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Abstract 

Charcot-Marie-Tooth disease (CMT) 2F and distal Hereditary Motor Neuropathy 

(dHMN) are peripheral motor axonopathies with limited sensory involvement, which 

usually present during the first decade of life. They are caused by mutations in heat 

shock protein 27 (Hsp27)/HSPB1, a highly conserved, ubiquitously expressed 

molecular chaperone. Hsp27 has several cytoprotective functions including the 

inhibition of apoptosis, protection against oxidative stress and promotion of axonal 

growth. In this Thesis, the effects of several pathogenic Hsp27 mutations were 

examined to elucidate their cellular effects in vitro and map these effects to different 

regions of the gene.  

 

The effects of Hsp27 mutations were first investigated in neuronal-like SH-SY5Y 

cells in vitro Analysis of cell survival and cellular morphology revealed that all 

mutations were cytotoxic under basal conditions. However, mutations located in the 

α-crystallin protein domain of Hsp27 resulted in a significant increase in the 

vulnerability of cells to cytoskeletal stressors and decreased neurite outgrowth. 

 

Using immunocytochemistry, interactions between mutant Hsp27 and cytoskeletal 

components were also examined. Mutations located in the Hsp27 α-crystallin 

domain increased co-localisation of Hsp27 with cytoskeletal elements. Although the 

mutation within the N-terminus did not have this effect it did result in the formation of 

distinct nuclear aggregates containing mutant Hsp27.  

 

The functional effects of Hsp27 mutations were investigated using lentiviral delivery 

of mutant Hsp27 in primary motoneurons. Examination of mitochondrial function 
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showed that none of the Hsp27 mutants had any effect on mitochondrial membrane 

potential. 

 

The results presented in this Thesis show that disease-causing Hsp27 mutations 

have differential effects upon protein function in vitro depending upon the gene 

position of the mutation. Therefore, although all Hsp27 mutations in CMT patients 

result in motoneuron degeneration, these results suggest that this process may be 

initiated by different pathological mechanisms and that normal Hsp27 function is 

essential for the maintenance of motor-axonal function.  
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Chapter 1. General Introduction 

 

In this Thesis, the deleterious effects of mutations in heat shock protein 27 (Hsp27), 

which cause Charcot-Marie-Tooth disease and distal Hereditary Motor Neuropathy, 

are investigated and the possibility that these pathogenic mutations, which are 

located in different regions of the HSPB1 gene, have differential effects on cellular 

pathology is examined.  

 

1.1. Peripheral neuropathies 

Peripheral neuropathies can be sub-classified on the basis of the anatomical 

location of primary disease pathology. Thus, disorders can be classed as i) anterior 

horn cell diseases or neuronopathies, affecting the cell bodies in the central nervous 

system (CNS), for example, Amyotrophic Lateral Sclerosis (ALS) and spinal 

muscular atrophy (SMA) ii) peripheral neuropathies or axonopathies, which affect 

the ventral and dorsal nerve roots and peripheral nerves, iii) neuromuscular junction 

disorders that affect transmission from nerve to muscle, for example myasthenia 

gravis, or iv) myopathies, for example Duchene muscular dystrophy, primarily 

affecting skeletal muscle.  

 

Peripheral neuropathies encompass a large number of diseases that are caused by 

damage to the nerves of the peripheral nervous system (PNS). Peripheral 

neuropathies can be arranged into four loose groupings based on the initial origin of 

the disease. Therefore, peripheral neuropathies can be inherited, diabetic, 

inflammatory or acquired. Although the causes of peripheral neuropathy vary across 

different demographics, the most common causes across the world are dependent 
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on socio-economic status. Thus, diabetes is the largest primary cause of peripheral 

neuropathy in the western world whilst leprosy is a more common cause in 

developing countries However, there is a wide variation in the aetiology of peripheral 

neuropathy (Martyn and Hughes, 1997). Diabetes predominantly presents as a 

distal symmetric sensory polyneuropathy, although the prognosis and time course of 

diabetic neuropathies differs widely (Martyn and Hughes, 1997). Inflammatory or 

autoimmune peripheral neuropathies include, for example, Guillain-Barré syndrome, 

Leprosy and chronic inflammatory demyelinating polyradiculoneuropathy (Martyn 

and Hughes, 1997; Lunn and Willison, 2009). Disorders of the PNS can also be 

acquired via physical damage or trauma to the peripheral nerves or spinal cord or 

exposure to toxins, including HIV treatments, solvents, heavy metals and alcohol 

misuse (Martyn and Hughes, 1997). Inherited neuropathies are a common group of 

disorders, affecting 1 in 2500 people (Reilly and Shy, 2009). Hereditary sensory and 

motor neuropathy (HSMN), more frequently referred to as Charcot Marie Tooth 

disease (CMT), has a heterogeneous presentation of clinical phenotype and genetic 

cause. Currently, there are approximately 50 known loci and over 40 genes with 

mutations associated with different forms of CMT 

(http://neuromuscular.wustl.edu/time/hmsn.html) (Pareyson and Marchesi, 2009). In 

CMT, the normally fine tuned communication between neurons and Schwann cells 

is perturbed by mutations in genes that play a role in the maintenance of peripheral 

axons. 

 

1.2. Charcot-Marie-Tooth Disease (CMT)  

CMT is defined by the presence of neuropathy as the sole or primary component of 

the disease (Reilly, 2007). It was first described as peroneal muscular atrophy in two 

papers by Charcot, Marie and Tooth in 1886 presenting as a childhood onset 

disorder with progressive weakness and muscle atrophy affecting feet and hands 

http://neuromuscular.wustl.edu/time/hmsn.html
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first, followed by slow, chronic involvement of the forelimbs caused by denervation 

(Charcot and Marie, 1886; Tooth, 1886; Harding and Thomas, 1980).  

 

Due to the diversity of the disease aetiology, CMT has been subdivided for ease of 

clinical identification and treatment. These subtypes are primarily grouped by clinical 

presentation and electrophysiology into demyelinating (CMT1), axonal (CMT2), 

intermediate (DI-CMT or CMT3), autosomal recessive (CMT4), distal Hereditary 

Motor Neuropathy (dHMN) and distal Hereditary Sensory Neuropathy (dHSN) 

(Barisic et al., 2008). The most common form of CMT is CMT1, formed of 

demyelinating neuropathies. CMT2 is the second most common group of hereditary 

peripheral neuropathies, and results from degeneration of the axon (Barisic et al., 

2008). Due to the complexity and heterogeneity of CMT, a comprehensive review of 

all subtypes is beyond the scope of this Introduction. There are several excellent 

reviews on CMT (Barisic et al., 2008; Pareyson and Marchesi, 2009; Reilly and Shy, 

2009) and a summary of the CMT subtypes is shown in Table 1.1 (CMT1), 1.2 

(CMT2) and 1.3 (Other forms of CMT).   

 

Although CMT is a highly heterogeneous disease with widely varying presentation, 

broadly, ‘classical’ CMT presents in the first or second decade of life with weakness 

and atrophy of distal muscles, and reduced sensation in the distal portions of the 

body, with proximal progression. Patients also show a distinctive foot deformity, 

abnormal gait and loss of tendon reflexes (Harding and Thomas, 1980).  

 

1.2.1. Demyelinating CMT1 

CMT1, a demyelinating disorder, is defined by severely reduced motor nerve 

conductance velocity (NCV, <38m/s) with a slow, uniform conductance, indicating a 

hereditary disorder. This is in contrast to acquired inflammatory neuropathies that 
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Table 1.1 Classification of CMT1 subtypes  

Table describing the differences of CMT disease classification, including 

disease nomenclature, genetic cause, the function of the mutated protein and 

characteristic clinical features of the subtypes. Duplicated Peripheral myelin 

protein 22 (PMP22), Myelin Protein Zero (MPZ), Lipopolysaccharide-induced 

tumour necrosis factor-α factor (LITAF), small integral membrane protein of 

lysosome/ late endosome (SIMPLE), Early growth response protein 2 (EGR2), 

Neurofilament light (NEFL). 
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Table 1.1 Classification of demyelinating CMT1 subtypes. 

CMT 
subtype 

Genetic cause Protein function Specific characteristic clinical features References 

CMT1  Primary demyelinating disease; Autosomal dominant   
Slow nerve conduction velocities (NCV) < 38m/s 
Distal muscle weakness and atrophy, sensory loss, hyporeflexia, classical skeletal deformity 
Nerve biopsy pathology shows demyelination, onion bulb formation and secondary axonal degeneration 

CMT 1A  PMP22 
 
Point mutation 
PMP22 

Integral membrane protein of myelin 
expressed by Schwann cells 

‘Classical’ CMT1 
Duplication is the most common form of CMT 
found in 70% of all CMT cases 
Point mutations give a more severe 
phenotype 
Point mutations can be dominant or recessive 

(Matsunami et al., 
1992)(Patel et al., 
1992)(Timmerman 
et al., 
1992)(Valentijn et 
al., 1992)(Szigeti 
et al., 2006) 

CMT 1B MPZ Most abundant protein in myelin Adhesion 
molecule required for formation and 
maintenance of myelin 

Dejerine-Sottas syndrome 
Congenital hypomyelinating neuropathy  
Can cause axonal neuropathy 

(McMillan et al., 
2010)(Su et al., 
1993) 

CMT 1C LITAF  
 
SIMPLE 

Nuclear transcription factor involved in 
tumor necrosis factor-α gene regulation 
Involved in lysosomal sorting and protein 
degradation 

Classic CMT1 
 

(Shirk et al., 2005) 
(Street et al., 
2003) 

CMT 1D EGR2 Required for myelination of axons by 
Schwann cells 

Also causes autosomal recessive CMT 4E (Kamholz et al., 
1999)(Warner et 
al., 1998) 

CMT 1F 
and   

CMT 2E 

NEFL Light chain component of neurofilaments 
which are part of the cytoskeleton. Involved 
in axonal maintenance and axonal transport 

Early onset, also causes CMT 2E (Jordanova et al., 
2003a)(Fabrizi et 
al., 2007) 

Currently, approximately 10% of all CMT1 has no known genetic linkage (Pareyson and 
Marchesi, 2009) 
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Table 1.2 Classification of CMT2 subtypes  

Table describing the differences of CMT disease classification, including 

disease nomenclature, genetic cause, the function of the mutated protein and 

characteristic clinical features of the subtypes. Mitofusin-2 (MFN2), Kinesin 

family member 1B (KIF1B), RAS-associated protein Rab7 (RAB7), Transient 

receptor potential vanilloid 4 (TRPV4), Glycyl-tRNA synthetase (GARS), 

Neurofilament light (NEFL), Heat shock protein 27 (HSPB1), Ganglioside-

induced differentiation-associated protein 1 (GDAP1), Lamin A/C (LMNA), Heat 

shock protein 22 (HSPB8), Dynamin 2 (DNM2), Alanyl-tRNA synthetase 

(AARS), Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1). 
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Table 1.2 Classification of axonal CMT2 subtypes. 

CMT 
subtype 

Genetic cause Protein function Specific characteristic clinical features References 

CMT2  Primary axonal disease; Autosomal dominant 
Normal or slightly reduced NCVs with decreased amplitudes 
Distal muscle weakness and atrophy, sensory loss, hyporeflexia, classical skeletal deformity 
Later age of onset than classical CMT 1 
Nerve biopsy pathology shows chronic axonal changes without specific diagnostic features 

CMT 2A MFN2 
KIF1B 

A GTPase which regulates mitochondrial 
fusion 
Motor protein involved in axonal transport 

Severe CMT2 (Kijima et al., 
2005b)(Zhao et 
al., 2001) 

CMT 2B 
and 

HSAN 

RAB7 Multiple regulation mechanisms in endosomal 
sorting, biogenesis of lysosomes and 
phagocytosis 

Predominantly sensory phenotype, very limited 
motor involvement 

(Verhoeven et 
al., 2003)(Zhang 
et al., 2009) 

CMT 2C TRPV4 Nonselective cation channel responding to 
environmental stimuli 

More pronounced motor phenotype, deafness, 
incontinence 
Skeletal dysplasia 

(Landouré et al., 
2010) 

CMT 2D 
and   

HMN V 

GARS Add amino acid groups onto tRNA during 
translation, essential role in protein 
biogenesis 

Predominantly motor phenotype with primary 
upper limb involvement 

(Stum et al., 
2011)(Del Bo et 
al., 2006) 

CMT 2E 
and    

CMT 1F 

NEFL Light chain component of neurofilaments that 
are part of the cytoskeleton. Involved in 
axonal maintenance and axonal transport 

Early onset (Jordanova et 
al., 
2003a)(Fabrizi et 
al., 2007) 

CMT 2F 
and 

dHMN II 

HSPB1 Small heat shock protein involved in protein 
folding, cytoskeletal maintenance and 
apoptosis 

Predominantly motor phenotype 
dHMN II with no sensory involvement 

(Evgrafov et al., 
2004)(Houlden 
et al., 2008) 

CMT 2K GDAP1 
 
 
LMNA 

Mitochondrial fission 
 
 
Nuclear envelope protein 

Autosomal recessive 
Early-onset with diaphragm and vocal cord 
involvement 
Autosomal recessive 

(Cassereau et 
al., 2009)(De 
Sandre-
Giovannoli et al., 
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Rapid progression, also causes muscular 
dystrophy, cardiomyopathy 

2002) 
 
 

CMT 2L HSPB8 Small heat shock protein involved in protein 
folding and apoptosis 

Predominantly motor phenotype 
dHMN II with no sensory involvement 

(Irobi et al., 
2004) 

CMT 2M DNM2 Endosomal trafficking DI-CMT 2B 
Centronuclear myopathy 

(Pareyson et al., 
2009)(Hanisch et 
al., 
2011)(Züchner 
et al., 2005) 

CMT 2N AARS Add amino acid groups onto tRNA during 
translation, essential role in protein 
biogenesis 

Mild asymmetric CMT (Latour et al., 
2010) 

CMT 2O 
and   
HMN 

DYNC1H1 Core of dynein complex; Responsible for 
protein complex binding to and moving along 
microtubules 

Childhood onset with some displaying delayed 
motor milestones 

(Weedon et al., 
2011) 

Currently, approximately 70% of all CMT2 has no known genetic linkage (Pareyson and 
Marchesi, 2009) 
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Table 1.3 Classification of other CMT subtypes  

Table describing the differences of CMT disease classification, including 

disease nomenclature, genetic cause, the function of the mutated protein and 

characteristic clinical features of the subtypes. Ganglioside-induced 

differentiation-associated protein 1 (GDAP1), Myotubularin-related protein 2 

(MTMR2), Myotubularin-related protein 13 (MTMR13), SH3 domain and 

tetratricopeptide repeats 2 (KIAA1985, SH3TC2), N-myc downstream-

regulated gene-1 (NDRG1), Periaxin (PRX), Frabin (FGD4), FIG4 (FIG4), 

RNA polymerase II subunit A C-terminal domain phosphatase, FCP1 

(CTDP1), Gap junction β-1 (GJB1)/ Connexin 32 (Cx32), 

Phosphoribosylpyrophosphate synthetase 1 (PRPS1), Dynamin 2 (DNM2), 

Tyrosyl-tRNA synthetase (YARS), Myelin Protein Zero (MPZ), Heat shock 

protein 27 (HSPB1),  Heat shock protein 22 (HSPB8), Glycyl-tRNA 

synthetase (GARS), Berardinelli-Seip congenital lipodystrophy (BSCL2), 

Immunoglobulin μ-binding protein 2 (IGHMBP2), Dynein, cytoplasmic 1, 

heavy chain 1 (DYNC1H1), Serine palmitoyltransferase, long chain base 

subunit 1 (SPTLC1), WNK lysine deficient protein kinase 1 (WNK1), Inhibitor 

of kappa light polypeptide gene enhancer in B-cells (IKBKAP), Nerve growth 

factor, β-polypeptide (NGFβ), Chaperonin containing TCP1, subunit 5 (CCT5) 
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Table 1.3 Classification of other CMT subtypes. 

CMT 
subtype 

Genetic 
cause 

Protein function Specific characteristic clinical features References 

CMT4  Autosomal recessive, primarily demyelinating CMT 1 with fewer cases of axonal CMT 2 

Early-onset CMT1 phenotype  

More severe distal muscle weakness and atrophy, sensory loss, hyporeflexia, classical skeletal deformity 

CMT 4A GDAP1 Mitochondrial fission Vocal cord and diaphragm involvement (Cuesta et al., 
2002)(Casserea
u et al., 2009) 

CMT 4B1 MTMR2 Phosphatase that acts on lipids Abnormal folding of myelin sheaths 

Facial and bulbar involvement 

(Bolino et al., 
2000)(Kim et al., 
2003) 

CMT 4B2 MTMR13 Phosphotase interacting with MTMR2 Abnormal folding of myelin sheaths 

 

(Conforti et al., 
2004) 

CMT 4C KIAA1985,  

SH3TC2 

Unknown protein function  

Expressed in Schwann cells 

May interact with Rab11 affecting 
endosomal recycling and myelin formation 

Severe, early-onset scoliosis 

 

 

(Senderek et al., 
2003)(Roberts et 
al., 
2010)(Stendel et 
al., 2010)  

CMT 4D 
(HMSN-

Lom) 

NDRG1 Cytoplasmic protein involved in stress 
responses, hormone responses, cell growth, 
and differentiation.  

Necessary for p53-mediated caspase 
activation and apoptosis 

Deafness (Kalaydjieva et 
al., 
1996)(Kalaydjiev
a et al., 1998) 

 

CMT 4F PRX Myelin sheath development Dejerine-Sottas syndrome  

More sensory involvement 

(Scherer et al., 
1995)(Marchesi 
et al., 2010)  

CMT 4H FGD4 GDP/GTP exchange factor for the Rho Classic CMT1  (Stendel et al., 
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GTPase cell-division cycle 42  

F-actin-filament binding protein 

 2007)(Fabrizi et 
al., 2009) 

CMT 4J FIG4 Phosphatase that acts on lipids 

Role in regulation of endosomal vesicles 

Classic CMT1 (Chow et al., 
2007) 

CCFDN CTDP1 Regulation of transcription initiation via RNA 
polymerase II  

Congenital cataracts, facial dysmorphism, and 
neuropathy 

(Varon et al., 
2003) 

CMT Other (X-linked and intermediate)  

CMT X1 GJB1,  

Cx32 

Gap junction structural proteins Dominant X-linked mutation 

Men more severely affected  

7-12% of all CMT 

CNS involvement 

Axonal and demyelinating pathology 

(Ionasescu et 
al., 
1994)(Pareyson 
et al., 2009) 

CMT X5 PRPS1 Essential for the de novo synthesis of 
purine, pyrimidine, and pyridine nucleotides 

Recessive X-linked mutation 

Also causes Arts syndrome, and X-linked 
nonsyndromic sensorineural 

Deafness 

(Pareyson et al., 
2009)(de 
Brouwer et al., 
2007)(de 
Brouwer et al., 
2010) 

DI-CMTB DNM2 Large GTPase, part of the cellular fusion-
fission apparatus 

Dominant intermediate (DI) CMT; mild to moderate 
severity and pathological features of both CMT1 and 
CMT2  

Also causes centronuclear myopathy 

(Pareyson et al., 
2009)(Hanisch 
et al., 
2011)(Züchner 
et al., 2005) 

DI-CMTC YARS Add amino acid groups onto tRNA during 
translation, essential role in protein 
biogenesis 

DI-CMT 

 

(Jordanova et 
al., 2006) 

DI-CMTD MPZ Most abundant protein in myelin Adhesion 
molecule required for formation and 

DI-CMT 

 

(Banchs et al., 
2010) 
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maintenance of myelin 

HNPP PMP22  

 

Integral membrane protein of myelin 
expressed by Schwann cells 

Deleted - Hereditary neuropathy with liability to 
pressure palsies 

Point mutation -  Autosomal dominant 

(Chance et al., 
1993)(Nicholson 
et al., 1994) 

distal Hereditary Motor 
Neuropathy 

 

dHMN II HSPB1 

HSPB8 

Small heat shock proteins involved in 
protein folding, cytoskeletal maintenance 
and apoptosis 

Typical distal Hereditary Motor Neuropathy and CMT2 (Evgrafov et al., 
2004)(Irobi et al., 
2004) 

HMN V 
(HMN5A) 

GARS Add amino acid groups onto tRNA during 
translation, essential role in protein 
biogenesis 

dHMN phenotype with primary upper limb involvement (Stum et al., 
2011)(Del Bo et 
al., 2006) 

HMN V 
(HMN5B) 

BSCL2 Seipin is an integral membrane protein of 
the endoplasmic reticulum 

dHMN phenotype with primary upper limb involvement 
and Silver syndrome 

(Windpassinger 
et al., 2004) 

HMN VI IGHMBP2 Involved in pre-mRNA processing and 
regulation of transcription by DNA binding 

Autosomal recessive 

Spinal muscular atrophy with respiratory 

distress (SMARD1) 

(Grohmann et 
al., 2001)(Pitt et 
al., 2003) 

HMN     
and     

CMT 2O 

DYNC1H1 

 

Core of dynein complex; Responsible for 
protein complex binding to and moving 
along microtubules 

Childhood onset with some displaying delayed motor 
milestones 

(Weedon et al., 
2011) 

distal Hereditary Sensory Neuropathy 

HSAN I SPTLC1 Catalyzes the first step of biosynthesis of 
sphingolipids 

Autosomal dominant 

Loss of pain and temperature sensation 

(Bejaoui et al., 
2001)(Dawkins 
et al., 2001) 

HSAN II WNK1 Serine/threonine protein kinase, aids in the 
regulation of salt transport and blood 
pressure 

Autosomal recessive 

Childhood onset, Prominent sensory loss and 
mutilations in hands and feet, acropathy 

(Lafreniere et al., 
2004) 

HSAN III IKBKAP Scaffold protein, assembles active kinase Autosomal recessive (Slaugenhaupt 
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(Riley-Day 
syndrome) 

complexes Congenital, Familial dysautonomia, prominent 
autonomic disturbances and complications, absence 
of fungiform papillae of the tongue, alacrimia, 
excessive sweating 

et al., 2001) 

HSAN IV NTRK Binds neurotrophins and phosphorylates 
member of the MAPK pathway. Cell 
differentiation 

Autosomal recessive 

No or reduced response to painful stimuli, 
anhidrosis, episodic fever, mild mental 
retardation, skin and cornea lesions, joint 
deformities 

(Indo et al., 
1996) 

HSAN V NGFβ Development of the nervous system Autosomal recessive 

Congenital insensitivity to pain, severe loss of deep 
pain perception, painless fractures, joint deformities, 
normal intelligence 

(Einarsdottir et 
al., 2004) 

HSAN with 
spastic 

paraplegia 

CCT5 Member of chaperonin complex TRiC, folds 
polypeptides through 2 stacked rings in an 
ATP-dependent manner 

Autosomal recessive 

Prominent sensory neuropathy with sensory loss of all 
qualities, mutilating acropathy, spastic paraplegia 

(Bouhouche et 
al., 2006) 
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show multifocal slowing of nerve conduction and conduction block (Lewis and 

Sumner, 1982). NCV is an indication of myelin disruption while the degree of axonal 

damage and nerve fibre loss can be measured using compound motor action 

potentials (CMAPs) and sensory nerve action potentials (SNAPs) (Pareyson et al., 

2006). Classically, CMT1 patients also have reduced or absent sensory action 

potentials (Reilly, 2007). The severity of the balance deficit present in CMT1 

correlates with a decrease in CMAPs and SNAPs rather than NCV (Barisic et al., 

2008). This suggests that even though demyelination maybe the primary pathology 

of the neuropathy, the severity of the disease is directly linked to the degeneration of 

the nerve axon. Nerve biopsies show classical signs of demyelination, which include 

a reduced density in myelinated nerve fibres, variations in intermodal length and 

diameter, onion bulb formation (resulting from continuous segmental demyelination 

and remyelination) and tomacula formation (small focal myelin thickenings) with 

secondary axonal atrophy (Gabreëls-Festen et al., 1992).  

 

Although CMT1 patients usually present with the classical phenotype described 

above, there are clinical variations and intermediate presentations between 

categories, as listed in Tables 1.1 and 1.3. These have been further sub-classified 

into groups that may correspond to known genetic mutations. Genetically, CMT1 is 

the most well characterised hereditary neuropathy and the most common type of 

CMT has been sub-classified as CMT 1A, which accounts for approximately 70% of 

all CMT1 and around 50% of all CMT cases (Pareyson and Marchesi, 2009). It is 

caused by duplications or point mutations in the peripheral myelin protein 22 

(PMP22) gene (Table 1.1), the most abundant protein in the peripheral myelin 

sheath (Keller and Chance, 1999). 
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1.2.2. Axonal CMT2 

Approximately 20% of all CMT can be classified as the axonal form of CMT, or 

CMT2 (Barisic et al., 2008) and to date only 25-35% of identified CMT2 have been 

genetically classified (Patzkó and Shy, 2011). These different genetic causes form 

the basis of further sub-classification of CMT2 (See Table 1.2). 

Electrophysiologically, CMT2 is characterised by reduced CMAPs and SNAPs but 

nearly normal MCV showing axonal degeneration, but limited disruption of the 

myelin sheath (Reilly, 2007; Reilly and Shy, 2009). Nerve biopsies of CMT2 also 

show markedly different degenerative patterns to those of CMT1 with a loss of large 

myelinated fibres, axonal atrophy, axonal swellings, regenerative axonal sprouting 

shown by closely adjacent fibres and occasional onion bulb formation (Berciano et 

al., 1986; Senderek et al., 1998; Gemignani and Marbini, 2001; Schröder, 2006). 

Together, electrophysiology and pathology indicate an axonal degeneration disorder 

rather than a myelinopathy. Pronounced differences between the two main subtypes 

of CMT can also be observed in the muscle. CMT1 muscle examples exhibit 

angular, atrophic fibres scattered throughout biopsies while CMT2 muscle shows 

hypertrophic muscle fibres, central nuclei, fibre splitting, and other signs of 

degeneration and regeneration suggesting different aetiologies of nerve dysfunction 

(Ericson et al., 1998; Borg and Ericson-Gripenstedt, 2002). Due to the lack of 

knowledge of the genetic causes and pathophysiology of axonal neuropathies, the 

pathological findings from nerve biopsies are relatively unhelpful for both clinical 

diagnosis and elucidating the pathophysiology as all these features are indicators of 

general degenerative characteristics and are all common in the latter stages of 

axonal disease (Gemignani and Marbini, 2001).  
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1.2.3. Intermediate and X-linked CMT 

In total, over 30 genetic causes of CMT have been described to date (Reilly and 

Shy, 2009). The majority of these are the autosomal dominant causes of CMT 1 and 

2, but CMT is a highly heterogeneous disorder and there are many forms of CMT 

that segregate between the demyelinating and axonal clinical and pathological 

features without a classical CMT phenotype; these are classified as Intermediate 

CMT or DI-CMT (See Table 1.3). A full discussion of these less common types of 

CMT is outside the scope of this study but they are briefly outlined in Table 1.3. For 

reviews see (Bernard et al., 2006; Nicholson and Myers, 2006; Kleopa and Scherer, 

2006). These forms of CMT include those with genetic causes other than autosomal 

dominant, including sporadic dominant mutations where no family history can be 

recorded, X-linked mutations, of which 2 has been identified and 3 have been 

mapped to chromosomal regions and autosomal recessive mutations (CMT4, Table 

1.1C)(Bernard et al., 2006; Kleopa and Scherer, 2006; Pareyson and Marchesi, 

2009). Autosomal recessive mutations are found in less than 10% of European and 

North American populations, but cause between 30-50% of cases in the 

Mediterranean Basin and Middle East (Patzkó and Shy, 2011).  

 

1.2.4. Penetrance differences and overlapping phenotypes in CMT 

Mutations in over 30 genes have now been shown to be causative of CMT (Reilly 

and Shy, 2009). CMT patients display varying degrees of penetrance of the disease, 

to give a spectrum of clinical severity within genetic subtypes. For example 

mutations in PMP22, causing CMT1A, can display varying levels of severity from 

patients being almost asymptomatic to having delayed motor milestones and severe 

skeletal deformities (Birouk et al., 1997; Thomas et al., 1997). The same genetic 

mutations within PMP22 in monozygotic twins can also give different levels of 

disease severity (Garcia et al., 1995), perhaps illustrating the importance of gene 
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penetrance, epigenetic factors and environmental modulation on the course and 

severity of the disease. To this end, mutations in the same gene can also cause 

different clinical subtypes of CMT, for example, mutations in neurofilament light 

chain (NEFL)  can cause both demyelinating CMT 1F and axonal CMT 2E, while 

Ganglioside-induced differentiation-associated protein 1 (GDAP1) causes early 

onset CMT 4A and axonal CMT 2K (Jordanova et al., 2003; Fabrizi et al., 2007; 

Cassereau et al., 2009). 

 

1.3. Why does CMT affect the peripheral nervous system? 

Despite the heterogeneity of CMT, it remains a PNS disorder, with few CNS 

exceptions (Amato and Barohn, 1996; Bähr et al., 1999; Wakerley et al., 2011). This 

is unusual as many of the genes affected in CMT code for proteins that are essential 

to neurons and glial cells and are ubiquitously expressed throughout the nervous 

system or indeed the whole organism. When the different CMT subtypes are 

examined for a link between the mutation types and pathomechanisms, affected 

genes can be divided into 5 groups affecting: i) Myelination; ii) protein homeostasis; 

iii) the cytoskeleton and axonal transport; iv) mitochondrial function and v) gene 

regulation (See Figure 1.1), which may all contribute to increased vulnerability of 

motoneurons. 

 

The first and most common group of CMT genes affect different aspects of 

myelination, causing subtypes of CMT1 and CMT4 (Table 1.1 and 1.3). This group  

includes mutations in components of myelin, for example PMP22 and myelin protein 

zero, and genes coding for proteins involved in regulation of myelin protein 

transcription, synthesis and transport, including early growth response protein 2 and 

myotubularin-related lipid phosphatase (Berger et al., 2006). Demyelinating 
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Figure 1.1 Schematic overview highlighting CMT mutations in motoneurons. 

This schematic diagram highlights the subcellular localisation of proteins mutated in CMT, dHMN and HSN. 

 

Figure 1.1  
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neuropathies cause a slowing of conduction velocities, but the chronic disease 

progression, including muscle weakness and wasting seen in CMT1, correlates with 

pathological hallmarks of neuronal degeneration (Hattori et al., 2003). 

 

The second group of genes code for proteins involved in metabolic functions linked 

to protein synthesis and maintenance such as mutations in YARS, GARS, AARS 

and KARS encoding aminoacyl-tRNA synthases (ARS), which have been 

associated with axonal CMT (Antonellis et al., 2003; Jordanova et al., 2006; Latour 

et al., 2010; McLaughlin et al., 2010). The ARS enzymes charge transfer RNA 

(tRNA) with cognate amino acids in an ATP-dependent manner before the tRNA is 

used for protein synthesis at the ribosome (Motley et al., 2010). ARSs are 

ubiquitously expressed and essential for protein synthesis, and yet they are 

implicated in peripheral neuropathy, seemingly affecting only a subtype of neurons. 

Other CMT mutations that affect cell metabolism are FIG4 and SIMPLE, a 

phosphatase and a membrane protein respectively, which have roles in the 

trafficking and regulation of endosomal vesicles and lysosomes for protein 

degradation (Street et al., 2003; Chow et al., 2007).  

 

Several mutations causing CMT affect proteins involved in the structure of the cell 

and axonal transport. For example, mutations in neurofilament light chain protein 

(NEFL), a major structural component of neurofilaments essential to all neurons 

predominantly cause CMT 2L, an axonal form of CMT affecting peripheral sensory 

and motor nerves with varying age of onset (Jordanova et al., 2003). Mutations in 

this gene can also cause CMT 1F, an early-onset demyelinating peripheral 

neuropathy (Fabrizi et al., 2007). Mutations in kinesin family member 1B, a motor 

protein involved in axonal transport along microtubules cause CMT 2A, result in a 

severe form of axonal CMT (Zhao et al., 2001). This group also includes mutations 

in Hsp27 as it interacts with various pathways controlling cell integrity and axonal 
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transport and for example, Hsp27 acts as an actin-capping protein during cell stress 

(Mounier and Arrigo, 2002). 

 

The fourth group of genes in which mutations cause various forms of CMT are 

integral to the function of mitochondria. Mitochondrial mutations give rise to both 

axonal and demyelinating phenotypes, with some proximal muscle involvement 

(Table 1.2 and 1.3). Mitofusin-2 works as a transmembrane GTPase, regulating 

mitochondrial fusion (Chen et al., 2003; Kijima et al., 2005b) and ganglioside-

induced differentiation-associated protein 1 promotes mitochondrial fission 

(Cassereau et al., 2009). Mitochondrial fission and fusion work to maintain 

mitochondrial integrity and turnover, and are the basis of mitochondrial dynamics. A 

lack of fusion leads to fragmentation, while a lack of fission the mitochondrial 

population becomes excessively large and interconnects (Chen and Chan, 2009). 

Both of these states lead to a lack of effective mitochondrial transport in the 

periphery (Chen and Chan, 2009). Fusion and fisson are vital for the maintenance of 

mitochondrial morphology, which in turn affects mitochondrial membrane potential, 

respiration, cell growth and functions of the apoptotic pathway (Chen, 2005). 

 

The final group of effected genes in CMT discovered so far affect different aspects 

of gene regulation and mRNA sysnthesis, a highly complex and tightly regulated 

system. Mutations in this group of genes cause a more severe and wider phenotypic 

variation that affects regions of the CNS as well as causing severe peripheral 

neuropathies. These mutations affect different areas of the gene regulation 

pathway, from phosphoribosylpyrophosphate synthase 1, an enzyme essential for 

the de novo synthesis of nucleotides and therefore essential for nucleic acid 

synthesis and cellular signalling, to RNA polymerase II subunit A C-terminal domain, 

which works as a second messenger, regulating transcription initiation via RNA 



 35 

polymerase II and the recruitment of pre-mRNA splicing factors during transcription 

(Licciardo et al., 2003; Varon et al., 2003; de Brouwer et al., 2010). 

 

Although it is easy to understand why mutations in neuron-specific proteins will 

result in a neuronal phenotype, for example, mutations in proteins involved in axonal 

transport, it is not clear why these mutations may affect specific subpopulations of 

neurons, e.g. motor rather than sensory. Furthermore, many CMT-causing 

mutations are in ubiquitously expressed proteins, so the reasons for their 

deleterious effects in neurons alone are less easy to understand. However, when 

the proteins are considered in terms of their biological role, it becomes clear that 

they play key roles in pathways which are particularly important for neurons. Thus, 

CMT-causing mutations can be found in proteins that are important for myelin 

maintenance, fast metabolism, high protein turnover and axonal transport. So what 

are the specific characterisations of neurons and their axons that make them more 

vulnerable to these genetic mutations? It is possible that the specific requirements 

of motor and sensory neurons based on their unique anatomy that has evolved and 

adapted to carry out functions that require high metabolic demands, rapid protein 

synthesis and degradation, a complex structure and increased axonal transport may 

render neurons particularly vulnerable to CMT mutations (Shaw and Eggett, 2000).  

 

1.4. Anatomy of the peripheral nervous system 

The PNS is a complex network of highly specialised neurons and supporting cells. 

The PNS transmits sensory and motor information from the CNS higher centres in 

the brain and spinal cord to the muscle and back. Information is sent and received 

via ascending and descending tracts that run between centres in the brain and the 

peripheral nerves along the spinal cord. 
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1.4.1. Sensory nerves 

Sensory impulses are sent to the brain via afferent pathways leading from peripheral 

sensory neurons that detect all sensation including, but not limited to, 

mechanosensation, nocioception and proprioception. The sensory neurons in the 

PNS are also termed ‘primary afferents’. The cell soma for these neurons lies 

outside of the CNS in the dorsal root ganglion. They have one axon projecting 

peripherally, and axons that project to regions of the dorsal horn of the spinal cord 

(Snell, 2009). There they either ascend the spinal cord via several tracts, or they 

synapse onto second-order sensory neurons in the dorsal horn, eventually travelling 

to the somatosensory cortices within the brain. There are 4 main subgroups of 

primary afferent sensory neurons in the PNS (Bear et al., 2007): 

 A  neurons have an axonal diameter of 13-20 m and a conduction velocity 

of 80-120m/sec. They act as proprioceptors of skeletal muscle and are 

heavily myelinated. A  neurons are essential for the stretch reflex; by 

associating with muscle spindles in the periphery and synapsing on 

intermediate and alpha motoneurons they are responsible for the myotatic 

reflex, which is a measure of the stretch and position of the muscle. By 

synapsing on alpha motoneurons in the spinal cord and directly illiciting a 

motor response and the generation of force, the A  sensory neuron forms a 

reflex arc which is independent of the brain. 

 A  neurons are responsible for mechanoreception (touch) from the skin. 

They are myelinated neurons with an axonal diameter of 6-12 m and a 

conduction velocity of 35-75m/sec. 

 A  neurons have an axonal diameter of 1-5 m and a conduction velocity of 

5-30m/sec. They are thinly myelinated and respond to low-threshold 

nocioception and cold temperatures. 
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 C fibres are unmyelinated neurons with an axonal diameter of between 0.2-

1.5 m and a conduction velocity of 0.5-2m/sec. C fibres respond to heat 

over 43 C and high-threshold nocioception. 

 

1.4.2. Motor nerves 

The motor system, consisting of muscles and their innervating motoneurons is 

extremely complex and only a brief overview will be presented here, focusing on the 

lower motoneurons that innervate skeletal muscle. The main control of the motor 

system and lower motoneurons commences in the neocortex where the 

corticospinal tract, the largest CNS tract originates. Information processed in the 

motor and somatosensory cortices are transported along axons of upper 

motoneurons through the internal capsule across the telencephalon and thalamus, 

through the midbrain and pons before forming the pyramidal tract at the base of the 

medulla. At the spinal cord level, this information decussates and terminates in the 

dorsolateral region of the ventral horn of the spinal cord. Here, upper motoneurons 

synapse onto lower motoneurons where, after summation of multiple inputs from 

upper motoneurons with interneurons, action potentials are generated. Action 

potentials generated in lower motoneurons travel out of the spinal cord via spinal 

nerve roots down motor axons to the muscle (Bear et al., 2007; Snell, 2009).  

 

Each muscle fibre is innervated by an individual axon branch derived from a lower 

motoneuron forming the ‘Motor Unit’. One motoneuron can innervate up to 1700 

muscle fibres in man (Feinstein et al., 1955; Beardwell, 1967). There are three types 

of lower motoneuron: 

 Alpha motoneurons are the largest subtype of lower motoneuron and they 

innervate both slow and fast extrafusal muscle fibres. 
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 Beta motoneurons, the smallest sub-population of motoneurons mostly 

innervates slow-twitch muscle.  

 Gamma motoneurons innervate intrafusal muscle fibres within the muscle 

spindle. 

 

Motoneurons, like sensory neurons, are anatomically suited for purpose. They are 

large cells with long axonal processes, sometimes over a metre in length 

(Beardwell, 1967), and with axonal diameters that range from 2 m to more than 

20 m (Henneman et al., 1965). This size difference in axonal diameter is the 

determinant of how many motor fibres the motoneuron innervates, i.e. Motor Unit 

size (Wuerker et al., 1965; McPhedran et al., 1965).  

 

1.5. Why are some neuron populations differentially vulnerable to 

environmental stressors and disease? 

Neuronal populations differ substantially in anatomy and function. This means that 

different neuronal populations can be more or less reliant on certain cellular 

processes to maintain homeostasis, altering the vulnerability of subpopulations of 

neurons to different cellular stresses. The Fig4-deficient pale tremor mouse (plt), a 

model of CMT 4J (Table 1.3) is an example of one genetic mutation differentially 

affecting different types of neurons. CMT 4J is a demyelinating peripheral 

neuropathy that gives both a motor and sensory phenotype (Chow et al., 2007). 

Katona et al. demonstrate, using ultrastructural techniques in young plt mice, that a 

deficiency in Fig4 gave distinct pathogenic processes in motor and sensory neurons 

creating different cellular deficits early in the disease progression (Katona et al., 

2011). Below, I will discuss specific examples of cellular processes which are 

particularly vulnerable to stress in neurons, with an emphasis on the specific 

properties of motoneurons that may be influential in leading to specific cellular 
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responses to disease-causing mutations: i) mitochondrial function; ii) the 

cytoskeleton and axonal transport; iii) the stress response. 

