the presence 

of parasite.  

 

4.4.6: An infection with P. chabaudi in mice does not decrease the half-life of 

immunoglobulin. 

 

Immunoglobulin (Ig) concentration in serum is under homeostatic regulation by balancing 

production by plasma cells and clearance by antibody, complement and Fc receptors (Baiu 

et al. 1999;Ward et al. 2003). Ig half-life is dependent on its plasma concentration (Fahey 

& Sell 1965). Malaria infection causes a dramatic and prolonged polyclonal 

hypergammaglobulinaemia as well as increase in spleen antibody-secreting cells (ASC) 

(Achtman et al. 2007; Cadman et al. 2008). Therefore it is possible that pre-established IgG 

is cleared faster in the PR8-P. chabaudi infection than in PR8 alone, in the host’s attempt to 

maintain normal serum Ig concentrations.  

 

Consistent with previous studies, PR8-immune BALB/c mice which were subsequently 

infected with P. chabaudi developed the peak of parasite-specific IgG on day 42 of P. 

chabaudi infection (Figure 4.5A). By contrast, there was a rapid increase in total serum 

IgG concentrations from the peak of parasitaemia (approximately day 10), which then 

remained elevated for up to day 60 (the last time-point observed) (Figure 4.5B).  

 

Due to this rapid and prolonged hypergammaglobulinaemia, I investigated if the transient 

reduction in anti-PR8 Abs was due to a globally increased rate of antibody clearance caused 

by the hypergammaglobulinaemia. Age-matched BALB/c female mice were infected with 

P. chabaudi and then injected intraperitoneally with 200 µg of anti-2,4,6-trinitrophenyl 

(TNP) IgG2a 24h (acute infection) or 60 days (during the chronic infection) later. Serum 

was collected every 2 days and the concentration of anti-TNP IgG2a was monitored using 

TNP-BSA-coated ELISA plate (Figure 4.5C), in a similar protocol to one described in 

mice to determine the half-lives of serum antibody (Vieira & Rajewsky 1988). From this 

assay, the half-life of a non-specific mouse IgG2a could be determined during both the 

acute and chronic phases of primary P. chabaudi infection (Figure 4.5D). Antibody half-

life was calculated by use of linear regression on log2 transformed antibody concentrations 
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in relation to hours after injection. Antibody half-life was expressed as the inverse 

reciprocal of the regression line slope (boxed in Figure 4.5D; expressed in hours). Despite 

hypergammaglobulinaemia generated by P. chabaudi infection occurring in three separate 

experiments, there was no difference in the Ab half-life in mice where P. chabaudi 

infection had been initiated 1 day previously, or in mice in late stages (d60) of P. chabaudi 

infection, compared to the Ab half-life in naïve control mice (Figure 4.5D).  

 

4.4.7: An infection with P. chabaudi in mice previously infected with PR8 results in the 

loss of HA-specific bone marrow plasma cells after P. chabaudi infection. 

 

The loss of HA-specific serum IgG could be the result of the loss of LLPCs (LLPC), 

therefore I quantified HA-specific antibody-secreting cells (ASC) in the bone marrow, 

where the majority of LLPC reside. First, BALB/c mice were infected with P. chabaudi 

and the absolute number of bone marrow cells from femur pairs were counted every 1-2 

days for 80 days after P. chabaudi infection. In addition, parasitaemia was monitored by 

thin blood films throughout acute P. chabaudi infection. Bone marrow cellularity fell 

drastically from 4.85 x 107 in naive mice to 1.5 x 107 on day 8 post-infection, coinciding 

with the peak of parasitaemia, and then rising rapidly to 4.5 x 107 on day 20 as the 

parasitaemia dropped, and remaining stable for up to 80 days post-infection (the last time 

point observed) (Figure 4.6A).  

  

Next, to investigate whether the effect of a subsequent P. chabaudi infection on HA-

specific serum IgG was due to a loss of HA-specific plasma cells, an ELISpot assay was 

used to quantify HA-specific ASC in the bone marrow after PR8-P. chabaudi infection. 

BALB/c female mice were infected intranasally with PR8, rested for 150 days, and then 

infected with P. chabaudi. Bone marrow was obtained at the peak (d8) of P. chabaudi 

parasitaemia, where the greatest bone marrow loss was observed, and HA-specific ASC in 

the bone marrow were enumerated by ELISpot (Figure 4.6B). Mice infected with PR8-P. 

chabaudi had significantly reduced numbers of HA-specific IgG ASCs in the bone marrow 

when compared to mice only infected with PR8 (Median: ) (Figure 4.6C). Therefore, 

infection with P. chabaudi reduced the frequency of HA-specific IgG ASC in the bone 

marrow. However, despite a loss of bone marrow cellularity and the loss of HA-specific 
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IgG ASC, there was no loss of total ASC (Figure 4.6D), suggesting that size of the total 

LLPC niche was not compromised by the P. chabaudi infection. The preservation of total 

IgG ASC numbers in the face of bone marrow loss suggested that new migratory 

plasmablasts were entering the bone marrow during acute P. chabaudi infection, therefore 

keeping the total number of plasma cells the same (Figure 4.6D) in the face of the loss of 

HA-specific plasma cells (Figure 4.6C). By contrast, I observed a significant increase in 

the total number of HA-specific MBC in the spleen at d33 and d77 after P. chabaudi 

infection (Figure 4.7).  

 

4.4.8: Entrance of migratory plasmablasts into the bone marrow and loss of LLPCs 

during acute P. chabaudi infection (d8-12). 

 

The loss of HA-specific ASC could be due to attrition either via dislocation and 

mobilisation or apoptosis of pre-established ASC in the bone marrow by new migratory 

plasmablasts entering the bone marrow. To determine whether the loss of HA-specific ASC 

from bone marrow was due to competitive dislocation by migratory plasmablasts generated 

by P. chabaudi infection and entering the bone marrow, I investigated the kinetics of the 

entry of new migrating plasmablasts induced by P. chabaudi infection into the bone 

marrow during the acute and chronic phases of infection by flow cytometry. P. chabaudi 

was initiated 150 days after PR8 infection. Mice were sacrificed on day 0, 8, 10, 12, 25, 45 

and 75 of. P. chabaudi infection and bone marrow was stained with anti-B220 and anti-

CD138 Abs to discriminate LLPC (B220- CD138+) and migratory plasmablasts which have 

not downregulated B220 (B220+ LLPC+). A large percentage of B220+ CD138+ 

plasmablasts was observed to enter the bone marrow from day 10 onwards, and from d25 

onwards, the B220+ CD138+ migratory plasmablast population appeared to downregulate 

B220, indicating their maturity into LLPC (Manz et al. 1998) (Figure 4.8A). This 

downregulation of B220 on migratory plasmablasts coincides to the time point when 

MSP1-specific IgG ASC start to appear in the bone marrow in a previous study in C57BL/6 

mice (Nduati et al. 2010). In contrast, B220- CD138+ LLPC decreased in percentage from 

day 10 onwards, only increasing to pre-P. chabaudi infection frequencies at the last time 

point observed (day 75) (Figure 4.8A).  
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In terms of absolute numbers per femur pair, migratory plasmablasts peaked in number on 

day 25 with a mean of 108733 and dropped in number to 51600 on day 75, still very much 

increased from baseline (Figure 4.8B). LLPC decreased from a mean of 45533 pre-P. 

chabaudi infection to 10323 on day 8, and only recovered numbers by day 45 (Figure 

4.8B). Interestingly, between days 45 and 75, total numbers of bone marrow LLPC 

increased from 66147 to 75500, which is significantly higher than day 0 of P. chabaudi 

infection (day 150 after PR8 infection) (Figure 4.8B).  

 

4.4.9: LLPCs and HA-specific plasma cells are not detected in PBMC during acute P. 

chabaudi infection (d8 and 10). 

 

With increased numbers of migratory plasmablasts entering the bone marrow during P. 

chabaudi infection, there could be a very large competitive stress placed on the finite LLPC 

niches in the bone marrow. It has been proposed that LLPC can be competitively dislocated 

from their niche into peripheral blood by homeostatic mechanisms (Odendahl et al. 2005). 

The movement of plasma cells from spleen, through peripheral blood, to bone marrow after 

a primary blood-stage P. chabaudi infection has been previously described (Nduati et al. 

2010;Ndungu et al. 2009) and I investigated whether a similar kinetic occurred when P. 

chabaudi infection was initiated in mice previously infected with PR8. Spleen, peripheral 

blood mononuclear cells (PBMC) and bone marrow were obtained from PR8-P. chabaudi-

infected mice at the peak of P. chabaudi infection and anti-B220 and anti-CD138 Abs were 

used to discriminate LLPC from migratory plasmablasts in the three organs. Compared 

against the negative controls which were spleen, PMBC and bone marrow obtained on day 

0 of P. chabaudi infection or stained with the isotype control for anti-CD138 Ab, B220+ 

CD138+ migratory plasmablasts appeared in blood during a very transient window day 8-

12, and in bone marrow from day 10-12 onwards (Figure 4.9A).  However, B220- CD138+ 

LLPC were not detected in blood during days 8-12 of P. chabaudi infection (Figure 4.9A), 

suggesting that, despite the large population of migratory plasmablasts induced during 

acute P. chabaudi infection, LLPC were not dislocated into peripheral blood in adequate 

frequencies for detection by flow cytometric analysis. 
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To further confirm the identity of the B220+ CD138+ migratory plasmablasts that appeared 

in blood on days 8-12 of P. chabaudi infection, spleen, PMBC and bone marrow were 

obtained on day 10 of P. chabaudi infection and stained with anti-B220 and anti-CD138 

Abs (Figure 4.9B). The B220+ CD138+ plasmablasts in the spleen, PMBC and bone 

marrow, as well as B220- CD138+ LLPC in the bone marrow were further analysed using a 

panel of surface markers to distinguish migratory plasmablasts and LLPC by flow 

cytometry, similar to that described previously (Odendahl et al. 2005). Migratory 

plasmablasts are CD138+ and B200+, CD19+, MHC Class II+, and have downregulated 

CXCR5 and upregulated CXCR4. Conversely, LLPC are CD138+ but are B220-, CD19-, 

CXCR4+, CXCR5- (Figure 4.9B). The relative expression of these surface markers on 

these cells demonstrated that migratory plasmablasts but not LLPC appeared in PMBC 

during the peak of P. chabaudi infection (Figure 4.9B), indicating that LLPC were not 

dislocated from bone marrow.  

 

To confirm that pre-established LLPC were not expelled into peripheral blood, PBMC were 

obtained on days 8 and 10 of P. chabaudi infection and analysed for the presence of HA-

specific IgG ASC. Although a significant increase in total IgG ASC in PBMC was detected 

on days 8 and 10 of P. chabaudi infection (Figure 4.10B), there were no HA-specific IgG 

ASCs detected in PBMC at these time points (Figure 4.10A). 

 

In summary, there are changes in spleen, blood and bone marrow as migratory plasmablasts 

are generated and migrate to their bone marrow niche during acute P. chabaudi infection. A 

wave of migratory plasmablasts entering the bone marrow coincides with the loss of LLPC 

from the bone marrow. However, there is no evidence for the dislocation and mobilisation 

of LLPC into PMBC. 

 

4.4.10: LLPCs undergo apoptosis during acute P. chabaudi infection (before d10).  

 

As neither LLPC nor HA-specific IgG ASC could be detected in PBMC during acute P. 

chabaudi infection, the alternative hypothesis was that bone marrow LLPC were 

undergoing apoptosis during acute P. chabaudi infection. This was supported by the fact 

that B220- CD138+ LLPC was already reduced on d8, before the entry of B220+ CD138+ 
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migratory plasmablasts into the bone marrow from d10 onwards (Figure 4.6A-B). BALB/c 

mice were infected with PR8-P. chabaudi and bone marrow was obtained on d0, 4-5, 6-8 

and 10 of P. chabaudi infection. Apoptosis was determined by flow cytometric detection of 

Annexin V surface expression on total bone marrow cells and bone marrow LLPC (Figure 

4.11A). There was an significant increase the frequency of bone marrow cells expressing 

Annexin V on days 4-5 and 6-8 of P. chabaudi infection, going back to pre-P. chabaudi 

infection frequencies by day 10 (Figure 4.11B). Similarly, there was an increase in the 

frequency of B220- CD138+ LLPCs expressing Annexin V during acute P. chabaudi 

infection, particularly on day 4-5, decreasing on day 6-8 and going back to pre-P. chabaudi 

infection frequencies by day 10 (Figure 4.11C). Therefore pre-established bone marrow 

cells and LLPC underwent increased apoptosis during P. chabaudi infection, and this 

occurred at very early time-points in infection. This result will be confirmed using other 

assays like Annexin-V and 7-AAD surface co-staining, as well as intracellular caspase-3 

staining.  

 

4.4.11: P. chabaudi-induced bone marrow LLPC apoptosis is dependent on 

FcγRI,II,III. 

 

FcγRIIB is the only inhibitory FcR in humans and mice and facilitates negative feedback 

and dampening of humoral and cell-mediated responses (Ravetch & Bolland 2001). 

Although it is widely expressed on many cell types, including dendritic cells, macrophages, 

activated neutrophils, mast cells and basophils (Nimmerjahn & Ravetch 2008;Ravetch & 

Kinet 1991), it is the only IgG Fc receptor expressed by B cells (Amigorena et al. 1989). 

Mice deficient in FcγRIIB are susceptible to autoimmunity, and indeed can develop 

spontaneous autoimmune conditions, and they have elevated antibody titres to antigens 

with reduced cellular activation thresholds (Takai et al. 1996). FcγRIIB is a low affinity 

receptor that binds immune-complexed IgG, particularly of the subclasses IgG1, IgG4 and 

IgG2 in humans (Bruhns et al. 2009) and IgG1 in mice (Nimmerjahn et al. 2005). Cross-

linking of FcγRIIB triggers the ITIM-mediated signalling cascade. Recently, ligation of 

FcγRIIB on LLPC by low-affinity immune complexes was found to lead to apoptosis and 

death of pre-established LLPC (Xiang et al. 2007). It has previously been demonstrated in 

this laboratory that an unusually high splenic B220+ CD138+ plasma cell response is 
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produced early in P. chabaudi infection (Achtman et al. 2007), although the reason for this 

is not known. Possibly the exuberant splenic short-lived plasma cell generation is due to 

short-lived polyclonal B cell responses, which rapidly develop into extrafollicular 

plasmablasts which produce low-affinity Abs (Achtman et al. 2007;Stephens et al. 2009). 

At the same time, large quantities of soluble antigen are shed during merozoite invasion 

and can form immune complexes which can circulate and crosslink FcγRIIB on LLPC, 

causing death of LLPC and thereby creating newly vacant niches.  

 

Since there was hypergammaglobulinaemia during P. chabaudi infection which could 

engage FcγRIIB on LLPC and cause apoptosis, I hypothesized that P. chabaudi-induced 

bone marrow LLPC apoptosis could be dependent on FcγRIIB. Five months after PR8 

infection of wild-type BALB/c mice, bone marrow LLPC in these PR8-immune mice 

expressed FcγRIIB (Figure 4.12A). FcγRIIB KO mice were unavailable in the institute at 

the time; therefore I used FcγRI,II,III KO mice on a C57BL/6 background, which were 

available in the institute. 8-10 week old female FcγRI,II,III KO and wild-type C57BL/6 

controls were infected with 250 HAU PR8 intranasally and their HA-specific IgG response 

was monitored by ELISA for up to 150 days (Figure 4.12B). FcγRI,II,III KO mice had 

higher HA-specific IgG concentrations on day 28 after intranasal PR8 infection compared 

to C56BL/6 controls (Figure 4.12B). This was probably due to an enhanced antibody 

response in the absence of FcγRIIB, which is consistent with the augmented humoral  

response in FcγRIIB KO mice to immunisation with T-dependent or T-independent 

antigens (Takai et al. 1996). This is unsurprising given the role of FcγRIIB in negative 

regulation of the B cell activation threshold (Amigorena et al. 1989). Nevertheless, HA-

specific IgG concentrations in FcγRI,II,III KO mice returned to similar concentrations as 