 

1.5.1. Motoneurons and mitochondria 

Motoneurons are highly polarised, excitable cells that have the ability to send 

transient electrical signals rapidly over long distances or in localised areas of the 

membrane. In order to be available to transmit an action potential at any time, the 

motoneuron has a relatively low threshold for initiation of action potentials and 

therefore must actively maintain a membrane resting potential of -70mV, as small 

changes of membrane voltage can trigger an all-or-none action potential (Kandel et 

al., 2000). The active maintenance of the membrane potential requires a high level 

of energy. It is estimated that 10% of resting energy in a human is expended on 

maintenance of the ionic concentration gradients in resting neurons (Laughlin et al., 

1998). Thus, in cells such as motoneurons which have a particularly high membrane 

surface area to volume ratio and where the axon of the cell can contain >99% of the 

cell cytoplasm, this estimate of the energy requirements of motoneurons is likely to 

be conservative (Hurd and Saxton, 1996). 

 

As neurons are cells that require a very high level of energy just to actively maintain 

a resting state, they contain very large numbers of mitochondria. Mitochondria are 

very sensitive to changes in the cellular environment and changes in mitochondrial 

function are one of the first signs of motoneuron pathology in Cu, Zn superoxide 

dismutase 1 (SOD1) mice that model ALS (Bilsland et al., 2008). Mutations reported 

in mitochondrial proteins, either from mitochondrial or nuclear DNA always lead to 

disorders that have neuropathic and/or muscular involvement (Chinnery, 2000; 

Finsterer, 2004). These disorders range in severity and phenotype. For example, 

mutations in OPA1, a GTPase inner membrane protein, and mitofusin 2, a GTPase 
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transmembrane protein localised on the outer membrane, are both proteins involved 

in the process of mitochondrial fusion, but cause dominant optic atrophy and CMT 

2A respectively (Chen and Chan, 2006), disorders which affect completely different 

subpopulations of neurons.  

 

Work by Vande Velde et al. (2011) shows that there is an alteration in mitochondrial 

shape before disease onset in SOD1 mice, with the presence of mutant SOD1 

resulting in smaller and rounder mitochondria and a shortening of mitochondrial 

length in comparison to mitochondria in wild type mice. This finding suggests 

aberrant functioning of mitochondrial fusion or fission in motoneurons of SOD1 mice 

(Vande Velde et al., 2011). The mitochondrial pathways of fission and fusion are 

vital for the maintenance of mitochondrial morphology, which in turn affects 

mitochondrial membrane potential, respiration, cell growth as well as the apoptotic 

pathway. Motoneurons are particularly vulnerable to deficits in these pathways and 

several of the CMT-causing mutations involve proteins that play key roles in several 

of these pathways (See Section 1.3) (Chen et al., 2003; Chen, 2005; Kijima et al., 

2005; Cassereau et al., 2009). The control of mitochondrial autophagy, or 

mitophagy, also ensures maintenance of the mitochondrial membrane potential and 

ATP production by maintaining a high turnover of mitochondria to produce a 

consistently high quality of mitochondria (Chen and Chan, 2009; Twig and Shirihai, 

2011).  

 

Ultrastructural studies on neurons reveal that there is a high concentration of 

mitochondria in nerve synapses, around nodes of Ranvier and in the cell soma 

(Palay, 1958; Fabricius et al., 1993; Li et al., 2004), suggesting that the position of 

mitochondria and their transport is likely to be particularly important for neurons. The 

importance of mitochondrial distribution throughout motoneurons is highlighted in 
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the mutant SOD1 mouse model of ALS, in which there is a disruption in the normal 

distribution of mitochondria throughout the motor axon prior to onset of disease 

phenotype (Vande Velde et al., 2011) The importance of axonal trafficking of 

mitochondria in motoneurons is discussed below in detail in Section 1.5.4.2. 

 

1.5.2. Motoneurons, reactive oxygen species and calcium vulnerability 

Studies have demonstrated that motoneurons are selectively more vulnerable to 

mitochondrial dysregulation in comparison to other types of neuron (Kaal et al., 

2000). Mitochondria function to provide energy in the form of ATP for the cell, but 

they also regulate apoptosis and buffer intracellular calcium (Chance, 1965; Chan et 

al., 2009; Russell H., 2011). Mitochondria are also a source of reactive oxygen 

species (ROS) and produce it as a by-product of oxidative phosphorylation, where 

unpaired electrons from the electron transport chain are donated directly to 

molecular oxygen to generate superoxide (Cozzolino and Carri, 2011). The high 

energy demands of motoneurons means that cells contain higher amounts of 

mitochondria and therefore will be exposed to increased levels of intracellular 

oxidative stress over time. This becomes a problem when the cellular antioxidant 

defences, which include enzymatic defences such as Cu, Zn-superoxide dismutase 

and smaller molecules such as glutathione, are insufficient to hold levels of ROS 

below a toxic threshold (Schulz et al., 2000; Lewinski and Keller, 2005). This 

suggests that motoneurons are more susceptible than other cells to a build up of 

ROS leading to oxidative stress over time. 

 

The high number of mitochondria also lead to an increased vulnerability of 

motoneurons to changes in intracellular calcium homeostasis (Lewinski and Keller, 

2005). When different subtypes of motoneurons were compared for vulnerability to 

hypoxic states, by the addition of sodium cyanide as a pharmacological inhibitor of 
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complex IV of the mitochondrial respiratory chain, differences in mitochondrial 

release and uptake of calcium were observed (Lewinski and Keller, 2005). More 

vulnerable motoneurons displayed increased excitotoxicity and a decreased 

capability to buffer increased intracellular calcium (Bergmann and Keller, 2004). 

This relatively low threshold and weak buffering of calcium ions may be useful in 

physiological conditions to aid the rapid transient levels of calcium ions need for the 

high level of motoneuron firing rate (Lewinski and Keller, 2005). However, this 

property of motoneurons renders them more vulnerable to changes in calcium 

homeostasis in comparison to other neuronal subtypes (Carriedo et al., 1996).  

 

The low threshold of motoneurons to calcium ions is, in part, due to a relative 

deficiency of GluR2, a subunit of the AMPA glutamate receptor complex, which 

determines the permeability of the AMPA receptor to calcium ions, and therefore the 

permeability of the motoneuron. Receptors lacking GluR2 have higher calcium ion 

permeability in comparison to AMPA receptors containing the GluR2 subunit 

(Hollmann et al., 1991). This lack of specificity makes selective motoneurons less 

able to withstand excitotoxic insults. Thus, studies of GluR2 knock-out mice showed 

no signs of motoneuron deficit (Jia et al., 1996), while transgenic mice over-

expressing the GluR2 subunit developed a late-onset motoneuron deficit 

(Feldmeyer et al., 1999). Taken together, the evidence presented suggests that 

motoneurons are more susceptible to a build up of ROS leading to oxidative stress 

and have an increased permeability to calcium ions and are therefore selectively 

more vulnerable to excitotoxicity from pathogenic insults (Van Damme et al., 2002). 

 

1.5.3. The cytoskeleton and axonal trafficking in motoneurons 

The anatomy of a neuron is shaped by its plasticity and function, with long axons 

and varying numbers of dendrites and axonal branches creating variations in 
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anatomical structure (Kandel et al., 2000). Motoneurons are a good example of this 

extreme morphology as they can be the largest cells in the body, with axonal 

processes that can reach well over a metre in length and with varying diameters 

(Henneman et al., 1965; Wuerker et al., 1965; McPhedran et al., 1965; Beardwell, 

1967). This unique length and diameter leading to a large axonal size, places a 

heavy reliance on the stability of the cytoskeleton and axonal transport along the 

cytoskeleton. The cytoskeleton of a neuron consists of three structural components, 

which are, in turn, complex arrangements of proteins that act dynamically to not only 

facilitate axonal transport, cell growth and motility, but also maintain cell structure 

and homeostasis. Microtubules, the largest component of the cytoskeleton, consist 

of tubulin and are hollow cylinders with a diameter of ~24nm. Intermediate filaments, 

which also include neuron-specific filament proteins, form a core filament of ~10nm 

diameter and thinner projections of 4-5nm which form cross bridges between the 

core filaments. Finally, microfilaments, asymmetric two-stranded helical filaments 

consisting of actin only, form the thinnest components of the cytoskeleton and 

provide flexibility to the cell structure (Kandel et al., 2000). 

 

1.5.3.1. Microtubules 

Found in all types of cells, microtubules are polymers made up of isomers of α, β 

and γ-tubulin and are involved in many neuronal processes including mitosis, cell 

growth, motility, axonal transport, cell integrity and polarisation. Following 

polymerisation, microtubules are subject to many different types of post-translational 

modifications including acetylation, phosphorylation and polyglycylation, which 

differentially affect the stability and spatial distribution of the microtubules (Conde 

and Cáceres, 2009). Within the cytoplasm there is equilibrium between tubulin 

monomers and polymers, with tubulin constantly polymerising and depolymerising, 

leading to a characteristic property of dynamic instability, so that they have the 
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ability to undergo rapid growth and disassembly. Microtubules form dense parallel 

bundles stabilised by intermediate filaments and an array of microtubule-associated 

proteins, including MAP2 and tau (Kobayashi and Mundel, 1998). Microtubule-

associated proteins are important in disease and disruptions in tau, or neurofibrillary 

tangles, are a major or primary pathological feature of many neurodegenerative 

diseases including Alzheimer’s disease and progressive supranuclear palsy (Iqbal et 

al., 2010). Defects of neuronal migration resulting in severe neurological deficits 

have also been linked to microtubule dysfunction and dysregulation (Liu, 2011), 

further demonstrating how important the regulation of microtubules is for axonal 

functions. In neurons, microtubule density increases with axonal diameter and there 

are no differences in microtubule numbers between sensory and motor axons 

(Pannese et al., 1984). However, microtubule density was seen to be higher in 

peripheral axons than central axons, which may correlate with the role of 

microtubules in fast axonal transport (Pannese et al., 1984).  

 

Microtubules are central to axonal transport in neurons, acting as rails for fast, slow 

and intermediate long range travel along the axon. Microtubules are highly 

polarised, and it is this feature which makes them integral to axonal transport, with a 

plus end at the distal end of the axon, and the minus end at the cell soma. This 

polarity informs the specificity of the molecular motors which carry cargoes along 

the cell, with anterograde motors always travelling away from the cell body towards 

the plus end of the microtubule, and retrograde motors transporting cargoes back to 

the cell body towards the minus end of the microtubule. 

 

1.5.3.2. Anterograde axonal transport motors 

Kinesins are the largest superfamily of motors and the most abundant motor in 

many cell types. Currently, over 45 kinesins have been identified, although multiple 
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isoforms increase the diversity of this superfamily (Miki et al., 2001). Kinesins are 

ATP-dependent microtubule motors, using microtubules as ‘rails’ to transport cargo 

in a mostly anterograde manner away from the cell soma (Hirokawa, 1998; 

Hirokawa and Noda, 2008). The kinesin superfamily can be further organised into 3 

different types of kinesin in which the position of the motor domain, at the amino-

terminus, in the middle portion and at the carboxyl-terminus (N-kinesin, M-kinesin 

and C-kinesin, respectively) affects the cellular role of the protein. Typically, kinesin 

motors associate with scaffold and adaptor proteins to bind different cargoes, but 

they can also specifically bind cargo directly (Hirokawa et al., 2009). Illustrating the 

importance of axonal transport and molecular motors in motoneurons in particular is 

the fact that mutations in members of the kinesin family lead to various forms of 

neuronal degeneration with a predominantly peripheral phenotype. Mutations in 

KIF5A, a motor linked to the slow transport of neurofilaments, cause hereditary 

spastic paraplegia (Reid et al., 2002; Xia et al., 2003), and mutations in KIF1B lead 

to CMT 2A (Table 1.1B)(Zhao et al., 2001). 

 

1.5.3.3. Retrograde axonal transport motors 

Dynein molecular motors, the major retrograde motors, are multimeric complexes of 

two dynein heavy chains, two intermediate chains, four light intermediate chains and 

a number of light dynein chains (Gunawardena and Goldstein, 2004). The specificity 

of cargo binding is partly due to the composition of the dynein complex, but is also 

due to indirect mediation by the dynactin complex that acts as a receptor to link the 

dynein to cargo and activate dynein transport (Waterman-Storer et al., 1997; King 

and Schroer, 2000). The dynactin complex is a large composite of proteins including 

p50, p150glued, which binds to both microtubules and the intermediate chain of 

dynein, and various actin interacting proteins (Holleran et al., 1998). Mutations in the 

p150glued subunit of dynactin that cause motoneuron disease illustrate the 
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importance of axonal transport in the proper functioning of long lower motoneurons 

(Puls et al., 2003; Lai et al., 2007). 

 

1.5.3.4. Intermediate filaments 

Intermediate filaments consist of many different forms of filament protein of which 

there are at least 65 types in humans, including vimentin, keratin and neuron-

specific intermediate filaments that are abundant in axons and form a major 

cytoskeletal component (Hirokawa et al., 1984; Gotow, 2000; Herrmann and Aebi, 

2004). There are three subunits of neurofilaments that are classified according to 

their molecular weight in relation to each other, neurofilament light, medium and 

heavy NF-L, NF-M and NF-H, respectively. These subunits come together to form 

neurofilaments comprising of a core filament of ~10nm diameter and thinner 

projections of 4-5nm which form cross bridges between the core filaments (Gotow et 

al., 1992). In axons, neurofilaments are highly organised and arranged in parallel 

bundles in all cytoplasmic compartments. The organisation of neurofilaments is 

dependent on phosphorylation (Gotow, 2000). Neurofilaments are important in 

neurons as they influence the degree of stability of the cytoskeleton in mature cells 

(Morris and Lasek, 1982) and maintain axonal calibre (Hoffman et al., 1984). The 

calibre of neuronal axons is directly proportional to the number of neurofilaments 

present (Friede and Samorajski, 1970). In disease states neurofilaments are often 

affected, for example in CMT1, neurofilament numbers are reduced (Nukada and 

Dyck, 1984) while in other subtypes of CMT neurofilaments increase or aggregate 

into bundles of protein (Benedetti et al., 2010a). Mutations in NF-L also lead to CMT 

2E and CMT 1F (Jordanova et al., 2003; Fabrizi et al., 2007). 
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1.5.3.5. Microfilaments 

Neuronal actin filaments are the thinnest (~8nm) and most flexible components of 

the cytoskeleton and are composed of monomers of two distinct types of actin, β-

actin and γ-actin of approximately 42kDa (Choo and Bray, 1978). Actin is present in 

the cell in 2 states: monomeric G-actin (globular actin) and F-actin (filamentous 

actin) bound in asymmetric two-stranded helical filaments composed of G-actin. 

Actin filaments are made of G-actin bound by weak non-covelent bonds with 

preferential polymerisation of F-actin at the barbed end of the filament and release 

of G-actin at the pointed end (Cingolani and Goda, 2008). Actin filaments are 

present in the nucleus, cytoplasm and on the surface of cells and play a significant 

role in stabilising the cellular structure. Actin filaments anchor the cytoskeleton to 

the cellular membrane, playing a role in cell division, drive cell motility and are 

important for axon and dendritic growth and synaptic development through the 

formation of growth cones. Actin filaments are also base structures along which 

myosins, which are actin motors that mostly participate in contractile force and 

short-range axonal transport, trafficking cargoes locally along neural projections 

(Ligon and Steward, 2000). 

 

The spatial organisation of cytoskeletal components is vital for cells and is controlled 

and modified by many different pathways through processes of cell development 

and maintenance. In neurodegenerative disease, as discussed above, the 

cytoskeleton is often disrupted, for example, the appearance of neurofibrillary 

tangles in tauopathies, the disruption of neurofilaments in CMT and ALS and 

mutations in neurofilament light chain which lead to CMT 2E/1F (Jordanova et al., 

2003; Fabrizi et al., 2007; Benedetti et al., 2010; Iqbal et al., 2010).  
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1.5.4. Axonal transport in motoneurons 

In neurons there are significant distances between sites of organelle and protein 

biosynthesis, function, recycling and degradation. Therefore the molecules and 

organelles required for these processes need to be transported from the cell body 

where the majority of proteins required for cell homeostasis are synthesised (Shah 

and Cleveland, 2002). This is especially important for cells such as motoneurons 

which can contain >99% of the cell cytoplasm in the peripheral axon (Hurd and 

Saxton, 1996). Axonal trafficking is a multifaceted process where transport can take 

from seconds to days to traverse the full length of the axon. Transport is required for 

the trafficking of a variety of cargoes including proteins, mRNA, neurofilaments and 

mitochondria, which will be used in processes ranging from local protein synthesis, 

energy production and cytoskeletal remodelling (Sau et al., 2011). Axonal transport 

involves motor protein complexes carrying cargo via microtubule networks 

(Gunawardena and Goldstein, 2004). Within the axon, transport can be divided into 

two classes, fast (20 to 400mm/day) and slow (0.1 to 20 mm/day) (Miller and 

Heidemann, 2008).  

 

Long distance fast and slow axonal transport of mitochondria takes place along 

microtubules. In contrast, short-range transport of mitochondria occurs by myosin 

motor transportation along actin filaments in neurons (Kuznetsov et al., 1992; Ligon 

and Steward, 2000; Langford, 2002; Hollenbeck and Saxton, 2005). The direction 

and organisation of long-distance axonal transport is dependent on microtubule 

orientation and type of motor protein that are classed as unidirectional as they travel 

towards the charged ends of microtubules. Kinesin motors travel in an anterograde 

direction towards the plus ends of microtubules at the distal end of the axon and 

dyenin motors travel retrogradely towards the minus end of the microtubule at the 

cell soma. Molecular motors, discussed above, primarily consist of two functional 
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structures; a motor domain that interacts with cytoskeletal filaments along which the 

motors move and tail domains which interact with the cargo. It is the diversity within 

the tail domains or through association with accessory light chains which allows for 

such a wide range of cargo to be transported (Gunawardena and Goldstein, 2004).  

 

1.5.4.1. Fast and slow axonal transport 

As mentioned above, axonal transport can be roughly grouped by speed into fast 

(20 to 400mm/day) and slow (0.1 to 20 mm/day) trafficking (Miller and Heidemann, 

2008). Mitochondria, polyribosomes, membrane-bound organelles and synaptic 

vesicles typically traverse the cell by fast axonal transport. To illustrate the 

importance of fast transport in motoneurons, mitochondrial transport shall be used 

here as an example. As discussed above in Section 1.5.1., mitochondria are 

particularly important in cells such as motoneurons, which have high energy 

demands, even in a resting state, and an increased reliance on transport along long 

axons for correct local distribution of mitochondria. Anterograde transport of 

mitochondria is associated with specific forms of kinesin, including a kinesin-1 and a 

kinesin-3, while retrograde transport relies on the dynein complex, with kinesin-1 

also critical for retrograde movement (Nangaku et al., 1994; Tanaka et al., 1998; 

Pilling et al., 2006). The mitochondria attach to these motor complexes by a variety 

of different adaptor proteins, which link the mitochondria via receptors, for example, 

milton and miro, respectively (Fransson et al., 2006; Glater et al., 2006; Frederick 

and Shaw, 2007). Although the basic mechanism of mitochondrial transport is 

presented here, the full breadth of complexity of these organelle movements is 

complicated and not yet fully understood. What is apparent is the importance of the 

correct movements of mitochondria for the homeostatic balance of the cell, with 

deficits in fast mitochondrial transport being reported in mouse models of ALS, 
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reducing axonal mitochondria content, and thus compromising mitochondrial and 

axonal functioning (Kieran et al., 2005; De Vos et al., 2007; Bilsland et al., 2010). 

 

Slow transport works in both an anterograde and retrograde direction with a net 

direction of anterograde, away from the cell body transporting many cargoes, 

including cytoskeletal components (Hoffman and Lasek, 1975; Lasek et al., 1984). 

Slow axonal transport is thought to be the more common pathway of axonal 

trafficking even though many of its proposed cargoes have not yet been identified, 

and the actual mechanism of slow transport is yet to be sufficiently elucidated. 

Although it is proposed to be a transport mechanism with many long pauses in 

movement across the axon contributing to an overall average slower speed of 

transport of 0.6-0.7μm/sec, for example, neurofilaments spend only 20% of time in 

transit moving, with the rest of the time paused (Roy et al., 2000; Miller and 

Heidemann, 2008). Slow transport can be further sub-classified by speed, and these 

sub-classifications correspond to certain groups of cargo, with some elements of the 

cytoskeleton, most notably neurofilaments and microtubule subunits transported at 

slower speeds than subunits of actin, actin-associated proteins such as clathrin and 

glycolysis enzymes which are transported in the faster sub-compartment (McQuarrie 

et al., 1986; Shah and Cleveland, 2002). There is also thought to be neuronal 

variations in the transport of identified proteins across the axon with significant 

variations in average speed of movement and levels of different proteins measured 

in comparable neuronal types (McQuarrie et al., 1986). For example, when 

measured in retinal ganglion cells and spinal motor axons, tubulin displayed peak 

advancement of 0.36mm/day and 1.3mm/day respectively (McQuarrie et al., 1986). 

As the neuron ages, there is a gradual decline in the rate of slow transport, possibly 

leading to the increased vulnerability of aged neurons to neurodegenerative 

diseases (McQuarrie et al., 1989). Slow transport is also affected in 
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neurodegenerative disease before phenotypic onset, with selective cargoes, 

including tubulin, affected as an early feature of ALS in mutant SOD1 mice 

(Williamson and Cleveland, 1999). 

 

Thus, axonal transport is a finely regulated process which is differentially regulated 

in different subpopulations of neurons in which disruptions, for example caused by 

genetic mutations in essential proteins or blockages in the axon caused by aberrant 

proteins, can result in axonal degeneration (Gunawardena and Goldstein, 2004; 

Sinadinos et al., 2009). 

 

1.5.5. Motoneurons have a high threshold for activation of the heat shock 

response 

In addition to the cellular vulnerabilities that are exacerbated by anatomical features, 

motoneurons also have intrinsically reduced capacity to respond to stress. Thus, 

motoneurons have an innate high threshold for activation of the heat shock 

response (HSR), the integral pathway that responds to cell stress (Batulan et al., 

2003), which is described at length below in Section 1.6. The reason for this higher 

threshold is not yet understood, but it may be a mechanism to stop whole cell HSR 

response to local fluctuations in the cell environment. As described above, 

motoneurons are excitable cells which have very fast and intense local changes in 

homeostasis which can happen at long distances from the cell body, and which 

should not induce the HSR. The higher threshold of the HSR is another likely 

contributor to the preferential vulnerability of motoneurons to mutations in a 

ubiquitously expressed protein. Demonstrated by the lack of significant increase in 

Hsp70 in motor and sensory neurons after axotomy (Tidwell et al., 2004). 
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There are many cellular pathways that can be impaired in stress and lead to 

motoneuron damage and activation of the HSR. These can include protein 

unfolding, increase in ROS and changes in calcium homeostasis which can lead to 

damaging cellular changes including the misfolding of proteins and protein 

aggregation, cytoskeletal abnormalities, oxidative stress, impaired mitochondrial 

function and defective axonal transport, all of which are particularly important to 

neurons (Der Perng and Quinlan, 2004).  

 

Thus, not only do motoneurons have an increased metabolic load, an active balance 

of ions and increased axonal transport which all increase cellular vulnerability to 

environmental stressors, they also have the additional problem of a higher activation 

level of the protective HSR than in other cells (Batulan et al., 2003). This is possibly 

due to local homeostasis imbalances caused by the large, transient local changes in 

ion balances and localisation of higher levels of ROS around areas of high 

mitochondrial density, such as the Nodes of Ranvier which would normally trigger a 

HSR in cells with a lower threshold, but in motoneurons are not significant enough 

to trigger a global response (Palay, 1958; Fabricius et al., 1993; Li et al., 2004).  

 

1.6. The heat shock response 

The heat shock response is a ubiquitously expressed cytoprotective response to cell 

stress and unfolded proteins, that exists in all organisms, suggesting that the 

process is an ancient, evolutionarily conserved response (Lindquist, 1986). The 

HSR can be initiated by diverse stimuli, such as heat stress, oxidative stress and 

toxic substances, which result in shifted homeostasis and increased protein 

misfolding and aggregation, degradation and improper protein trafficking (Morimoto, 

2008; Shamovsky and Nudler, 2008) which can lead to programmed cell death 

(apoptosis) if not reversed (Welch and Suhan, 1985; Richter et al., 2010). Thus, the 
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HSR is a vital cellular response and essential for cell survival. The HSR is an acute 

response that induces a massive, and rapid increase in the expression of genes that 

code for a family of protein chaperones, the heat shock proteins (HSPs) 

(Shamovsky and Nudler, 2008). The activation of the HSR is well characterised, 

although not all of the regulatory mechanisms of the HSR are well understood. The 

HSR is activated by translocation of heat shock factor 1 (HSF1) from the cytoplasm 

to the nucleus where it binds to the heat shock element (HSE), initiating 

transcription and thereby up-regulating a cascade of molecules that form the HSR 

(Richter et al., 2010). This mechanism will be briefly described here, and is 

illustrated in Figure 1.2.  

 

Under normal cell conditions, HSF1 exists as a monomer in complexes with heat 

shock protein 70 (Hsp70) (Abravaya et al., 1992), heat shock protein 40 (Hsp40) 

and heat shock protein 90 (Hsp90) (Zou et al., 1998). On detection of unfolded or 

misfolded proteins, HSF1 is released from these complexes and can trimerize 

spontaneously (Zhong et al., 1998), or by interactions with cellular factors, for 

example with heat shock RNA 1 (HSR1) which may assist trimer assembly or 

enhance the stability of the HSF1 complex (Shamovsky et al., 2006). Trimerized 

HSF1 then relocates to the nucleus where it binds to the HSE (Wu, 1984), a 

consensus DNA sequence with conserved homology that is found in the promoter 

site of all HSPs (Zimarino et al., 1990). From this point, protein chaperones and co-

chaperones are upregulated and cellular pathways in response to cellular stress are 

initiated. During cell stress, cellular structures and organelles are disturbed, 

including components of the cytoskeleton, which firstly undergo reorganisation of 

actin filaments to stress fibres (Ke et al., 2011) before structural collapse is caused 

by the aggregation of filamentous proteins including vimentin (Welch and Suhan, 

1985). The mitochondria in the cell swell and change location to the cell soma  



 54 

  Figure 1.2  

 

Figure 1.2 Diagrammatic representation of activation and translocation of heat 

shock transcription factor 1 (HSF1).  

In unstressed conditions HSF1 is bound in an inactive state in the cytoplasm in 

complexes with heat shock proteins (Hsp) 40, 70 and 90. Under conditions of cell 

stress, proteins become misfolded, triggering a chaperoning response from Hsp40, 

70 and 90 and activating monomeric HSF1 which then trimerizes and translocates to 

the cell nucleus when it binds to the heat shock element (HSE) with RNA polymerase 

II (RNA pol II) in the promoter region of heat shock genes and increases transcription. 

On conclusion of cell stress, HSPs negatively regulate transcription by inhibition of 

HSF1. 
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surrounding the nucleus (Welch and Suhan, 1985), possibly causing rapid declines 

in intracellular ATP production (Lambowitz et al., 1983; Patriarca and Maresca, 

1990) while mRNA of housekeeping and non-important genes are sequestered in 

stress granules as a protective measure (Thomas et al., 2011) and the golgi and ER 

fragment, all leading to a decrease in protein production (Welch and Suhan, 1985).  

 

HSF-1 trimerization and activation is regulated by the negative feedback of HSPs 

produced by the HSR. When HSP levels are sufficiently elevated, free HSPs, 

including, but not limited to Hsp90, Hsp70, Hsp27 and Hsp40, bind to and modulate 

HSF-1 to make it inactive (Åkerfelt et al., 2010). 

 

1.7. Heat shock proteins 

Of the proteins upregulated following HSF1 activation, HSPs, which target unfolded 

or misfolded proteins to prevent protein aggregation by protein refolding or 

degradation, are the most significant, although many of these proteins require co-

factors for their cellular actions (Pratt and Toft, 2003). As well as being induced 

under conditions of cellular stress, HSPs are ubiquitously present in unstressed 

cells where they work in different cellular compartments to maintain protein 

homeostasis by facilitating protein folding, degradation through the proteosome, 

clearance and transport (Arya et al., 2007; Morimoto, 2008; Kalmar and Greensmith, 

2009).  

 

The nomenclature of molecular chaperones is based on their weight (kDa) and from 

here they can be grouped accordingly; Hsp90, Hsp70, Hsp60, Hsp40 and the small 

heat shock proteins (sHSPs). A Table listing HSPs is shown in Table 1.4, and 

catalogues some of the basic functions of the HSPs. It is also becoming increasingly 

common to name some HSPs by their gene name as multiple genetic forms of  
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Table 1.4 Heat shock proteins  

The Table describes the different classes of HSP, including gene name, protein 

name, tissue location, subcellular location, known functions and diseases 

caused by genetic mutations. 
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Table 1.4. Heat shock proteins 

Gene 
name 

Protein 
name 

Tissue location Subcellular 
localisation 

Known functions Genetic 
involvement of 

disease 

References 

HSPA1A Hsp70, 
Hsp72 

Ubiquitous Cytoplasm ATP-dependant molecular 
chaperone, upregulated on heat 
stress 

_ (Mayer and Bukau, 2005) 

HSPA5 BIP, 
GRP78, 
MIF2 

Ubiquitous ER Molecular chaperone at the ER, 
initiates unfolded protein 
response (UPR) 

_ (Vembar and Brodsky, 
2008)(Lai et al., 2010) 

HSPA8 Hsc70, 
Hsc(p)71, 
Hsp73 

Ubiquitous Cytoplasm ATP-dependant molecular 
chaperone 

Genetic variants 
contribute to 
coronary heart 
disease 

(He et al., 2010) 

HSPB1 Hsp27 Ubiquitous Cytoplasm/ 
nucleus 

Stabilises cytoskeleton, inhibits 
apoptosis, acts as a co-
chaperone of Hsp70 

CMT 2F, dHMN II (Rogalla et al., 1999) 
(Evgrafov et al., 2004) 

HSPB2 Hsp27/ 
MKBP 

Heart, skeletal 
muscle, cortex, 
hippocampus 

Cytoplasmic 
granules/ 
mitochondria 

Binds and activates myotonic 
dystrophy protein kinase, forms 
complexes with HSPB3 

_ (Suzuki et al., 1998) 
(Sugiyama et al., 2000) 
(Kirbach and Golenhofen, 
2011) 

HSPB3 HSPL27 Muscle, cortex, 
cerebellum, 
nerve 

Cytoplasm Forms complexes with HSPB2 Asymmetric axonal 
motor neuropathy 

(Sugiyama et al., 2000) 
(Kolb et al., 2010) 
(Kirbach and Golenhofen, 
2011)  

HSPB4/ 
CRYAA 

α A-
crystallin 

Eye lens Cytoplasm Holdase, inhibits apoptosis, 
regulates cell growth, structural 
protein, gene activator, major 

Cataracts (Horwitz, 2003)(Graw, 
2009) 
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component of the eye-lens 

HSPB5 α B-
crystallin 

Ubiquitous Cytoplasm/ 
nucleus 

Inhibits apoptosis, interacts with 
cytoskeletal components 

Desmin-related 
cardiomyopathy, 
cataracts, 
myofibrillar 
myopathy 

(Bennardini et al., 1992) 
(Vicart et al., 1998) (Berry 
et al., 2001) (Graw, 2009)  

HSPB6 Hsp20 Heart, muscle, 
brain 

Cytoplasm Inhibits apoptosis, works as an 
anti-ischaemic protein, actin-
binding protein 

Protective mediator 
in neuro-
degenerative and 
cardiovascular 
diseases 

(Brophy et al., 1999) 
(Edwards et al., n.d.)  

HSPB7 cvHSP Heart, skeletal 
muscle 

Cytoplasm/ 
nucleus 

Interacts with cytoskeletal 
components 

_ (Krief et al., 1999) 

HSPB8 Hsp22 Muscle, brain, 
keratinocytes, 
placenta 

Cytoplasm/ 
plasma 
membrane 

Complexes with HSPB1, 
chaperone activities and 
apoptotic effects 

CMT 2L, dHMN II (Benndorf et al., 
2001a)(Irobi et al., 2004) 
(Shemetov et al., 2008)  

HSPB9 HSPB9 Testis Cytoplasm/ 
nucleus 

May interact with dynein _ (Kappé et al., 2001)(de 
Wit et al., 2004) 

HSPB10 ODF1 Testis Spermatozoa 
tails 

_ _ (Fontaine et al., 2003) 

HSPB11 Hsp16.2 Unknown Cytoplasm/ 
nucleus 

May inhibit apoptosis and effect 
mitochondrial membrane 

_ (Bellyei et al., 2007) 

HSPD1 Hsp60 Ubiquitous Mitochondria/ 
cytoplasm, cell 
surface 

Chaperone activities in 
mitochondria, immune trigger at 
cell surface 

Implicated in 
hereditary spastic 
paraplegia and 
hypomyelinating 
leukodystrophy 

(Magen et al., 2008) 
(Christensen et al., 
2010)(Grundtman et al., 
2011) 

HSPH1 Hsp105 Ubiquitous Cytoplasm/ Induces and interacts with 
Hsp70 to reduce protein 

_ (Saito et al., 2007)   
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nucleus aggregation (Yamagishi et al., 2009) 

HSPH2 Hsp110, 
APG-2 

Ubiquitous Cytoplasm/ 
nucleus 

Interacts with Hsp70 and 
Hsp90, target proteins for 
degradation 

_ (Mandal et al., 2010) 

DNAJB1 Hsp40 Ubiquitous Cytoplasm Inactivates HSF1, co-
chaperones Hsp70 

_ (Zou et al., 1998) 
(Kampinga and Craig, 
2010) 

DNAJB2 HSJ1 Heart, muscle, 
brain 

Cytoplasm/ ER Co-chaperones Hsp70, target 
proteins for proteosome 

autosomal 
recessive dHMN 

(Westhoff et al., 2005) 
(Blumen et al., 2008) 
(Kampinga and Craig, 
2010) 

HSP90A Hsp90 Ubiquitous Cytoplasm ATP-dependent protein 
chaperone with many co-
chaperones 

_ (Zhao and Houry, 2005) 
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similar proteins are discovered. For example, Hsp27 is the common protein name 

for the HSPB1 gene. However, HSPB3 and HSPB7 are genes coding for sHSPs 

with the same molecular weight of 27kDa, but different tissue locations and varying 

cellular functions (Kappé et al., 2003). HSPs can also be grouped according to their 

reliance on energy. Large molecular chaperones are generally ATP-dependent, 

including proteins such as Hsp70 and Hsp90 which actively chaperone proteins, 

whereas smaller HSPs, such as Hsp20 and Hsp27 are ATP-independent and act 

mainly as co-chaperones to the larger, energy-dependent chaperones.  

 

1.7.1. Heat shock protein 90 

Hsp90 chaperones are essential components of the eukaryotic cell. The Hsp90 

family is one of the most highly conserved HSPs across all species and highly 

abundant in non-stressed cells as well as being an essential component of the HSR. 

In unstressed cells, Hsp90 chaperones client proteins in an ATP-dependent manner 

to fold proteins into a final, functional conformation. The client proteins of Hsp90 

depend on the chaperone to acquire active conformation, and include protein 

kinases, eNOS, chromatin proteins and nuclear steroid receptors, indicating that 

Hsp90 has a vital and possibly modulatory role in many regulatory processes 

(Taipale et al., 2010).  Hsp90 interacts with over 20 co-chaperones that aid Hsp90 

by guiding its recognition of client proteins, therefore modulating Hsp90 activity and 

to reach attainment of the clients’ active conformation (Taipale et al., 2010). As well 

as its role in maintaining active conformation, Hsp90 has also been shown to 

disassemble and down-regulate macromolecular complexes and, for example, is 

involved in the reversible disassembly of transcriptional regulatory complexes of 

intracellular receptors, thereby influencing receptor activity (Freeman and 

Yamamoto, 2002). Hsp90 also works in partnership with other HSPs to achieve 

protein maturation. For example, Hsp90, working with the co-chaperones, HOP and 
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p23, binds to the progesterone receptor after HSPs 40 and 70 (Cintron and Toft, 

2006).  

 

1.7.2. Heat shock protein 70 

Hsp70 is a subgroup of HSPs with a molecular weight of 70kDa, and is the most 

ubiquitous of all HSP subgroups with at least 8 members (Daugaard et al., 2007). 

Hsp70 is expressed in two different forms, as cognate proteins (Hsc70) which are 

constantly expressed in the cell and perform housekeeping functions to maintain 

homeostasis, and inducible forms (Hsp72) which are up regulated by activation of 

HSF1 as part of the HSR (Morimoto, 2008). Hsc70, under normal physiological 

conditions, binds to hydrophobic surfaces of substrates to prevent protein 

aggregation and misfolding of proteins (Lu et al., 2010). This ATP-dependent 

function of protein chaperone is the primary task of all Hsp70s, and during times of 

cell stress the chaperone roles of Hsp70 is critical to the HSR and therefore the 

survival of the cell. Upregulation of Hsp70 has been shown to increase cell survival 

in sensory and motoneurons (Tidwell et al., 2004). No mutations have been 

described in Hsp70, although genetic variations in the gene coding for Hsc70, 

HSPA8 are associated with coronary heart disease (He et al., 2010). Mouse models 

containing a knockout of individual stress-induced Hsp70 proteins are viable, 

although they demonstrate increased sensitivity to external stresses including heat, 

ischemia, genomic instability, osmotic stress and pancreatitis, with a reduced 

capacity to acquire pre-conditioned stress resistance (Huang et al., 2001; Lee et al., 

2001; Kwon et al., 2002; Shim et al., 2002; Hunt et al., 2004). Together, this data 

shows the importance of individual Hsp70 proteins to the cells innate stress 

response. 
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1.7.3. Small heat shock proteins 

sHSPs, described in more detail in Table 1.2, are a ubiquitous family of molecular 

chaperones classified by having a molecular weight of less than 43kDa and a 

shared, highly conserved -crystallin domain (Ganea, 2001; Kappé et al., 2003). 

The sHSPs are conserved in all organisms. In the human genome, sHSPs are 

dispersed across 9 chromosomes, observing the ancient duplications that have 

formed the gene family (Kappé et al., 2003; Li et al., 2009). sHSPs are ATP-

independent chaperones, and they do not exist in a cognate and inducible form, 

therefore during times of cell stress, the protein which is expressed normally is 

upregulated. sHSPs exist in the cell as monomers or complexes that can range in 

size from 2 to 40 units, and although ubiquitously expressed in all tissues, the 

expression levels can vary between both tissue and cell types (Table 1.2) (Kappé et 

al., 2003; Kirbach and Golenhofen, 2011). As well as forming large homomeric 

complexes, sHSPs can also interact to form heterologous oligomeric complexes 

within the cell, demonstrating protein interactions within the sHSP family (Sugiyama 

et al., 2000; Bova et al., 2000). All members of the sHSP family demonstrate an 

ATP-independent chaperone function, protecting proteins from irreversible 

aggregation during physiological cell stress and acting as co-chaperones to ATP-

dependent chaperones including Hsp70 and Hsp90 (Narberhaus, 2002; Sun and 

MacRae, 2005). As well as having common functions shared by sHSPs, they can 

play different and more varied roles as described in Table 1.2, including inhibition of 

apoptosis, cytoskeletal stabilisation, redox state regulation, activation of autophagy, 

as a structural protein and in the regulation of cell growth (Kappé et al., 2003). 

 

Mutations discovered in 5 different sHSPs have been shown to cause neuropathies, 

cataracts and myopathies, where sHSPs have highly specialised functions specific 

to those cells or a higher level of expression (Berry et al., 2001; Horwitz, 2003; 
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Evgrafov et al., 2004; Irobi et al., 2004; Kolb et al., 2010). Some sHSPs such as α 

B-crystallin, Hsp22 and Hsp27 have also been seen as components of protein 

aggregates, which are associated with protein misfolding diseases, such at 

Alzheimer’s and Parkinson’s disease (Smith et al., 2005; Laskowska et al., 2010). 