C57BL/6 controls (approximately 75-77 µg/ml) by day 56 for up to day 150 (Figure 

4.12B). Indeed, FcγRI,II,III KO and C57BL/6 mice had similar concentrations of HA-

specific IgG to BALB/c mice from day 56 post PR8-infection onwards (Figure 4.12B). 150 

days after PR8 infection, FcγRI,II,III KO and C57BL/6 mice were infected with P. 

chabaudi and had similar parasitaemia curves throughout acute P. chabaudi infection 

(Figure 4.12C). Although peak % parastiaemia was similar between FcγRI,II,III KO  and 

C57BL/6 mice, there was no change in bone marrow cellularity on day 8 of P. chabaudi 

infection FcγRI,II,III KO mice, whilst in comparison there was a significant loss of bone 
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marrow cellularity in the C57BL/6 controls (Figure 4.12D). Similarly, when HA-specific 

IgG ASC was quantified by ELISpot, a significant decrease in bone marrow HA-specific 

IgG ASC was only observed in C57BL/6 controls at the peak of parasitaemia (Figure 

4.12E), while there was no change in bone marrow HA-specific IgG ASC in FcγRI,II,III 

KO mice (Figure 4.12E). There was no significant difference in the total number of IgG 

ASC at the peak of P. chabaudi infection in both FcγRI,II,III KO and C57BL/6 controls 

(Figure 4.12F), although there appeared to be a non-significant increase in total number of 

IgG ASC in FcγRI,II,III KO at the peak of parasitaemia (Figure 4.12F). When the 

concentration of HA-specific serum IgG was monitored for 56 days following P. chabaudi 

infection, there was a subsequent loss of HA-specific serum IgG in C56BL/6 mice over the 

next 56 days after P. chabaudi infection, whereas there was no loss of HA-specific serum 

IgG in FcγRI,II,III KO mice (Figure 4.12G). Therefore FcγRI,II,III appears to be 

important in the loss of pre-established HA-specific bone marrow LLPC and pre-

established HA-specific serum Ab during P. chabaudi infection. However, this does not 

formally exclude other mechanisms of apoptosis such as Fas-Fas ligand interactions or 

ligation of TNF receptors, which should be ruled out with the use of monoclonal blocking 

antibodies against Fas and TNF receptors. 

 

4.4.12: Sequestration of P. chabaudi parasites occurs during acute infection (d5 and 

d8, not d10 and d13). 

 

In humans, P. falciparum parasitized-erythrocytes have been observed in bone marrow 

tissue sections (MacPherson et al. 1985), and sequestration of gametocytes has been 

observed in in vitro culture with bone marrow endothelium (Rogers et al. 2000a). In mice, 

P. chabaudi-parasitized erythrocytes have been observed sequestering to various tissues, 

particularly in the liver (Mota et al. 2000), and it is possible that they could also be 

sequestering in the bone marrow, and have direct effects on the local microenvironment 

which could affect pre-established LLPC. In order to examine whether parasite 

sequestration could have a role in LLPC loss, bone marrow was examined histologically 

after sequential infection. 8-10 week old female BALB/c mice were infected intranassally 

with 250 HAU PR8. 150 days after PR8 infection, mice were infected with P. chabaudi as 

previously described. Femurs were collected on d0, 5, 8, 10 and 13 after P. chabaudi 
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infection for histology. Paraffin-embedded 5µm sections were prepared and stained with 

haematoxylin and eosin. By visual inspection under a light microscope using a x100 

objective with oil immersion, parasitized erythrocytes adhering to endothelial cells of bone 

marrow sinusoids and blood vessels were observed at particularly on days 5 and 8, but not 

on days 10 and 13, of P. chabaudi infection (Figure 4.13). The kinetic of sequestration of 

parasitized-erythrocytes in the bone marrow particularly early time points (days 5 and 8) of 

infection correlates with the apoptosis of bone marrow LLPC (Figure 4.11C), therefore it 

is possible that sequestration has a causal effect on LLPC apoptosis, although confirmation 

of this hypothesis requires much more extensive investigation, such as analysis of 

sequestration in FcγRI,II,III KO mice, where is no loss of LLPCs. Furthermore, it would be 

interesting to examine whether apoptosis of bone marrow LLPC occurs during infection in 

mice where P. chabaudi parasites are thought not to sequester, such as in CD36 KO mice 

(Mota et al. 2000), or using non-sequestering parasite strains such as the recently described 

schizont membrane-associated cytoadherence protein (SMAC)-deficient P. berghei ANKA 

(Fonager et al. 2011) compared with infection with wild-type P. berghei ANKA. 
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Chapter 4: Figure legends___________________________________________________ 

Figure 4.1: Little serological cross-reactivity between Influenza A/PR/8/34 and P. 

chabaudi infections. 

 

Graphs in A) and B) plot the O.D. (405nm) values obtained by ELISA after incubating 

normal mouse sera (○), hyperimmune anti-P. chabaudi sera (●), and anti-PR8 sera (●) with 

either HA or parasite lysate. Results were obtained from one experiment performed in 

duplicates with 6 two-fold dilutions starting from 1/50. In A), only PR8 sera contained 

antibodies binding to PR8 HA. In B), P. chabaudi sera and, to a lesser extent, PR8 sera, 

contained antibodies binding to parasite lysate. C) Three different preparations of 

bromelain-digested PR8 HA and P. chabaudi lysate were resolved on NuPAGE 12% bis-

Tris gels alongside 1x SeeBlue Plus2-prestained standard, electrophorated on Hybond C 

membrane and probed with normal mouse sera (left panel), hyperimmune P. chabaudi sera 

(middle panel), and PR8 sera (right panel). Some cross-reactive antibodies were detected 

between P. chabaudi and PR8 sera. The 46 kDa, fragment of HA was only recognised by 

PR8 sera. D) Graph of the arbitrary neutralising Ab titres in normal mouse sera (○), 

hyperimmune anti-P. chabaudi sera (●), and anti-PR8 sera (●). Reactive serum titres of 

PR8-neutralising antibodies in the serum was measured using a virus neutralising assay. No 

neutralising antibodies were detected from 1:2 serial dilutions of 1:50 – 1:51200 in naïve 

BALB/c serum and anti-P. chabaudi serum. Only PR8 sera were able to neutralise PR8 in 

vitro. E) Schematic representation of experiment. BALB/c female mice were infected with 

P. cbahaudi, rested for 60 days, then infected with an intranasal instillation of 250 HAU 

PR8. Neutralising assays were performed with sera taken 2 and 4 weeks after PR8 

infection. F) Data shows the neutralising Ab response in mice infected with P. chabaudi 

and then PR8 (●); and age-matched control mice infected with saline and then PR8 (●). 

Results show no significant difference between the two groups. This represents one 

experiment with 5 mice per group. Error bars indicate standard error of the mean.  
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Figure 4.2: Experimental protocol for sequential PR8 and P. chabaudi infection. 

 

A) Schematic representation of sequential infection model in BALB/c female mice, were 

the second infection (blood-stage P. chabaudi) was initiated 105 – 150 days after the first 

(intranasal PR8). This would model of a natural sequential heterologous infection in order 

to investigate whether attrition of humoral immunity occurs after sequential infection. Both 

these experimental infections generate LLPC, of which the kinetics have been previously 

characterized (Ndungu et al. 2009; Nduati et al. 2010). A comparison of parasitaemia 

curves was made by Giemsa-staining of thin blood films (inserted graph) obtained from 4 

mice per group. After sequential infection, the antibody response to PR8 was determined by 

ELISA, neutralising assay and ELISpot at various time points post-infection. Protective 

immunity to PR8 was determined by qRT-PCR of lung viral titres after lethal secondary 

PR8 infection. B) Representative FACs plots and C) Frequencies of germinal centre B cells 

in spleens of BALB/c mice 5 months after PR8 infection (n=7) and in naïve BALB/c mice 

(n=2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Figure legends___________________________________________________ 

Figure 4.3: Loss of pre-existing HA-specific serum IgG after P. chabaudi infection. 

 

8-10 wk old female BALB/c mice were infected by intranasal instillation of 250 HAU of 

PR8. A) 105 or B) 150 days post-infection, mice were infected with P. chabaudi as 

previously described. A) and B) Concentration of serum HA-specific IgG in PR8-P. 

chabaudi-infected mice (●) and control PR8 only mice (●) after the two time intervals. The 

x-axis indicates day after P. chabaudi infection. Data were obtained from two experiments 

each with 5-10 mice per group. The line indicates the median value. Statistical values were 

calculated using the Mann-Whitney test. C-D) 8-10 wk old female BALB/c mice were 

infected by intranasal instillation of 250 HAU of PR8. 28 days later, mice were infected 

with P. chabaudi as previously described. C) Concentration of serum HA-specific IgG1, 

IgG2a, IgG2b, IgG3 and IgM in PR8-P. chabaudi-infected mice (blue bars) and age-

matched control PR8-only mice (red bars) at various time points after PR8 infection. The 

black arrow indicates the time when P. chabaudi infection was initiated (day 28 of PR8 

infection). Data were obtained from two experiments each with 5-10 mice per group. Error 

bars indicate 95% confidence intervals. P values were calculated using the Mann-Whitney 

test. P values in C) are indicated by: ** <0.01; *** < 0.001; **** <0.0001.  
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Figure 4.4: Loss of protective immunity to PR8 infection after P. chabaudi infection. 

 

A) 8-10 wk old female BALB/c mice were infected by intranasal instillation of 250 HAU 

of PR8. 105 days later, mice were infected with P. chabaudi as previously described. 

Serum was obtained from mice at various time points after PR8-P. chabaudi infection. 

Virus neutralising Ab titres in PR8-P. chabaudi-infected mice (●) and control PR8 only 

mice (●) were quantified using a neutralising assay as previously described (Kassiotis et al. 

2006). The black arrow indicates the time when P. chabaudi infection was initiated (day 

105 of PR8 infection). The x-axis indicates days after PR8 infection. Data were obtained 

from two experiments each with 5-10 mice per group. The line indicates the median value. 

Statistical values were calculated using the Mann-Whitney test. B) 8-10 wk old female 

BALB/c mice were infected by intranasal instillation of 250 HAU of PR8. 150 days later, 

some mice were infected with P. chabaudi as described previously and drug-cured with 

chloroquine. 6 weeks after P. chabaudi infection, mice were re-infected with PR8 by 

intranasal instillation of 10 HAU of PR8 under light anaesthesia and recovery. 3d after the 

secondary PR8 infection, mice were sacrificed and lungs processed for qRT-PCR of viral 

RNA loads as described in Methods and Materials. C) Graph shows data obtained from 

naïve BALB/c mice (○), PR8-immune mice (●) and PR8-immune mice infected with P. 

chabaudi (●). The dotted line indicates the limit of detection. P values were calculated 

using the Mann-Whitney test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Figure legends___________________________________________________ 

Figure 4.5: No increase in rate of serum antibody clearance during acute or chronic P. 

chabaudi infection. 

 

A-B) 8-10 wk old female BALB/c mice were infected by intranasal instillation of 250 HAU 

of PR8. 105 days later, mice were infected with P. chabaudi as previously described. 

Serum was obtained at various time-points after P. chabaudi infection. A) Titres of serum 

parasite lysate-specific IgG and B) Concentration of total serum IgG in PR8-P. chabaudi-

infected mice (●) and control PR8 only mice (●) were determined by ELISA. Graphs show 

individual data points obtained from 3-5 mice per time point in one experiment. C) 

Schematic representation of experimental plan for determining antibody half-life during P. 

chabaudi infection. 8-10 week old naïve female BALB/c mice were infected with P. 

chabaudi. 24h or 60 days post-infection, mice were injected i.p. with 200ug of anti-TNP 

mIgG2a grown from the Hy1.2 hybridoma. Serum was obtained at various time points after 

injection. D) Concentration of anti-TNP mIgG2a in serum was quantified by ELISA 

throughout acute P. chabaudi infection (1d post-infection) (●) or chronic infection (60d 

post-infection) (●) and compared with uninfected age-matched controls (○). Graph showing 

the mean and standard error of data obtained from three independent experiments with 5 

mice per group. Antibody half-life was calculated by use of linear regression on log2 

transformed antibody concentrations in relation to hours after injection. Antibody half-life 

was expressed as the inverse reciprocal of the regression line slope (boxed in Figure 4.5D; 

expressed in hours). 
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Figure 4.6: Loss of HA-specific ASC from bone marrow at day 8 of P. chabaudi 

infection. 

 

A) Reduction in bone marrow cellularity during acute P. chabaudi infection. 8-10 wk old 

female BALB/c mice were infected with P. chabaudi as described previously. Bone 

marrow from femur pairs was obtained at various time points post-infection, erythrolysed 

and counted using a haemocytometer with live/dead cell discrimination made using 

Tryphan Blue. Parasitaemia at these time points was determined through microscopic 

examination of thin blood films. Total bone marrow cellularity per femur pair (●; left y-

axis) and parasitaemia (●; right y-axis) over the course of P. chabaudi infection was 

determined. Each point is the mean of data obtained from one experiment with 3-4 mice per 

time point. B) Schematic representation of experimental plan for determining whether HA-

specific ASC was lost from bone marrow during P. chabaudi infection. 8-10 wk old female 

BALB/c mice were infected by intranasal instillation of 250 HAU of PR8. 5 months later, 

some mice were infected with P. chabaudi as described previously. 8 days after P. 

chabaudi infection, bone marrow from femur pairs were obtained and C) HA-specific and 

D) total IgG antibody-secreting cells (ASCs) in mice infected with PR8 (●) or PR8-P. 

chabaudi (●) were quantified using ELISpot. Data was obtained from one experiment with 

4 mice per time point. Line indicates the median value. Statistical values were calculated 

using the Mann-Whitney test.  
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Figure 4.7: Increase in number of HA-specific MBC in spleens of PR8-P. chabaudi-

infected mice on days 33 and 77 of P. chabaudi infection. 

 

8-10 wk old female BALB/c mice were infected by intranasal instillation of 250 HAU of 

PR8. 5 months later, mice were infected with P. chabaudi as previously described. Spleens 

were obtained 33 and 77 days after P. chabaudi infection. At these time points, HA-specific 

MBC in PR8-P. chabaudi-infected mice (●) and PR8 only control mice (●) were quantified 

using ELISpot. Graph shows individual data points obtained from one experiment with 3-5 

mice per group. Statistical values were calculated using the Mann-Whitney test. 
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Figure 4.8: Entry of migratory plasmablasts on day 10 of P. chabaudi infection. 

 

8-10 wk old female BALB/c mice were infected by intranasal instillation of 250 HAU of 

PR8. 5 months later, mice were infected with P. chabaudi. Spleen, PBMC and bone 

marrow from femur pairs were obtained at various time points after P. chabaudi infection. 

Bone marrow from femur pairs were obtained at various time points after P. chabaudi 

infection and migratory plasmablasts (● B220+ CD138+) and long-lived plasma cells (● 

B220- CD138+) were quantified using flow cytometry. A) Representative B220 vs CD138 

FACs plots of live gated bone marrow cells.  B)  Median and error of the total number of 

migratory plasmablasts or LLPC at various time points after P. chabaudi infection. Data 

was obtained from one experiment with 3 mice per time point.  
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Figure 4.9: Mirgatory plasmablasts, but not long-lived plasma cells, are detected by 

multiparameter flow cytometric analysis in PBMC during acute P. chabaudi infection. 

 

A) Representative FACS plots of B220 vs CD138 on spleen, PBMC and bone marrow cells 

on days 0, 7, 8, 10 and 12 of P. chabaudi infection. B) Spleen, PBMC and bone marrow 

from femur pairs were obtained on day 10 after P. chabaudi infection, when the peak of the 

appearance of B220+ CD138+ migratory plasmablasts in PMBC was observed. The relative 

levels of CXCR4, CXCR5, CD19 and MHC Class II were determined by mutli-parameter 

flow cytometry on B220+ splenic B cells; B220+ CD138+ splenic plasmablasts; B220+ 

CD138+ migratory plasmablasts in PMBC; B220+ CD138+ migratory plasmablasts in bone 

marrow; and B220- CD138+ long-lived plasma cells in bone marrow on day 10 of P. 

chabaudi infection. FACS plots are representative of 3 mice in one experiment. 
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Figure 4.10: HA-specific ASC are not detected in PBMC during acute P. chabaudi 

infection. 