Mutations in Hsp27, a ubiquitous, and well-studied sHSP with a number of 

cytoprotective functions, cause CMT 2F and dHMN II, neuropathies with a specific 

clinical presentation (Evgrafov et al., 2004). Therefore the functions of Hsp27, and 

the possible reasons for the cell-type specificity of mutations in this ubiquitous 

protein are discussed next. 

 

1.8. Hsp27 

Hsp27 is a small heat shock protein with a molecular weight of 27kDa and 

corresponding rodent homolog of 25kDa (Hsp25). Hsp27 corresponds to the HSPB1 

gene, which is located on chromosome 7 and consists of 3 exons and 737 base 

pairs (Hickey et al., 1986; Carper et al., 1990). Hsp27 consists of a highly conserved 

-crystallin domain, a poorly conserved N-terminus containing a hydrophobic WDPF 

motif required for protein binding and oligomerization, and a highly flexible, variable 

C-terminus (Kostenko and Moens, 2009). The presence of the 80-100 amino acid a-

crystallin domain is a characteristic feature of the structurally divergent small heat 

shock protein family members discussed above and its presence is conserved 

across species (Kappé et al., 2003). Hsp27 is ubiquitously expressed in all cells to 

different expression levels, and it has a number of housekeeping and cytoprotective 

functions including in protein handling and folding, inhibition of apoptosis, protection 

against oxidative stress and promotion of axonal growth, all of which make Hsp27 

essential for motoneuron growth and survival (Kalmar et al., 2002; Franklin et al., 

2005).  
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1.8.1. Hsp27 expression in animal models 

Analysis of animal models of Hsp27 disruption and over expression clearly 

demonstrates the importance of Hsp27. Currently; only two studies have examined 

the effects of reduced Hsp27 expression. Brown et al., (2007) used morpholino 

injections in Xenopus laevis embryos to inhibit endogenous HSPB1 translation 

(Brown et al., 2007). In this model, defects in heart tube fusion were observed, with 

actin filament disorganisation and partial cardia bifida (Brown et al., 2007). However, 

in a zebrafish model of Hsp27 mRNA knockdown, there was no effect on either the 

structure of muscle myotomes in development or in motility overall (Tucker et al., 

2009). Furthermore, in a mouse model with targeted disruption of HSPB1 by the 

replacement of 60% of the HSPB1 start coding sequence with a lacZ reporter gene, 

there were no developmental disruptions and no reported change in tissue function 

under normal physiological conditions, although transgenic mice in this study did 

exhibit higher levels of apoptosis after heat challenge, suggesting a significant 

disruption of the HSR (Huang et al., 2007).  

 

Conversely, over-expression of Hsp27 in mouse models demonstrates the 

neuroprotective effects of Hsp27, accelerating axonal growth after injury, decreasing 

neurotoxicity, decreasing severity of induced seizures and neuronal death (Akbar et 

al., 2003, Ma et al., 2011). Furthermore, over-expression of human Hsp27 in a 

second mouse model conferred protection against spinal cord ischemia, 

demonstrating the importance of Hsp27 in motoneurons (Krishnan et al., 2008). 

Also, when the Hsp27 over-expressing mouse was crossed with transgenic mice 

containing the mutant ALS gene, SOD1, there was a delay of disease onset, 

however, there was no overall rescue of disease phenotype (Krishnan et al., 2008; 

Sharp et al., 2008).  
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1.8.2. Phosphorylation of Hsp27 

Hsp27 has many functions within the cell arising from different cellular interactions. 

These are facilitated by the conformation of Hsp27, which is modified post-

translationally by individual phosphorylation at three Serine residues, 15, 78 and 82 

and at two Serine residues, 15 and 86 in Hsp25 (Chrétien and Landry, 1988; Landry 

et al., 1992; Kostenko and Moens, 2009). When phosphorylated, Hsp27 exists 

within the cell as monomers and dimers (27-54kDa), but when unphosphorylated, it 

exists as large multimers of ~500-800kDa in size (Lambert et al., 1999). It can also 

form large heteromeric structures with other members of the small heat shock 

family, for example, Hsp20 and Hsp22 (Bukach et al., 2009; Benndorf et al., 2001). 

Modification of Hsp27 is essential for the divergent roles it has within the cell, and 

this is achieved by a cascade of several kinases in vitro that is described below, and 

illustrated in Figure 1.3. A tightly regulated intracellular signalling pathway of 

mitogen-activated protein kinases (MAPK) phosphorylates Hsp27 (Dorion and 

Landry, 2002). Hsp27 is directly phosphorylated by a serine-protein kinase MAPK-

activated protein kinase 2 (MAPKAP2) in vivo (Stokoe et al., 1992; Huot et al., 

1995), and has also been shown to be activated by MAPK-activated protein kinase 

3 (MAPKAP3), but only in the absence of, and with weaker interactions than 

MAPKAP2. MAPKAP2 is most likely the dominant phosphorylator of Hsp27, 

suggesting that MAPKAP3 plays a less common role within the cell in vivo (Dorion 

et al., 2002). There is also evidence indicating a role for MAPK-activated protein 

kinase 5 (MAPKAP5) that phosphorylates Hsp27 when induced, at serine positions 

78 and 82 in vivo when induced (Kostenko et al., 2009a). MAPKAP2 is 

phosphorylated in vivo by the mitogen-activated protein kinase p38 which is in turn, 

itself phosphorylated and activated by specific upstream kinases, MAPK-kinase 3/6 

(MKK3/6) (Zanke et al., 1996; Pietersma et al., 1997). MKK3/6 are phosphorylated 

by MAPK-kinase-kinase apoptosis signal-regulating kinase-1 (ASK1), one of the  
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three 

Figure 1.3 Diagrammatic representation of the Hsp27 phosphorylation pathway  

Hsp27 is naturally found in cells as monomers, dimers and small and large multimers, 

with a dynamic equilibrium of size depending on cell homeostasis. Hsp27 

oligomerization is dependent on Hsp27 phosphorylation, which is tightly regulated by 

MAP kinase pathways. Here, the most common in vivo pathway is described. ASK1 is 

activated by various forms of stress including cytokines, heat shock, chemical and 

oxidative stress and then phosphorylates MAPK-kinase 3/6 (MKK3/6) which, in turn, 

phosphorylates and activates p38, a mitogen-activated protein kinase that 

phosphorylates several MAPK-activated protein kinases; 2, 3 and 5 which directly 

phosphorylate Hsp27 at different sites to modulate Hsp27 conformation and function. 

Figure 1.3  
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conserved mitogen-activated protein kinase pathways activated by various forms of 

stress including cytokines, heat shock, chemical and oxidative stress (Widmann et 

al., 1999; Nagai et al., 2007; Hattori et al., 2009). The ASK1 kinase pathway has 

been shown to be modulated via different MAP-kinases, and these different 

pathways can be induced by different cell stressors by indirectly phosphorylating 

Hsp27, leading to specific functions, for example, the protein kinases B and D (PKB 

and PKD respectively). PKB, or Akt is most likely a molecule which works upstream, 

and therefore indirectly on Hsp27 to phosphorylate Ser-82 preferentially (Rane et 

al., 2003).  

 

Although several different kinase pathways have been described both in vivo and in 

vitro to have seemingly differential effects on the rate of Hsp27 phosphorylation at 

different sites and therefore different cellular patterns of action, there is little 

evidence from in vivo studies to confirm that all the pathways described have roles 

within the stressed cell. It is clear therefore that the pathways involved in the 

phosphorylation of Hsp27 are still far from understood. 

 

1.8.3. The role of phosphorylation in Hsp27 function in conditions of cell 

stress 

Hsp27 is naturally found in cells as monomers, dimers and small and large 

multimers, depending on its state of phosphorylation at three Serine residues 

(Kostenko and Moens, 2009). The equilibrium of size is very dynamic and depends 

on not only the homeostatic state of the cell (normal or stressed) but also the type of 

stress the cell may be under (chemical, thermal etc) (Garrido 2002). For example, 

PKD may indirectly mediate the phosphorylation of Hsp27 at ser-82 only in 

response to vascular endothelial growth factor (VEGF), and it is these different 
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initiation pathways that will activate the different functions of Hsp27 (Döppler et al., 

2005).  

 

The actions of Hsp27 in the cell are varied and include primary actions on molecules 

and pathways, and secondary, downstream effects where Hsp27 has a more 

modulatory effect. All these functions are, in some way, dependent on the level of 

Hsp27 phosphorylation. When phosphorylated, Hsp27 present in the cell as 

monomers and dimers, acts as an actin-capping protein, stabilising the actin 

cytoskeleton during cellular stress (Lavoie et al., 1995). In this state, Hsp27 also has 

anti-apoptotic properties, binding and inhibiting a pro-apoptotic protein, Daxx 

(Charette et al., 2000). Whereas non-phosphorylated large oligomers of Hsp27 

demonstrate the ability to act as a holdase, an ATP-independent co-chaperone to 

Hsp70, preventing aggregation of misfolded proteins (Rogalla et al., 1999). Large 

oligomers have also been shown to be the active form responsible for the caspase-

dependent, anti-apoptotic properties of Hsp27, as well as its ability to reduce 

reactive oxygen species levels by modulation of the intracellular level of glutathione 

in the cell (Mehlen et al., 1997; Rogalla et al., 1999; Bruey et al., 2000b). For 

example, a study by Abisambra et al., (2010) demonstrated the fundamental 

importance of the ability of Hsp27 to be phosphorylated by analysing pseudo-

phosphorylated Hsp27 in hippocampal neurons. This study showed a decrease in 

long-term potentiation and an increase in soluble tau intermediates, suggesting that 

the dynamic phosphorylation of Hsp27 is vital to its role in tau regulation in 

neurodegenerative diseases (Abisambra et al., 2010).  

 

1.8.4. Chaperoning activity of Hsp27 

The classic chaperoning action of Hsp27 is possibly the most documented of the 

cellular roles of Hsp27. When organised into large oligomers of up to 800kDa, 
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Hsp27 acts as a co-chaperone to Hsp70, an ATP-dependent chaperone which re-

folds misfolded proteins or sends them for degradation by the proteosome 

(Parcellier 2006). Hsp27 is an ATP-independent holdase, binding mis-folded or 

unfolded proteins via the Hsp27 α-crystallin domain, securing the protein to prevent 

aggregation and presenting the proteins to Hsp70 (Rogalla et al., 1999). Thus, 

Hsp27 does not have an ATPase domain, making its chaperoning activity reliant on 

the presence of Hsp70 as Hsp27 cannot actively refold proteins.  As a chaperone 

holdase, and independent of Hsp70, Hsp27 has been shown to abolish the toxicity 

of A  aggregates in mouse models of Alzheimer’s disease, possibly by sequestering 

toxic oligomers into large, non-toxic aggregates, or plaques (Ojha et al., 2011). The 

cytoprotective effects of Hsp27 and Hsp70 are vital for in the cellular response to 

stress, and inducing levels of the two proteins protects against injury-induced 

apoptosis in neuronal studies (Franklin et al., 2005; Latchman, 2005; Kong et al., 

2011). Although Hsp27 functions separately from Hsp70 in many of its roles, the 

maximal cytoprotective effect of Hsp27 is dependent on Hsp70 (Sreedharan et al., 

2011). 

 

1.8.5. Hsp27 can act as an inhibitor of apoptosis 

Hsp27 has an active role in the modulation of apoptotic pathways by interacting with 

components of the intrinsic pathway of the apoptotic cascade at several points. The 

intrinsic, mitochondrial pathway of apoptosis involves the activation of the caspase 

cascade through mitochondria. Hsp27 mediates the release and action of 

cytochrome c via N-terminus binding, inhibiting the formation of the apoptosome and 

activation of procaspase-9 (Bruey et al., 2000; Garrido et al., 1999). Hsp27 also 

inhibits the extrinsic apoptotic pathway mediated by Daxx (Charette et al., 2000). 

Daxx, a death-domain associated protein, interacts with Fas, an apoptosis antigen 

and a key regulator of cell death, initiating the extrinsic pathway leading to activation 
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of caspase-8, which in turn activates downstream caspases (Charette et al., 2000). 

Daxx is only inhibited by phosphorylated Hsp27, which suggests that this is a 

protective function of Hsp27 during stress and cellular differentiation (Charette et al., 

2000). The inhibitory effects of Hsp27 on apoptotic pathways demonstrate its 

importance in cell survival. 

 

1.8.6. Hsp27 contributes to the maintenance of the normal redox balance 

Hsp27 can be protective in conditions of oxidative stress, both directly and indirectly, 

and has been shown to decrease the basal levels of reactive oxygen species (ROS) 

and up regulate glutathione (Arrigo et al., 2005). This is particularly important in 

peripheral neurons, as the high-energy demands of motoneurons means that cells 

will be exposed to increased levels of intracellular oxidative stress over time 

(Lewinski and Keller, 2005). The actions of Hsp27 on levels of glutathione are 

thought to be mediated through the modulation of several pathways, both as a 

downstream effect of Hsp27 action on other cellular functions and through direct 

interactions with redox modulators such as Glucose-6-phosphate dehydrogenase, a 

key enzyme in the reducing state of glutathione (Pandolfi et al., 1995; Préville et al., 

1999). When ROS increases, Hsp27 keeps glutathione in a reduced state, 

maintaining intracellular glutathione balance (Arrigo et al., 2005). Thus, impairments 

in Hsp27 can also lead to accumulations of toxic ROS products.  

 

1.8.7. Hsp27 aids mitochondrial function 

As already discussed, Hsp27 plays an important role in the reduction of harmful 

ROS and the inhibition of apoptotic signals, but Hsp27 also aids in the maintenance 

of mitochondrial function and morphology, where a decrease in Hsp27 expression 

leads to reduced ATP production and increased mitochondrial fragmentation (Tang 

et al., 2011). Hsp27 acts as a downstream mediator of High-mobility group box-1 
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(HMGB1), an essential regulator of mitochondrial autophagy (Tang et al., 2011). 

Knockdown of either HMGB1 or Hsp27 results in a cellular phenotype consistent 

with a decrease in mitophagy, as demonstrated by increased mitochondrial 

fragmentation and loss of ATP production (Tang et al., 2011). These authors 

suggest that the role of phosphorylated Hsp27 as a cytoskeletal regulator maybe 

critical for the trafficking which takes place during mitophagy as actin and 

mitochondria co-localise during stress. Furthermore, Hsp27 phosphorylation is also 

necessary for Hsp27-mediated autophagy (Tang et al., 2011). 

 

Mitochondria are very sensitive to changes in the cellular environment and changes 

in mitochondrial function are one of the first signs of motoneuron distress in models 

of ALS (Bilsland et al., 2008). Thus the role Hsp27 plays in the maintenance of 

mitochondria maybe of particular importance in high-energy cells such as 

motoneurons. 

 

1.8.8. Hsp27 protects the cytoskeleton during cell stress and has a putative 

role in axonal transport 

Motoneurons differ from other cell types in length and unique large size, placing a 

heavy reliance on the cytoskeleton and axonal transport (Sau et al., 2011). The 

axonal cytoskeleton and transport are finely regulated and disruptions, for example 

caused by genetic mutations in essential proteins, can result in axonal degeneration 

(Gunawardena and Goldstein, 2004). The phosphorylated form of Hsp27 also plays 

a role in the survival of injured motor and sensory neurons (Benn et al., 2002; 

Kalmar et al., 2002). This may be due, in part, to the actions and effects of 

phosphorylated Hsp27 on components of the cytoskeleton which may then impact 

on axonal outgrowth and cellular transport (Benn et al., 2002; Mounier and Arrigo, 

2002; Williams et al., 2005).  
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1.8.8.1. Hsp27 interacts with cytoskeletal elements 

Miron et al. first described a functional link between Hsp27 and actin in 1991, 

demonstrating that Hsp27 inhibited actin polymerisation in vitro (Miron et al., 1991). 

Then, in 1994, Benndorf et al., showed that Hsp27 played a role as an actin-capping 

protein when phosphorylated, monomeric Hsp27 inhibits actin polymerisation by 

binding to the barbed end of the actin filament, decreasing the activity of the actin 

binding, inhibiting polymerisation and promoting stability of actin microfilaments 

during heat-shock and other cell stressors (Lavoie et al., 1993b)(Benndorf 1994). 

Hsp27 has also been shown to protect against aggregation of heat-denatured F-

actin, binding the dissociated oligomers into highly soluble complexes during heat 

shock (Pivovarova et al., 2005; Pivovarova et al., 2007). Under normal physiological 

conditions in in vitro cell development, Hsp27 co-localises with actin in lamellipodia, 

processes and growth cones, with atypical growth patterns in cells with inhibited 

Hsp27 phosphorylation, suggesting an important role in modulation of actin 

dynamics and neurite outgrowth under normal conditions (Williams et al., 2005; 

Williams et al., 2006). 

 

As well as the functional interaction of Hsp27 with actin described above, the small 

heat shock protein has also been found to co localise with other elements of the 

cytoskeleton in vitro, including possible interactions between Hsp27 and glial 

fibrillary acidic protein and vimentin intermediate filament networks (Perng et al., 

1999). Hsp27 has been linked with the management of some interactions between 

intermediate filaments and their binding partners, maintaining cytoskeletal integrity 

(Perng et al., 1999). Hsp27 also co localises with β-tubulin, although the proteins 

have not been seen to functionally interact, at least in vitro (Hino et al., 2000; 

Williams et al., 2006).  
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1.8.8.2. Hsp27 and axonal transport 

A link between the disruption in axonal transport and mutations in Hsp27 has been 

shown by the mislocalisation and aggregation of p150, a dynactin subunit which is 

integral in retrograde transport, in cells transfected with mutant Hsp27 (Ackerley et 

al., 2006). Transgenic mice expressing disease-causing Hsp27 mutations also 

display significant defects in mitochondrial transport, at least in sensory neurons (d’ 

Ydewalle et al., 2011). The integrity of the cytoskeleton and axonal transport is 

dependent on actin, which functionally interacts with Hsp27 both in basal and 

stressed conditions (Williams et al., 2005). For example, during cell stress, Hsp27 

acts as an actin-capping protein increasing the stability of actin microfilaments 

(Benndorf et al., 1994). The length and calibre of motoneurons, and therefore 

axonal transport, is dependent on the cytoskeleton, which not only maintains spatial 

organisation, but also drives axonal growth and is fundamental for axonal transport 

(Chevalier-Larsen and Holzbaur, 2006). Taken together, this suggests that 

mutations in Hsp27 would have a significant impact on the cytoskeleton and axonal 

transport, two cellular features where motoneurons are particularly vulnerable to 

disruptions (Shaw and Eggett, 2000). 

 

1.8.9. The role of Hsp27 in the nucleus 

During stress, Hsp27 translocates to the nucleus, where its role is unclear, although 

it is thought to act by targeting proteins for degradation (Bryantsev et al., 2002; 

Bryantsev et al., 2007a). This is due the role phosphorylated Hsp27 plays in 

mediating mRNA decay by stabilising AU-rich element (ARE) mRNA via modulation 

of ARE-binding protein (AUF1) levels, as well as the localisation of Hsp27 in the 

nucleus into granules, which localise with chromatin and the 20S proteosomes, 

thereby suggesting storage of misfolded proteins for degradation rather than 

refolding via Hsp70 (Bryantsev et al., 2007; Knapinska et al., 2011). These nuclear 



 74 

granules are more commonly called nuclear splicing speckles or SC35-positive 

speckles as they contain SC35, a member of the serine/arginine rich (SR) family of 

mRNA splicing proteins (Graveley, 2000). Hsp27 has been shown to translocate to 

SC35-positive speckles in vitro and may be driven by the N-terminus of Hsp27 

(Bryantsev et al., 2007; Vos et al., 2009). Other small heat shock proteins also 

translocate into the nucleus to SC35-positive speckles, including HSPB7 and αB-

crystallin (van den IJssel et al., 2003; Vos et al., 2009). The nuclear speckle 

localisation of αB-crystallin is inhibited by mutations that cause cardiomyopathy (van 

den IJssel et al., 2003).  

 

As well as its association with nuclear speckles, Hsp27 has also been linked to 

activation of gene transcription of neurotrophic receptor genes by interaction with 

SP1, a gene transcription factor, modulating SP1-dependent transcriptional activity 

and promoting neuronal protection via upregulation of neurotrophic receptors in a 

mouse model of spinocerebellar ataxia 17 (Friedman et al., 2009). In the nucleus, 

Hsp27 has also been implicated in the modulation of HSF1 activity by sumoylation, 

blocking HSF1s transactivation capacity and therefore inhibiting and modulating 

processes of the HSR (Brunet Simioni et al., 2009). Clearly, the roles of Hsp27 in 

the nucleus are not fully elucidated, and there is an interesting overlap of 

localisation with other small heat shock proteins, but not with Hsp70, suggesting that 

the nuclear role of Hsp27 is not a traditional chaperoning role (van den IJssel et al., 

2003; Bryantsev et al., 2007; Vos et al., 2009). 

 

1.8.10. Hsp27 in neurodegenerative disease 

Hsp27 has been implicated in several neurodegenerative diseases as a protein 

which may contribute to disease pathogenesis as it is a member of the HSR and is 

affected downstream of many pathological processes. For example, Hsp27 
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expression is decreased in neurodegenerative diseases such as Amyotrophic 

Lateral Sclerosis (ALS) and Spinocerebellar ataxia (Sharp et al., 2008; Okado-

Matsumoto and Fridovich, 2002; Tsai et al., 2005). Hsp27 is also associated with 

many pathological hallmarks of neurodegenerative diseases such as amyloid-β 

plaques in Alzheimer’s disease (Smith et al., 2005). Due to the versatility of Hsp27 

functions, its importance in the HSR and its ubiquitous presence in all cell types, it is 

surprising that mutations appear to only result in a peripheral axon-specific clinical 

phenotype and affects motoneurons to a greater extent than other neurons. 

 

1.9. Hsp27 mutations cause CMT 2F and dHMN II 

As described in Section 1.2, hereditary peripheral neuropathies can be classified 

into several subgroups according to clinical phenotype, neurophysiology and genetic 

cause. CMT 2F was first described in 2001 when Ismailov et al. linked a novel locus 

on chromosome 7q11-q21 to an autosomal dominant Russian CMT2 family of 6 

generations (Ismailov et al., 2001). Affected members of the family showed a similar 

clinical presentation, with an age of disease onset ranging between 15 and 25 

years. A symmetrical, slowly progressive muscle weakness and atrophy was 

described, starting in the lower limbs and advancing to the upper limbs after several 

years, resulting in significant disability within 15 to 30 years of onset. The disease 

was predominantly of a motor presentation (Ismailov et al., 2001). Three years later 

in 2004, Evgrafov et al. reported a missense mutation in the HSPB1 gene coding for 

Hsp27 in this family, and 4 other novel mutations within HSPB1 causing CMT 2F or 

dHMN in 6 unrelated families from different populations (Evgrafov et al., 2004).  

 

Since the initial description of these Hsp27 mutations, several more mutations have 

been identified in patients with CMT from different populations (See Table 1.5). The 

Arg127Trp mutation, discovered in a Belgian family by Evgrafov et al. (Evgrafov et 
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al., 2004) has also been identified in Chinese patients (Tang et al., 2005), and novel 

mutations have been found in Japanese, Italian, English, Korean, Indian and 

Pakistani families (Ikeda et al., 2009; James et al., 2008; Kijima et al., 2005; Solla et 

al., 2010; Chung et al., 2008; Benedetti et al., 2010; Luigetti et al., 2010; Mandich et 

al., 2010). In 2008, Houlden et al. discovered a wide range of novel Hsp27 

mutations in different families that give rise to dHMN and CMT 2F (Houlden et al., 

2008). The disease-causing Hsp27 mutations identified to date are shown in Table 

1.3. The disorder caused by Hsp27 mutations is classified as either dHMN or CMT 

2F depending on the level of sensory disturbance detected on clinical examination. 

When first described, it was thought that these were two separate disorders caused 

by mutations within the same gene. However, in 2010, Solla et al. reported a family 

carrying the autosomal dominant mutation Arg127Trp, which showed a varied 

amount of sensory involvement but comparable ages of onset and motor signs 

(Solla et al., 2010). This suggests that the sensory deficits in CMT 2F are part of a 

disease spectrum, with no or minimal to moderate sensory involvement. 

 

1.10. The cellular effects of Hsp27 mutations  

Since the discovery of the first disease-causing Hsp27 mutation, there have been 

efforts to clarify which of the many cellular functions of Hsp27 are affected by the 

mutations. The first paper to describe Hsp27 mutations in 2004 also showed 

preliminary experiments describing the effects of the most clinically prevalent 

mutation in vitro (Evgrafov et al., 2004). A neuronal-like cell line (N2A) was 

transfected with the Ser135Phe mutation and a biochemical MTT assay was used to 
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Table 1.5 Disease-causing Hsp27 mutations  

Mutations in Hsp27 were first described by Evgrafov et al. in 2004. Since then, a 

wide range of novel mutations have been described in many populations. The 

mutations examined in this Thesis are highlighted in blue. 
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Table 1.5 Disease-causing Hsp27 mutations 

Diagnosis Nucleotide 
Change 

Amino Acid 
Change 

Protein Domain 
Affected 

Inheritance Age of 
Onset 

Origin Reference 

dHMN C116T Pro39Leu Conserved, not in α-
crystallin 

Autosomal 
Dominant 

54 English (Houlden et al., 2008)  

Asymmetrical 
dHMN 

G250C Gly84Arg Conserved not in α-
crystallin 

Autosomal 
Dominant 

48 English (Houlden et al., 2008) (James 
et al., 2008)  

dHMN C295A Leu99Met α-crystallin Autosomal 
Recessive 

37 Pakistan (Houlden et al., 2008)  

dHMN 
CMT 2F 

C379T Arg127Trp α-crystallin Autosomal 
Dominant 

33 Belgium, 
China, Italy 

(Solla et al., 2010) (Evgrafov et 
al., 2004) (Tang et al., 2005)  

dHMN 
CMT 2F 

C404T Ser135Phe α-crystallin Autosomal 
Dominant 

21 UK, 
Russia, 
Korea 

(Evgrafov et al., 2004) 
(Houlden et al., 2008) (Chung 
et al., 2008)  

CMT 2F C404G Ser135Cys α-crystallin Autosomal 
Dominant 

35 Italy (Benedetti et al., 2010a)  

CMT 2F C406T Arg136Trp α-crystallin Autosomal 
Dominant 

_ Belgium (Evgrafov et al., 2004)  

dHMN C418T Arg140Gly α-crystallin Autosomal 
Dominant 

34 India (Houlden et al., 2008)  

dHMN A421C Lys141Gln α-crystallin Autosomal 
Dominant 

57 Japan (Ikeda et al., 2009)  

dHMN C452T Thr151Ile α-crystallin Autosomal 
Dominant 

_ Croatia (Evgrafov et al., 2004)  

dHMN 
CMT 2F 

C539T Thr180Ile not in α-crystallin Autosomal 
Dominant 

7 Italy (Luigetti et al., 2010)  

dHMN C545T Pro182Leu not in α-crystallin Autosomal 
Dominant 

_ Austria (Evgrafov et al., 2004)  

dHMN C544T Pro182Ser not in α-crystallin Autosomal 
Dominant 

4 Japan (Kijima et al., 2005a)  

dHMN  
CMT 2F 

476_477delCT Ser158X not in α-crystallin Autosomal 
Dominant 

_ Italy (Mandich et al., 2010) 
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assess cell viability. These experiments demonstrated a 50% decrease in cell 

viability and transfection with the mutation in comparison to untransfected cells at 48 

hours, demonstrating that this mutation is indeed pathogenic (Evgrafov et al., 2004). 

Evgrafov et al then transfected neurofilament light (NF-L) and wild type or mutant 

Hsp27 in vitro and showed aggregates containing both NF-L and Hsp27 in cells 

transfected with the Ser135Phe mutant Hsp27, but not with the wild type Hsp27 

(Evgrafov et al., 2004), suggesting a possible toxic interaction between the mutant 

Hsp27 and NF-L. 

 

These findings were followed up in a study by Zhai et al. (2007) who also co-

expressed NF-L proteins with Hsp27, this time working with mutations of both 

proteins known to cause CMT 2E/1F and CMT 2F, respectively. Mutations in NF-L 

cause a motor and sensory neuropathy with evidence of central nervous 

involvement in some patients (Miltenberger-Miltenyi et al., 2007; Mersiyanova et al., 

2000; Jordanova et al., 2003; See Table 1.1 and 1.2). CMT 2E/1F, like CMT 2F, 

demonstrates a clinical heterogeneity in age of onset and disease severity and 

progression that has not yet been linked to mutation type using a genotype/ 

phenotype correlation (Miltenberger-Miltenyi et al., 2007). Zhai et al. (2007) 

demonstrated an interaction between NF-L and Hsp27 in several ways, firstly by 

showing that the transfection of wild type Hsp27 into cells transfected with mutated 

NF-L diminished the aggregation of the NF-L protein and increased motoneuron 

viability and secondly, by transfecting mutant Hsp27 it was possible to disrupt the 

filamentous network caused by the transfection of wild type NF-L in vitro, giving 

large aggregates containing both NF-L and mutant Hsp27 (Zhai et al., 2007). Thus, 

while wild type Hsp27 can improve cell pathology induced by mutant NF-L, wild type 

NF-L cannot rescue mutant Hsp27 induced cell pathology. 
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Therefore, it appears that there is a functional relationship between Hsp27 and 

neurofilaments, and that for normal function of the neuronal cytoskeletal, both 

proteins have to function normally. On the other hand, disruption in the conformation 

of either neurofilament or Hsp27 leads to the dysfunction and aggregation of the 

other. Ackerley et al (2006), using a mutation located in a different domain of the 

Hsp27 protein (Pro182Leu), examined the assembly of neurofilaments and the 

effect of Hsp27 on neurofilament aggregation and specific motor proteins (Ackerley 

et al., 2006). These experiments, which involved transfection of primary mouse 

cortical neurons, demonstrated the aggregation of both neurofilament medium 

(NFM) and transfected p150 (a subunit of dynactin, an interegral protein of 

retrograde axonal transport) in the presence of the mutated Hsp27, but not in the 

presence of wild type Hsp27. The authors postulated that the mutated protein could 

not be transported along cellular neurites, as it was only detected in the cell body 

and proximal neurites, unlike the wild type transfected protein (Ackerley et al., 

2006). 

 

More recently, the focus of the effects of mutant Hsp27 on peripheral neurons 

shifted to the putative role in microtubules and axonal integrity. In 2011, d’Ydewalle 

et al., published two transgenic mouse lines expressing human Hsp27 carrying 

either one of two known patient mutations; Ser135Phe or Pro182Leu (d’ Ydewalle et 

al., 2011). This study demonstrated that the expression of either mutation caused 

differential neuronal phenotypes, with the C-terminus Pro182Leu Hsp27 causing a 

more severe, motor phenotype and the -crystallin Ser135Phe Hsp27 mouse 

displaying a mixed sensory-motor phenotype (d’ Ydewalle et al., 2011). They also 

showed that the expression of both mutations in vivo led to the de-acetylation of -

tubulin, a component of the microtubule network, and that inhibition of histone de-

acetylase 6 (HDAC6), a major de-acetylation enzyme of the tubulin network restored 
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the amount of -tubulin acetylation and rescued disease phenotype (d’ Ydewalle et 

al., 2011). The study claimed that different sub-types of neuron were more 

vulnerable to different mutations in Hsp27, suggesting underlying differences of 

disease phenotype and clinical presentation are linked to mutation position, and that 

the pathogenic mechanism of axonal degeneration in CMT 2F involves the de-

acetylation of -tubulin, a component of the microtubule network (d’ Ydewalle et al., 

2011). 

 

Although the widely accepted theory for the aberrant functions of Hsp27 mutations 

is that of a disruption of axonal transport, as supported above, a recent paper by 

Almeida-Souza et al. (2010) suggests that the Ser135Phe mutation, the most 

prevalent and the most studied Hsp27 mutation, leads to an increase in the 

chaperoning function of the protein and a shift in the oligomerisation balance of the 

protein towards increased Hsp27 monomerisation (Almeida-Souza et al., 2010). 

Surprisingly the same study did not find an increase in phosphorylation of Hsp27 in 

mutant cells. This is intriguing since the oligomerisation state of Hsp27 depends on 

its level of phosphorylation (See Section 1.8.2). 

 

Although possible aberrant interactions between Hsp27 and intermediate filament or 

microtubule proteins have been described (Evgrafov et al., 2004; Zhai et al., 2007; 

Ackerley et al., 2006; d’ Ydewalle et al., 2011), there is little evidence for an 

interaction between these proteins under unstressed conditions in vivo, although 

Hsp27 has been shown to functionally interact with actin (Perng et al., 1999; 

Kostenko et al., 2009; Williams et al., 2005). Thus any association observed 

between neurofilaments or microtubules and Hsp27 may be a result of a gain of 

function of the mutant Hsp27 (Toivola et al., 2010; d’ Ydewalle et al., 2011). To 

summarise, the results from in vitro studies examining the cellular effects of mutant 
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Hsp27 indicates strong histological evidence for the involvement of mutant Hsp27 in 

cytoskeletal stability and axonal transport. Disruptions in these vital cellular 

functions may explain the specific clinical phenotype of dHMN. 

 

1.11. Characteristics of individual Hsp27 mutations 

Since the first description of CMT-causing Hsp27 mutations (Evgrafov et al., 2004), 

a number of other mutations have been found in the gene (Figure 1.4). It appears 

that within HSPB1 there is at least one ‘hot spot’ where clusters of mutations have 

been discovered in different populations. This hot spot is located within exon two of 

the HSPB1 gene and corresponds to the highly conserved α-crystallin domain of the 

Hsp27 protein between amino acids 127 and 158, a region which not only contains 

the highest frequency of mutations, but also the most prevalent mutations in all 

populations and multiple families (Dierick et al., 2005). Outside of this hot spot 

region of the gene, mutations are less commonly seen in the highly conserved N-

terminus and less well conserved C-terminus of the protein.  

 

Since the functional versatility of Hsp27 is linked to different regions of the protein, it 

is possible that there are fundamental differences in the cellular effects of mutations 

located at different points within the HSPB1 gene. To investigate this hypothesis in 

the experiments described in this Thesis, different mutations were chosen for the 

study based on the following individual characteristics: 

 

 Ser135Phe is a dominant mutation located in the hot-spot of the HSPB1 

gene. The Ser135Phe mutation is a base change of a C to a T at position 

404, causing an amino acid change in the α-crystallin domain of the protein 

of a Serine to a Phenylalanine. Serine is a polar, neutral (balanced charge 

side chains) amino acid and is one of three that are commonly  
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Figure 1.4 Location of known mutations in the Hsp27 (HSPB1) gene  

The start ATG (codon 1) is indicated in the Figure and all mutations are labeled 

from this codon up to the stop codon TAA at position 206. Previously reported 

Hsp27 mutations and the mutations identified by Houlden et al. (2008) are 

indicated in red. The position of these mutations is shown in relation to the -

Crystallin and the Hsp20 domains which are drawn to scale in blue. 

Figure 1.4 
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phosphorylated. Phenyalanine is a non-polar, neutral amino acid. Ser135Phe 

is the most prevalent mutation of HSPB1 causing CMT 2F or dHMN II. Due 

to the prevalence of the mutation in the population of affected individual 

patients and the large number of families with this mutation, Ser135Phe is to 

date the most investigated of the HSPB1 mutations (Evgrafov et al., 2004) 

and therefore is used in this study as a ‘positive’ control. 

 Arg140Gly is a dominant mutation located in the hot-spot of the HSPB1 

gene. The Arg140Gly mutation is a base change of a C to a T at position 

418, causing an amino acid change from an Arginine to a Glycine. Arginine 

is a polar, positively charged amino acid. Glycine is non-polar and neutral. 

Arg140Gly is a novel mutation found in 3 separate families (Houlden et al., 

2008), which functionally corresponds to disease-causing mutations in the 

related sHSP α-crystallin proteins; α-A Crystallin (Arg116Cys mutation 

causing dominant congenital cataracts)(Li et al., 2010) and α-B Crystallin 

(Arg120Gly mutation causing desmin-related myopathy) (Inagaki et al., 

2006). 

 Leu99Met is a recessive mutation located in the α-crystallin domain of the 

Hsp27 protein. The Leu99Met mutation is a base change of a C to an A at 

position 295, causing an amino acid change from Leucine to a Methionine. 

Leucine and Methionine are both non-polar, neutral amino acids. Leu99Met 

is the only recessive mutation discovered in the HSPB1 gene, but can only 

be classed as ‘assumed recessive’ as there was no genetic testing on 

maternal DNA (Houlden et al., 2008). 

 Pro39Leu is a dominant mutation located in an area of the gene translating 

to the N-terminus of the protein. The Pro39Leu mutation is a base change of 

a C to a T at position 116, causing an amino acid change from Proline to a 

Leucine. Proline and Leucine are both non-polar, neutral amino acids.  
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Pro39Leu is a novel mutation in a single family with a later age of onset 

(Table 1.3) but the same clinical diagnosis. 

 

1.12. Aims 

Mutations within Hsp27 give rise to both CMT 2F and dHMN II, presenting clinically 

with a specific phenotype of axonal degeneration of long motoneurons over an 

extended period of time. Hsp27 has many roles within the cell, and each of these 

roles utilise different domains of the protein in different pathways. Hsp27 can also 

be phosphorylated, dynamically modifying the state of association with itself and 

other sHSPs and thus the roles of Hsp27 within the cell dependent on the cellular 

environment and activation of the HSR. Due to the varied roles and protein 

interactions of Hsp27, it is possible that there are fundamental differences in the 

cellular manifestation of pathology between different disease-causing mutations and 

that motoneurons are specifically vulnerable to the mutations because of their high 

metabolic load, an active balance of ions and an increased dependency on axonal 

transport and cytoskeletal stability. 

 

The aims of this Thesis are therefore –  

1. To optimise two in vitro cellular models based on a neuronal-like 

neuroblastoma cell line and primary motoneurons using different transfection 

techniques, thereby creating cellular systems that can reliably be used for 

sensitive readouts of cellular function and morphology. In vitro models are 

important tools to examine proposed cellular mechanisms which may be 

disrupted by the abnormal functioning of mutated Hsp27. 

2. To study the cellular phenotypes of the different mutations within Hsp27 

using readouts of cell toxicity, neurite outgrowth, cellular morphological 

changes and Hsp27 protein interactions, teasing out whether there are 
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fundamental differences in the manifestation of cellular pathology between 

disease causing mutations. 

3. To examine of the pathomechanisms of specific mutations using refined 

methods of analysis, examining the effects of Hsp27 mutations on cellular 

functions. These investigations will focus on functions which are linked to 

Hsp27 and fundamental to the homeostatic balance of the cell, for example, 

mitochondrial function. 

 

The aim of the experiments described in this Thesis are therefore to examine the 

deleterious effects of mutations in heat shock protein 27, in order to improve our 

understanding of the cellular pathomechanisms of mutant Hsp27-linked CMT. 
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Chapter 2. Materials and Methods 

2.1. Generation of constructs containing mutant Hsp27 

HSPB1 mutations were generated using pcDNA3.1/V5-His TOPO plasmids 

(Invitrogen, Paisley, UK, Figure 2.1) containing wild type Hsp27 as a template for 

site-directed mutagenesis. The Hsp27 mutations investigated in this study were: 

Pro39Leu; Leu99Met; Ser135Phe and Arg140Gly (See Table 1.3). 

 

2.1.1. Site-directed mutagenesis primer design 

Mutagenic oligonucleotide primers were individually designed using the Ensembl 

project (http://www.ensembl.org) & PrimerX (http://www.bioinformatics.org/primerx/), 

an online program which specifically generates primers for site-directed 

mutagenesis. Selected sequences were then ordered from Sigma Genosys (Dorset, 

UK). Site-directed mutagenesis primers contained the 12-15 base pair sequences 

forward and backwards from the desired mutation and were complimentary 

sequences. Primers were between 25-30 base pairs long, with a melting 

temperature of ≥ 77°C and a minimum GC content of 40%. Three pairs of primers 

were designed with the sequences shown in Table 2.1.  

 

 

 

 

http://www.ensembl.org/
http://www.bioinformatics.org/primerx/
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Table 2.1  

Mutation Sequence (5’-3’) Sequence 

length (base 

pairs) 

GC 

content 

(%) 

Melting 

temperature 

(°C) 

C116T 

Pro39Leu 

CTG CCC CGG CTG CTG 

GAG GAG TGG TCG 

27 74 85.3 

C295A 

Leu99Met 

CTG GCG CGT GTC CAT 

GGA TGT CAA CCA C 

28 61 82.2 

C418G 

Arg140Gly 

CGG TGC TTC ACG GGG 

AAA TAC ACG C 

25 60 77.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Site-directed mutagenesis primers.  