 

8-10 wk old female BALB/c mice were infected by intranasal instillation of 250 HAU of 

PR8. 5 months later, some mice were infected with P. chabaudi as previously described. 

PBMC were obtained on days 8 and 10 after P. chabaudi infection. A) HA-specific and B) 

total IgG antibody-secreting cells (ASCs) in PBMC in mice infected with PR8 (●) or PR8-

P. chabaudi (●) were quantified using ELISpot. Data was obtained from one experiment 

with 4 mice per time point. The line indicates the median value. Statistical values were 

calculated using the Mann-Whitney test.  
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Figure 4.11: Long-lived plasma cells undergo apoptosis during acute P. chabaudi 

infection (before d10). 

 

8-10 wk old female BALB/c mice were infected by intranasal instillation of 250 HAU of 

PR8. 5 months later, mice were infected with P. chabaudi as previously described. Bone 

marow was obtained from femur pairs of these mice at various time points after-P. 

chabaudi infection. Apoptosis of total bone marrow cells and CD138+ B220- LLPCs was 

quantified by percentage surface Annexin V staining. A) Representative FACS plots of 

total bone marrow cells and bone marrow LLPC; and relative expression of Annexin V on 

days 0, 5, 8 and 10 of P. chabaudi infection. % Annexin V expression on B) total bone 

marrow cells and C) bone marrow LLPC. Data from days 4 and 5 of P. chabaudi infection, 

and days 6 and 8 were pooled from two independent experiments (see x-axis groupings). 

Data was obtained from 2 experiments with 3-10 mice per time point. Statistical values 

were calculated using the Mann-Whitney test.  
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Figure 4.12: Loss of HA-specific ASC or HA-specific serum IgG after P. chabaudi 

infection is dependent on FcγRI,II,III. 

 

8-10 week old female C57BL/6 (blue bars) and FcγRI,II,III KO (red bars) mice were 

infected by intranasal instillation of 250 HAU of PR8. 150 days later, mice were infected 

with P. chabaudi as previously described. 8 days after P. chabaudi infection. A) 

Representative FACS plot showing the mean fluorescence index of FcγRIIB (―) versus the 

isotype control (―) on B220- CD138+ LLPC in the bone marrow. This plot is 

representative of 3 mice in one experiment. B) Concentration of HA-specific serum IgG in 

FcγRI,II,III KO (n=4-6) and C57BL/6 (n=3) and BALB/c (n=3) mice on days 28, 56, 84 

and 150 after PR8 infection.  Error bars indicate maximum range of values obtained from 

one experiment. C) % parasitaemia throughout acute P. chabaudi infection in FcγRI,II,III 

KO and C57BL/6 mice, when P. chabaudi infection was initiated 150 days after PR8 

infection. Data was obtained from 2 mice per group in one experiment. D) Total bone 

marrow cellularity per femur pair at peak parasitaemia (d8) in FcγRI,II,III KO (n=6-8) and 

C57BL/6 mice (n=4) obtained from one experiment. E) HA-specific and F) total IgG ASC 

quantified using ELISpot in in FcγRI,II,III KO (n=6-8) and C57BL/6 mice (n=4-8) 

obtained from one experiment. G) Venous blood was obtained from FcγRI,II,III KO (n=6-

10) and C57BL/6 mice (n=5-7) on days 0, 35 and 56 of P. chabaudi infection and 

processed for serum. HA-specific IgG antibodies were quantified by ELISA. Data was 

obtained from one experiment. Error bars indicate maximum range of values. Statistical 

values were calculated using the Mann-Whitney test.   
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Figure 4.13: Sequestration of P. chabaudi-parasitized erythrocytes in bone marrow 

during acute infection (d5 and 8). 

 

8-10 week old female BALB/c mice were infected by intranasal instillation of 250 HAU of 

PR8. 150 days later, mice were infected with P. chabaudi as previously described. Paraffin-

embedded 5µm sections of femurs were made on days 0, 5, 8, 10 and 13 of P. chabaudi 

infection and stained with hematoxylin and eosin. Images were obtained using the Ziess 

Axioplan 2 imaging microscope using the 100X objective under oil immersion and 

analysed using the AxioVision 4.6 programme. Red arrows indicate parasitized 

erythrocytes. These images are representative of two independent experiments with 3 mice 

in each time point. 

 



_____________________Chapter 4: Loss of previously established humoral immunity 

4.5: Discussion 

 

In this chapter, I have found that infection with P. chabaudi results in a reduction of pre-

established specific serum antibodies and bone marrow plasma cells to Influenza A. 

Furthermore, PR8-P. chabaudi-infected mice have increased lung viral loads after re-

infection with PR8, indicating a significant loss of ability to clear virus as compared to 

PR8-immune control mice. However it is not possible at present to determine if protection 

against disease was also affected by P. chabaudi infection, as correlation of viral loads with 

visible signs of pathology such as weight loss or histological examination of lung pathology 

was not done. The transient loss of serum Abs is not due to decreased half-life, and it is 

likely to be a direct result of the reduction in bone marrow LLPC. It is possible that the 

recovery of serum Abs could be due to supplementation by the differentiation of HA-

specific MBC into antibody-secreting plasma cells.  

 

In these experiments, I have found little evidence that pre-established LLPC are being 

dislodged by new migratory plasmablasts generated by P. chabaudi infection; instead, 

apoptosis of LLPC in situ is more likely as demonstrated by the upregulation of Annexin V. 

In this sequential infection, apoptosis of LLPC during P. chabaudi infection is linked to 

FcγRI,II,III. I have also observed sequestration of P. chabaudi parasitized-erythrocytes in 

bone marrow during acute infection occurring at a similar kinetic to bone marrow LLPC 

apoptosis (before day 10) and this suggests that sequestration of parasitized-erythrocytes 

could potentially affect pre-established LLPC or their niches, resulting in the loss of LLPC, 

although extensive investigation is required to examine this hypothesis.  

 

The lack of cross-reactivity between sera obtained from PR8- and P. chabaudi-infected 

BALB/c mice in vitro and in vivo validated our system using PR8 and P. chabaudi 

infections to investigate whether sequential infection with unrelated pathogens had any 

effect on the maintenance of humoral memory to the first infection. Each infection selects 

for non-cross-reactive B cell clones that generate distinct cohorts of LLPC, which produce 

non-cross-reactive Abs. Therefore any change that was observed in the HA-specific 

antibody profile or HA-specific ASC frequencies after subsequent malaria infection would 

not be confounded by cross-reactive B cell memory responses. Furthermore, this indicated 
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that both neutralising assays and bromelain-digested PR8 HA-coated ELISAs were valid in 

vitro assays for following the HA-specific antibody response in sequentially-infected mice. 

When PR8 infection was initiated 60 days after P. chabaudi infection, there was no 

difference in the development of PR8-specific neutralising Ab titres compared to those of 

PR8 initiated in naive mice, indicating that the presence of P. chabaudi-induced immune 

response did not alter the development of neutralising Ab titres towards PR8.  