Primers were designed to be optimal for site-directed mutagenesis. Details include 

sequence length, GC content and melting temperature. 
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Figure 2.1 pcDNA3.1/V5-His-TOPO Vector Map  

Showing the pcDNA3.1/V5 plasmid and open reading frame with restriction 

sites and recognition tags. Schematic adapted from Invitrogen, 

http://products.invitrogen.com/ivgn/product/K480001  

 

 

Figure 2.1 
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2.1.2. In vitro site-directed mutagenesis and transformation 

Primers were diluted to a stock solution of 100µM, and then further diluted to give a 

final working primer content of 125ng in the PCR mix. The mutagenesis reaction 

(Site-directed mutagenesis kit, Stratagene, La Jolla, CA, USA) was carried out using 

the reaction mixture detailed below in Section 2.1.2.1, and a reaction with 16 

annealing cycles was initiated (see Section 2.1.2.1). To control for the presence of 

PCR products, samples were run out on a 2% agarose electrophoresis gel (Sigma 

Genosys, Dorset, UK) in TBE buffer (Invitrogen, Paisley, UK). 

 

The PCR product was then incubated with 1µl Dpn1 for 4 hours at 37°C. For the 

transformation of E. coli cells using the mutagenesis PCR product, One Shot® 

TOP10 Chemically competent E. coli (Invitrogen, Paisley, UK) were gently thawed 

on ice and 50µl aliquoted into pre-chilled 14ml BD Falcon polypropylene round-

bottomed tubes (BD Biosciences, Oxford, UK). Dpn1-treated DNA (3µl) was added 

to the cells and carefully swirled to mix; the reactions were then incubated on ice for 

30 minutes. Cells were heat-pulsed in a water bath for 30-45 seconds at 42°C and 

incubated on ice for a further 2-5 minutes. The cells were gently transferred to 

Eppendorf tubes containing 500µl of room-temperature S.O.C medium (Invitrogen, 

Paisley, UK) and incubated at 37°C for 1 hour in a table-top shaker at 1400rpm. The 

reaction was then spun down for 1 minute at 13200rpm and the pellet was 

resuspended in 50µl of S.O.C medium and plated onto LB agar plates which were 

prepared the day before transformation using LB Agar Amp IPTG/X-Gal 

(Fermentas, Life Sciences, York, UK). The transformation plates were incubated at 

37°C for >16 hours. 
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2.1.2.1. Mutagenesis reaction and cycling parameters 

The reaction mixture used for the mutagenesis reaction and the cycling parameters 

are summarised below; 

Reaction mixture 

40µl    dH2O (final volume 50µl) 

5µl      10x reaction buffer 

1µl      (125ng) primer Forward 

1µl      (125ng) primer Reverse 

1µl      dNTP mix 

1µl      50ng Plasmid template 

1µl      PfuUltra HF DNA polymerase 

Cycling parameters for site-directed mutagenesis 

Segment Cycles Temperature (°C) Time 

1 1 95 30 seconds 

2 2 – 18 95 

55 

68 

30 seconds 

1 minute 

1 minute/kb of                  

plasmid length 

3 19 4 Hold 

 

 

2.1.3. Hsp27 PCR and sequencing primer design 

PCR primers used in both the amplification of a specific length of the genomic DNA 

sequence and further sequencing were designed using Ensembl and PrimerX. 

Selected sequences were then ordered from Sigma Genosys. Primers were 

between 15-25 base pairs long, with a melting temperature of ≥55°C and GC 
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content of between 40-70%. Two forward and two reverse primers were designed to 

give different fragments of the HSPB1 gene. The sequences used are shown in 

Table 2.2. 

  

2.1.4. Hsp27 PCR 

Individual colonies from transformed One Shot® TOP10 cells on the transformation 

plates were sampled and subcultured by collecting a small amount of the colony 

with a sterilized 1-10µl pipette tip, streaking a separate LB agar plate, and 

inoculating 5µl aliquots of dH2O using the same pipette tip.  

 

A PCR reaction was used to amplify the targeted sequences of Hsp27 to confirm the 

presence of full length Hsp27. PCRs were carried out in thin-walled PCR tubes 

using the reaction mixture and protocol shown below (see Section 2.1.4.1). DNA-

negative and positive controls were used in all reactions. 

 

Bands were separated and analysed by gel electrophoresis. Agarose powder (1g) 

was added to 50mls 10% TBE buffer and heated in a microwave on medium heat 

until dissolved to create a 2% gel. Ethidium bromide (5µl, Sigma Genosys, Dorset, 

UK) was added to the solution for band visualisation and the slightly cooled solution 

was poured into a gel mould. 

 

PCR product (5µl) was mixed with 5µl of Blue Juice loading dye (added to visualise 

the PCR product) and all 10µl was added to the wells. A 1Kb ladder was also added 

at the start of the gel. The PCR products were run at 75V for 25 minutes and 

visualised under ultraviolet light and a picture was taken. 
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Table 2.2 

Primer Sequence  Sequence 

length (base 

pairs) 

GC 

content 

(%) 

Melting 

temperatur

e (°C) 

Hsp27 

Forward 

(long) 

ATA GCC GCC TCT 

TCG ACC AG 

20 60 67.6 

Hsp27 

Forward 

(short) 

TGT CCC TGG ATG 

TCA ACC 

18 56 62.1 

Hsp27 

Reverse 

(long) 

ACT TGG CGG CAG 

TCT CAT C 

19 58 65.5 

Hsp27 

Reverse 

(short) 

ACA GGG AGG AGG 

AAA CTT G 

19 53 60.7 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2 PCR primer pairs designed for Hsp27  

Primers were designed to be optimal for PCR. Details include sequence length, GC 

content and melting temperature. 
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2.1.4.1. Hsp27 PCR reaction and cycling parameters 

The reaction mixture and cycling parameters for Hsp27 PCR are summarised 

below; 

Reaction mixture 

15.65µl     dH2O (final volume 25µl) 

2.5µl        10x reaction buffer 

2.5µl        Q Solution (Qiagen, Crawley, UK) 

0.75µl      MgCl2 

0.25µl      (125ng) primer Forward (long) 

0.25µl      (125ng) primer Reverse (short) 

0.5µl        dNTP mix 

2.0µl        DNA 

0.1µl        Taq polymerase (Roche, Welwyn, UK) 

Cycling parameters for Hsp27 PCR 

Segment Cycles Temperature (°C) Time 

1 1 95 3 minutes 

2 2 – 35 95 

55 

72 

30 seconds 

1 minute 

45 seconds 

3 36 72 2 minutes 

 

 

2.1.5. DNA sequencing 

The PCR product from the Hsp27 PCR from selected single colony templates 

(approximately 20µl) was purified using a vacuum filter, leaving the filtered DNA 

sequence which was reconstituted in 20µl dH2O by rocking gently for 20 minutes. 
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The purified DNA was then added to the 2 sequencing reactions detailed below (see 

Section 2.1.5.1) using BigDye terminator v3.1 sequencing chemistry (Applied 

Biosystems, Foster City, CA, USA) and cycled using the cycling parameters outlined 

below. 

 

The sequencing reaction was then cleaned using Millipore plates and the purified 

product was sequenced on an ABI3730 genetic analyser (Applied Biosystems) and 

analysed using Sequencher software (Genecodes). 

 

2.1.5.1. DNA sequencing reaction and cycling parameters 

The reaction mixture and cycling parameters for DNA sequencing are summarised 

below; 

Reaction mixture 

4.45µl      dH2O (final volume 10µl) 

1.8µl        Sequencing buffer 

0.75µl      Big Dye 

1.0µl        (3.2ng) primer Forward (long)/ Reverse (short) 

2.0µl        Purified DNA 

Cycling parameters for DNA sequencing 

Segment Cycles Temperature (°C) Time 

1 1 96 1 minute 

2 2-26 96 

50 

60 

10 seconds 

5 seconds 

4 minutes 

3 27 4 Hold 
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2.1.6. Plasmid sequencing primer design 

The whole pcDNA3.1/V5 plasmid and HSPB1 gene were sequenced. For this, 

sequencing primers were designed using Ensembl and PrimerX. Selected 

sequences were then ordered from Invitrogen. Primers were between 20-30 base 

pairs long, with a melting temperature of ≥55°C and GC content of between 40-70%. 

Two forward and two reverse primers were designed to amplify components of the 

open reading frame of the plasmid. Sequences used are shown in Table 2.3.  

 

In this study we also aimed to confirm that the plasmid containing the desired 

construct was still intact with all tags and restriction sites present. Plasmid 

sequencing was sent to Geneservice (UCL, UK) with custom primers (3.5 pmol/µl).   

 

2.1.7. Maxi Preps for the production of large volumes of wild type and 

mutated plasmids 

Once all plasmid constructs were generated and sequenced, large quantities were 

then produced for further experiments. A single colony was picked from the 

transformation plate and used to inoculate a starter culture of 2mls autoclaved LB 

broth (Sigma, Dorset, UK) containing 3µl/ml ampicillin. This was incubated for 

approximately 4 hours at 37°C, shaking at 300rpm. The starter culture (200µl) was 

diluted into 200mls of autoclaved LB Broth (with 3µl/ml ampicillin) in a flask with a 

volume at least 4 times the volume of the culture. This was grown up for 12-17 

hours at 37°C, shaking at 300rpm.  

 

DNA was purified using the Endofree Plasmid Maxi Kit (Qiagen, Crawley, UK), 

following the manufacturer’s instructions. The bacterial cells were harvested by 

centrifugation at 6000g, at 4°C for 15 minutes. The bacterial pellet was then 
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resuspended in 10mls of buffer P1 until completely mixed and 10mls of buffer P2 

was added and mixed thoroughly by vigorously inverting 4-6 times before incubating 

at room temperature. After 5 minutes, 10mls of pre-chilled buffer P3 was added to 

the lysate and immediately mixed by inverting 4-6 times. The lysate was then 

poured into a pre-prepared QIAfilter maxi cartridge and incubated for 10 minutes. To 

filter through the column, a plunger was slowly inserted into the tube and carefully 

pushed down, giving approximately 25mls of lysate in a 50ml Falcon tube. Buffer ER 

(2.5mls) was added to the filtered lysate and mixed by inverting the tube 10 times 

before incubating on ice for 30 minutes. During this time, a QIAGEN-tip 500 gravity-

flow column was equilibrated by applying 10mls of buffer QBT. After 30 minutes, the 

filtered lysate was added to the column and allowed to flow due to gravity. The 

column was then washed with two applications of 30mls of buffer QC. The collection 

tube was then exchanged to endotoxin-free plasticware (Nalgene, Thermo Fisher 

Scientific, Denmark) and the DNA was eluted with 15mls buffer QN. To precipitate 

DNA from the buffer, 0.7x the volume of room temperature isopropanol (10.5mls) 

was added to the elute and immediately mixed and centrifuged at 15,000g for 30 

minutes at 4°C. The supernatant was then carefully removed and the pellet of DNA 

was washed with 5mls of 70% ethanol to make the DNA easier to dissolve. This was 

then centrifuged at 15,000g for 10 minutes. The supernatant was removed and the 

pellet was left to air dry for 5-10 minutes. Finally, the pellet was re-dissolved in 50µl 

of TE buffer and DNA yield was determined via nanodrop. 
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Table 2.3  

Primer Sequence  Sequence 

length (base 

pairs) 

GC 

content 

(%) 

Melting 

temperat

ure (°C) 

Hsp27 end of 

gene F 

AAA TCC GAT GAG 

ACT GCC 

18 50 65 

pcDNA3.1 TATA 

F 

GGT GGG AGG TCT 

ATA TAA 

18 44 62 

Hsp27 at 759 R TAC CAG TCG CGG 

AAG GGG TC 

20 65 74 

V5 Reverse GAG AGG GTT AGG 

GAT AGG 

18 55 67 

V5 Forward GTA AGC CTA TCC 

CTA ACC 

18 50 65 

  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3 Sequencing primers designed for Hsp27  

Primers were designed to be optimal for sequencing. Details include sequence 

length, GC content and melting temperature. 
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2.2. Culture of cell lines 

Two cell lines were initially used in these experiments.  Neuro-2A cells (N2A) 

derived from a neuroblastoma in an Albino strain A mouse, obtained from the 

European Collection of Cell Cultures (ECACC; Catalogue number 89121404), were 

maintained and grown in DMEM Glutamax medium (Gibco, Paisley, UK), containing 

10% heat-inactivated Fetal Calf Serum (FCS), 10 IU/ml penicillin, 100 μg/ml 

streptomycin and 2mM L-glutamine. Cells were maintained at 37°C in a saturated 

humidity atmosphere of 95% air and 5% CO2. N2A cells were passaged every 2-3 

days depending on cell confluency (~80%). 

 

SH-SY5Y cell lines (ECACC; Catalogue number 94030304) derived from female, 

human neuroblastoma cells were used for the majority of experiments described in 

this Thesis. Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM-F12, 

Gibco, Paisley, UK) containing 15% FCS, 2mM L-glutamine, 10 IU/ml penicillin, 100 

μg/ml streptomycin (P/S) and 1% final volume non-essential amino acids. Cells were 

maintained at 37°C in a saturated humidity atmosphere of 95% air and 5% CO2 in 

an incubator. The SH-SY5Y cells were passaged every 3-5 days depending on cell 

confluency (~90%). To split the cells, the media was aspirated and replaced with 

5mls PBS to wash the cells. Pre-warmed (37°C) trypsin (0.25%)-EDTA in HBSS (-

Ca2+/Mg2+) (Invitrogen) was then added and the flask was placed in the incubator for 

~40 seconds. When the flask was removed from the incubator, the cells were 

viewed under a microscope to assess the level of cell dissociation. If cells were still 

attached to the flask, mechanical force was applied to detach them. When all cells 

were free-floating, 10mls of fresh culture medium was added to halt the activity of 

the trypsin and the mixture was transferred to a 15ml falcon tube and centrifuged for 

5 minutes (sans brakes) at 1000g at 37°C. The supernatant was then carefully 

aspirated and the pellet re-suspended and carefully triturated in 1ml of cell medium. 
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Cells were then plated at a 1:8 ratio in T75 flasks, or at a cell density of 1000, 2000 

or 5000 cells/cm2
 

on 13mm uncoated glass cover slips in 24-well plates, or at a cell 

density of 1000, 2000 or 5000 cells/cm2 in 96-well plates. Cells were not used past 

passage number 25 to reduce variability caused by lack of neuronal differentiation 

which increases with each passage. To check level of neuronal differentiation, cells 

were stained with -tubulin III (neuronal tubulin, Table 2.4) and DAPI (Sigma 

Genosys, Dorset, UK, nuclear stain) every 5 passages and the number of -tubulin 

III negative nuclei determined. When cell lines were received from ECACC they 

were passaged and frozen in liquid nitrogen in freezing medium (10% DMSO and 

20% extra FCS). 

 

2.2.1. Transfection and differentiation 

Cells were transfected 24 hours after plating using Lipofectamine 2000 (Invitrogen, 

Paisley, UK) as per manufacturer’s instructions. For example, in 24 well plates, cell 

media was replaced with 400μl OPTI-MEM I (Gibco, Paisley, UK) per well and left in 

the incubator for 30 minutes. In solution A, DNA was added (40ng - 160ng) to 50μl 

of OPTI-MEM I per well, while in solution B, 2.0μl (0.67μl and 1.33μl were also 

tested) of Lipofectamine 2000 was mixed into 50μl of OPTI-MEM I per well. 

Solutions A and B were left for 5 minutes before being mixed together (to make 

100μl per well) and incubated for 20 minutes at room temperature. 100μl of the mix 

was then added to each well and the cells were incubated for 6 hours before the 

transfection medium was replaced with culture medium containing 10μM all-trans 

retinoic acid (Sigma Genosys, Dorset, UK). Cells were differentiated for no more 

than 72 hours due to the transient nature of Lipofectamine 2000 transfection.  
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2.2.2. Induction of cell stress 

In some experiments, cells were exposed to various forms of cellular stress. 

Chemical cell stressors known to induce specific forms of stress relevant to Hsp27 

function were used in this part of the study. 

 

2.2.2.1. Hydrogen peroxide 

Hydrogen Peroxide (H2O2, Sigma Genosys, Dorset, UK) was used as a model of 

oxidative stress as well as a positive control of cytotoxicity. When added to cells it 

causes unsustainable production of Reactive Oxygen Species (ROS), leading to 

excessive and irreparable cell damage and cell death (Iordanov and Magun, 1999). 

H2O2 was added at a final concentration of 100μM in SH-SY5Y medium for 24 hours 

before fixation and analysis of experiments.  

 

2.2.2.2. Cytochalasin D 

Cytochalasin D disrupts actin microfilaments, therefore destabilising the cellular 

architecture and effecting cellular functions directly dependent on its integrity. 

Therefore, Cytochalasin D disrupts axonal transport, neurite outgrowth and other 

normal functions of the cellular actin network (Goddette and Frieden, 1986). Under 

normal conditions, Hsp27 has been shown to actively bind to actin within the cell 

(Mounier and Arrigo, 2002), so Cytochalasin D was used to measure the effects of a 

cell stressor which has an action on a protein directly linked to the Hsp27 pathway. 

Cytochalasin D (Sigma Genosys, Dorset, UK) was added at final concentrations of 

0.1μM, 0.2μM, 1μM, 5μM, 10μM, 20μM, 50μM, 100μM and 150μM in SH-SY5Y 

medium for 24 hours before fixation and analysis. 
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2.2.2.3. Colchicine 

Colchicine is a microtubule-disrupting agent widely used in anticancer therapy 

research due to its effects on the stability of microtubules (Cuthbert and Shay, 

1983). It irreversibly binds to tubulin and disrupts the cells natural dynamic instability 

(Falconer et al., 1994). Hsp27 has been shown to functionally interact directly with 

actin in vitro (Mounier and Arrigo, 2002), but has a less well defined interaction with 

tubulin (Williams et al., 2005) so Colchicine was used as an Hsp27 independent cell 

stressor. Colchicine (Sigma Genosys, Dorset, UK) was added at final concentrations 

of 0.1μM, 0.2μM, 1μM, 5μM, 10μM, 20μM, 50μM, 100μM and 150μM in SH-SY5Y 

medium for 24 hours before fixation and analysis.  

 

2.2.2.4. Heat shock 

Heat shock was performed on cells after 7DIV at 43˚C for 30 minutes. Cells were 

then incubated at 37°C in a saturated humidity atmosphere of 95% air and 5% CO2 

for 4 hours before fixation. 

 

2.2.3. Cell fixation 

At 4 days after plating (4DIV) and 3 days following transfection, cells were analysed 

live under the microscope to gauge confluence and health status. The culture 

medium was replaced by 4% paraformaldehyde for 15 minutes and then washed 

three times with PBS. The cover slips were then stored at 4°C until analysis or less 

than 1 month. If coverslips were to be stored for more than 1 month, the PBS was 

supplemented with 0.1% Sodium azide to inhibit bacterial and fungal growth. For 

some experiments, cells were fixed 7DIV. 
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2.2.4. Transfection efficiency 

To determine the transfection efficiency, cover slips were immunostained for V5 

(1:500, Invitrogen, Paisley, UK, Table 2.4) and co-stained with the nuclear marker 

DAPI. Details of the staining protocol are given in Section 2.5. Images of the stained 

cultures were captured at 40x magnification. For each experiment, 5 representative 

images per coverslip were captured measuring 328 x 246 m using fluorescent 

microscopy (Leica HC), using a Leica DFC 420C colour camera and the Leica 

Application Suite Version 2.8.1 (LAS).  The pictures were then individually analysed 

using Adobe Photoshop (Adobe). The number of DAPI stained cells was counted to 

give a total number of cells per visual field. The number of cells strongly and weakly 

immunoreactive for V5 was established using Photoshop’s auto-contrast function to 

standardise intensity between cultures, allowing comparison of strong and weak V5 

immunoreactivity. In this way, the total number of transfected cells and the number 

of cells that had been transfected with single or multiple copies of the DNA could be 

determined. The total number of cells per coverslip was divided by the total number 

of transfected cells per coverslip and the average was plotted graphically.  

 

2.3. Biochemical assays 

In order to determine the effects of Hsp27 mutations on the response to cellular 

stress, we examined cell viability using a biochemical assay. 

 

2.3.1. The lactate dehydrogenase (LDH) assay 

Lactate Dehydrogenase (LDH) is a cytoplasmic enzyme which is released into the 

medium upon cell lysis. Released LDH oxidizes lactate to pyruvate, which then 

reacts with the tetrazolium salt INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl 

tetrazolium) to form water-soluble formazan dye which can be detected 

spectrophotometrically.  The principle of the LDH assay is based on the fact that as 
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cells die, LDH is released and this can be measured from the supernatant and 

therefore can be used as an assay of cytotoxicity. Because LDH is released into the 

culture medium upon cell lysis, a protein assay can also be carried out on the 

adherent cell layer, allowing the results to be standardised. 

 

Cells were plated at a cell density of 2000 cells/cm2
 

96-well plates in 100μl 

supplemented DMEM-F12 for 24 hours. After 1DIV, cells were transfected with wild 

type or mutant Hsp27 constructs. All drugs and toxic agents were added to the cells 

at 4DIV. At 5DIV, 2% Triton X-100 was added to some control wells. These controls 

produced the maximum release of LDH from all cells in culture which was then 

measured. These controls were used to ensure maximum saturation levels. Cells 

were then centrifuged at 250g for 5 minutes. The supernatant was removed and 

transferred to a 96-well plate for LDH analysis. The pellet containing cells was kept 

for protein analysis. The 2 separate LDH reagents (Roche, Welwyn, UK) used for 

the assay, Diaphorase (a catalyst) and INT (the dye solution) were mixed as per 

manufacturer’s instructions to create 100μl per well. After addition of reagents to the 

cell supernatant, the 96-well plate was incubated at room temperature in the dark 

(as reagents are photosensitive) for 40 minutes. All experiments were incubated for 

the same length of time for consistency. Absorbance was measured at 490nm on a 

spectrophotometer. Absorbance values from LDH assays were individually 

normalized against protein values obtained from a protein assay on the pellet. 

 

2.3.2. Protein assay 

To standardise the LDH assay and normalise for cell density variation, a protein 

assay was carried out on the cell pellet from the 96-well plates. 100μl homogenising 

buffer (2% SDS, 2mM EDTA, 2mM EGTA dissolved in 500ml 5mM Tris (5mM TRIS 

HCL, 5mM Trizma base in dH2O) pH6.8) was added to each well and cell pellet was 
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triturated three times. BSA standards (Bovine Serum Albumin, Sigma Genosys, 

Dorset, UK) were diluted to make a protein concentration gradient (2mg/ml – blank) 

and 10μl of BSA standards and samples were added to a clean 96-well plate. The 

Bio-Rad DC (detergent compatible) Protein Assay contained 3 reagents, A, B and S 

(Bio-Rad, Hercules, CA) that were mixed as per manufacturer’s instructions to give 

225μl per sample well (200μl reagent B and 25μl reagent A and S). Plates were 

incubated at room temperature for 15 minutes and absorbance was measured at 

750nm on a spectrophotometer. 

 

2.3.3. Data and statistical analysis 

Absorbance values obtained from the LDH release assay from each individual well 

was normalised to concentration of protein per well to standardise individual wells to 

each other (Abs/mg protein) giving the absorbance of LDH relative to protein 

content per well. All calculations were carried out using Excel (Microsoft Office). 

Normalised LDH values were calculated for each condition (6 wells per condition) 

using the following formula. 

=      Absλ450       *10 

CProt (mg/ml) 

In each experiment, and for each experimental condition, an average and a 

standard error of the 6 wells of each condition was calculated. For each plate and 

for each condition, values were further normalised against the mean LDH results of 

6 wells transfected with wild type Hsp27, so the effects of the Hsp27 mutations was 

expressed as a percentage change compared to cultures transfected with the wild 

type protein. 

 

= (Av. Value / Av. wt Hsp27 Control) * 100 
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By standardising against Hsp27wt transfection, cell death due to protein 

overexpression and transfection toxicity was accounted for and differences in plate 

variation were negated. This ratio could then be compared between experiments. 

 

Data was statistically analysed using the Kruskal-Wallis One Way Analysis of 

Variance on Ranks (SigmaStat). In addition, following advice from a statistician, 

multilevel mixed model analysis with estimates of fixed effects and multiple 

comparisons (SPSS) was also performed. 

 

2.4. Cell death assessed using fluorescence-activated cell sorting (FACS) 

To further assess cell survival, FACS was used as an alternative method to assess 

the extent of cell death in transfected cultures. To differentiate between live and 

dead cells, a fluoro-labelled Annexin-V antibody was applied. FACS is a sub-type of 

flow cytometry. It provides a method for sorting a heterogeneous mixture of cells 

based on the specific light scattering and fluorescent characteristics of each cell.  

 

Cells were first plated at a cell density of 10,000 cells/cm2
 

onto 24-well plates and 

supplemented with SH-SY5Y media for 24 hours. After 1DIV, cells were transfected 

using Lipofectamine 2000 as per manufacturer’s instructions and differentiated as 

described above. At 5DIV, all media was removed and the cells were carefully 

suspended in Dulbecco’s PBS (Sigma Genosys, Dorset, UK). All the following steps 

were carried out on ice. Cells were washed twice to remove media by centrifugation 

at 4˚C at 1000rpm for 5 minutes before the supernatant was aspirated and replaced 

with PBS. The cells were triturated and the process was repeated. Cells were then 

resuspended at 1-2 x 106 cells/ml in 1x Annexin-V Binding Buffer (10 mM 

HEPES/NaOH, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2) (Invitrogen, Paisley, UK). The 

cells were aliquotted into 100μl before 5μl of Annexin-V FITC and 10μl of Propidium 
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Iodide (PI) Buffer were added to each tube. They were incubated at room 

temperature for 15 minutes in the dark before 400μl of 1x Annexin-V Binding Buffer 

was added to each tube. The cells were analysed by flow cytometry within 1 hour of 

staining. 

 

2.5. Immunocytochemistry 

Transfected cells were examined for the presence and expression pattern of a 

number of protein markers using immunocytochemistry. The primary and secondary 

antibodies used in this study are shown in Table 2.4. To identify transfected cells 

when using either SH-SY5Y cells or primary motoneurons, all cultures were stained 

with a V5 unconjugated antibody (Sigma Genosys, Dorset, UK) (Table 2.4) which 

recognised the V5 epitope which was contained in the pcDNA3.1/V5 plasmid and 

attached to virally transfected Hsp27 in transfected primary motoneurons.  

 

The cells were permeabilised in PBS-0.1% Triton X-100 for 15 minutes before being 

washed three times with PBS. To block non-specific binding sites, the cells were 

incubated in 3% normal serum (dependent on 2˚ antibody, see Table 2.4) and 5% 

milk protein in PBS for 1 hour at room temperature. A primary antibody (Table 2.4) 

in blocking serum was then added to the cells and incubated overnight at 4˚C. The 

cover slips were then washed three times in PBS. The cells were then incubated for 

2 hours at room temperature with an appropriate secondary antibody conjugated to 

a fluorophore (see Table 2.4 for concentration). If no more protein markers were to 

be stained for, DAPI (1:1000 in PBS) was applied for 15 minutes to identify the 

nuclei of cells. Cover slips were mounted onto uncharged glass slides (VWR) using 

non-set mounting medium (Citifluor), covered and stored at 4°C for up to 1 month 

before analysis. If a coverslip was to be co-stained with other markers of protein  
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Table 2.4 Antibodies used in this Thesis  

Primary and secondary antibodies used to determine the presence and 

expression pattern of protein markers in vitro using immunocytochemistry. Details 

include species they were raised in, concentration used and source. 
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Table 2.4  

Antibody Dilution Species Manufacturer and Cat. 
Number 

Primary Antibodies 

V5 1:500 mouse Sigma 

V8012-50UG 

Hsp27 1:1000 goat Santa-Cruz 

sc-1048 

-tubulin III 1:1000 rabbit Covance 

PRB-435P 

Phalloidin-488 1:250 toxin Invitrogen 

#A12379 

Neurofilament 200 – 
heavy chain 

1:100 rabbit Sigma 

#N4142 

Tau 1:2000 mouse Dako 

#A0024 

SC35 1:1000 mouse Sigma 

#S4045 

TDP-43  

C-terminus 

1:500 rabbit ProteinTech 

#10782-2-AP 

Ubiquitin 1:500 rabbit GeneTex 

#GTX78236 

SMN, clone 2B1 1:200 mouse Millipore 

#05-1532 

MAP2 1:1000 rabbit  

 

Secondary Conjugates 

AlexaFluor-568 anti-
mouse 

1:1000 goat Invitrogen 

A-11004 

AlexaFluor-488 anti-
rabbit 

1:1000 goat Invitrogen 

A-11008 

AlexaFluor-568 anti-
rabbit 

1:1000 donkey Invitrogen 

A-11011 

AlexaFluor-568 anti-
goat 

1:1000 donkey Invitrogen 

A-11057 

DAPI 1:2000  Sigma 

#D8417 
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expression (double-stained), the above protocol was repeated with appropriate 

primary and secondary antibodies (Table 2.4) before staining with DAPI. 

 

Immunostained cells were analysed using two different image capture systems 

(Figure 2.2). In most cases, cells were analysed by fluorescent microscopy (Leica 

HC), and images were captured on a Leica DFC 420C colour camera using the 

Leica Application Suite Version 2.8.1 (LAS).  In some cases confocal microscopy 

was used to visualise cellular inclusions and create 3D images (Z-stacking). Images 

were captured on a Confocal Laser Scanning Microscope (Zeiss LSM 510 Meta) 

using manufacturer’s software (Carl Zeiss Ltd, Hertfordshire, UK). Images were then 

analysed in Adobe Photoshop (Adobe) and Metamorph (Molecular Devices, UK). 

 

2.6. Analysis of cell morphology and neurite outgrowth 

In order to characterise morphological changes in the wild type and mutant Hsp27 

transfected cells, cell cultures were transfected with either wild type or mutant 

Hsp27. After 5DIV and 7DIV to give varying time courses of cellular differentiation, 

all media was removed from the cells and they were fixed in 4% paraformaldyhyde. 

Cover slips were stained for V5, β-tubulin III (a neuronal marker to visualise the cell) 

and DAPI. Neurite outgrowth measurements were performed using a previously 

described method (Ransome and Turnley, 2008), with some modifications. Four 

coverslips per condition were analysed per experiment. Images were captured at 

20x magnification measuring 655 x 491 m. Approximately 20 images were captured 

per coverslip using fluorescent microscopy (Leica HC), on a Leica DFC 420C colour 

camera using LAS. From the images captured, 1 in every 4 was randomly chosen 

and analysed using Metamorph (Molecular Devices, Berkshire, UK) software. At 

least 100 cells per condition were analysed. A cell process was considered as a 

neurite if its length was at least 1.5 times the cell body diameter. The total number of  
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Figure 2.2 

A 

B 

Figure 2.2 Diagrammatic representations of the wide field fluorescent 

microscope and confocal laser scanning microscope. 

A. wide field fluorescent microscope, B. confocal laser scanning microscope 
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neurites was counted for each cell, and the length of each individual neurite was 

measured. For each cell, the following parameters were established;  

 Total neurite number per cell (μm) 

 Average neurite length per cell (μm) 

 Length of the longest neurite (μm)  

 

Further morphological assessment included; 

 Assessment of neuritic branching as a measure of differentiation. An 

example of neurite branches is shown in Figure 3.14A. 

 Presence of neuritic stumps. Figure 3.15A shows a cell with neuritic stumps. 

 Presence of lamellipodia. Figure 3.16A shows a cell with lamellipodia. 

 Investigation of vacuolisation (See Figure 3.17A for examples of vacuoles). 

Data was logged and all analysis was undertaken in Excel (Microsoft Office 2007). 

Statistical analysis was carried out using SigmaStat. 

 

2.7.  Primary mixed ventral horn neuron cultures 

Mixed motoneuron cultures were prepared using a protocol adapted from that 

described by Camu and Henderson (Camu and Henderson, 1994). Primary mouse 

motoneurons were isolated from wild type mouse embryos at gestational age E13. 

Pregnant C57BL/6 x SJL females were killed by cervical dislocation, in accordance 

with the code of practice for the humane killing of animals under schedule 1 of the 

Animals (Scientific Procedures) Act 1986. 

 

Embryos were removed from the uterine horn and transferred to a Petri dish 

containing Hank’s Balanced Saline Solution (HBSS) (Sigma-Aldrich Genosys, 

Dorset, UK) supplemented with 2% P/S. Spinal cords were separated from the 
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surrounding tissue using fine curved forceps. The meninges were carefully removed 

and the dorsal horn cut away from the ventral portion of the spinal cord and 

discarded. The ventral horns of individual embryos were pooled in fresh HBSS + 2% 

P/S on ice and transferred to a class II microbiological flow hood; all further steps 

were performed under sterile conditions. 

 

The spinal cords were incubated in a 0.025% trypsin solution (type XII-S) (Sigma 

Genosys, Dorset, UK) in HBSS for 10 minutes and cells were agitated after 5 

minutes to ensure full trypsination. They were then transferred to a fresh solution 

containing 800μl L-15 medium (GIBCO/Invitrogen, Paisley, UK), 100μl 4% bovine 

serum albumin (BSA) (Sigma-Aldrich Genosys, Dorset, UK) and 100μl Dnase 

(1mg/ml) (Sigma-Aldrich Genosys, Dorset, UK). The spinal cords were agitated until 

they had disaggregated and were then slowly triturated 6 times using a P1000 tip 

and left to settle. After 2 minutes the solution was transferred to a fresh 15ml 

centrifuge tube (care was taken to avoid transferring any un-dissociated fragments). 

This process was repeated twice, increasing the L-15 medium to 900μl and 

decreasing the Dnase (1mg/ml) to 30μl while increasing levels of trituration. The 

three supernatants were pooled together before being spun through a 1ml 4% BSA 

cushion for 5 minutes at 370g.        

 

Once the supernatant had been removed, the pellet was resuspended in complete 

neurobasal medium (CNB) containing neurobasal medium (GIBCO/Invitrogen, 

Paisley, UK), B27 supplement (1unit/ml) (GIBCO/Invitrogen, Paisley, UK), 2% horse 

serum (HS) (PAA, Somerset, UK), 0.5 mM L-glutamine (GIBCO/Invitrogen, Paisley, 

UK), 0.05% 2-mercaptoethanol (GIBCO/Invitrogen, Paisley, UK), ciliary neurotrophic 

factor (CNTF) (500pg/ml) (Alomone labs, Bucks, UK), glial cell-line derived 

neurotrophic factor (GDNF) (100pg/ml) (Alomone labs, Bucks, UK), brain derived 
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neurotrophic factor (BDNF) (100 pg/ ml) (Alomone labs, Bucks, UK) and 1% P/S. 

Cell density was calculated using a haemocytometer and the cells were then ready 

for plating. 

 

Glass coverslips (13mm) were put into 24 well plates, treated with poly-ornithine 

(1.5mg/ml in sterile, distilled H20) (Sigma-Aldrich Genosys, Dorset, UK) and stored 

in an incubator at 37°C in a saturated humidity atmosphere of 95% air and 5% CO2 

the night before culturing. Before isolation of the motoneurons, the poly-ornithine 

was taken off of the plate and replaced with laminin (1mg/ml in L-15 medium) 

(Sigma-Aldrich Genosys, Dorset, UK); the plate was then returned to the incubator 

for the duration of the isolation protocol. 

 

Once the laminin solution had been removed, 500μl of CNB was added to each well 

and the mixed ventral horn cells were seeded on to the treated coverslips at a 

density of 50,000 cells/cm2. The plate was returned to the incubator and the cultures 

maintained for 7 days before being fixed by replacing culture medium with 4% 

paraformaldehyde for 15 minutes and then washing three times with PBS for 

staining. During this culture period, the cells were virally transduced 48 hours after 

plating, see Section 2.7.2 for methods. 

 

2.7.1. Determination of purity of ventral horn motoneuron cultures 

To determine the percentage of motoneurons in an average culture, ventral horn 

preparations from 3 different days were examined. For each experiment, 3 

coverslips were immunostained for MAP-2 (Table 2.4) and co-stained with the 

nuclear marker DAPI. Details of the staining protocol are given in Section 2.5. 

Images of the stained cultures were captured at 10x magnification. For each 

experiment, 5 representative images per coverslip were captured measuring 328 x 



115 
 

246μm using fluorescent microscopy (Leica HC), using a Leica DFC 420C colour 

camera and the Leica Application Suite Version 2.8.1 (LAS).  The pictures were 

then individually analysed using Metamorph (Molecular Devices, UK). The number 

of DAPI stained cells was counted to give a total number of cells per visual field. 

The number of cells immunoreactive for MAP-2 was then established using 

Metamorphs cell count function. The percentage of MAP-2 positive cells per 

coverslip was calculated and the average was plotted graphically.  

 

2.7.2.  Generation of third generation lentiviral vectors for the delivery of 

wildtype and mutant Hsp27 

Primary ventral horn motoneuron cultures were transfected 48 hours after plating 

using third generation lentiviral vectors containing wildtype and mutant Hsp27. All 

viral vectors were created by Dr Bernadett Kalmar and a basic description of the 

viral components is given here. 

 

2.7.2.1. Viral backbone 

For the generation of the lentivirus a third generation lentiviral backbone (pCDH1-

MCS1-EF1-copGFP, Systems Biosciences, US) was used. The removal of 

replication elements made this HIV-1 virus safe to work with. The expression 

lentivirus contained the genetic elements responsible for packaging, transduction 

and stable integration of the viral expression construct into genomic DNA and 

expression of the target gene sequence.  The expression system chosen had dual 

promoters: a CMV promoter to ensure high expression level of the target gene and 

an EF1 housekeeping promoter to drive the expression of a reporter gene, GFP 

(see vector map in Figure 2.3A). 
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Figure 2.3 

A 

 B 

Figure 2.3 Diagrammatic representations of lentiviral vector map and gene 

inserts. 

A. pCDH1-MCS1-EF1-copGFP lentiviral vector map, B. DNA selected from 

pcDNA3.1 plasmids for the generation of lentiviruses and C. Gene insert 

generated using PCR from the original pcDNA3.1b plasmid. 

 

C 
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2.7.2.2. Gene inserts and restriction site choice 

Gene inserts for the generation of lentiviral vectors were PcDNA3.1/V5 plasmid 

constructs containing either wildtype Hsp27 or mutant Hsp27 genes (Ser135Phe, 

Arg140Gly and Pro39Leu mutations were used). Thus, in total 4 vectors were 

generated: wildtype Hsp27 and 3 mutants. From the bacterial plamids the sequence 

containing the Hsp27 gene, several restriction sites and the V5 tag was selected 

(vector map of the selection is shown in Figure 2.3B) 

 

First the restriction sites for cloning were selected from the viral backbone: on the 5’ 

end EcoRI; on the 3’ end BamHI was selected. In order to be able to insert the 

Hsp27 genes into the viral backbone, these restriction sites were added to the 

Hsp27 gene (Figure 2.3C).  

 

2.7.2.3. Titration of viral particles 

The relative titre (strength) of the viral stock is measured by flow cytometry using the 

host cell line used increase viral stock. This titre, however is always specific to that 

given cell type and may not be useful for other cell types, particularly not for the use 

of primary cells. Here, it was used to produce comparable titre data between 

batches of viruses and to titre values measured by other laboratories. The key terms 

used for the titration are:  

Transducing Units (TU)/ml: gives an indication of the concentration of virus.  

Multiplicity of Infection (MOI): the ratio of TUs to the number of cells being 

infected. For example, when 5x104 cells are to be infected at an MOI of 10, then 

5x105 TUs should be added to the cells. The titre in TU/ml was calculated according 

to the formula: 
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1x105 seeded cells x % GFP positive cells x 1000 

µl of vector added to the well 

 

Using the calculation above, the following titres were calculated for use in HEK cells: 

 Titre (TU/ml) 

Empty vector  2.9x107 

WT Hsp27  1.07x106 

Ser135Phe Hsp27 8.5x105 

Pro39Leu Hsp27 1.56x106 

Arg140Gly Hsp27 1.6x106 

 

 

2.7.2.4. Viral transduction and multiplicity of infection 

Primary ventral horn motoneuron cultures were prepared as described in Section 

2.7 and transfected 48 hours after plating using serial dilutions of known 

concentrations of virus to ascertain the correct MOI. In the literature, the MOI of 

primary motoneurons ranges from 10 to 20 (Tang et al., 2001)(Kirby et al., 2011). 