 

The concentration of HA-specific serum IgG fell by more than 20% in mice infected with 

P. chabaudi 105 or 150 days after PR8 infection. There was a similar reduction in the 

concentration of HA-specific Ab titres, and an accompanying 2-3 fold loss of HA-specific 

IgG plasma cells in the bone marrow. HA-specific serum IgG concentrations remained 

subnormal for up to 63 days with the 105 day interval, and 42 days with the 150 day 

interval after P. chabaudi infection or drug-cured P. chabaudi infection. 42 days after P. 

chabaudi infection, antibody concentrations in PR8-P. chabaudi-infected mice were no 

longer different from those of the PR8 only controls. This result is strikingly similar to that 

obtained using pre-BSA immunised mice and P. y. yoelii and P. berghei (Strambachova-

McBride & Micklem 1979) in that when P. y. yoelii or P. berghei was initiated 114 days 

after primary BSA immunisation, there was a similar 20-25% reduction in serum BSA-

specific Ab titres, which returned to similar levels to the non-infected controls by day 53 of 

infection. However, when PR8-P. chabaudi-infected mice were challenged 42 days after P. 

chabaudi infection with PR8, they had higher lung viral titres compared to the PR8-only 

control group. It will be pertinent to determine whether P. chabaudi infection has caused a 

reduction of NALT HA-specific IgA and IgG and CD8+ T cells, and whether there has been 

long-term pathological damage to lung tissues which could also delay or prevent lung viral 

clearance. 

 

P. chabaudi infection in mice previously infected with PR8 resulted in an overall reduction 

in HA-specific serum T cell-dependent isotypes IgG1, IgG2a and IgG2b, while 

concentrations of IgG3 and IgM, which are already very low, appear to be unaffected. It has 

been observed that most Plasmodium spp. skews the isotype distribution of non-specific 

serum Ig towards predominantly IgG2a (and IgG2b, in P. chabaudi adami infection) 

subclasses (Quin & Langhorne 2001;Langhorne et al. 1985), probably as a result of the Th1 
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cytokine production induced during the early phase of infection (Langhorne et al. 2004), or 

a result of polyclonal and continuous B cell activation, which is observed in many parasitic 

infections (Langhorne et al. 1985;Minoprio et al. 1986). Isotype switching to IgG1, IgG2a 

and IgG2b is dependent on the persistence of splenic germinal centres and the disruption to 

splenic microarchitecture could disrupt pre-existing germinal centres.  

 

It has been suggested that the malaria infection can cause transient loss of pre-established 

Abs by inducing increased clearance or catabolism of serum Abs due to 

hypergammaglobulinaemia, leading to a reduced half-life of non-specific serum Ab 

(Goumard et al. 1982;Strambachova-McBride & Micklem 1979). Indeed, malaria 

chemoprophylaxis taken before P. falciparum infection is associated with a slower rate of 

decay of Abs to a meningococcal vaccine among Kenyan children, suggesting that acute 

malaria globally accelerates the clearance of Abs, not just malaria-specific Abs (Kinyanjui 

et al. 2007). The exact mechanism of how the hypergammaglobulinaemia induced by 

malaria can cause a reduction in half-life of serum Ab is unknown, but the formation of 

low-avidity immune complexes during acute malaria may facilitate their clearance by 

macrophages (Langhorne et al. 2004). Alternatively, immune complex-induced nephritis 

can occur during malaria and can result in proteinuria and possibly accelerated clearance of 

serum Ab (Ward et al. 1969). In our sequentially infected mice, total serum IgG increased 

from approximately 1-2 mg/ml to approximately 45 mg/ml at 10 days of infection and 

remained at that level for up to 42 days, finally falling to approximately 23mg/ml only after 

60 days of P. chabaudi infection, indicating that hypergammaglobulinaemia induced by P. 

chabaudi infection was very large and prolonged. Despite this, and contrary to previous 

studies (Strambachova-McBride & Micklem 1979), our experiments did not demonstrate a 

reduced half-life of serum IgG either during acute or chronic P. chabaudi infection. As the 

half-life of serum Ab did not appear to be affected by the presence or absence of parasite, it 

is unlikely that accelerated IgG clearance can fully explain the transient reduction in pre-

established HA-specific serum Abs during P. chabaudi infection.  

 

In line with previous studies (Radwanska et al. 2008;Wykes et al. 2005), I found that P. 

chabaudi infection can result in a loss of pre-established LLPC to unrelated specificities. 

One hypothesis as to how this happened was that pre-established LLPC were dislocated by 
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newly generated migratory plasmablasts, a mechanism which is thought to take place 

during every new immune response in order to homeostatically accommodate new LLPC in 

finite survival niches (Radbruch et al. 2006). Previously, investigations of this were limited 

by the fact that models using protein-hapten immunisations elicited few plasmablasts, e.g. 

only 3000 after secondary immunisation with OVA (Manz et al. 1997). Here, I have shown 

that P. chabaudi infection induces very large numbers of migratory plasmablasts entering 

the bone marrow, which are likely to exert a stronger competitive stress on the finite niche. 

However, despite this, no dislodged LLPC from the bone marrow were detected in the 

blood during acute P. chabaudi infection, either by flow cytometry or by ELIspot. It is 

possible that the numbers of LLPC extruded by this huge migratory plasmablast population 

were too small to be picked up by these methods, which in that case would make their 

impact probably insignificant, or that they were undergoing apoptosis in situ and not 

expelled into the circulation at all. 

 

Here, I found that P. chabaudi infection resulted in apoptosis of bone marrow LLPC at 

particularly early time points (d4-6) of infection. This result is consistent with an earlier 

study using P. y. yoelii where increased apoptosis of bone marrow LLPC occurred on days 

3 and 7 of P. yoelii infection (Wykes et al. 2005). In these previous studies, no clear 

mechanisms for LLPC apoptosis during infection with parasites were elucidated, although 

(Wykes et al. 2005) suggested that it could occur in a caspase 3-dependent manner. An 

earlier study suggested that the increase in apoptotic cells in the spleen during P. chabaudi 

infection could be mediated by increased Fas ligand binding (Helmby et al. 2000). My data 

suggests that FcγRI,II,III may play an important role in P. chabaudi-induced LLPC 

apoptosis. Ideally, FcγRIIB KO mice should have been used for these experiments but were 

not available at the time. Despite being lacking three Fcγ receptors, these FcγRI,II,III KO 

mice were able to generate comparable HA-specific serum IgG to that of C57BL/6 mice. 

Furthermore, FcγRI,II,III KO mice were able to control parasites and had similar 

parasitaemia curves to that of C57BL/6 mice. Importantly, FcγRI,II,III KO mice retain pre-

infection numbers of HA-specific IgG ASCs in the bone marrow and maintain their pre-

established Ab for up to 56 days after P. chabaudi infection, unlike the C57BL/6 controls, 

which have significantly reduced numbers of HA-specific ASC at peak parasitaemia and 

significantly reduced HA-specific serum IgG for up to 56 days of P. chabaudi infection. 
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The fact that a sterile ‘cocktail’ of immunogens can also trigger LLPC apoptosis via 

FcγRIIB (Xiang et al. 2007) reinforces the implication that this mechanism is not specific 

to the P. chabaudi infection but is a global phenomenon that uses programmed cell death as 

a mechanism to homeostatically regulate the LLPC niche. FcγRIIB can induce LLPC 

apoptosis via two independent routes: 1) phosphorylation of ITIM sequence contained in its 

cytoplasmic domain, which leads to recruitment of SHIP or leads to activation of MAP 

kinases; 2) ITIM-independent clustering of FcγRIIB, which generates a pro-apoptotic 

signal through the transmembrane sequence, which acts via Btk. Nevertheless, because of 

the confounding effects of the absence of FcγRI and FcγRIII in FcγRI,II,III KO mice, it 

will be necessary to confirm these findings in FcγRIIB KO mice to allow me to dissect the 

mechanism of FcγRIIB-mediated apoptosis of LLPC in the context of sequential PR8-P. 

chabaudi infections. Other general mechanisms of apoptosis, such as Fas-Fas ligand 

interactions or ligation of TNF receptors, can be tested in this system with the use of 

monoclonal blocking antibodies against Fas and TNF receptors. 