Cells were fixed and immunostained for MAP-2, a marker of motorneurons (Details 

of the staining protocol are given in Section 2.5). Images taken using the method 

described in Section 2.7.1 were used to calculate when 10% of motoneurons were 

virally transfected. At this concentration there is a low level of infection to give lower 

protein over expression and less protein level variability. 
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2.8. Western blot  

 

2.8.1. Sample preparation 

Primary motoneuron cultures were grown in vitro on 6-well plates at a concentration 

of 2.5x104 cells per cm2. To prepare samples for western blots the culture media 

was firstly removed and the cells washed in 5ml of PBS on ice. Next the cells were 

homogenized on ice for 5 minutes using 200µl homogenising buffer consisting of 

50mM Tris, 150mM Sodium Chloride, 0.1% SDS and 1% Triton X100 (Sigma-

Aldrich, Dorset, UK). The buffer also contained a protease inhibitor cocktail (1:100, 

Sigma-Aldrich, Dorset, UK) to prevent protein digestion. Homogenised cells were 

removed from the 6-well plates using a cell scraper and pipetted into 1ml Eppendorf 

tubes. The homogenised samples when then left on ice for 30 minutes to ensure the 

complete breakdown of all cell membranes in the sample. The samples were then 

centrifuged at 14,000 rpm at 4°C for 25 minutes and the supernatant transferred to 

fresh Eppendorf tubes, discarding the pellet. These tubes were labelled 

appropriately and stored at -80°C or used immediately for western blots. 

 

2.8.2. Polyacrylamide gel preparation 

Electrophoresis polyacrylamide gels were prepared using the Biorad gel casting 

system to create gels of 1mm thickness. The resolving gel was prepared at a 10% 

concentration (2.5ml Protogel resolving buffer, 4.135ml dH2O, 3.3ml 30% 

acrylamide, 100μl 10% ammonium persulphate and 10μl 

tetramethylethylenediamine (TEMED)) and pipetted into pre-prepared glass 

chambers. A thin layer of water saturated butanol (1:1) was then added to prevent 

evaporation of the gel buffer and the gel was left to set for approximately 1 hour. 

When the gel was set, the butanol was removed and the stacking gel was prepared 

(4.137ml Protogel stacking buffer, 833μl 30% acrylamide, 25μl 10% ammonium 
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persulphate and 5μl TEMED) and added on top of the set resolving gel. Combs 

were then added to create 10 sample wells and the gel was left to set for a further 

30 minutes at room temperature. 

 

2.8.3. Gel electrophoresis and nitrocellulose membrane transfer 

Each protein sample (30µg) was prepared using PBS to equalize all volumes 

between samples. Laemmli buffer stock solution (0.5 M Tris, 25 ml glycerol, 20 ml 

10% SDS and 20 ml 0.05% bromophenol-blue in 22.5 ml dH2O) was prepared by 

adding 50 µl β-mercaptoethanol to 950 µl laemmli buffer (1:20 dilution). Laemmli 

buffer was then added to the protein samples at 1:4 dilution and the diluted samples 

were incubated at 95oC for 5 minutes to denature the proteins. Protein samples 

were next loaded into separate wells of a 10% polyacrylamide gel. Precision Plus 

Protein Western C standards (10 μl, Bio-Rad Laboratories, CA, USA) was loaded 

into one well to provide a protein ladder for reference of molecular weights. Loaded 

gels were clamped into an electrode block and submerged in running buffer 

consisting of 15.15g Tris base, 72g glycine and 5g SDS dissolved in a litre of water. 

Electrodes were attached to the block and electrophoresis run at 160 volts for 60 

minutes. 

 

Next the polyacrylamide gel was removed from the apparatus and placed on top of 

a nitrocellulose membrane soaked in an ice cold transfer buffer consisting of 100 ml 

stock transfer buffer (29.3 g glycine, 58.1 g Tris base and 3.75 g SDS in 1 litre 

dH2O), 200 ml methanol and 700 ml dH2O. Filter paper and sponges were placed on 

either side of the gel and membrane to ensure moisture was retained at all times. 

The gel and membrane were clamped into an electrode block such that the 

membrane was between the gel and the positive electrode. This allows the transfer 

of negatively charged protein from the gel onto the membrane. The block was 
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immersed in ice cold transfer buffer and run at 90 volts force for 70 minutes. Once 

complete the nitrocellulose membrane was taken out and stained with Ponceau 

solution (Sigma-Aldrich, Dorset, UK) for protein bands which confirms the transfer of 

proteins from the gel to the membrane. 

 

2.8.4. Immunofluorescent-staining and analysis of western blots 

All room temperature incubations in the immunoblotting step were done on a plate 

rocker to ensure full coverage of the nitrocellulose membranes. Membranes were 

washed 3x10 minutes in PBS-Tween (0.1%) to remove the Ponceau solution before 

being blocked in 10ml of blocking solution consisting of 0.1% Tween and 3% milk fat 

protein in PBS for 1 hour at room temperature. The membranes were again washed 

3x10 minutes with PBS-Tween to remove blocking solution and 10ml of primary 

antibody solution (HSF1; 1:500, α-tubulin; 1:1000 in fresh blocking solution) was 

added. The membranes were incubated at 4oC overnight. 

 

Following this incubation, the membranes were washed 3x10 minutes in PBS-

Tween. Secondary antibody solutions were prepared using rabbit anti-mouse IRDye 

800CW or goat anti-rabbit IRDye 700DX conjugated IgG (1:5000, LI-COR 

Biosciences, UK) diluted in PBS-Tween. The membranes were subsequently 

incubated with the secondary antibody solution for 2 hours at room temperature. 

Three final washes in PBS-Tween were performed to remove the secondary 

antibody.  

 

For visualisation of the protein bands, membranes were scanned on an Odyssey 

Infrared Imaging System (LI-COR Biosciences, UK) and quantification of developed 

images was performed using Odyssey program quantification software.   
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2.9. Live-cell imaging of mitochondrial membrane potential (Δψm) 

In order to functionally examine the health and integrity of mitochondrial function, 

Tetramethylrhodamine methyl ester (TMRM) was utilised to measure Δψm. TMRM 

is a cell-permanent potentiometric indicator which is non-toxic to live cells. TMRM 

has a single delocalised positive charge and so becomes sequestered in 

mitochondria as a result of the electrochemical potential gradient that exists 

between the cytoplasm and mitochondria. Thus, the cationic nature of TMRM will 

cause higher fluorescence intensity at a more negative Δψm, and a loss of 

fluorescence intensity as Δψm becomes more positive (as the mitochondrial 

membrane depolarises)(Gandhi et al., 2009).  

 

Primary ventral horn motoneuron cultures were plated at 25,000 cells/cm2 in 2mls 

CNB on commercially available imaging dishes (MatTek, Ashland, US), virally 

transduced after 48 hours and used for imaging after 7DIV. Cells were first washed 

twice with 1ml of recording media (RM) warmed to 37˚C and consisting of 10mM 

HEPES (Fisher Scientific, New Jersey, US), 156mM NaCl, 10mM D-Glucose, 3mM 

KCl, 2mM MgSO4, 2mM CaCl2 and 1.25mM KH2PO4 (all VWR/BDH, Poole, UK) in 

dH2O, pH 7.35. After washing, cells were incubated for 30 minutes in RM with 30nM 

TMRM, 1μM Calcein blue AM and 0.005% Pluronic F-127 acid (all Invitrogen, 

Paisley, UK). Calcein, a cell-permanent dye used as a short-term labeller of cells, 

was used to visualise motoneurons in a mixed cell culture. Pluronic acid, acting as a 

surfactant, was added to aid the dispersion of Calcein, a water insoluble molecule. 

After the 30 minute loading period, cells were washed with RM containing only 

30nM TMRM and cells were then incubated in fresh RM/TMRM for the remainder of 

the experiment.  
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All recordings and images aquired were performed on a Confocal Laser Scanning 

Microscope (Zeiss LSM 510 Meta) described in Figure 2.2 using manufacturer’s 

heated staging and software (Carl Zeiss Ltd, Hertfordshire, UK). TMRM was excited 

at 543nm and the emitted fluorescence was imaged using a 545nm dichroic filter 

and a 560nm longpass emission filter. Before the first experiment the microscope 

settings for laser intensity (laser power), amplifier onset and detector gain were 

adjusted to create reference settings which were not adjusted during analysis. The 

only parameter which could be changed once the experiments had begun was laser 

power as the linear relationship between the laser power and fluorescent intensity 

allowed correction for changes to the laser power. This meant that all 

measurements taken could be compared. To get optimum resolution, the pinhole 

was set to 1 airy unit (Between 0.8 and 1μm) and laser power was reduced to the 

lowest level possible, between 0.05% and 2% while still maintaining a dynamic 

range (the resolution of light intensity) of TMRM intensity which was judged by a cell 

staining profile containing intensity levels of between 1000 and 4000. Laser power 

reduction was important due to induction of photobleaching and the release of 

reactive oxygen species which in turn would induce a depolarisation of Δψm. The 

amplifier onset (black level setting) and detector gain (PMT sensitivity) were then set 

(and not changed) by using the range indicator to eliminate any areas of saturation 

while maintaining dynamic range. Motoneurons were identified based on 

morphology including size, number of neurites (generally at least 3 main projections 

from the cell body) and intensity of Calcein staining which tended to be higher in 

motoneurons. Firstly an image at 63x magnification of the neurons was taken to 

visualise the GFP marker in virally transfected cells. This was used to distinguish 

between transfected and nontransfected cells within the same imaging dish. Finally, 

a Z-stack was taken of the cells which were set to include the whole cell body 

volume. Images were taken at a scan speed of 7, with a size of 512 x 512 pixels and 

digitised to 12 bits which provided 4096 grey levels to improve resolution. Images of 
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TMRM and Calcein were taken successively on two separate channels to avoid 

cross talk and to distinguish and measure only the TMRM within the volume of the 

cell, not in the glial layer below. An average of 15 motoneurons was imaged over a 

30 minute period after which the cells were discarded. In this system, TMRM signal 

is stable for at least one hour post-loading (Figure 5.7). 

 

2.9.1. Live-cell imaging of Δψm and drug application 

To functionally examine the health and integrity of the individual components 

maintaining the Δψm and therefore mitochondrial function, drugs with known modes 

of action upon different mitochondrial components were added at specific times. 

Cells were plated and washed as described above in Section 2.8 although they 

were not loaded with Calcein or Pluronic F-127 acid. 

 

All recordings and images were gained using the same microscope and settings as 

described above in section 2.8. Only one field per imaging dish could be used due 

to the single application of drugs while following a single time series and so fields 

had to include both transfected and non-transfected motoneurons as comparative 

controls. Images were taken every 5 seconds on a time series and drugs were 

added in a specific order directly to the RM/TMRM in the imaging dish at prescribed 

time points (described in Section 2.8.1.1). Firstly, Oligomycin (2μg/ml, Sigma 

Genosys, Dorset, UK), an ATPase inhibitor was added after a 30 second baseline 

reading. After a further 120 seconds, Rotenone (5μM, Sigma Genosys, Dorset, UK) 

was added directly to the imaging dish to inhibit Complex I of the mitochondrial 

electron transport chain. Finally, FCCP (1μM, Sigma Genosys, Dorset, UK) was 

added 30 seconds after the addition of Rotenone. FCCP uncouples oxidation from 

phosphorylation so ATP synthesis cannot occur and is used to completely 
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depolarise the Δψm. The recording was finished after a further 20 seconds and the 

cells discarded. 

 

2.9.1.1. Protocol for addition of drugs and expected responses 

The drug protocol and expected responses in TMRM fluorescence intensity are 

summarised below; 

30 seconds Oligomycin (2μg/ml)  

If ATPase has been reversed by cell to maintain Δψm will see a 

steady decline in TMRM fluorescence intensity. 

If Δψm is not being actively maintained there will be no change in 

TMRM fluorescence intensity. 

150 seconds Rotenone (5μM) 

Immediate decrease in TMRM fluorescence intensity.  

If cell is more reliant on Complex I than Complex II then there will be 

a bigger decline. 

180 seconds FCCP (1μM) 

  Immediate dissipation of TMRM signal as Δψm depolarises. 

 

2.9.2. Data and statistical analysis 

In both Δψm and drug Δψm analysis experiments, at least 3 imaging dishes from at 

least 5 pooled wild type embryos were used per experimental parameter per culture, 

and experiments were carried out on at least 3 cultures prepared on separate 

occasions. Images were analysed using Volocity (PerkinElmer, US) image analysis 

software. Levels of TMRM 3D pixel (voxel) intensity were measured in individual 

cells. Cell bodies (objects) were identified by calcein voxel intensity levels set at the 
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start of experimentation and the volume of intensity measured was turned into a 

region of interest (ROI). The intensity levels of TMRM staining were then calculated 

only within that ROI. TMRM intensity levels were set with a lower level of 311 to 

distinguish individual clumps of mitochondria and a fine filter was added to remove 

background noise. The average intensity of the TMRM was then calculated:  

 

mean intensity (Ch3-T1) x volume (µm³) 

total volume (µm³) 

 

By standardising the intensity reading, individual voxel intensity was represented. 

Mitochondria clumps within the cell and smaller groups or individual mitochondria 

having a lower TMRM intensity, therefore standardisation gives a representative 

intensity of Δψm. 

 

The standardised intensities of individual cells were grouped into transfected or non-

transfected based on whether cells with or without GFP expression and averaged 

within an imaging dish to give a ratio comparison of transfected and nontransfected 

cells within the same dish. The standard error of the mean (SEM) was calculated for 

each average and paired t-tests were performed using SigmaStat. 
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Chapter 3. The effects of Hsp27 mutations on cell survival and cellular 

morphology in vitro. 

 

In this Chapter, the effects of disease-causing mutations in Hsp27 were investigated 

in vitro. In addition, the possibility that these pathogenic mutations, found in different 

regions of the gene, have differential effects on cellular pathology was also 

examined. In order to compare the effects of Hsp27 mutations, I firstly established 

and optimised an in vitro cellular model using a neuronal-like neuroblastoma cell line 

transfected with the aid of plasmids. The effects of wild type and mutant Hsp27 on 

readouts of cell toxicity, neurite outgrowth and cellular morphological changes were 

examined. 

The results of these experiments were used to screen for the most deleterious and 

interesting mutations that would then be taken forward for a more detailed analysis 

of their effects on cellular functions in the experiments described in Chapters 5 and 

6. 
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3.1. Generation of plasmid constructs containing Hsp27 

Plasmid constructs containing 4 different Hsp27 mutations as well as a wild type 

Hsp27 construct were generated (see Chapter 2, Section 2.1). 

 

For the generation of plasmid constructs containing Hsp27 mutations, a 

pcDNA3.1/V5 plasmid expressing wild type Hsp27 was used as a template. Using a 

site-directed mutagenesis kit (Strategene), two mutations, Arg140Gly and Leu99Met 

were generated following a standard protocol that was highly successful. 

 

Mutagenesis was repeated several times in an effort to mutate and transform 

mutation Pro39Leu. Although the Stratagen kit gave a high success rate using the 

standard protocol with two of the Hsp27 mutations, the Pro39Leu mutation proved 

difficult to transform, and so the protocol was modified in several ways to produce a 

colony. Changes to the mutagenesis PCR reaction included the addition of 10% Q 

Solution (5M Betaine) and DMSO (Dimethyl sulfoxide) to reduce the formation of 

secondary structures and facilitate strand separation, changing the Taq used to get 

a higher purity of DNA, increasing the time given for DNA annealing from 1 

minute/kb of plasmid length to 2 minutes, and changing the annealing temperatures 

from 68˚C to 72˚C. 

 

An Hsp27 PCR was used to confirm the presence of the gene product after the first 

stage of mutagenesis, and the reaction was optimised to give the strongest signal 

for analysis. When optimising the PCR reaction, different primers were tested to 

attain the best signal by amplifying different lengths of the gene (Table 2.3, Chapter 

2 and Figure 3.1). The PCR was also optimised by the addition of Q Solution. The 

individual colonies that grew from the products of site-directed mutagenesis were 

then genotyped to confirm the presence of the Hsp27 gene (Figure 3.2). 
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Figure 3.1 Hsp27 PCR of wild type and mutant Hsp27 showing optimisation of 

PCR reaction  

A) PCR before optimisation using a general PCR protocol. B) PCR protocol with 

10% Q solution added to the reaction and the annealing stage of the PCR program 

was lengthened from 30 seconds to 1 minute at 55°C. 

Figure 3.1 
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Figure 3.2 

Figure 3.2 Hsp27 PCR showing genotyping of individual colonies to confirm 

gene presence  

Six colonies were sampled from each transformed agar plate. The DNA band is 

seen at 450Kb. * donates streaking of well due to excess of DNA in the sample. 

* 
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3.2. Analysis of constructs 

Following completion of site-directed mutagenesis, transformation of bacteria and 

growing of bacterial colonies expressing the plasmid constructs, single bacterial 

colonies were selected and plasmid DNA was sequenced. The results are shown in 

Figure 3.3. This allowed me to: 

1. Confirm that the correct sequence of the DNA plasmid was retained and 

intact after the mutagenesis process. 

2. Confirm the correct positioning of the mutations (Figure 3.3). 

3. Confirm that there were no other point mutations or sequence changes 

within Hsp27. 

Sequenced colonies showed the presence of the mutations and confirmed that there 

were no other base changes within the gene of interest (Figure 3.3).  

 

Primers were then designed to sequence the open reading frame of the 

pcDNA3.1/V5 plasmid to determine whether it was intact without base changes, 

insertions or deletions. Plasmids were sent to UCL GeneService where they were 

confirmed as being intact. 
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Figure 3.3 Sequencing of HSPB1  

Representative chromatograms displaying sequencing results and base changes 

of plasmid DNA from transformed colonies, all contain a control colony for 

comparison. A) Arrow denotes the base change from a C in the control to a T in 

Colonies 1, 2 and 3 leading to an amino acid change of a Serine to a 

Phenylalanine in Ser135Phe. B) Arrow denotes the base change from a C in the 

control to a T in Colonies 1 and 2 leading to an amino acid change of a Proline to 

a Leucine in Pro39Leu. C) Arrow denotes the base change from a C in the control 

to an A in Colonies 1, 2 and 3 leading to an amino acid change of a Leucine to a 

Methionine in Leu99Met and D) Arrows denote the base change from a G in the 

control to a C in Colonies 1, 2 and 3 leading to an amino acid change of an 

Arginine to a Glycine in Arg140Gly. 
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 Figure 3.3 



134 
 

3.3. Optimisation of a cell culture model to study the effects of Hsp27 

mutations 

In order to examine the effects of the different Hsp27 mutations, a suitable cell 

culture model was first established. This involved identification of the most 

appropriate cell line, as well as optimisation of cell density and transfection 

conditions. 

 

3.3.1. Selection of optimal cell line and morphological assessments 

There are several neuronal-like immortalised cell lines that are commonly used in 

neurodegenerative research. In this study, two different, well characterised cell 

models were initially examined in order to establish which was more suitable to 

model the effects of mutant Hsp27. Thus Neuro-2A cells derived from mouse 

neuroblastoma cells, established from the spontaneous tumour of a strain A albino 

mouse (Biedler et al., 1973)(Helson and Biedler, 1973)(de Laat et al., 1977) and SH-

SY5Y cells, third generation clones derived from SK-N-SH, were examined (See 

Figure 3.4A and B). Work to characterise N2A cells was carried out by Miho Tsuda, 

an MSc student in the lab under my supervision. An advantage of Neuro-2A cells 

was that they do not endogenously express Hsp27 as the endogenous rodent 

homologue is Hsp25.  

 

In order to determine which cell line would be better suited for the experiments 

described in this Chapter, two main features were taken into account: 

i. Rate of differentiation; important for morphological studies 

ii. Transfection efficiency; important for biochemical assays 
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Figure 3.4 Selection of optimal cell line  

A) Examples of Neuro-2A cells at 4 DIV immuno-stained with β-tubulin III 

antibody with low levels of cellular differentiation and B) SH-SY5Y cells at 7 DIV 

with differentiated neurites stained for β-tubulin III (red) and V5 (green) to 

visualise transfection, and counterstained with DAPI (blue). C) The bar chart 

shows the average percentage of SH-SY5Y and N2A cells in culture which were 

transfected at 7 DIV. Error Bars = SEM 
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Neuro-2A cells were easy to manage with a rapid growth rate, but transfection of 

this cell line was extremely transient with transfection rates declining from 25% 

transfection at 4DIV to 3 and 8% at 7 DIV (Figure 3.4C). Neuro-2A cells were also 

slow to differentiate. In comparison, SH-SY5Y cells showed a higher transfection 

efficiency of approximately 45% at 4DIV and between 15 and 25% at 7 DIV (Figure 

3.4C). Although SH-SY5Y cells multiplied at a slower rate overall than Neuro-2A 

cells, they were quicker to differentiate, which is important when investigating 

neuronal morphology in transiently transfected cells. SH-SY5Y cells also had a 

lower tendency to form clumps in the cultured cells. Therefore, all experiments 

described below were carried out using the SH-SY5Y cell line. 

 

3.3.2. Cell culture optimisation 

In order to optimise cell culture conditions, a number of culture parameters were 

tested including variations in cell plating density, concentrations of transfection 

reagents and identification of the time after transfection and differentiation that was 

optimal for analysis. 

 

3.3.2.1. Cell culture density 

Neuronal cells in culture must be plated at the optimal density to ensure they are 

close enough together to encourage differentiation and neurite outgrowth, and at a 

sufficient density to ensure high transfection rates, maximum cell survival and clear 

paths of neuritic growth for accurate measurement of neurite length and branching 

(Figure 3.5). In these experiments the optimum cell plating density varied according 

to the specific experiment the cells were to be used for. For example, when 

examining neurite outgrowth in a 24-well plate and undertaking biochemical assays 

in  a  96-well  plate,  cells  were  plated  at  a  density  of  2000  cells/cm2.  For  all  
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Figure 3.5 Cell Culture Densities  

SH-SY5Y cells in culture immune-stained for β-tubulin III (red), V5 (green) and 

stained with the nuclear marker DAPI (blue) are shown, plated at 2 different 

densities A) shows differentiated cells plated at too high a density to permit 

accurate measurement of neurite growth. B) shows a neuron that has been plated 

at an ideal density to undertake measurements of neurite outgrowth as the ends 

of the neurites can be clearly identified and have an obvious point of origin.  

Figure 3.5 
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experiments, the optimum cell confluence for differentiation and transfection was 

found to be ~30%. 

 

3.3.2.2. Optimal transfection conditions 

Cells were transfected using Lipofectamine 2000 and a pcDNA3.1/V5 plasmid 

containing a V5 epitope tag (for subsequent labelling of transfected cells) and either 

wild type or mutant Hsp27. In most cases, cells were immune-stained with an anti-

V5 antibody against the epitope present on the transfected pcDNA3.1/V5 plasmid. 

The V5 tag was essential as SH-SY5Y cells are derived from human origin and so 

contain endogenous Hsp27 and the V5 tag was therefore used as a marker for 

transfected Hsp27. All optimisation experiments were carried out using both the wild 

type Hsp27 plasmid and Hsp27 Ser135Phe mutant plasmid as a positive control as 

this mutation has been previously shown to have deleterious effects in cells 

(Evgrafov et al., 2004). Cells expressing either the wild type or mutant construct 

appeared healthy and showed no apparent abnormalities when compared to 

untransfected cells. The Invitrogen protocol supplied with the Lipofectamine 2000 

suggests an optimum working dilution of 0.4% (2µl per 500µl). However, in these 

experiments, there was a low cell confluency, therefore, the transfection conditions 

needed to be further optimised using a Lipofectamine 2000 concentration of 0.27% 

(1.33µl per 500µl) and 0.13% (0.67µl per 500µl). The results are summarised in 

Figure 3.6. Although a higher level of cell survival was observed at the lower 

concentrations (Figure 3.6A) a significantly lower number of cells were transfected 

at the lower concentrations (Figure 3.6B).  

 

Another problem encountered with this method of cell transfection which involves 

cationic delivery of DNA, is that it is not possible to control how many copies of DNA 

enter each cell,  resulting  in  a  variable  rate of  transfection  between  experiments.  
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Figure 3.6 Effects of varying Lipofectamine 2000 and DNA concentrations on 

survival of SH-SY5Y cells  

A) The bar chart shows the effect of different concentrations of Lipofectamine on cell 

survival. B) The bar chart summarises the percentage of SH-SY5Y cells in culture 

that were transfected using different concentrations of Lipofectamine 2000 and 

varying DNA concentrations. Cells were treated with differing levels of Lipofectamine 

2000 and wild type Hsp27 DNA. Error bars = SEM 



140 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

0.13% Lipofectamine 0.27% Lipofectamine 0.4% Lipofectamine

%
 o

f 
to

ta
l 
c

e
ll

 n
u

m
b

e
r 

Lipofectamine concentration 

40ng DNA

80ng DNA

160ng DNA

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.13% Lipofectamine 0.27% Lipofectamine 0.4% Lipofectamine

C
e

ll
 N

u
m

b
e

r 

Lipofectamine concentration 

B 

A 

Figure 3.6 



141 
 

Single or multiple copies present in individual cells can be detected using 

immunofluorescence for a V5 marker on the plasmid but cannot be detected in any 

other way. The aim of optimising the concentration of transfected DNA was to 

increase the transfection rate and decrease the number of cells that had been 

transfected with multiple copies of the DNA. The results of these experiments 

showed that 40ng of DNA per well resulted in a low level of transfection (18% 

transfection using optimised Lipofectamine 2000) and therefore this concentration of 

DNA was not used any further (Figure 3.6B). Although 160ng of DNA gave the 

highest rate of transfection (27%, Figure 3.6B), it also resulted in increased numbers 

of cells that contained multiple copies of DNA. 80ng of DNA per well was found to 

be the optimum concentration resulting in a high percentage of transfected cells (20-

30%) (Figure 3.6B) with low numbers of multiple DNA transfection (~3%). These 

transfection parameters were therefore used for all following experiments using all 

mutations to analyse the effects on the SH-SY5Y cell line survival, development and 

morphology. 

 

3.4. The effect of mutant Hsp27 on cell survival 

After optimisation of culture conditions and transfection of the SH-SY5Y cell line, the 

cell model was used to assess cell survival in cells expressing the different Hsp27 

mutations, in the presence and absence of pharmacological cell stressors.  

 

3.4.1. The effect of mutant Hsp27 on neuronal cell survival under basal 

conditions 

Following transfection of SH-SY5Y cells with either wild type Hsp27 or each of the 

Hsp27 mutations, the effect on cell survival was assessed by means of an LDH 

assay. LDH is a cytoplasmic enzyme that is released into the medium following cell 

lysis and this supernatent is analysed. A protein assay is then undertaken using the 
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cellular layer in order to normalise the results to protein content, giving an accurate 

measure of cytotoxicity. In order to minimise plate variability, each experiment was 

repeated six times. For each experiment, each experimental condition was repeated 

6 times on at least 6 different occasions and the results for cells transfected by each 

Hsp27 mutation were normalised to the value obtained from cells transfected with 

the wild type Hsp27 plasmid in order to control for Lipofectamine 2000 toxicity and 

the over-expression of a foreign protein. Thus, any differences recorded in LDH 

levels between wild type and mutant Hsp27 constructs were likely to be the result of 

the mutant proteins.  

 

As shown in Figure 3.7, under basal conditions, all Hsp27 mutations significantly 

increased cytotoxicity compared to the wild type plasmid. In untransfected cells and 

those transfected with wild type Hsp27, no significant cell death was detected, with 

that observed in untransfected cells being -1.6% ± 2.4% of wild type transfected 

cells (taken as a 0% baseline to control for cell culture conditions, Lipofectamine 

transfection, addition of a plasmid and over expression of a foreign protein). 

However in cells transfected with any of the Hsp27 mutations, there was a 

significant increase in cytotoxicity for all mutations. Thus, relative to wild type 

transfected cells, cytotoxicity was found to be 20.8% ± 6.0%, 14.8% ± 3.3%, 16.6% 

± 6.4% and 20.1% ± 10.6% (± SEM) in cells transfected with Ser135Phe, Pro39Leu, 

Leu99Met and Arg140Gly, respectively. Thus, all mutations showed a statistically 

significant increase in toxicity as determined by the non-parametric Krustal-Wallis 

ANOVA (P=<0.001) and by multilevel mixed model analysis with estimates of fixed 

effects and multiple comparisons (P<0.05). However, there was no significant 

difference in the level of toxicity between any of the individual Hsp27 mutations. 
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Figure 3.7 Toxicity of Hsp27 mutations in unstressed conditions  

The bar chart shows the percentage increase in cytotoxicity relative to cells 

transfected with wild type Hsp27. Error bars = SEM; **p=0.05, multilevel mixed 

model analysis with estimates of fixed effects and multiple comparisons; NS = non-

significant. 
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Figure 3.7 
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3.4.2. The effect of Hsp27 mutations on cell survival under conditions of 

cellular stress 

Since transfection with any of the Hsp27 mutations resulted in a significant increase 

in cell death under basal, unstressed conditions, to determine if the different 

mutations exerted differential cytotoxic effects under conditions of cellular stress, the 

toxicity of the individual Hsp27 mutations was next tested by means of an LDH 

assay in the presence of different pharmacological cell stressors. Each drug or 

agent was chosen to exert specifically defined cellular stress. The morphological 

effects of each agent on untransfected SH-SY5Y cells is shown in Figure 3.8 and 

the effects on the survival of cells transfected with mutant Hsp27 are summarised in 

Figure 3.9. 

 

3.4.2.1. Hydrogen peroxide 

Hydrogen peroxide (H2O2) was used as a positive control that is known to induce 

cytotoxicity. When added to the cells it causes production of Reactive Oxygen 

Species (ROS), leading to excessive and irreparable cell damage (Figure 3.8C) and 

cell death (Figure 3.9A) (Iordanov and Magun, 1999). Under experimental 

conditions, H2O2 (100µM) was added to wild type and mutant Hsp27 transfected 

cells for 24 hours. The effects of H2O2 on the morphology of SH-SY5Y cells are 

significant in comparison to untreated cells, showing a complete loss of neurites, 

pyknotic nuclei, cellular detachment from the glass coverslip and clumping (Figure 

3.8C). H2O2 caused a statistically significant increase (121.5% ± 14.1%, p<0.001, ± 

= SEM) in cell death in H2O2 treated wild type Hsp27 cultures compared to untreated 

wild type Hsp27 cells (Figure 3.9A). Cells expressing mutant Hsp27 were not more 

sensitive to H2O2 and cells expressing any of the Hsp27 mutations induced similar 

levels of cell death to cells transfected with wild type Hsp27, i.e. 174.8% ± 33.4%, 

131.2% ± 38.1%, 105.8% ± 27.1% and 120.9% ± 26.0%  (± = SEM)  cytotoxicity in  
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Figure 3.8 Morphological effects of cell stress on SH-SY5Y morphology 

SH-SY5Y cells stained for β-tubulin III (red) and counterstained with DAPI (blue) 

to visualise the differential morphological effects of pharmacological cell 

stressors; A) Cytochalasin D (10μM) shows a loss of neurites, some pyknotic 

nuclei and clumping of cells, B) Colchicine (10μM) shows greater effects on the 

cells with complete lack of neurites, aggregation of β-tubulin III, pyknotic nuclei 

and cell clumping, C) H2O2 (100μM) is used as a positive control to show 

massive detrimental effects upon surviving cells with all cells clumping together 

and showing pyknotic nuclei. D) Shows untreated SH-SY5Y cells with neurite 

growth, not cellular clumping and healthy nuclei.  

Figure 3.8 
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Figure 3.9 Toxicity of Hsp27 mutations under conditions of cell stress 

 The bar charts show the effects of the treatment with cell stressors A) H2O2 

(100μM), B) Cytochalasin D (10μM), C) Colchicine (10μM) on cell survival in 

SH-SY5Y cells transfected with either wild type or each of the various Hsp27 

mutations, as determined by an LDH assay. The extent of cytotoxicity in each 

condition is expressed as a percentage of that detected in untreated Hsp27 wild 

type cells. Error bars = SEM; *p=0.001, multilevel mixed model analysis with 

estimates of fixed effects and multiple comparisons. 
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cells transfected with Ser135Phe, Pro39Leu, Leu99Met and Arg140Gly, 

respectively. Due to the excessive damage caused by the addition of H2O2 over 24 

hours, any cytotoxicity caused by mutated Hsp27 may have been too subtle to have 

any additive effect on cell survival. 

 

3.4.2.2. Cytochalasin D 

Cytochalasin D was used as a cell stressor agent since it is known to disrupt actin 

microfilaments, therefore disrupting axonal transport, neurite outgrowth and other 

normal functions of the cellular actin network (Goddette and Frieden, 1986). Under 

normal conditions, Hsp27 has been shown to actively bind to actin within the cell, so 

Cytochalasin D was used as a drug that has an action on a protein directly linked to 

the Hsp27 pathway. The morphological effects of Cytochalasin D (10μM) on SH-

SY5Y cells is shown in Figure 3.8A, and the effects on cell survival on cells 

transfected with mutant Hsp27 are summarised in Figure 3.9B. The effects of 

Cytochalasin D on cellular morphology are significant in comparison to untreated 

cells; including loss of neurites, some pyknotic nuclei and clumping, but are less 

marked than those observed with H2O2 which also causes significantly more cell 

death than Cytochalasin D (Figure 3.8C, Figure 3.9A and B). Addition of 

Cytochalasin D to wild type Hsp27 transfected cells resulted in a significant increase 

(51.1% ± 7.8%, p<0.001, ± = SEM) in cytotoxicity compared to untreated wild type 

cultures. When Cytochalasin D was added to cells transfected with Ser135Phe 

Hsp27, cell death increased in comparison to cells transfected with wild type Hsp27 

to 106.3% ± 18.1% (Figure 3.9B, p<0.001, ± = SEM). All other mutations showed an 

increase in cytotoxicity in response to Cytochalasin D, however, there was no 

difference between wild type Hsp27 and the Pro39Leu, Leu99Met and Arg140Gly 

mutations when Cytochalasin D was added and cytotoxicity was found to be 59.8% 

± 13.7%, 54.7% ± 18.6% and 63.4% ± 14.9% (± = SEM) respectively (Figure 3.9B). 
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3.4.2.3. Colchicine 

Colchicine disrupts axonal transport, stabilising microtubule formation by binding to 

tubulin (Falconer et al., 1994). The morphological effects of Colchicine (10μM) on 

SH-SY5Y cells is shown in Figure 3.8B, and the effects on cell survival on cells 

transfected with mutant Hsp27 are summarised in Figure 3.9C. The effects of 

Colchicine on cellular morphology are significant in comparison to untreated cells; 

including loss of all neurites, pyknotic nuclei and clumping. Colchicine causes a 

more severe cellular phenotype than Cytochalasin D at the same concentration, but 

its effects are less marked than those of H2O2 which also causes significantly more 

cell death than Colchicine (Figure 3.8B, Figure 3.9A and C). Addition of Colchicine 

to wild type Hsp27 transfected cells gave a statistically significant (59.6% ± 8.6%, 

p<0.001, ± = SEM) increase in cytotoxicity above untreated wild type cultures. When 

added to cells transfected with Ser135Phe Hsp27, this increased to 105.5% ± 7.4%, 

(p<0.001, ± = SEM) (Figure 3.9C). All other mutations showed an increase in 

cytotoxicity caused by the addition of Colchicine, however, there was no difference 

between wild type Hsp27 and the Pro39Leu, Leu99Met and Arg140Gly mutations 

when Colchicine was added, 64.8% ± 19.4%, 66.7% ± 16.0% and 47.2% ± 6.5% (± 

= SEM) respectively (Figure 3.9C). 

 

3.4.3. Fluorescent activated cell sorting analysis of cell survival 

Although the LDH assay revealed that all the Hsp27 mutations were toxic to SH-

SY5Y cells, the assay was not sensitive enough to detect any differences between 

the various Hsp27 mutations or to dissect out mutation-specific changes in 

transfected cells. Therefore a sensitive Fluorescent Activated Cell Sorting (FACS) 

sorting method to analyse fluorescently labelled dead or dying cells was examined 

next.  
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The cells were labelled with Propidium Iodide (PI) and immunostained for Annexin 

V, both markers of dead cells. PI intercalates with DNA to identify dead cell material 

and Annexin V binds to epitopes on the cell surface which are exposed as the 

extracellular membrane breaks down during cell apoptosis, so that fluorescence 

intensity increases as the apoptotic process advances. Cells are grouped according 

to fluorescence to differentiate between healthy cells, damaged cells, apoptotic 

cells, and dead cell material as shown in Figure 3.10. H2O2 was used to treat cells 

for 24 hours previous to FACS as a positive control for mutational cell damage and 

cell death (Figure 3.10E). Quantification of scatter plots showed that H2O2 treatment 

resulted in 63.8% cell death, with 8.2% live cells and 10.2% apoptotic cells (Figure 

3.10F) Experiments with non-transfected cells showed high proportions of cell 

damage and death. The first experiment carried out showed that there were 16.2% 

live cells, 41.3% dead cells and 32.6% apoptotic cells (Figure 3.10A,B), while the 

second experiment gave 32.1%, 24.3% and 38.1% live, dead and apoptotic cells, 

respectively (Figure 3.10C,D). 

 

Therefore, although FACS analysis is a sensitive method of cell sorting, in this 

experiment the results were not reliable or reproducible. High levels of cell damage 

and apoptosis in transfected and non-transfected cultures meant that any effects of 

the Hsp27 mutations could not be detected. The cause of the excessive cellular 

disruption could have been due to many steps within the experimental protocol, 

many of which were unavoidable and so this method was not used further. 
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Figure 3.10 FACS analysis of cell survival in SH-SY5Y cells 

Representative FACS scatter plots showing SH-SY5Y cells in culture with 

corresponding pie charts showing the percentage of cell populations. The x-

axis of the scatter plot shows increasing signal strength of the Annexin V 

staining on individual cells and the y-axis shows signal strength of PI. All 

graphs have been adjusted to distinguish four different cell population groups. 

Quartile (Q) 1 shows high PI fluorescence and low Annexin V fluorescence, 

suggesting stained cell debris, Q2 shows cells with high fluorescence of both 

Annexin V and PI so all the cells in this section are dead. Q3 captures cells 

with low fluorescence of both Annexin V and PI so all the cells in this section 

are alive and relatively healthy, and Q4 cells are highly stained with Annexin V 

but are not fluorescent for PI, suggesting these cells are damaged and are in 

the process of apoptosis. A-D) Non-transfected cells in two different 

experiments. E-F) Non-transfected cells treated with H2O2 for 24 hours 

previous to experiment. G-H) Cells transfected with wild type Hsp27. 
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3.5. The effects of Hsp27 mutations on cell morphology 

 

3.5.1. Changes in cell morphology 

Following confirmation of the cytotoxicity of all Hsp27 mutations, the effect of each 

mutation on cell growth and morphology was examined next. SH-SY5Y cells were 

immunostained for V5, the epitope present in transfected cells and β-tubulin III, the 

neuronal form of β-tubulin. In the first instance, neurite morphology was analysed by 

measuring the length of neurites and assessing the complexity of neuritic branching. 

Neurites which were a minimum of 1.5 times longer than the cell soma diameter 

were analysed (see Figure 3.11 for illustration) and the appearance of the following 

features determined: 

i. Total neurite length (μm) 

ii. Length of the longest neurite (μm) 

iii. Cell complexity, determined by the extent of axonal branching, an indicator 

of cell differentiation and complexity  

 

3.5.1.1. The effect of Hsp27 mutations on total neurite length 

SH-SY5Y cells usually exhibit primary branching of one or more neurites from the 

cell body (Figure 3.11) and with further development the presence of secondary and 

tertiary branching. Total neurite length was measured as a representation of neuritic 

and developmental changes and the effect of Hsp27 mutations on these 

characteristics. The results are summarised in Figure 3.12.  