 

Outstanding questions 

 

The direct affect of parasite on LLPC has not been previously studied. I have observed 

sequestration of P. chabaudi-parasitized erythrocytes in bone marrow endothelium at 

particularly early time points of infection (d5 and 8), which correlates very well with the 

kinetics of LLPC apoptosis and loss of HA-specific ASC in bone marrow. Therefore, it is 

pertinent to determine whether there is increased apoptosis of bone marrow LLPC during 

infection with non-sequestering parasites. Further work to investigate the 

immunomodulatory effects of P. chabaudi sequestration in bone marrow would be to 

investigate the time course of parasite sequestration in bone marrow over acute and chronic 

parasitaemia, which stage of the parasite life cycle sequesters (mature ring stages or 

gametocytes) and determine which cell type the sequestering parasite is residing in (mature 

erythrocytes, reticulocytes, or other cell types such as phagocytes). In addition, I would like 

to determine which cell type the parasite is sequestering to and investigate if there are 

histopathological changes caused by the sequestering parasite which could affect pre-

established LLPC or their niche. 
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The effect of P. chabaudi on pre-established heterologous memory B cells remains to be 

determined. However, from previous studies with P. y. yoelii and Tryphanosoma brucei 

(Radwanska et al. 2008;Wykes et al. 2005), it is predictable that P. chabaudi would also 

cause a reduction in pre-established splenic memory B cells. In my previous chapter, a 

significant reduction in pre-established HA-specific serum IgG was observed 84-150 days 

after memory B cell depletion, indicating that memory B cells are important in the 

maintenance of HA-specific serum IgG. Therefore it is possible that the recovery of HA-

specific serum IgG after P. chabaudi infection is due to the reconstitution of HA-specific 

LLPC and serum Ab by HA-specific memory B cells. Further work would therefore be to 

determine whether pre-established memory B cells were affected by P. chabaudi infection, 

and whether and how memory B cells replenish a depleted LLPC, as a mechanism for 

maintaining constant serum antibody concentrations over time. 
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Final perspectives  

 

Memory B cells are required to maintain persistent serum Abs to influenza A in the 

absence of re-infection. 

 

In this study, the use of hCD20 transgenic mice revealed that memory B cells contribute to 

the maintenance of Influenza-specific long-lived serum Abs after an intranasal influenza 

infection. In agreement with previous studies (Ahuja et al. 2008;DiLillo et al. 2008;Gong et 

al. 2005), the anti-hCD20tg mAb had no observable effect on B220- CD138- LLPC 

frequencies and numbers immediately after the course of treatment, whereas it depleted 

peripheral mature B cell subsets rapidly and efficiently. This is probably because of the 

lower expression of hCD20 on LLPC compared to B cells and MBC. However it rapidly 

depleted the majority of B cells and MBC. In this study, frequencies of peripheral B cells 

returned to normal pre-treatment levels within 3 months after depletion. By contrast, the 

loss of Influenza haemagglutinin (HA)-specific MBC was sustained for up to 5 months. 

Interestingly, HA-specific plasma cells in the bone marrow, which did not change in 

number for up to d42 after 2H7 treatment, were subsequently observed to decrease at a 

particularly late time point of 150 days after 2H7 treatment. Pre-established serum Abs to 

Influenza also decreased significantly 90-150 days after depletion of MBCs. In this case, 

the kinetics of LLPC loss approximately matched the kinetics of serum Ab loss. These data 

therefore suggests that MBCs were required for maintaining the numbers of LLPCs in the 

bone marrow, as well as to maintain persistent Influenza-specific serum Abs after primary 

intranasal influenza infection.  

 

The results of this depletion study is in accordance with previous studies, which point to the 

important contribution of MBC to maintaining Influenza-specific serum Abs. Influenza-

specific MBC are very long-lived, as observed in human survivors of the 1918 Spanish 

influenza pandemic, who have detectable recirculating MBC which are able to mount recall 

responses even 90 years after (Yu et al. 2008b). Recently, Bali Pulendran’s group used a 

novel vaccine strategy using synthetic nanoparticles containing Influenza antigens in 

combination with TLR ligands to programme the innate immune response to induce long-

lived neutralising Ab titres (Kasturi et al. 2011). In this study, successful long-term serum 
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neutralising Ab titres against Influenza were established by generating long-lived germinal 

centres producing persistent MBC and ASC in lymph nodes for more than 1.5 years in 

mice, demonstrating that MBC can be an important contributor to maintaining long-term 

serum Ab.  

 

However these findings are at odds with the notion that serum Abs are maintained only by 

LLPC, which was inferred by previous B cell depletion studies in mice (Ahuja et al. 

2008;DiLillo et al. 2008), which demonstrated that the LLPC generated by protein-

immunisation and acute infection with LCMV (Armstrong) (Slifka et al. 1998) are capable 

of surviving and maintaining pre-established serum Ab titres for long periods of time, 

despite MBC depletion by monoclonal Abs or irradiation. This difference between the 

findings in this study and in those previous studies could be due to the contexts of LLPC 

generation. Intraperitoneal protein immunisation or infection may ‘imprint’ a long intrinsic 

lifespan on LLPC, but in the context of intranasal Influenza infection, long-term serum 

Influenza-specific serum Abs may have a greater reliance on the MBC pool for their 

maintenance.  

 

Indeed, MBCs have various properties which enable them to maintain serum Abs in the 

absence of re-infection. MBCs can survive independently of antigen stimulation and in the 

absence of mitosis (Maruyama et al. 2000), are intrinsically programmed for faster 

signalling and self-renewal (Tomayko et al. 2008), and have been documented to re-

circulate for up to 90 years after the last known infection (Crotty et al. 2003;Yu et al. 

2008b). Furthermore, they are unique from other B cell subsets and LLPC in their 

independence of the cytokines BAFF and APRIL for their survival (Benson et al. 2008) and 

have their own specialised niches like the spleen (Mamani-Matsuda et al. 2008), although 

the properties of these niches are not well characterised. MBCs have a higher propensity to 

differentiate into PCs than naïve B cells upon activation (Benson et al. 2009;Bernasconi et 

al. 2003) and bear more polyreactive BCRs as compared to LLPCs (Dal Porto et al. 

2002;Tarlinton & Smith 2000). Therefore serum Abs can be maintained by chronic 

reactivation of MBC both by persistent antigen and by cross-reactive antigen. In addition, 

MBC differentiation can also be driven by cytokines or TLR ligands inducing a bystander 

activation of MBC independently of antigen (Bernasconi et al. 2002). Therefore there is a 



__________________________________________________________Final perspectives 

  175

strong biological basis for the importance of MBC, not just in the anamnestic response, but 

also in the general maintenance of long-lived serum Abs in the absence of re-infection. 

 

Given the importance of long-lived serum Abs for protective immunity after many vaccines 

and infections, it would be interesting to compare the relative importance of MBC and 

LLPC to long-term serum Abs across different infections, for example in other viral 

infections or parasitic infections, and indeed with different vaccination strategies and routes 

of administration. The information obtained from such studies would not only expand our 

understanding of the basic biological parameters of long-lived humoral immunity, but also 

enable better vaccine design. For example, this study suggests that strategies designed to 

induce persistent humoral immunity to Influenza A should induce long-lived MBC 

responses in order to generate the most robust and long-lasting serum Ab titres. 

 

Transient loss of pre-established antibody-mediated immunity to Influenza A 

infection during acute P. chabaudi infection. 

 

The second main finding is that pre-established Influenza HA-specific Abs are lost 

following P. chabaudi infection. Pre-established bone marrow HA-specific LLPCs are also 

lost during acute P. chabaudi infection. Moreover, PR8-P. chabaudi infected mice have 

much higher viral loads in the lungs after re-infection with Influenza A compared to the 

PR8-only controls, where viral loads are controlled to nearly below the detectable level. 

These findings are consistent with the very few previous studies using other rodent 

Plasmodium species such as P. yoelii and P. berghei (Strambachova-McBride & Micklem 

1979;Wykes et al. 2005), as well as a study using the protozoan parasite, Trypanosoma 

brucei (Askonas et al. 1979;Radwanska et al. 2008), which all demonstrate a loss of serum 

Abs during acute infection, accompanied by apoptosis and reduction in number of pre-

established non-specific MBCs and LLPCs. One hypothesis has been that pre-established 

LLPCs are competitively dislocated by newly generated migratory plasmablasts (Radbruch 

et al. 2006), but that hypothesis is not supported by the data obtained in this study. 

Although very large numbers of migratory plasmablasts are generated, and which enter the 

bone marrow, during acute P. chabaudi infection, I did not observe any pre-established 

LLPC dislocated into the circulation during the peak of the new migratory plasmablast 
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wave. Instead, apoptosis rather than homeostatic dysregulation of the finite LLPC niche is 

likely to be the cause of the loss of the loss of Influenza-specific ASC, as indicated by the 

increased Annexin V expression on bone marrow LLPC during acute P. chabaudi infection.  