 

In these experiments, the mean (± SEM) total neurite length was found to be 

144.6µm  ±  3.0µm  (±  SEM)  in  untransfected  cells,  119.6µm  ±  4.2µm  in  cells  
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10μm 

Figure 3.11 

Figure 3.11 Analysis of neuritic branching in SH-SY5Y cells  

SH-SY5Y cells were stained with V5 (red), -tubulin III (green) and counterstained 

with DAPI (blue). This cell shows an example of neurite length calculation. 

Primarily, the length of the longest neurite was judged to be from the soma to the 

end of the neurite as indicated by the red arrow and red lines. Cells were only 

counted if the longest neurite was over 1½ times the length of the cell body. The 

white arrows identify all other neurite growth which is then considered to give the 

total neurite growth from the cell body. 
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Figure 3.12 The effect of Hsp27 mutations on total neurite length 

 A) The bar chart shows the mean total neurite length in untransfected cells and 

those transfected with wild type or the various Hsp27 mutations. In all cases, each 

experiment was repeated 3 times. Error bars = SEM; * p<0.0001; ** p=0.03; 

***p=0.04, one-way ANOVA. B) A frequency distribution graph of the mean total 

neurite length was created for each experimental condition. 
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transfected with wild type Hsp27 and 116.5µm ± 9.0µm, 117.7µm ± 4.6µm, 128.9µm 

± 4.3µm and 115.6µm ± 4.2µm (± = SEM) in cells transfected with Ser135Phe, 

Pro39Leu, Leu99Met and Arg140Gly respectively (Figure 3.12A). When comparing 

untransfected cells with those transfected with either wild type or mutant Hsp27, a 

statistically significant decrease in total neurite length was observed (Figure 3.12A, 

p<0.0001). These results are also illustrated as a frequency graph, which indicates a 

shift to the left (i.e. a reduced total neurite length) in all transfected cells compared 

to untransfected cells (Figure 3.12B). Furthermore, when comparing the specific 

effects of individual Hsp27 mutations, a statistically significant difference in total 

neurite length was observed in cells transfected with the Leu99Met mutation when 

compared to other mutations Ser135Phe and Arg140Gly (Figure 3.12A, p=0.04 and 

p=0.04, respectively). 

 

3.5.1.2. The effect of Hsp27 mutations on the length of the longest 

neurite 

Although SH-SY5Y cells can exhibit polarisation, they tend to display one long 

‘axon-like’ structure (See Figure 3.11). This enables us to more accurately measure 

any effects of the Hsp27 mutations on the development of the cells in a more 

specific fashion, separating development from cellular dysregulation (See Figure 

3.13).  

 

As shown in Figure 3.13A, the mean length of the longest neurite was 91.0µm ± 

1.6µm in untransfected cells, 77.9µm ± 3.1µm in cells transfected with wild type 

Hsp27 and 72.0µm ± 2.6µm, 76.2µm ± 3.0µm, 79.9µm ± 2.7µm, and 68.8µm ± 

2.4µm (± = SEM) in cells transfected with Ser135Phe, Pro39Leu, Leu99Met and 

Arg140Gly respectively (Figure 3.13A). When comparing untransfected cells with 

cells  transfected with  either  wild  type or  mutant  Hsp27,  a  statistically  significant  
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Figure 3.13 The effect of Hsp27 mutations on neurite length 

A) The bar chart shows the mean length of the longest neurite in untransfected 

cells and those transfected with wild type or various Hsp27 mutations. The results 

are the mean of three experiments. Error bars = SEM; * p<0.0001; ** p<0.006, 

one-way ANOVA. B) A frequency distribution graph was created of the mean 

longest neurite length for each experimental condition. 
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decrease in total neurite length was seen in all transfected cells (Figure 3.13A, 

p<0.0001). This finding is also illustrated as a frequency graph, which shows a shift 

to the left, i.e. shorter neurites in transfected cells (Figure 3.13B). Furthermore, 

when cells transfected with the various Hsp27 mutations were compared, a 

statistically significant difference in total neurite length was also observed in cells 

transfected with the Arg140Gly mutation when compared to Leu99Met and wild type 

Hsp27 transfected cells (Figure 3.13A, p=0.06). 

 

3.5.1.3. The effect of Hsp27 mutations on cellular complexity and 

differentiation 

Following the analysis of cell development and growth, the neuritic branching and 

complexity of differentiation was determined next to examine more subtle effects of 

both the Lipofectamine 2000 transfection process and the Hsp27 mutations on the 

development of the neuritic network.  

 

The number of primary neurites extending from the cell body was determined. The 

results showed that irrespective of transfection or expression of Hsp27 mutations, 

there was no change in the average number of neurites, so that each cell had an 

average of 1.9 ± 0.02 (± = SEM) neurites per cell (Figure 3.14A,C). 

 

Cell differentiation was assessed by analysing branching from neurites and cell 

bodies (Figure 3.14B,D). Neurites were categorised as exhibiting secondary and 

tertiary branching, with the presence of tertiary branches taken as an indication of 

cellular maturation and complex differentiation. Cells were defined as exhibiting 

secondary differentiation if the cell had at least one neurite branching from a primary 

neurite (Figure 3.14B).  Cells in the tertiary stage of differentiation were defined as  
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Figure 3.14 The effect of Hsp27 mutations on cellular development and 

neuritic complexity in neuronal cells  

Cells stained with V5 (red), -tubulin III (green) and counterstained with DAPI 

(blue) showing examples of cellular development and complexity. A) shows a 

partially differentiated SH-SY5Y cell with bidirectional branching of primary 

neurites from the cell body (white arrow). B) shows a differentiated SH-SY5Y 

cell with neurites extending from the cell body (white arrow), secondary neurite 

branching (red arrow) and tertiary branching (blue arrow). C) The bar chart 

shows the average number of primary neurites extending from the cell body 

when transfected with different Hsp27 mutations. D) The bar chart shows the 

level of secondary (dark bars) and tertiary (light bars) differentiation in cells 

transfected with different Hsp27 mutations. Error bars = SEM. 
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showing neuritic branching that was removed from the cell body by two separate 

branch points (Figure 3.14B). 

 

In untransfected cells, 50.3% ± 7.9% of cells were found to exhibit secondary 

neuritic branching. In cells transfected with wild type Hsp27, the number of cells with 

secondary neuritic branching was reduced to 32.1% ± 13.6% (non-significant). 

Transfection with mutant Hsp27 also reduced secondary branching to a similar 

extent as wild type Hsp27, so that 33.9% ± 5.0%, 34.8% ± 11.5%, 44.2% ± 4.0%, 

and 49.1% ± 17.3% (± = SEM) of cells transfected with Ser135Phe, Pro39Leu, 

Leu99Met and Arg140Gly respectively showed secondary branching (Figure 3.14D). 

No transfection or mutational condition showed a differential effect on secondary 

branching of neurites over and above that observed in wild type transfected cells.  

 

The extent of tertiary neuritic branching was found to be 6.9% ± 0.01% in 

untransfected cells. In cells transfected with wild type Hsp27, the number of cells 

with tertiary neuritic branching was reduced to 1.28% ± 0.65% (non-significant). 

Transfection with mutant Hsp27 also reduced tertiary branching to a similar extent 

as wild type Hsp27, so that 3.95% ± 0.76%, 3.81% ± 0.30%, 3.02% ± 0.86%, and 

1.79% ± 0.16% (± = SEM) in cells transfected with Ser135Phe, Pro39Leu, 

Leu99Met and Arg140Gly respectively (Figure 3.14D). Untransfected cells did show 

a significantly higher level of tertiary branching in comparison to transfected cells 

irrespective of mutation (Figure 3.14D, p<0.05). No transfection or mutational 

condition showed a differential effect on secondary branching of neurites (Figure 

3.14D). 

 

 

 



164 
 

3.5.2. Hsp27 mutations induce pathological changes in neuronal cells 

The effect of Hsp27 mutations on morphological features considered to be indicative 

of pathology in the regulation of cellular pathways was also examined. Cells were 

assessed for the presence of: 

i. Neuritic stumps (See Figure 3.15A) 

ii. Lamellipodia (See Figure 3.16A) 

iii. Vacuoles (See Figure 3.17A) 

 

3.5.2.1. The effect of Hsp27 mutations on the occurrence of neuritic 

‘stumps’ 

The term ‘neuritic stump’ is used in this study to define the presence of protrusions 

and neuritic projections, morphological changes at the end of the neurites, which 

may not be abnormal or pathological, but are of unknown function. They can be 

slightly varied in appearance (Figure 3.15A) and therefore this category represents a 

wide range of neuritic projections. The number of cells displaying stump-like 

features was established for each culture condition, based on the visual 

characteristics of cells.  

 

Neuritic stumps were observed in 15.4% ± 4.4% of all untransfected cells, in cells 

transfected with wild type Hsp27, there was a small non-significant increase in the 

occurrence of such stumps, so that 28.2% ± 9.7% of cells exhibited neuritic stumps 

(Figure 3.15B). However, in cells transfected with mutant Hsp27 there was a clear 

increase in the number of cells with neuritic stumps. Thus, neuritic stumps were 

found in 44.1% ± 12.9%, 46.2% ±4.8%, 50.8% ± 10.7% and 60.7% ± 12.0% (± = 

SEM) of cells transfected with Ser135Phe, Pro39Leu, Leu99Met and Arg140Gly 

respectively (Figure 3.15B). Thus, in all mutant Hsp27 expressing cultures, the 

occurrence  of  neuritic  stumps  increased,  however,  this  only  reached  statistical  
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Figure 3.15 The effect of Hsp27 mutations on the occurrence of neuritic 

stumps in neuronal cells  

A) Cells immuno-stained for V5 (red), -tubulin III (green) and counterstained 

with DAPI (blue) are shown, illustrating the presence of neuritic stumps (white 

arrows, insert = magnification of neuritic stumps. B) The bar chart shows the 

percentage of cells with neuritic stumps in untransfected cells and those 

transfected with wild type and mutant Hsp27. Error bars = SEM; NS = non-

significant; *p<0.05; **p=0.05, one-way ANOVA. 

 

Figure 3.15 
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significance in Arg140Gly mutant cells (when compared to wild type Hsp27, p<0.05). 

 

3.5.2.2. The effect of Hsp27 mutations on the occurrence of lamellipodia  

Lamellipodia are cytoskeletal actin projections on the leading edge of the neurite 

(Figure 3.16A). Although they are a normal cellular process observed in 

differentiating or developing cells, an increase in the number of cells with 

lamellipodia is indicative of dysregulation of cell differentiation and motility (Mattila 

and Lappalainen, 2008). 

 

Lamellipodia were found in 16.4% ± 3.3% (± = SEM) of all untransfected cells. In 

cells transfected with wild type Hsp27, the incidence of lamellipodia increased to 

27.6% ± 5.4% (Figure 3.16B). All Hsp27 mutations caused a significant increase in 

the number of cells with lamellipodia compared to wild type Hsp27 expressing cells. 

Specifically, 3 mutations caused a statistically significant increase in lamellipodia to 

55.9% ± 5.8%, 55.2% ± 7.0%, 48.7% ± 0.9% and 33.0% ± 6.4% (± = SEM) in cells 

transfected with Ser135Phe, Pro39Leu, Leu99Met (p<0.03) and Arg140Gly 

respectively (Figure 3.16B). 

 

3.5.2.3. The effect of Hsp27 mutations on the occurrence of cellular 

vacuoles  

The presence of vacuoles in cells in vivo is a well recognised sign of cellular 

pathology. While the presence of vacuoles on cells in vitro is also a deleterious sign, 

the high turnover and artificial conditions of cell culture increase the presence of 

vacuoles in untransfected cells (Figure 3.17A).  
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Figure 3.16 The effect of Hsp27 mutations on the occurrence of lamellipodia 

in neuronal cells  

A) Cells immuno-stained for V5 (red), -tubulin III (green) and counterstained with 

DAPI (blue) are shown, illustrating the presence of lamellipodia (white arrow) and 

a cell body (yellow arrow). B) The bar chart shows the percentage of 

untransfected cells and cells transfected with wild type or mutant Hsp27. Error 

bars = SEM; NS = none significant; *p<0.01; **p<0.03, one-way ANOVA. 

 

Figure 3.16 
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Figure 3.17 

Figure 3.17 The effect of Hsp27 mutations on the occurrence of vacuoles in 

neuronal cells 

A) Cells immuno-stained for V5 (red), -tubulin III (green) and counterstained with 

DAPI (blue) illustrating the presence of vacuoles (white arrows) in transfected and 

untransfected cells. B) The bar chart shows the occurrence of vacuoles in 

untransfected cells and cells transfected with wild type or mutant Hsp27. Error bars = 

SEM; NS = non-significant; *p<0.04; **p<0.05, one-way ANOVA. 
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As shown in Figure 3.17B, analysis of untransfected SH-SY5Y cells in this study 

established a relatively modest incidence of vacuoles with only 5.5% ± 1.3% (± = 

SEM) of cells presenting any vacuoles. Transfection with wild type Hsp27 had little 

effect on this level of vacuole occurrence, and only 7.7% ± 1.1% of wild type Hsp27 

cells had vacuoles. However, transfection with mutant Hsp27 resulted in a clear 

increase in vacuole occurrence compared to cells expressing wild type Hsp27. In 

particular, 3 mutations caused a statistically significant increase in vacuole 

occurrence, and 22.6% ± 3.6%, 22.1% ± 2.5%, 16.1% ± 1.7% and 12.3% ± 1.8% (± 

= SEM) vacuoles were found in cells transfected with Ser135Phe, Leu99Met, 

Arg140Gly (p<0.05) and Pro39Leu respectively (Figure 3.17B). Furthermore, the 

vacuoles within the transfected cells appeared larger than in untransfected SH-

SY5Y cells. 
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3.6. Chapter 3 Summary 

In these experiments, primarily designed to screen for differential effects of Hsp27 

mutations, I demonstrated that all the Hsp27 mutations examined significantly 

increased cell death of otherwise unstressed cells, confirming the toxicity of the 

patient mutations. In conditions of cellular stress, one specific mutation, Ser135Phe, 

showed a significant increase in cellular vulnerability due to cytoskeletal disruption 

and increased cytotoxicity.  

 

Furthermore, a detailed immunocytochemical analysis showed that the Ser135Phe 

mutation, which increased cellular vulnerability due to cytoskeletal disruption and 

had a negative impact on neurite growth, although this did not reach significance. 

However, the Arg140Gly mutation significantly inhibited neurite outgrowth, but did 

not alter cellular differentiation. Since Hsp27 is known to play a role in neurite 

outgrowth (Williams et al., 2005), several studies investigating the effects of Hsp27 

mutations have focused on the disruption of neurite growth and axonal transport. 

For example, Irobi et al. (2010) demonstrated a significant >50% reduction in neurite 

length in primary motoneurons transfected with CMT 2L disease-causing mutations 

in Hsp22 (Irobi et al., 2010). The mutations, Lys141Asn and Lys141Glu in a small 

heat shock protein known to associate with Hsp27 (Irobi et al., 2004; Sun et al., 

2004) cause CMT 2L, an axonal form of CMT with a phenotype that is clinically 

indistinguishable from CMT 2F (Evgrafov et al., 2004; Irobi et al., 2004). Lys141Asn 

and Lys141Glu are equivalent to the Arg140Gly mutation in Hsp27 with respect to 

both gene position and protein region (Irobi et al., 2010), suggesting that not only is 

this region of the small heat shock protein important for neurite outgrowth in 

motoneurons, but that mutations in this area of the protein may be particularly 

detrimental to the structure and function of the axon such as the cytoskeleton and 

axonal transport. In the experiments described in Chapter 3, the negative effect of 
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the Arg140Gly mutation and to a lesser extent, the Ser135Phe Hsp27 mutation on 

neurite outgrowth may be the result of differential interactions between the Hsp27 

mutant proteins and different cytoskeletal components during the development of 

cell neurites.  

 

However, while only Hsp27 mutations, Ser135Phe and Arg140Gly, located in the hot 

spot α-crystallin domain of the protein affected the development of the cell, all 

mutations caused alterations in the normal morphology of the cell and possible 

dysregulation of cytoskeletal features. Previous studies have shown that mutations 

in Hsp27 can cause perturbations of cytoskeletal components, possibly causing 

dysregulation and disorganisation of the cytoskeleton. For example, in the study by 

Irobi et al. 2010, significant numbers of primary cells transfected with mutant Hsp22 

displayed spheroids, or beaded neurites, a clear indication of cytoskeletal 

dysregulation and degeneration (Irobi et al., 2010). Here, it was observed that cells 

transfected with wild type Hsp27 showed no significant increase in morphological 

perturbations, while all mutations had a significant impact on the morphology of the 

cell and possible dysregulation of the cytoskeleton as determined by a number of 

cellular features. 

 

When taken together, the results presented in Chapter 3 suggest a role in 

cytoskeletal disruption for two mutations located in the -crystallin domain of the 

protein. The experiments described in this Chapter were designed to screen for 

differential effects of Hsp27 mutations. So far, even though the Pro39Leu mutation 

(located in the N-terminus of the protein) and the recessive Leu99Met mutation 

(located in the α-crystallin domain of the protein, but out of the genetic hot spot) 

have both been shown to be significantly cytotoxic to cells, the other basic outcome 

measures tested here have not revealed any other differential effects. 
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Chapter 4. The effect of Hsp27 mutations on the interaction of Hsp27 

with cellular proteins and structures 

 

The experiments described in Chapter 3 summarise the optimisation of an SH-SY5Y 

in vitro cellular model of mutations in Hsp27. Using this model, I undertook a screen 

for differential effects of mutant Hsp27 using outcome measures based on the 

known functional roles of Hsp27 within the cell. The effects of wild type and mutant 

Hsp27 on readouts of cell toxicity, neurite outgrowth and cellular morphological 

changes were examined. The results suggest that mutations Ser135Phe and 

Arg140Gly, located in the hot spot α-crystallin domain of Hsp27, may selectively 

disrupt aspects of the cytoskeleton, although the mode of action is, as yet, unknown. 

 

Although the Pro39Leu Hsp27 mutation (located in the N-terminus of the protein) 

and the recessive Leu99Met Hsp27 mutation (located in the α-crystallin domain of 

the protein, but outside the genetic hot spot) were both found to be significantly 

cytotoxic, other outcome measures tested did not show any specific effects of the 

mutations. Therefore, in this Chapter, the protein interactions of mutant Hsp27 with 

different proteins, including key proteins of the cytoskeleton, were examined using 

immunocytochemistry to identify any further, potential differences between the 

different Hsp27 mutations and to identify some of the pathways that may be altered 

by these mutations. 
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4.1. Co-localisation of the V5 epitope and transfected Hsp27 

SH-SY5Y cells were transfected using a pcDNA3.1/V5 plasmid containing a V5 

epitope as a marker of the transient expression of the exogenous, transfected 

Hsp27 protein (Materials and Methods, Chapter 2, Figure 2.2). The V5 epitope is 

essential as a protein marker as SH-SY5Y cells are derived from human origin and 

therefore contain endogenous Hsp27.  

 

To distinguish transfected and endogenous Hsp27, cells were co-stained with V5 

(Figure 4.1A) and Hsp27 (Figure 4.1B) demonstrating co-localisation of the two 

proteins and validating V5 as a reliable marker for transfected Hsp27. Cells showed 

cytoplasmic co-localisation of V5 and Hsp27 in all forms of transfected Hsp27 

(Figure 4.1C). 

 

Hsp27 has a relatively small molecular weight of 27KDa and its functions are 

dependent on its phosphorylation state and protein conformation. Therefore, it is 

important to establish that the V5 tag had no functional impact on the actions of 

Hsp27 when attached to the transfected protein. Evidence for this is presented in 

this Chapter (Section 4.7). 

 

4.2. The phenotypic effects of pharmacological cell stressors on cellular 

morphology 

To assess the effects of mutations in Hsp27 on the normal functions of the protein in 

cells under conditions of specific stress, SH-SY5Y cells were stressed using 

pharmacological agents that act on different proteins of the cytoskeleton with which 

Hsp27 interacts and functions. Cytochalasin D and Colchicine were added at low 

concentrations (0.2µM) to detect morphological changes in the neurite, as higher  
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Figure 4.1 Co-localisation of V5 epitope and transfected wild type Hsp27  

Cells immuno-stained for V5 (red) and Hsp27 (green), showing an example of co-

localisation and demonstrating that the V5 epitope is suitable to be used as a 

marker to distinguish transfected Hsp27 and endogenous Hsp27. A) V5 B) Hsp27 

C) Overlay of V5 and Hsp27.  
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concentrations (10µM) caused extensive damage to the morphology of the cell 

making it difficult to determine the full extent of the mutational effects (Figure 3.8). 

Although both stressors affect the cytoskeleton, they have different modes of action 

that are clearly demonstrated by the differential effects on the cellular morphology at 

lower concentrations. As described below, cells were examined under different 

conditions of cell stress at 4DIV using Phalloidin, a marker for F-actin, β-tubulin III - 

a neuron-specific microtubule protein, and neurofilament-200 heavy chain, which is 

a member of the neurofilament network.  

 

In vitro cell culture is a physiologically unnatural environment. Therefore, the 

baseline ‘unstressed’ conditions of in vitro cells will be physiologically different to 

those in vivo. In unstressed cells transfected with wild type Hsp27 there was little 

sign of disruption to the cellular morphology in comparison to untransfected cells, 

and in both conditions, cells also developed long neurites. In contrast, some cells 

which had been transfected with mutant Hsp27 showed actin stress fibres, even 

under unstressed conditions, which were not observed in untransfected or wild type 

Hsp27 transfected cells (Figure 4.2C-E).  

 

In cells treated with Cytochalasin D (0.2µM), an agent which binds to F-actin and 

thereby stabilises the cytoskeletal network and halts neurite outgrowth, the cellular 

morphology changed and neurite outgrowth appeared stunted. The ends of the 

neurites showing either disrupted bulbed ends or a sudden halt at the end of the 

neurite, with the majority of cells displaying actin stress fibres.  

 

To examine the effects of microtubule disruption on the cell, the effects of Colchicine 

(0.2µM) was also examined. Colchicine disrupts cellular structure by irreversibly 

binding to tubulin and stabilising the microtubule network. The addition of Colchicine 
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to the cells caused a dramatic change in phenotype. Thus the length and diameter 

of the neurites decreased, the cells lost polarity and became more rounded with 

irregular neurites, a dysregulated cytoskeleton and an increase in actin stress fibres. 

 

4.3. Effects of Hsp27 mutations on the co-localisation of Hsp27 with 

cytoskeletal proteins 

The effects of the various Hsp27 mutations on the normal pattern of co-localisation 

with various cytoskeletal proteins including F-actin, β-tubulin and neurofilament-200 

heavy chain was examined in stressed and unstressed conditions, in untransfected 

cells, and cells transfected with either wild type Hsp27 or each of the Hsp27 

mutations. Cells were examined by immunostaining for V5 and each of the 

cytoskeletal markers for: 

i. The extent of co-localisation between Hsp27 and cytoskeletal proteins 

ii. The localisation of cytoskeletal protein and Hsp27 immunoreactivity within 

the cell, to establish whether this was altered by any of the Hsp27 mutations. 

 

4.4. Hsp27 mutations alter the co-localisation of Hsp27 with F-actin 

As previously shown in Chapter 3 (Figures 3.12 and 13), certain mutations in Hsp27 

decrease neurite outgrowth; a process driven by the actin-based growth cone at the 

end of the neurite (Geraldo and Gordon-Weeks, 2009). As discussed in the 

Introduction, Section 1.8.8., Hsp27 functionally interacts with F-actin while in a 

phosphorylated, monomeric form (Lavoie et al., 1993b; Mounier and Arrigo, 2002b). 

Monomeric Hsp27 binds to F-actin to stabilise the cytoskeleton and this action is 

more prominent in cells under stress conditions (Lavoie et al., 1993a). To investigate 

whether changes in the interaction between Hsp27 and F-actin may be caused by 

mutations in Hsp27, the cells were immunostained with V5 to visualise the 
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transfected protein and Phalloidin which binds to F-actin with high selectivity. The 

cells were examined under both non-stressed and stressed conditions. 

 

4.4.1. Co-localisation of endogenous, wild type and mutant transfected Hsp27 

with F-actin in unstressed conditions 

The effects of Hsp27 mutations on cellular morphology in unstressed conditions 

were examined first. As well as mutant Hsp27, the interaction of wild type and 

endogenous Hsp27 with F-actin was examined. Under basal conditions at 4DIV, 

endogenous Hsp27 did not co-localise with the actin cytoskeleton (Figure 4.2A). 

Similarly, wild type Hsp27, Pro39Leu Hsp27 and Leu99Met Hsp27 did not interact 

with the actin cytoskeleton (Figures 4.2B, E and F) shown by the lack of co-

localisation of transfected Hsp27 tagged with V5 and the Phalloidin-stained actin 

cytoskeleton. 

 

In contrast, in cells transfected with either the Ser135Phe or Arg140Gly Hsp27 

mutations, a clear increase in the co-localisation of V5 with Phalloidin-stained F-

actin was observed (Figure 4.2C and D). The Ser135Phe Hsp27 mutation showed 

co-localisation with actin stress fibres, indicated by yellow staining in Figure 4.2C. 

Cells transfected with Arg140Gly Hsp27 also had increased co-localisation with 

actin stress fibres. Although these mutations demonstrated an increase in stress 

fibres, these structures were also increased in cells transfected with the Pro39Leu 

Hsp27 mutation, where no co-localisation between transfected Hsp27 and actin 

stress fibres was observed, suggesting a mutant-specific effect (Figure 4.2E). The 

transfection of wild type or mutant Hsp27 did not change the localisation of the F-

actin immunoreactivity within the cell. 
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Figure 4.2 Co-localisation of endogenous, wild type transfected and 

mutant transfected Hsp27 with F-actin in unstressed conditions.  

A) Untransfected cells were stained for Hsp27 (red), phalloidin (green) labelling 

F-actin and counterstained with the nuclear marker DAPI (blue) to show normal 

cellular distribution of endogenous Hsp27 and in unstressed cellular conditions. 

Yellow arrows specify a lack of co-localisation between endogenous Hsp27 and 

F-actin.  

B-F) Cells transfected with wild type and mutant Hsp27 were also stained for 

V5, phalloidin and DAPI as above, to show cellular distribution of transfected 

mutant and wild type Hsp27 in in vitro, unstressed cellular conditions. White 

arrows specify co-localisation between wild type and mutant Hsp27 and F-actin, 

co-localisation indicated by yellow staining, while yellow arrows indicate a lack 

of co-localisation. B) Wild type transfected Hsp27, C) Ser135Phe Hsp27, D) 

Arg140Gly Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met Hsp27.  
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4.4.2. Co-localisation patterns of endogenous, wild type and mutant 

transfected Hsp27 with F-actin in Cytochalasin D treated cells 

As discussed in Chapter 3, Section 3.4.2., Cytochalasin D acts on the actin 

cytoskeleton by stabilising F-actin. Following treatment of cells with Cytochalasin D 

(0.2uM), there was a small increase in the extent of co-localisation between 

endogenous Hsp27 and F-actin, proximal to the cell soma as well as signs of co-

localisation between the Hsp27 and the actin stress fibres which formed (Figure 

4.3A). This is in contrast to the staining pattern observed in unstressed cells (Figure 

4.2A), described above. The same pattern of staining was observed in cells 

transfected with wild type Hsp27, where Hsp27 co-localised with actin stress fibres 

and with F-actin in the cell soma (Figure 4.3B). 

 

Whilst the treatment of the cells with a cell stressor increased the co-localisation of 

both endogenous and wild type transfected Hsp27 with the actin cytoskeleton, this 

was not the case with either the Pro39Leu or Leu99Met Hsp27 mutations, which 

showed a lack of co-localisation with the actin cytoskeleton (Figure 4.3E and F).  

 

In unstressed conditions, in cells transfected with both the Ser135Phe and 

Arg140Gly Hsp27 mutations there was a clear co-localisation of the mutant Hsp27 

with the actin cytoskeleton, especially with actin stress fibres. When Cytochalasin D 

was added to the cells, both mutations showed a lack of co-localisation with actin 

stress fibres (Figure 4.3C and D), demonstrating an opposite reaction to 

endogenous and wild type transfected Hsp27 which showed actin co-localisation in 

Cytochalasin D stress conditions. While the Ser135Phe Hsp27 mutation showed 

increased cell soma localisation (Figure 4.3C), the Arg140Gly Hsp27 mutation 

showed an increased expression at the leading edges of the cell, co-localising with 

F-actin  in the  growth cone,  lamellipodia-like  structures formed  at the  end of  the  
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Figure 4.3 Co-localisation of endogenous, wild type and mutant 

transfected Hsp27 with F-actin in Cytochalasin D treated cells.  

A) Untransfected cells were stained for Hsp27 (red), phalloidin (green) labelling 

F-actin and counterstained with the nuclear marker DAPI (blue) to show the 

normal cellular distribution of endogenous Hsp27 and actin in cells treated with 

Cytochalasin D. White arrows specify co-localisation between endogenous 

Hsp27 and F-actin, co-localisation is indicated by yellow staining.  

B-F) Cells transfected with wild type and mutant Hsp27 were also stained for 

V5, phalloidin and DAPI, to show cellular distribution of transfected mutant and 

wild type Hsp27 in cells treated with Cytochalasin D in vitro. White arrows 

specify co-localisation between wild type and mutant Hsp27 and F-actin co-

localisation is indicated by yellow staining and yellow arrows indicate the 

absence of co-localisation. B) Wild type transfected Hsp27, C) Ser135Phe 

Hsp27, D) Arg140Gly Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met Hsp27. 
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neurites (Figure 4.3D). Although the addition of Cytochalasin D altered the location 

and expression pattern of the F-actin, the transfection of mutant Hsp27 did not alter 

the localisation of the F-actin immunoreactivity. 

 

4.4.3. Co-localisation patterns of endogenous, wild type and mutant 

transfected Hsp27 with F-actin in Colchicine treated cells 

Colchicine, an agent which acts by irreversibly binding to the microtubule network, 

was used in this study as it acts on a protein which has been shown to co-localise 

with Hsp27, but has not yet been functionally linked to the small heat shock protein 

(Williams et al., 2005). Colchicine also causes a more severe phenotype than 

Cytochalasin D at the same concentration indicating higher levels of cellular stress. 

Neither endogenous Hsp27 nor transfected wild type Hsp27 was found to co-

localise with Phalloidin-stained F-actin (Figure 4.4A and B). 

 

When Colchicine-stressed cells were transfected with Ser135Phe or Arg140Gly 

Hsp27 co-localisation between the mutant Hsp27, actin stress fibres and the actin 

cytoskeleton was observed in some, but not all, transfected cells (Figure 4.4C and 

D). However, not all cells transfected with the mutants showed a co-localisation with 

F-actin. The Leu99Met Hsp27 did not co-localise with Phalloidin-stained F-actin 

(Figure 4.4F) and the Pro39Leu Hsp27 mutant showed some co-localisation with 

actin stress fibres (Figure 4.4E). Although the addition of Colchicine altered the 

location and expression pattern of the F-actin, the transfection of mutant Hsp27 did 

not alter the localisation of the F-actin immunoreactivity. 
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Figure 4.4 Co-localisation of endogenous, wild type and mutant 

transfected Hsp27 with F-actin in Colchicine treated cells.  

A) Untransfected cells were stained for Hsp27 (red), phalloidin (green) labelling 

F-actin and counterstained with the nuclear marker, DAPI (blue), to show 

normal cellular distribution of endogenous Hsp27 and actin in cells treated with 

Colchicine. Yellow arrows indicate the absence of co-localisation.  

B-F) Cells transfected with wild type and mutant Hsp27 were also stained for 

V5, phalloidin and DAPI, to show cellular distribution of transfected mutant and 

wild type Hsp27 in cells treated with Colchicine in vitro. White arrows specify 

co-localisation between wild type and mutant Hsp27 and actin, co-localisation is 

indicated by orange and yellow staining, while the yellow arrows indicate a lack 

of co-localisation. B) Wild type transfected Hsp27, C) Ser135Phe Hsp27, D) 

Arg140Gly Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met Hsp27. 
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4.5. Co-localisation of Hsp27 with β-tubulin III is not altered by the 

expression of mutant Hsp27 

Hsp27 has not been previously shown to functionally interact with the microtubule 

network, but in vitro, Hsp27 co-localises with tubulin (Williams et al., 2005). The 

microtubule network is integral to axonal transport and the dynamic structure of the 

cell axon (Geraldo and Gordon-Weeks, 2009) which has been shown to be affected 

by mutations in Hsp27 (Chapter 3, Figures 3.12 and 13). Therefore, the co-

localisation of β-tubulin III (a component of the microtubule network) and Hsp27 was 

examined under basal as well as different conditions of cellular stress. 

 

4.5.1. Co-localisation patterns of endogenous, wild type and mutant 

transfected Hsp27 with β-tubulin III in unstressed cells 

Under baseline, unstressed conditions, the co-localisation of both endogenous and 

transfected wild type and mutant Hsp27 was assessed. The results showed clear 

co-localisation between β-tubulin III and endogenous Hsp27 in all cells (Figure 

4.5A). This staining pattern was recapitulated by all transfected Hsp27 with no 

difference between the wild type or mutant transfected proteins or no difference in 

localisation of the β-tubulin III immunoreactivity (Figure 4.5B-F). 

 

4.5.2. Co-localisation patterns of endogenous, wild type and mutant 

transfected Hsp27 with β-tubulin III in Cytochalasin D and Colchicine treated 

cells 

While cells showed co-localisation of β-tubulin III with all forms of Hsp27 in 

unstressed cells, this co-localisation was reduced when cells were stressed using 

Cytochalasin D Although the cellular localisation of Hsp27 or β-tubulin III did not 

appear to change, the appearance of co-localisation was reduced (Figure 4.6). 
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Figure 4.5 Co-localisation of endogenous, wild type and mutant 

transfected Hsp27 with β-tubulin III in unstressed conditions.  

A) Untransfected cells were stained for Hsp27 (red), β-tubulin III (green) and 

counterstained with nuclear marker, DAPI (blue), to show the normal cellular 

distribution of endogenous Hsp27 in unstressed cellular conditions. White 

arrows specify co-localisation between wild type and mutant Hsp27 and β-

tubulin III, co-localisation indicated by orange and yellow staining, while yellow 

arrows indicate the absence of co-localisation.  

B-F) Cells transfected with wild type and mutant Hsp27 were also stained for 

V5, β-tubulin III and DAPI, to show cellular distribution of transfected mutant 

and wild type Hsp27 in in vitro, unstressed cellular conditions. White arrows 

specify co-localisation between wild type and mutant Hsp27 and β-tubulin III, 

co-localisation indicated by yellow staining while yellow arrows indicate the 

absence of co-localisation. B) Wild type transfected Hsp27, C) Ser135Phe 

Hsp27, D) Arg140Gly Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met Hsp27. 
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Figure 4.6 Co-localisation of endogenous, wild type and mutant transfected 

Hsp27 with β-tubulin III in Cytochalasin D treated cells.  

A) Untransfected cells were stained for Hsp27 (red), β-tubulin III (green) and 

counterstained with the nuclear marker DAPI (blue), to show normal cellular 

distribution of endogenous Hsp27 in cells treated with Cytochalasin D. White 

arrows specify co-localisation between wild type and mutant Hsp27 and β-tubulin 

III, co-localisation is indicated by orange and yellow staining while yellow arrows 

indicate the absence of co-localisation.   

B-F) Cells transfected with wild type and mutant Hsp27 were also stained for V5, 

β-tubulin III and DAPI to show cellular distribution of transfected mutant and wild 

type Hsp27 in cells treated with Cytochalasin D in vitro. White arrows specify co-

localisation between wild type and mutant Hsp27 and β-tubulin III, co-localisation 

is indicated by orange and yellow staining, while yellow arrows indicate a lack of 

co-localisation. B) Wild type transfected Hsp27, C) Ser135Phe Hsp27, D) 

Arg140Gly Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met Hsp27. 
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The addition of Colchicine, a cell stressor acting on the microtubule network, 

disrupted the cellular organisation and localisation of β-tubulin III across the cell and 

caused the co-localisation of all forms of Hsp27 with β-tubulin III in the cell soma 

(Figure 4.7). This finding suggests that both the endogenous and transfected wild 

type and mutant Hsp27 may play more of a chaperoning role than a stabilising role 

under these conditions. Little co-localisation was observed between the two proteins 

in those neurites that remained on the cells.  

 

In all cells stained with β-tubulin III, in both unstressed and stressed conditions, 

there were no differences in the extent of co-localisation between endogenous 

Hsp27, wild type Hsp27 or any of the Hsp27 mutants. However, addition of different 

cell stressors revealed a change in the location of the co-localised β-tubulin III and 

Hsp27 from the neurites to the cell body, specifically to around the nucleus. 

 

4.6. The effect of Hsp27 mutations on the interaction of Hsp27 with 

Neurofilament-200 

The neurofilament network is particularly important in maintaining the integrity and 

calibre of the axon (Yum et al., 2009). Mutations in neurofilament light chain cause 

both demyelinating and axonal CMT (Abe et al., 2009), as discussed in the General 

Introduction, Section 1.2. In CMT, the aggregation or loss of neurofilament proteins 

is also a pathological feature of axonal degeneration (Benedetti et al., 2010). 

Therefore, the expression of neurofilament-200 heavy chain (NF-200) was used to 

examine the effect of Hsp27 mutations on the neurofilamentous network in 

unstressed and stressed conditions. 
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Figure 4.7 Co-localisation of endogenous, wild type and mutant transfected 

Hsp27 with β-tubulin III in Colchicine treated cells.  

A) Untransfected cells were stained for Hsp27 (red), β-tubulin III (green) and 

counterstained with the nuclear marker DAPI (blue), to show normal cellular 

distribution of endogenous Hsp27 in cells treated with Colchicine. White arrows 

specify co-localisation between wild type and mutant Hsp27 and β-tubulin III, co-

localisation is indicated by orange and yellow staining, while yellow arrows 

indicate the absence of co-localisation.   

B-F) Cells transfected with wild type and mutant Hsp27 were stained for V5, β-

tubulin III and DAPI, to show cellular distribution of transfected mutant and wild 

type Hsp27 in cells treated with Colchicine in vitro. White arrows specify co-

localisation between wild type and mutant Hsp27 and β-tubulin III, co-localisation 

is indicated by orange and yellow staining, while yellow arrows indicate the 

absence of co-localisation. B) Wild type transfected Hsp27, C) Ser135Phe Hsp27, 

D) Arg140Gly Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met Hsp27. 
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4.6.1. Co-localisation patterns of endogenous, wild type and mutant 

transfected Hsp27 with NF-200 in unstressed conditions 

In unstressed conditions, endogenous Hsp27 displayed partial co-localisation with 

the NF-200 protein (Figure 4.8A). When cells were transfected with wild type Hsp27, 

a similar staining pattern to the endogenous protein with some co-localisation of wild 

type Hsp27 with NF-200 was seen (Figure 4.8B).  

 

Transfection with the Ser135Phe mutant of Hsp27 also resulted in a similar 

phenotype to wild type Hsp27, with some co-localisation detected (Figure 4.8C). In 

contrast, transfection with Arg140Gly Hsp27, Pro39Leu Hsp27 and Leu99Met 

Hsp27 in unstressed conditions, resulted in less co-localisation with NF-200 (Figure 

4.8D-F) with a clear separation of NF-200 and V5 throughout the cells.  

 

4.6.2. Co-localisation of endogenous, wild type and mutant transfected Hsp27 

with NF-200 in Cytochalasin D treated cells 

Treatment with Cytochalasin D had a clear effect on the neurofilament network in all 

cells examined (Figure 4.9). Regardless of Hsp27 expression, NF-200 aggregated in 

the cell soma and formed neurofilament bundles in neurites - a pathological hallmark 

of axonal degeneration in CMT (Fabrizi et al., 2004; Benedetti et al., 2010). 

 

Under unstressed conditions, endogenous Hsp27 displayed co-localisation with NF-

200 (Figure 4.9A) which was also seen in cells transfected with wild type Hsp27 

(Figure 4.9B). The staining pattern of endogenous and transfected wild type Hsp27 

did not change in cells treated with the F-actin stressor. However when Cytochalasin  
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Figure 4.8 Co-localisation of endogenous, wild type and mutant transfected 

Hsp27 with NF-200 in unstressed conditions.  

A) Untransfected cells were stained for Hsp27 (red), NF-200 (green) and 

counterstained with the nuclear marker DAPI (blue), to show normal cellular 

distribution of endogenous Hsp27 in unstressed cellular conditions. White arrows 

specify co-localisation between wild type and mutant Hsp27 and NF-200, co-

localisation is indicated by orange and yellow staining, while yellow arrows indicate 

the absence of co-localisation.  

B-F) Cells transfected with wild type and mutant Hsp27 were also stained for V5, 

NF-200 and DAPI, to show cellular distribution of transfected mutant and wild type 

Hsp27 in in vitro, unstressed cellular conditions. White arrows specify co-

localisation between wild type and mutant Hsp27 and NF-200, co-localisation is 

indicated by yellow staining, while yellow arrows indicate the absence of co-

localisation. B) Wild type transfected Hsp27, C) Ser135Phe Hsp27, D) Arg140Gly 

Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met Hsp27. 
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Figure 4.9 Co-localisation of endogenous, wild type and mutant transfected 

Hsp27 with NF-200 in Cytochalasin D treated cells.  

A) Untransfected cells were stained for Hsp27 (red), NF-200 (green) and 

counterstained with the nuclear marker DAPI (blue), to show normal cellular 

distribution of endogenous Hsp27 in cells treated with Cytochalasin D. White 

arrows specify co-localisation between wild type and mutant Hsp27 and NF-200, 

co-localisation is indicated by orange and yellow staining, while yellow arrows 

indicate the absence of co-localisation.   

B-F) Cells transfected with wild type and mutant Hsp27 were also stained for V5, 

NF-200 and DAPI, to show cellular distribution of transfected mutant and wild type 

Hsp27 in cells treated with Cytochalasin D in vitro. White arrows specify co-

localisation between wild type and mutant Hsp27 and NF-200, co-localisation is 

indicated by orange and yellow staining, while yellow arrows indicate a lack of co-

localisation. B) Wild type transfected Hsp27, C) Ser135Phe Hsp27, D) Arg140Gly 

Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met Hsp27. 
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D was added to cells which had been transfected with the various Hsp27 mutations, 

all cells displayed co-localisation between the mutant protein and NF-200 (Figure 

4.9C-F). In unstressed conditions, only the Ser135Phe and Leu99Met Hsp27 

mutations had shown any co-localisation with NF-200 (Figure 4.8C and F). 

 

4.6.3. Co-localisation of endogenous, wild type and mutant transfected Hsp27 

with NF-200 in Colchicine treated cells 

The addition of Colchicine to SH-SY5Y cells caused significant aggregation of NF-

200, predominantly in the cell soma around the nuclei (Figure 4.10). This was not 

reduced or increased by the over expression of either wild type or mutant Hsp27. 

 

Untransfected cells displayed some co-localisation between endogenous Hsp27 and 

NF-200, but not within the aggregates of NF-200 in the cell cytoplasm (Figure 

4.10A). Transfected wild type Hsp27 showed reduced co-localisation in comparison 

to unstressed and Cytochalasin D treated cells (Figure 4.10B).  

 

Cells transfected with Hsp27 mutations largely also showed a lack of co-localisation 

with NF-200 (Figure 4.10C-F) although in cells transfected with Hsp27 Ser135Phe, 

Hsp27 Arg140Gly and Hsp27 Pro39Leu, there was a co-localisation of the 

transfected proteins with the aggregated NF-200 in the cell soma (Figure 4.10C, D 

and E). 

 

4.7. Ser135Phe Hsp27 causes aggregation of tau in some transfected cells 

In a small number of cells transfected with Ser135Phe Hsp27, aggregates positive 

for  both the  transfected protein  and tau,  a microtubule  associated protein,  were  
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Figure 4.10 Co-localisation of endogenous, wild type and mutant transfected 

Hsp27 with NF-200 in Colchicine treated cells.  

A) Untransfected cells were stained for Hsp27 (red), NF-200 (green) and 

counterstained with the nuclear marker DAPI (blue), to show normal cellular 

distribution of endogenous Hsp27 in cells treated with Colchicine. White arrows 

specify co-localisation between wild type and mutant Hsp27 and NF-200, co-

localisation is indicated by orange and yellow staining.   

B-F) Cells transfected with wild type and mutant Hsp27 were also stained for V5, 

NF-200 and counterstained with DAPI, to show cellular distribution of transfected 

mutant and wild type Hsp27 in cells treated with Colchicine in vitro. White arrows 

specify co-localisation between wild type and mutant Hsp27 and NF-200, co-

localisation is indicated by orange and yellow staining, while yellow arrows 

indicate an absence of co-localisation. B) Wild type transfected Hsp27, C) 

Ser135Phe Hsp27, D) Arg140Gly Hsp27, E) Pro39Leu Hsp27 and F) Leu99Met 

Hsp27. 
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Figure 4.11 The Ser135Phe Hsp27 mutation causes aggregation of tau 

in some transfected cells 

Cells stained with V5 (red) and tau (green) showing an example of A) Cell 

transfected with wild type Hsp27 with little co-localisation between 

transfected Hsp27 and tau. B) A cell transfected with Ser135Phe mutant 

Hsp27 showing a large inclusion impinging on the nucleus positive for both 

tau and transfected Ser135Phe Hsp27.  
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observed, some of which were large enough to impinge on the nucleus (Figure 

4.11B). These aggregates were never detected in cells expressing wild type Hsp27 

(Figure 4.11A) or any other mutation of Hsp27, suggesting a mutation-specific 

cytoskeletal disruption. 

 

4.8. Pro39Leu Hsp27 aggregates into nuclear inclusions 

When cells were transfected with the Pro39Leu mutant Hsp27, 38.9% ± 6.59% (± = 

SEM) of cells contained nuclear inclusions which were positive for V5 and Hsp27, 

suggesting that the transfected mutant Hsp27 was aggregating with itself or other 

proteins within the nucleus (Figure 4.12). Such nuclear inclusions were not observed 

in untransfected cells and cells transfected with either wild type Hsp27 or any other 

mutant Hsp27.  

 

4.9. Morphological characterisation of cells transfected with Pro39Leu 

Hsp27 

Since nuclear inclusions were found in such a high proportion of cells transfected 

with Pro39Leu Hsp27, the morphological data for Pro39Leu Hsp27 transfected cells 

analysed in Chapter 2 and presented in Figures 2.16 – 2.19, was reanalysed 

according to whether the cells contained nuclear inclusions or not (Figure 4.13). The 

methods for the morphological analysis of these cells are described in the Materials 

and Methods in Chapter 2.  

 

The presence of inclusions had no effect on morphological features which were 

considered to be indicative of changes in the regulation of cellular pathways. Thus, 

there was no change in the number of lamellipodia, neuritic ‘stumps’ or vacuoles in  
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Figure 4.12 Pro39Leu Hsp27 forms nuclear inclusions  

Cells transfected with the Pro39Leu Hsp27 mutation have nuclear inclusions 

that contain Hsp27 (red) and the V5 epitope (green), a marker for transfected, 

mutant Hsp27. A) Two SH-SY5Y cells stained for Hsp27 B) V5-positive cell 

containing Pro39Leu Hsp27 C) Overlay of Hsp27 and V5 showing exogenous 

and/or transfected Hsp27 in the cytoplasm of the cell and in nuclear inclusions. 
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Figure 4.13 Comparison of morphological characteristics of cells 

transfected with Pro39Leu Hsp27 with and without nuclear inclusions.  

The bar chart summarises the characterisation of the morphological features of 

cells transfected with mutant Pro39Leu Hsp27 and which either contain nuclear 

inclusions (orange bars) or do not (blue bars). Error bars = SEM.  

 

Figure 4.13 

Neuritic branching 
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comparison to Pro39Leu Hsp27 transfected cells which did not contain nuclear 

inclusions (Figure 4.13). The presence of nuclear inclusions was also not associated 

with changes in bidirectional branching, and therefore had no effect on the number 

of neurites sprouting from the cell soma. However, nuclear inclusions did correlate 

with decreased secondary and tertiary branching from primary neurites in 

comparison to Pro39Leu Hsp27 transfected cells with no nuclear inclusions, 

suggesting that the presence of nuclear inclusions in Pro39Leu cells was associated 

with a decrease in cellular differentiation (Figure 4.13). 

 

4.10. Which proteins co-localise with Pro39Leu Hsp27 nuclear inclusions? 

Whether the Pro39Leu Hsp27-positive nuclear inclusions contained key cellular 

proteins was examined next by immunostaining for ubiquitin, SMN1 and TDP-43. 

 

4.10.1. Pro39Leu Hsp27 positive nuclear inclusions are not ubiquitinated 

To attempt to characterise the nuclear inclusions observed in cells transfected with 

Pro39Leu Hsp27, the cells were stained with ubiquitin and co-stained with V5. 

Figure 4.14 shows that Pro39Leu Hsp27 nuclear inclusions were not positive for 

ubiquitin, indicating that they were not targeted for degradation by the proteosome. 

 

4.10.2. Pro39Leu Hsp27 positive nuclear inclusions do not contain survival of 

motor neuron 1 protein 

In Spinal muscular atrophy, survival of motor neuron 1 (SMN1) protein is deleted or 

truncated causing a severe, predominantly lower motor neurodegenerative disease 

(Lefebvre et al., 1995). SMN1 is thought to be a housekeeping gene and is 

ubiquitously expressed. The roles of SMN1 include processing of pre-mRNA and 

maintenance of the growth cone (Morse et al., 2011). When in the nucleus, SMN1  
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Figure 4.14 Pro39Leu Hsp27-positive nuclear inclusions are not 

ubiquitinated. 

A) Cells were transfected with Pro39Leu and stained for ubiquitin (green, 

white arrow) and counterstained for DAPI (a nuclear marker). B) Cells were 

also co-stained with V5 (red) showing cells transfected with Pro39Leu Hsp27 

forming nuclear inclusions (white arrows). In cells positive for nuclear 

inclusions, there was no co-localisation with the transfected Pro39Leu Hsp27 

inclusions and ubiquitin.  
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resides in Cajal bodies (Morse et al., 2011). This made SMN1 an attractive target to 

ascertain whether it co-localised with Pro39Leu mutant Hsp27. When cells were 

immunostained for V5 and SMN1 no co-localisation was seen, and the presence of 

mutant Hsp27 positive nuclear inclusions did not affect the cellular localisation of 

SMN1 (Figure 4.15). 

 

4.10.3. Pro39Leu Hsp27 positive nuclear inclusions co-localise with TDP-43 

Mutations in TDP-43, an mRNA splicing protein, have been shown to cause familial 

amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTD) 

(Sreedharan et al., 2008)(Chiò et al., 2010). TDP-43 positive, ubiquitinated 

inclusions have also been found in several neurodegenerative diseases including 

ALS, FTD and inclusion body myositis (IBM) (Neumann et al., 2006; Salajegheh et 

al., 2009). TDP-43 is normally located in the nucleus, but upon cell stress and in 

pathological conditions, the C-terminus of the protein translocates to the cytoplasm 

where its functions remain elusive (Dormann et al., 2009).  

 

In cells positive for Pro39Leu Hsp27 inclusions, TDP-43 co-localised with a 

proportion, but not all inclusions (Figure 4.16). The appearance of inclusions in 

transfected cells did not precipitate the translocation of TDP-43 to the cytoplasm 

(Figure 4.16). 

 

When cells were transfected with wild type or mutant Hsp27, TDP-43 did not 

translocate to the cytoplasm (Figure 4.16). This was also the case when cells were 

stressed using Cytochalasin D and Colchicine (Data not shown). 
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Figure 4.15 Pro39Leu Hsp27-positive nuclear inclusions do not contain 

survival of motor neuron protein 1. 

Cells stained with V5 (red), SMN1 (green) and counter stained for DAPI (a 

nuclear marker) showing an example of cells transfected with Pro39Leu 

Hsp27 and forming nuclear inclusions (white arrows). In cells positive for 

SMN1 (white arrow), there was no co-localisation with the transfected 

Pro39Leu Hsp27 inclusions and SMN1 protein.  
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Figure 4.16 Pro39Leu Hsp27 positive nuclear inclusions sometimes 

contain TDP-43  

Nuclear inclusions (marked by white arrows) in cells transfected with the 

Pro39Leu Hsp27 mutation stained for V5 and TDP-43. A-D) Show a 

Pro39Leu Hsp27 positive cell with TDP-43 co-localised with mutant Hsp27 

positive nuclear inclusions. E-H) Show a Pro39Leu Hsp27 positive cell with 

TDP-43 in the nucleus but not co-localised with mutant Hsp27 positive 

nuclear inclusions. A,E) V5 (red), B,F) TDP-43 (green) C,G) Overlay of V5 

and TDP-43 D,H) Magnification of nucleus of overlay picture. 
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4.10.4. Pro39Leu Hsp27 nuclear inclusions are SC35-positive nuclear speckles 

Under conditions of cellular stress, Hsp27 translocates into the nucleus. Its function 

in this action is currently unknown although it thought to modulate transcriptional 

activity (Friedman et al., 2009). Small heat shock proteins, including Hsp27 have 

been shown to co-localise with nuclear speckles that are positive for SC35, a 

regulator of pre-mRNA splicing associated with tau splicing (Björk et al., 2009; Vos 

et al., 2009; Qian et al., 2011). Analysis of the Pro39Leu Hsp27 inclusions revealed 

that on all occasions, these ‘nuclear inclusions’ were immunoreactive for SC35 and 

were therefore likely to be SC35-positive nuclear splicing speckles (Figure 4.17). 
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Figure 4.17 Pro39Leu Hsp27 nuclear inclusions are positive for SC35  

Nuclear inclusions (marked by white arrows) in cells transfected with the 

Pro39Leu Hsp27 mutation stained for SC35 and V5. A) Counterstained with 

DAPI (blue) to show cell nucleus B) SC35-positive nuclear speckles (green) in 

the cell nucleus C) V5-positive cells (red) containing Pro39Leu Hsp27 staining 

cytoplasm and nuclear bodies D) Overlay of SC35 and V5 showing co-

localisation of mutant Hsp27 with SC35-positive nuclear bodies. 
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4.11. Chapter 4 Summary 

The data presented in Chapter 3 established that all Hsp27 mutations examined 

were cytotoxic and that some showed differential affects on the cytoskeleton which 

could possibly have been due to the mutation position on the gene of interest. In this 

Chapter, I further examined the possible differences between the mutations by 

examining the expression patterns of several proteins by immunocytochemistry in 

cells under non-stressed and stressed conditions.  

 

Hsp27 has been shown to play an important role in the development, repair and 

stability of the cytoskeleton in the presence and absence of cellular stress (Benndorf 

et al., 1994; Mounier and Arrigo, 2002; Williams et al., 2006). In the experiments 

described in this Chapter, analysis of actin microfilaments, microtubules and 

neurofilaments revealed further differences in the interaction of the Hsp27 mutations 

with key proteins of the cytoskeleton. Both the Ser135Phe and Arg140Gly mutations 

were distinguished by an apparent increase in co-localisation with F-actin in 

comparison to endogenous and wild type transfected Hsp27as well as the Pro39Leu 

and Leu99Met Hsp27 mutations. These findings were more marked in unstressed 

conditions but were still observed in cells stressed with cytoskeletal agents (Figures 

4.2-4.4).  

 

Perhaps surprisingly in the light of the current literature on Hsp27 mutations, there 

was a lack of co-localisation between Hsp27 mutations and NF-200 in unstressed 

conditions, in contrast to the expression pattern of endogenous Hsp27 (Figure 4.8). 

In cells stressed with Cytochalasin D, all forms of Hsp27 co-localised with NF-200, 

but not with NF-200 bundles which also formed (Figure 4.9). In contrast, in cells 

stressed with Colchicine, there was a distinct lack of co-localisation of NF-200 and 

mutant Hsp27 with large aggregates of NF-200 which formed (Figure 4.10). In this 
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study, neither the Ser135Phe Hsp27 mutation, nor any other mutation examined had 

any effect on the cellular location or pathology of NF-200 caused by treatment with 

cytoskeletal stressors, and mutant Hsp27 showed very little co-localisation with NF-

200 aggregates or bundles. 

 

In comparison, in Colchicine-treated cells, all mutant Hsp27s co-localised with β-

tubulin III, a neuronal-specific member of the microtubule network, not only in the 

cytoplasm but also in cytoplasmic aggregates (Figure 4.7). It is worth noting that the 

Ser135Phe Hsp27 mutation also resulted in the formation of tau (a microtubule-

associated protein) aggregates in some cells (Figure 4.11). In other conditions 

examined, all forms of Hsp27 co-localised with β-tubulin III (Figure 4.5 and 4.6).  

 

While the addition of mutations in an over-expressed foreign protein caused some 

similar morphological changes as well as differential interactions with the 

cytoskeleton, one mutation also caused a distinctive differential effect in the cells. 

The Pro39Leu Hsp27 mutation (amino acid change in the N-terminus of the protein) 

caused the formation of nuclear inclusions in 39% of transfected cells. These 

inclusions were determined to be SC35-positive nuclear speckles. Nuclear speckles 

are non-pathological nuclear bodies involved in mRNA splicing. 

 

Indeed, all mutations, apart from one, showed differential effects in SH-SY5Y cells, 

albeit on different parameters. The recessive Leu99Met Hsp27 mutation (located in 

the α-crystallin domain, but out of the hot spot region) was shown in Chapter 3 to be 

toxic to cells under basal conditions, but has not displayed any differential effects 

using any other outcome measure assessed.  

 



216 
 

The cell model used in the experiments described in Chapters 3 and 4, has revealed 

robust phenotypic differences between nearly all the Hsp27 mutations with all the 

outcome measures examined. However, there are several limitations to this model 

which limit its applicability. Due to these limitations, it is not appropriate for use in 

experiments which aim to examine more functional aspects of cellular function, 

which are critically dependent on cellular identity. Therefore, primary motoneurons 

are a more appropriate cell model in which to examine the functional effects of 

Hsp27 mutations in vitro.  

 

In Chapter 6, the effects of the Hsp27 mutations on functional outcome measures 

are examined in primary motoneuron cultures transfected with 3rd generation viruses 

containing wild type Hsp27, Pro39Leu Hsp27, Ser135Phe Hsp27 and Arg140Gly 

Hsp27. Due to the addition of supplementary control conditions and the recessive 

nature of the mutation, the Leu99Met was not taken forward in further experiments 

for functional testing.  
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Chapter 5. The functional effects of Hsp27 mutations in primary 

motoneurons in vitro. 

 

The results presented in Chapters 3 and 4 show that mutations in Hsp27 have 

differential effects on the phenotype of transfected neuronal-like cells. All of the 

mutations examined showed significant levels of cytotoxicity. In addition, the 

Ser135Phe and Arg140Gly mutations, located in the α-crystallin domain of the 

Hsp27 protein, significantly increased cellular vulnerability to pharmacological 

cytoskeletal stressors and inhibited neurite outgrowth. These mutations also 

abnormally co-localised with F-actin in comparison to not only endogenous and wild 

type transfected Hsp27, but also to the Pro39Leu and Leu99Met Hsp27 mutations. 

Conversely, Pro39Leu, a mutation located in the N-terminus of Hsp27, accumulated 

in SC35-positive nuclear splicing speckles. 

 

The differential effects described above were observed in a generic model in which 

a mutant protein is over expressed in a neuronal cell line. However, mutations in 

Hsp27 cause CMT 2F, a disease which preferentially targets motoneurons, which 

are highly specialised neurons that transmit signals along axons which are some of 

the longest in the body. Motoneurons are metabolically highly active and must 

generate enough energy to maintain membrane potential along the entire length of 

the axon and throughout its dendritic tree. Motoneurons are therefore highly 

dependent upon an efficient cytoskeletal network in order to transport key proteins, 

electrical signals as well as organelles including mitochondria to their site of action. 

Thus, any disturbance in the cytoskeletal network will immediately affect 

motoneuron functions. The results presented in Chapters 3 and 4, together with 
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previous published data, shows that mutant Hsp27 can interfere with a number of 

cytoskeletal proteins, resulting in dysfunction of not only the transport machinery, 

but with the function of individual cargoes, such as mitochondria. Mitochondria not 

only provide ATP for the cell, but also regulate apoptosis, produce reactive oxygen 

species (ROS) and buffer intracellular calcium. Mitochondria are very susceptible to 

changes in the cellular environment and changes in mitochondrial activity are one of 

the first signs of motoneuron stress. Thus, assessment of the mitochondrial 

membrane potential is a sensitive readout of motoneuron vulnerability. In this 

Chapter, the effect of Hsp27 mutations on the mitochondrial membrane potential in 

primary motoneurons was examined as a readout of the functional effects of these 

mutations in motoneurons.  

 

While motoneurons are highly specialised to transmit signals between the CNS and 

muscles, they are heavily reliant on surrounding cells for support, such as 

transmitter recycling, some elements of energy metabolism and even cellular 

protection against toxic insults. Indeed, surrounding astroglia have been shown to 

supply neurons with intermediate products of energy metabolism as well as 

cytoprotective heat shock proteins (Robinson et al., 2005; Benarroch, 2010).  

 

In order to understand the effects of Hsp27 mutations on physiological changes in 

cellular functions, primary embryonic motoneuron cultures were transfected with 3rd 

generation viruses containing either wild type Hsp27, or one of three Hsp27 

mutations; Pro39Leu, Ser135Phe and Arg140Gly and the effects on morphological 

and functional characteristics of motoneurons was examined.  
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5.1. Characterisation and transfection of primary motoneuron cultures 

In order to examine the effects of Hsp27 mutations on cellular functions in 

motoneurons, primary embryonic mixed ventral horn cultures were optimised for 

viral transfection of mutant and wild type Hsp27. All viruses used in this Chapter 

were generated by Dr Bernadett Kalmar. In the first instance, the culture model was 

optimised in order to produce a consistent ratio of cell types and motoneuron purity 

in the culture, and optimisation of viral transfection to ensure comparable culture 

conditions across experiments. 

 

5.1.1. Motoneuron purity in primary mixed ventral horn cultures 

The primary motoneuron cultures used in these experiments consist of mixed 

ventral horn cells obtained from mouse embryonic spinal cord (Figure 5.1) using an 

established protocol adapted from that described by Camu and Henderson (Camu 

and Henderson, 1994; Kalmar and Greensmith, 2009b). Due to the number of 

different cell types in the mixed culture preparation, motoneuron purity was 

established by immunostaining for motoneuron specific protein markers as well as 

their characteristic morphology, as illustrated in Figure 5.1B. Neurons can be 

identified by immunoreactivity to neuronal specific markers including microtubule-

associated protein 2 (MAP2) (Figure 5.1A), β-tubulin III (Figure 5.1B) and peripherin 

(Figure 5.5). Motoneurons were then differentiated from other neurons in culture 

(primarily interneurons) by size and shape. Therefore in this study, a cell was 

determined as a motoneuron if it stained for specific neuronal markers, eg MAP2, 

and showed the following morphological characteristics: a soma diameter of >15μm 

and possessing of 3 or more neuritic processes. In the motoneuron cultures 

described in this Chapter the average motoneuron content was consistently found to 

be 43.2% (± 6.4%, SEM; Figure 5.1A). 
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Figure 5.1 Primary embryonic motoneuron cultures.  

A) Representative image of a mixed ventral horn culture with neurons 

stained for neuronal-specific MAP2 (green). B) Primary motoneurons in 

culture immunostained for neuronal-specific β-tubulin III (red) and 

counterstained with DAPI (blue) with large cell somas of <15μm diameter 

and 3 or more neuritic processes. 
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5.1.2. Optimal viral transfection rate and multiplicity of infection (MOI) 

Primary motoneurons are particularly vulnerable to in vitro environmental stress 

including over-expression of foreign proteins. It was therefore important in these 

experiments to control for protein over-expression, not only to functionally assess 

the effect of Hsp27 mutations, but to avoid multiple expression of the protein that 

can lead to effects on the cell unrelated to the mutations investigated and to 

maintain the motoneurons as functionally viable. Therefore, the viral titre was 

optimised by series dilutions so that 10-20% of motoneurons would express the 

transgene and therefore probably contain few copies of the transgene. An example 

of a transfected motoneuron is illustrated in Figure 5.2, using a wild type Hsp27 viral 

vector (See Materials and Methods, Chapter 2, Section 2.7.2.). The average viral 

titre produced 1.07x106TU/ml (tested in HEK cells). In order to achieve 10% 

transfection, an MOI of 10 was applied. Virally transducing primary motoneurons at 

time points of 12, 24 or 48 hours post-plating made no difference to transfection 

efficiency at 7 days in vitro (DIV). 

 

5.1.3. GFP and Hsp27 are both expressed in transfected neurons 

The expression system chosen for the 3rd generation virus had dual promoters: an 

EF1 housekeeping promoter to drive the expression of a green fluorescent protein 

(GFP) reporter gene, and a CMV promoter to ensure high expression level of the 

target gene (See vector map in Materials and Methods, Chapter 2, Figure 2.3A for 

illustration). The V5 epitope used here to identify transfected Hsp27 is a 14 amino 

acid sequence with a predicted molecular weight of 1kDa, while GFP is a protein tag 

with 238 amino acids and a weight of 26.9kDa. Addition of a V5 epitope on to Hsp27 

does not affect the cellular location or function of the protein (Chapter 4, Section 4.1) 

making V5 a model tag for the exogenous Hsp27 protein. However, GFP is 
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Figure 5.2 Optimisation of viral titres in primary motoneuron cultures.  

Representative images of a mixed ventral horn culture virally transfected with 

different concentrations of a GFP expressing virus containing wild type Hsp27 

(green). Motoneurons are stained for neuronal-specific MAP2 (red). A) 1:100 

dilution, B) 1:200 dilution, C) 1:500 dilution, D) 1:1000 dilution, E) 1:1500 

dilution and F) 1:2000 dilution. 
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approximately the same weight as the target protein; therefore the addition of GFP 

to Hsp27 may have had a significant impact on the function of the protein. 

Therefore, the GFP and V5-tagged Hsp27 protein were expressed via different 

promoters. As shown in Figure 5.3, both proteins were expressed in the same cells 

but in different compartments, with the GFP located in the nucleus and cytoplasm, 

and the V5-tagged Hsp27 only present in the cytoplasm. 

 

5.2. Pro39Leu mutant Hsp27 does not accumulate in SC35-positive nuclear 

speckles in primary motoneurons  

Using SH-SY5Y cells as a model of protein over-expression in experiments 

described in Chapters 3 and 4, nuclear inclusions were observed in cells transfected 

with the Pro39Leu Hsp27 mutations, located in the N-terminus of Hsp27 (Figure 

4.12). Further investigation showed that the mutant Hsp27 was present in SC35-

positive nuclear splicing speckles which are found in the nuclei of all cells (Figure 

4.17). However, when primary motoneurons were transfected with the Pro39Leu 

Hsp27 mutation, immunostaining for SC35 and V5 revealed no aggregates of 

Pro39Leu mutated Hsp27 present. 

 

5.3. Mutant Hsp27 may impair the heat shock response of primary 

motoneurons in culture 

An important cellular function of Hsp27 is to act as a protein holdase and co-

chaperone of Hsp70 and is an important component of the heat shock response 

(HSR). To investigate the effect of Hsp27 mutations on the HSR, the expression 

levels of Hsp70 were examined by immunofluorescence under both non-stressed 

and stressed conditions in untransfected and transfected primary motoneuron 

cultures.  Cellular stress was induced by exposing the motoneurons to heat shock 
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Figure 5.3  

 

Figure 5.3 Motoneurons in culture express GFP and V5-tagged Hsp27 

separately.  

Representative images of motoneurons from mixed ventral horn cultures virally 

transfected with a GFP (green) expressing virus containing V5-tagged wild type 

Hsp27 (red). A) GFP is located in the cell nucleus while V5-tagged wild type 

Hsp27 can be found in the cytoplasm. B) GFP is located both in the cell nucleus 

and cytoplasm while Hsp27 can only be observed in the cytoplasm. 
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at 42˚C for 30 minutes. The cultures were then fixed 6 hours later and 

immunostained for Hsp70 and the neuronal marker β-tubulin III. 

 

Examples of the pattern of immunofluorescence observed in stressed motoneuron 

cultures transfected with wild type Hsp27 or Arg140Gly Hsp27 are shown in Figure 

5.4A-D. The intensity of Hsp70 immunofluorescence in untransfected motoneurons 

and those transfected with empty vector, wild type or each of the three Hsp27 

mutations in non-stressed and stressed conditions was determined and the results 

are summarised in Figure 5.4E. The bar chart shows that in non-stressed 

conditions, there was no difference in the expression of Hsp70 in any of the cultures. 

This finding suggests that neither viral transfection nor expression of mutant Hsp27 

altered the expression of Hsp70 in primary motoneurons, indicating that the HSR 

was not activated under these conditions. As expected, when untransfected, empty 

vector and wild type transfected primary motoneurons were exposed to heat shock, 

they showed a large increase in Hsp70 (Figure 5.4E). In contrast, in motoneurons 

transfected with each of the Hsp27 mutations, the increase in Hsp70 expression 

was clearly reduced (Figure 5.4E); suggesting a diminished HSR in motoneurons 

containing mutant Hsp27 compared to untransfected, empty vector and wild type 

transfected primary motoneurons. 

 

5.4. The effect of Hsp27 mutations on mitochondrial membrane potential 

(Δψm) in primary motoneurons 

Due to the large size and high-energy functions of motoneurons, these cells are 

critically dependent on fully functioning mitochondria (Shaw and Eggett, 2000). 

However, mitochondria are very sensitive to changes in the cellular environment and 

changes in ATP production are one of the first signs of motoneuron dysfunction in a 

transgenic mouse model of ALS expressing mutant SOD1  
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Figure 5.4 Expression of mutant Hsp27 reduced the stress response of 

primary motoneurons in vitro  

Primary motoneurons were transfected with a virus containing V5-tagged wild 

type or mutant Hsp27. Some cultures were stressed by heat shock at 42˚C for 

30 minutes and fixed 6 hours after stress stimulation. The cultures were then 

immunostained for Hsp70 (red) and the neuronal marker β-tubulin III (aqua). A. 

A primary motoneuron transfected with wild type Hsp27 and B. the same cell 

immunostained for Hsp70. C. A primary motoneuron transfected with 

Arg140Gly Hsp27 and D. immunostained for Hsp70. The intensity of Hsp70 

immunofluorescence was measured. E. The bar chart shows the intensity of 

Hsp70 immunofluorescence in each culture condition under non-stressed and 

stressed conditions. Error bars = SEM.  
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(Bilsland et al., 2008). Measurement of the mitochondrial membrane potential (Δψm) 

is a sensitive, functional readout of cellular health. Therefore, the affect of Hsp27 

mutations on Δψm in primary motoneurons was examined next. 

 

5.4.1. TMRM as a measure of Δψm 

Tetramethylrhodamine methyl ester (TMRM) was used to measure Δψm. TMRM is a 

cell-permanent potentiometric indicator that is non-toxic to live cells (Figure 5.5). 

The cationic nature of TMRM causes higher fluorescence intensity at a more 

negative Δψm, and a loss of fluorescence intensity as Δψm becomes more positive, 

as the mitochondrial membrane depolarises (Gandhi et al., 2009). 

 

Firstly, the specificity and stability of TMRM was confirmed by recording a time 

series of images from the time TMRM is added and the fluorescence intensity of cell 

bodies was measured. TMRM is a highly lipid soluble, potentiometric indicator that 

has a single, delocalised positive charge, and therefore becomes sequestered and 

fluoresces in mitochondria as a result of the electrochemical gradient between the 

cytoplasm and mitochondria. As the TMRM is sequestered into the mitochondria the 

fluorescence intensity increases and stable fluorescence intensity was recorded 

from 1,700 seconds, or 28 minutes (Figure 5.6). To confirm TMRM localisation to 

the mitochondrial membrane, 1μM FCCP, a mitochondrial uncoupler of oxidation 

from phosphorylation meaning ATP synthesis cannot occur and causes complete 

depolarisation of the Δψm was added, and an immediate reduction in TMRM 

fluorescence was observed. Under complete depolarisation, TMRM loses 

fluorescence and disperses from the mitochondrial membrane, causing the 

observed immediate reduction in TMRM fluorescence demonstrating that the TMRM 

was indeed specifically fluorescing in the mitochondrial membrane (Figure 5.6). 
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Figure 5.5 Confocal image of a TMRM-loaded motoneuron.  

TMRM is a cationic fluorophore which accumulates in the mitochondria 

due to the electrochemical gradient between the mitochondria and 

cytoplasm measured by intensity.  

 

Figure 5.5  
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Figure 5.6 TMRM as a reliable probe for mitochondrial membrane potential 

An example traces showing increasing TMRM fluorescent intensity over time. 

Addition of 1μM FCCP (a mitochondrial uncoupler) gives an immediate 

reduction in TMRM signal as the mitochondrial membrane depolarises. 

Figure 5.6  
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5.4.2. Mutations in Hsp27 do not disrupt the Δψm in primary motoneurons 

To assess the impact of Hsp27 mutations on the Δψm, TMRM fluorescence intensity 

was measured in both transfected primary motoneurons, visualised by GFP 

fluorescence, and non-transfected primary motoneurons, identified by a lack of GFP 

expression, from the same culture dish. These measurements were then compared 

to give a ratio of the fluorescence change between transfected and non-transfected 

motoneurons. To control for the addition of a virus and foreign protein, cells 

transfected with empty vector or virus containing wild type Hsp27 were analysed 

using the same parameters.  

 

As shown in Figure 5.7, transfection with an empty viral vector or viral particles 

expressing wild type Hsp27 had no measurable effect on the Δψm, with no change 

or difference in TMRM intensity compared to non-transfected primary motoneurons 

in the same culture dish (Figure 5.7). Transfection with the Pro39Leu, Ser135Phe or 

Arg140Gly Hsp27 mutations also had no significant effect on the Δψm in 

comparison to non-transfected co-cultured primary motoneurons, although 

motoneurons transfected with the Ser135Phe or Arg140Gly Hsp27 mutations 

showed a non-significant trend of hyperpolarisation of the Δψm (Figure 5.7). 

 

5.4.3. Motoneurons containing Hsp27 mutations do not actively maintain 

Δψm 

Although hyperpolarisation of the mitochondrial membrane does not directly suggest 

a deficit in the membrane potential, it may indicate a reversal of the ATPase. This 

may be the result of active maintenance of the Δψm via reversal of the ATP-pump, 

using ATP to remove protons, or positive charge, from the membrane inner space. 

To examine the Δψm more thoroughly for specific stresses, three mitochondrial 

inhibitors acting on different complexes of the mitochondrial machinery were applied 
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Figure 5.7 Hsp27 mutations do not alter mitochondrial membrane potential 

in primary motoneurons 

A bar chart showing mitochondrial membrane potential of primary motoneurons 

transfected with either empty vector, wild type Hsp27 or various mutants of 

Hsp27 relative to untransfected cells which have a value of 1. Error bars = SEM, 

n=10. 

Figure 5.7 
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over a time series to elucidate the mechanism by which Hsp27 mutants may 

increase the Δψm. As shown in Figure 5.7, primary motoneurons transfected with 

the Ser135Phe and Arg140Gly mutations, showed a small, albeit non-significant 

hyperpolarisation in comparison to non-transfected primary motoneurons under 

normal in vitro conditions (Figure 5.7). Therefore these mutations were taken 

forward for further examination. Representative traces over time of TMRM 

fluorescence intensity from one primary motoneuron per condition are shown in 

Figure 5.8 to illustrate the change in TMRM fluorescence intensity in response to 

different mitochondrial inhibitors.  

 

Oligomycin (2μg/ml), an ATPase inhibitor was added first. If the ATPase had 

reversed to maintain Δψm, TMRM fluorescence intensity would have steadily 

decreased with the addition of Oligomycin, as the membrane would no longer have 

been actively maintaining a negative Δψm. The addition of Oligomycin to the cell-

imaging dish prompted an initial decrease in TMRM fluorescence intensity which did 

not increase with time in all cells measured, including motoneurons transfected with 

Ser135Phe or Arg140Gly Hsp27 and non-transfected motoneurons from the same 

imaging dishes (Figure 5.8). 

 

Rotenone, an inhibitor of Complex I of the electron transport chain, was then added 

to the cells to investigate mitochondrial reliance on the different complexes within 

the electron transport chain. Upon addition of Rotenone there was a steep, 

immediate decline in TMRM fluorescence intensity indicating a heavy reliance on 

Complex I. This is not an unusual response in cells such as motoneurons that have 

a fast metabolism and high-energy demands. The addition of Rotenone (5μM) gave 

an immediate decrease in TMRM fluorescence intensity in all cells irrespective of 

transfection condition. This observation demonstrates that all the primary  
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Figure 5.8 Hsp27 mutations do not alter mitochondrial membrane potential in 

the presence of different mitochondrial inhibitors 

Representative traces over time depicting the addition of different mitochondrial 

inhibitors; Oligomycin, Rotenone and FCCP to cells under different transfection 

conditions. The traces show that Hsp27 mutations do not alter the ATPase pump in 

the presence of Oligomycin, and that all motoneurons have a heavy reliance on 

Complex I. Fluorescence intensity of TMRM over time in A) a cell transfected with 

Ser135Phe Hsp27 and, B) an untransfected, co-cultured cell. C) A cell transfected 

with Arg140Gly Hsp27, and D) a co-cultured untransfected cell.  
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motoneurons investigated were more reliant on Complex I than Complex II of the 

electron-transfer chain causing a large decline in the Δψm (Figure 5.8). In all cells, 

the Δψm depolarisation in response to the addition of Rotenone was so great that 

the effect of the further addition of FCCP, a mitochondrial uncoupler, which causes 

maximal depolarisation of the Δψm, was undetectable. With the addition of all three 

drugs, the presence of Hsp27 mutations had no differential effect on the Δψm 

compared to untransfected motoneurons. 
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5.5. Chapter 5 Summary 

The experiments described in this chapter were designed to examine whether 

Hsp27 mutations resulted in functional deficits in primary motoneurons in culture. 

 

The plasmid-transfected SH-SY5Y cell model used in Chapters 3 and 4 to examine 

the differential effects of Hsp27 mutations, involved the over expression of a 

mutated, foreign protein to examine the pathology arising from the cellular pathways 

that are affected by the different Hsp27 mutations. The cellular model developed in 

this Chapter was designed to measure the functional consequences of low 

expression of the mutant Hsp27 in motoneurons, rather than the differences in 

mutant pathology highlighted by over expression of the protein in a genetically 

homogeneous cell line. Clear differences in the effects of expression of the Hsp27 

mutations in the two cellular models were detected. For example, the nuclear 

inclusions observed in Pro39Leu Hsp27 plasmid-transfected SH-SY5Y cells were 

not detected in virally-transfected primary motoneurons.  

 

To ascertain which basic cellular functions may be being affected by Hsp27 

mutations to cause a peripheral axonal neuropathy, experiments were undertaken to 

examine some of the key functions that are fundamentally important for 

motoneurons, and in which Hsp27 is thought to play a role. Hsp27 has a number of 

cytoprotective functions including protein handling and folding, inhibition of 

apoptosis, protection against oxidative stress and promotion of axonal growth, all of 

which make Hsp27 essential for motoneuron growth and survival (Kalmar et al., 

2002). 

 

As a co-chaperone of Hsp70, one of the most important roles Hsp27 has within the 

cell is that of a protein holdase, making Hsp27 an important component of the HSR. 
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Hsp27 has also been implicated in the modulation of the HSR by sumolaytion of 

HSF1, a protein that regulates the activation of the HSR (Brunet Simioni et al., 

2009). Hsp27 blocks the transactivation capacity of HSF1, thereby inhibiting 

chaperone and co-chaperone activation and modulating the HSR (Brunet Simioni et 

al., 2009). A recent paper by Almeida-Souza et al. (2010) suggests that the 

Ser135Phe mutation leads to an increase in the chaperoning function of Hsp27 

(Almeida-Souza et al., 2010). However, this finding was not examined contextually 

as Hsp27 works as a small component of a complex cascade of heat shock 

proteins, and it was not known if the addition of the Ser135Phe Hsp27 mutation 

affected the HSR as a whole. By using virally transfected primary motoneurons, the 

experiments described in this Chapter examined the effect of mutations of Hsp27 on 

the expression levels of Hsp70, as an important member of the HSR, under both 

stressed and unstressed conditions. Firstly, I found that in unstressed conditions, 

the addition of mutant Hsp27 did not stress the cells above normal levels of primary 

motoneurons in culture to activate or increase the HSR. However, when stressed, 

motoneurons transfected with mutant Hsp27 did not display as high an increase in 

Hsp70 as untransfected, empty vector and wild type transfected primary 

motoneurons, suggesting a decreased activation of the HSR. This is unexpected 

and suggests that mutations in Hsp27 may alter the ability of motoneurons to 

respond to stress. However, the results shown here are not a full investigation of the 

HSR in cells expressing mutant Hsp27, and caution is required when interpreting 

quantification of immunofluorescence. The need for further experiments is discussed 

more fully in Chapter 6. 