 

Several possible mechanisms have been put forward to explain the induction of apoptosis in 

ASC. An early study in the 1980s implicated the increased production of immune-

suppressive low-density lipoproteins from P. chabaudi-infected mice (Goumard et al. 

1982).  During Trypanosoma brucei infection, there is a rapid loss of developing B cells 

from the bone marrow, and this has been attributed to the loss of CXCL12 expression (Viki 

& Nathalie 2011). Since CXCL12 is also required for retention of LLPCs (Tokoyoda et al. 

2004), such a loss could also explain the loss of ASC but this was not investigated formally 

in this study. In intracellular Trypanosoma cruzi infection, apoptosis of IgG+ B cells was 

mediated by Fas/Fas ligand interactions resulting in B cell-B cell killing (Zuñiga et al. 

2002). In the study with P. yoelii, apoptosis of MBCs and LLPCs was shown to be 

dependent on caspase-3 (Wykes et al. 2005), however what triggered the apoptosis of 

LLPCs was not determined. Apoptosis of LLPCs following injection of an immunogenic 

cocktail of antigens has been shown to be induced by binding of immune complexes  to the 

inhibitory FcγRIIB expressed on B cells and plasma cells (Xiang et al. 2007). However this 

has not been demonstrated to take place following an infection. In this thesis, the apoptosis 

of Influenza-specific LLPCs is likely to be mediated through FcγRIIB. Five months after 

PR8 infection, the B220- CD138+ LLPCs in the bone marrow express elevated levels of 

FcγRIIB. Mice lacking this receptor did not display either bone marrow hypocellularity or 

loss of pre-established LLPC following a P. chabaudi infection. Engagement of FcγRIIB 

on LLPCs is probably the result of the extensive hypergammaglobulinaemia and the 

generation of immune complexes during acute P. chabaudi infection (Achtman et al. 2007), 

which would have the ability to engage FcγRIIB and trigger apoptosis. This is particularly 

important as this a feature shared amongst many other viral and parasitic infections, and 

therefore may be a widespread phenomenon as well as an immune evasion mechanism of 

the parasite to prevent establishment of MBCs or LLPCs to its own variant antigens.   

 

These data have implications for the longevity of protective efficacy of vaccinations in 

malaria-endemic countries. There is a lack of field data in humans on the impact of malaria 
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infection on pre-existing immunity. Vaccine efficacy amongst children tends not to be as 

good in malaria-endemic countries like Nigeria or the Gambia as compared to non-endemic 

areas (Abdurrahman et al 1982; Greenwood et al 1980), and there are documented 

outbreaks of infectious diseases like polio despite a high level of vaccination coverage 

(Hanlon et al 1987), and the reason for this is unclear. However, as the majority of vaccine 

efficacy studies are done in very young infants and children, the inefficacy of vaccine-

induced immunity could be due to a number of factors, such as the young infants’ immature 

immune system (Galindo et al 2000) or high pre-existing titres of maternal Abs which 

inhibit the development of MBC and LLPC, making data obtained from this age group 

difficult to interpret. It has been documented that a co-infection with P. falciparum (i.e. 

detectable parasitaemia) suppresses the development of vaccine-induced immune responses 

(Greenwood et al 1980; Williamson and Greenwood 1978), although there are also reports 

that overall vaccine-induced immunity has not been affected in malaria-endemic countries 

(Temple et al 1991; Campbell et al 1990; McLennan et al 2001; Cutts et al 2005). Similar 

studies in farm animals have shown that infection with African trypanosomes significantly 

reduced the efficacy of several commercial vaccines (Holland et al. 2003;Mwangi, 

Munyua, & Nyaga 1990;Rurangirwa et al. 1983;Sharpe et al. 1982;Whitelaw et al. 1979); 

however almost all these studies were done with vaccinations given during the time of 

Trypanosome infection and so do not provide answers to whether a parasite infection 

caused a loss of pre-established immunity. There is a dearth of investigations into the 

longevity of pre-established immunity in older age groups living in or moving into malaria-

endemic countries where the parasite may have the ability to abrogate pre-established 

immunity and render the host susceptible to secondary infection. This point is extremely 

relevant in the context of multiple vaccination programmes in malaria-endemic countries. A 

longitudinal study of serum Abs in pre-immune adults travelling to malaria-endemic 

regions would provide a clue to whether attrition of pre-established immunity occurs in the 

field.  

 

Sequestration of parasitized-erythrocytes in the bone marrow. 

 

This study is the first to document the sequestration of parasitized erythrocytes in the bone 

marrow during acute P. chabaudi infection.  Further investigation is required to 
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characterise the kinetics of parasite sequestration during acute and chronic parasitaemia, 

and to determine the type of red cell the sequestering parasite is residing in (e.g. mature 

erythrocytes, normoblasts or reticulocytes), or other cell types, e.g. phagocytes. 

Determining which cell type the parasite is sequestering to and if there are 

histopathological changes caused by the sequestering parasite may shed some light as to 

whether there are direct affects on LLPC or their niches. 

 

Replenishment of serum antibodies. 

 

Finally, unlike previous studies, this study also has shown that the loss of pre-established 

serum Abs is transient, as Influenza-specific serum Abs does eventually return to pre-

established levels. It was previously suggested that the transient loss of pre-established 

serum Abs during infection of CBA mice with non-lethal P. yoelii 17X or P. berghei NK65 

was due to increased clearance of serum Abs as a consequence of the 

hypergammaglobulinaemia generated (Strambachova-McBride & Micklem 1979). The rate 

of clearance of non-specific serum Ab during P. chabaudi infection of BALB/c mice was 

examined in this thesis; however I did not observe any impact on the clearance of non-

specific serum Ab during either the acute or chronic phase of infection with P. chabaudi. 

 

It is possible that HA-specific MBC are being reactivated, differentiating into PCs and 

repopulating the HA-specific LLPC niche. From the observations of previous investigators, 

it is likely that MBC will also be decreased during P. chabaudi infection (Radwanska et al. 

2008;Wykes et al. 2005), although that has not yet been formally determined in this study. 

However, unlike the hCD20 system, which permanently depletes the majority of MBC, 

sometimes to undetectable levels, it is unlikely that P. chabaudi will deplete all pre-

established MBC, and the remaining MBC will have the ability to undergo homeostatic 

turnover and differentiate into LLPC and replenish serum Ab. The inflammatory cytokine 

milieu induced during acute P. chabaudi infection and the ensuing chronic parasitaemia can 

potentially stimulate the regeneration of MBC and supplementation of the reduced LLPC 

niche.  
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Therefore it now remains to be determined whether bystander inflammation and re-

generation of germinal centres in re-stimulation is the main mechanism the 

supplementation of Influenza-specific serum Abs and LLPCs after P. chabaudi infection. It 

would also be interesting to investigate whether chronic parasitaemia is necessary for re-

stimulating pre-established Influenza-specific MBCs. This can be determined using a 

curative drug regimen with chloroquine to compare the effect of the presence or absence of 

chronic parasitaemia. If this is so, then elimination of the parasite by curative drug 

treatments would also abrogate the bystander stimulation of pre-established MBC.  

 

In summary, this study demonstrates that HA-specific Abs can be maintained for very long 

periods of time in the absence of re-infection and that memory B cells are necessary for 

maintenance of long-lived serum Abs after an intranasal Influenza A infection. However, 

immediately after a sequential infection with P. chabaudi, there is a temporary 

dysregulation in the MBC and LLPC niches, causing apoptosis of pre-established LLPC 

and the loss of serum Abs. Importantly, there is also an increased susceptibility to 

opportunistic secondary infections with Influenza during this period of time. However, 

serum Abs are eventually replenished over time, possibly by differentiation of MBCs into 

plasma cells. This is a way of ensuring that pre-established serum Abs can be maintained 

for long periods of time, in the face of sequential heterologous infections and continuous 

generation and incorporation of new specificities throughout the lifetime of the host.  
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