 

While the correct functioning of the HSR is vital to the cells response to times of 

stress, the healthy function of mitochondria is vital to all functions and the overall 

homeostasis of motoneurons particularly in light of their large size and high-energy 
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demands (Shaw and Eggett, 2000). However, as has been previously shown, 

mitochondria are very sensitive to changes in the cellular environment; for example, 

changes in ATP production are one of the first signs of motoneuron stress in animal 

models of mutant SOD1 ALS (Bilsland et al., 2008). To maintain ATP production 

and a functional mitochondrial membrane potential (Δψm), mitochondrial transport, 

autophagy and structure must be tightly regulated. Hsp27 has been implicated in the 

maintenance of all three of these pathways via indirect actions. For example, Hsp27 

may affect Δψm by regulating mitochondrial structure and mitophagy, acting as a 

downstream mediator of high-mobility group box-1 (HMGB1), an essential regulator 

of mitochondrial autophagy, via manipulation of trafficking along actin fibres during 

mitophagy (Tang et al., 2011). As shown in Chapter 4, Section 4.4, mutations in 

Hsp27 cause abnormal interactions of actin and Hsp27 under normal, and stress 

conditions, and this may have implications for motoneuron mitophagy during 

trafficking. In addition, transgenic mice carrying human Hsp27 containing either the 

Ser135Phe or Pro182Leu mutation show disrupted mitochondrial transport along 

microtubules, although there has been no further examination of the effect this may 

have on the Δψm (d’ Ydewalle et al., 2011). Thus, measurement of the Δψm can be 

a sensitive, functional readout of cellular health. Thus, examination of Δψm in 

mutant Hsp27 motoneurons will give an indication of the affect of Hsp27 mutations 

on cell homeostasis and vulnerability. As shown in Section 5.4.2., in motoneurons 

transfected with mutations of Hsp27, no deficits in the Δψm were detected, 

suggesting that the mutations in Hsp27 examined do not affect cellular pathways in 

which mitochondria interact.  

 

When taken together, the results presented in Chapter 5 suggest that there are no 

mitochondrial deficits in motoneurons expressing mutant Hsp27, however, mutant 

Hsp27 may decrease the cells ability to activate the HSR under stress conditions, 
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altering the ability of motoneurons to respond to stress and increasing vulnerability 

to cellular insults. 
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Chapter 6. Discussion 

 

CMT 2F and dHMN are axonal hereditary neuropathies that present with 

predominantly motor deficits with a variable age of onset and which result in 

significant disability. Although the disease is predominantly of a motor presentation, 

there is a spectrum of moderate to mild sensory involvement, with dHMN showing 

no sensory involvement (Ismailov et al., 2001; Houlden et al., 2008). There are 

currently approximately 50 known loci and over 40 genes with mutations associated 

with different forms of CMT (Pareyson and Marchesi, 2009). From this diverse 

genetic background, many of the genes affected in CMT code for proteins that are 

essential to neurons and glial cells. While it is understandable that mutations in 

neuron-specific proteins may result in a neuronal phenotype, it is not clear why 

these mutations may affect specific subpopulations of neurons, e.g. motor rather 

than sensory. Furthermore, many CMT-causing mutations are in ubiquitously 

expressed proteins, and so the reasons for their deleterious effects in neurons alone 

are less clear. However, when considered in terms of their biological role, for 

example in myelin maintenance, fast metabolism, high protein turnover and axonal 

transport, it becomes clear that these proteins play key roles in pathways that are 

particularly important for neurons.  

 

Hsp27 is one such protein. Mutations in the gene coding for this small heat shock 

protein have been shown to cause CMT 2F and dHMN in unrelated families from 

different populations (Kijima et al., 2005; Tang et al., 2005; Evgrafov et al., 2004; 

Chung et al., 2008; Houlden et al., 2008; James et al., 2008; Ikeda et al., 2009; 

Benedetti et al., 2010; Luigetti et al., 2010; Mandich et al., 2010; Solla et al., 2010). 

However, Hsp27 is a ubiquitous protein with a number of housekeeping and 
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cytoprotective functions, which include protein handling and folding, inhibition of 

apoptosis, protection against oxidative stress and promotion of axonal growth, 

making Hsp27 essential for neuronal survival (Kalmar et al., 2002; (Franklin et al., 

2005a). CMT caused by mutations in Hsp27 is relatively rare, and represents only 

4% of all cases of CMT2 and 8% of all dHMN cases, in comparison to the most 

common causes of hereditary neuropathy, for example PMP22 mutations that are 

responsible for ~70% of all CMT1 (Capponi et al., 2011). However, mutant Hsp27 

induced CMT is an interesting subtype of peripheral neuropathy, as it represents a 

large group of patients with a motor-dominant phenotype, a very specific 

presentation caused by mutations in a protein that has many important cellular 

functions, including anti-apoptotic, anti-oxidative roles.  

 

Published findings of in vitro and in vivo studies in which the cellular effects of 

mutant Hsp27 have been examined, show histological and functional evidence for 

the involvement of mutant Hsp27 in cytoskeletal stability and axonal transport 

(Benedetti et al., 2010; d’ Ydewalle et al., 2011). Studies have shown that Hsp27 

mutations cause disruption and aggregation of cytoskeletal and axonal transport 

proteins, including light and medium chain neurofilament, microtubules and the p150 

subunit of the dynactin motor complex (Ackerley et al., 2006; d’ Ydewalle et al., 

2011; Evgrafov et al., 2004; Zhai et al., 2007). However, while much of the evidence 

for the aberrant functions of Hsp27 mutations suggests disruption of axonal 

transport, Almeida-Souza et al. (2010) propose that Hsp27 mutations may lead to 

increased chaperoning function of the protein and a shift in the oligomerisation 

balance of the protein towards increased Hsp27 monomerisation, a state more 

commonly seen under stress conditions (Almeida-Souza et al., 2010). 
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The aim of the experiments described this Thesis was to examine the deleterious 

effects of mutations in heat shock protein 27, which cause Charcot-Marie-Tooth 

disease and distal Hereditary Motor Neuropathy. The pathogenicity, differential 

cellular effects and some of the functional consequences of each mutation were 

investigated in two in vitro models. The results showed that all the mutations 

examined are cytotoxic. Further investigation revealed that the nature and 

appearance of some features of cellular pathology differ depending on the position 

of the mutation within the gene, as summarised in Figure 6.1. Preliminary results 

presented in Chapter 5 also suggest that some Hsp27 mutations may have 

functional consequences for the HSR.  

 

6.1 Hsp27 mutations are cytotoxic and cause CMT 2F 

The first investigation to examine the effects of mutant Hsp27 was undertaken in 

SH-SY5Y cells, a neuroblastoma cell line in which the Hsp27 mutations were 

transiently over-expressed and their effects on cell survival examined. Mutations 

examined were significantly cytotoxic, causing an average increase in cell death of 

20%. These results confirm that Hsp27 mutations have significant pathological 

effects, even in this simple cellular model system. This finding expands on previous 

work described by Evgrafov et al. who demonstrated the cytotoxicity of the 

Ser135Phe Hsp27 mutation (Evgrafov et al., 2004).  

 

6.2. The position of the Hsp27 mutation in the gene has differential effects 

on Hsp27 protein function  

The Hsp27 protein has three separate functional domains; a poorly conserved N-

terminus, a highly conserved -crystallin domain near the middle of the protein and 

a highly flexible, variable C-terminus (Kostenko and Moens, 2009). Mutations found 

in patients with CMT 2F are spread across the gene in areas corresponding to all 
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Figure 6.1.  
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Figure 6.1 Differential effects of Hsp27 mutations in a cell model  

A schematic representation of the Hsp27 gene with the positions of the mutations 

described in this Thesis marked. The table below demonstrates the differential 

effects of Hsp27 mutations on parameters tested in this thesis. Arrows indicate an 

increase or decrease in effect. The tick indicates the presence of potentially 

pathological mutant Hsp27 positive nuclear inclusions.  
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three domains, however there is a cluster, or ‘hot-spot’ area located in the middle of 

the -crystallin domain (see Figure 1.4). These different domains have been shown 

to be differentially involved in Hsp27 functions. However, the phenotypic variations 

of age of onset and sensory involvement in CMT 2F are not dependent on the 

mutation position or amino acid change (Solla et al., 2010). 

 

d’Ydewalle et al., have very recently developed two lines of transgenic mice that 

express mutant human Hsp27 in their neurons. The first mouse strain expresses the 

Ser135Phe mutation, located in the -crystallin domain, whereas the other strain 

expresses the Pro182Leu mutation, located in the C-terminus of Hsp27 (d’ Ydewalle 

et al., 2011). These two transgenic mice display markedly different phenotypes, with 

the C-terminus Pro182Leu Hsp27 causing a more severe, pure motor phenotype 

while the transgenic mouse expressing the Ser135Phe mutation located in the -

crystallin domain of Hsp27 has a mixed sensory-motor phenotype (d’ Ydewalle et 

al., 2011). The authors’ claim that different sub-types of neurons were more 

vulnerable to different mutations in Hsp27, suggesting underlying differences of 

disease phenotype and clinical presentation are linked to mutation position (d’ 

Ydewalle et al., 2011).  

 

The results presented in this Thesis, showing differential morphological 

vulnerabilities in cells expressing mutations at different regions of the Hsp27 gene, 

generally support the findings by d’ Ydewalle et al. Thus, my results in an in vitro 

model of CMT showed that although all the mutations examined are toxic, the 

different Hsp27 mutations do not have a uniform effect on cell morphology. For 

example, mutations in the N-terminus of the protein give a more subtle cellular 

change, with the mis-localisation of the mutated protein to the nucleus. In contrast, 
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mutations in the -crystallin domain in the C-terminus of the protein have a more 

dramatic effect on cellular vulnerability, neurite outgrowth and cytoskeletal stability. 

 

Hsp27 is a vitally important component of the stress response of the cell, the heat 

shock response (HSR), which is activated to protect the cell from environmental 

challenges. Independent from its heat shock protein function, Hsp27 has also been 

shown to inhibit members of the apoptosis signalling pathway (Arrigo, 2007). Small 

HSPs, such as Hsp27 have also been shown to interact with the actin cytoskeletal 

network and play a role in the regulation of actin polymerization (Goddette and 

Frieden, 1986; Falconer et al., 1994; Williams et al., 2005). Therefore, the effect of 

expression of Hsp27 mutations on the cellular response to cytoskeletal stressors 

was examined. These stressors have proven effects on either the actin cytoskeleton 

or the microtubular network, and were chosen due to the specifically defined cellular 

stress each agent exerted on proteins and structures with which Hsp27 had been 

shown to functionally interact. Under these stress conditions, the addition of one 

mutation, Ser135Phe Hsp27, caused a further significant rise in cytotoxicity over and 

above that caused by the pharmacological agents in cells that express the wild type 

Hsp27.  This suggests that the Ser135Phe mutation makes cells more vulnerable to 

cellular insults than any of the other mutations that cause CMT 2F.  

 

Previous studies using Hsp27 mutations have suggested that the mutations affect 

the cytoskeleton of the cell, for example neurofilaments, which have been shown to 

aggregate in the presence of Hsp27 mutations (Ackerley et al., 2006; Zhai et al., 

2007). The increased vulnerability of cells expressing Ser135Phe Hsp27 to 

cytoskeletal cell stressors demonstrated a differential pattern of response by an 

immortal cell line to an individual mutation. However, the biochemical assay used in 

these experiments was not sensitive enough to give an idea of how or why the 
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Ser135Phe Hsp27 mutation increases cellular vulnerability to cytoskeletal cell 

stressors. The cytoskeleton is fundamentally important to the integrity and structure 

of the cell, as well as being the driving force of cellular differentiation and growth. 

Therefore a more detailed immunocytochemical analysis of the effects of Hsp27 

mutations on length and structural changes of neurite outgrowth was undertaken. In 

previous studies, the results from in vitro experiments examining the cellular effects 

of mutant Hsp27 indicated involvement of the mutant protein in cytoskeletal stability, 

with the addition of the Ser135Phe Hsp27 mutation, located in the -crystallin 

domain and the Pro182Leu mutation located in the C-terminus of the protein 

causing the aggregation of neurofilament proteins (Evgrafov et al., 2004; Ackerley et 

al., 2006; Zhai et al., 2007). By examining the effects of Hsp27 mutations on neurite 

outgrowth and development I aimed to establish whether the Hsp27 mutations 

affected the morphological appearance of neurons. Neurite outgrowth and 

morphology of neuronal processes were investigated as cytoskeletal abnormalities 

would most likely affect these parameters in cultured neurons. Aggregation of 

neurofilament seen in previous studies could also indicate neuronal degeneration 

rather than being a direct consequence of the mutation of Hsp27 as neurofilament 

aggregation is a pathological hallmark of many forms of CMT (Tradewell et al., 

2009; Benedetti et al., 2010).  

 

Of the four Hsp27 mutations examined, Arg140Gly and Ser135Phe had pronounced 

inhibitory effects on neurite outgrowth, with the Arg140Gly showing a significant 

effect. Both of these mutations are located in the -crystallin domain of the Hsp27 

protein, with the Arg140Gly being an amino acid change in Hsp27 equivalent to 

mutations in the related small heat shock protein, Hsp22, which have been shown to 

cause CMT 2L (Irobi et al., 2004). The patient mutations that cause CMT 2L, 

Lys141Asn and Lys141Glu, reduce neurite outgrowth by 50%, suggesting that this 
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specific region of Hsp22 and Hsp27 is important for neurite outgrowth in 

motoneurons, and that mutations in this area of the protein may be particularly 

detrimental to the structures and functions of the axon (Irobi et al., 2004). However, 

in my experiments I found a much smaller reduction in neurite length, which may be 

due to Arg140Gly and Ser135Phe mutations affecting neurite length to a lesser 

extent than Lys141Asn and Lys141Glu mutations in the Hsp22 gene. The process of 

neurite outgrowth is highly complex, and while measuring neurite length 

demonstrates that individual mutations can affect the process, it does not give any 

indication as to how the mutation may be disrupting the normal functions and 

interactions of Hsp27.  

 

Neurite outgrowth is driven by the cytoskeleton and associated proteins, and so to 

start to elucidate the effects of the Hsp27 mutations on the individual components of 

vital cellular processes such as neurite outgrowth and axonal transport, the 

interactions of mutant Hsp27 with different proteins of the cytoskeleton were 

compared to that of endogenous Hsp27 under unstressed and stressed conditions. 

The hypothesis underlying the choice of pharmacological cell stressors that acted on 

different aspects of the cytoskeleton was that mutations affect particular functions of 

the Hsp27 protein. Since it has been shown that wild type Hsp27 can ameliorate 

cellular pathology induced by mutant neurofilament, there appears to be intrinsic 

relationship between the cytoskeleton and Hsp27 that goes beyond the known 

interaction of Hsp27 with actin filaments (Zhai et al., 2007). It is therefore likely that 

there is an interaction between Hsp27 and intermediate filaments regulating axonal 

diameter, transport and structure. Therefore, we hypothesised that mutant Hsp27 

causes pathological alterations in the interaction with cytoskeletal elements, such as 

actin, tubulin and intermediate filaments. One of the functions of Hsp27 in the cell is 

as a stabiliser of the actin cytoskeleton, which becomes more important under 



248 
 

conditions of stress. Hsp27 is also a modifying molecule of neurite outgrowth. The 

evidence presented in previous studies looking at the cellular consequences of 

Hsp27 mutations demonstrate that the Ser135Phe mutation in particular, causes the 

aggregation of proteins of the neurofilament network in unstressed conditions, 

demonstrating that this mutation in particular is detrimental to the cytoskeleton 

(Lavoie et al., 1993; Mounier and Arrigo, 2002; Ackerley et al., 2006; Read and 

Gorman, 2009; Evgrafov et al., 2004; Zhai et al., 2007). Perhaps surprisingly, the 

results described in this Thesis demonstrated an absence of co-localisation between 

any Hsp27 mutation and neurofilament heavy (NF-200), a large component of the 

neurofilament network. In addition, although cytoskeletal-stressing agents caused 

aggregation of NF-200 into neurofilament bundles, this was regardless of the 

presence of mutant Hsp27, and neither endogenous nor mutant Hsp27 co-localised 

with these pathological bundles. However, the expression of some of the Hsp27 

mutations did have an effect on the co-localisation patterns of Hsp27 with other 

components of the cytoskeleton.  

 

In all conditions examined, all mutant forms of Hsp27 co-localised with β-tubulin III, 

a neuronal-specific member of the microtubule network, including in cytoplasmic 

aggregates formed by Colchicine treatment. It is worth noting that the Ser135Phe 

Hsp27 mutation also resulted in the formation of tau (a microtubule-associated 

protein) aggregates in some cells. Hsp27 has been shown to co-localise, but not 

functionally interact with tubulin (Williams et al., 2005), which is an integral member 

of the microtubule network, and the findings presented here suggest that the 

importance of the interaction between these two proteins may have been 

underestimated in cellular functions where both proteins have a role, for example 

growth cone formation (Geraldo and Gordon-Weeks, 2009).  
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The possible importance of the interaction of Hsp27 with tubulin was also suggested 

by the results of d’Ydewalle et al. (2011), which showed a possible interaction 

between Hsp27 and microtubules in motor and sensory neurons in two lines of 

transgenic mice that neuronally expressed human HSPB1 with either one of two 

disease-causing mutations; Ser135Phe or Pro182Leu (d’ Ydewalle et al., 2011). 

These authors suggested that the pathogenic mechanism of axonal degeneration in 

CMT 2F is via the de-acetylation of -tubulin, a component of the microtubule 

network, which could then be reversed by inhibiting a class II histone deacetylase, 

HDAC6 in the mice expressing the Ser135Phe Hsp27 mutation. Hsp27 has 

previously been shown to co-localise, but never functionally interact with any form of 

tubulin (Hino et al., 2000; Williams et al., 2005). Therefore, it is likely that the 

deacetylation of -tubulin described is via secondary mechanisms involving Hsp27. 

This possibility is supported by a recent study by Gilbert et al. (2012), which 

suggests that HDAC6 is a client protein of Hsp27 and that knock-down of Hsp27 

causes an increase in HDAC6 degradation (Gibert et al., 2012). Although my results 

showed co-localisation between mutant Hsp27 and β-tubulin III, I found no 

difference from the patterns of expression of endogenous Hsp27. However, this was 

not analysed by d’Ydewalle et al (2011). 

 

Both the Ser135Phe and Arg140Gly mutations demonstrated an apparent increase 

in co-localisation with F-actin in comparison to endogenous and wild type 

transfected Hsp27, and the Pro39Leu and Leu99Met Hsp27 mutations. Hsp27 is 

thought to bind to actin via the -crystallin domain and interacts with actin as a 

phosphorylated monomer, a state that is more prevalent under cell stress (Mounier 

and Arrigo, 2002). However, the findings presented in this Thesis showed that co-

localisation between mutant Hsp27 and actin was more marked in unstressed 

conditions, while still being observed in cells stressed with cytoskeletal agents. In 
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stressed conditions, Hsp27 functionally interacts with F-actin by acting as an actin-

capping protein, stabilising the actin filaments. In unstressed conditions, Hsp27 has 

an ill-defined function in neurite outgrowth via interactions with actin (Lavoie et al., 

1993; Mounier and Arrigo, 2002; Williams et al., 2005; Williams et al., 2006). 

Although the actions of Hsp27 on the actin cytoskeleton are well known and are 

important for the normal functioning of the cell, the results presented here show for 

the first time, that Hsp27 mutations might alter this important functional interaction. 

Thus, mutant Hsp27 may have an increased ability to bind to F-actin, possibly 

causing a reduction in actin dynamics and slowing of actin polymerization, on which 

neurite outgrowth is dependent on. This would have a significant impact on 

particularly large cells, such as motoneurons, that rely on a stable and functional 

cytoskeleton. 

 

To further investigate the change in interaction between Hsp27 and actin caused by 

these two mutations, the next step would be to carry out a protein complex 

immunoprecipitation, to pull down Hsp27 to calculate its level of actin binding and 

assess any differences between the two mutations in stressed and unstressed 

conditions.  

 

While the addition of mutations in an over-expressed foreign protein caused some 

similar morphological changes in neurities such as a non-specific increase in 

lamellipodia and neuritic stumps as well as differential interactions with the 

cytoskeleton, one mutation also caused a distinctive differential effect in the cells. 

The Pro39Leu Hsp27 mutation (amino acid change in the N-terminus of the protein) 

caused the formation of nuclear inclusions in 39% of SH-SY5Y cells transfected with 

this mutation. These inclusions were found to be SC35-positive nuclear speckles. 

Normally, nuclear speckles are non-pathological nuclear bodies involved in mRNA 
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splicing, possibly of highly active genes, for example, most recently, SC35-positive 

speckles have been associated with tau mRNA (Hall et al., 2006; Qian et al., 2011). 

In previous studies, Hsp27 and other sHSPs have been associated with SC35 

speckles, and although their function in these nuclear bodies remains unknown, it is 

speculated to be a chaperoning role of the holding of mRNAs targeted for 

degradation, not for refolding as Hsp70 is not present in SC35-positive nuclear 

speckles (van den IJssel et al., 2003; Bryantsev et al., 2007; Vos et al., 2009). 

However, although the presence of Pro39Leu Hsp27 positive nuclear speckles was 

easily detectable in SH-SY5Y cells over expressing the mutated protein, these 

speckles were not observed in primary motoneurons transfected with a virus, 

resulting in a low expression of mutant Hsp27. The reason for the accumulation of 

Pro39Leu Hsp27 in SC35 speckles in a cell model of protein over expression is 

unclear. It is possible that the differential effect of this mutation may be the 

consequence of the over-expression of a mutated foreign protein in a cell line to 

produce an unnatural aggregate. However, the finding of speckle aggregates in cells 

with varying levels of protein over expression, and their absence in any other cells, 

including cells transfected with other mutations, suggests that this is a manifestation 

of a specific effect of the N-terminus mutation. The next step to understand the role 

of Hsp27 in SC35-positive nuclear speckles could be to use laser dissection to 

isolate cells containing Pro39Leu Hsp27 aggregates to use real-time quantitative 

PCR to identify any changes in Hsp27 or other common proteins that may be 

associated with the speckles. This may help to identify which pathways and 

processes maybe affected downstream by the aggregation of Hsp27 in the nucleus.  

 

Using an in vitro cell model of protein over expression, I have demonstrated 

significant differences in the effects of Hsp27 mutations that are caused by the 

position of the mutation in the protein affecting the properties of the protein. Indeed, 
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as shown in Figure 6.1, all mutations apart from one showed differential effects in 

SH-SY5Y cells, albeit on different parameters. The recessive Leu99Met Hsp27 

mutation (located in the α-crystallin domain, but out of the hot spot region) was 

shown in Chapter 3 to be toxic to cells under basal conditions, but did not display 

any differential effects using any other outcome measure assessed. This may be 

due to the endogenous Hsp27 in SH-SY5Y cells, which may negate the recessive 

nature of the gene. However, it is more likely that the outcome measures tested 

here to screen for differential effects may not be sensitive enough to distinguish the 

cellular effects of this mutation. There is also a possibility that the Leu99Met 

mutation, which has only been found in one family, may not be recessive, as the 

maternal DNA was never screened. It may not be a recessive mutation if the mother 

did not carry the same mutation, or may have carried a different mutation in a 

different gene. 

 

6.3. The functional effects of Hsp27 mutations 

While the results presented in this Thesis demonstrate that mutations of Hsp27 have 

different cellular effects that are associated with the position of the mutation in the 

gene, the diseases caused by these mutations demonstrate strikingly similar 

disease phenotypes. Thus, dHMN caused by mutant Hsp27 affects very specific 

subpopulations of neurons, mainly motoneurons, causing a predominantly motor 

phenotype in patients. This is interesting, as not only is Hsp27 expression 

ubiquitous, but Hsp27 is involved in within the cell, including cell survival, protein 

chaperoning, redox maintenance (Kalmar et al., 2002; Franklin et al., 2005). More 

recently, it has been suggested that Hsp27 may play a role in mitochondrial 

autophagy (Tang, et al. 2011). These processes are critical for all cell types. 

Although the results obtained in the SH-SY5Y cell line showed robust differences 

between the effects of the Hsp27 mutations, this model is not very suitable to 
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examine functional differences, as the readouts of the model are not sensitive 

enough. Therefore, lentiviral particles were used to deliver and stably express 

Hsp27 mutations in primary motoneurons. Primary embryonic mixed ventral horn 

cultures are more representative of motoneurons and contain a number of glial cells, 

as there is heterogeneity in cell type in a mixed cell culture. Therefore, this primary 

cell model is a more accurate model system for a neuromuscular disease affecting 

motoneuron axons.  

 

Motoneurons are particularly vulnerable to changes in their cellular environment as 

even a small shift in protein, ionic and energy homeostasis can cause a significant 

dysfunction. Motoneurons rely on surrounding cells for synthesis and recycling of 

transmitters, rapid energy production and this reliance on other cells makes 

motoneurons vulnerable to pathological events affecting either themselves or 

supporting cells that surround them.  

 

Work by d’Ydewalle et al., (2011) suggests that mutations in the α-crystallin domain 

of Hsp27 may disrupt axonal transport of mitochondria. However, although the 

paper shows abnormal acetylation of microtubules, it is currently unknown if the 

disruption of mitochondrial transport is due to changes in the transport system or 

disruptions within the mitochondria themselves. For example, the failure of the cell 

to transport mitochondria normally could be due to misshaped mitochondria being 

present in the cell. Hsp27 has been proposed to play a role in the process of 

mitophagy, acting as a downstream mediator of high-mobility group box-1 (HMGB1), 

an essential regulator of mitochondrial autophagy by regulating actin-mitochondria 

interactions (Tang et al., 2011). Mutations in Hsp27 may affect mitophagy. 

Therefore, to analyse whether mitochondrial function was affected by mutant Hsp27, 

the mitochondrial membrane potential (Δψm) was measured by in vitro live imaging 
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of cell body mitochondria in primary motoneurons. Expression of mutant Hsp27 did 

not disrupt the Δψm in the cell body of primary motoneurons. However, CMT 2F is a 

peripheral axonal disorder in nerves that can be over a metre in length, meaning 

that there could be a significant difference between mitochondrial viability in the cell 

body and in the periphery. Therefore, analysis of Δψm of mitochondria along the 

axons of primary motoneurons in comparison to the Δψm of cell body mitochondria, 

and an assessment of the shape of mitochondria throughout the axon and cell body, 

in cells containing mutant and wild type Hsp27 may determine whether Hsp27 

mutations alter mitofunction. In addition, a study of mitophagy in wild type and 

mutant Hsp27 motoneurons would clarify the role of Hsp27 in this critical cellular 

process.  

 

Mitochondria not only provide ATP for the cell, but they also regulate apoptosis, 

produce reactive oxygen species (ROS) and buffer intracellular calcium. Hsp27 

aides in the regulation of ROS by the maintenance of reduced glutathione, therefore, 

currently in the Greensmith laboratory; Dr Bernadett Kalmar is continuing 

mitochondrial functional investigations by examining the effects of Hsp27 mutations 

on intracellular levels of ROS.  

 

While mitochondria are essential to cell homeostasis and disturbances in 

mitochondrial membrane potential can be an early indication of neuronal 

dysfunction, the heat shock response (HSR) is fundamental to the maintenance and 

restoration of protein homeostasis following cellular stress. As Hsp27 has significant 

roles in the HSR and its modulation, it was important to examine whether the 

addition of Hsp27 mutations altered aspects of the HSR. One of the most important 

roles Hsp27 has within the cell is that of a protein holdase, stabilising misfolded 

proteins and preventing protein aggregation until Hsp70 actively refolds the protein 
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or until the misfolded protein is sent for degradation at the proteosome. A recent 

paper by Almeida-Souza et al. (2010) suggests that the Ser135Phe mutation leads 

to an increase in the chaperoning function of Hsp27, possibly affecting the role of 

the protein as a holdase, rather than a co-chaperone, increasing the stabilisation of 

microtubules by stronger binding of mutant Hsp27 to tubulin (Almeida-Souza et al., 

2010; Almeida-Souza et al., 2011). However, this finding was not examined 

contextually as Hsp27 works as a small component of a complex cascade of heat 

shock proteins, and the authors’ did not examine whether the addition of the 

Ser135Phe Hsp27 mutation affected the HSR as a whole.  

 

To examine the effects of Hsp27 mutations on the HSR, the expression of Hsp70, 

an integral member of the HSR was measured by quantitative immunofluoresence in 

primary motoneurons expressing mutant and wild type Hsp27, in non-stressed cells 

following heat shock. Firstly, I found that in unstressed conditions, the addition of 

mutant Hsp27 did not alter the expression of Hsp70, suggesting that the HSR was 

not activated above normal levels in primary motoneurons in culture. However, 

when the cells were stressed, motoneurons transfected with mutant Hsp27 did not 

display as high an increase in Hsp70 expression as untransfected, empty vector and 

wild type transfected primary motoneurons, suggesting a decreased activation of the 

HSR.  

 

Virally transfected primary motoneurons may be considered to be in a state of mild 

stress when in cell culture, irrespective of expression of the wild type or mutant 

Hsp27. It is therefore surprising that there appeared to be a reduced HSR in mutant 

Hsp27 expressing motoneurons; since it has previously been shown that exposure 

to a prior stress augments the HSR caused by a second cell stressor (Slepian et al., 

1996). Therefore, these results suggest that mutations in Hsp27 may alter the ability 
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of motoneurons to respond to stress. However, the results shown here are not a full 

investigation of the HSR in cells expressing mutant Hsp27, and caution is also 

required when interpreting quantification of immunofluorescence. To examine this 

result further the first thing to do would be to reaffirm the Hsp70 findings with 

western blots of Hsp70, 90 and HSF1. The next question may be to examine the 

activation of the HSR and to try to determine at what point mutant Hsp27 may be 

depressing the response. This could be done by co-IP of HSF1 to determine any 

changes in levels of inactive/active HSF1 in complex, or by cytoplasmic and nuclear 

fractionation of cells to assess changes in HSF1 translocation, a key step in the 

activation of the HSR. The effects of Hsp27 mutants on the HSR is important in 

motoneurons which have been shown to have a higher threshold for the activation of 

the HSR, therefore if the presence of these mutations has a dampening effect on the 

cell’s response to stress, motoneurons would be particularly vulnerable to these 

changes (Batulan et al., 2003). 

 

Axonal transport is a fundamentally important process to all cells and motoneurons 

in particular, are heavily reliant on the correct functioning of axonal transport, as 

there are significant distances between sites of organelle and protein biosynthesis, 

function, recycling and degradation. As such, axonal transport of mitochondria, 

lysosomes and the p75 receptor in primary motoneurons transfected with wild type 

and three different mutations of Hsp27; Pro39Leu, Ser135Phe and Arg140Gly is 

now being examined in the Greensmith laboratory. The recent paper by d’Ydewalle 

et al., (2011) examining transgenic mice neuronally expressing either Ser135Phe or 

Pro182Leu human HSPB1 found a reduction in moving mitochondria in dorsal root 

ganglion (DRG) cells from symptomatic Ser135Phe mice. However, pre-

symptomatic Ser135Phe and symptomatic Pro182Leu Hsp27 DRG cells showed no 

differences in the total number of moving mitochondria in comparison to cells 
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expressing wild type Hsp27 (d’ Ydewalle et al., 2011), suggesting that the reduction 

in moving mitochondria may be a symptom rather than a cause of underlying 

pathology. d’Ydewalle et al., (2011) also show, as discussed above, that neurites of 

peripheral nerves in all symptomatic mice contained a reduction in the abundance of 

acetylated -tubulin, a major component of microtubules, the rails upon which long-

distance axonal transport occurs (d’ Ydewalle et al., 2011). As discussed above, 

Almeida-Souza et al., (2011) also suggested that mutations in Hsp27 may increase 

the protein role as a holdase, increasing the stabilisation of microtubules by stronger 

binding of mutant Hsp27 to tubulin, therefore affecting the dynamic instability of the 

microtubule ‘rails’ of axonal transport. In my earlier studies looking at cell toxicity 

and cellular vulnerability to certain cell stressors, I demonstrated that one Hsp27 

mutation, Ser135Phe, caused an increase in vulnerability of SH-SY5Y cells to 

cytoskeletal stressors Cytochalasin D, acting to stabilise actin filaments and 

Colchicine, which works by stabilising microtubules. This increased cell vulnerability 

to these stressors could be due to mutant Hsp27 having already negatively 

stabilised microtubules, thereby making the SH-SY5Y cells less able to cope with 

the stabilising mechanisms of the cytoskeletal stressors and more susceptible to 

cytotoxicity. 

 

6.4. Limitations of in vitro models  

Using two different cellular models to examine the effect of mutations in Hsp27, I 

have demonstrated fundamental differences of mutations relating to their position in 

the HSBP1 gene, and have started to elucidate the functional effects of these 

mutations that may explain why motoneurons in particular are susceptible to 

mutations in a ubiquitous protein. However, in vitro modelling has limitations that 

need to be taken into account when applying the findings to a wider hypothesis. 
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The cell model used in the experiments described in Chapters 3 and 4 has revealed 

robust differences between nearly all the Hsp27 mutations with all outcome 

measures examined. However, there are several limitations to this model that limit 

its applicability and capability to measure sensitive functional changes that may be 

caused by Hsp27 mutations. The model involves the use of a human neuroblastoma 

cell line, SH-SY5Y, which does not fully represent a neuronal population and in 

particular is not representative of motoneurons. Cell lines are limited as a model for 

cells as they are genetically altered to produce immortal cell lines, thereby changing 

the expression patterns of some proteins over the lifetime of the cell, they are more 

robust and they certainly show reduced vulnerability to cells stress. Some cell lines, 

including SH-SY5Y cells, also have a high mutation rate meaning that over time and 

with every passage, cells can lose neuronal characteristics and alter the findings of 

experiments. Therefore, in these studies, cells were only used for 10 passage 

rounds to minimise genetic changeability.  

 

As well as the inherent problems with using cell lines as in vitro model systems, 

there is also the method of transfection to take into account. In this model, cells 

were transiently transfected, meaning that all experiments had to be carried out 

within 72 hours of transfection to ensure optimum transfection. However SH-SY5Y 

cells take 7 days to reach full differentiation. SH-SY5Y cells were transfected with 

plasmids using Lipofectamine 2000, a cationic transfection agent that disrupts the 

cellular membrane and causes cellular stress. Lipofectamine 2000 transfection of 

cells results in the unregulated over expression of the transfected plasmid 

containing a foreign protein. While the transfection of wild type Hsp27 was used 

throughout these experiments as a control for the toxic effects of the Lipofectamine 

2000 transfection process, it only partially controlled for the over expression of the 

mutant proteins as it cannot account for the cellular stresses caused by over 
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expression of a foreign protein and it’s affects on the potential actions of the 

mutations. Due to the limitations of this model, it was deemed not appropriate for 

use in experiments that aimed to examine more functional aspects of cellular 

functions, which are critically dependent on cellular integrity.  

 

The second in vitro cell model used in these experiments involved infection of 

primary embryonic mixed ventral horn cultures using 3rd generation viruses 

containing either wild type Hsp27, or one of three Hsp27 mutations; Pro39Leu, 

Ser135Phe and Arg140Gly. This is a more appropriate cell model in which to 

examine the functional effects of Hsp27 mutations in vitro for several reasons. 

Primary embryonic motoneurons within mixed ventral horn cultures are more 

representative of mouse motoneurons. These cultures consist of approximately 45% 

primary motoneurons, and also contain a number of glial cells, interneurons and 

fibroblasts. Due to the sensitivity of primary motoneurons in culture, viral transfection 

results in the least disruption to cell viability and important processes such as axonal 

transport. The level of viral transduction also has to be relatively low (~10%) to try to 

ensure minimum effects of viral over-expression. 

 

However, using mixed primary motoneuron cultures does have drawbacks For 

example, it is a mixed culture, which, although it gives a closer representation of the 

cellular support networks of in vivo, the mixed cell population makes some 

experimental techniques difficult to interpret, as cell specificity is difficult to 

determine. A significant drawback of this cellular model is that it is an in vitro cell 

model of embryonic motoneurons which have a different genetic expression profile 

than mature motoneurons. This is particularly important in the study of CMT, a 

slowly degenerative disease with an age of onset typically in the second decade of 

life and a normal lifespan. Another drawback of using primary motoneurons is their 
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high sensitivity to the surrounding environment, including the number of supporting 

cells in culture (too few gives to little support for motoneuron growth, too many 

decreases the available nutrition and overgrows the culture), movement, 

transfection, pH, and temperature. This means that certain techniques, for example 

biochemical cytotoxicity, cannot be carried out, as the experimental techniques are 

too harsh for the motoneurons to survive. 

 

6.5. Concluding remarks 

In this Thesis, I have characterised the effects of mutations located in different 

positions along the different domains of the HSBP1 gene. I have shown that 

mutations in the N-terminus of Hsp27 may cause a disruption to the nuclear 

functions of Hsp27, where the role of Hsp27 is likely to be that of a holdase for mis-

folded proteins targeted for protein degradation. However, to fully elucidate the role 

of Hsp27 in the nucleus and the importance of the N-terminus of the protein in that 

role, the composition of SC35-positive speckles and Pro39Leu Hsp27 aggregates 

should be investigated further. Therefore, the Pro39Leu Hsp27 mutation could be a 

helpful tool in revealing the role of Hsp27 and other small heat shock proteins in the 

nucleus.  

 

My results have shown that mutations in the α-crystallin domain of the protein have 

a multitude of effects: increasing cellular vulnerability to cytoskeletal stressors, 

decreasing neurite outgrowth and increasing co-localisation of mutant Hsp27 with 

cytoskeletal proteins. I have also shown that mutations in the α-crystallin domain of 

Hsp27 may have an effect on the HSR in unstressed conditions. This is particularly 

important for motoneurons, which already have an impaired response to cellular 

stress. While mutations in Hsp27 have been shown to have effects on the nucleus 

and cytoskeleton of neurons, they have not as yet, been shown to have any effect 
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on the function of mitochondria in the cell body. However, d’Ydewalle et al., (2011) 

showed a disruption of mitochondrial transport along DRG axons, which may have 

an effect on the functioning of mitochondria in the distal axon terminals of the cell. 

 

Since the first identification of mutations in Hsp27 that cause CMT 2F and dHMN II 

much work has been undertaken to elucidate why mutations in such an important 

and ubiquitous protein cause such a specific disease phenotype. These studies 

have nearly all led to the similar conclusion that mutations in Hsp27 disrupt axonal 

transport, most likely by having an, as yet, unidentified effect on cytoskeletal 

proteins. The work described in this Thesis supports this theory. However, the 

functional mechanism by which cytoskeletal dysfunction specifically affects only a 

sub-type of neuron remains unclear.  

 

Hsp27 has many cellular functions, and I have demonstrated that the position of the 

mutation along the gene affects Hsp27 pathology. However, these differences do 

not necessarily correlate to disease phenotype, for example, age of disease onset 

and severity of sensory deficit do not correlate to the position of the Hsp27 mutation 

as might be expected.  

 

In future in vitro experiments, it would be interesting to compare the effects of Hsp27 

mutations in both primary motor and sensory neurons to try and elucidate what 

properties of motoneurons make them so specifically vulnerable. It will also be 

interesting to compare the effects of mutations on different cargoes of the transport 

system along the axon to try to ascertain more clearly the underlying point of 

dysfunction, whether it is the rails that all cargoes transverse, or whether the effects 

of the mutations are more detrimental to certain carriers. These findings will not only 

be important in the elucidation of a disease mechanism for CMT 2F and dHMN II, 
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but to the field of peripheral neuropathy research as a whole, where many disease 

mechanisms are poorly understood, and to the understanding of Hsp27 itself, who’s 

properties and functions are not yet fully identified. 
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